1
|
Ferrigno I, Bonacini M, Rossi A, Nicastro M, Muratore F, Boiardi L, Cavazza A, Bisagni A, Cimino L, Ghidini A, Malchiodi G, Zerbini A, Pipitone N, Salvarani C, Croci S. Genes deregulated in giant cell arteritis by Nanostring nCounter gene expression profiling in temporal artery biopsies. RMD Open 2024; 10:e004600. [PMID: 39317454 PMCID: PMC11423731 DOI: 10.1136/rmdopen-2024-004600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
OBJECTIVE To identify differentially expressed genes in temporal artery biopsies (TABs) from patients with giant cell arteritis (GCA) with different histological patterns of inflammation: transmural inflammation (TMI) and inflammation limited to adventitia (ILA), compared with normal TABs from patients without GCA. METHODS Expression of 770 immune-related genes was profiled with the NanoString nCounter PanCancer Immune Profiling Panel on formalin-fixed paraffin-embedded TABs from 42 GCA patients with TMI, 7 GCA patients with ILA and 7 non-GCA controls. RESULTS Unsupervised clustering of the samples revealed two distinct groups: normal TABs and TABs with ILA in one group, 41/42 TABs with TMI in the other one. TABs with TMI showed 31 downregulated and 256 upregulated genes compared with normal TABs; they displayed 26 downregulated and 187 upregulated genes compared with TABs with ILA (>2.0 fold changes and adjusted p values <0.05). Gene expression in TABs with ILA resembled normal TABs although 38 genes exhibited >2.0 fold changes, but these changes lost statistical significance after Benjamini-Yekutieli correction. Genes encoding TNF superfamily members, immune checkpoints, chemokine and chemokine receptors, toll-like receptors, complement molecules, Fc receptors for IgG antibodies, signalling lymphocytic activation molecules, JAK3, STAT1 and STAT4 resulted upregulated in TMI. CONCLUSIONS TABs with TMI had a distinct transcriptome compared with normal TABs and TABs with ILA. The few genes potentially deregulated in ILA were also deregulated in TMI. Gene profiling allowed to deepen the knowledge of GCA pathogenesis.
Collapse
Affiliation(s)
- Ilaria Ferrigno
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Martina Bonacini
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessandro Rossi
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Maria Nicastro
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Francesco Muratore
- Unit of Rheumatology, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Luigi Boiardi
- Unit of Rheumatology, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alberto Cavazza
- Unit of Pathology, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessandra Bisagni
- Unit of Pathology, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Luca Cimino
- Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Unit of Ocular Immunology, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Angelo Ghidini
- Unit of Otolaryngology, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giuseppe Malchiodi
- Unit of Vascular Surgery, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessandro Zerbini
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Nicolò Pipitone
- Unit of Rheumatology, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Carlo Salvarani
- Unit of Rheumatology, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Croci
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
2
|
Karabayas M, Ibrahim HE, Roelofs AJ, Reynolds G, Kidder D, De Bari C. Vascular disease persistence in giant cell arteritis: are stromal cells neglected? Ann Rheum Dis 2024; 83:1100-1109. [PMID: 38684323 PMCID: PMC11420755 DOI: 10.1136/ard-2023-225270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/05/2024] [Indexed: 05/02/2024]
Abstract
Giant cell arteritis (GCA), the most common systemic vasculitis, is characterised by aberrant interactions between infiltrating and resident cells of the vessel wall. Ageing and breach of tolerance are prerequisites for GCA development, resulting in dendritic and T-cell dysfunction. Inflammatory cytokines polarise T-cells, activate resident macrophages and synergistically enhance vascular inflammation, providing a loop of autoreactivity. These events originate in the adventitia, commonly regarded as the biological epicentre of the vessel wall, with additional recruitment of cells that infiltrate and migrate towards the intima. Thus, GCA-vessels exhibit infiltrates across the vascular layers, with various cytokines and growth factors amplifying the pathogenic process. These events activate ineffective repair mechanisms, where dysfunctional vascular smooth muscle cells and fibroblasts phenotypically shift along their lineage and colonise the intima. While high-dose glucocorticoids broadly suppress these inflammatory events, they cause well known deleterious effects. Despite the emerging targeted therapeutics, disease relapse remains common, affecting >50% of patients. This may reflect a discrepancy between systemic and local mediators of inflammation. Indeed, temporal arteries and aortas of GCA-patients can show immune-mediated abnormalities, despite the treatment induced clinical remission. The mechanisms of persistence of vascular disease in GCA remain elusive. Studies in other chronic inflammatory diseases point to the fibroblasts (and their lineage cells including myofibroblasts) as possible orchestrators or even effectors of disease chronicity through interactions with immune cells. Here, we critically review the contribution of immune and stromal cells to GCA pathogenesis and analyse the molecular mechanisms by which these would underpin the persistence of vascular disease.
Collapse
Affiliation(s)
- Maira Karabayas
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Hafeez E Ibrahim
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Anke J Roelofs
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Gary Reynolds
- Centre for Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Dana Kidder
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Cosimo De Bari
- Centre for Arthritis and Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
3
|
Alba MA, Kermani TA, Unizony S, Murgia G, Prieto-González S, Salvarani C, Matteson EL. Relapses in giant cell arteritis: Updated review for clinical practice. Autoimmun Rev 2024; 23:103580. [PMID: 39048072 DOI: 10.1016/j.autrev.2024.103580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/20/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Giant cell arteritis (GCA), the most common primary vasculitis in adults, is a granulomatous systemic vasculitis usually affecting the aorta and its major branches, particularly the carotid and vertebral arteries. Although remission can be achieved in most patients with GCA using high-dose glucocorticoids (GC), relapses are frequent, occurring in >40% of GC-only treated patients, mostly during the first two years after diagnosis. Relapsing courses lead to high GC exposure, increasing the risk of treatment-related adverse effects. Although tocilizumab is an efficacious GC-sparing therapy that allows increased sustained remission and reduced cumulative GC doses, relapses are common after drug discontinuation. This narrative review examines the most relevant features of relapses in GCA, including its definition, classification, frequency, clinical, laboratory, and imaging characteristics, chronology, probable pathophysiology, and predictive factors. In addition, we discuss treatment options for relapsing patients and the effect of relapses on patient outcomes.
Collapse
Affiliation(s)
- Marco A Alba
- Systemic Autoimmune Diseases Unit, Department of Internal Medicine, Hospital Universitari Mútua Terrassa, Terrassa, Spain.
| | - Tanaz A Kermani
- Division of Rheumatology, University of California Los Angeles, Los Angeles, CA, USA
| | - Sebastian Unizony
- Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Giuseppe Murgia
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Sergio Prieto-González
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
| | - Carlo Salvarani
- Rheumatology Unit, Azienda USL-IRCCS di Reggio Emilia, Università di Modena e Reggio Emilia, Reggio Emilia, Italy
| | - Eric L Matteson
- Division of Rheumatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
4
|
Bonacini M, Rossi A, Ferrigno I, Muratore F, Boiardi L, Cavazza A, Bisagni A, Cimino L, De Simone L, Ghidini A, Malchiodi G, Corbera-Bellalta M, Cid MC, Zerbini A, Salvarani C, Croci S. miR-146a and miR-146b regulate the expression of ICAM-1 in giant cell arteritis. J Autoimmun 2024; 144:103186. [PMID: 38428111 DOI: 10.1016/j.jaut.2024.103186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 03/03/2024]
Abstract
Giant cell arteritis (GCA) is an inflammatory disease of large/medium-sized arteries. MiRNAs are small, non-coding RNAs that inhibit gene expression at post-transcriptional level. Several miRNAs have been shown to be dysregulated in temporal artery biopsies (TABs) from GCA patients, but their role is unknown. The aims of the present work were: to gain insight into the link between inflammation and miRNA up-regulation in GCA; to identify the role of miR-146a and miR-146b. Primary cultures from TABs were treated with IL-1β, IL-6, soluble IL-6R (sIL6R), IL-17, IL-22, IFNγ, LPS and PolyIC. Correlations between cytokine mRNA and miRNA levels were determined in inflamed TABs. Primary cultures from TABs, human aortic endothelial and smooth muscle cells and ex-vivo TAB sections were transfected with synthetic miR-146a and miR-146b to mimic miRNA activities. Cell viability, target gene expression, cytokine levels in culture supernatants were assayed. Treatment of primary cultures from TABs with IL-1β and IL-17 increased miR-146a expression while IL-1β, IL-6+sIL6R and IFNγ increased miR-146b expression. IFNγ and IL-1β mRNA levels correlated with miR-146a/b levels. Following transfection, cell viability decreased only in primary cultures from TABs. Moreover, transfection of miR-146a/b mimics increased ICAM-1 gene expression and production of the soluble form of ICAM-1 by primary cultures from TABs and by ex-vivo TABs. ICAM-1 expression was higher in inflamed than normal TABs and ICAM-1 levels correlated with miR-146a/b levels. Expression of miR-146a and miR-146b in GCA appeared to be driven by inflammatory cytokines (e.g. IL-1β, IFNγ). miR-146a and miR-146b seem responsible for the increase of soluble ICAM-1.
Collapse
Affiliation(s)
- Martina Bonacini
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessandro Rossi
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Ilaria Ferrigno
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy; PhD Program in Clinical and Experimental Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Muratore
- Unit of Rheumatology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy; Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Luigi Boiardi
- Unit of Rheumatology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alberto Cavazza
- Unit of Pathology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessandra Bisagni
- Unit of Pathology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Luca Cimino
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy; Unit of Ocular Immunology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Luca De Simone
- Unit of Ocular Immunology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Angelo Ghidini
- Unit of Otolaryngology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Giuseppe Malchiodi
- Unit of Vascular Surgery, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Marc Corbera-Bellalta
- Unit of Vasculitis Research, Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Maria Cinta Cid
- Unit of Vasculitis Research, Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Alessandro Zerbini
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Carlo Salvarani
- Unit of Rheumatology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy; Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefania Croci
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| |
Collapse
|
5
|
Palamidas DA, Chatzis L, Papadaki M, Gissis I, Kambas K, Andreakos E, Goules AV, Tzioufas AG. Current Insights into Tissue Injury of Giant Cell Arteritis: From Acute Inflammatory Responses towards Inappropriate Tissue Remodeling. Cells 2024; 13:430. [PMID: 38474394 DOI: 10.3390/cells13050430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/25/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Giant cell arteritis (GCA) is an autoimmune disease affecting large vessels in patients over 50 years old. It is an exemplary model of a classic inflammatory disorder with IL-6 playing the leading role. The main comorbidities that may appear acutely or chronically are vascular occlusion leading to blindness and thoracic aorta aneurysm formation, respectively. The tissue inflammatory bulk is expressed as acute or chronic delayed-type hypersensitivity reactions, the latter being apparent by giant cell formation. The activated monocytes/macrophages are associated with pronounced Th1 and Th17 responses. B-cells and neutrophils also participate in the inflammatory lesion. However, the exact order of appearance and mechanistic interactions between cells are hindered by the lack of cellular and molecular information from early disease stages and accurate experimental models. Recently, senescent cells and neutrophil extracellular traps have been described in tissue lesions. These structures can remain in tissues for a prolonged period, potentially favoring inflammatory responses and tissue remodeling. In this review, current advances in GCA pathogenesis are discussed in different inflammatory phases. Through the description of these-often overlapping-phases, cells, molecules, and small lipid mediators with pathogenetic potential are described.
Collapse
Affiliation(s)
- Dimitris Anastasios Palamidas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Loukas Chatzis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Maria Papadaki
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ilias Gissis
- Department of Thoracic and Cardiovascular Surgery, Evangelismos General Hospital, 11473 Athens, Greece
| | - Konstantinos Kambas
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Andreas V Goules
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Athanasios G Tzioufas
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
- Research Institute for Systemic Autoimmune Diseases, 11527 Athens, Greece
| |
Collapse
|
6
|
Paroli M, Caccavale R, Accapezzato D. Giant Cell Arteritis: Advances in Understanding Pathogenesis and Implications for Clinical Practice. Cells 2024; 13:267. [PMID: 38334659 PMCID: PMC10855045 DOI: 10.3390/cells13030267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Giant cell arteritis (GCA) is a noninfectious granulomatous vasculitis of unknown etiology affecting individuals older than 50 years. Two forms of GCA have been identified: a cranial form involving the medium-caliber temporal artery causing temporal arteritis (TA) and an extracranial form involving the large vessels, mainly the thoracic aorta and its branches. GCA generally affects individuals with a genetic predisposition, but several epigenetic (micro)environmental factors are often critical for the onset of this vasculitis. A key role in the pathogenesis of GCA is played by cells of both the innate and adaptive immune systems, which contribute to the formation of granulomas that may include giant cells, a hallmark of the disease, and arterial tertiary follicular organs. Cells of the vessel wall cells, including vascular smooth muscle cells (VSMCs) and endothelial cells, actively contribute to vascular remodeling responsible for vascular stenosis and ischemic complications. This review will discuss new insights into the molecular and cellular pathogenetic mechanisms of GCA, as well as the implications of these findings for the development of new diagnostic biomarkers and targeted drugs that could hopefully replace glucocorticoids (GCs), still the backbone of therapy for this vasculitis.
Collapse
Affiliation(s)
- Marino Paroli
- Department of Clinical, Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, Polo Pontino, 04100 Latina, Italy; (R.C.); (D.A.)
| | | | | |
Collapse
|
7
|
Zhang J, Yang P, Liu Y, Chen Z, Wu J, Feng S, Yi Q. Serum levels of PDGF-CC as a potential biomarker for the diagnosis of Kawasaki disease. Ital J Pediatr 2024; 50:16. [PMID: 38273388 PMCID: PMC10809580 DOI: 10.1186/s13052-024-01580-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/07/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Kawasaki disease (KD) is an acute systemic vasculitis of unknown etiology that predominantly affects children, and no specific diagnostic biomarkers for KD are available. Platelet-derived growth factor CC (PDGF-CC) is a peptide with angiogenic properties that has been amply demonstrated to play a critical role in the cardiovascular system. This study aimed to investigate the serum expression of PDGF-CC in children with KD and to evaluate the ability of PDGF-CC to diagnose KD. METHODS A total of 96 subjects, including 59 KD patients, 17 febrile controls (FC), and 20 healthy controls (HC), were enrolled. Serum levels of PDGF-CC were measured via enzyme-linked immunosorbent assay. The associations between PDGF-CC and clinical laboratory parameters were investigated by correlation analysis. The diagnostic performance was assessed by receiver operating characteristic (ROC) curve analysis. RESULTS Serum PDGF-CC levels in the KD group were significantly higher than in the FC and HC groups. Serum PDGF-CC levels in the KD group were positively correlated with white blood cell counts, percentage of neutrophils, IL-2, IL-12p70, TNF-α, and IL-1β levels, and negatively correlated with the percentage of lymphocytes. In the analysis of ROC curves, the area under the curve was 0.796 (95% confidence interval 0.688-0.880; P < 0.0001) for PDGF-CC and increased to 0.900 (95% confidence interval 0.808-0.957; P < 0.0001) in combination with white blood cell counts and C-reactive protein. CONCLUSIONS PDGF-CC is a potential biomarker for KD diagnosis, and the combination with white blood cell counts and C-reactive protein can further improve diagnostic performance.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cardiovascular Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, National Clinical Research Center for Child Health and Disorders, National Clinical Key Cardiovascular Specialty, Children's Hospital of Chongqing Medical University, 400014, Chongqing, China
| | - Penghui Yang
- Department of Cardiovascular Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, National Clinical Research Center for Child Health and Disorders, National Clinical Key Cardiovascular Specialty, Children's Hospital of Chongqing Medical University, 400014, Chongqing, China
| | - Yihao Liu
- Department of Cardiovascular Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, National Clinical Research Center for Child Health and Disorders, National Clinical Key Cardiovascular Specialty, Children's Hospital of Chongqing Medical University, 400014, Chongqing, China
| | - Zhuo Chen
- Department of Cardiovascular Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, National Clinical Research Center for Child Health and Disorders, National Clinical Key Cardiovascular Specialty, Children's Hospital of Chongqing Medical University, 400014, Chongqing, China
| | - Jinhui Wu
- Department of Cardiovascular Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, National Clinical Research Center for Child Health and Disorders, National Clinical Key Cardiovascular Specialty, Children's Hospital of Chongqing Medical University, 400014, Chongqing, China
| | - Siqi Feng
- Department of Cardiovascular Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, National Clinical Research Center for Child Health and Disorders, National Clinical Key Cardiovascular Specialty, Children's Hospital of Chongqing Medical University, 400014, Chongqing, China.
| | - Qijian Yi
- Department of Cardiovascular Medicine, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, National Clinical Research Center for Child Health and Disorders, National Clinical Key Cardiovascular Specialty, Children's Hospital of Chongqing Medical University, 400014, Chongqing, China.
| |
Collapse
|
8
|
Bonnan M, Debeugny S. Giant-cell arteritis related strokes: scoping review of mechanisms and rethinking treatment strategy? Front Neurol 2023; 14:1305093. [PMID: 38130834 PMCID: PMC10733536 DOI: 10.3389/fneur.2023.1305093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Stroke is a rare and severe complication of giant cell arteritis (GCA). Although early diagnosis and treatment initiation are essential, the mechanism of stroke is often related to vasculitis complicated by arterial stenosis and occlusion. Its recurrence is often attributed to early steroid resistance or late GCA relapse, so immunosuppressive treatment is often reinforced. However, many questions concerning the mechanisms of stroke remain elusive, and no review to date has examined the whole data set concerning GCA-related stroke. We therefore undertook this scoping review. GCA-related stroke does not necessarily display general signs and inflammatory parameters are sometimes normal, so clinicians should observe caution. Ischemic lesions often show patterns predating watershed areas and are associated with stenosis or thrombosis of the respective arteries, which are often bilateral. Lesions predominate in the siphon in the internal carotid arteries, whereas all the vertebral arteries may be involved with a predominance in the V3-V4 segments. Ultrasonography of the cervical arteries may reveal edema of the intima (halo sign), which is highly sensitive and specific of GCA, and precedes stenosis. The brain arteries are spared although very proximal arteritis may rarely occur, if the patient has microstructural anatomical variants. Temporal artery biopsy reveals the combination of mechanisms leading to slit-like stenosis, which involves granulomatous inflammation and intimal hyperplasia. The lumen is sometimes occluded by thrombi (<15%), suggesting that embolic lesions may also occur, although imaging studies have not provided strong evidence for this. Moreover, persistence of intimal hyperplasia might explain persisting arterial stenosis, which may account for delayed stroke occurring in watershed areas. Other possible mechanisms of stroke are also discussed. Overall, GCA-related stroke mainly involves hemodynamic mechanisms. Besides early diagnosis and treatment initiation, future studies could seek to establish specific preventive or curative treatments using angioplasty or targeting intimal proliferation.
Collapse
Affiliation(s)
- Mickael Bonnan
- Service de Neurologie, Hôpital Delafontaine, Saint-Denis, France
| | - Stephane Debeugny
- Département d'Information Médicale, Centre Hospitalier de Pau, Pau, France
| |
Collapse
|
9
|
Schäfer VS, Brossart P, Warrington KJ, Kurts C, Sendtner GW, Aden CA. The role of autoimmunity and autoinflammation in giant cell arteritis: A systematic literature review. Autoimmun Rev 2023; 22:103328. [PMID: 36990133 DOI: 10.1016/j.autrev.2023.103328] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Giant cell arteritis is the most common form of large vessel vasculitis and preferentially involves large and medium-sized arteries in patients over the age of 50. Aggressive wall inflammation, neoangiogenesis and consecutive remodeling processes are the hallmark of the disease. Though etiology is unknown, cellular and humoral immunopathological processes are well understood. Matrix metalloproteinase-9 mediated tissue infiltration occurs through lysis of basal membranes in adventitial vessels. CD4+ cells attain residency in immunoprotected niches, differentiate into vasculitogenic effector cells and enforce further leukotaxis. Signaling pathways involve the NOTCH1-Jagged1 pathway opening vessel infiltration, CD28 mediated T-cell overstimulation, lost PD-1/PD-L1 co-inhibition and JAK/STAT signaling in interferon dependent responses. From a humoral perspective, IL-6 represents a classical cytokine and potential Th-cell differentiator whereas interferon-γ (IFN- γ) has been shown to induce chemokine ligands. Current therapies involve glucocorticoids, tocilizumab and methotrexate application. However, new agents, most notably JAK/STAT inhibitors, PD-1 agonists and MMP-9 blocking substances, are being evaluated in ongoing clinical trials.
Collapse
|
10
|
Samson M, Genet C, Corbera-Bellalta M, Greigert H, Espígol-Frigolé G, Gérard C, Cladière C, Alba-Rovira R, Ciudad M, Gabrielle PH, Creuzot-Garcher C, Tarris G, Martin L, Saas P, Audia S, Bonnotte B, Cid MC. Human monocyte-derived suppressive cells (HuMoSC) for cell therapy in giant cell arteritis. Front Immunol 2023; 14:1137794. [PMID: 36895571 PMCID: PMC9989212 DOI: 10.3389/fimmu.2023.1137794] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction The pathogenesis of Giant Cell Arteritis (GCA) relies on vascular inflammation and vascular remodeling, the latter being poorly controlled by current treatments. Methods This study aimed to evaluate the effect of a novel cell therapy, Human Monocyte-derived Suppressor Cells (HuMoSC), on inflammation and vascular remodeling to improve GCA treatment. Fragments of temporal arteries (TAs) from GCA patients were cultured alone or in the presence of HuMoSCs or their supernatant. After five days, mRNA expression was measured in the TAs and proteins were measured in culture supernatant. The proliferation and migration capacity of vascular smooth muscle cells (VSMCs) were also analyzed with or without HuMoSC supernatant. Results Transcripts of genes implicated in vascular inflammation (CCL2, CCR2, CXCR3, HLADR), vascular remodeling (PDGF, PDGFR), angiogenesis (VEGF) and extracellular matrix composition (COL1A1, COL3A1 and FN1) were decreased in arteries treated with HuMoSCs or their supernatant. Likewise, concentrations of collagen-1 and VEGF were lower in the supernatants of TAs cultivated with HuMoSCs. In the presence of PDGF, the proliferation and migration of VSMCs were both decreased after treatment with HuMoSC supernatant. Study of the PDGF pathway suggests that HuMoSCs act through inhibition of mTOR activity. Finally, we show that HuMoSCs could be recruited in the arterial wall through the implication of CCR5 and its ligands. Conclusion Altogether, our results suggest that HuMoSCs or their supernatant could be useful to decrease vascular in flammation and remodeling in GCA, the latter being an unmet need in GCA treatment.
Collapse
Affiliation(s)
- Maxime Samson
- Department of Internal Medicine and Clinical Immunology, Dijon University Hospital, Dijon, France
- Université Bourgogne Franche-Comté, INSERM, Etablissement Français du Sang, Bourgogne Franche-Comté (EFS BFC), UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CRB-CELLEX, Barcelona, Spain
| | - Coraline Genet
- Université Bourgogne Franche-Comté, INSERM, Etablissement Français du Sang, Bourgogne Franche-Comté (EFS BFC), UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | - Marc Corbera-Bellalta
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CRB-CELLEX, Barcelona, Spain
| | - Hélène Greigert
- Department of Internal Medicine and Clinical Immunology, Dijon University Hospital, Dijon, France
- Université Bourgogne Franche-Comté, INSERM, Etablissement Français du Sang, Bourgogne Franche-Comté (EFS BFC), UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | - Georgina Espígol-Frigolé
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CRB-CELLEX, Barcelona, Spain
| | - Claire Gérard
- Université Bourgogne Franche-Comté, INSERM, Etablissement Français du Sang, Bourgogne Franche-Comté (EFS BFC), UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | - Claudie Cladière
- Université Bourgogne Franche-Comté, INSERM, Etablissement Français du Sang, Bourgogne Franche-Comté (EFS BFC), UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | - Roser Alba-Rovira
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CRB-CELLEX, Barcelona, Spain
| | - Marion Ciudad
- Université Bourgogne Franche-Comté, INSERM, Etablissement Français du Sang, Bourgogne Franche-Comté (EFS BFC), UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | | | | | - Georges Tarris
- Department of Pathology, Dijon University Hospital, Dijon, France
| | - Laurent Martin
- Department of Pathology, Dijon University Hospital, Dijon, France
| | - Philippe Saas
- Université Bourgogne Franche-Comté, INSERM, Etablissement Français du Sang, Bourgogne Franche-Comté (EFS BFC), UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
- Centre d'investigation clinique (CIC)-1431, INSERM, Besançon University Hospital, Etablissement Français du Sang (EFS), Besançon, France
| | - Sylvain Audia
- Department of Internal Medicine and Clinical Immunology, Dijon University Hospital, Dijon, France
- Université Bourgogne Franche-Comté, INSERM, Etablissement Français du Sang, Bourgogne Franche-Comté (EFS BFC), UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | - Bernard Bonnotte
- Department of Internal Medicine and Clinical Immunology, Dijon University Hospital, Dijon, France
- Université Bourgogne Franche-Comté, INSERM, Etablissement Français du Sang, Bourgogne Franche-Comté (EFS BFC), UMR1098, RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, Dijon, France
| | - Maria C. Cid
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), CRB-CELLEX, Barcelona, Spain
| |
Collapse
|
11
|
Ma Y, Chen H. Analysis of Chemokine-to-GAG Interactions in Model of Donor Renal Allograft Transplant. Methods Mol Biol 2023; 2597:25-38. [PMID: 36374412 DOI: 10.1007/978-1-0716-2835-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Binding of chemokines to glycosaminoglycans (GAGs) is classically described as initiating inflammatory cell migration and creating tissue chemokine gradients that direct immune cell responses initiating local leukocyte chemotaxis into damaged or transplanted tissues. The interaction between chemokines and GAGs is an important factor affecting transplant rejection, and blocking the interactions between chemokines and GAGs can significantly reduce acute rejection after transplantation. Here, we investigated the interaction between chemokines and GAGs by establishing a mouse model of acute rejection after kidney transplantation.
Collapse
Affiliation(s)
- Yanlin Ma
- The Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Hao Chen
- Department of Tumor Center, Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
12
|
Watanabe R, Hashimoto M. Vasculitogenic T Cells in Large Vessel Vasculitis. Front Immunol 2022; 13:923582. [PMID: 35784327 PMCID: PMC9240193 DOI: 10.3389/fimmu.2022.923582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Vasculitis is an autoimmune disease of unknown etiology that causes inflammation of the blood vessels. Large vessel vasculitis is classified as either giant cell arteritis (GCA), which occurs exclusively in the elderly, or Takayasu arteritis (TAK), which mainly affects young women. Various cell types are involved in the pathogenesis of large vessel vasculitis. Among these, dendritic cells located between the adventitia and the media initiate the inflammatory cascade as antigen-presenting cells, followed by activation of macrophages and T cells contributing to vessel wall destruction. In both diseases, naive CD4+ T cells are polarized to differentiate into Th1 or Th17 cells, whereas differentiation into regulatory T cells, which suppress vascular inflammation, is inhibited. Skewed T cell differentiation is the result of aberrant intracellular signaling, such as the mechanistic target of rapamycin (mTOR) or the Janus kinase signal transducer and activator of transcription (JAK-STAT) pathways. It has also become clear that tissue niches in the vasculature fuel activated T cells and maintain tissue-resident memory T cells. In this review, we outline the most recent understanding of the pathophysiology of large vessel vasculitis. Then, we provide a summary of skewed T cell differentiation in the vasculature and peripheral blood. Finally, new therapeutic strategies for correcting skewed T cell differentiation as well as aberrant intracellular signaling are discussed.
Collapse
|
13
|
New Insights into the Pathogenesis of Giant Cell Arteritis: Mechanisms Involved in Maintaining Vascular Inflammation. J Clin Med 2022; 11:jcm11102905. [PMID: 35629030 PMCID: PMC9143803 DOI: 10.3390/jcm11102905] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023] Open
Abstract
The giant cell arteritis (GCA) pathophysiology is complex and multifactorial, involving a predisposing genetic background, the role of immune aging and the activation of vascular dendritic cells by an unknown trigger. Once activated, dendritic cells recruit CD4 T cells and induce their activation, proliferation and polarization into Th1 and Th17, which produce interferon-gamma (IFN-γ) and interleukin-17 (IL-17), respectively. IFN-γ triggers the production of chemokines by vascular smooth muscle cells, which leads to the recruitment of additional CD4 and CD8 T cells and also monocytes that differentiate into macrophages. Recent data have shown that IL-17, IFN-γ and GM-CSF induce the differentiation of macrophage subpopulations, which play a role in the destruction of the arterial wall, in neoangiogenesis or intimal hyperplasia. Under the influence of different mediators, mainly endothelin-1 and PDGF, vascular smooth muscle cells migrate to the intima, proliferate and change their phenotype to become myofibroblasts that further proliferate and produce extracellular matrix proteins, increasing the vascular stenosis. In addition, several defects in the immune regulatory mechanisms probably contribute to chronic vascular inflammation in GCA: a defect in the PD-1/PD-L1 pathway, a quantitative and qualitative Treg deficiency, the implication of resident cells, the role of GM-CSF and IL-6, the implication of the NOTCH pathway and the role of mucosal‑associated invariant T cells and tissue‑resident memory T cells.
Collapse
|
14
|
Corbera-Bellalta M, Alba-Rovira R, Muralidharan S, Espígol-Frigolé G, Ríos-Garcés R, Marco-Hernández J, Denuc A, Kamberovic F, Pérez-Galán P, Joseph A, D'Andrea A, Bondensgaard K, Cid MC, Paolini JF. Blocking GM-CSF receptor α with mavrilimumab reduces infiltrating cells, pro-inflammatory markers and neoangiogenesis in ex vivo cultured arteries from patients with giant cell arteritis. Ann Rheum Dis 2022; 81:524-536. [PMID: 35045965 PMCID: PMC8921590 DOI: 10.1136/annrheumdis-2021-220873] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/08/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Effective and safe therapies are needed for the treatment of patients with giant cell arteritis (GCA). Emerging as a key cytokine in inflammation, granulocyte-macrophage colony stimulating factor (GM-CSF) may play a role in promoting inflammation in GCA. OBJECTIVES To investigate expression of GM-CSF and its receptor in arterial lesions from patients with GCA. To analyse activation of GM-CSF receptor-associated signalling pathways and expression of target genes. To evaluate the effects of blocking GM-CSF receptor α with mavrilimumab in ex vivo cultured arteries from patients with GCA. METHODS Quantitative real time PCR, in situ RNA hybridisation, immunohistochemistry, immunofluorescence and confocal microscopy, immunoassay, western blot and ex vivo temporal artery culture. RESULTS GM-CSF and GM-CSF receptor α mRNA and protein were increased in GCA lesions; enhanced JAK2/STAT5A expression/phosphorylation as well as increased expression of target genes CD83 and Spi1/PU.1 were observed. Treatment of ex vivo cultured GCA arteries with mavrilimumab resulted in decreased transcripts of CD3ε, CD20, CD14 and CD16 cell markers, and reduction of infiltrating CD16 and CD3ε cells was observed by immunofluorescence. Mavrilimumab reduced expression of molecules relevant to T cell activation (human leukocyte antigen-DR [HLA-DR]) and Th1 differentiation (interferon-γ), the pro-inflammatory cytokines: interleukin 6 (IL-6), tumour necrosis factor α (TNFα) and IL-1β, as well as molecules related to vascular injury (matrix metalloprotease 9, lipid peroxidation products and inducible nitric oxide synthase [iNOS]). Mavrilimumab reduced CD34 + cells and neoangiogenesis in GCA lesions. CONCLUSION The inhibitory effects of mavrilimumab on multiple steps in the GCA pathogenesis cascade in vitro are consistent with the clinical observation of reduced GCA flares in a phase 2 trial and support its development as a therapeutic option for patients with GCA.
Collapse
Affiliation(s)
- Marc Corbera-Bellalta
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Roser Alba-Rovira
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Georgina Espígol-Frigolé
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Roberto Ríos-Garcés
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Javier Marco-Hernández
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Farah Kamberovic
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | | | | - Maria C Cid
- Vasculitis Research Group, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - John F Paolini
- Kiniksa Pharmaceuticals Corp, Lexington, Massachusetts, USA
| |
Collapse
|
15
|
Pugh D, Karabayas M, Basu N, Cid MC, Goel R, Goodyear CS, Grayson PC, McAdoo SP, Mason JC, Owen C, Weyand CM, Youngstein T, Dhaun N. Large-vessel vasculitis. Nat Rev Dis Primers 2022; 7:93. [PMID: 34992251 PMCID: PMC9115766 DOI: 10.1038/s41572-021-00327-5] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 02/08/2023]
Abstract
Large-vessel vasculitis (LVV) manifests as inflammation of the aorta and its major branches and is the most common primary vasculitis in adults. LVV comprises two distinct conditions, giant cell arteritis and Takayasu arteritis, although the phenotypic spectrum of primary LVV is complex. Non-specific symptoms often predominate and so patients with LVV present to a range of health-care providers and settings. Rapid diagnosis, specialist referral and early treatment are key to good patient outcomes. Unfortunately, disease relapse remains common and chronic vascular complications are a source of considerable morbidity. Although accurate monitoring of disease activity is challenging, progress in vascular imaging techniques and the measurement of laboratory biomarkers may facilitate better matching of treatment intensity with disease activity. Further, advances in our understanding of disease pathophysiology have paved the way for novel biologic treatments that target important mediators of disease in both giant cell arteritis and Takayasu arteritis. This work has highlighted the substantial heterogeneity present within LVV and the importance of an individualized therapeutic approach. Future work will focus on understanding the mechanisms of persisting vascular inflammation, which will inform the development of increasingly sophisticated imaging technologies. Together, these will enable better disease prognostication, limit treatment-associated adverse effects, and facilitate targeted development and use of novel therapies.
Collapse
Affiliation(s)
- Dan Pugh
- British Hearth Foundation/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Maira Karabayas
- Centre for Arthritis & Musculoskeletal Health, University of Aberdeen, Aberdeen, UK
| | - Neil Basu
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
| | - Maria C Cid
- Department of Autoimmune Diseases, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Ruchika Goel
- Department of Clinical Immunology & Rheumatology, Christian Medical College, Vellore, India
| | - Carl S Goodyear
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, UK
| | - Peter C Grayson
- National Institute of Arthritis & Musculoskeletal & Skin Diseases, National Institutes of Health, Bethesda, MA, USA
| | - Stephen P McAdoo
- Department of Immunology & Inflammation, Imperial College London, London, UK
| | - Justin C Mason
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | - Cornelia M Weyand
- Centre for Translational Medicine, Stanford University, Stanford, California, USA
| | - Taryn Youngstein
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Neeraj Dhaun
- British Hearth Foundation/University Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
16
|
Ciccia F, Macaluso F, Mauro D, Nicoletti GF, Croci S, Salvarani C. New insights into the pathogenesis of giant cell arteritis: are they relevant for precision medicine? THE LANCET. RHEUMATOLOGY 2021; 3:e874-e885. [PMID: 38287633 DOI: 10.1016/s2665-9913(21)00253-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/15/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
Giant cell arteritis is a primary granulomatous vasculitis characterised by a strict tissue tropism for large and medium-size vessels, occurring in people older than 50 years. Although considerable progress in understanding some of the pathophysiological mechanisms involved in the pathogenesis of giant cell arteritis has been made in the past 10 years, specific triggers of disease and mechanisms of chronic damage have not yet been identified. The definition of a specific pro-inflammatory hierarchy between the multiple cell types and the different cytokines or chemokines involved in the inflammatory process are still unexplored areas of study. The overall goal of precision medicine is to identify the best possible therapeutic approach for an individual or group of individuals with a given disease. The fundamental prerequisite of this approach is the identification, at baseline, of clinical and imaging findings and of molecular biomarkers that allow a precise stratification of patients and an adequate prediction of the therapeutic response. In this regard, the possibility of obtaining temporal artery biopsies for diagnostic purposes offers incredible exploratory possibilities to define different disease pathotypes potentially susceptible to different therapeutic interventions. In this Series paper, we will describe the most recent evidence relating to the pathogenesis of giant cell arteritis, trying to define, if possible, a new pathogenetic-centred approach to patients with giant cell arteritis.
Collapse
Affiliation(s)
- Francesco Ciccia
- Department of Precision Medicine, Section of Rheumatology, Università della Campania L Vanvitelli, Naples, Italy.
| | - Federica Macaluso
- Department of Precision Medicine, Section of Rheumatology, Università della Campania L Vanvitelli, Naples, Italy; Dipartimento Specialità Mediche, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Daniele Mauro
- Department of Precision Medicine, Section of Rheumatology, Università della Campania L Vanvitelli, Naples, Italy
| | - Giovanni Francesco Nicoletti
- Dipartimento Multidisciplinare di Specialità Medico-Chirurgiche e Odontoiatriche, Università della Campania L Vanvitelli, Naples, Italy
| | - Stefania Croci
- Autoimmunità, Allergologia e Biotecnologie Innovative, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Carlo Salvarani
- Dipartimento Specialità Mediche, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy; Dipartimento Chirurgico, Medico, Odontoiatrico e di Scienze Morfologiche con interesse Trapiantologico, Oncologico e di Medicina Rigenerativa, Università di Modena e Reggio Emilia, Modena, Italy.
| |
Collapse
|
17
|
Solimando AG, Vacca A, Dammacco F. Highlights in clinical medicine-Giant cell arteritis, polymyalgia rheumatica and Takayasu's arteritis: pathogenic links and therapeutic implications. Clin Exp Med 2021; 22:509-518. [PMID: 34741677 DOI: 10.1007/s10238-021-00770-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/20/2021] [Indexed: 10/19/2022]
Abstract
Giant cell arteritis (GCA), frequently associated with polymyalgia rheumatica (PMR), and Takayasu's arteritis (TAK) are characterized by extensive vascular remodeling that results in occlusion and stenosis. The pathophysiological mechanisms underlying the onset of GCA/PMR and TAK are still hypothetical. However, similarities and differences in the immunopathology and clinical phenotypes of these diseases point toward a possible link between them. The loss of tolerance in the periphery, a breakdown of tissue barriers, and the development of granulomatous vasculitis define a disease continuum. However, statistically powered studies are needed to confirm these correlations. In addition to glucocorticoids, inhibition of the interleukin-6 axis has been proposed as a cornerstone in the treatment of GCA/PMR and TAK. Novel biologic agents targeting the pathogenic pathway at various levels hold promise to achieve glucocorticoid-free sustained remission.
Collapse
Affiliation(s)
- Antonio Giovanni Solimando
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Medical School, Polyclinic, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Medical School, Polyclinic, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - Franco Dammacco
- Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Medical School, Polyclinic, Piazza Giulio Cesare, 11, 70124, Bari, Italy.
| |
Collapse
|
18
|
Yuce Inel T, Gulcu A, Karakas A, Erdogan Yucel E, Onen F. Coexistence of Takayasu arteritis and chronic myeloid leukemia: Coincidental or paraneoplastic phenomenon? Int J Rheum Dis 2021; 24:1213-1216. [PMID: 34308563 DOI: 10.1111/1756-185x.14186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 11/29/2022]
Abstract
Vasculitis may rarely be seen in the course of myeloproliferative neoplasms (MPN). In vasculitis associated with hematological diseases, mostly small- and medium-vessel involvement is expected, aortitis is very rare. It is not exactly known whether large-vessel vasculitis associated with MPN is a paraneoplastic phenomenon or coincidental. We aimed to present an uncommon case diagnosed with chronic myeloid leukemia and Takayasu arteritis concurrently.
Collapse
Affiliation(s)
- Tuba Yuce Inel
- Department of Rheumatology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Aytac Gulcu
- Department of Radiology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ali Karakas
- Department of Rheumatology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Elcin Erdogan Yucel
- Department of Hematology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Fatos Onen
- Department of Rheumatology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| |
Collapse
|
19
|
Zhang Z, Li Z, Wang Y, Wang Q, Yao M, Zhao L, Shi J, Guan F, Ma S. PDGF-BB/SA/Dex injectable hydrogels accelerate BMSC-mediated functional full thickness skin wound repair by promoting angiogenesis. J Mater Chem B 2021; 9:6176-6189. [PMID: 34297017 DOI: 10.1039/d1tb00952d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Wound healing is a well-orchestrated dynamic and interactive process, which needs a favorable microenvironment and suitable angiogenesis. Platelet derived growth factor-BB (PDGF-BB) plays a crucial role in wound healing. However, the short half-life of PDGF-BB limits its efficacy. In the present study, we successfully synthesized an injectable hydrogel with sodium alginate (SA) and dextran (Dex) as a delivery system to simultaneously deliver PDGF-BB and bone marrow-derived mesenchymal stem cells (BMSCs) in the wound. Our work demonstrates that the PDGF-BB protein enhanced the survival, migration and endothelial cell (EC) differentiation of BMSCs in vitro. The PDGF-BB/SA/Dex hydrogels could sustainably release PDGF-BB with excellent biocompatibility in vitro and in vivo. Besides, these composite hydrogels loaded with BMSCs could accelerate wound healing by improving epithelialization and collagen deposition. In addition, the PDGF-BB/SA/Dex hydrogels promoted the EC-differentiation of transplanted BMSCs and proliferation of hair follicle stem cells in the wound. Furthermore, the expressions of angiogenesis-specific markers, PDGFR-β, p-PI3K, p-Akt, and p-eNOS, were obviously increased in the PDGF-BB/SA/Dex/BMSCs group. In conclusion, the PDGF-BB/SA/Dex injectable hydrogels could accelerate BMSC-mediated skin wound healing by promoting angiogenesis via the activation of the PDGF-BB/PDGFR-β-mediated PI3K/Akt/eNOS pathway, which may provide a new therapeutic strategy for stem cell therapy in wound healing.
Collapse
Affiliation(s)
- Zhenkun Zhang
- School of Life Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Deshayes S, Ly KH, Rieu V, Maigné G, Silva NM, Manrique A, Monteil J, de Boysson H, Aouba A. Steroid-sparing effect of anakinra in giant-cell arteritis: a case series with clinical, biological and iconographic long-term assessments. Rheumatology (Oxford) 2021; 61:400-406. [PMID: 33742671 DOI: 10.1093/rheumatology/keab280] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The treatment of giant cell arteritis (GCA) relies on corticosteroids but is burdened by a high rate of relapses and adverse effects. Anti-interleukin-6 treatments show a clear benefit with a significant steroid-sparing effect, but late relapses occur after treatment discontinuation. In addition to interleukin-6, interleukin-1 also appears to play a significant role in GCA pathophysiology. We report herein the efficacy of anakinra, an interleukin-1 receptor antagonist, in 6 GCA patients exhibiting corticosteroid dependence or resistance, specifically analyzing the outcome of aortitis in 4 of them. METHODS This retrospective study analyzed the cases of all GCA patients treated with anakinra from the French Study Group for Large Vessel Vasculitis. RESULTS After a median duration of anakinra therapy of 19 [18-32] months, all 6 patients exhibited complete clinical and biological remission. Among the 4 patients with large-vessel involvement, 2 had a disappearance of aortitis under anakinra, and 2 showed a decrease in vascular uptake. After a median follow-up of 56 [48-63] months, corticosteroids were discontinued in 4 patients, and corticosteroid dosage could be decreased to 5 mg/day in 2 patients. One patient relapsed 13 months after anakinra introduction in the context of increasing the daily anakinra injection interval to every 48 hours. Three patients experienced transient injection-site reactions, and 1 patient had pneumonia. CONCLUSION In this short series, anakinra appears to be an efficient and safe steroid-sparing agent in refractory GCA, with a possible beneficial effect on large-vessel involvement.
Collapse
Affiliation(s)
- Samuel Deshayes
- Service de Médecine Interne, CHU de Caen Normandie, 14000 Caen, France.,Normandie Univ, UNICAEN, EA4650 SEILIRM, CHU de Caen Normandie, 14000 Caen, France
| | - Kim-Heang Ly
- Service de Médecine Interne A, CHU Dupuytren, 87000 Limoges, France.,Faculté de médecine, laboratoire d'immunologie, EA3842, 87025 Limoges, France
| | - Virginie Rieu
- Service de Médecine Interne, CHU Estaing, Clermont-Ferrand, France
| | - Gwénola Maigné
- Service de Médecine Interne, CHU de Caen Normandie, 14000 Caen, France
| | | | - Alain Manrique
- Normandie Univ, UNICAEN, EA4650 SEILIRM, CHU de Caen Normandie, 14000 Caen, France.,Service de Médecine Nucléaire, CHU de Caen Normandie, 14000 Caen, France
| | - Jacques Monteil
- Service de Médecine Nucléaire, CHU Dupuytren, 87000 Limoges, France
| | - Hubert de Boysson
- Service de Médecine Interne, CHU de Caen Normandie, 14000 Caen, France.,Normandie Univ, UNICAEN, EA4650 SEILIRM, CHU de Caen Normandie, 14000 Caen, France
| | - Achille Aouba
- Service de Médecine Interne, CHU de Caen Normandie, 14000 Caen, France.,Normandie Univ, UNICAEN, EA4650 SEILIRM, CHU de Caen Normandie, 14000 Caen, France
| | | |
Collapse
|
21
|
Reitsema RD, Boots AMH, van der Geest KSM, Sandovici M, Heeringa P, Brouwer E. CD8+ T Cells in GCA and GPA: Bystanders or Active Contributors? Front Immunol 2021; 12:654109. [PMID: 33815414 PMCID: PMC8015776 DOI: 10.3389/fimmu.2021.654109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/01/2021] [Indexed: 12/28/2022] Open
Abstract
Vasculitis refers to inflammation of blood vessels and can cause a variety of serious complications depending on which vessels are affected. Two different forms of vasculitis are Giant Cell Arteritis (GCA) and Granulomatosis with Polyangiitis (GPA). GCA is the most common form of vasculitis in adults affecting the large arteries and can lead to visual impairment and development of aneurysms. GPA affects small- and medium-sized blood vessels predominantly in the lungs and kidneys resulting in organ failure. Both diseases can potentially be fatal. Although the pathogenesis of GCA and GPA are incompletely understood, a prominent role for CD4+ T cells has been implicated in both diseases. More recently, the role of CD8+ T cells has gained renewed interest. CD8+ T cells are important players in the adaptive immune response against intracellular microorganisms. After a general introduction on the different forms of vasculitis and their association with infections and CD8+ T cells, we review the current knowledge on CD8+ T-cell involvement in the immunopathogenesis of GCA and GPA focusing on phenotypic and functional features of circulating and lesional CD8+ T cells. Furthermore, we discuss to which extent aging is associated with CD8+ T-cell phenotype and function in GCA and GPA.
Collapse
Affiliation(s)
- Rosanne D Reitsema
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Annemieke M H Boots
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Kornelis S M van der Geest
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Maria Sandovici
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Peter Heeringa
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
22
|
Parreau S, Vedrenne N, Regent A, Richard L, Sindou P, Mouthon L, Fauchais AL, Jauberteau MO, Ly KH. An immunohistochemical analysis of fibroblasts in giant cell arteritis. Ann Diagn Pathol 2021; 52:151728. [PMID: 33798926 DOI: 10.1016/j.anndiagpath.2021.151728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 02/26/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Giant cell arteritis (GCA) is a systemic vasculitis of large and medium vessels characterized by an inflammatory arterial infiltrate. GCA begins in the adventitia and leads to vascular remodeling by promoting proliferation of myofibroblasts in the intima. The morphology of the fibroblasts in the adventitia in GCA is unclear. Access to temporal artery biopsies allows morphological studies and evaluation of the microenvironment of the arterial wall. We evaluated the distribution of vascular fibroblasts and of markers of their activation in GCA. METHODS Formalin-fixed paraffin-embedded tissue sections from 29 patients with GCA and 36 controls were examined. Immunohistochemistry was performed for CD90, vimentin, desmin, alpha-smooth muscle actin (ASMA), prolyl-4-hydroxylase (P4H), and myosin to evaluate the distribution of fibroblasts within the intima, media, and adventitia. RESULTS Temporal arteries from patients with GCA showed increased levels of CD90, vimentin, and ASMA in the adventitia and intima compared to the controls. Desmin was expressed only in the media in both groups. P4H was expressed similarly in the adventitia and intima in the two groups. Adventitial and intimal CD90+ cells co-expressed P4H, ASMA, and myosin at a high level in GCA. CONCLUSION The results suggest a role for adventitial fibroblasts in GCA. Inhibiting the differentiation of adventitial fibroblasts to myofibroblasts has therapeutic potential for GCA.
Collapse
Affiliation(s)
- Simon Parreau
- Department of Internal Medicine, Dupuytren Hospital, Limoges, France; EA3842-CaPTuR, Contrôle de l'Activation Cellulaire, Progression Tumorale et Résistance thérapeutique, Faculty of Medicine, Limoges, France.
| | - Nicolas Vedrenne
- EA3842-CaPTuR, Contrôle de l'Activation Cellulaire, Progression Tumorale et Résistance thérapeutique, Faculty of Medicine, Limoges, France
| | - Alexis Regent
- Department of Internal Medicine, Cochin Hospital, Paris, France
| | | | - Philippe Sindou
- EA3842-CaPTuR, Contrôle de l'Activation Cellulaire, Progression Tumorale et Résistance thérapeutique, Faculty of Medicine, Limoges, France
| | - Luc Mouthon
- Department of Internal Medicine, Cochin Hospital, Paris, France
| | - Anne-Laure Fauchais
- Department of Internal Medicine, Dupuytren Hospital, Limoges, France; EA3842-CaPTuR, Contrôle de l'Activation Cellulaire, Progression Tumorale et Résistance thérapeutique, Faculty of Medicine, Limoges, France
| | - Marie-Odile Jauberteau
- EA3842-CaPTuR, Contrôle de l'Activation Cellulaire, Progression Tumorale et Résistance thérapeutique, Faculty of Medicine, Limoges, France
| | - Kim-Heang Ly
- Department of Internal Medicine, Dupuytren Hospital, Limoges, France; EA3842-CaPTuR, Contrôle de l'Activation Cellulaire, Progression Tumorale et Résistance thérapeutique, Faculty of Medicine, Limoges, France
| |
Collapse
|
23
|
Robinette ML, Rao DA, Monach PA. The Immunopathology of Giant Cell Arteritis Across Disease Spectra. Front Immunol 2021; 12:623716. [PMID: 33717128 PMCID: PMC7946968 DOI: 10.3389/fimmu.2021.623716] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
Giant cell arteritis (GCA) is a granulomatous systemic vasculitis of large- and medium-sized arteries that affects the elderly. In recent years, advances in diagnostic imaging have revealed a greater degree of large vessel involvement than previously recognized, distinguishing classical cranial- from large vessel (LV)- GCA. GCA often co-occurs with the poorly understood inflammatory arthritis/bursitis condition polymyalgia rheumatica (PMR) and has overlapping features with other non-infectious granulomatous vasculitides that affect the aorta, namely Takayasu Arteritis (TAK) and the more recently described clinically isolated aortitis (CIA). Here, we review the literature focused on the immunopathology of GCA on the background of the three settings in which comparisons are informative: LV and cranial variants of GCA; PMR and GCA; the three granulomatous vasculitides (GCA, TAK, and CIA). We discuss overlapping and unique features between these conditions across clinical presentation, epidemiology, imaging, and conventional histology. We propose a model of GCA where abnormally activated circulating cells, especially monocytes and CD4+ T cells, enter arteries after an unknown stimulus and cooperate to destroy it and review the evidence for how this mechanistically occurs in active disease and improves with treatment.
Collapse
Affiliation(s)
- Michelle L. Robinette
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Deepak A. Rao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Paul A. Monach
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Rheumatology Section, VA Boston Healthcare System, Boston, MA, United States
| |
Collapse
|
24
|
Abstract
Purpose of Review Giant cell arteritis (GCA), a medium and large vessel vasculitis occurring in the aged, remains a formidable disease, capable of taking both vision and life, through a multitude of vascular complications. Our understanding of the spectrum of its manifestations has grown over the years, to include limb claudication, aortitis, and cardiac disease, in addition to the more classic visual complications resulting from of ischemia to branches of the external and internal carotid arteries. While a clinical presentation of headache, jaw claudication, scalp tenderness, fever and other systemic symptoms and serum markers are together highly suggestive of the disease, diagnosis can be challenging in those cases in which classic symptoms are lacking. The purpose of this review is to update the reader on advances in the diagnosis and treatment of giant cell arteritis and to review our evolving understanding of the immunological mechanism underlying the disease, which have helped guide our search for novel therapies. Recent Findings There is increasing evidence supporting the use of Doppler ultrasound, dedicated post-contrast T1-weighted spin echo MRI of the scalp arteries and PET scan, which can together improve our diagnostic accuracy in cases in which temporal artery biopsy is either inconclusive or not feasible. Advances in our understanding of the immunological cascades underlying the disease have helped guide our search for steroid-sparing treatments for the GCA, the most important of which has been the IL-6 receptor antibody inhibitor tocilizumab, which has been shown to reduce cumulative steroid dose in a large multicenter, placebo-controlled prospective study. Other biologic agents, such as abatacept and ustekinumab have shown promise in smaller studies. Summary GCA is no longer a disease whose diagnosis is based exclusively on temporal artery biopsy and whose complications are prevented solely with the use of corticosteroids. Modern vascular imaging techniques and targeted immunologic therapies are heralding a new era for the disease, in which practitioners will hopefully be able to diagnosis it with greater accuracy and treat it with less ischemic complications and iatrogenic side effects.
Collapse
|
25
|
Deshayes S, de Boysson H, Dumont A, Vivien D, Manrique A, Aouba A. An overview of the perspectives on experimental models and new therapeutic targets in giant cell arteritis. Autoimmun Rev 2020; 19:102636. [DOI: 10.1016/j.autrev.2020.102636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022]
|
26
|
Cid MC, Ríos-Garcés R, Terrades-García N, Espígol-Frigolé G. Treatment of giant-cell arteritis: from broad spectrum immunosuppressive agents to targeted therapies. Rheumatology (Oxford) 2020; 59:iii17-iii27. [DOI: 10.1093/rheumatology/kez645] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
Abstract
For decades, the treatment of GCA has relied on glucocorticoids. Work over the past two decades has supported a modest efficacy of MTX but no clear benefit from anti-TNF-based therapies. More recently, the therapeutic armamentarium for GCA has expanded. The availability of agents targeting specific cytokines, cytokine receptors or signalling pathways, along with a better, although still limited, understanding of the immunopathology of GCA, are opening further therapeutic possibilities. Blocking IL-6 receptor with tocilizumab has been effective in maintaining remission and reducing glucocorticoid exposure and tocilizumab has been approved for the treatment of GCA. However, nearly half of the patients do not benefit from tocilizumab and additional options need to be investigated. This review focuses on standard therapeutic approaches and on targeted therapies that have been or are currently under investigation.
Collapse
Affiliation(s)
- Maria C Cid
- Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona. Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Roberto Ríos-Garcés
- Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona. Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Nekane Terrades-García
- Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona. Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Georgina Espígol-Frigolé
- Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona. Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
27
|
Abstract
Glucocorticoids (GC) remain the gold standard of the treatment of giant cell arteritis provided objectives of GC-tapering are accurately followed: 15 to 20mg/day at 3 months, 10mg/day at 6 months, 5mg/day at 9-12 months and withdrawal between 12 and 18 months. In case of corticodependance at ≥7.5 mg/day of prednisone or intolerance to GC, a GCsparing therapy has to be introduced, mainly methotrexate or tocilizumab. Individual characteristics of each patient, data about the efficacy of the treatment, its cost and how easy the follow-up under this treatment is are important factors to consider for choosing the right GC-sparing therapy. For all these reasons, except particular situations, we prefer using methotrexate before tocilizumab. Prevention of cardiovascular events is an important aspect of the treatment of GCA. We recommend using aspirin (75-100mg/day) during the first month of treatment or longer in case of occurrence of an ischemic complication. Each patient treated for GCA should receive a prevention of osteoporosis with respect of usual recommendations.
Collapse
|
28
|
Croci S, Bonacini M, Muratore F, Caruso A, Fontana A, Boiardi L, Soriano A, Cavazza A, Cimino L, Belloni L, Perry O, Fridkin M, Parmeggiani M, Blank M, Shoenfeld Y, Salvarani C. The therapeutic potential of tuftsin-phosphorylcholine in giant cell arteritis. J Autoimmun 2019; 98:113-121. [PMID: 30638709 DOI: 10.1016/j.jaut.2019.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/09/2018] [Accepted: 01/02/2019] [Indexed: 01/13/2023]
Abstract
Tuftsin-PhosphorylCholine (TPC) is a novel bi-specific molecule which links tuftsin and phosphorylcholine. TPC has shown immunomodulatory activities in experimental mouse models of autoimmune diseases. We studied herein the effects of TPC ex vivo on both peripheral blood mononuclear cells (PBMCs) and temporal artery biopsies (TABs) obtained from patients with giant cell arteritis (GCA) and age-matched disease controls. GCA is an immune-mediated disease affecting large vessels. Levels of 18 cytokines in supernatants, PBMC viability, T helper (Th) cell differentiation of PBMCs and gene expression in TABs were analyzed. Treatment ex vivo with TPC decreased the production of IL-1β, IL-2, IL-5, IL-6, IL-9, IL-12(p70), IL-13, IL-17A, IL-18, IL-21, IL-22, IL-23, IFNγ, TNFα, GM-CSF by CD3/CD28 activated PBMCs whereas it negligibly affected cell viability. It reduced Th1 and Th17 differentiation while did not impact Th22 differentiation in PBMCs stimulated by phorbol 12-myristate 13-acetate plus ionomycin. In inflamed TABs, treatment with TPC down-regulated the production of IL-1β, IL-6, IL-13, IL-17A and CD68 gene expression. The effects of TPC were comparable to the effects of dexamethasone, included as the standard of care, with the exception of a greater reduction of IL-2, IL-18, IFNγ in CD3/CD28 activated PBMCs and CD68 gene in inflamed TABs. In conclusion our results warrant further investigations regarding TPC as an immunotherapeutic agent in GCA and potentially other autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Stefania Croci
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| | - Martina Bonacini
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Francesco Muratore
- Unit of Rheumatology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy; Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Caruso
- Unit of Rheumatology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Antonio Fontana
- Unit of Vascular Surgery, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Luigi Boiardi
- Unit of Rheumatology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessandra Soriano
- Unit of Rheumatology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy; Campus Bio-Medico, University of Rome, Rome, Italy
| | - Alberto Cavazza
- Unit of Pathology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Luca Cimino
- Unit of Ocular Immunology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Lucia Belloni
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Ori Perry
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Mati Fridkin
- Department of Organic Chemistry, The Weizmann Institute of Sciences, Rehovot, Israel
| | - Maria Parmeggiani
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Miri Blank
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - Yehuda Shoenfeld
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - Carlo Salvarani
- Unit of Rheumatology, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy; Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
29
|
|
30
|
van der Geest KSM, Sandovici M, van Sleen Y, Sanders JS, Bos NA, Abdulahad WH, Stegeman CA, Heeringa P, Rutgers A, Kallenberg CGM, Boots AMH, Brouwer E. Review: What Is the Current Evidence for Disease Subsets in Giant Cell Arteritis? Arthritis Rheumatol 2018; 70:1366-1376. [PMID: 29648680 PMCID: PMC6175064 DOI: 10.1002/art.40520] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 03/29/2018] [Indexed: 12/14/2022]
Abstract
Giant cell arteritis (GCA) is an autoimmune vasculitis affecting large and medium‐sized arteries. Ample evidence indicates that GCA is a heterogeneous disease in terms of symptoms, immune pathology, and response to treatment. In the current review, we discuss the evidence for disease subsets in GCA. We describe clinical and immunologic characteristics that may impact the risk of cranial ischemic symptoms, relapse rates, and long‐term glucocorticoid requirements in patients with GCA. In addition, we discuss both proven and putative immunologic targets for therapy in patients with GCA who have an unfavorable prognosis. Finally, we provide recommendations for further research on disease subsets in GCA.
Collapse
Affiliation(s)
| | - Maria Sandovici
- University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Yannick van Sleen
- University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Jan-Stephan Sanders
- University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Nicolaas A Bos
- University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Wayel H Abdulahad
- University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Coen A Stegeman
- University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Peter Heeringa
- University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Abraham Rutgers
- University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Cees G M Kallenberg
- University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Annemieke M H Boots
- University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth Brouwer
- University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
31
|
Terrades-Garcia N, Cid MC. Pathogenesis of giant-cell arteritis: how targeted therapies are influencing our understanding of the mechanisms involved. Rheumatology (Oxford) 2018; 57:ii51-ii62. [PMID: 29982777 DOI: 10.1093/rheumatology/kex423] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Indexed: 12/13/2022] Open
Abstract
GCA is a chronic granulomatous vasculitis that affects large- and medium-sized vessels. Both the innate and the adaptive immune system are thought to play an important role in the initial events of the pathogenesis of GCA. Amplification cascades are involved in the subsequent development and progression of the disease, resulting in vascular inflammation, remodelling and occlusion. The development of large-vessel vasculitis in genetically modified mice has provided some evidence regarding potential mechanisms that lead to vascular inflammation. However, the participation of specific mechanistic pathways in GCA has not been fully established because of the paucity and limitations of functional models. Treatment of GCA is evolving, and novel therapies are being incorporated into the GCA treatment landscape. In addition, to improve the management of GCA, targeted therapies are providing functional proof of concept of the relevance of particular pathogenic mechanisms in the development of GCA and in sustaining vascular inflammation.
Collapse
Affiliation(s)
- Nekane Terrades-Garcia
- Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Maria C Cid
- Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| |
Collapse
|
32
|
Espígol-Frigolé G, Planas-Rigol E, Lozano E, Corbera-Bellalta M, Terrades-García N, Prieto-González S, García-Martínez A, Hernández-Rodríguez J, Grau JM, Cid MC. Expression and Function of IL12/23 Related Cytokine Subunits (p35, p40, and p19) in Giant-Cell Arteritis Lesions: Contribution of p40 to Th1- and Th17-Mediated Inflammatory Pathways. Front Immunol 2018; 9:809. [PMID: 29731755 PMCID: PMC5920281 DOI: 10.3389/fimmu.2018.00809] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/03/2018] [Indexed: 12/17/2022] Open
Abstract
Background Giant-cell arteritis (GCA) is considered a T helper (Th)1- and Th17-mediated disease. Interleukin (IL)-12 is a heterodimeric cytokine (p35/p40) involved in Th1 differentiation. When combining with p19 subunit, p40 compose IL-23, a powerful pro-inflammatory cytokine that maintains Th17 response. Objectives The aims of this study were to investigate p40, p35, and p19 subunit expression in GCA lesions and their combinations to conform different cytokines, to assess the effect of glucocorticoid treatment on subunit expression, and to explore functional roles of p40 by culturing temporal artery sections with a neutralizing anti-human IL-12/IL-23p40 antibody. Methods and results p40 and p19 mRNA concentrations measured by real-time RT-PCR were significantly higher in temporal arteries from 50 patients compared to 20 controls (4.35 ± 4.06 vs 0.51 ± 0.75; p < 0.0001 and 20.32 ± 21.78 vs 4.17 ± 4.43 relative units; p < 0.0001, respectively). No differences were found in constitutively expressed p35 mRNA. Contrarily, p40 and p19 mRNAs were decreased in temporal arteries from 16 treated GCA patients vs those from 34 treatment-naïve GCA patients. Accordingly, dexamethasone reduced p40 and p19 expression in cultured arteries. Subunit associations to conform IL-12 and IL-23 were confirmed by proximity-ligation assay in GCA lesions. Immunofluorescence revealed widespread p19 and p35 expression by inflammatory cells, independent from p40. Blocking IL-12/IL-23p40 tended to reduce IFNγ and IL-17 mRNA production by cultured GCA arteries and tended to increase Th17 inducers IL-1β and IL-6. Conclusion IL-12 and IL-23 heterodimers are increased in GCA lesions and decrease with glucocorticoid treatment. p19 and p35 subunits are much more abundant than p40, indicating an independent role for these subunits or their potential association with alternative subunits. The modest effect of IL-12/IL-23p40 neutralization may indicate compensation by redundant cytokines or cytokines resulting from alternative combinations.
Collapse
Affiliation(s)
- Georgina Espígol-Frigolé
- Vasculitis Research Unit, Department of Autoimmune Diseases, Clinical Institute of Medicine and Dermatology, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS-CRB CELLEX), Barcelona, Spain
| | - Ester Planas-Rigol
- Vasculitis Research Unit, Department of Autoimmune Diseases, Clinical Institute of Medicine and Dermatology, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS-CRB CELLEX), Barcelona, Spain
| | - Ester Lozano
- Vasculitis Research Unit, Department of Autoimmune Diseases, Clinical Institute of Medicine and Dermatology, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS-CRB CELLEX), Barcelona, Spain
| | - Marc Corbera-Bellalta
- Vasculitis Research Unit, Department of Autoimmune Diseases, Clinical Institute of Medicine and Dermatology, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS-CRB CELLEX), Barcelona, Spain
| | - Nekane Terrades-García
- Vasculitis Research Unit, Department of Autoimmune Diseases, Clinical Institute of Medicine and Dermatology, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS-CRB CELLEX), Barcelona, Spain
| | - Sergio Prieto-González
- Vasculitis Research Unit, Department of Autoimmune Diseases, Clinical Institute of Medicine and Dermatology, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS-CRB CELLEX), Barcelona, Spain
| | - Ana García-Martínez
- Vasculitis Research Unit, Department of Emergency Medicine, Hospital Clínic, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Jose Hernández-Rodríguez
- Vasculitis Research Unit, Department of Autoimmune Diseases, Clinical Institute of Medicine and Dermatology, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS-CRB CELLEX), Barcelona, Spain
| | - Josep M Grau
- Department of Internal Medicine, Hospital Clínic, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Maria C Cid
- Vasculitis Research Unit, Department of Autoimmune Diseases, Clinical Institute of Medicine and Dermatology, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS-CRB CELLEX), Barcelona, Spain
| |
Collapse
|
33
|
Samson M, Espígol-Frigolé G, Terrades-García N, Prieto-González S, Corbera-Bellalta M, Alba-Rovira R, Hernández-Rodríguez J, Audia S, Bonnotte B, Cid MC. Biological treatments in giant cell arteritis & Takayasu arteritis. Eur J Intern Med 2018; 50:12-19. [PMID: 29146018 DOI: 10.1016/j.ejim.2017.11.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
Giant cell arteritis (GCA) and Takayasu arteritis (TAK) are the two main large vessel vasculitides. They share some similarities regarding their clinical, radiological and histological presentations but some pathogenic processes in GCA and TAK are activated differently, thus explaining their different sensitivity to biological therapies. The treatment of GCA and TAK essentially relies on glucocorticoids. However, thanks to major progress in our understanding of their pathogenesis, the role of biological therapies in the treatment of these two vasculitides is expanding, especially in relapsing or refractory diseases. In this review, the efficacy, the safety and the limits of the main biological therapies ever tested in GCA and TAK are discussed. Briefly, anti TNF-α agents appear to be effective in treating TAK but not GCA. Recent randomized placebo-controlled trials have reported on the efficacy and safety of abatacept and mostly tocilizumab in inducing and maintaining remission of GCA. Abatacept was not effective in TAK and robust data are still lacking to draw any conclusions concerning the use of tocilizumab in TAK. Furthermore, ustekinumab appears promising in relapsing/refractory GCA whereas rituximab has been reported to be effective in only a few cases of refractory TAK patients. If a biological therapy is indicated, and in light of the data discussed in this review, the first choice would be tocilizumab in GCA and anti-TNF-α agents (mainly infliximab) in TAK.
Collapse
Affiliation(s)
- Maxime Samson
- Department of Internal Medicine and Clinical Immunology, François Mitterrand Hospital, Dijon University Hospital, Dijon, France; INSERM, UMR1098, University of Bourgogne Franche-Comté, FHU INCREASE, Dijon, France; Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | - Georgina Espígol-Frigolé
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Nekane Terrades-García
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sergio Prieto-González
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marc Corbera-Bellalta
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Roser Alba-Rovira
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - José Hernández-Rodríguez
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sylvain Audia
- Department of Internal Medicine and Clinical Immunology, François Mitterrand Hospital, Dijon University Hospital, Dijon, France; INSERM, UMR1098, University of Bourgogne Franche-Comté, FHU INCREASE, Dijon, France
| | - Bernard Bonnotte
- Department of Internal Medicine and Clinical Immunology, François Mitterrand Hospital, Dijon University Hospital, Dijon, France; INSERM, UMR1098, University of Bourgogne Franche-Comté, FHU INCREASE, Dijon, France
| | - Maria C Cid
- Vasculitis Research Unit, Department of Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
34
|
Beketova TV, Volkov MY, Naryshkin EA, Novoselova TM, Nasonov EL. Imatinib mesylate use in refractory eosinophilic granulomatosis with polyangiitis: a literature review and a case report. Clin Rheumatol 2018; 37:1729-1735. [DOI: 10.1007/s10067-018-4018-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/28/2018] [Accepted: 01/31/2018] [Indexed: 10/17/2022]
|
35
|
Zerbini A, Muratore F, Boiardi L, Ciccia F, Bonacini M, Belloni L, Cavazza A, Cimino L, Moramarco A, Alessandro R, Rizzo A, Parmeggiani M, Salvarani C, Croci S. Increased expression of interleukin-22 in patients with giant cell arteritis. Rheumatology (Oxford) 2018; 57:64-72. [PMID: 28968695 DOI: 10.1093/rheumatology/kex334] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Indexed: 12/13/2022] Open
Abstract
Objectives GCA is characterized by arterial remodelling driven by inflammation. IL-22 is an attractive cytokine which acts at the crosstalk between immune and stromal cells. We hypothesized that IL-22 might be induced in GCA and might be involved in disease pathogenesis. Methods Patients subjected to temporal artery biopsies (TABs) naïve from therapy were enrolled: 27 biopsy-proven GCA, 8 biopsy-negative GCA, 21 biopsy-negative non-GCA patients. Expression of IL-22 was determined in TABs by immunohystochemistry, in plasma by ELISA, in peripheral blood mononuclear cells by real-time PCR and flow cytometry. Effects of IL-22 on viability and gene expression of primary cultures obtained from TABs were also evaluated. Results Inflamed TABs from GCA patients showed a higher expression of IL-22 and IL-22 specific receptor subunit (IL-22R1) than non-inflamed TABs. IL-22 was expressed in infiltrating immune cells and spindle shaped cells, IL-22R1 was expressed in endothelial cells. Patients with biopsy-proven GCA showed increased levels of IL-22 in plasma than patients with biopsy-negative GCA, without GCA and healthy subjects. Peripheral blood mononuclear cells from GCA patients expressed higher IL-22 transcript than healthy subjects. After stimulation in vitro with phorbol 12-myristate 13-acetate and ionomycin, the frequencies of Th22 and IL-22+ CD4+ lymphocytes were similar between patients with and without GCA. Treatment with IL-22 of primary cultures obtained from TABs increased cell viability under stress conditions and expression of B-cell activating factor. Conclusion IL-22 is increased in patients with GCA and affects viability and gene expression of arterial cells, supporting a potential role in disease pathogenesis.
Collapse
Affiliation(s)
- Alessandro Zerbini
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia
| | - Francesco Muratore
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena
| | - Luigi Boiardi
- Unit of Rheumatology, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia
| | - Francesco Ciccia
- Dipartimento Biomedico di Medicina Interna e Specialistica, Sezione di Reumatologia, Università degli Studi di Palermo, Palermo
| | - Martina Bonacini
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia
| | - Lucia Belloni
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia
| | | | - Luca Cimino
- Unit of Ophthalmology, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia
| | - Antonio Moramarco
- Unit of Ophthalmology, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia
| | - Riccardo Alessandro
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università degli studi di Palermo
| | - Aroldo Rizzo
- Dipartimento di Oncoematologia, Sezione di Anatomia Patologica, Azienda Ospedaliera Ospedali riuniti Villa Sofia Cervello, Palermo, Italy
| | - Maria Parmeggiani
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia
| | - Carlo Salvarani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena
| | - Stefania Croci
- Unit of Clinical Immunology, Allergy and Advanced Biotechnologies, Arcispedale Santa Maria Nuova-IRCCS, Reggio Emilia
| |
Collapse
|
36
|
Samson M, Bonnotte B. De la physiopathologie de l’artérite à cellules géantes aux nouvelles cibles thérapeutiques. Rev Med Interne 2017; 38:670-678. [DOI: 10.1016/j.revmed.2017.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/31/2017] [Accepted: 06/12/2017] [Indexed: 11/30/2022]
|
37
|
Giant cell arteritis and polymyalgia rheumatica: current challenges and opportunities. Nat Rev Rheumatol 2017; 13:578-592. [PMID: 28905861 DOI: 10.1038/nrrheum.2017.142] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The fields of giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) have advanced rapidly, resulting in a new understanding of these diseases. Fast-track strategies and improved awareness programmes that prevent irreversible sight loss through early diagnosis and treatment are a notable advance. Ultrasonography and other imaging techniques have been introduced into routine clinical practice and there have been promising reports on the efficacy of biologic agents, particularly IL-6 antagonists such as tocilizumab, in treating these conditions. Along with these developments, which should improve outcomes in patients with GCA and PMR, new questions and unmet needs have emerged; future research should address which pathogenetic mechanisms contribute to the different phases and clinical phenotypes of GCA, what role imaging has in the early diagnosis and monitoring of GCA and PMR, and in which patients and phases of these diseases novel biologic drugs should be used. This article discusses the implications of recent developments in our understanding of GCA and PMR, as well as the unmet needs concerning epidemiology, pathogenesis, imaging and treatment of these diseases.
Collapse
|
38
|
Samson M, Corbera-Bellalta M, Audia S, Planas-Rigol E, Martin L, Cid MC, Bonnotte B. Recent advances in our understanding of giant cell arteritis pathogenesis. Autoimmun Rev 2017; 16:833-844. [DOI: 10.1016/j.autrev.2017.05.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/13/2017] [Indexed: 12/12/2022]
|
39
|
Planas-Rigol E, Terrades-Garcia N, Corbera-Bellalta M, Lozano E, Alba MA, Segarra M, Espígol-Frigolé G, Prieto-González S, Hernández-Rodríguez J, Preciado S, Lavilla R, Cid MC. Endothelin-1 promotes vascular smooth muscle cell migration across the artery wall: a mechanism contributing to vascular remodelling and intimal hyperplasia in giant-cell arteritis. Ann Rheum Dis 2017; 76:1624-1634. [DOI: 10.1136/annrheumdis-2016-210792] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 01/01/2023]
Abstract
BackgroundGiant-cell arteritis (GCA) is an inflammatory disease of large/medium-sized arteries, frequently involving the temporal arteries (TA). Inflammation-induced vascular remodelling leads to vaso-occlusive events. Circulating endothelin-1 (ET-1) is increased in patients with GCA with ischaemic complications suggesting a role for ET-1 in vascular occlusion beyond its vasoactive function.ObjectiveTo investigate whether ET-1 induces a migratory myofibroblastic phenotype in human TA-derived vascular smooth muscle cells (VSMC) leading to intimal hyperplasia and vascular occlusion in GCA.Methods and resultsImmunofluorescence/confocal microscopy showed increased ET-1 expression in GCA lesions compared with control arteries. In inflamed arteries, ET-1 was predominantly expressed by infiltrating mononuclear cells whereas ET receptors, particularly ET-1 receptor B (ETBR), were expressed by both mononuclear cells and VSMC. ET-1 increased TA-derived VSMC migration in vitro and α-smooth muscle actin (αSMA) expression and migration from the media to the intima in cultured TA explants. ET-1 promoted VSMC motility by increasing activation of focal adhesion kinase (FAK), a crucial molecule in the turnover of focal adhesions during cell migration. FAK activation resulted in Y397 autophosphorylation creating binding sites for Src kinases and the p85 subunit of PI3kinases which, upon ET-1 exposure, colocalised with FAK at the focal adhesions of migrating VSMC. Accordingly, FAK or PI3K inhibition abrogated ET-1-induced migration in vitro. Consistently, ET-1 receptor A and ETBR antagonists reduced αSMA expression and delayed VSMC outgrowth from cultured GCA-involved artery explants.ConclusionsET-1 is upregulated in GCA lesions and, by promoting VSMC migration towards the intimal layer, may contribute to intimal hyperplasia and vascular occlusion in GCA.
Collapse
|
40
|
Immunoinhibitory checkpoint deficiency in medium and large vessel vasculitis. Proc Natl Acad Sci U S A 2017; 114:E970-E979. [PMID: 28115719 DOI: 10.1073/pnas.1616848114] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Giant cell arteritis (GCA) causes autoimmune inflammation of the aorta and its large branches, resulting in aortic arch syndrome, blindness, and stroke. CD4+ T cells and macrophages form organized granulomatous lesions in the walls of affected arteries, destroy the tunica media, and induce ischemic organ damage through rapid intimal hyperplasia and luminal occlusion. Pathogenic mechanisms remain insufficiently understood; specifically, it is unknown whether the unopposed activation of the immune system is because of deficiency of immunoinhibitory checkpoints. Transcriptome analysis of GCA-affected temporal arteries revealed low expression of the coinhibitory ligand programmed death ligand-1 (PD-L1) concurrent with enrichment of the programmed death-1 (PD-1) receptor. Tissue-residing and ex vivo-generated dendritic cells (DC) from GCA patients were PD-L1lo, whereas the majority of vasculitic T cells expressed PD-1, suggesting inefficiency of the immunoprotective PD-1/PD-L1 immune checkpoint. DC-PD-L1 expression correlated inversely with clinical disease activity. In human artery-SCID chimeras, PD-1 blockade exacerbated vascular inflammation, enriched for PD-1+ effector T cells, and amplified tissue production of multiple T-cell effector cytokines, including IFN-γ, IL-17, and IL-21. Arteries infiltrated by PD-1+ effector T cells developed microvascular neoangiogenesis as well as hyperplasia of the intimal layer, implicating T cells in the maladaptive behavior of vessel wall endogenous cells. Thus, in GCA, a breakdown of the tissue-protective PD1/PD-L1 checkpoint unleashes vasculitic immunity and regulates the pathogenic remodeling of the inflamed arterial wall.
Collapse
|
41
|
Three-Dimensional Tissue Models and Available Probes for Multi-Parametric Live Cell Microscopy: A Brief Overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1035:49-67. [DOI: 10.1007/978-3-319-67358-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
42
|
Ciccia F, Rizzo A, Maugeri R, Alessandro R, Croci S, Guggino G, Cavazza A, Raimondo S, Cannizzaro A, Iacopino DG, Salvarani C, Triolo G. Ectopic expression of CXCL13, BAFF, APRIL and LT-β is associated with artery tertiary lymphoid organs in giant cell arteritis. Ann Rheum Dis 2016; 76:235-243. [PMID: 27098405 DOI: 10.1136/annrheumdis-2016-209217] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/29/2016] [Accepted: 03/31/2016] [Indexed: 12/26/2022]
Abstract
OBJECTIVES To investigate whether artery tertiary lymphoid organs (ATLOs) are present in giant cell arteritis (GCA) and that their formation is associated with the ectopic expression of constitutive lymphoid tissue-homing chemokines. METHODS Reverse transcriptase PCR, immunohistochemical and immunofluorescence analysis were used to determine the presence of ectopic ATLOs in GCA and the expression of chemokines/chemokine receptors and cytokines involved in lymphoneogenesis in the temporal artery samples obtained from 50 patients with GCA and 30 controls. The presence of lymphatic conduits, of follicular dendritic cells (FDCs) precursors and lymphoid tissue inducer cells was also investigated. Finally, expression of CXCL13, B cell activating factor (BAFF), a proliferation-inducing ligand (APRIL) and CCL21 by isolated myofibroblasts was evaluated before and after stimulation with Toll-like receptors (TLRs) agonists and cytokines. RESULTS ATLOs were observed in the media layer of 60% of patients with GCA in close proximity to high endothelial venules and independently by the age of patients and the presence of atherosclerosis. ATLO formation was also accompanied by the expression of CXCL13, BAFF, a proliferation-inducing ligand (APRIL), lymphotoxin (LT)-β, interleukin (IL)-17 and IL-7, the presence of FDC precursors and of lymphoid conduits. Stimulation of myofibroblasts with TLR agonists and cytokines resulted in the upregulation of BAFF and CXCL13. CONCLUSIONS ATLOs occur in the inflamed arteries of patients with GCA possibly representing the immune sites where immune responses towards unknown arterial wall-derived antigens may be organised.
Collapse
Affiliation(s)
- Francesco Ciccia
- Dipartimento Biomedico di Medicina Interna e Specialistica, Sezione di Reumatologia, Università degli Studi di Palermo, Palermo, Italy
| | - Aroldo Rizzo
- Dipartimento di Oncoematologia, Sezione di Anatomia Patologica, Azienda Ospedaliera Ospedali riuniti Villa Sofia Cervello, Palermo, Italy
| | - Rosario Maugeri
- Dipartimento di Emergenze, Urgenze e Neuroscienze Cliniche, Università di Palermo, Palermo, Italy
| | - Riccardo Alessandro
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di Palermo, Palermo, Italy
| | - Stefania Croci
- Clinical Immunology, Allergy and Advanced Biotechnologies Unit, Arcispedale Santa Maria Nuova, IRCCS, Reggio Emilia, Italy
| | - Giuliana Guggino
- Dipartimento Biomedico di Medicina Interna e Specialistica, Sezione di Reumatologia, Università degli Studi di Palermo, Palermo, Italy
| | - Alberto Cavazza
- Pathology Unit, Arcispedale Santa Maria Nuova, IRCCS, Reggio Emilia, Italy
| | - Stefania Raimondo
- Dipartimento di Biopatologia e Biotecnologie Mediche e Forensi, Università di Palermo, Palermo, Italy
| | - Alessandra Cannizzaro
- Dipartimento di Oncoematologia, Sezione di Anatomia Patologica, Azienda Ospedaliera Ospedali riuniti Villa Sofia Cervello, Palermo, Italy
| | | | - Carlo Salvarani
- Unità operativa di Reumatologia, Arcispedale S. Maria Nuova-IRCCS, Reggio Emilia, Italy
| | - Giovanni Triolo
- Dipartimento Biomedico di Medicina Interna e Specialistica, Sezione di Reumatologia, Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
43
|
Corbera-Bellalta M, Planas-Rigol E, Lozano E, Terrades-García N, Alba MA, Prieto-González S, García-Martínez A, Albero R, Enjuanes A, Espígol-Frigolé G, Hernández-Rodríguez J, Roux-Lombard P, Ferlin WG, Dayer JM, Kosco-Vilbois MH, Cid MC. Blocking interferon γ reduces expression of chemokines CXCL9, CXCL10 and CXCL11 and decreases macrophage infiltration in ex vivo cultured arteries from patients with giant cell arteritis. Ann Rheum Dis 2015; 75:1177-86. [DOI: 10.1136/annrheumdis-2015-208371] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/06/2015] [Indexed: 01/21/2023]
Abstract
BackgroundInterferon γ (IFNγ) is considered a seminal cytokine in the pathogenesis of giant cell arteritis (GCA), but its functional role has not been investigated. We explored changes in infiltrating cells and biomarkers elicited by blocking IFNγ with a neutralising monoclonal antibody, A6, in temporal arteries from patients with GCA.MethodsTemporal arteries from 34 patients with GCA (positive histology) and 21 controls were cultured on 3D matrix (Matrigel) and exposed to A6 or recombinant IFNγ. Changes in gene/protein expression were measured by qRT-PCR/western blot or immunoassay. Changes in infiltrating cells were assessed by immunohistochemistry/immunofluorescence. Chemotaxis/adhesion assays were performed with temporal artery-derived vascular smooth muscle cells (VSMCs) and peripheral blood mononuclear cells (PBMCs).ResultsBlocking endogenous IFNγ with A6 abrogated STAT-1 phosphorylation in cultured GCA arteries. Furthermore, selective reduction in CXCL9, CXCL10 and CXCL11 chemokine expression was observed along with reduction in infiltrating CD68 macrophages. Adding IFNγ elicited consistent opposite effects. IFNγ induced CXCL9, CXCL10, CXCL11, CCL2 and intracellular adhesion molecule-1 expression by cultured VSMC, resulting in increased PBMC chemotaxis/adhesion. Spontaneous expression of chemokines was higher in VSMC isolated from GCA-involved arteries than in those obtained from controls. Incubation of IFNγ-treated control arteries with PBMC resulted in adhesion/infiltration by CD68 macrophages, which did not occur in untreated arteries.ConclusionsOur ex vivo system suggests that IFNγ may play an important role in the recruitment of macrophages in GCA by inducing production of specific chemokines and adhesion molecules. Vascular wall components (ie, VSMC) are mediators of these functions and may facilitate progression of inflammatory infiltrates through the vessel wall.
Collapse
|
44
|
O'Neill L, Rooney P, Molloy D, Connolly M, McCormick J, McCarthy G, Veale DJ, Murphy CC, Fearon U, Molloy E. Regulation of Inflammation and Angiogenesis in Giant Cell Arteritis by Acute-Phase Serum Amyloid A. Arthritis Rheumatol 2015; 67:2447-56. [DOI: 10.1002/art.39217] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/21/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Lorraine O'Neill
- St. Vincent's University Hospital and Dublin Academic Medical Centre; Dublin Ireland
| | - Peadar Rooney
- St. Vincent's University Hospital and Dublin Academic Medical Centre; Dublin Ireland
| | - Danielle Molloy
- St. Vincent's University Hospital and Dublin Academic Medical Centre; Dublin Ireland
| | - Mary Connolly
- St. Vincent's University Hospital and Dublin Academic Medical Centre; Dublin Ireland
| | - Jennifer McCormick
- St. Vincent's University Hospital and Dublin Academic Medical Centre; Dublin Ireland
| | - Geraldine McCarthy
- Mater Misericordiae University Hospital and Dublin Academic Medical Centre; Dublin Ireland
| | - Douglas J. Veale
- St. Vincent's University Hospital and Dublin Academic Medical Centre; Dublin Ireland
| | - Conor C. Murphy
- Royal College of Surgeons of Ireland and Royal Victoria Eye and Ear Hospital; Dublin Ireland
| | - Ursula Fearon
- St. Vincent's University Hospital and Dublin Academic Medical Centre; Dublin Ireland
| | - Eamonn Molloy
- St. Vincent's University Hospital and Dublin Academic Medical Centre; Dublin Ireland
| |
Collapse
|
45
|
Abstract
Giant cell arteritis (GCA) is a large-vessel vasculitis predominantly affecting older people, with a peak incidence between 70 and 79 years of age. If untreated, ischaemic complications can be catastrophic for the patient, including blindness. We review the current treatment paradigms for this condition, the mainstay of which is immediate high-dose glucocorticoid therapy with a gradual dose tapering. Adverse events of glucocorticoid therapy are often observed after 12-24 months and corticosteroid-sparing adjuvant therapies are used in severe disease, multiple flares or patients at high risk of prolonged therapy. The current understanding of the pathogenesis of GCA is explored. This has informed the identification of new potential targets and approaches to treatment. Blockade of interleukin (IL)-6 (tocilizumab) and IL-1 (gevokizumab) are being evaluated in phase III clinical trials. It is hoped that improved risk stratification of organ damage and relapses will be developed using imaging and biomarkers, allowing for individualised treatment for patients; however, there remains further work to be done before this becomes a reality.
Collapse
Affiliation(s)
- Lauren Steel
- Rheumatology, Southend University Hospital, Prittlewell Chase, Westcliff-on-sea, Essex, SS0 0RY, UK
| | | | | |
Collapse
|
46
|
Ly KH, Régent A, Molina E, Saada S, Sindou P, Le-Jeunne C, Brézin A, Witko-Sarsat V, Labrousse F, Robert PY, Bertin P, Bourges JL, Fauchais AL, Vidal E, Mouthon L, Jauberteau MO. Neurotrophins are expressed in giant cell arteritis lesions and may contribute to vascular remodeling. Arthritis Res Ther 2014; 16:487. [PMID: 25418464 PMCID: PMC4274683 DOI: 10.1186/s13075-014-0487-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 11/10/2014] [Indexed: 01/08/2023] Open
Abstract
Introduction Giant cell arteritis (GCA) is characterized by intimal hyperplasia leading to ischaemic manifestations that involve large vessels. Neurotrophins (NTs) and their receptors (NTRs) are protein factors for growth, differentiation and survival of neurons. They are also involved in the migration of vascular smooth muscle cells (VSMCs). Our aim was to investigate whether NTs and NTRs are involved in vascular remodelling of GCA. Methods We included consecutive patients who underwent a temporal artery biopsy for suspected GCA. We developed an enzymatic digestion method to obtain VSMCs from smooth muscle cells in GCA patients and controls. Neurotrophin protein and gene expression and functional assays were studied from these VSMCs. Neurotrophin expression was also analysed by immunohistochemistry in GCA patients and controls. Results Whereas temporal arteries of both GCA patients (n = 22) and controls (n = 21) expressed nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB) and sortilin, immunostaining was more intense in GCA patients, especially in the media and intima, while neurotrophin-3 (NT-3) and P75 receptor (P75NTR) were only detected in TA from GCA patients. Expression of TrkB, a BDNF receptor, was higher in GCA patients with ischaemic complications. Serum NGF was significantly higher in GCA patients (n = 28) vs. controls (n = 48), whereas no significant difference was found for BDNF and NT-3. NGF and BDNF enhanced GCA-derived temporal artery VSMC proliferation and BDNF facilitated migration of temporal artery VSMCs in patients with GCA compared to controls. Conclusions Our results suggest that NTs and NTRs are involved in vascular remodelling of GCA. In GCA-derived temporal artery VSMC, NGF promoted proliferation and BDNF enhanced migration by binding to TrkB and p75NTR receptors. Further experiments are needed on a larger number of VSMC samples to confirm these results. Electronic supplementary material The online version of this article (doi:10.1186/s13075-014-0487-z) contains supplementary material, which is available to authorized users.
Collapse
|
47
|
SOX11 promotes tumor angiogenesis through transcriptional regulation of PDGFA in mantle cell lymphoma. Blood 2014; 124:2235-47. [DOI: 10.1182/blood-2014-04-569566] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Key Points
SOX11 mediates regulation of angiogenesis via the PDGFA signaling pathway in MCL. SOX11-dependent increased angiogenesis contributes to a more aggressive MCL phenotype.
Collapse
|
48
|
|
49
|
Fatal coronary artery intimal hyperplasia due to amphetamine use. Cardiovasc Pathol 2013; 22:e1-4. [DOI: 10.1016/j.carpath.2012.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 07/30/2012] [Accepted: 07/31/2012] [Indexed: 11/24/2022] Open
|
50
|
Corbera-Bellalta M, García-Martínez A, Lozano E, Planas-Rigol E, Tavera-Bahillo I, Alba MA, Prieto-González S, Butjosa M, Espígol-Frigolé G, Hernández-Rodríguez J, Fernández PL, Roux-Lombard P, Dayer JM, Rahman MU, Cid MC. Changes in biomarkers after therapeutic intervention in temporal arteries cultured in Matrigel: a new model for preclinical studies in giant-cell arteritis. Ann Rheum Dis 2013; 73:616-23. [PMID: 23625984 DOI: 10.1136/annrheumdis-2012-202883] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Search for therapeutic targets in giant-cell arteritis (GCA) is hampered by the scarcity of functional systems. We developed a new model consisting of temporal artery culture in tri-dimensional matrix and assessed changes in biomarkers induced by glucocorticoid treatment. METHODS Temporal artery sections from 28 patients with GCA and 22 controls were cultured in Matrigel for 5 days in the presence or the absence of dexamethasone. Tissue mRNA concentrations of pro-inflammatory mediators and vascular remodelling molecules was assessed by real-time RT-PCR. Soluble molecules were measured in the supernatant fluid by immunoassay. RESULTS Histopathological features were exquisitely preserved in cultured arteries. mRNA concentrations of pro-inflammatory cytokines (particularly IL-1β and IFNγ), chemokines (CCL3/MIP-1α, CCL4/MIP-1β, CCL5/RANTES) and MMP-9 as well as IL-1β and MMP-9 protein concentrations in the supernatants were significantly higher in cultured arteries from patients compared with control arteries. The culture system itself upregulated expression of cytokines and vascular remodelling factors in control arteries. This minimised differences between patients and controls but underlines the relevance of changes observed. Dexamethasone downregulated pro-inflammatory mediator (IL-1β, IL-6, TNFα, IFNγ, MMP-9, TIMP-1, CCL3 and CXCL8) mRNAs but did not modify expression of vascular remodelling factors (platelet derived growth factor, MMP-2 and collagens I and III). CONCLUSIONS Differences in gene expression in temporal arteries from patients and controls are preserved during temporal artery culture in tri-dimensional matrix. Changes in biomarkers elicited by glucocorticoid treatment satisfactorily parallel results obtained in vivo. This may be a suitable model to explore pathogenetic pathways and to perform preclinical studies with new therapeutic agents.
Collapse
Affiliation(s)
- Marc Corbera-Bellalta
- Vasculitis Research Unit, Department of Systemic Autoimmune Diseases, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), , Barcelona, Catalonia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|