1
|
Schyck S, Marchese P, Amani M, Ablonczy M, Spoelstra L, Jones M, Bathaei Y, Bismarck A, Masania K. Harnessing Fungi Signaling in Living Composites. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2400104. [PMID: 39469481 PMCID: PMC11514302 DOI: 10.1002/gch2.202400104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/07/2024] [Indexed: 10/30/2024]
Abstract
Signaling pathways in fungi offer a profound avenue for harnessing cellular communication and have garnered considerable interest in biomaterial engineering. Fungi respond to environmental stimuli through intricate signaling networks involving biochemical and electrical pathways, yet deciphering these mechanisms remains a challenge. In this review, an overview of fungal biology and their signaling pathways is provided, which can be activated in response to external stimuli and direct fungal growth and orientation. By examining the hyphal structure and the pathways involved in fungal signaling, the current state of recording fungal electrophysiological signals as well as the landscape of fungal biomaterials is explored. Innovative applications are highlighted, from sustainable materials to biomonitoring systems, and an outlook on the future of harnessing fungi signaling in living composites is provided.
Collapse
Affiliation(s)
- Sarah Schyck
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Pietro Marchese
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Muhamad Amani
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Mark Ablonczy
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Linde Spoelstra
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Mitchell Jones
- Polymer and Composite Engineering GroupInstitute of Materials ChemistryUniversity of ViennaWaehringer Straße 42Vienna1090Austria
| | - Yaren Bathaei
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| | - Alexander Bismarck
- Polymer and Composite Engineering GroupInstitute of Materials ChemistryUniversity of ViennaWaehringer Straße 42Vienna1090Austria
| | - Kunal Masania
- Shaping Matter LabFaculty of Aerospace EngineeringDelft University of TechnologyKluyverweg 1Delft2629 HSNetherlands
| |
Collapse
|
2
|
Klemm S, Freidank-Pohl C, Bauer L, Mantouvalou I, Simon U, Fleck C. Hierarchical structure and chemical composition of complementary segments of the fruiting bodies of Fomes fomentarius fungi fine-tune the compressive properties. PLoS One 2024; 19:e0304614. [PMID: 38870218 PMCID: PMC11175439 DOI: 10.1371/journal.pone.0304614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Humanity is often fascinated by structures and materials developed by Nature. While structural materials such as wood have been widely studied, the structural and mechanical properties of fungi are still largely unknown. One of the structurally interesting fungi is the polypore Fomes fomentarius. The present study deals with the investigation of the light but robust fruiting body of F. fomentarius. The four segments of the fruiting body (crust, trama, hymenium, and mycelial core) were examined. The comprehensive analysis included structural, chemical, and mechanical characterization with particular attention to cell wall composition, such as chitin/chitosan and glucan content, degree of deacetylation, and distribution of trace elements. The hymenium exhibited the best mechanical properties even though having the highest porosity. Our results suggest that this outstanding strength is due to the high proportion of skeletal hyphae and the highest chitin/chitosan content in the cell wall, next to its honeycomb structure. In addition, an increased calcium content was found in the hymenium and crust, and the presence of calcium oxalate crystals was confirmed by SEM-EDX. Interestingly, layers with different densities as well as layers of varying calcium and potassium depletion were found in the crust. Our results show the importance of considering the different structural and compositional characteristics of the segments when developing fungal-inspired materials and products. Moreover, the porous yet robust structure of hymenium is a promising blueprint for the development of advanced smart materials.
Collapse
Affiliation(s)
- Sophie Klemm
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Materials Science and Technology, Fachgebiet Werkstofftechnik/Chair of Materials Science & Engineering, Berlin, Germany
| | - Carsten Freidank-Pohl
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Biotechnology, Chair of Applied and Molecular Microbiology, Berlin, Germany
| | - Leona Bauer
- Helmholtz-Zentrum Berlin, Berlin, Germany
- Technische Universität Berlin, Faculty II Mathematics and Natural Sciences, BLiX, Institute for Optics and Atomic Physics, Analytical X-ray physics, Berlin, Germany
| | - Ioanna Mantouvalou
- Helmholtz-Zentrum Berlin, Berlin, Germany
- Technische Universität Berlin, Faculty II Mathematics and Natural Sciences, BLiX, Institute for Optics and Atomic Physics, Analytical X-ray physics, Berlin, Germany
| | - Ulla Simon
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Materials Science and Technology, Chair of Advanced Ceramic Materials, Berlin, Germany
| | - Claudia Fleck
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Materials Science and Technology, Fachgebiet Werkstofftechnik/Chair of Materials Science & Engineering, Berlin, Germany
| |
Collapse
|
3
|
Bhurtel A, Salifu E, Siddiqua S. Composite biomediated engineering approaches for improving problematic soils: Potentials and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169808. [PMID: 38184265 DOI: 10.1016/j.scitotenv.2023.169808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/10/2023] [Accepted: 12/29/2023] [Indexed: 01/08/2024]
Abstract
Several conventional chemical stabilizers are used for soil stabilization, among which cement is widely adopted. However, the high energy consumption and environmental challenges associated with these stabilizers have necessitated the transition toward the adoption/deployment of eco-friendly approaches for soil stabilization. Biomediated techniques are sustainable soil improvement methods adopting less toxic microorganisms, enzymes, or polymers for cementing soil. However, these processes also have several drawbacks, such as slow hardening, environmental impact, high cost, and lack of compatibility with different types of soils. It is hypothesized that these limitations may be overcome by exploring the prospects and opportunities offered by hybrid technological approaches involving the integration of nontraditional stabilizers and microbial-induced biomineralization processes for improving problematic soils. This paper discusses selected previous studies integrating different technologies and their benefits and challenges. The emerging fungi-based bio-mediation techniques and the possibility of forming sustainable fungal-based biocomposites to improve problematic soils are also highlighted.
Collapse
Affiliation(s)
- Akanksha Bhurtel
- School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada.
| | - Emmanuel Salifu
- School of Sustainable Engineering and the Built Environment, Center for Bio-Mediated and Bio-Inspired Geotechnics, Arizona State University, Tempe, AZ 85287-3005, United States of America.
| | - Sumi Siddiqua
- Faculty of Applied Science, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada.
| |
Collapse
|
4
|
Dai M, Du W, Lu L, Zhang S. Transcription factors SltA and CrzA reversely regulate calcium homeostasis under calcium-limited conditions. Appl Environ Microbiol 2023; 89:e0117023. [PMID: 37874299 PMCID: PMC10686095 DOI: 10.1128/aem.01170-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/11/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Calcium ions are ubiquitous intracellular signaling molecules for many signaling pathways regulating the fungal response to stress and antifungal drugs. The concentration of intracellular calcium is tightly regulated in its storage, release, and distribution. CrzA is the best-studied transcription factor that regulates this process under sufficient calcium or other external signals. However, CrzA was excluded from nuclei and then lost transcriptional activation under calcium-limited conditions. The regulators in the Ca2+ signaling pathway under calcium-limited conditions remain unclear. Here, we identified SltA as a key regulator in the Ca2+ signaling pathway under calcium-limited conditions, and the underlying mechanisms were further explored in Aspergillus fumigatus. These findings reveal a transcriptional control pathway that precisely regulates calcium homeostasis under calcium-limited conditions.
Collapse
Affiliation(s)
- Mengyao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Wenlong Du
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Shizhu Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Martín JF. Interaction of calcium responsive proteins and transcriptional factors with the PHO regulon in yeasts and fungi. Front Cell Dev Biol 2023; 11:1225774. [PMID: 37601111 PMCID: PMC10437122 DOI: 10.3389/fcell.2023.1225774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Phosphate and calcium ions are nutrients that play key roles in growth, differentiation and the production of bioactive secondary metabolites in filamentous fungi. Phosphate concentration regulates the biosynthesis of hundreds of fungal metabolites. The central mechanisms of phosphate transport and regulation, mediated by the master Pho4 transcriptional factor are known, but many aspects of the control of gene expression need further research. High ATP concentration in the cells leads to inositol pyrophosphate molecules formation, such as IP3 and IP7, that act as phosphorylation status reporters. Calcium ions are intracellular messengers in eukaryotic organisms and calcium homeostasis follows elaborated patterns in response to different nutritional and environmental factors, including cross-talking with phosphate concentrations. A large part of the intracellular calcium is stored in vacuoles and other organelles forming complexes with polyphosphate. The free cytosolic calcium concentration is maintained by transport from the external medium or by release from the store organelles through calcium permeable transient receptor potential (TRP) ion channels. Calcium ions, particularly the free cytosolic calcium levels, control the biosynthesis of fungal metabolites by two mechanisms, 1) direct interaction of calcium-bound calmodulin with antibiotic synthesizing enzymes, and 2) by the calmodulin-calcineurin signaling cascade. Control of very different secondary metabolites, including pathogenicity determinants, are mediated by calcium through the Crz1 factor. Several interactions between calcium homeostasis and phosphate have been demonstrated in the last decade: 1) The inositol pyrophosphate IP3 triggers the release of calcium ions from internal stores into the cytosol, 2) Expression of the high affinity phosphate transporter Pho89, a Na+/phosphate symporter, is controlled by Crz1. Also, mutants defective in the calcium permeable TRPCa7-like of Saccharomyces cerevisiae shown impaired expression of Pho89. This information suggests that CrzA and Pho89 play key roles in the interaction of phosphate and calcium regulatory pathways, 3) Finally, acidocalcisomes organelles have been found in mycorrhiza and in some melanin producing fungi that show similar characteristics as protozoa calcisomes. In these organelles there is a close interaction between orthophosphate, pyrophosphate and polyphosphate and calcium ions that are absorbed in the polyanionic polyphosphate matrix. These advances open new perspectives for the control of fungal metabolism.
Collapse
Affiliation(s)
- Juan F. Martín
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, León, Spain
| |
Collapse
|
6
|
Liu Q, Li Y, Wu H, Zhang B, Liu C, Gao Y, Guo H, Zhao J. Hyphopodium-Specific Signaling Is Required for Plant Infection by Verticillium dahliae. J Fungi (Basel) 2023; 9:jof9040484. [PMID: 37108938 PMCID: PMC10143791 DOI: 10.3390/jof9040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
For successful colonization, fungal pathogens have evolved specialized infection structures to overcome the barriers present in host plants. The morphology of infection structures and pathogenic mechanisms are diverse according to host specificity. Verticillium dahliae, a soil-borne phytopathogenic fungus, generates hyphopodium with a penetration peg on cotton roots while developing appressoria, that are typically associated with leaf infection on lettuce and fiber flax roots. In this study, we isolated the pathogenic fungus, V. dahliae (VdaSm), from Verticillium wilt eggplants and generated a GFP-labeled isolate to explore the colonization process of VdaSm on eggplants. We found that the formation of hyphopodium with penetration peg is crucial for the initial colonization of VdaSm on eggplant roots, indicating that the colonization processes on eggplant and cotton share a similar feature. Furthermore, we demonstrated that the VdNoxB/VdPls1-dependent Ca2+ elevation activating VdCrz1 signaling is a common genetic pathway to regulate infection-related development in V. dahliae. Our results indicated that VdNoxB/VdPls1-dependent pathway may be a desirable target to develop effective fungicides, to protect crops from V. dahliae infection by interrupting the formation of specialized infection structures.
Collapse
Affiliation(s)
- Qingyan Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yingchao Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, Hebei University, Baoding 071000, China
| | - Huawei Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Bosen Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Chuanhui Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Gao
- Qilu Zhongke Academy of Modern Microbiology Technology, Jinan 250022, China
| | - Huishan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jianhua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
7
|
Cogliati M, Arikan-Akdagli S, Barac A, Bostanaru AC, Brito S, Çerikçioğlu N, Efstratiou MA, Ergin Ç, Esposto MC, Frenkel M, Gangneux JP, Gitto A, Gonçalves CI, Guegan H, Gunde-Cimerman N, Güran M, Jonikaitė E, Kataržytė M, Klingspor L, Mares M, Meijer WG, Melchers WJG, Meletiadis J, Nastasa V, Babič MN, Ogunc D, Ozhak B, Prigitano A, Ranque S, Romanò L, Rusu RO, Sabino R, Sampaio A, Silva S, Stephens JH, Tehupeiory-Kooreman M, Velegraki A, Veríssimo C, Segal E, Brandão J. Environmental and bioclimatic factors influencing yeasts and molds distribution along European shores. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160132. [PMID: 36400291 DOI: 10.1016/j.scitotenv.2022.160132] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The present study employed data collected during the Mycosands survey to investigate the environmental factors influencing yeasts and molds distribution along European shores applying a species distribution modelling approach. Occurrence data were compared to climatic datasets (temperature, precipitation, and solar radiation), soil datasets (chemical and physical properties), and water datasets (temperature, salinity, and chlorophyll-a concentration) downloaded from web databases. Analyses were performed by MaxEnt software. Results suggested a different probability of distribution of yeasts and molds along European shores. Yeasts seem to tolerate low temperatures better during winter than molds and this reflects a higher suitability for the Northern European coasts. This difference is more evident considering suitability in waters. Both distributions of molds and yeasts are influenced by basic soil pH, probably because acidic soils are more favorable to bacterial growth. Soils with high nitrogen concentrations are not suitable for fungal growth, which, in contrast, are optimal for plant growth, favored by this environment. Finally, molds show affinity with soil rich in nickel and yeasts with soils rich in cadmium resulting in a distribution mainly at the mouths of European rivers or lagoons, where these metals accumulate in river sediments.
Collapse
Affiliation(s)
- M Cogliati
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy.
| | - S Arikan-Akdagli
- Mycology Laboratory at Department of Medical Microbiology of Hacettepe University Medical School, Ankara, Turkey
| | - A Barac
- Clinical Centre of Serbia, Clinic for Infectious and Tropical Diseases, Faculty of Medicine, University of Belgrade, Serbia
| | - A C Bostanaru
- Ion Ionescu de la Brad University of Life Sciences, Iasi, Romania
| | - S Brito
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - N Çerikçioğlu
- Mycology Laboratory at Department of Medical Microbiology of Marmara University Medical School, Istanbul, Turkey
| | - M A Efstratiou
- Department of Marine Sciences, University of the Aegean, University Hill, Mytilene, Greece
| | - Ç Ergin
- Department of Medical Microbiology, Medical Faculty, Pamukkale University, Denizli, Turkey
| | - M C Esposto
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - M Frenkel
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - J P Gangneux
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - A Gitto
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, and UCD Conway Institute, University College Dublin, Ireland
| | - C I Gonçalves
- Department of Biology and Environment, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal
| | - H Guegan
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - N Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Slovenia
| | - M Güran
- Faculty of Medicine, Eastern Mediterranean University, Famagusta, Northern Cyprus, Mersin, Turkey
| | - E Jonikaitė
- Marine Research Institute, Klaipėda University, Klaipėda, Lithuania
| | - M Kataržytė
- Marine Research Institute, Klaipėda University, Klaipėda, Lithuania
| | - L Klingspor
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - M Mares
- Ion Ionescu de la Brad University of Life Sciences, Iasi, Romania
| | - W G Meijer
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, and UCD Conway Institute, University College Dublin, Ireland
| | - W J G Melchers
- Medical Microbiology, Radboud University Medical Centre (Radboudumc), Nijmegen, the Netherlands
| | - J Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - V Nastasa
- Ion Ionescu de la Brad University of Life Sciences, Iasi, Romania
| | - M Novak Babič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Slovenia
| | - D Ogunc
- Department of Medical Microbiology, Akdeniz University Medical School, Antalya, Turkey
| | - B Ozhak
- Department of Medical Microbiology, Akdeniz University Medical School, Antalya, Turkey
| | - A Prigitano
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - S Ranque
- Aix Marseille Univ, IHU-Méditerranée Infection, AP-HM, IRD, SSA, VITROME, Marseille, France
| | - L Romanò
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milano, Italy
| | - R O Rusu
- Ion Ionescu de la Brad University of Life Sciences, Iasi, Romania
| | - R Sabino
- Reference Unit for Parasitic and Fungal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal; Instituto de Saúde Ambiental, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - A Sampaio
- Department of Biology and Environment, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, Vila Real, Portugal
| | - S Silva
- Department of Epidemiology, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - J H Stephens
- UCD School of Biomolecular and Biomedical Science, UCD Earth Institute, and UCD Conway Institute, University College Dublin, Ireland
| | - M Tehupeiory-Kooreman
- Medical Microbiology, Radboud University Medical Centre (Radboudumc), Nijmegen, the Netherlands
| | - A Velegraki
- Mycology Research Laboratory and UOA/HCPF Culture Collection, Microbiology Department, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Mycology Laboratory, BIOMEDICINE S.A., Athens, Greece
| | - C Veríssimo
- Reference Unit for Parasitic and Fungal Infections, Department of Infectious Diseases, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| | - E Segal
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - J Brandão
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for Environmental and Marine Studies (CESAM) - Department of Animal Biology, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
8
|
Municio-Diaz C, Muller E, Drevensek S, Fruleux A, Lorenzetti E, Boudaoud A, Minc N. Mechanobiology of the cell wall – insights from tip-growing plant and fungal cells. J Cell Sci 2022; 135:280540. [DOI: 10.1242/jcs.259208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ABSTRACT
The cell wall (CW) is a thin and rigid layer encasing the membrane of all plant and fungal cells. It ensures mechanical integrity by bearing mechanical stresses derived from large cytoplasmic turgor pressure, contacts with growing neighbors or growth within restricted spaces. The CW is made of polysaccharides and proteins, but is dynamic in nature, changing composition and geometry during growth, reproduction or infection. Such continuous and often rapid remodeling entails risks of enhanced stress and consequent damages or fractures, raising the question of how the CW detects and measures surface mechanical stress and how it strengthens to ensure surface integrity? Although early studies in model fungal and plant cells have identified homeostatic pathways required for CW integrity, recent methodologies are now allowing the measurement of pressure and local mechanical properties of CWs in live cells, as well as addressing how forces and stresses can be detected at the CW surface, fostering the emergence of the field of CW mechanobiology. Here, using tip-growing cells of plants and fungi as case study models, we review recent progress on CW mechanosensation and mechanical regulation, and their implications for the control of cell growth, morphogenesis and survival.
Collapse
Affiliation(s)
- Celia Municio-Diaz
- Université de Paris, CNRS, Institut Jacques Monod 1 , F-75006 Paris , France
- Equipe Labellisée LIGUE Contre le Cancer 2 , 75013 Paris , France
| | - Elise Muller
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris 3 , 91128 Palaiseau Cedex , France
| | - Stéphanie Drevensek
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris 3 , 91128 Palaiseau Cedex , France
| | - Antoine Fruleux
- LPTMS, CNRS, Université Paris-Saclay 4 , 91405 Orsay , France
| | - Enrico Lorenzetti
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris 3 , 91128 Palaiseau Cedex , France
| | - Arezki Boudaoud
- LadHyX, CNRS, Ecole polytechnique, Institut Polytechnique de Paris 3 , 91128 Palaiseau Cedex , France
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod 1 , F-75006 Paris , France
- Equipe Labellisée LIGUE Contre le Cancer 2 , 75013 Paris , France
| |
Collapse
|
9
|
Gurunathan S, Lee AR, Kim JH. Antifungal Effect of Nanoparticles against COVID-19 Linked Black Fungus: A Perspective on Biomedical Applications. Int J Mol Sci 2022; 23:12526. [PMID: 36293381 PMCID: PMC9604067 DOI: 10.3390/ijms232012526] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 08/21/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and pathogenic coronavirus that has caused a 'coronavirus disease 2019' (COVID-19) pandemic in multiple waves, which threatens human health and public safety. During this pandemic, some patients with COVID-19 acquired secondary infections, such as mucormycosis, also known as black fungus disease. Mucormycosis is a serious, acute, and deadly fungal infection caused by Mucorales-related fungal species, and it spreads rapidly. Hence, prompt diagnosis and treatment are necessary to avoid high mortality and morbidity rates. Major risk factors for this disease include uncontrolled diabetes mellitus and immunosuppression that can also facilitate increases in mucormycosis infections. The extensive use of steroids to prevent the worsening of COVID-19 can lead to black fungus infection. Generally, antifungal agents dedicated to medical applications must be biocompatible, non-toxic, easily soluble, efficient, and hypoallergenic. They should also provide long-term protection against fungal growth. COVID-19-related black fungus infection causes a severe increase in fatalities. Therefore, there is a strong need for the development of novel and efficient antimicrobial agents. Recently, nanoparticle-containing products available in the market have been used as antimicrobial agents to prevent bacterial growth, but little is known about their efficacy with respect to preventing fungal growth, especially black fungus. The present review focuses on the effect of various types of metal nanoparticles, specifically those containing silver, zinc oxide, gold, copper, titanium, magnetic, iron, and carbon, on the growth of various types of fungi. We particularly focused on how these nanoparticles can impact the growth of black fungus. We also discussed black fungus co-infection in the context of the global COVID-19 outbreak, and management and guidelines to help control COVID-19-associated black fungus infection. Finally, this review aimed to elucidate the relationship between COVID-19 and mucormycosis.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Ah Reum Lee
- CHA Advanced Research Institute, CHA Medical Center, 335 Pangyo-ro, Bundang-gu, Seongnam-si 13488, Korea
| | - Jin Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
10
|
Liu T, Li J, Tang Q, Qiu P, Gou D, Zhao J. Chitosan-Based Materials: An Overview of Potential Applications in Food Packaging. Foods 2022; 11:1490. [PMID: 35627060 PMCID: PMC9141390 DOI: 10.3390/foods11101490] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 01/14/2023] Open
Abstract
Chitosan is a multifunctional biopolymer that is widely used in the food and medical fields because of its good antibacterial, antioxidant, and enzyme inhibiting activity and its degradability. The biological activity of chitosan as a new food preservation material has gradually become a hot research topic. This paper reviews recent research on the bioactive mechanism of chitosan and introduces strategies for modifying and applying chitosan for food preservation and different preservation techniques to explore the potential application value of active chitosan-based food packaging. Finally, issues and perspectives on the role of chitosan in enhancing the freshness of food products are presented to provide a theoretical basis and scientific reference for subsequent research.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China; (T.L.); (J.L.); (Q.T.); (P.Q.); (D.G.)
| |
Collapse
|
11
|
Stavridou E, Giannakis I, Karamichali I, Kamou NN, Lagiotis G, Madesis P, Emmanouil C, Kungolos A, Nianiou-Obeidat I, Lagopodi AL. Biosolid-Amended Soil Enhances Defense Responses in Tomato Based on Metagenomic Profile and Expression of Pathogenesis-Related Genes. PLANTS (BASEL, SWITZERLAND) 2021; 10:2789. [PMID: 34961260 PMCID: PMC8709368 DOI: 10.3390/plants10122789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/12/2021] [Accepted: 12/13/2021] [Indexed: 05/28/2023]
Abstract
Biosolid application is an effective strategy, alternative to synthetic chemicals, for enhancing plant growth and performance and improving soil properties. In previous research, biosolid application has shown promising results with respect to tomato resistance against Fusarium oxysporum f. sp. radicis-lycopersici (Forl). Herein, we aimed at elucidating the effect of biosolid application on the plant-microbiome response mechanisms for tomato resistance against Forl at a molecular level. More specifically, plant-microbiome interactions in the presence of biosolid application and the biocontrol mechanism against Forl in tomato were investigated. We examined whether biosolids application in vitro could act as an inhibitor of growth and sporulation of Forl. The effect of biosolid application on the biocontrol of Forl was investigated based on the enhanced plant resistance, measured as expression of pathogen-response genes, and pathogen suppression in the context of soil microbiome diversity, abundance, and predicted functions. The expression of the pathogen-response genes was variably induced in tomato plants in different time points between 12 and 72 h post inoculation in the biosolid-enriched treatments, in the presence or absence of pathogens, indicating activation of defense responses in the plant. This further suggests that biosolid application resulted in a successful priming of tomato plants inducing resistance mechanisms against Forl. Our results have also demonstrated that biosolid application alters microbial diversity and the predicted soil functioning, along with the relative abundance of specific phyla and classes, as a proxy for disease suppression. Overall, the use of biosolid as a sustainable soil amendment had positive effects not only on plant health and protection, but also on growth of non-pathogenic antagonistic microorganisms against Forl in the tomato rhizosphere and thus, on plant-soil microbiome interactions, toward biocontrol of Forl.
Collapse
Affiliation(s)
- Evangelia Stavridou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece; (E.S.); (I.K.); (G.L.); (P.M.)
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Giannakis
- School of Civil Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.G.); (A.K.)
| | - Ioanna Karamichali
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece; (E.S.); (I.K.); (G.L.); (P.M.)
| | - Nathalie N. Kamou
- Laboratory of Plant Pathology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - George Lagiotis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece; (E.S.); (I.K.); (G.L.); (P.M.)
| | - Panagiotis Madesis
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, 57001 Thessaloniki, Greece; (E.S.); (I.K.); (G.L.); (P.M.)
- Laboratory of Molecular Biology of Plants, School of Agricultural Sciences, University of Thessaly, 38221 Volos, Greece
| | - Christina Emmanouil
- School of Spatial Planning and Development, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Athanasios Kungolos
- School of Civil Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.G.); (A.K.)
| | - Irini Nianiou-Obeidat
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anastasia L. Lagopodi
- Laboratory of Plant Pathology, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
12
|
Hemkemeyer M, Schwalb SA, Heinze S, Joergensen RG, Wichern F. Functions of elements in soil microorganisms. Microbiol Res 2021; 252:126832. [PMID: 34508963 DOI: 10.1016/j.micres.2021.126832] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
The soil microbial community fulfils various functions, such as nutrient cycling and carbon (C) sequestration, therefore contributing to maintenance of soil fertility and mitigation of global warming. In this context, a major focus of research has been on C, nitrogen (N) and phosphorus (P) cycling. However, from aquatic and other environments, it is well known that other elements beyond C, N, and P are essential for microbial functioning. Nonetheless, for soil microorganisms this knowledge has not yet been synthesised. To gain a better mechanistic understanding of microbial processes in soil systems, we aimed at summarising the current knowledge on the function of a range of essential or beneficial elements, which may affect the efficiency of microbial processes in soil. This knowledge is discussed in the context of microbial driven nutrient and C cycling. Our findings may support future investigations and data evaluation, where other elements than C, N, and P affect microbial processes.
Collapse
Affiliation(s)
- Michael Hemkemeyer
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany.
| | - Sanja A Schwalb
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| | - Stefanie Heinze
- Department of Soil Science & Soil Ecology, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Rainer Georg Joergensen
- Department of Soil Biology and Plant Nutrition, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany
| | - Florian Wichern
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| |
Collapse
|
13
|
Antifungal Effect of Chitosan/Nano-TiO 2 Composite Coatings against Colletotrichum gloeosporioides, Cladosporium oxysporum and Penicillium steckii. Molecules 2021; 26:molecules26154401. [PMID: 34361552 PMCID: PMC8347353 DOI: 10.3390/molecules26154401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 01/23/2023] Open
Abstract
Postharvest pathogens such as C. gloeosporioides (MA), C.oxysporum (ME) and P. steckii (MF) are the causal agents of disease in mangoes. This paper presents an in vitro investigation into the antifungal effect of a chitosan (CTS)/nano-titanium dioxide (TiO2) composite coating against MA, ME and MF. The results indicated that, the rates of MA, ME and MF mortality following the single chitosan treatment were 63.3%, 84.8% and 43.5%, respectively, while the rates of mycelial inhibition were 84.0%, 100% and 25.8%, respectively. However, following the addition of 0.5% nano-TiO2 into the CTS, both the mortality and mycelial inhibition rates for MA and ME reached 100%, and the mortality and mycelial inhibition rate for MF also increased significantly, reaching 75.4% and 57.3%, respectively. In the MA, the dry weight of mycelia after the CTS/0.5% nano-TiO2 treatment decreased by 36.3% in comparison with the untreated group, while the conductivity value was about 1.7 times that of the untreated group, and the protein dissolution rate and extravasation degree of nucleic acids also increased significantly. Thus, this research revealed the potential of CTS/nano-TiO2 composite coatings in the development of new antimicrobial materials.
Collapse
|
14
|
Dzurendova S, Zimmermann B, Kohler A, Reitzel K, Nielsen UG, Dupuy--Galet BX, Leivers S, Horn SJ, Shapaval V. Calcium Affects Polyphosphate and Lipid Accumulation in Mucoromycota Fungi. J Fungi (Basel) 2021; 7:jof7040300. [PMID: 33920847 PMCID: PMC8071181 DOI: 10.3390/jof7040300] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/11/2022] Open
Abstract
Calcium controls important processes in fungal metabolism, such as hyphae growth, cell wall synthesis, and stress tolerance. Recently, it was reported that calcium affects polyphosphate and lipid accumulation in fungi. The purpose of this study was to assess the effect of calcium on the accumulation of lipids and polyphosphate for six oleaginous Mucoromycota fungi grown under different phosphorus/pH conditions. A Duetz microtiter plate system (Duetz MTPS) was used for the cultivation. The compositional profile of the microbial biomass was recorded using Fourier-transform infrared spectroscopy, the high throughput screening extension (FTIR-HTS). Lipid content and fatty acid profiles were determined using gas chromatography (GC). Cellular phosphorus was determined using assay-based UV-Vis spectroscopy, and accumulated phosphates were characterized using solid-state 31P nuclear magnetic resonance spectroscopy. Glucose consumption was estimated by FTIR-attenuated total reflection (FTIR-ATR). Overall, the data indicated that calcium availability enhances polyphosphate accumulation in Mucoromycota fungi, while calcium deficiency increases lipid production, especially under acidic conditions (pH 2-3) caused by the phosphorus limitation. In addition, it was observed that under acidic conditions, calcium deficiency leads to increase in carotenoid production. It can be concluded that calcium availability can be used as an optimization parameter in fungal fermentation processes to enhance the production of lipids or polyphosphates.
Collapse
Affiliation(s)
- Simona Dzurendova
- Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, 1433 Ås, Norway; (B.Z.); (A.K.); (B.X.D.--G.); (V.S.)
- Correspondence: or
| | - Boris Zimmermann
- Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, 1433 Ås, Norway; (B.Z.); (A.K.); (B.X.D.--G.); (V.S.)
| | - Achim Kohler
- Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, 1433 Ås, Norway; (B.Z.); (A.K.); (B.X.D.--G.); (V.S.)
| | - Kasper Reitzel
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark;
| | - Ulla Gro Nielsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark;
| | - Benjamin Xavier Dupuy--Galet
- Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, 1433 Ås, Norway; (B.Z.); (A.K.); (B.X.D.--G.); (V.S.)
| | - Shaun Leivers
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Christian Magnus Falsens vei 1, 1433 Ås, Norway; (S.L.); (S.J.H.)
| | - Svein Jarle Horn
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Christian Magnus Falsens vei 1, 1433 Ås, Norway; (S.L.); (S.J.H.)
| | - Volha Shapaval
- Faculty of Science and Technology, Norwegian University of Life Sciences, Drøbakveien 31, 1433 Ås, Norway; (B.Z.); (A.K.); (B.X.D.--G.); (V.S.)
| |
Collapse
|
15
|
Wahdan SFM, Heintz-Buschart A, Sansupa C, Tanunchai B, Wu YT, Schädler M, Noll M, Purahong W, Buscot F. Targeting the Active Rhizosphere Microbiome of Trifolium pratense in Grassland Evidences a Stronger-Than-Expected Belowground Biodiversity-Ecosystem Functioning Link. Front Microbiol 2021; 12:629169. [PMID: 33597941 PMCID: PMC7882529 DOI: 10.3389/fmicb.2021.629169] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
The relationship between biodiversity and ecosystem functioning (BEF) is a central issue in soil and microbial ecology. To date, most belowground BEF studies focus on the diversity of microbes analyzed by barcoding on total DNA, which targets both active and inactive microbes. This approach creates a bias as it mixes the part of the microbiome currently steering processes that provide actual ecosystem functions with the part not directly involved. Using experimental extensive grasslands under current and future climate, we used the bromodeoxyuridine (BrdU) immunocapture technique combined with pair-end Illumina sequencing to characterize both total and active microbiomes (including both bacteria and fungi) in the rhizosphere of Trifolium pratense. Rhizosphere function was assessed by measuring the activity of three microbial extracellular enzymes (β-glucosidase, N-acetyl-glucosaminidase, and acid phosphatase), which play central roles in the C, N, and P acquisition. We showed that the richness of overall and specific functional groups of active microbes in rhizosphere soil significantly correlated with the measured enzyme activities, while total microbial richness did not. Active microbes of the rhizosphere represented 42.8 and 32.1% of the total bacterial and fungal taxa, respectively, and were taxonomically and functionally diverse. Nitrogen fixing bacteria were highly active in this system with 71% of the total operational taxonomic units (OTUs) assigned to this group detected as active. We found the total and active microbiomes to display different responses to variations in soil physicochemical factors in the grassland, but with some degree of resistance to a manipulation mimicking future climate. Our findings provide critical insights into the role of active microbes in defining soil ecosystem functions in a grassland ecosystem. We demonstrate that the relationship between biodiversity-ecosystem functioning in soil may be stronger than previously thought.
Collapse
Affiliation(s)
- Sara Fareed Mohamed Wahdan
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany.,Department of Biology, Leipzig University, Leipzig, Germany.,Department of Botany, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Anna Heintz-Buschart
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Chakriya Sansupa
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany
| | - Benjawan Tanunchai
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany
| | - Yu-Ting Wu
- Department of Forestry, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Martin Schädler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Community Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany
| | - Matthias Noll
- Institute for Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Witoon Purahong
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany
| | - François Buscot
- Department of Soil Ecology, Helmholtz Centre for Environmental Research-UFZ, Halle (Saale), Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
16
|
Granular Calcite Stimulates Natural Mycorrhization and Growth of White Spruce Seedlings in Peat-Based Substrates in Forest Nursery. Microorganisms 2020; 8:microorganisms8071088. [PMID: 32708327 PMCID: PMC7409261 DOI: 10.3390/microorganisms8071088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 11/30/2022] Open
Abstract
The acidity of peat-based substrates used in forest nurseries limits seedling mineral nutrition and growth as well as the activity of microorganisms. To our knowledge, no study has yet evaluated the use of granular calcite as a covering material to increase pH, calcium and CO2 concentrations in the rhizosphere and ectomycorrhizal development. The objective is to compare different covering treatments on early colonization of the roots by ectomycorrhizal fungi, as well as the growth and calcium nutrition of white spruce seedlings in the forest nursery. Three treatments were used to cover the plant cavities (Silica (29 g/cavity; control treatment), Calcite (24 g/cavity) and calcite+ (31 g/cavity)) and were distributed randomly inside each of the five complete blocks of the experimental design. The results show that calcite stimulates natural mycorrhization. Seedlings grown with calcite have significant gains for several growth and physiological variables, and that the periphery of their root plugs are more colonized by the extramatrical phase of ectomycorrhizal fungi, thus improving root-plug cohesion. The authors discuss the operational scope of the results in relation to the tolerance of seedlings to environmental stress and the improvement of their quality, both in the nursery and in reforestation sites.
Collapse
|
17
|
Huang W, Liu X, Zhou X, Wang X, Liu X, Liu H. Calcium Signaling Is Suppressed in Magnaporthe oryzae Conidia by Bacillus cereus HS24. PHYTOPATHOLOGY 2020; 110:309-316. [PMID: 31556343 DOI: 10.1094/phyto-08-18-0311-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Rice yield is greatly reduced owing to rice blast, a polycyclic fungal disease caused by the ascomycete Magnaporthe oryzae. Previously, Bacillus cereus HS24, isolated from a rice farm, showed a strong antimicrobial effect toward M. oryzae. To better exploit it as a biocontrol agent, HS24 was studied for the mechanism that it uses to suppress rice blast. Conidium germination in M. oryzae was significantly inhibited by HS24, whereby inhibition reached 97.8% at the concentration of 107 CFU/ml. The transcription levels of Ca2+/calmodulin-dependent protein kinase II, PMC1, and CCH1, key genes involved in the M. oryzae Ca2+ signaling pathway, were significantly decreased in HS24-treated conidia at high concentration. The treatment of M. oryzae with the corresponding Ca2+ signaling pathway inhibitors KN-93, verapamil, and cyclopiazonic acid significantly reduced conidium germination. This inhibitory effect was found to be concentration dependent, similar to the HS24 treatment. We also found that HS24 was able to decrease the intracellular free Ca2+ concentration in M. oryzae conidia significantly. The addition of exogenous Ca2+ did not diminish the inhibitory effect of HS24 on the reduction of intracellular free Ca2+ concentration and the level of conidium germination. In conclusion, B. cereus HS24 at high concentration prevents extracellular Ca2+ from entering the conidia in M. oryzae, causes a significant reduction of intracellular free Ca2+ concentration, and results in the inhibition of conidium germination.
Collapse
Affiliation(s)
- Wenxiang Huang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Xingyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Xiaosi Zhou
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Xiaoli Wang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin Institute of Technology, Huaian 223003, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Hongxia Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| |
Collapse
|
18
|
Sadeghi K, Thanakkasaranee S, Lim IJ, Seo J. Calcined marine coral powders as a novel ecofriendly antimicrobial agent. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 107:110193. [DOI: 10.1016/j.msec.2019.110193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/10/2019] [Indexed: 01/27/2023]
|
19
|
The Effect of Edible Chitosan Coatings Incorporated with Thymus capitatus Essential Oil on the Shelf-Life of Strawberry ( Fragaria x ananassa) during Cold Storage. Biomolecules 2018; 8:biom8040155. [PMID: 30469447 PMCID: PMC6315556 DOI: 10.3390/biom8040155] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/05/2018] [Accepted: 11/07/2018] [Indexed: 01/26/2023] Open
Abstract
The strawberry is a fruit appreciated in the food industry for its high content of bioactive compounds. However, it is considered a highly perishable fruit, generally attacked by pests of phytopathogenic origin, which decreases its shelf-life. Normally, to diminish the losses caused by pathogenic microbes, coatings of polysaccharides in combination with natural products like essential oils are applied. In this work, we describe the effect of edible coatings from chitosan (CT) incorporating Thymus capitatus essential oil (TCEO), applied to strawberries stored under refrigeration conditions (5 ± 0.5 °C). Different concentrations of TCEO were applied to chitosan coatings, with different effects on the physical and microbiological properties of the strawberries. All the products had greater acceptance and quality than the controls, being more effective those with essential oil incorporation. It is noteworthy that all the essential oil treatments lead to an increase in the shelf-life of strawberries of up to 15 days. Scanning electron microscopy (SEM) analysis of the microstructure showed a decrease in compactness with TCEO introduction, but without compromising food preservation after 15 days. In addition, treated strawberries delayed the loss of physicochemical and antioxidant properties, due to protection against the microbial development of aerobic mesophylls, molds, and yeasts.
Collapse
|
20
|
Loss O, Bertuzzi M, Yan Y, Fedorova N, McCann BL, Armstrong-James D, Espeso EA, Read ND, Nierman WC, Bignell EM. Mutual independence of alkaline- and calcium-mediated signalling in Aspergillus fumigatus refutes the existence of a conserved druggable signalling nexus. Mol Microbiol 2017; 106:861-875. [PMID: 28922497 PMCID: PMC5725717 DOI: 10.1111/mmi.13840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2017] [Indexed: 01/03/2023]
Abstract
Functional coupling of calcium‐ and alkaline responsive signalling occurs in multiple fungi to afford efficient cation homeostasis. Host microenvironments exert alkaline stress and potentially toxic concentrations of Ca2+, such that highly conserved regulators of both calcium‐ (Crz) and pH‐ (PacC/Rim101) responsive signalling are crucial for fungal pathogenicity. Drugs targeting calcineurin are potent antifungal agents but also perturb human immunity thereby negating their use as anti‐infectives, abrogation of alkaline signalling has, therefore, been postulated as an adjunctive antifungal strategy. We examined the interdependency of pH‐ and calcium‐mediated signalling in Aspergillus fumigatus and found that calcium chelation severely impedes hyphal growth indicating a critical requirement for this ion independently of ambient pH. Transcriptomic responses to alkaline pH or calcium excess exhibited minimal similarity. Mutants lacking calcineurin, or its client CrzA, displayed normal alkaline tolerance and nuclear translocation of CrzA was unaffected by ambient pH. Expression of a highly conserved, alkaline‐regulated, sodium ATPase was tolerant of genetic or chemical perturbations of calcium‐mediated signalling, but abolished in null mutants of the pH‐responsive transcription factor PacC, and PacC proteolytic processing occurred normally during calcium excess. Taken together our data demonstrate that in A. fumigatus the regulatory hierarchy governing alkaline tolerance circumvents calcineurin signalling.
Collapse
Affiliation(s)
- Omar Loss
- Microbiology Section, Centre for Molecular Microbiology and Infection, Imperial College London, London SW7 2AZ, UK
| | - Margherita Bertuzzi
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9NT, UK
| | - Yu Yan
- The J. Craig Venter Institute, Infectious Diseases Program, Rockville, MD, USA
| | - Natalie Fedorova
- The J. Craig Venter Institute, Infectious Diseases Program, Rockville, MD, USA
| | - Bethany L McCann
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9NT, UK
| | - Darius Armstrong-James
- Fungal Pathogens Laboratory, National Heart and Lung Institute, Imperial College London SW7 2AY, UK
| | - Eduardo A Espeso
- Department of Molecular and Cellular Biology, Centro de Investigaciones Biologicas (C.S.I.C.), Madrid, Spain
| | - Nick D Read
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9NT, UK
| | - William C Nierman
- The J. Craig Venter Institute, Infectious Diseases Program, Rockville, MD, USA
| | - Elaine M Bignell
- Manchester Fungal Infection Group, Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
21
|
Evolutionary dynamics in the fungal polarization network, a mechanistic perspective. Biophys Rev 2017; 9:375-387. [PMID: 28812259 PMCID: PMC5578929 DOI: 10.1007/s12551-017-0286-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/24/2017] [Indexed: 12/21/2022] Open
Abstract
Polarity establishment underlies proper cell cycle completion across virtually all organisms. Much progress has been made in generating an understanding of the structural and functional components of this process, especially in model species. Here we focus on the evolutionary dynamics of the fungal polarization protein network in order to determine general components and mechanistic principles, species- or lineage-specific adaptations and the evolvability of the network. The currently available genomic and proteomic screens in a variety of fungal species have shown three main characteristics: (1) certain proteins, processes and functions are conserved throughout the fungal clade; (2) orthologous functions can never be assumed, as various cases have been observed of homologous loci with dissimilar functions; (3) species have, typically, various species- or lineage-specific proteins incorporated in their polarization network. Further large-scale comparative and experimental studies, including those on non-model species representing the great fungal diversity, are needed to gain a better understanding of the evolutionary dynamics and generalities of the polarization network in fungi.
Collapse
|
22
|
Harris SD. Branching of fungal hyphae: regulation, mechanisms and comparison with other branching systems. Mycologia 2017; 100:823-32. [DOI: 10.3852/08-177] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Steven D. Harris
- Department of Plant Pathology and Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68588
| |
Collapse
|
23
|
Zhao YL, Zhou TT, Guo HS. Hyphopodium-Specific VdNoxB/VdPls1-Dependent ROS-Ca2+ Signaling Is Required for Plant Infection by Verticillium dahliae. PLoS Pathog 2016; 12:e1005793. [PMID: 27463643 PMCID: PMC4962994 DOI: 10.1371/journal.ppat.1005793] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/06/2016] [Indexed: 11/18/2022] Open
Abstract
Verticillium dahliae is a phytopathogenic fungus obligate in root infection. A few hyphopodia differentiate from large numbers of hyphae after conidia germination on the root surface for further infection. However, the molecular features and role of hyphopodia in the pathogenicity of V. dahliae remain elusive. In this study, we found that the VdPls1, a tetraspanin, and the VdNoxB, a catalytic subunit of membrane-bound NADPH oxidases for reactive oxygen species (ROS) production, were specifically expressed in hyphopodia. VdPls1 and VdNoxB highly co-localize with the plasma membrane at the base of hyphopodia, where ROS and penetration pegs are generated. Mutant strains, VdΔnoxb and VdΔpls1, in which VdPls1 and VdNoxB were deleted, respectively, developed defective hyphpodia incapable of producing ROS and penetration pegs. Defective plasma membrane localization of VdNoxB in VdΔpls1 demonstrates that VdPls1 functions as an adaptor protein for the recruitment and activation of the VdNoxB. Furthermore, in VdΔnoxb and VdΔpls1, tip-high Ca2+ accumulation was impaired in hyphopodia, but not in vegetative hyphal tips. Moreover, nuclear targeting of VdCrz1 and activation of calcineurin-Crz1 signaling upon hyphopodium induction in wild-type V. dahliae was impaired in both knockout mutants, indicating that VdPls1/VdNoxB-dependent ROS was specifically required for tip-high Ca2+ elevation in hyphopodia to activate the transcription factor VdCrz1 in the regulation of penetration peg formation. Together with the loss of virulence of VdΔnoxb and VdΔpls1, which are unable to initiate colonization in cotton plants, our data demonstrate that VdNoxB/VdPls1-mediated ROS production activates VdCrz1 signaling through Ca2+ elevation in hyphopodia, infectious structures of V. dahliae, to regulate penetration peg formation during the initial colonization of cotton roots.
Collapse
Affiliation(s)
- Yun-Long Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Ting-Ting Zhou
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Microbiology, Beijing, China
| |
Collapse
|
24
|
Lee CG, Koo JC, Park JK. Antifungal Effect of Chitosan as Ca(2+) Channel Blocker. THE PLANT PATHOLOGY JOURNAL 2016; 32:242-250. [PMID: 27298599 PMCID: PMC4892820 DOI: 10.5423/ppj.oa.08.2015.0162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 02/06/2016] [Accepted: 02/15/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to investigate antifungal activity of a range of different molecular weight (MW) chitosan against Penicillium italicum. Our results demonstrate that the antifungal activity was dependent both the MW and concentration of the chitosan. Among a series of chitosan derived from the hydrolysis of high MW chitosan, the fractions containing various sizes of chitosan ranging from 3 to 15 glucosamine units named as chitooligomers-F2 (CO-F2) was found to show the highest antifungal activity against P. italicum. Furthermore, the effect of CO-F2 toward this fungus was significantly reduced in the presence of Ca(2+), whereas its effect was recovered by ethylenediaminetetraacetic acid, suggesting that the CO-F2 acts via disruption of Ca(2+) gradient required for survival of the fungus. Our results suggest that CO-F2 may serve as potential compounds to develop alternatives to synthetic fungicides for the control of the postharvest diseases.
Collapse
Affiliation(s)
- Choon Geun Lee
- Department of Life Science, College of BioNano, Gachon University, Seongnam 13120,
Korea
| | - Ja Choon Koo
- Division of Science Education and Institute of Fusion Science, Chonbuk National University, Jeonju 54896,
Korea
| | - Jae Kweon Park
- Department of Life Science, College of BioNano, Gachon University, Seongnam 13120,
Korea
| |
Collapse
|
25
|
Segal AW. NADPH oxidases as electrochemical generators to produce ion fluxes and turgor in fungi, plants and humans. Open Biol 2016; 6:160028. [PMID: 27249799 PMCID: PMC4892433 DOI: 10.1098/rsob.160028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/21/2016] [Indexed: 02/07/2023] Open
Abstract
The NOXs are a family of flavocytochromes whose basic structure has been largely conserved from algae to man. This is a very simple system. NADPH is generally available, in plants it is a direct product of photosynthesis, and oxygen is a largely ubiquitous electron acceptor, and the electron-transporting core of an FAD and two haems is the minimal required to pass electrons across the plasma membrane. These NOXs have been shown to be essential for diverse functions throughout the biological world and, lacking a clear mechanism of action, their effects have generally been attributed to free radical reactions. Investigation into the function of neutrophil leucocytes has demonstrated that electron transport through the prototype NOX2 is accompanied by the generation of a charge across the membrane that provides the driving force propelling protons and other ions across the plasma membrane. The contention is that the primary function of the NOXs is to supply the driving force to transport ions, the nature of which will depend upon the composition and characteristics of the local ion channels, to undertake a host of diverse functions. These include the generation of turgor in fungi and plants for the growth of filaments and invasion by appressoria in the former, and extension of pollen tubes and root hairs, and stomatal closure, in the latter. In neutrophils, they elevate the pH in the phagocytic vacuole coupled to other ion fluxes. In endothelial cells of blood vessels, they could alter luminal volume to regulate blood pressure and tissue perfusion.
Collapse
Affiliation(s)
- Anthony W Segal
- Division of Medicine, UCL, 5 University Street, London WC1E 6JJ, UK
| |
Collapse
|
26
|
Sasanuma I, Suzuki T. Effect of calcium on cell-wall degrading enzymes of Botrytis cinerea. Biosci Biotechnol Biochem 2016; 80:1730-6. [PMID: 26998660 DOI: 10.1080/09168451.2016.1146064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Effective anti-Botrytis strategies leading to reduce pesticides on strawberries are examined to provide the protection that is harmless to humans, higher animals and plants. Calcium treatments significantly inhibited the spore germination and mycelial growth of B. cinerea. The intracellular polygalacturonase and CMCase showed low activities in B. cinerea cultivated by medium containing calcium. On the other hand, calcium-stimulated β-glucosidases production occurred. Our findings suggest that the calcium treatments keep CMCase activity low and cause low activities of cell-wall degrading enzymes of B. cinerea in the late stage of growth.
Collapse
Affiliation(s)
- Izumi Sasanuma
- a Department of Materials Chemistry and Bioengineering, National Institute of Technology , Oyama College , Oyama , Japan
| | - Takuya Suzuki
- a Department of Materials Chemistry and Bioengineering, National Institute of Technology , Oyama College , Oyama , Japan
| |
Collapse
|
27
|
Antifungal activity of nano and micro charcoal particle polymers against Paecilomyces variotii, Trichoderma virens and Chaetomium globosum. N Biotechnol 2016; 33:55-60. [DOI: 10.1016/j.nbt.2015.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 08/04/2015] [Accepted: 08/04/2015] [Indexed: 11/19/2022]
|
28
|
Khalaj K, Aminollahi E, Bordbar A, Khalaj V. Fungal annexins: a mini review. SPRINGERPLUS 2015; 4:721. [PMID: 26636009 PMCID: PMC4656261 DOI: 10.1186/s40064-015-1519-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 11/09/2015] [Indexed: 01/09/2023]
Abstract
The large family of annexins is composed of more than a thousand members which are typically phospholipid-binding proteins. Annexins act in a number of signalling networks and membrane trafficking events which are fundamental to cell physiology. Annexins exert their functions mainly through their calcium-dependent membrane binding abilities; however, some calcium-independent interactions have been documented in the literature. Although mammalian and plant annexins have been well characterized, little is known about this family in fungi. This mini review summarizes the available data on fungal annexins.
Collapse
Affiliation(s)
- Kamand Khalaj
- Medicine Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Aminollahi
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Bordbar
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Vahid Khalaj
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
29
|
Wharton RE, Stefanov EK, King RG, Kearney JF. Antibodies generated against Streptococci protect in a mouse model of disseminated aspergillosis. THE JOURNAL OF IMMUNOLOGY 2015; 194:4387-96. [PMID: 25821219 DOI: 10.4049/jimmunol.1401940] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 03/01/2015] [Indexed: 01/08/2023]
Abstract
Invasive aspergillosis (IA) resulting from infection by Aspergillus fumigatus is a leading cause of death in immunosuppressed populations. There are limited therapeutic options for this disease and currently no vaccine. There is evidence that some anti-A. fumigatus mAbs can provide protection against IA. However, vaccine development has been impeded by a paucity of immunological targets on this organism demonstrated to provide protective responses. Sialylated oligosaccharide epitopes found on a variety of pathogens, including fungi and group B streptococci (GBS), are thought to be major virulence factors of these organisms facilitating pathogen attachment to host cells and modulating complement activation and phagocytosis. Because some of these oligosaccharide structures are conserved across kingdoms, we screened a panel of mAbs raised against GBS serotypes for reactivity to A. fumigatus. This approach revealed that SMB19, a GBSIb type-specific mAb, reacts with A. fumigatus conidia and hyphae. The presence of this Ab in mice, as a result of passive or active immunization, or by enforced expression of the SMB19 H chain as a transgene, results in significant protection in both i.v. and airway-induced models of IA. This study demonstrates that some Abs generated against bacterial polysaccharides engage fungal pathogens and promote their clearance in vivo and thus provide rationale of alternative strategies for the development of vaccines or therapeutic mAbs against these organisms.
Collapse
Affiliation(s)
- Rebekah E Wharton
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294; and Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Emily K Stefanov
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - R Glenn King
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - John F Kearney
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| |
Collapse
|
30
|
Yin S, Wang C, Jiao M, Li F, Han Q, Huang L, Zhang H, Kang Z. Subcellular localization of calcium in the incompatible and compatible interactions of wheat and Puccinia striiformis f. sp. tritici. PROTOPLASMA 2015; 252:103-16. [PMID: 24913606 DOI: 10.1007/s00709-014-0659-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 05/19/2014] [Indexed: 05/02/2023]
Abstract
Ca(2+) is an ubiquitous intracellular molecule which is used as a second messenger to control many physiological activities in plant cells. In the present work, the relationship between calcium localization and the hypersensitive response (HR)one of the most crucial and indispensable pathway to resist a pathogenwas studied in the wheat-wheat strip rust system using cytochemical technique. Our results show that calcium is involved in the interaction between wheat and wheat stripe rust. In the incompatible interaction associated with necrosis of host mesophyll cells, an influx of Ca(2+) from the intercellular space to the cytoplasm and finally an efflux to the intercellular space again was detected in an incompatible interaction. Calcium precipitates were also observed in mesophyll cells adjacent to necrotic cells. On the contrary, calcium flow was not significantly altered in a compatible interaction. These results suggest that calcium might induce HR as a secondary messenger in the incompatible interaction of wheat and wheat stripe rust.
Collapse
Affiliation(s)
- Shuining Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, 712100, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Martín JF. Calcium-containing phosphopeptides pave the secretory pathway for efficient protein traffic and secretion in fungi. Microb Cell Fact 2014; 13:117. [PMID: 25205075 PMCID: PMC4180148 DOI: 10.1186/s12934-014-0117-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/01/2014] [Indexed: 02/07/2023] Open
Abstract
Casein phosphopeptides (CPPs) containing chelated calcium drastically increase the secretion of extracellular homologous and heterologous proteins in filamentous fungi. Casein phosphopeptides released by digestion of alpha - and beta-casein are rich in phosphoserine residues (SerP). They stimulate enzyme secretion in the gastrointestinal tract and enhance the immune response in mammals, and are used as food supplements. It is well known that casein phosphopeptides transport Ca2+ across the membranes and play an important role in Ca2+ homeostasis in the cells. Addition of CPPs drastically increases the production of heterologous proteins in Aspergillus as host for industrial enzyme production. Recent proteomics studies showed that CPPs alter drastically the vesicle-mediated secretory pathway in filamentous fungi, apparently because they change the calcium concentration in organelles that act as calcium reservoirs. In the organelles calcium homeostasis a major role is played by the pmr1 gene, that encodes a Ca2+/Mn2+ transport ATPase, localized in the Golgi complex; this transporter controls the balance between intra-Golgi and cytoplasmic Ca2+ concentrations. A Golgi-located casein kinase (CkiA) governs the ER to Golgi directionality of the movement of secretory proteins by interacting with the COPII coat of secretory vesicles when they reach the Golgi. Mutants defective in the casein-2 kinase CkiA show abnormal targeting of some secretory proteins, including cytoplasmic membrane amino acid transporters that in ckiA mutants are miss-targeted to vacuolar membranes. Interestingly, addition of CPPs increases a glyceraldehyde-3-phpshate dehydrogenase protein that is known to associate with microtubules and act as a vesicle/membrane fusogenic agent. In summary, CPPs alter the protein secretory pathway in fungi adapting it to a deregulated protein traffic through the organelles and vesicles what results in a drastic increase in secretion of heterologous and also of some homologous proteins.
Collapse
Affiliation(s)
- Juan F Martín
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24071 León, Spain
| |
Collapse
|
32
|
Colabardini AC, Ries LNA, Brown NA, Savoldi M, Dinamarco TM, von Zeska MR, Goldman MHS, Goldman GH. Protein kinase C overexpression suppresses calcineurin-associated defects in Aspergillus nidulans and is involved in mitochondrial function. PLoS One 2014; 9:e104792. [PMID: 25153325 PMCID: PMC4143261 DOI: 10.1371/journal.pone.0104792] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 07/11/2014] [Indexed: 12/22/2022] Open
Abstract
In filamentous fungi, intracellular signaling pathways which are mediated by changing calcium levels and/or by activated protein kinase C (Pkc), control fungal adaptation to external stimuli. A rise in intracellular Ca2+ levels activates calcineurin subunit A (CnaA), which regulates cellular calcium homeostasis among other processes. Pkc is primarily involved in maintaining cell wall integrity (CWI) in response to different environmental stresses. Cross-talk between the Ca2+ and Pkc-mediated pathways has mainly been described in Saccharomyces cerevisiae and in a few other filamentous fungi. The presented study describes a genetic interaction between CnaA and PkcA in the filamentous fungus Aspergillus nidulans. Overexpression of pkcA partially rescues the phenotypes caused by a cnaA deletion. Furthermore, CnaA appears to affect the regulation of a mitogen-activated kinase, MpkA, involved in the CWI pathway. Reversely, PkcA is involved in controlling intracellular calcium homeostasis, as was confirmed by microarray analysis. Furthermore, overexpression of pkcA in a cnaA deletion background restores mitochondrial number and function. In conclusion, PkcA and CnaA-mediated signaling appear to share common targets, one of which appears to be MpkA of the CWI pathway. Both pathways also regulate components involved in mitochondrial biogenesis and function. This study describes targets for PkcA and CnaA-signaling pathways in an A. nidulans and identifies a novel interaction of both pathways in the regulation of cellular respiration.
Collapse
Affiliation(s)
- Ana Cristina Colabardini
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | - Neil Andrew Brown
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Marcela Savoldi
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Taísa Magnani Dinamarco
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Marcia Regina von Zeska
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Helena S. Goldman
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Gustavo Henrique Goldman
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol – CTBE, Campinas, São Paulo, Brazil
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
33
|
Tsai HC, Chung KR. Calcineurin phosphatase and phospholipase C are required for developmental and pathological functions in the citrus fungal pathogen Alternaria alternata. MICROBIOLOGY-SGM 2014; 160:1453-1465. [PMID: 24763426 DOI: 10.1099/mic.0.077818-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Excessive Ca(2+) or compounds interfering with phosphoinositide cycling have been found to inhibit the growth of the tangerine pathotype of Alternaria alternata, suggesting a crucial role of Ca(2+) homeostasis in this pathotype. The roles of PLC1, a phospholipase C-coding gene and CAL1, a calcineurin phosphatase-coding gene were investigated. Targeted gene disruption showed that both PLC1 and CAL1 were required for vegetative growth, conidial formation and pathogenesis in citrus. Fungal strains lacking PLC1 or CAL1 exhibited extremely slow growth and induced small lesions on calamondin leaves. Δplc1 mutants produced fewer conidia, which germinated at slower rates than wild-type. Δcal1 mutants produced abnormal hyphae and failed to produce any mature conidia, but instead produced highly melanized bulbous hyphae with distinct septae. Fluorescence microscopy using Fluo-3 dye as a Ca(2+) indicator revealed that the Δplc1 mutant hyphae emitted stronger cytosolic fluorescence, and the Δcal1 mutant hyphae emitted less cytosolic fluorescence, than those of wild-type. Infection assessed on detached calamondin leaves revealed that application of CaCl2 or neomycin 24 h prior to inoculation provided protection against Alt. alternata. These data indicate that a dynamic equilibrium of cellular Ca(2+) is critical for developmental and pathological processes of Alt. alternata.
Collapse
Affiliation(s)
- Hsieh-Chin Tsai
- Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| | - Kuang-Ren Chung
- Department of Plant Pathology, IFAS, University of Florida, Gainesville, FL 32611, USA.,Citrus Research and Education Center, Institute of Food and Agricultural Sciences (IFAS), University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850, USA
| |
Collapse
|
34
|
Shantappa S, Dhingra S, Hernández-Ortiz P, Espeso EA, Calvo AM. Role of the zinc finger transcription factor SltA in morphogenesis and sterigmatocystin biosynthesis in the fungus Aspergillus nidulans. PLoS One 2013; 8:e68492. [PMID: 23840895 PMCID: PMC3698166 DOI: 10.1371/journal.pone.0068492] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/29/2013] [Indexed: 01/07/2023] Open
Abstract
Potassium, a widely accepted macronutrient, is vital for many physiological processes such as regulation of cell volume, maintenance of intracellular pH, synthesis of proteins and activation of enzymes in filamentous fungi. Another cation, calcium, plays an essential role in many signaling processes from lower to higher eukaryotes. Imbalance in the intracellular ionic levels of potassium or calcium causes adverse effects on cell growth, morphology and development, and eventually death. Previous studies on the adaptation of Aspergillus nidulans to salt and osmotic stress conditions have revealed the role of SltA, a C₂H₂ zinc finger transcription factor in cation homeostasis. SltA is highly conserved in the Ascomycota phylum with no identifiable homolog in S. cerevisiae and other yeast-like fungi, and prevents toxicity by the cations Na⁺, K⁺, Li⁺, Cs⁺ and Mg²⁺, but not by Ca²⁺. However its role in morphology and biosynthesis of natural products such as mycotoxins remained unknown. This study shows the first characterization of the role of calcium and SltA fungal homologs in morphogenesis using the model system A. nidulans. Addition of potassium to sltA deletion mutants resulted in decreased levels of sterigmatocystin production. A similar phenotype was observed for both types of mutants in veA1 and veA⁺ genetic background. Expression of the sterigmatocystin genes aflR and stcU was strongly reduced in sltA deletion mutant when K⁺ was added. Additionally, increased concentrations of K⁺ drastically reduced sexual and asexual development, as well as radial growth in deletion sltA colonies. This reduction was accompanied by lower expression of the morphology related genes nsdD, steA and brlA. Interestingly, addition of calcium was able to stimulate asexual and sexual development and remediate the deletion sltA phenotype, including defects in morphology and toxin production.
Collapse
Affiliation(s)
- Sourabha Shantappa
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Sourabh Dhingra
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
| | - Patricia Hernández-Ortiz
- CSIC (Consejo Superior de Investigaciones Cientificas), Centro Investigaciones Biológicas, Department of Cellular and Molecular Biology, Madrid, Spain
| | - Eduardo A. Espeso
- CSIC (Consejo Superior de Investigaciones Cientificas), Centro Investigaciones Biológicas, Department of Cellular and Molecular Biology, Madrid, Spain
| | - Ana M. Calvo
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, United States of America
- * E-mail:
| |
Collapse
|
35
|
Zivanović BD. Surface tip-to-base Ca2+ and H+ ionic fluxes are involved in apical growth and graviperception of the Phycomyces stage I sporangiophore. PLANTA 2012; 236:1817-1829. [PMID: 22910875 DOI: 10.1007/s00425-012-1738-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/03/2012] [Indexed: 06/01/2023]
Abstract
Net fluxes of Ca(2+) and H(+) ions were measured non-invasively close to the surface of Phycomyces blakesleeanus sporangiophores stage I using ion-selective vibrating microelectrodes. The measurements were performed on a wild type (Wt) and a gravitropic mutant A909 kept in either vertical or tilted orientation. Microelectrodes were positioned 4 μm from the surface of sporangiophore, and ion fluxes were recorded from the apical (0-20 μm) and subapical (50-100 μm) regions. The magnitude and direction of ionic fluxes measured were dependent on the distance from the tip along the growing zone of sporangiophore. Vertically oriented sporangiophores displayed characteristic tip-to-base ion fluxes patterns. Ca(2+) and H(+) fluxes recorded from apical region of Wt sporangiophores were inward-directed, while ion fluxes from subapical locations occurred in both directions. In contrast to Wt, mutant A909 showed opposite (outward) direction of Ca(2+) fluxes and reduced H(+) influxes in the apical region. Following gravistimulation, the magnitude and direction of ionic fluxes were altered. Wt sporangiophore exhibited oppositely directed fluxes on the lower (influx) and the upper (efflux) sides of the cell, while mutant A909 did not show such patterns. A variable elongation growth in vertical position and reduced growth rate upon gravistimulation were observed in both strains. The data show that tip-growing sporangiophores exhibit a tip-to-base ion flux pattern which changes characteristically upon gravistimulation in Wt in contrast to the mutant A909 with a strongly reduced gravitropic response.
Collapse
Affiliation(s)
- Branka D Zivanović
- Department for Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030, Belgrade, Serbia.
| |
Collapse
|
36
|
Bowman BJ, Abreu S, Johl JK, Bowman EJ. The pmr gene, encoding a Ca2+-ATPase, is required for calcium and manganese homeostasis and normal development of hyphae and conidia in Neurospora crassa. EUKARYOTIC CELL 2012; 11:1362-70. [PMID: 22983986 PMCID: PMC3486030 DOI: 10.1128/ec.00105-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 09/06/2012] [Indexed: 12/17/2022]
Abstract
The pmr gene is predicted to encode a Ca(2+)-ATPase in the secretory pathway. We examined two strains of Neurospora crassa that lacked PMR: the Δpmr strain, in which pmr was completely deleted, and pmr(RIP), in which the gene was extensively mutated. Both strains had identical, complex phenotypes. Compared to the wild type, these strains required high concentrations of calcium or manganese for optimal growth and had highly branched, slow-growing hyphae. They conidiated poorly, and the shape and size of the conidia were abnormal. Calcium accumulated in the Δpmr strains to only 20% of the wild-type level. High concentrations of MnCl(2) (1 to 5 mM) in growth medium partially suppressed the morphological defects but did not alter the defect in calcium accumulation. The Δpmr Δnca-2 double mutant (nca-2 encodes a Ca(2+)-ATPase in the plasma membrane) accumulated 8-fold more calcium than the wild type, and the morphology of the hyphae was more similar to that of wild-type hyphae. Previous experiments failed to show a function for nca-1, which encodes a SERCA-type Ca(2+)-ATPase in the endoplasmic reticulum (B. J. Bowman, S. Abreu, E. Margolles-Clark, M. Draskovic, and E. J. Bowman, Eukaryot. Cell 10:654-661, 2011). The pmr(RIP) Δnca-1 double mutant accumulated small amounts of calcium, like the Δpmr strain, but exhibited even more extreme morphological defects. Thus, PMR can apparently replace NCA-1 in the endoplasmic reticulum, but NCA-1 cannot replace PMR. The morphological defects in the Δpmr strain are likely caused, in part, by insufficient concentrations of calcium and manganese in the Golgi compartment; however, PMR is also needed to accumulate normal levels of calcium in the whole cell.
Collapse
Affiliation(s)
- Barry J Bowman
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA, USA.
| | | | | | | |
Collapse
|
37
|
Yu Q, Wang H, Cheng X, Xu N, Ding X, Xing L, Li M. Roles of Cch1 and Mid1 in morphogenesis, oxidative stress response and virulence in Candida albicans. Mycopathologia 2012; 174:359-69. [PMID: 22886468 DOI: 10.1007/s11046-012-9569-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 07/18/2012] [Indexed: 12/21/2022]
Abstract
Ca(2+) channel Cch1, and its subunit Mid1, has been suggested as the protein complex responsible for mediating Ca(2+) influx, which is often employed by fungal cells to maintain cell survival. The abilities of morphological switch and response to stress conditions are closely related to pathogenicity in Candida albicans. Cch1 and Mid1 activity are required for virulence of Cryptococcus neoformans and Claviceps purpurea, respectively. To investigate whether Cch1 and Mid1 also play a role in the virulence of C. albicans, we constructed cch1Δ/Δ and mid1Δ/Δ mutant strains for functional analysis of CCH1 and MID1. Although both of the mutants displayed the ability of yeast-to-hypha transition, they were defective in hyphae maintenance and invasive growth. Interestingly, deletion of CCH1 or MID1 in C. albicans led to an obvious defect phenotype in oxidative stress response. Moreover, the virulence of the mutants was reduced in a mouse model. Our results demonstrated that Cch1 and Mid1 activity are related to the virulence of C. albicans and may provide a new antifungal target.
Collapse
Affiliation(s)
- Qilin Yu
- College of Life Science, Nankai Universitdy, Tianjin 300071, China
| | | | | | | | | | | | | |
Collapse
|
38
|
Bowman BJ, Draskovic M, Freitag M, Bowman EJ. Structure and distribution of organelles and cellular location of calcium transporters in Neurospora crassa. EUKARYOTIC CELL 2009; 8:1845-55. [PMID: 19801418 PMCID: PMC2794220 DOI: 10.1128/ec.00174-09] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 09/25/2009] [Indexed: 11/20/2022]
Abstract
We wanted to examine the cellular locations of four Neurospora crassa proteins that transport calcium. However, the structure and distribution of organelles in live hyphae of N. crassa have not been comprehensively described. Therefore, we made recombinant genes that generate translational fusions of putative organellar marker proteins with green or red fluorescent protein. We observed putative endoplasmic reticulum proteins, encoded by grp-78 and dpm, in the nuclear envelope and associated membranes. Proteins of the vacuolar membrane, encoded by vam-3 and vma-1, were in an interconnected network of small tubules and vesicles near the hyphal tip, while in more distal regions they were in large and small spherical vacuoles. Mitochondria, visualized with tagged ARG-4, were abundant in all regions of the hyphae. Similarly, we tagged the four N. crassa proteins that transport calcium with green or red fluorescent protein to examine their cellular locations. NCA-1 protein, a homolog of the SERCA-type Ca(2+)-ATPase of animal cells, colocalized with the endoplasmic reticulum markers. The NCA-2 and NCA-3 proteins are homologs of Ca(2+)-ATPases in the vacuolar membrane in yeast or in the plasma membrane in animal cells. They colocalized with markers in the vacuolar membrane, and they also occurred in the plasma membrane in regions of the hyphae more than 1 mm from the tip. The cax gene encodes a Ca(2+)/H(+) exchange protein found in vacuoles. As expected, the CAX protein localized to the vacuolar compartment. We observed, approximately 50 to 100 mum from the tip, a few spherical organelles that had high amounts of tagged CAX protein and tagged subunits of the vacuolar ATPase (VMA-1 and VMA-5). We suggest that this organelle, not described previously in N. crassa, may have a role in sequestering calcium.
Collapse
Affiliation(s)
- Barry J Bowman
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA 95064, USA.
| | | | | | | |
Collapse
|
39
|
Stotz HU, Spence B, Wang Y. A defensin from tomato with dual function in defense and development. PLANT MOLECULAR BIOLOGY 2009; 71:131-43. [PMID: 19533379 DOI: 10.1007/s11103-009-9512-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 06/01/2009] [Indexed: 05/20/2023]
Abstract
Defensins are antimicrobial peptides that are part of the innate immune system, contributing to the first line of defense against invading pathogens. Defensins and defensin-like peptides are functionally diverse, disrupting microbial membranes and acting as ligands for cellular recognition and signaling. Here we show that the tomato defensin DEF2 is expressed during early flower development. Defensin mRNA abundance, peptide expression and processing are differentially regulated in developing flowers. Antisense suppression or constitutive overexpression of DEF2 reduces pollen viability and seed production. Furthermore, overexpression of DEF2 pleiotropically alters the growth of various organs and enhances foliar resistance to the fungal pathogen Botrytis cinerea. Partially purified extracts from leaves of a DEF2-overexpressing line inhibited tip growth of B. cinerea. Besides providing insights into regulation of defensin expression, these data demonstrate that plant defensins, like their animal counterparts, can assume multiple functions related to defense and development.
Collapse
Affiliation(s)
- Henrik U Stotz
- Horticulture Department, Oregon State University, Corvallis, OR 97331, USA
| | | | | |
Collapse
|
40
|
Haarmann T, Rolke Y, Giesbert S, Tudzynski P. Ergot: from witchcraft to biotechnology. MOLECULAR PLANT PATHOLOGY 2009; 10:563-77. [PMID: 19523108 PMCID: PMC6640538 DOI: 10.1111/j.1364-3703.2009.00548.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The ergot diseases of grasses, caused by members of the genus Claviceps, have had a severe impact on human history and agriculture, causing devastating epidemics. However, ergot alkaloids, the toxic components of Claviceps sclerotia, have been used intensively (and misused) as pharmaceutical drugs, and efficient biotechnological processes have been developed for their in vitro production. Molecular genetics has provided detailed insight into the genetic basis of ergot alkaloid biosynthesis and opened up perspectives for the design of new alkaloids and the improvement of production strains; it has also revealed the refined infection strategy of this biotrophic pathogen, opening up the way for better control. Nevertheless, Claviceps remains an important pathogen worldwide, and a source for potential new drugs for central nervous system diseases.
Collapse
Affiliation(s)
- Thomas Haarmann
- Institut für Botanik, Westf. Wilhelms-Universität Münster, Germany
| | | | | | | |
Collapse
|
41
|
Phenotypic analysis of genes whose mRNA accumulation is dependent on calcineurin in Aspergillus fumigatus. Fungal Genet Biol 2009; 46:791-802. [PMID: 19573616 DOI: 10.1016/j.fgb.2009.06.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 06/21/2009] [Accepted: 06/22/2009] [Indexed: 10/20/2022]
Abstract
Calcineurin plays an important role in the control of cell morphology and virulence in fungi. Calcineurin is a serine/threonine-specific protein phosphatase heterodimer consisting of a catalytic subunit A and a regulatory subunit B. A mutant of Aspergillus fumigatus lacking the calcineurin A (calA) catalytic subunit exhibited defective hyphal morphology related to apical extension and branching growth, which resulted in drastically decreased filamentation. Here, we investigated which pathways are influenced by A. fumigatus calcineurin during proliferation by comparatively determining the transcriptional profile of A. fumigatus wild type and DeltacalA mutant strains. Our results showed that the mitochondrial copy number is reduced in the DeltacalA mutant strain, and the mutant has increased alternative oxidase (aoxA) mRNA accumulation and activity. Furthermore, we identified four genes that encode transcription factors that have increased mRNA expression in the DeltacalA mutant. Deletion mutants for these transcription factors had reduced susceptibility to itraconazole, caspofungin, and sodium dodecyl sulfate (SDS).
Collapse
|
42
|
Regulation of apical dominance in Aspergillus nidulans hyphae by reactive oxygen species. Genetics 2008; 179:1919-32. [PMID: 18689883 DOI: 10.1534/genetics.108.089318] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In fungal hyphae, apical dominance refers to the suppression of secondary polarity axes in the general vicinity of a growing hyphal tip. The mechanisms underlying apical dominance remain largely undefined, although calcium signaling may play a role. Here, we describe the localized accumulation of reactive oxygen species (ROS) in the apical region of Aspergillus nidulans hyphae. Our analysis of atmA (ATM) and prpA (PARP) mutants reveals a correlation between localized production of ROS and enforcement of apical dominance. We also provide evidence that NADPH oxidase (Nox) or related flavoproteins are responsible for the generation of ROS at hyphal tips and characterize the roles of the potential Nox regulators NoxR, Rac1, and Cdc42 in this process. Notably, our genetic analyses suggest that Rac1 activates Nox, whereas NoxR and Cdc42 may function together in a parallel pathway that regulates Nox localization. Moreover, the latter pathway may also include Bem1, which we propose represents a p40phox analog in fungi. Collectively, our results support a model whereby localized Nox activity generates a pool of ROS that defines a dominant polarity axis at hyphal tips.
Collapse
|
43
|
Allen A, Snyder AK, Preuss M, Nielsen EE, Shah DM, Smith TJ. Plant defensins and virally encoded fungal toxin KP4 inhibit plant root growth. PLANTA 2008; 227:331-9. [PMID: 17849147 DOI: 10.1007/s00425-007-0620-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 08/28/2007] [Indexed: 05/10/2023]
Abstract
Plant defensins are small, highly stable, cysteine-rich antimicrobial proteins that are thought to constitute an important component of plant defense against fungal pathogens. There are a number of such defensins expressed in various plant tissues with differing antifungal activity and spectrum. Relatively little is known about the modes of action and biological roles of these proteins. Our previous work on a virally encoded fungal toxin, KP4, from Ustilago maydis and subsequently with the plant defensin, MsDef1, from Medicago sativa demonstrated that some of these proteins specifically blocked calcium channels in both fungi and animals. The results presented here demonstrate that KP4 and three plant defensins, MsDef1, MtDef2, and RsAFP2, all inhibit root growth in germinating Arabidopsis seeds at low micromolar concentrations. We have previously demonstrated that a fusion protein composed of Rab GTPase (RabA4b) and enhanced yellow fluorescent protein (EYFP) is dependent upon calcium gradients for localization to the tips of the growing root hairs in Arabidopsis thaliana. Using this tip-localized fusion protein, we demonstrate that all four proteins rapidly depolarize the growing root hair and block growth in a reversible manner. This inhibitory activity on root and root hair is not directly correlated with the antifungal activity of these proteins and suggests that plants apparently express targets for these antifungal proteins. The data presented here suggest that plant defensins may have roles in regulating plant growth and development.
Collapse
Affiliation(s)
- Aron Allen
- The Donald Danforth Plant Science Center, 975 North Warson Road, St Louis, MO 63132, USA
| | | | | | | | | | | |
Collapse
|
44
|
Wang G, Lu L, Zhang CY, Singapuri A, Yuan S. Calmodulin concentrates at the apex of growing hyphae and localizes to the Spitzenkörper in Aspergillus nidulans. PROTOPLASMA 2006; 228:159-66. [PMID: 16983484 DOI: 10.1007/s00709-006-0181-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2005] [Accepted: 11/02/2005] [Indexed: 05/11/2023]
Abstract
The calmodulin (CaM) localization pattern in the growing hyphal tip of Aspergillus nidulans was studied with the functional GFP::CaM fusion protein. A faint tip-high gradient of CaM was found in the growing hyphal tip, with CaM highly localized in the region corresponding to the Spitzenkörper forming a bright granule. The position of highly concentrated CaM in the extreme apex seemed to determine the orientation of the hypha. The normal pattern of CaM localization was also shown to be dependent on the integrated actin cytoskeleton. When the growth of the hyphal tip ceased, CaM failed to localize in the bright granule and was evenly distributed in the hyphal tip. These findings suggest that CaM may play an important role in establishing and maintaining apical organization, morphogenesis, and growth in Aspergillus nidulans.
Collapse
Affiliation(s)
- G Wang
- Jiangsu Key Laboratory for Bioresource Technology, College of Life Science, Nanjing Normal University, Nanjing, People's Republic of China
| | | | | | | | | |
Collapse
|
45
|
Fox DS, Heitman J. Calcineurin-binding protein Cbp1 directs the specificity of calcineurin-dependent hyphal elongation during mating in Cryptococcus neoformans. EUKARYOTIC CELL 2005; 4:1526-38. [PMID: 16151246 PMCID: PMC1214203 DOI: 10.1128/ec.4.9.1526-1538.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 06/20/2005] [Indexed: 11/20/2022]
Abstract
Mating and virulence of the human fungal pathogen Cryptococcus neoformans are controlled by calcineurin, a serine-threonine-specific calcium-activated phosphatase that is the target of the immunosuppressive drugs cyclosporine A and FK506. In previous studies, a calcineurin binding protein (Cbp1, Rcn1, Dscr1/Csp1-3/MCIP1-3) that is conserved from yeasts to humans has been identified, but whether this protein functions to regulate calcineurin activity or facilitate calcineurin function as a signaling effector has been unclear. Here we show that, like calcineurin, Cbp1 is required for mating in C. neoformans. By contrast, Cbp1 plays no role in promoting calcineurin-dependent growth at 37 degrees C and is not essential for haploid fruiting. Site-directed mutagenesis studies provide evidence that tandem phosphorylation and dephosphorylation of two serine residues in the conserved SP repeat motif are critical for Cbp1 function. Epistasis analysis supports models in which Cbp1 functions coordinately with calcineurin to direct hyphal elongation during mating. Taken together, these findings provide insights into the roles of Cbp1 as an accessory subunit or effector of calcineurin-specific signaling pathways, which may be features conserved among the calcipressins to govern calcineurin signaling in immune cells, cardiomyocytes, and neurons of multicellular eukaryotes.
Collapse
Affiliation(s)
- Deborah S Fox
- Research Institute for Children and Department of Pediatrics, Louisiana State Health Science Center, Children's Hospital, 200 Henry Clay Avenue, New Orleans, LA 70118, USA.
| | | |
Collapse
|
46
|
Xu J, Brearley CA, Lin WH, Wang Y, Ye R, Mueller-Roeber B, Xu ZH, Xue HW. A role of Arabidopsis inositol polyphosphate kinase, AtIPK2alpha, in pollen germination and root growth. PLANT PHYSIOLOGY 2005; 137:94-103. [PMID: 15618435 PMCID: PMC548841 DOI: 10.1104/pp.104.045427] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 09/17/2004] [Accepted: 09/20/2004] [Indexed: 05/20/2023]
Abstract
Inositol polyphosphates, such as inositol trisphosphate, are pivotal intracellular signaling molecules in eukaryotic cells. In higher plants the mechanism for the regulation of the type and the level of these signaling molecules is poorly understood. In this study we investigate the physiological function of an Arabidopsis (Arabidopsis thaliana) gene encoding inositol polyphosphate kinase (AtIPK2alpha), which phosphorylates inositol 1,4,5-trisphosphate successively at the D-6 and D-3 positions, and inositol 1,3,4,5-tetrakisphosphate at D-6, resulting in the generation of inositol 1,3,4,5,6-pentakisphosphate. Semiquantitative reverse transcription-PCR and promoter-beta-glucuronidase reporter gene analyses showed that AtIPK2alpha is expressed in various tissues, including roots and root hairs, stem, leaf, pollen grains, pollen tubes, the flower stigma, and siliques. Transgenic Arabidopsis plants expressing the AtIPK2alpha antisense gene under its own promoter were generated. Analysis of several independent transformants exhibiting strong reduction in AtIPK2alpha transcript levels showed that both pollen germination and pollen tube growth were enhanced in the antisense lines compared to wild-type plants, especially in the presence of nonoptimal low Ca(2+) concentrations in the culture medium. Furthermore, root growth and root hair development were also stimulated in the antisense lines, in the presence of elevated external Ca(2+) concentration or upon the addition of EGTA. In addition, seed germination and early seedling growth was stimulated in the antisense lines. These observations suggest a general and important role of AtIPK2alpha, and hence inositol polyphosphate metabolism, in the regulation of plant growth most likely through the regulation of calcium signaling, consistent with the well-known function of inositol trisphosphate in the mobilization of intracellular calcium stores.
Collapse
Affiliation(s)
- Jun Xu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, 200032 Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Spelbrink RG, Dilmac N, Allen A, Smith TJ, Shah DM, Hockerman GH. Differential antifungal and calcium channel-blocking activity among structurally related plant defensins. PLANT PHYSIOLOGY 2004; 135:2055-67. [PMID: 15299136 PMCID: PMC520777 DOI: 10.1104/pp.104.040873] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2004] [Revised: 05/12/2004] [Accepted: 05/13/2004] [Indexed: 05/18/2023]
Abstract
Plant defensins are a family of small Cys-rich antifungal proteins that play important roles in plant defense against invading fungi. Structures of several plant defensins share a Cys-stabilized alpha/beta-motif. Structural determinants in plant defensins that govern their antifungal activity and the mechanisms by which they inhibit fungal growth remain unclear. Alfalfa (Medicago sativa) seed defensin, MsDef1, strongly inhibits the growth of Fusarium graminearum in vitro, and its antifungal activity is markedly reduced in the presence of Ca(2+). By contrast, MtDef2 from Medicago truncatula, which shares 65% amino acid sequence identity with MsDef1, lacks antifungal activity against F. graminearum. Characterization of the in vitro antifungal activity of the chimeras containing portions of the MsDef1 and MtDef2 proteins shows that the major determinants of antifungal activity reside in the carboxy-terminal region (amino acids 31-45) of MsDef1. We further define the active site by demonstrating that the Arg at position 38 of MsDef1 is critical for its antifungal activity. Furthermore, we have found for the first time, to our knowledge, that MsDef1 blocks the mammalian L-type Ca(2+) channel in a manner akin to a virally encoded and structurally unrelated antifungal toxin KP4 from Ustilago maydis, whereas structurally similar MtDef2 and the radish (Raphanus sativus) seed defensin Rs-AFP2 fail to block the L-type Ca(2+) channel. From these results, we speculate that the two unrelated antifungal proteins, KP4 and MsDef1, have evolutionarily converged upon the same molecular target, whereas the two structurally related antifungal plant defensins, MtDef2 and Rs-AFP2, have diverged to attack different targets in fungi.
Collapse
|
48
|
Pelosi L, Imai T, Chanzy H, Heux L, Buhler E, Bulone V. Structural and morphological diversity of (1-->3)-beta-D-glucans synthesized in vitro by enzymes from Saprolegnia monoïca. Comparison with a corresponding in vitro product from blackberry (Rubus fruticosus). Biochemistry 2003; 42:6264-74. [PMID: 12755631 DOI: 10.1021/bi0340550] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Detergent extracts of microsomal fractions from Saprolegnia monoïca and blackberry (Rubus fruticosus) cells were incubated with UDP-glucose to yield in vitro (1-->3)-beta-d-glucans. The insoluble products were analyzed by conventional and cryo transmission electron microscopy, X-ray diffraction, and (13)C CP/MAS NMR, and their molecular weights were determined by light scattering experiments. All the products were microfibrillar, but for the detergent extracts from S. monoïca, important morphological differences were observed when the pH of the synthesizing medium was modified. At pH 6, the product had a weight average degree of polymerization () exceeding 20 000 and consisted of endless ribbon-like microfibrils. The microfibrils obtained at pH 9 had a length of only 200-300 nm, and their was approximately 5000. Of all the in vitro (1-->3)-beta-d-glucans, the one from R. fruticosus had the shortest length and the smallest. Crystallographic and spectroscopic data showed that the three in vitro samples consisted of triple helices of (1-->3)-beta-d-glucans and contained substantial amounts of water molecules in their structure, the shortest microfibrils being more hydrated. In addition, the long microfibrils from S. monoïca synthesized at pH 6 were more resistant toward the action of an endo-(1-->3)-beta-d-glucanase than the shorter ones obtained at pH 9. These results are discussed in terms of molecular biosynthetic mechanisms of fungal and plant (1-->3)-beta-d-glucans, and in relation with the possible existence of several (1-->3)-beta-d-glucan synthases in a given organism. The interpretation and discussion of these observations integrate the current knowledge of the structure and function of (1-->3)-beta-d-glucans.
Collapse
Affiliation(s)
- Ludovic Pelosi
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-UPR CNRS 5301), Joseph Fourier University of Grenoble, B.P. 53, France
| | | | | | | | | | | |
Collapse
|
49
|
Ojha M, Barja F. Spatial and cellular localization of calcium-dependent protease (CDP II) in Allomyces arbuscula. J Cell Sci 2003; 116:1095-105. [PMID: 12584252 DOI: 10.1242/jcs.00307] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Immunogold labeling of calcium-dependent neutral protease II (CDPII) with specific antibodies in near median longitudinal ultrathin sections of Allomyces arbuscula showed that the enzyme is predominantly localized in the growing hyphal and rhizoidal apices. The tips in both cell type had more enzyme than the distal regions and showed a gradient distribution. Labeling of the ultrathin sections and western blot analysis of purified subcellular fractions showed that CDPII is mainly cytosolic. Catalytic activity of the enzyme measured with synthetic substrate (Bz-Arg-pNA) showed that 90% of its activity is present in the soluble fraction, although a small amount is associated with the nuclei (0.2%), plasma membranes (0.7%) and microsomes (3.9%). This association is discussed in the context of the functional role of the enzyme and its possible localized activation. Western blot analysis of the crude extract and indirect immunofluorescence of the fixed permeabilized hypahe after treatment with CDPII showed that the alpha-tubulin is a specific target of the enzyme.
Collapse
Affiliation(s)
- Mukti Ojha
- Laboratoire de Bioénergétique et Microbiologie, Université de Genève, 3 Place de l'Université, CH-1211 Genève 4, Switzerland.
| | | |
Collapse
|
50
|
Uhm KH, Ahn IP, Kim S, Lee YH. Calcium/Calmodulin-Dependent Signaling for Prepenetration Development in Colletotrichum gloeosporioides. PHYTOPATHOLOGY 2003; 93:82-87. [PMID: 18944160 DOI: 10.1094/phyto.2003.93.1.82] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
ABSTRACT Colletotrichum gloeosporioides forms a specialized infection structure, an appressorium, for host infection. Contacting hard surface induces appressorium formation in C. gloeosporioides, whereas hydrophobicity of the contact surface does not affect this infection-related differentiation. To determine if the calcium/calmodulin-dependent signaling system is involved in prepenetration morphogenesis in C. gloeosporioides pathogenic on red pepper, effects of calcium chelator (EGTA), phospholipase C inhibitor (neomycin), intracellular calcium modulators (TMB-8 and methoxy verampamil), and calmodulin antagonists (chloroproma-zine, phenoxy benzamine, and W-7) were tested on conidial germination and appressorium formation. Exogenous addition of Ca(2+), regardless of concentration, augmented conidial germination, while appressorial differentiation decreased at higher concentrations. Inhibition of appressorium formation by EGTA was partly restored by the addition of calcium ionophore A23187 or CaCl(2). Calcium channel blockers and calmodulin antagonists specifically reduced appressorium formation at micromolar levels. These results suggest that biochemical processes controlled by the calcium/calmodulin signaling system are involved in the induction of prepenetration morphogenesis in C. gloeosporioides pathogenic on red pepper.
Collapse
|