1
|
Shumnalieva R, Mileva N, Padjen I, Siliogkas P, Chervenkov L, Bakopoulou K, Kaouri IE, Vasilska A, Miteva D, Vassilev D, Velikova T. Management of Coronary Artery Diseases in Systemic Vasculitides: Complications and Strategies. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1574. [PMID: 39459361 PMCID: PMC11509434 DOI: 10.3390/medicina60101574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024]
Abstract
Coronary artery disease (CAD) presents a significant risk for patients with systemic vasculitides, a group of disorders characterized by the inflammation of blood vessels. In this review, we focus on the pathophysiological mechanisms, complications, and management strategies for CAD in systemic vasculitides. We highlight how the inflammatory processes inherent in vasculitis contribute to accelerated atherosclerosis and myocardial ischemia. Key strategies in managing CAD in this patient population include using medicine treatments to mitigate vascular inflammation while balancing the risk of promoting cardiovascular events and lifestyle modifications. Understanding the nuanced relationship between systemic vasculitides and CAD is crucial for improving patient outcomes and guiding therapeutic approaches.
Collapse
Affiliation(s)
- Russka Shumnalieva
- Department of Rheumatology, Clinic of Rheumatology, University Hospital St. Ivan Rilski, Urvich Str. 13, 1612 Sofia, Bulgaria;
- Faculty of Medicine, Medical University of Sofia, Urvich Str. 13, 1612 Sofia, Bulgaria
- Medical Faculty, Sofia University, St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria;
| | - Niya Mileva
- Cardiology Department, SHATC Medica Cor, Riga Str. 35, 7013 Ruse, Bulgaria;
| | - Ivan Padjen
- Division of Clinical Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, University of Zagreb, University Hospital Centre Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia;
| | - Periklis Siliogkas
- General Hospital of Athens Korgialeneio—Benakeio Hellenic Red Cross, Athanasaki 11, 11526 Athens, Greece;
| | - Lyubomir Chervenkov
- Department of Diagnostic Imaging, Medical University Plovdiv, Bul. Vasil Aprilov 15A, 4000 Plovdiv, Bulgaria; (L.C.); (A.V.)
- Research Complex for Translational Neuroscience, Medical University of Plovdiv, Bul. Vasil Aprilov 15A, 4002 Plovdiv, Bulgaria
| | - Konstantina Bakopoulou
- Faculty of Medicine, Medical University Sofia, Boulevard ‘Akademik Ivan Evstratiev Geshov’ 15, 1431 Sofia, Bulgaria; (K.B.); (I.E.K.)
| | - Issa El Kaouri
- Faculty of Medicine, Medical University Sofia, Boulevard ‘Akademik Ivan Evstratiev Geshov’ 15, 1431 Sofia, Bulgaria; (K.B.); (I.E.K.)
| | - Anna Vasilska
- Department of Diagnostic Imaging, Medical University Plovdiv, Bul. Vasil Aprilov 15A, 4000 Plovdiv, Bulgaria; (L.C.); (A.V.)
| | - Dimitrina Miteva
- Medical Faculty, Sofia University, St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria;
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria
| | - Dobrin Vassilev
- Ruse University Angel Kanchev, ul. “Studentska” 8, 7017 Ruse, Bulgaria;
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University, St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria;
| |
Collapse
|
2
|
Xu S, Jiemy WF, Boots AMH, Arends S, van Sleen Y, Nienhuis PH, van der Geest KSM, Heeringa P, Brouwer E, Sandovici M. Altered Plasma Levels and Tissue Expression of Fibroblast Activation Protein Alpha in Giant Cell Arteritis. Arthritis Care Res (Hoboken) 2024; 76:1322-1332. [PMID: 38685696 DOI: 10.1002/acr.25354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/09/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE Giant cell arteritis (GCA) is characterized by granulomatous inflammation of the medium- and large-sized arteries accompanied by remodeling of the vessel wall. Fibroblast activation protein alpha (FAP) is a serine protease that promotes both inflammation and fibrosis. Here, we investigated the plasma levels and vascular expression of FAP in GCA. METHODS Plasma FAP levels were measured with enzyme-linked immunosorbent assay in treatment-naive patients with GCA (n = 60) and polymyalgia rheumatica (PMR) (n = 63) compared with age- and sex-matched healthy controls (HCs) (n = 42) and during follow-up, including treatment-free remission (TFR). Inflamed temporal artery biopsies (TABs) of patients with GCA (n = 9), noninflamed TABs (n = 14), and aorta samples from GCA-related (n = 9) and atherosclerosis-related aneurysm (n = 11) were stained for FAP using immunohistochemistry. Immunofluorescence staining was performed for fibroblasts (CD90), macrophages (CD68/CD206/folate receptor beta), vascular smooth muscle cells (desmin), myofibroblasts (α-smooth muscle actin), interleukin-6 (IL-6), and matrix metalloproteinase-9 (MMP-9). RESULTS Baseline plasma FAP levels were significantly lower in patients with GCA compared with patients with PMR and HCs and inversely correlated with systemic markers of inflammation and angiogenesis. FAP levels decreased even further at 3 months on remission in patients with GCA and gradually increased to the level of HCs in TFR. FAP expression was increased in inflamed TABs and aorta of patients with GCA compared with control tissues. FAP was abundantly expressed in fibroblasts and macrophages. Some of the FAP+ fibroblasts expressed IL-6 and MMP-9. CONCLUSION FAP expression in GCA is clearly modulated both in plasma and in vessels. FAP may be involved in the inflammatory and remodeling processes in GCA and have utility as a target for imaging and therapeutic intervention.
Collapse
Affiliation(s)
- Shuang Xu
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - William F Jiemy
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Annemieke M H Boots
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Suzanne Arends
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Yannick van Sleen
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Pieter H Nienhuis
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Kornelis S M van der Geest
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Peter Heeringa
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
3
|
Karabayas M, Ibrahim HE, Roelofs AJ, Reynolds G, Kidder D, De Bari C. Vascular disease persistence in giant cell arteritis: are stromal cells neglected? Ann Rheum Dis 2024; 83:1100-1109. [PMID: 38684323 PMCID: PMC11420755 DOI: 10.1136/ard-2023-225270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Giant cell arteritis (GCA), the most common systemic vasculitis, is characterised by aberrant interactions between infiltrating and resident cells of the vessel wall. Ageing and breach of tolerance are prerequisites for GCA development, resulting in dendritic and T-cell dysfunction. Inflammatory cytokines polarise T-cells, activate resident macrophages and synergistically enhance vascular inflammation, providing a loop of autoreactivity. These events originate in the adventitia, commonly regarded as the biological epicentre of the vessel wall, with additional recruitment of cells that infiltrate and migrate towards the intima. Thus, GCA-vessels exhibit infiltrates across the vascular layers, with various cytokines and growth factors amplifying the pathogenic process. These events activate ineffective repair mechanisms, where dysfunctional vascular smooth muscle cells and fibroblasts phenotypically shift along their lineage and colonise the intima. While high-dose glucocorticoids broadly suppress these inflammatory events, they cause well known deleterious effects. Despite the emerging targeted therapeutics, disease relapse remains common, affecting >50% of patients. This may reflect a discrepancy between systemic and local mediators of inflammation. Indeed, temporal arteries and aortas of GCA-patients can show immune-mediated abnormalities, despite the treatment induced clinical remission. The mechanisms of persistence of vascular disease in GCA remain elusive. Studies in other chronic inflammatory diseases point to the fibroblasts (and their lineage cells including myofibroblasts) as possible orchestrators or even effectors of disease chronicity through interactions with immune cells. Here, we critically review the contribution of immune and stromal cells to GCA pathogenesis and analyse the molecular mechanisms by which these would underpin the persistence of vascular disease.
Collapse
Affiliation(s)
- Maira Karabayas
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Hafeez E Ibrahim
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Anke J Roelofs
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Gary Reynolds
- Centre for Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Dana Kidder
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Cosimo De Bari
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
4
|
Pugh D, Patel D, Macnaught G, Czopek A, Bruce L, Donachie J, Gallacher PJ, Tan S, Ahlman M, Grayson PC, Basu N, Dhaun N. 18F-FDG-PET/MR imaging to monitor disease activity in large vessel vasculitis. Nat Commun 2024; 15:7314. [PMID: 39183340 PMCID: PMC11345444 DOI: 10.1038/s41467-024-51613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Disease-monitoring in large vessel vasculitis (LVV) is challenging. Simultaneous 18F-fluorodeoxyglucose positron emission tomography with magnetic resonance imaging (PET/MRI) provides functional assessment of vascular inflammation alongside high-definition structural imaging with a relatively low burden of radiation exposure. Here, we investigate the ability of PET/MRI to monitor LVV disease activity longitudinally in a prospective cohort of patients with active LVV. We demonstrate that both the PET and MRI components of the scan can distinguish active from inactive disease using established quantification methods. Using logistic-regression modelling of PET/MRI metrics, we devise a novel PET/MRI-specific Vasculitis Activity using MR PET (VAMP) score which is able to distinguish active from inactive disease with more accuracy than established methods and detects changes in disease activity longitudinally. These findings are evaluated in an independent validation cohort. Finally, PET/MRI improves clinicians' assessment of LVV disease activity and confidence in disease management, as assessed via clinician survey. In summary, PET/MRI may be useful in tracking disease activity and assessing treatment-response in LVV. Based on our findings, larger, prospective studies assessing PET/MRI in LVV are now warranted.
Collapse
Affiliation(s)
- Dan Pugh
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Dilip Patel
- Department of Radiology, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | - Alicja Czopek
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Lorraine Bruce
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - James Donachie
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Peter J Gallacher
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Sovira Tan
- National Institute of Arthritis & Musculoskeletal & Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mark Ahlman
- Department of Radiology & Imaging, Medical College of Georgia, Georgia, USA
| | - Peter C Grayson
- National Institute of Arthritis & Musculoskeletal & Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Neil Basu
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
| | - Neeraj Dhaun
- BHF/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
5
|
Bosch P, Espigol-Frigolé G, Cid MC, Mollan SP, Schmidt WA. Cranial involvement in giant cell arteritis. THE LANCET. RHEUMATOLOGY 2024; 6:e384-e396. [PMID: 38574747 DOI: 10.1016/s2665-9913(24)00024-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 04/06/2024]
Abstract
Since its first clinical description in 1890, extensive research has advanced our understanding of giant cell arteritis, leading to improvements in both diagnosis and management for affected patients. Imaging studies have shown that the disease frequently extends beyond the typical cranial arteries, also affecting large vessels such as the aorta and its proximal branches. Meanwhile, advances in comprehending the underlying pathophysiology of giant cell arteritis have given rise to numerous potential therapeutic agents, which aim to minimise the need for glucocorticoid treatment and prevent flares. Classification criteria for giant cell arteritis, as well as recommendations for management, imaging, and treat-to-target have been developed or updated in the last 5 years, and current research encompasses a broad spectrum covering basic, translational, and clinical research. In this Series paper, we aim to discuss the current understanding of giant cell arteritis with cranial manifestations, describe the clinical approach to this condition, and explore future directions in research and patient care.
Collapse
Affiliation(s)
- Philipp Bosch
- Department of Rheumatology and Immunology, Medical University of Graz, Graz, Austria.
| | - Georgina Espigol-Frigolé
- Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Insitut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain
| | - Maria C Cid
- Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Insitut d'Investigacions Biomèdiques August Pi I Sunyer, Barcelona, Spain
| | - Susan P Mollan
- Birmingham Neuro-Ophthalmology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Translational Brain Science, Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | - Wolfgang A Schmidt
- Department of Rheumatology, Immanuel Hospital Berlin, Medical Centre for Rheumatology Berlin-Buch, Berlin, Germany
| |
Collapse
|
6
|
Xu S, Jiemy WF, Brouwer E, Burgess JK, Heeringa P, van der Geest KSM, Alba-Rovira R, Corbera-Bellalta M, Boots AH, Cid MC, Sandovici M. Current evidence on the role of fibroblasts in large-vessel vasculitides: From pathogenesis to therapeutics. Autoimmun Rev 2024; 23:103574. [PMID: 38782083 DOI: 10.1016/j.autrev.2024.103574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/29/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Large-vessel vasculitides (LVV) comprise a group of chronic inflammatory diseases of the aorta and its major branches. The most common forms of LVV are giant cell arteritis (GCA) and Takayasu arteritis (TAK). Both GCA and TAK are characterized by granulomatous inflammation of the vessel wall accompanied by a maladaptive immune and vascular response that promotes vascular damage and remodeling. The inflammatory process in LVV starts in the adventitia where fibroblasts constitute the dominant cell population. Fibroblasts are traditionally recognized for synthesizing and renewing the extracellular matrix thereby being major players in maintenance of normal tissue architecture and in tissue repair. More recently, fibroblasts have emerged as a highly plastic cell population exerting various functions, including the regulation of local immune processes and organization of immune cells at the site of inflammation through production of cytokines, chemokines and growth factors as well as cell-cell interaction. In this review, we summarize and discuss the current knowledge on fibroblasts in LVV. Furthermore, we identify key questions that need to be addressed to fully understand the role of fibroblasts in the pathogenesis of LVV.
Collapse
Affiliation(s)
- Shuang Xu
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands
| | - William F Jiemy
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands
| | - Elisabeth Brouwer
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, the Netherlands
| | - Peter Heeringa
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, the Netherlands
| | - Kornelis S M van der Geest
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands
| | - Roser Alba-Rovira
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marc Corbera-Bellalta
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Annemieke H Boots
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands
| | - Maria C Cid
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria Sandovici
- University of Groningen, University Medical Center Groningen, Department of Rheumatology and Clinical Immunology, the Netherlands.
| |
Collapse
|
7
|
Palamidas DA, Chatzis L, Papadaki M, Gissis I, Kambas K, Andreakos E, Goules AV, Tzioufas AG. Current Insights into Tissue Injury of Giant Cell Arteritis: From Acute Inflammatory Responses towards Inappropriate Tissue Remodeling. Cells 2024; 13:430. [PMID: 38474394 DOI: 10.3390/cells13050430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Giant cell arteritis (GCA) is an autoimmune disease affecting large vessels in patients over 50 years old. It is an exemplary model of a classic inflammatory disorder with IL-6 playing the leading role. The main comorbidities that may appear acutely or chronically are vascular occlusion leading to blindness and thoracic aorta aneurysm formation, respectively. The tissue inflammatory bulk is expressed as acute or chronic delayed-type hypersensitivity reactions, the latter being apparent by giant cell formation. The activated monocytes/macrophages are associated with pronounced Th1 and Th17 responses. B-cells and neutrophils also participate in the inflammatory lesion. However, the exact order of appearance and mechanistic interactions between cells are hindered by the lack of cellular and molecular information from early disease stages and accurate experimental models. Recently, senescent cells and neutrophil extracellular traps have been described in tissue lesions. These structures can remain in tissues for a prolonged period, potentially favoring inflammatory responses and tissue remodeling. In this review, current advances in GCA pathogenesis are discussed in different inflammatory phases. Through the description of these-often overlapping-phases, cells, molecules, and small lipid mediators with pathogenetic potential are described.
Collapse
Affiliation(s)
- Dimitris Anastasios Palamidas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Loukas Chatzis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Maria Papadaki
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ilias Gissis
- Department of Thoracic and Cardiovascular Surgery, Evangelismos General Hospital, 11473 Athens, Greece
| | - Konstantinos Kambas
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Andreas V Goules
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Athanasios G Tzioufas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Research Institute for Systemic Autoimmune Diseases, 11527 Athens, Greece
| |
Collapse
|
8
|
Paroli M, Caccavale R, Accapezzato D. Giant Cell Arteritis: Advances in Understanding Pathogenesis and Implications for Clinical Practice. Cells 2024; 13:267. [PMID: 38334659 PMCID: PMC10855045 DOI: 10.3390/cells13030267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Giant cell arteritis (GCA) is a noninfectious granulomatous vasculitis of unknown etiology affecting individuals older than 50 years. Two forms of GCA have been identified: a cranial form involving the medium-caliber temporal artery causing temporal arteritis (TA) and an extracranial form involving the large vessels, mainly the thoracic aorta and its branches. GCA generally affects individuals with a genetic predisposition, but several epigenetic (micro)environmental factors are often critical for the onset of this vasculitis. A key role in the pathogenesis of GCA is played by cells of both the innate and adaptive immune systems, which contribute to the formation of granulomas that may include giant cells, a hallmark of the disease, and arterial tertiary follicular organs. Cells of the vessel wall cells, including vascular smooth muscle cells (VSMCs) and endothelial cells, actively contribute to vascular remodeling responsible for vascular stenosis and ischemic complications. This review will discuss new insights into the molecular and cellular pathogenetic mechanisms of GCA, as well as the implications of these findings for the development of new diagnostic biomarkers and targeted drugs that could hopefully replace glucocorticoids (GCs), still the backbone of therapy for this vasculitis.
Collapse
Affiliation(s)
- Marino Paroli
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy; (R.C.); (D.A.)
| | | | | |
Collapse
|
9
|
Greigert H, Ramon A, Genet C, Cladière C, Gerard C, Cuidad M, Corbera-Bellalta M, Alba-Rovira R, Arnould L, Creuzot-Garcher C, Martin L, Tarris G, Ghesquière T, Ouandji S, Audia S, Cid MC, Bonnotte B, Samson M. Neointimal myofibroblasts contribute to maintaining Th1/Tc1 and Th17/Tc17 inflammation in giant cell arteritis. J Autoimmun 2024; 142:103151. [PMID: 38039746 DOI: 10.1016/j.jaut.2023.103151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Vascular smooth muscle cells (VSMCs) have been shown to play a role in the pathogenesis of giant cell arteritis (GCA) through their capacity to produce chemokines recruiting T cells and monocytes in the arterial wall and their ability to migrate and proliferate in the neointima where they acquire a myofibroblast (MF) phenotype, leading to vascular stenosis. This study aimed to investigate if MFs could also impact T-cell polarization. Confocal microscopy was used to analyze fresh fragments of temporal artery biopsies (TABs). Healthy TAB sections were cultured to obtain MFs, which were then treated or not with interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) and analyzed by immunofluorescence and RT-PCR. After peripheral blood mononuclear cells and MFs were co-cultured for seven days, T-cell polarization was analyzed by flow cytometry. In the neointima of GCA arteries, we observed a phenotypic heterogeneity among VSMCs that was consistent with a MF phenotype (α-SMA+CD90+desmin+MYH11+) with a high level of STAT1 phosphorylation. Co-culture experiments showed that MFs sustain Th1/Tc1 and Th17/Tc17 polarizations. The increased Th1 and Tc1 polarization was further enhanced following the stimulation of MFs with IFN-γ and TNF-α, which induced STAT1 phosphorylation in MFs. These findings correlated with increases in the production of IL-1β, IL-6, IL-12 and IL-23 by MFs. Our study showed that MFs play an additional role in the pathogenesis of GCA through their ability to maintain Th17/Tc17 and Th1/Tc1 polarizations, the latter being further enhanced in case of stimulation of MF with IFN-γ and TNF-α.
Collapse
Affiliation(s)
- Hélène Greigert
- Department of Internal Medicine and Clinical Immunology, Referral Center for Rare Autoimmune and Autoinflammatory Diseases (MAIS), Dijon University Hospital, Dijon, France; Department of Vascular Medicine, Dijon University Hospital, Dijon, France; Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-21000, Dijon, France
| | - André Ramon
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-21000, Dijon, France; Department of Rheumatology, Dijon University Hospital, Dijon, France
| | - Coraline Genet
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-21000, Dijon, France
| | - Claudie Cladière
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-21000, Dijon, France
| | - Claire Gerard
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-21000, Dijon, France
| | - Marion Cuidad
- Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-21000, Dijon, France
| | - Marc Corbera-Bellalta
- Department of Autoimmune Diseases, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Roser Alba-Rovira
- Department of Autoimmune Diseases, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Louis Arnould
- Department of Ophthalmology, Dijon University Hospital, Dijon, France
| | | | - Laurent Martin
- Department of Pathology, Dijon University Hospital, Dijon, France
| | - Georges Tarris
- Department of Pathology, Dijon University Hospital, Dijon, France
| | - Thibault Ghesquière
- Department of Internal Medicine and Clinical Immunology, Referral Center for Rare Autoimmune and Autoinflammatory Diseases (MAIS), Dijon University Hospital, Dijon, France; Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-21000, Dijon, France
| | - Sethi Ouandji
- Department of Internal Medicine and Clinical Immunology, Referral Center for Rare Autoimmune and Autoinflammatory Diseases (MAIS), Dijon University Hospital, Dijon, France; Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-21000, Dijon, France
| | - Sylvain Audia
- Department of Internal Medicine and Clinical Immunology, Referral Center for Rare Autoimmune and Autoinflammatory Diseases (MAIS), Dijon University Hospital, Dijon, France; Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-21000, Dijon, France
| | - Maria C Cid
- Department of Autoimmune Diseases, Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Bernard Bonnotte
- Department of Internal Medicine and Clinical Immunology, Referral Center for Rare Autoimmune and Autoinflammatory Diseases (MAIS), Dijon University Hospital, Dijon, France; Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-21000, Dijon, France
| | - Maxime Samson
- Department of Internal Medicine and Clinical Immunology, Referral Center for Rare Autoimmune and Autoinflammatory Diseases (MAIS), Dijon University Hospital, Dijon, France; Université Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, F-21000, Dijon, France.
| |
Collapse
|
10
|
Liu H, Sun M, Wu N, Liu B, Liu Q, Fan X. TGF-β/Smads signaling pathway, Hippo-YAP/TAZ signaling pathway, and VEGF: Their mechanisms and roles in vascular remodeling related diseases. Immun Inflamm Dis 2023; 11:e1060. [PMID: 38018603 PMCID: PMC10629241 DOI: 10.1002/iid3.1060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 11/30/2023] Open
Abstract
Vascular remodeling is a basic pathological process in various diseases characterized by abnormal changes in the morphology, structure, and function of vascular cells, such as migration, proliferation, hypertrophy, and apoptosis. Various growth factors and pathways are involved in the process of vascular remodeling. The transforming growth factor-β (TGF-β) signaling pathway, which is mainly mediated by TGF-β1, is an important factor in vascular wall enhancement during vascular development and regulates the vascular response to injury by promoting the accumulation of intimal tissue. Vascular endothelial growth factor (VEGF) has an important effect on initiating the formation of blood vessels. The Hippo-YAP/TAZ signaling pathway also plays an important role in angiogenesis. In addition, studies have shown that there is a certain interaction between the TGF-β/Smads signaling pathway, Hippo-YAP/TAZ signaling pathway, and VEGF. Many studies have shown that in the development of atherosclerosis, hypertension, aneurysm, vertebrobasilar dolichoectasia, pulmonary hypertension, restenosis after percutaneous transluminal angioplasty, and other diseases, various inflammatory reactions lead to changes in vascular structure and vascular microenvironment, which leads to vascular remodeling. The occurrence of vascular remodeling changes the morphology of blood vessels and thus changes the hemodynamics, which is the cause of further development of the disease process. Vascular remodeling can cause vascular smooth muscle cell dysfunction and vascular homeostasis regulation. This review aims to explore the mechanisms of the TGF-β/Smads signaling pathway, Hippo-YAP/TAZ signaling pathway, and vascular endothelial growth factor in vascular remodeling and related diseases. This paper is expected to provide new ideas for research on the occurrence and development of related diseases and provide a new direction for research on the treatment of related diseases.
Collapse
Affiliation(s)
- Hui Liu
- Department of NeurologyBinzhou Medical University HospitalBinzhouChina
| | - Mingyue Sun
- Department of NeurologyBinzhou Medical University HospitalBinzhouChina
| | - Nan Wu
- Department of NeurologyBinzhou Medical University HospitalBinzhouChina
| | - Bin Liu
- Institute for Metabolic & Neuropsychiatric DisordersBinzhou Medical University HospitalBinzhouChina
| | - Qingxin Liu
- Department of NeurologyBinzhou Medical University HospitalBinzhouChina
| | - Xueli Fan
- Department of NeurologyBinzhou Medical University HospitalBinzhouChina
| |
Collapse
|
11
|
Nepal D, Putman M, Unizony S. Giant Cell Arteritis and Polymyalgia Rheumatica: Treatment Approaches and New Targets. Rheum Dis Clin North Am 2023; 49:505-521. [PMID: 37331730 DOI: 10.1016/j.rdc.2023.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Prolonged glucocorticoid tapers have been the standard of care for giant cell arteritis (GCA) and polymyalgia rheumatica (PMR), but recent advancements have improved outcomes for patients with GCA while reducing glucocorticoid-related toxicities. Many patients with GCA and PMR still experience persistent or relapsing disease, and cumulative exposure to glucocorticoids for both diseases remains high. The objective of this review is to define current treatment approaches as well as new therapeutic targets and strategies. Studies investigating inhibition of cytokine pathways, including interleukin-6, interleukin-17, interleukin-23, granulocyte-macrophage colony-stimulating factor, Janus kinase-signal transduction and activator of transcription, and others, will be reviewed.
Collapse
Affiliation(s)
- Desh Nepal
- Department of Medicine, Division of Rheumatology, Hub for Collaborative Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Rheumatology, 6th Floor, Milwaukee, WI 53226, USA.
| | - Michael Putman
- Department of Medicine, Division of Rheumatology, Hub for Collaborative Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Rheumatology, 6th Floor, Milwaukee, WI 53226, USA
| | - Sebastian Unizony
- Massachusetts General Hospital, Vasculitis and Glomerulonephritis Center, Harvard Medical School, 55 Fruit Street, Yawkey 4B, Boston, MA 02114, USA
| |
Collapse
|
12
|
Carvajal Alegria G, Nicolas M, van Sleen Y. Biomarkers in the era of targeted therapy in giant cell arteritis and polymyalgia rheumatica: is it possible to replace acute-phase reactants? Front Immunol 2023; 14:1202160. [PMID: 37398679 PMCID: PMC10313393 DOI: 10.3389/fimmu.2023.1202160] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
Research into giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) has become more important in the last few decades. Physicians are facing several challenges in managing the diagnosis, treatment, and relapses of GCA and PMR patients. The search for biomarkers could provide elements to guide a physician's decision. In this review, we aim to summarize the scientific publications about biomarkers in GCA and PMR in the past decade. The first point raised by this review is the number of clinical situations in which biomarkers could be useful: differential diagnosis of either GCA or PMR, diagnosis of underlying vasculitis in PMR, prediction of relapse or complications, disease activity monitoring, choice, and modification of treatments. The second point raised by this review is the large number of biomarkers studied, from common markers like C-reactive protein, erythrocyte sedimentation rate, or elements of blood count to inflammatory cytokines, growth factors, or immune cell subpopulations. Finally, this review underlines the heterogeneity between the studies and proposes points to consider in studies evaluating biomarkers in general and particularly in the case of GCA and PMR.
Collapse
Affiliation(s)
- Guillermo Carvajal Alegria
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
- Department of Rheumatology, Centre Hospitalier Régional Universitaire (CHRU) de Tours, Tours Cedex, France
| | - Mathilde Nicolas
- Department of Rheumatology, Centre Hospitalier Régional Universitaire (CHRU) de Tours, Tours Cedex, France
| | - Yannick van Sleen
- Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
13
|
Schäfer VS, Brossart P, Warrington KJ, Kurts C, Sendtner GW, Aden CA. The role of autoimmunity and autoinflammation in giant cell arteritis: A systematic literature review. Autoimmun Rev 2023; 22:103328. [PMID: 36990133 DOI: 10.1016/j.autrev.2023.103328] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Giant cell arteritis is the most common form of large vessel vasculitis and preferentially involves large and medium-sized arteries in patients over the age of 50. Aggressive wall inflammation, neoangiogenesis and consecutive remodeling processes are the hallmark of the disease. Though etiology is unknown, cellular and humoral immunopathological processes are well understood. Matrix metalloproteinase-9 mediated tissue infiltration occurs through lysis of basal membranes in adventitial vessels. CD4+ cells attain residency in immunoprotected niches, differentiate into vasculitogenic effector cells and enforce further leukotaxis. Signaling pathways involve the NOTCH1-Jagged1 pathway opening vessel infiltration, CD28 mediated T-cell overstimulation, lost PD-1/PD-L1 co-inhibition and JAK/STAT signaling in interferon dependent responses. From a humoral perspective, IL-6 represents a classical cytokine and potential Th-cell differentiator whereas interferon-γ (IFN- γ) has been shown to induce chemokine ligands. Current therapies involve glucocorticoids, tocilizumab and methotrexate application. However, new agents, most notably JAK/STAT inhibitors, PD-1 agonists and MMP-9 blocking substances, are being evaluated in ongoing clinical trials.
Collapse
|
14
|
Samson M, Genet C, Corbera-Bellalta M, Greigert H, Espígol-Frigolé G, Gérard C, Cladière C, Alba-Rovira R, Ciudad M, Gabrielle PH, Creuzot-Garcher C, Tarris G, Martin L, Saas P, Audia S, Bonnotte B, Cid MC. Human monocyte-derived suppressive cells (HuMoSC) for cell therapy in giant cell arteritis. Front Immunol 2023; 14:1137794. [PMID: 36895571 PMCID: PMC9989212 DOI: 10.3389/fimmu.2023.1137794] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction The pathogenesis of Giant Cell Arteritis (GCA) relies on vascular inflammation and vascular remodeling, the latter being poorly controlled by current treatments. Methods This study aimed to evaluate the effect of a novel cell therapy, Human Monocyte-derived Suppressor Cells (HuMoSC), on inflammation and vascular remodeling to improve GCA treatment. Fragments of temporal arteries (TAs) from GCA patients were cultured alone or in the presence of HuMoSCs or their supernatant. After five days, mRNA expression was measured in the TAs and proteins were measured in culture supernatant. The proliferation and migration capacity of vascular smooth muscle cells (VSMCs) were also analyzed with or without HuMoSC supernatant. Results Transcripts of genes implicated in vascular inflammation (CCL2, CCR2, CXCR3, HLADR), vascular remodeling (PDGF, PDGFR), angiogenesis (VEGF) and extracellular matrix composition (COL1A1, COL3A1 and FN1) were decreased in arteries treated with HuMoSCs or their supernatant. Likewise, concentrations of collagen-1 and VEGF were lower in the supernatants of TAs cultivated with HuMoSCs. In the presence of PDGF, the proliferation and migration of VSMCs were both decreased after treatment with HuMoSC supernatant. Study of the PDGF pathway suggests that HuMoSCs act through inhibition of mTOR activity. Finally, we show that HuMoSCs could be recruited in the arterial wall through the implication of CCR5 and its ligands. Conclusion Altogether, our results suggest that HuMoSCs or their supernatant could be useful to decrease vascular in flammation and remodeling in GCA, the latter being an unmet need in GCA treatment.
Collapse
Affiliation(s)
- Maxime Samson
- Department of Internal Medicine and Clinical Immunology, Dijon University Hospital, Dijon, France
- Université Bourgogne Franche-Comté, INSERM, Etablissement Français du Sang, Bourgogne Franche-Comté (EFS BFC), UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CRB-CELLEX, Barcelona, Spain
| | - Coraline Genet
- Université Bourgogne Franche-Comté, INSERM, Etablissement Français du Sang, Bourgogne Franche-Comté (EFS BFC), UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | - Marc Corbera-Bellalta
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CRB-CELLEX, Barcelona, Spain
| | - Hélène Greigert
- Department of Internal Medicine and Clinical Immunology, Dijon University Hospital, Dijon, France
- Université Bourgogne Franche-Comté, INSERM, Etablissement Français du Sang, Bourgogne Franche-Comté (EFS BFC), UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | - Georgina Espígol-Frigolé
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CRB-CELLEX, Barcelona, Spain
| | - Claire Gérard
- Université Bourgogne Franche-Comté, INSERM, Etablissement Français du Sang, Bourgogne Franche-Comté (EFS BFC), UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | - Claudie Cladière
- Université Bourgogne Franche-Comté, INSERM, Etablissement Français du Sang, Bourgogne Franche-Comté (EFS BFC), UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | - Roser Alba-Rovira
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CRB-CELLEX, Barcelona, Spain
| | - Marion Ciudad
- Université Bourgogne Franche-Comté, INSERM, Etablissement Français du Sang, Bourgogne Franche-Comté (EFS BFC), UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | | | | | - Georges Tarris
- Department of Pathology, Dijon University Hospital, Dijon, France
| | - Laurent Martin
- Department of Pathology, Dijon University Hospital, Dijon, France
| | - Philippe Saas
- Université Bourgogne Franche-Comté, INSERM, Etablissement Français du Sang, Bourgogne Franche-Comté (EFS BFC), UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
- Centre d'investigation clinique (CIC)-1431, INSERM, Besançon University Hospital, Etablissement Français du Sang (EFS), Besançon, France
| | - Sylvain Audia
- Department of Internal Medicine and Clinical Immunology, Dijon University Hospital, Dijon, France
- Université Bourgogne Franche-Comté, INSERM, Etablissement Français du Sang, Bourgogne Franche-Comté (EFS BFC), UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | - Bernard Bonnotte
- Department of Internal Medicine and Clinical Immunology, Dijon University Hospital, Dijon, France
- Université Bourgogne Franche-Comté, INSERM, Etablissement Français du Sang, Bourgogne Franche-Comté (EFS BFC), UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | - Maria C. Cid
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CRB-CELLEX, Barcelona, Spain
| |
Collapse
|
15
|
Stahl A, Hao D, Barrera J, Henn D, Lin S, Moeinzadeh S, Kim S, Maloney W, Gurtner G, Wang A, Yang YP. A bioactive compliant vascular graft modulates macrophage polarization and maintains patency with robust vascular remodeling. Bioact Mater 2023; 19:167-178. [PMID: 35510174 PMCID: PMC9034314 DOI: 10.1016/j.bioactmat.2022.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/14/2022] [Accepted: 04/05/2022] [Indexed: 12/20/2022] Open
Abstract
Conventional synthetic vascular grafts are associated with significant failure rates due to their mismatched mechanical properties with the native vessel and poor regenerative potential. Though different tissue engineering approaches have been used to improve the biocompatibility of synthetic vascular grafts, it is still crucial to develop a new generation of synthetic grafts that can match the dynamics of native vessel and direct the host response to achieve robust vascular regeneration. The size of pores within implanted biomaterials has shown significant effects on macrophage polarization, which has been further confirmed as necessary for efficient vascular formation and remodeling. Here, we developed biodegradable, autoclavable synthetic vascular grafts from a new polyurethane elastomer and tailored the grafts' interconnected pore sizes to promote macrophage populations with a pro-regenerative phenotype and improve vascular regeneration and patency rate. The synthetic vascular grafts showed similar mechanical properties to native blood vessels, encouraged macrophage populations with varying M2 to M1 phenotypic expression, and maintained patency and vascular regeneration in a one-month rat carotid interposition model and in a four-month rat aortic interposition model. This innovative bioactive synthetic vascular graft holds promise to treat clinical vascular diseases. Small diameter vascular grafts were fabricated from a new elastomeric polyurethane designed for vascular tissue engineering. The grafts combined excellent elasticity, strength, porosity, hemocompatibility, degradability, and biocompatibility. In vivo, grafts maintained patency for four months and supported tissue regeneration resembling the native arterial wall. Pore size was found to influence graft characteristics and efficacy.
Collapse
|
16
|
Stamatis P, Turesson C, Michailidou D, Mohammad AJ. Pathogenesis of giant cell arteritis with focus on cellular populations. Front Med (Lausanne) 2022; 9:1058600. [PMID: 36465919 PMCID: PMC9714577 DOI: 10.3389/fmed.2022.1058600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 08/27/2023] Open
Abstract
Giant cell arteritis (GCA), the most common non-infectious vasculitis, mainly affects elderly individuals. The disease usually affects the aorta and its main supra-aortic branches causing both general symptoms of inflammation and specific ischemic symptoms because of the limited blood flow due to arterial structural changes in the inflamed arteries. The pathogenesis of the GCA is complex and includes a dysregulated immune response that affects both the innate and the adaptive immunity. During the last two decades several studies have investigated interactions among antigen-presenting cells and lymphocytes, which contribute to the formation of the inflammatory infiltrate in the affected arteries. Toll-like receptor signaling and interactions through the VEGF-Notch-Jagged1 pathway are emerging as crucial events of the aberrant inflammatory response, facilitating among others the migration of inflammatory cells to the inflamed arteries and their interactions with the local stromal milieu. The increased use of checkpoint inhibitors in cancer immunotherapy and their immune-related adverse events has fed interest in the role of checkpoint dysfunction in GCA, and recent studies suggest a dysregulated check point system which is unable to suppress the inflammation in the previously immune-privileged arteries, leading to vasculitis. The role of B-cells is currently reevaluated because of new reports of considerable numbers of plasma cells in inflamed arteries as well as the formation of artery tertiary lymphoid organs. There is emerging evidence on previously less studied cell populations, such as the neutrophils, CD8+ T-cells, T regulatory cells and tissue residing memory cells as well as for stromal cells which were previously considered as innocent bystanders. The aim of this review is to summarize the evidence in the literature regarding the cell populations involved in the pathogenesis of GCA and especially in the context of an aged, immune system.
Collapse
Affiliation(s)
- Pavlos Stamatis
- Rheumatology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Rheumatology, Sunderby Hospital, Luleå, Sweden
| | - Carl Turesson
- Rheumatology, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Despina Michailidou
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Aladdin J. Mohammad
- Rheumatology, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
17
|
Yang YW, Deng NH, Tian KJ, Liu LS, Wang Z, Wei DH, Liu HT, Jiang ZS. Development of hydrogen sulfide donors for anti-atherosclerosis therapeutics research: Challenges and future priorities. Front Cardiovasc Med 2022; 9:909178. [PMID: 36035922 PMCID: PMC9412017 DOI: 10.3389/fcvm.2022.909178] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Hydrogen sulfide (H2S), a gas transmitter found in eukaryotic organisms, plays an essential role in several physiological processes. H2S is one of the three primary biological gas transmission signaling mediators, along with nitric oxide and carbon monoxide. Several animal and in vitro experiments have indicated that H2S can prevent coronary endothelial mesenchymal transition, reduce the expression of endothelial cell adhesion molecules, and stabilize intravascular plaques, suggesting its potential role in the treatment of atherosclerosis (AS). H2S donors are compounds that can release H2S under certain circumstances. Development of highly targeted H2S donors is a key imperative as these can allow for in-depth evaluation of the anti-atherosclerotic effects of exogenous H2S. More importantly, identification of an optimal H2S donor is critical for the creation of H2S anti-atherosclerotic prodrugs. In this review, we discuss a wide range of H2S donors with anti-AS potential along with their respective transport pathways and design-related limitations. We also discuss the utilization of nano-synthetic technologies to manufacture H2S donors. This innovative and effective design example sheds new light on the production of highly targeted H2S donors.
Collapse
Affiliation(s)
- Ye-Wei Yang
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, China
| | - Nian-Hua Deng
- Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Kai-Jiang Tian
- Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Lu-Shan Liu
- Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Zuo Wang
- Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Dang-Heng Wei
- Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Hui-Ting Liu
- Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, Institute of Cardiovascular Disease, University of South China, Hengyang, China
| | - Zhi-Sheng Jiang
- Key Laboratory for Arteriosclerosis of Hunan Province, Hengyang Medical College, Institute of Cardiovascular Disease, University of South China, Hengyang, China
- *Correspondence: Zhi-Sheng Jiang
| |
Collapse
|
18
|
Estupiñán-Moreno E, Ortiz-Fernández L, Li T, Hernández-Rodríguez J, Ciudad L, Andrés-León E, Terron-Camero LC, Prieto-González S, Espígol-Frigolé G, Cid MC, Márquez A, Ballestar E, Martín J. Methylome and transcriptome profiling of giant cell arteritis monocytes reveals novel pathways involved in disease pathogenesis and molecular response to glucocorticoids. Ann Rheum Dis 2022; 81:1290-1300. [PMID: 35705375 PMCID: PMC9380516 DOI: 10.1136/annrheumdis-2022-222156] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/17/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Giant cell arteritis (GCA) is a complex systemic vasculitis mediated by the interplay between both genetic and epigenetic factors. Monocytes are crucial players of the inflammation occurring in GCA. Therefore, characterisation of the monocyte methylome and transcriptome in GCA would be helpful to better understand disease pathogenesis. METHODS We performed an integrated epigenome-and transcriptome-wide association study in CD14+ monocytes from 82 patients with GCA, cross-sectionally classified into three different clinical statuses (active, in remission with or without glucocorticoid (GC) treatment), and 31 healthy controls. RESULTS We identified a global methylation and gene expression dysregulation in GCA monocytes. Specifically, monocytes from active patients showed a more proinflammatory phenotype compared with healthy controls and patients in remission. In addition to inflammatory pathways known to be involved in active GCA, such as response to IL-6 and IL-1, we identified response to IL-11 as a new pathway potentially implicated in GCA. Furthermore, monocytes from patients in remission with treatment showed downregulation of genes involved in inflammatory processes as well as overexpression of GC receptor-target genes. Finally, we identified changes in DNA methylation correlating with alterations in expression levels of genes with a potential role in GCA pathogenesis, such as ITGA7 and CD63, as well as genes mediating the molecular response to GC, including FKBP5, ETS2, ZBTB16 and ADAMTS2. CONCLUSION Our results revealed profound alterations in the methylation and transcriptomic profiles of monocytes from GCA patients, uncovering novel genes and pathways involved in GCA pathogenesis and in the molecular response to GC treatment.
Collapse
Affiliation(s)
- Elkyn Estupiñán-Moreno
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| | - Lourdes Ortiz-Fernández
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| | - Tianlu Li
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Badalona, Barcelona, Spain
| | - Jose Hernández-Rodríguez
- Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Badalona, Barcelona, Spain
| | - Eduardo Andrés-León
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| | - Laura Carmen Terron-Camero
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| | - Sergio Prieto-González
- Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Georgina Espígol-Frigolé
- Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria Cinta Cid
- Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ana Márquez
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
- Systemic Autoimmune Diseases Unit, Hospital Clinico San Cecilio, Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, Granada, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Badalona, Barcelona, Spain
| | - Javier Martín
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| |
Collapse
|
19
|
Guanxinping Tablets Inhibit ET-1-Induced Proliferation and Migration of MOVAS by Suppressing Activated PI3K/Akt/NF- κB Signaling Cascade. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9485463. [PMID: 35685734 PMCID: PMC9173997 DOI: 10.1155/2022/9485463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/07/2021] [Accepted: 05/15/2022] [Indexed: 11/17/2022]
Abstract
Background/Aim Abnormal proliferation and migration of vascular smooth muscle cells is one of the main causes of atherosclerosis (AS). Therefore, the suppression of abnormal proliferation and migration of smooth muscle cells are the important means for the prevention and inhibition of AS. The clinical effects of Guanxinping (GXP) tablets and preliminary clinical research on the topic have proved that GXP can effectively treat coronary heart disease, but its underlying mechanism remains unclear. This study aimed to confirm the inhibitory effect of GXP on the abnormal proliferation of mouse aortic vascular smooth muscle (MOVAS) cells and to explore the underlying mechanism. Methods MOVAS cells were divided into two major groups: physiological and pathological groups. In the physiological group, MOVAS cells were directly stimulated with GXP, whereas in the pathological group, the cells were stimulated by endothelin-1 (ET-1) before intervention by GXP. At the same time, atorvastatin calcium, which effectively inhibits the abnormal proliferation of MOVAS cells, was used in the negative control group. CCK8 assay, scratch test, ELISA, Western blotting, and immunofluorescence staining were performed to observe the proliferation and migration of MOVAS cells and the expression levels of related factors after drug intervention in each group. Results In the physiological group, GXP had no significant effect on the proliferation and migration of MOVAS cells and the related factors. In the pathological group, a high dose of GXP reduced the abnormal proliferation and migration of MOVAS cells. Further, it reduced the expression levels of PI3K; inhibited the phosphorylation of Akt (protein kinase B); upregulated IκB-α levels; prevented nuclear factor kappa B (NF-κB) from entering the nucleus; downregulated the expression of interleukin 6 (IL6), IL-1β, and iNOS; and upregulated the ratio of apoptosis-related factor Bax/Bcl-2. There was no significant difference between the high-dose GXP group and the atorvastatin calcium group (negative control group). Conclusion Our findings revealed that GXP was able to inhibit the proliferation and migration of MOVAS cells by regulating the PI3K/Akt/NF-κB pathway.
Collapse
|
20
|
van der Geest KSM, Sandovici M, Nienhuis PH, Slart RHJA, Heeringa P, Brouwer E, Jiemy WF. Novel PET Imaging of Inflammatory Targets and Cells for the Diagnosis and Monitoring of Giant Cell Arteritis and Polymyalgia Rheumatica. Front Med (Lausanne) 2022; 9:902155. [PMID: 35733858 PMCID: PMC9207253 DOI: 10.3389/fmed.2022.902155] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/13/2022] [Indexed: 12/26/2022] Open
Abstract
Giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) are two interrelated inflammatory diseases affecting patients above 50 years of age. Patients with GCA suffer from granulomatous inflammation of medium- to large-sized arteries. This inflammation can lead to severe ischemic complications (e.g., irreversible vision loss and stroke) and aneurysm-related complications (such as aortic dissection). On the other hand, patients suffering from PMR present with proximal stiffness and pain due to inflammation of the shoulder and pelvic girdles. PMR is observed in 40-60% of patients with GCA, while up to 21% of patients suffering from PMR are also affected by GCA. Due to the risk of ischemic complications, GCA has to be promptly treated upon clinical suspicion. The treatment of both GCA and PMR still heavily relies on glucocorticoids (GCs), although novel targeted therapies are emerging. Imaging has a central position in the diagnosis of GCA and PMR. While [18F]fluorodeoxyglucose (FDG)-positron emission tomography (PET) has proven to be a valuable tool for diagnosis of GCA and PMR, it possesses major drawbacks such as unspecific uptake in cells with high glucose metabolism, high background activity in several non-target organs and a decrease of diagnostic accuracy already after a short course of GC treatment. In recent years, our understanding of the immunopathogenesis of GCA and, to some extent, PMR has advanced. In this review, we summarize the current knowledge on the cellular heterogeneity in the immunopathology of GCA/PMR and discuss how recent advances in specific tissue infiltrating leukocyte and stromal cell profiles may be exploited as a source of novel targets for imaging. Finally, we discuss prospective novel PET radiotracers that may be useful for the diagnosis and treatment monitoring in GCA and PMR.
Collapse
Affiliation(s)
- Kornelis S. M. van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Pieter H. Nienhuis
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Riemer H. J. A. Slart
- Department of Nuclear Medicine and Molecular Imaging, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Biomedical Photonic Imaging Group, University of Twente, Enschede, Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - William F. Jiemy
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
21
|
Rokni M, Sadeghi Shaker M, Kavosi H, Shokoofi S, Mahmoudi M, Farhadi E. The role of endothelin and RAS/ERK signaling in immunopathogenesis-related fibrosis in patients with systemic sclerosis: an updated review with therapeutic implications. Arthritis Res Ther 2022; 24:108. [PMID: 35562771 PMCID: PMC9102675 DOI: 10.1186/s13075-022-02787-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/23/2022] [Indexed: 02/07/2023] Open
Abstract
Systemic sclerosis (SSc) is a disease of connective tissue with high rate of morbidity and mortality highlighted by extreme fibrosis affecting various organs such as the dermis, lungs, and heart. Until now, there is no specific cure for the fibrosis occurred in SSc disease. The SSc pathogenesis is yet unknown, but transforming growth factor beta (TGF-β), endothelin-1 (ET-1), and Ras-ERK1/2 cascade are the main factors contributing to the tissue fibrosis through extracellular matrix (ECM) accumulation. Several studies have hallmarked the association of ET-1 with or without TGF-β and Ras-ERK1/2 signaling in the development of SSc disease, vasculopathy, and fibrosis of the dermis, lungs, and several organs. Accordingly, different clinical and experimental studies have indicated the potential therapeutic role of ET-1 and Ras antagonists in these situations in SSc. In addition, ET-1 and connective tissue growth factor (CTGF) as a cofactor of the TGF-β cascade play a substantial initiative role in inducing fibrosis. Once initiated, TGF-β alone or in combination with ET-1 and CTGF can activate several kinase proteins such as the Ras-ERK1/2 pathway that serve as the fundamental factor for developing fibrosis. Furthermore, Salirasib is a synthetic small molecule that is able to inhibit all Ras forms. Therefore, it can be used as a potent therapeutic factor for fibrotic disorders. So, this review discusses the role of TGF-β/ET-1/Ras signaling and their involvement in SSc pathogenesis, particularly in its fibrotic situation.
Collapse
Affiliation(s)
- Mohsen Rokni
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Mina Sadeghi Shaker
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoda Kavosi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Shokoofi
- Rheumatology Department, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran. .,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Elham Farhadi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran. .,Inflammation Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
22
|
Corbera-Bellalta M, Alba-Rovira R, Muralidharan S, Espígol-Frigolé G, Ríos-Garcés R, Marco-Hernández J, Denuc A, Kamberovic F, Pérez-Galán P, Joseph A, D'Andrea A, Bondensgaard K, Cid MC, Paolini JF. Blocking GM-CSF receptor α with mavrilimumab reduces infiltrating cells, pro-inflammatory markers and neoangiogenesis in ex vivo cultured arteries from patients with giant cell arteritis. Ann Rheum Dis 2022; 81:524-536. [PMID: 35045965 PMCID: PMC8921590 DOI: 10.1136/annrheumdis-2021-220873] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/08/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Effective and safe therapies are needed for the treatment of patients with giant cell arteritis (GCA). Emerging as a key cytokine in inflammation, granulocyte-macrophage colony stimulating factor (GM-CSF) may play a role in promoting inflammation in GCA. OBJECTIVES To investigate expression of GM-CSF and its receptor in arterial lesions from patients with GCA. To analyse activation of GM-CSF receptor-associated signalling pathways and expression of target genes. To evaluate the effects of blocking GM-CSF receptor α with mavrilimumab in ex vivo cultured arteries from patients with GCA. METHODS Quantitative real time PCR, in situ RNA hybridisation, immunohistochemistry, immunofluorescence and confocal microscopy, immunoassay, western blot and ex vivo temporal artery culture. RESULTS GM-CSF and GM-CSF receptor α mRNA and protein were increased in GCA lesions; enhanced JAK2/STAT5A expression/phosphorylation as well as increased expression of target genes CD83 and Spi1/PU.1 were observed. Treatment of ex vivo cultured GCA arteries with mavrilimumab resulted in decreased transcripts of CD3ε, CD20, CD14 and CD16 cell markers, and reduction of infiltrating CD16 and CD3ε cells was observed by immunofluorescence. Mavrilimumab reduced expression of molecules relevant to T cell activation (human leukocyte antigen-DR [HLA-DR]) and Th1 differentiation (interferon-γ), the pro-inflammatory cytokines: interleukin 6 (IL-6), tumour necrosis factor α (TNFα) and IL-1β, as well as molecules related to vascular injury (matrix metalloprotease 9, lipid peroxidation products and inducible nitric oxide synthase [iNOS]). Mavrilimumab reduced CD34 + cells and neoangiogenesis in GCA lesions. CONCLUSION The inhibitory effects of mavrilimumab on multiple steps in the GCA pathogenesis cascade in vitro are consistent with the clinical observation of reduced GCA flares in a phase 2 trial and support its development as a therapeutic option for patients with GCA.
Collapse
Affiliation(s)
- Marc Corbera-Bellalta
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Roser Alba-Rovira
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Georgina Espígol-Frigolé
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Roberto Ríos-Garcés
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Javier Marco-Hernández
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Farah Kamberovic
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | | | | - Maria C Cid
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - John F Paolini
- Kiniksa Pharmaceuticals Corp, Lexington, Massachusetts, USA
| |
Collapse
|
23
|
Hu W, Wu X, Jin Z, Wang Z, Guo Q, Chen Z, Zhu S, Zhang H, Huo J, Zhang L, Zhou X, Yang L, Xu H, Shi L, Wang Y. Andrographolide Promotes Interaction Between Endothelin-Dependent EDNRA/EDNRB and Myocardin-SRF to Regulate Pathological Vascular Remodeling. Front Cardiovasc Med 2022; 8:783872. [PMID: 35127859 PMCID: PMC8810813 DOI: 10.3389/fcvm.2021.783872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction Pathological vascular remodeling is a hallmark of various vascular diseases. Smooth muscle cell (SMC) phenotypic switching plays a pivotal role during pathological vascular remodeling. The mechanism of how to regulate SMC phenotypic switching still needs to be defined. This study aims to investigate the effect of Andrographolide, a key principle isolated from Andrographis paniculate, on pathological vascular remodeling and its underlying mechanism. Methods A C57/BL6 mouse left carotid artery complete ligation model and rat SMCs were used to determine whether Andrographolide is critical in regulating SMC phenotypic switching. Quantitative real-time PCR, a CCK8 cell proliferation assay, BRDU incorporation assay, Boyden chamber migration assay, and spheroid sprouting assay were performed to evaluate whether Andrographolide suppresses SMC proliferation and migration. Immunohistochemistry staining, immunofluorescence staining, and protein co-immunoprecipitation were used to observe the interaction between EDNRA, EDNRB, and Myocardin-SRF. Results Andrographolide inhibits neointimal hyperplasia in the left carotid artery complete ligation model. Andrographolide regulates SMC phenotypic switching characterized by suppressing proliferation and migration. Andrographolide activates the endothelin signaling pathway exhibited by dramatically inducing EDNRA and EDNRB expression. The interaction between EDNRA/EDNRB and Myocardin-SRF resulted in promoting SMC differentiation marker gene expression. Conclusion Andrographolide plays a critical role in regulating pathological vascular remodeling.
Collapse
Affiliation(s)
- Wangming Hu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Wu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhong Jin
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zheng Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiru Guo
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zixian Chen
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Song Zhu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haidi Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Huo
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lingling Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Zhou
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Yang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huan Xu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liangqing Shi
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Yong Wang ;
| |
Collapse
|
24
|
Pugh D, Karabayas M, Basu N, Cid MC, Goel R, Goodyear CS, Grayson PC, McAdoo SP, Mason JC, Owen C, Weyand CM, Youngstein T, Dhaun N. Large-vessel vasculitis. Nat Rev Dis Primers 2022; 7:93. [PMID: 34992251 PMCID: PMC9115766 DOI: 10.1038/s41572-021-00327-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 02/08/2023]
Abstract
Large-vessel vasculitis (LVV) manifests as inflammation of the aorta and its major branches and is the most common primary vasculitis in adults. LVV comprises two distinct conditions, giant cell arteritis and Takayasu arteritis, although the phenotypic spectrum of primary LVV is complex. Non-specific symptoms often predominate and so patients with LVV present to a range of health-care providers and settings. Rapid diagnosis, specialist referral and early treatment are key to good patient outcomes. Unfortunately, disease relapse remains common and chronic vascular complications are a source of considerable morbidity. Although accurate monitoring of disease activity is challenging, progress in vascular imaging techniques and the measurement of laboratory biomarkers may facilitate better matching of treatment intensity with disease activity. Further, advances in our understanding of disease pathophysiology have paved the way for novel biologic treatments that target important mediators of disease in both giant cell arteritis and Takayasu arteritis. This work has highlighted the substantial heterogeneity present within LVV and the importance of an individualized therapeutic approach. Future work will focus on understanding the mechanisms of persisting vascular inflammation, which will inform the development of increasingly sophisticated imaging technologies. Together, these will enable better disease prognostication, limit treatment-associated adverse effects, and facilitate targeted development and use of novel therapies.
Collapse
Affiliation(s)
- Dan Pugh
- British Hearth Foundation/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Maira Karabayas
- Centre for Arthritis & Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Neil Basu
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
| | - Maria C Cid
- Department of Autoimmune Diseases, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Ruchika Goel
- Department of Clinical Immunology & Rheumatology, Christian Medical College, Vellore, India
| | - Carl S Goodyear
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
| | - Peter C Grayson
- National Institute of Arthritis & Musculoskeletal & Skin Diseases, National Institutes of Health, Bethesda, MA, USA
| | - Stephen P McAdoo
- Department of Immunology & Inflammation, Imperial College London, London, UK
| | - Justin C Mason
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | - Cornelia M Weyand
- Centre for Translational Medicine, Stanford University, Stanford, California, USA
| | - Taryn Youngstein
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Neeraj Dhaun
- British Hearth Foundation/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
25
|
Kimbrough BA, Baqir M, Johnson TF, Vasireddy A, Ryu JH. Interstitial Lung Disease in Giant Cell Arteritis: Review of 23 Patients. J Clin Rheumatol 2022; 28:e3-e8. [PMID: 32925448 DOI: 10.1097/rhu.0000000000001566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND/OBJECTIVE Giant cell arteritis (GCA) is a large-vessel vasculitis with systemic manifestations. A few case reports have described a possible association of GCA with interstitial lung disease (ILD). The primary aim of the present study was to describe the pattern, severity, and course of ILD in patients with GCA. METHODS This medical records review study evaluated adult patients presenting to Mayo Clinic in Rochester, MN, from January 1, 1997, through December 31, 2018, who had the diagnoses of GCA and ILD. Clinical, laboratory, and radiologic data were analyzed. RESULTS In total, 23 patients were in the study. Median (range) age was 78 (58-93) years, and 14 (61%) were women. Six patients (26%) had a cough at GCA diagnosis. At ILD diagnosis, 15 patients had respiratory symptoms, including dyspnea (n = 12, 52%), dry cough (n = 6, 26%), wheezing (n = 1, 4%), and chest pain (n = 1, 4%). On initial chest computed tomography, the most common pattern of ILD was probable usual interstitial pneumonia (n = 7, 30%), indeterminate for usual interstitial pneumonia (n = 5, 22%), and combined pulmonary fibrosis and emphysema (n = 3, 13%). Airway abnormalities were present in 10 patients: 6 with bronchial wall thickening, 2 with bronchiectasis, and 2 with both. At follow-up computed tomography, 8 patients had ILD progression. Three patients with cough improved after initiation of glucocorticoid therapy. CONCLUSIONS Interstitial lung disease and airway abnormalities may be associated with GCA. Although cough may improve, ILD in some patients with GCA may progress despite immunosuppressive therapy.
Collapse
Affiliation(s)
| | - Misbah Baqir
- Division of Pulmonary and Critical Care Medicine
| | | | - Amit Vasireddy
- Department of Internal Medicine, Berkshire Medical Center, Pittsfield, MA
| | - Jay H Ryu
- Division of Pulmonary and Critical Care Medicine
| |
Collapse
|
26
|
Zhang X, Zhang H, Yang X, Qin Q, Sun X, Hou Y, Chen D, Jia M, Su X, Chen Y. Angiotensin II upregulates endothelin receptors through the adenosine monophosphate-activated protein kinase/sirtuin 1 pathway in vascular smooth muscle cells. J Pharm Pharmacol 2021; 73:1652-1662. [PMID: 34570873 DOI: 10.1093/jpp/rgab137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022]
Abstract
OBJECTIVES This study was designed to test our hypothesis that angiotensin II (Ang II) upregulates endothelin (ET) receptors in vascular smooth muscle cells (VSMCs). METHODS Rat superior mesenteric artery (SMA) without endothelium was cultured in serum-free medium for 24 h in the presence of Ang II with or without metformin or nicotinamide. In vivo, rats were implanted subcutaneously with a mini-osmotic pump infusing AngII (500 ng/kg/min) for 4 weeks. The level of protein expression was determined using Western blotting. The contractile response to ET receptor agonists was studied using sensitive myography. Caudal artery blood pressure (BP) was measured using non-invasive tail-cuff plethysmography. KEY FINDINGS The results showed that Ang II significantly increased ET receptors and decreased phosphorylated-adenosine monophosphate-activated protein kinase α (p-AMPKα) in SMA. Furthermore, metformin significantly inhibited Ang II-upregulated ET receptors and upregulated Ang II-decreased sirtuin 1 (Sirt1). However, this effect was reversed by nicotinamide. Moreover, the in-vivo results showed that metformin not only inhibited Ang II-induced upregulation of ET receptors but also recovered Ang II-decreased p-AMPKα and Sirt1. In addition, metformin significantly inhibited Ang II-elevated BP. However, the effect was reversed by nicotinamide, except for p-AMPKα. CONCLUSIONS Ang II upregulated ET receptors in VSMCs to elevate BP by inhibiting AMPK, thereby inhibiting Sirt1.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Hongmei Zhang
- The First Affiliated Hospital of Xi'an Medical University, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xinpu Yang
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Qiaohong Qin
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xia Sun
- School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Ying Hou
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Di Chen
- School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Min Jia
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Xingli Su
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, China
- School of Basic and Medical Sciences, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Yulong Chen
- Institute of Basic and Translational Medicine, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Shaanxi Key Laboratory of Brain Disorders, Xi'an Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
27
|
Ciccia F, Macaluso F, Mauro D, Nicoletti GF, Croci S, Salvarani C. New insights into the pathogenesis of giant cell arteritis: are they relevant for precision medicine? THE LANCET. RHEUMATOLOGY 2021; 3:e874-e885. [PMID: 38287633 DOI: 10.1016/s2665-9913(21)00253-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/15/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
Giant cell arteritis is a primary granulomatous vasculitis characterised by a strict tissue tropism for large and medium-size vessels, occurring in people older than 50 years. Although considerable progress in understanding some of the pathophysiological mechanisms involved in the pathogenesis of giant cell arteritis has been made in the past 10 years, specific triggers of disease and mechanisms of chronic damage have not yet been identified. The definition of a specific pro-inflammatory hierarchy between the multiple cell types and the different cytokines or chemokines involved in the inflammatory process are still unexplored areas of study. The overall goal of precision medicine is to identify the best possible therapeutic approach for an individual or group of individuals with a given disease. The fundamental prerequisite of this approach is the identification, at baseline, of clinical and imaging findings and of molecular biomarkers that allow a precise stratification of patients and an adequate prediction of the therapeutic response. In this regard, the possibility of obtaining temporal artery biopsies for diagnostic purposes offers incredible exploratory possibilities to define different disease pathotypes potentially susceptible to different therapeutic interventions. In this Series paper, we will describe the most recent evidence relating to the pathogenesis of giant cell arteritis, trying to define, if possible, a new pathogenetic-centred approach to patients with giant cell arteritis.
Collapse
Affiliation(s)
- Francesco Ciccia
- Department of Precision Medicine, Section of Rheumatology, Università della Campania L Vanvitelli, Naples, Italy.
| | - Federica Macaluso
- Department of Precision Medicine, Section of Rheumatology, Università della Campania L Vanvitelli, Naples, Italy; Dipartimento Specialità Mediche, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Daniele Mauro
- Department of Precision Medicine, Section of Rheumatology, Università della Campania L Vanvitelli, Naples, Italy
| | - Giovanni Francesco Nicoletti
- Dipartimento Multidisciplinare di Specialità Medico-Chirurgiche e Odontoiatriche, Università della Campania L Vanvitelli, Naples, Italy
| | - Stefania Croci
- Autoimmunità, Allergologia e Biotecnologie Innovative, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Carlo Salvarani
- Dipartimento Specialità Mediche, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy; Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con interesse Trapiantologico, Oncologico e di Medicina Rigenerativa, Università di Modena e Reggio Emilia, Modena, Italy.
| |
Collapse
|
28
|
Role of mitochondrial dynamics and mitophagy of vascular smooth muscle cell proliferation and migration in progression of atherosclerosis. Arch Pharm Res 2021; 44:1051-1061. [PMID: 34743301 DOI: 10.1007/s12272-021-01360-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022]
Abstract
Vascular smooth muscle cell (VSMC) proliferation and migration are critical events that contribute to the pathogenesis of vascular diseases such as atherosclerosis, restenosis, and hypertension. Recent findings have revealed that VSMC phenotype switching is associated with metabolic switch, which is related to the role of mitochondria. Mitochondrial dynamics are directly associated with mitochondrial function and cellular homeostasis. Interestingly, it has been suggested that mitochondrial dynamics and mitophagy play crucial roles in the regulation of VSMC proliferation and migration through various mechanisms. Especially, dynamin-related protein-1 and mitofusion-2 are two main molecules that play a key role in regulating mitochondrial dynamics to induce VSMC proliferation and migration. Therefore, this review describes the function and role of mitochondrial dynamics and mitophagy in VSMC homeostasis as well as the underlying mechanisms. This will provide insight into the development of innovative approaches to treat atherosclerosis.
Collapse
|
29
|
Solimando AG, Vacca A, Dammacco F. Highlights in clinical medicine-Giant cell arteritis, polymyalgia rheumatica and Takayasu's arteritis: pathogenic links and therapeutic implications. Clin Exp Med 2021; 22:509-518. [PMID: 34741677 DOI: 10.1007/s10238-021-00770-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/20/2021] [Indexed: 10/19/2022]
Abstract
Giant cell arteritis (GCA), frequently associated with polymyalgia rheumatica (PMR), and Takayasu's arteritis (TAK) are characterized by extensive vascular remodeling that results in occlusion and stenosis. The pathophysiological mechanisms underlying the onset of GCA/PMR and TAK are still hypothetical. However, similarities and differences in the immunopathology and clinical phenotypes of these diseases point toward a possible link between them. The loss of tolerance in the periphery, a breakdown of tissue barriers, and the development of granulomatous vasculitis define a disease continuum. However, statistically powered studies are needed to confirm these correlations. In addition to glucocorticoids, inhibition of the interleukin-6 axis has been proposed as a cornerstone in the treatment of GCA/PMR and TAK. Novel biologic agents targeting the pathogenic pathway at various levels hold promise to achieve glucocorticoid-free sustained remission.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Medical School, Polyclinic, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Medical School, Polyclinic, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - Franco Dammacco
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Medical School, Polyclinic, Piazza Giulio Cesare, 11, 70124, Bari, Italy.
| |
Collapse
|
30
|
Al-Harbi LN, Pandurangan SB, Al-Dossari AM, Shamlan G, Salamatullah AM, Alshatwi AA, Alotiby AA. Beta vulgaris rubra L. (Beetroot) Peel Methanol Extract Reduces Oxidative Stress and Stimulates Cell Proliferation via Increasing VEGF Expression in H 2O 2 Induced Oxidative Stressed Human Umbilical Vein Endothelial Cells. Genes (Basel) 2021; 12:genes12091380. [PMID: 34573361 PMCID: PMC8466581 DOI: 10.3390/genes12091380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
The antioxidant capacity of polyphenols and flavonoids present in dietary agents aids in arresting the development of reactive oxygen species (ROS) and protecting endothelial smooth muscle cells from oxidative stress/induced necrosis. Beetroot (Beta vulgaris var. rubra L.; BVr) is a commonly consumed vegetable representing a rich source of antioxidants. Beetroot peel’s bioactive compounds and their role in human umbilical vein endothelial cells (HUVECs) are still under-researched. In the present study, beetroot peel methanol extract (BPME) was prepared, and its effect on the bio-efficacy, nuclear integrity, mitochondrial membrane potential and vascular cell growth, and immunoregulation-related gene expression levels in HUVECs with induced oxidative stress were analysed. Gas chromatography–mass spectroscopy (GC-MS) results confirmed that BPME contains 5-hydroxymethylfurfural (32.6%), methyl pyruvate (15.13%), furfural (9.98%), and 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-Pyran-4-one (12.4%). BPME extract effectively enhanced cell proliferation and was confirmed by MTT assay; the nuclear integrity was confirmed by propidium iodide (PI) staining assay; the mitochondrial membrane potential (Δψm) was confirmed by JC-1 staining assay. Annexin V assay confirmed that BPME-treated HUVECs showed 99% viable cells, but only 39.8% viability was shown in HUVECs treated with H2O2 alone. In addition, BPME treatment of HUVECs for 48 h reduced mRNA expression of lipid peroxide (LPO) and increased NOS-3, Nrf-2, GSK-3β, GPX, endothelial nitric oxide synthase (eNOS) and vascular cell growth factor (VEGF) mRNA expression levels. We found that BPME treatment decreased proinflammatory (nuclear factor-κβ (F-κβ), tissue necrosis factor-α (TNF-α), toll-like receptor-4 (TLR-4), interleukin-1β (IL-1β)) and vascular inflammation (intracellular adhesion molecule (ICAM), vascular cell adhesion molecule (VCAM), EDN1, IL-1β)-related mRNA expressions. In conclusion, beetroot peel treatment effectively increased vascular smooth cell growth factors and microtubule development, whereas it decreased vascular inflammatory regulators. BPME may be beneficial for vascular smooth cell regeneration, tissue repair and anti-ageing potential.
Collapse
Affiliation(s)
- Laila Naif Al-Harbi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
- Correspondence:
| | - Subash-Babu Pandurangan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Alhanouf Mohammed Al-Dossari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Ghalia Shamlan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Ahmad Mohammad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Ali A Alshatwi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (S.-B.P.); (A.M.A.-D.); (G.S.); (A.M.S.); (A.A.A.)
| | - Amna Abdullah Alotiby
- Department of Haematology and Immunology, Faculty of Medicine, Umm Alqura University, Makkah 24237, Saudi Arabia;
| |
Collapse
|
31
|
Han X, Su X, Li Z, Liu Y, Wang S, Zhu M, Zhang C, Yang F, Zhao J, Li X, Chen F, Han L. Complement receptor 3 mediates Aspergillus fumigatus internalization into alveolar epithelial cells with the increase of intracellular phosphatidic acid by activating FAK. Virulence 2021; 12:1980-1996. [PMID: 34338598 PMCID: PMC8331038 DOI: 10.1080/21505594.2021.1958042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Complement receptor 3 (CD11b/CD18) is an important receptor that mediates adhesion, phagocytosis and chemotaxis in various immunocytes. The conidia of the medically-important pathogenic fungus, Aspergillus fumigatus can be internalized into alveolar epithelial cells to disseminate its infection in immunocompromised host; however, the role of CR3 in this process is poorly understood. In the present study, we investigated the potential role of CR3 on A. fumigatus internalization into type II alveolar epithelial cells and its effect on host intracellular PA content induced by A. fumigatus. We found that CR3 is expressed in alveolar epithelial cells and that human serum and bronchoalveolar lavage fluid (BALF) could improve A. fumigatus conidial internalization into A549 type II alveolar epithelial cell line and mouse primary alveolar epithelial cells, which were significantly inhibited by the complement C3 quencher and CD11b-blocking antibody. Serum-opsonization of swollen conidia, but not resting conidia led to the increase of cellular phosphatidic acid (PA) in A549 cells during infection. Moreover, both conidial internalization and induced PA production were interfered by CD11b-blocking antibody and dependent on FAK activity, but not Syk in alveolar epithelial cells. Overall, our results revealed that CR3 is a critical modulator of Aspergillus fumigatus internalization into alveolar epithelial cells.
Collapse
Affiliation(s)
- Xuelin Han
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xueting Su
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Zhiqian Li
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China.,Department of Laboratory Medicine & Blood Transfusion, the 907th Hospital, Fujian, Nanping, China
| | - Yanxi Liu
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Shuo Wang
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China.,Northwest Institute of Plateau Biology, Chinese Academy of Science, Qinghai, Xining, China
| | - Miao Zhu
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Changjian Zhang
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China.,Central Laboratory of the sixth medical center of PLA general hospital, Beijing, China
| | - Fan Yang
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jingya Zhao
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xianping Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fangyan Chen
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Li Han
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
32
|
Parreau S, Vedrenne N, Regent A, Richard L, Sindou P, Mouthon L, Fauchais AL, Jauberteau MO, Ly KH. An immunohistochemical analysis of fibroblasts in giant cell arteritis. Ann Diagn Pathol 2021; 52:151728. [PMID: 33798926 DOI: 10.1016/j.anndiagpath.2021.151728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 02/26/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Giant cell arteritis (GCA) is a systemic vasculitis of large and medium vessels characterized by an inflammatory arterial infiltrate. GCA begins in the adventitia and leads to vascular remodeling by promoting proliferation of myofibroblasts in the intima. The morphology of the fibroblasts in the adventitia in GCA is unclear. Access to temporal artery biopsies allows morphological studies and evaluation of the microenvironment of the arterial wall. We evaluated the distribution of vascular fibroblasts and of markers of their activation in GCA. METHODS Formalin-fixed paraffin-embedded tissue sections from 29 patients with GCA and 36 controls were examined. Immunohistochemistry was performed for CD90, vimentin, desmin, alpha-smooth muscle actin (ASMA), prolyl-4-hydroxylase (P4H), and myosin to evaluate the distribution of fibroblasts within the intima, media, and adventitia. RESULTS Temporal arteries from patients with GCA showed increased levels of CD90, vimentin, and ASMA in the adventitia and intima compared to the controls. Desmin was expressed only in the media in both groups. P4H was expressed similarly in the adventitia and intima in the two groups. Adventitial and intimal CD90+ cells co-expressed P4H, ASMA, and myosin at a high level in GCA. CONCLUSION The results suggest a role for adventitial fibroblasts in GCA. Inhibiting the differentiation of adventitial fibroblasts to myofibroblasts has therapeutic potential for GCA.
Collapse
Affiliation(s)
- Simon Parreau
- Department of Internal Medicine, Dupuytren Hospital, Limoges, France; EA3842-CaPTuR, Contrôle de l'Activation Cellulaire, Progression Tumorale et Résistance thérapeutique, Faculty of Medicine, Limoges, France.
| | - Nicolas Vedrenne
- EA3842-CaPTuR, Contrôle de l'Activation Cellulaire, Progression Tumorale et Résistance thérapeutique, Faculty of Medicine, Limoges, France
| | - Alexis Regent
- Department of Internal Medicine, Cochin Hospital, Paris, France
| | | | - Philippe Sindou
- EA3842-CaPTuR, Contrôle de l'Activation Cellulaire, Progression Tumorale et Résistance thérapeutique, Faculty of Medicine, Limoges, France
| | - Luc Mouthon
- Department of Internal Medicine, Cochin Hospital, Paris, France
| | - Anne-Laure Fauchais
- Department of Internal Medicine, Dupuytren Hospital, Limoges, France; EA3842-CaPTuR, Contrôle de l'Activation Cellulaire, Progression Tumorale et Résistance thérapeutique, Faculty of Medicine, Limoges, France
| | - Marie-Odile Jauberteau
- EA3842-CaPTuR, Contrôle de l'Activation Cellulaire, Progression Tumorale et Résistance thérapeutique, Faculty of Medicine, Limoges, France
| | - Kim-Heang Ly
- Department of Internal Medicine, Dupuytren Hospital, Limoges, France; EA3842-CaPTuR, Contrôle de l'Activation Cellulaire, Progression Tumorale et Résistance thérapeutique, Faculty of Medicine, Limoges, France
| |
Collapse
|
33
|
Hu Z, Liu W, Hua X, Chen X, Chang Y, Hu Y, Xu Z, Song J. Single-Cell Transcriptomic Atlas of Different Human Cardiac Arteries Identifies Cell Types Associated With Vascular Physiology. Arterioscler Thromb Vasc Biol 2021; 41:1408-1427. [PMID: 33626908 DOI: 10.1161/atvbaha.120.315373] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Zhan Hu
- Department of Cardiovascular Surgery (Z.H., X.H., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wendao Liu
- Department of Cardiovascular Surgery (Z.H., X.H., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,The Cardiomyopathy Research Group at Fuwai Hospital (W.L., X.H., X.C., Y.C., Y.H., J.S.)
| | - Xiumeng Hua
- Department of Cardiovascular Surgery (Z.H., X.H., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Cardiovascular Disease (W.L., X.H., X.C., Y.C., Y.H., Z.X., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,The Cardiomyopathy Research Group at Fuwai Hospital (W.L., X.H., X.C., Y.C., Y.H., J.S.)
| | - Xiao Chen
- State Key Laboratory of Cardiovascular Disease (W.L., X.H., X.C., Y.C., Y.H., Z.X., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,The Cardiomyopathy Research Group at Fuwai Hospital (W.L., X.H., X.C., Y.C., Y.H., J.S.)
| | - Yuan Chang
- State Key Laboratory of Cardiovascular Disease (W.L., X.H., X.C., Y.C., Y.H., Z.X., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,The Cardiomyopathy Research Group at Fuwai Hospital (W.L., X.H., X.C., Y.C., Y.H., J.S.).,Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (Y.C.)
| | - Yiqing Hu
- State Key Laboratory of Cardiovascular Disease (W.L., X.H., X.C., Y.C., Y.H., Z.X., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,The Cardiomyopathy Research Group at Fuwai Hospital (W.L., X.H., X.C., Y.C., Y.H., J.S.)
| | - Zhenyu Xu
- State Key Laboratory of Cardiovascular Disease (W.L., X.H., X.C., Y.C., Y.H., Z.X., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Pathology Center, State Key Laboratory of Cardiovascular Disease (Z.X.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiangping Song
- Department of Cardiovascular Surgery (Z.H., X.H., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,State Key Laboratory of Cardiovascular Disease (W.L., X.H., X.C., Y.C., Y.H., Z.X., J.S.), Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,The Cardiomyopathy Research Group at Fuwai Hospital (W.L., X.H., X.C., Y.C., Y.H., J.S.)
| |
Collapse
|
34
|
Bolha L, Pižem J, Frank-Bertoncelj M, Hočevar A, Tomšič M, Jurčić V. Identification of microRNAs and their target gene networks implicated in arterial wall remodelling in giant cell arteritis. Rheumatology (Oxford) 2021; 59:3540-3552. [PMID: 32594153 DOI: 10.1093/rheumatology/keaa204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/31/2020] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVES To identify dysregulated microRNAs (miRNAs) and their gene targets in temporal arteries from GCA patients, and determine their association with GCA pathogenesis and related arterial wall remodelling. METHODS We included 93 formalin-fixed, paraffin-embedded temporal artery biopsies (TABs) from treatment-naïve patients: 54 positive and 17 negative TABs from clinically proven GCA patients, and 22 negative TABs from non-GCA patients. miRNA expression analysis was performed with miRCURY LNA miRNome Human PCR Panels and quantitative real-time PCR. miRNA target gene prediction and pathway enrichment analysis was performed using the miRDB and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) databases, respectively. RESULTS Dysregulation of 356 miRNAs was determined in TAB-positive GCA arteries, among which 78 were significantly under-expressed and 22 significantly overexpressed above 2-fold, when compared with non-GCA controls. Specifically, TAB-positive GCA arteries were characterized by a significant overexpression of 'pro-synthetic' (miR-21-3p/-21-5p/-146a-5p/-146b-5p/-424-5p) and under-expression of 'pro-contractile' (miR-23b-3p/-125a-5p/-143-3p/-143-5p/-145-3p/-145-5p/-195-5p/-365a-3p) vascular smooth muscle cell phenotype-associated regulatory miRNAs. These miRNAs targeted gene pathways involved in the arterial remodelling and regulation of the immune system, and their expression correlated with the extent of intimal hyperplasia in TABs from GCA patients. Notably, the expression of miR-21-3p/-21-5p/-146a-5p/-146b-5p/-365a-3p differentiated between TAB-negative GCA arteries and non-GCA temporal arteries, revealing these miRNAs as potential biomarkers of GCA. CONCLUSION Identification of dysregulated miRNAs involved in the regulation of the vascular smooth muscle cell phenotype and intimal hyperplasia in GCA arterial lesions, and detection of their expression profiles, enables a novel insight into the complexity of GCA pathogenesis and implies their potential utilization as diagnostic and prognostic biomarkers of GCA.
Collapse
Affiliation(s)
- Luka Bolha
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jože Pižem
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Frank-Bertoncelj
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Schlieren, Switzerland
| | - Alojzija Hočevar
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Matija Tomšič
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vesna Jurčić
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
35
|
Wu BW, Wu MS, Liu Y, Lu M, Guo JD, Meng YH, Zhou YH. SIRT1-mediated deacetylation of NF-κB inhibits the MLCK/MLC2 pathway and the expression of ET-1, thus alleviating the development of coronary artery spasm. Am J Physiol Heart Circ Physiol 2021; 320:H458-H468. [PMID: 33095054 DOI: 10.1152/ajpheart.00366.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/28/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Coronary artery spasm (CAS) is an intense vasoconstriction of coronary arteries that causes total or subtotal vessel occlusion. The cardioprotective effect of sirtuin-1 (SIRT1) has been extensively highlighted in coronary artery diseases. The aims within this study include the investigation of the molecular mechanism by which SIRT1 alleviates CAS. SIRT1 expression was first determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis in an endothelin-1 (ET-1)-induced rat CAS model. Interaction among SIRT1, nuclear factor-kappaB (NF-κB), myosin light chain kinase/myosin light chain-2 (MLCK/MLC2), and ET-1 was analyzed using luciferase reporter assay, RT-qPCR, and Western blot analysis. After ectopic expression and depletion experiments in vascular smooth muscle cells (VSMCs), contraction and proliferation of VSMCs and expression of contraction-related proteins (α-SMA, calponin, and SM22α) were measured by collagen gel contraction, 5-ethynyl-2'-deoxyuridine (EdU) assay, RT-qPCR, and Western blot analysis. The obtained results showed that SIRT1 expression was reduced in rat CAS models. However, overexpression of SIRT1 inhibited the contraction and proliferation of VSMCs in vitro. Mechanistic investigation indicated that SIRT1 inhibited NF-κB expression through deacetylation. Moreover, NF-κB could activate the MLCK/MLC2 pathway and upregulate ET-1 expression by binding to their promoter regions, thus inducing VSMC contraction and proliferation in vitro. In vivo experimental results also revealed that SIRT1 alleviated CAS through regulation of the NF-κB/MLCK/MLC2/ET-1 signaling axis. Collectively, our data suggested that SIRT1 could mediate the deacetylation of NF-κB, disrupt the MLCK/MLC2 pathway, and inhibit the expression of ET-1 to relieve CAS, providing a theoretical basis for the prospect of CAS treatment and prevention.NEW & NOTEWORTHY Rat coronary artery spasm models exhibit reduced expression of SIRT1. Overexpression of SIRT1 inhibits contraction and proliferation of VSMCs. SIRT1 inhibits NF-κB through deacetylation to modulate VSMC contraction and proliferation. NF-κB activates the MLCK/MLC2 pathway. NF-κB upregulates ET-1 to modulate VSMC contraction and proliferation.
Collapse
Affiliation(s)
- Bo-Wen Wu
- Department of Biochemistry, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, People's Republic of China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, People's Republic of China
| | - Mi-Shan Wu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, People's Republic of China
- Department of Formulaology, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, People's Republic of China
| | - Yu Liu
- Department of Biochemistry, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, People's Republic of China
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, People's Republic of China
| | - Meng Lu
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, People's Republic of China
- Department of Formulaology, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, People's Republic of China
| | - Jin-Dong Guo
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, People's Republic of China
- Department of Formulaology, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, People's Republic of China
| | - Yun-Hui Meng
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, People's Republic of China
- Department of Internal Medicine, Shijiazhuang Hospital of Traditional Chinese Medicine, Shijiazhuang, People's Republic of China
| | - Yu-Hui Zhou
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Shijiazhuang, People's Republic of China
- Department of Formulaology, Basic Medicine College, Hebei University of Chinese Medicine, Shijiazhuang, People's Republic of China
| |
Collapse
|
36
|
van der Geest KSM, Wolfe K, Borg F, Sebastian A, Kayani A, Tomelleri A, Gondo P, Schmidt WA, Luqmani R, Dasgupta B. Ultrasonographic Halo Score in giant cell arteritis: association with intimal hyperplasia and ischaemic sight loss. Rheumatology (Oxford) 2020; 60:4361-4366. [PMID: 33355340 PMCID: PMC8410002 DOI: 10.1093/rheumatology/keaa806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Objectives We investigated the relationship between the ultrasonographic Halo Score and temporal artery biopsy (TAB) findings in GCA. Methods This is a prospective study including 90 patients suspected of having GCA. Ultrasonography of temporal/axillary arteries and a TAB were obtained in all patients at baseline. An experienced pathologist evaluated whether TAB findings were consistent with GCA, and whether transmural inflammation, giant cells and intimal hyperplasia were present. Ultrasonographic Halo Scores were determined. Receiver operating characteristic analysis was performed. Results Twenty-seven patients had a positive TAB, while 32 patients with a negative TAB received a clinical diagnosis of GCA after 6 months of follow-up. Patients with a positive TAB showed higher Halo Scores than patients with a negative TAB. The presence of intimal hyperplasia in the biopsy, rather than the presence of transmural inflammation or giant cells, was associated with elevated Halo Scores in patients with GCA. The Halo Score discriminated well between TAB-positive patients with and without intimal hyperplasia, as indicated by an area under the curve of 0.82 in the receiver operating characteristic analysis. Patients with a positive TAB and intimal hyperplasia more frequently presented with ocular ischaemia (40%) than the other patients with GCA (13–14%). Conclusion The ultrasonographic Halo Score may help to identify a subset of GCA patients with intimal hyperplasia, a TAB feature associated with ischaemic sight loss.
Collapse
Affiliation(s)
- Kornelis S M van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Rheumatology
| | - Konrad Wolfe
- Department of Pathology, Southend University Hospital, Westcliff-on-sea,UK
| | | | | | | | | | | | - Wolfgang A Schmidt
- Medical Centre for Rheumatology Berlin-Buch, Immanuel Krankenhaus Berlin, Berlin, Germany
| | - Raashid Luqmani
- Department of Rheumatology, NDORMS, Nuffield Orthopaedic Centre, University of Oxford, Oxford, UK
| | | |
Collapse
|
37
|
Deshayes S, de Boysson H, Dumont A, Vivien D, Manrique A, Aouba A. An overview of the perspectives on experimental models and new therapeutic targets in giant cell arteritis. Autoimmun Rev 2020; 19:102636. [DOI: 10.1016/j.autrev.2020.102636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022]
|
38
|
Abstract
Large vessel vasculitides comprise two distinct entities, giant cell arteritis (GCA) and Takayasu arteritis (TAK). GCA is the most common vasculitis in central Europe, becoming manifested at an age over 50 years. In contrast, the much rarer TAK affects almost exclusively young adults and mostly women. Both vasculitides are granulomatous arteritides affecting mainly the aorta and its major arterial branches. GCA and TAK are associated with different major histocompatibility complex genes. Infections possibly play a role in the initiation of large vessel vasculitides. Activation of dendritic cells in the adventitia induces chemokine and cytokine-mediated recruitment and maturation of T‑helper (Th)1 and Th17 cells and macrophages producing cytokines, growth factors and matrix metalloproteinases. In GCA, CD4+ T‑helper cells and macrophages are predominantly found in the inflammatory infiltrate. In TAK, the infiltrate also contains cytotoxic CD8+ T‑cells and γδ T‑cells. This could indicate different antigenic triggers in GCA and TAK. Inflammatory infiltration with T‑cells and macrophages and activation of myofibroblasts and smooth muscular cells induce vascular remodeling with intimal hyperplasia and destruction of the media. Remodeling is histologically characterized by progressive arterial wall fibrosis, vascular stenosis and obstruction. In summary, GCA and TAK represent two different entities with a distinct human leukocyte antigen (HLA) and potentially etiopathogenetic background. Clinically, inflammation-related general symptoms and signs of ischemia are encountered, accompanied by increased levels of serological markers of inflammation.
Collapse
Affiliation(s)
- S Arnold
- Klinik für Rheumatologie und klinische Immunologie, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Deutschland
| | - K Holl Ulrich
- Pathologie - Hamburg, Labor Lademannbogen MVZ GmbH, Hamburg, Deutschland
| | - P Lamprecht
- Klinik für Rheumatologie und klinische Immunologie, Universität zu Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Deutschland.
| |
Collapse
|
39
|
Cid MC, Ríos-Garcés R, Terrades-García N, Espígol-Frigolé G. Treatment of giant-cell arteritis: from broad spectrum immunosuppressive agents to targeted therapies. Rheumatology (Oxford) 2020; 59:iii17-iii27. [DOI: 10.1093/rheumatology/kez645] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
Abstract
For decades, the treatment of GCA has relied on glucocorticoids. Work over the past two decades has supported a modest efficacy of MTX but no clear benefit from anti-TNF-based therapies. More recently, the therapeutic armamentarium for GCA has expanded. The availability of agents targeting specific cytokines, cytokine receptors or signalling pathways, along with a better, although still limited, understanding of the immunopathology of GCA, are opening further therapeutic possibilities. Blocking IL-6 receptor with tocilizumab has been effective in maintaining remission and reducing glucocorticoid exposure and tocilizumab has been approved for the treatment of GCA. However, nearly half of the patients do not benefit from tocilizumab and additional options need to be investigated. This review focuses on standard therapeutic approaches and on targeted therapies that have been or are currently under investigation.
Collapse
Affiliation(s)
- Maria C Cid
- Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona. Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Roberto Ríos-Garcés
- Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona. Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Nekane Terrades-García
- Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona. Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Georgina Espígol-Frigolé
- Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona. Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
40
|
Chen Y, Su X, Qin Q, Yu Y, Jia M, Zhang H, Li H, Pei L. New insights into phenotypic switching of VSMCs induced by hyperhomocysteinemia: Role of endothelin-1 signaling. Biomed Pharmacother 2020; 123:109758. [DOI: 10.1016/j.biopha.2019.109758] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/20/2019] [Accepted: 11/29/2019] [Indexed: 12/30/2022] Open
|
41
|
Heimbürger SM, Bergmann NC, Augustin R, Gasbjerg LS, Christensen MB, Knop FK. Glucose-dependent insulinotropic polypeptide (GIP) and cardiovascular disease. Peptides 2020; 125:170174. [PMID: 31689454 DOI: 10.1016/j.peptides.2019.170174] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022]
Abstract
Accumulating evidence suggests that glucose-dependent insulinotropic polypeptide (GIP) in addition to its involvement in type 2 diabetic pathophysiology may be involved in the development of obesity and the pathogenesis of cardiovascular disease. In this review, we outline recent preclinical and clinical cardiovascular-related discoveries about GIP. These include chronotropic and blood pressure-lowering effects of GIP. Furthermore, GIP has been suggested to control vasodilation via secretion of nitric oxide, and vascular leukocyte adhesion and inflammation via expression and secretion of endothelin 1. Also, GIP seems to regulate circulating lipids via effects on adipose tissue uptake and metabolism of lipids. Lastly, we discuss how dysmetabolic conditions such as obesity and type 2 diabetes may shift the actions of GIP in an atherogenic direction, and we provide a perspective on the therapeutic potential of GIP receptor agonism and antagonism in cardiovascular diseases. We conclude that GIP actions may have implications for the development of cardiovascular disease, but also that the potential of GIP-based drugs for the treatment of cardiovascular disease currently is uncertain.
Collapse
Affiliation(s)
- Sebastian M Heimbürger
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Natasha C Bergmann
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Robert Augustin
- Department of Cardiometabolic Diseases Research, Boehringer Ingelheim GmbH & CoKG, Biberach, Germany
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel B Christensen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Pharmacology, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Steno Diabetes Center Copenhagen, Gentofte, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
42
|
Matrix stiffening induces endothelial dysfunction via the TRPV4/microRNA-6740/endothelin-1 mechanotransduction pathway. Acta Biomater 2019; 100:52-60. [PMID: 31606530 DOI: 10.1016/j.actbio.2019.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/16/2019] [Accepted: 10/04/2019] [Indexed: 11/22/2022]
Abstract
Vascular stiffening is associated with the prognosis of cardiovascular disease (CVD). Endothelial dysfunction, as shown by reduced vasodilation and increased vasoconstriction, not only affects vascular tone, but also accelerates the progression of CVD. However, the precise effect of vascular stiffening on endothelial function and its mechanism is unclear and a possible underlying has not been determined. In this study, we found that increasing substrate stiffness promoted endothelin-1 (ET-1) expression and inhibited endothelial nitric oxide synthase expression in human umbilical vein endothelial cells. Additionally, miR-6740-5p was identified as a stiffness-sensitive microRNA, which was downregulated by a stiff substrate, resulting in increased ET-1 expression. Furthermore, we found that substrate stiffening reduced the expression and activity of the calcium channel TRPV4, which subsequently enhanced ET-1 expression by inhibiting miR-6740-5p. Finally, analysis of clinical plasma samples showed that plasma miR-6740-5p levels in patients with carotid atherosclerosis were significantly lower than those in healthy people. Taken together, our findings show a novel mechanically regulated TRPV4/miR-6740/ET-1 signaling axis by which substrate stiffness affects endothelial function. Our findings indicate that vascular stiffening induces endothelial dysfunction, thereby accelerating progression of CVD. Furthermore, this study indicates that endothelial dysfunction induced by improper biophysical cues from cardiovascular implants may be an important reason for complications arising from the use of cardiovascular implants. STATEMENT OF SIGNIFICANCE: Cardiovascular disease is the leading cause of morbidity and mortality worldwide. The incidence of cardiovascular disease is accompanied by increased vascular stiffness. Our work indicated that increased vascular stiffness accelerates the development of cardiovascular disease by inducing endothelial dysfunction, which is a key contributor to the pathogenesis of cardiovascular disease. In addition, we identified a novel underlying molecular pathophysiological mechanism by which increased stiffness induce endothelial dysfunction. Our work could help determine the pathogenesis of cardiovascular disease induced by biomechanical factors.
Collapse
|
43
|
Benhuri B, ELJack A, Kahaleh B, Chakravarti R. Mechanism and biomarkers in aortitis--a review. J Mol Med (Berl) 2019; 98:11-23. [PMID: 31664480 DOI: 10.1007/s00109-019-01838-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 12/26/2022]
Abstract
Aortitis can be the manifestation of an underlying infectious or noninfectious disease process. An autoimmune cause is suggested in a large proportion of noninfectious causes. Similar to other autoimmune diseases, the pathophysiology of aortitis has been investigated in detail, but the etiology remains unknown. Most cases of aortitis often go undetected for a long time and are often identified at late stages of the disease. Recent advances in imaging techniques have significantly improved the diagnosis of aortitis. However, significant challenges associated with the imaging techniques limit their use. Several routine inflammation-based markers, such as erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and inflammatory cytokines, are nonspecific and, therefore, have limited use in the diagnosis of aortitis. The search for more specific serum biomarkers, which can facilitate detection and progression is under progress. Several autoantibodies have been identified, but assigning their role in the pathogenesis as well as their specificity remains a challenge. The current review addresses some of these issues in detail. KEY MESSAGES: • Noninfectious aortitis is an autoimmune disease. • Several biomarkers, including cytokines and autoantibodies, are increased in aortitis. • Imaging techniques, commonly used to detect aortitis, are associated with the high cost and technical challenges. • There is a need to develop low-cost biomarker-based detection tools. • The knowledge of biomarkers in aortitis detection is discussed.
Collapse
Affiliation(s)
- Benjamin Benhuri
- Department of Physiology & Pharmacology, College of Medical & Life Sciences, University of Toledo College of Medicine, 3000 Arlington Ave, Toledo, OH, 43614, USA.,Department of Internal Medicine, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ammar ELJack
- Department of Physiology & Pharmacology, College of Medical & Life Sciences, University of Toledo College of Medicine, 3000 Arlington Ave, Toledo, OH, 43614, USA.,Depatment of Intenal Medicine, Beaumont Hospital, Dearborn, MI, 48124, USA
| | - Bashar Kahaleh
- Division of Rheumatology, University of Toledo College of Medicine, 3000 Arlington Ave, Toledo, OH, 43614, USA
| | - Ritu Chakravarti
- Department of Physiology & Pharmacology, College of Medical & Life Sciences, University of Toledo College of Medicine, 3000 Arlington Ave, Toledo, OH, 43614, USA.
| |
Collapse
|
44
|
[Physiopathology of giant cell arteritis: From inflammation to vascular remodeling]. Presse Med 2019; 48:919-930. [PMID: 31543394 DOI: 10.1016/j.lpm.2019.07.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/10/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022] Open
Abstract
Giant cell arteritis (GCA) is a large-vessel vasculitis involving the aorta and its main branches, especially supra aortic branches. Although much progress has been made, the pathophysiology remains incompletely understood. An initial trigger, suspected of infectious origin, lead to the maturation and recruitment of dendritic cells (DC). The lack of migration of these DC allows the local recruitment of T-lymphocytes (LT). These LT- CD4+ polarize in Type 1 helper (Th1), Th17 but also Th9. A qualitative and quantitative deficit in regulatory T cells (Treg) is observed under the influence of IL-21 overproduction. In addition, an imbalance in the Th17/Treg balance is favored by IL-6. The secretion of IFN-γ, IL-17, IL-6, IL-33 is responsible for a sustained local inflammatory reaction that is organized around tertiary lymphoid follicles. Locally recruited macrophages secrete reactive forms of oxygen together with VEGF and PDGF. These growth factors, together with neurotrophins and endothelin contribute to increase the proliferation of vascular smooth muscle cells (VSMCs). The imbalance between matrix metalloproteases (MMP)-2, MMP-9 and MMP-14 and tissue inhibitors of metalloproteases (TIMP)-1 and TIMP-2 also contribute to the remodeling process occurring in the vessel wall. Finally, arterial neovascularization contribute to the perpetuation of lymphocyte recruitment. This persistent remodeling is sometimes complicated by ischemic events responsible for the initial severity of the disease.
Collapse
|
45
|
Abstract
Glucocorticoids (GC) remain the gold standard of the treatment of giant cell arteritis provided objectives of GC-tapering are accurately followed: 15 to 20mg/day at 3 months, 10mg/day at 6 months, 5mg/day at 9-12 months and withdrawal between 12 and 18 months. In case of corticodependance at ≥7.5 mg/day of prednisone or intolerance to GC, a GCsparing therapy has to be introduced, mainly methotrexate or tocilizumab. Individual characteristics of each patient, data about the efficacy of the treatment, its cost and how easy the follow-up under this treatment is are important factors to consider for choosing the right GC-sparing therapy. For all these reasons, except particular situations, we prefer using methotrexate before tocilizumab. Prevention of cardiovascular events is an important aspect of the treatment of GCA. We recommend using aspirin (75-100mg/day) during the first month of treatment or longer in case of occurrence of an ischemic complication. Each patient treated for GCA should receive a prevention of osteoporosis with respect of usual recommendations.
Collapse
|
46
|
González-Gay MÁ, Pina T, Prieto-Peña D, Calderon-Goercke M, Gualillo O, Castañeda S. Treatment of giant cell arteritis. Biochem Pharmacol 2019; 165:230-239. [DOI: 10.1016/j.bcp.2019.04.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/25/2019] [Indexed: 12/12/2022]
|
47
|
Lackner HK, Papousek I, Schmid-Zalaudek K, Cervar-Zivkovic M, Kolovetsiou-Kreiner V, Nonn O, Lucovnik M, Pfniß I, Moertl MG. Disturbed Cardiorespiratory Adaptation in Preeclampsia: Return to Normal Stress Regulation Shortly after Delivery? Int J Mol Sci 2019; 20:ijms20133149. [PMID: 31252672 PMCID: PMC6651868 DOI: 10.3390/ijms20133149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/30/2022] Open
Abstract
Women with pregnancies complicated by preeclampsia appear to be at increased risk of metabolic and vascular diseases in later life. Previous research has also indicated disturbed cardiorespiratory adaptation during pregnancy. The aim of this study was to follow up on the physiological stress response in preeclampsia several weeks postpartum. A standardized laboratory test was used to illustrate potential deviations in the physiological stress responding to mildly stressful events of the kind and intensity in which they regularly occur in further everyday life after pregnancy. Fifteen to seventeen weeks postpartum, 35 women previously affected by preeclampsia (19 mild, 16 severe preeclampsia), 38 women after uncomplicated pregnancies, and 51 age-matched healthy controls were exposed to a self-relevant stressor in a standardized stress-reactivity protocol. Reactivity of blood pressure, heart rate, stroke index, and systemic vascular resistance index as well as baroreceptor sensitivity were analyzed. In addition, the mutual adjustment of blood pressure, heart rate, and respiration, partitioned for influences of the sympathetic and the parasympathetic branches of the autonomic nervous system, were quantified by determining their phase synchronization. Findings indicated moderately elevated blood pressure levels in the nonpathological range, reduced stroke volume, and elevated systemic vascular resistance in women previously affected by preeclampsia. Despite these moderate abnormalities, at the time of testing, women with previous preeclampsia did not differ from the other groups in their physiological response patterns to acute stress. Furthermore, no differences between early, preterm, and term preeclampsia or mild and severe preeclampsia were observed at the time of testing. The findings suggest that the overall cardiovascular responses to moderate stressors return to normal in women who experience a pregnancy with preeclampsia a few weeks after delivery, while the operating point of the arterial baroreflex is readjusted to a higher pressure. Yet, their regulation mechanisms may remain different.
Collapse
Affiliation(s)
- Helmut K Lackner
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria.
| | - Ilona Papousek
- Department of Psychology, Biological Psychology Unit, University of Graz, 8010 Graz, Austria.
| | - Karin Schmid-Zalaudek
- Division of Physiology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria.
| | - Mila Cervar-Zivkovic
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria.
| | | | - Olivia Nonn
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, 8010 Graz, Austria.
| | - Miha Lucovnik
- Department of Perinatology, Division of Obstetrics and Gynecology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia.
| | - Isabella Pfniß
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036 Graz, Austria.
| | - Manfred G Moertl
- Department of Obstetrics and Gynecology, Clinical Center, 9020 Klagenfurt, Austria.
| |
Collapse
|
48
|
Farrah TE, Basu N, Dweck M, Calcagno C, Fayad ZA, Dhaun N. Advances in Therapies and Imaging for Systemic Vasculitis. Arterioscler Thromb Vasc Biol 2019; 39:1520-1541. [PMID: 31189432 DOI: 10.1161/atvbaha.118.310957] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Vasculitis is a systemic disease characterized by immune-mediated injury of blood vessels. Current treatments for vasculitis, such as glucocorticoids and alkylating agents, are associated with significant side effects. Furthermore, the management of both small and large vessel vasculitis is challenging because of a lack of robust markers of disease activity. Recent research has advanced our understanding of the pathogenesis of both small and large vessel vasculitis, and this has led to the development of novel biologic therapies capable of targeting key cytokine and cellular effectors of the inflammatory cascade. In parallel, a diverse range of imaging modalities with the potential to monitor vessel inflammation are emerging. Continued expansion of combined structural and molecular imaging using positron emission tomography with computed tomography or magnetic resonance imaging may soon provide reliable longitudinal tracking of vascular inflammation. In addition, the emergence of radiotracers able to assess macrophage activation and immune checkpoint activity represents an exciting new frontier in imaging vascular inflammation. In the near future, these advances will allow more precise imaging of disease activity enabling clinicians to offer more targeted and individualized patient management.
Collapse
Affiliation(s)
- Tariq E Farrah
- From the University/British Heart Foundation Centre of Research Excellence, Centre of Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Scotland (T.E.F., M.D., N.D.)
| | - Neil Basu
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Scotland (N.B.)
| | - Marc Dweck
- From the University/British Heart Foundation Centre of Research Excellence, Centre of Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Scotland (T.E.F., M.D., N.D.)
| | - Claudia Calcagno
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York (C.C., Z.A.F.)
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York (C.C., Z.A.F.)
| | - Neeraj Dhaun
- From the University/British Heart Foundation Centre of Research Excellence, Centre of Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Scotland (T.E.F., M.D., N.D.)
| |
Collapse
|
49
|
Klapa S, Müller A, Koch A, Heidecke H, Kähler W, Junker J, Schinke S, Riemekasten G, Lamprecht P. Decreased endothelin receptor A autoantibody levels are associated with
early ischaemic events in patients with giant-cell arteritis. Ann Rheum Dis 2019; 78:1443-1444. [DOI: 10.1136/annrheumdis-2019-215341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 11/03/2022]
|
50
|
|