1
|
Ameri S, Stang J, Walsted E, Price OJ. Mechanisms and Biomarkers of Exercise-induced Bronchoconstriction: Current Insights and Future Directions. Immunol Allergy Clin North Am 2025; 45:63-75. [PMID: 39608880 DOI: 10.1016/j.iac.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Exercise-induced bronchoconstriction (EIB) refers to temporary lower airway narrowing that occurs during or after vigorous physical exertion, with a high incidence in athletes and individuals with pre-existing asthma. The pathophysiology of EIB is not completely understood, but it is thought to involve a complex interplay among airway epithelial changes, immune responses, and environmental interactions. Phenotypic differences are apparent among those affected by EIB. This clinical review aims to summarize the complex mechanisms underlying EIB, explore the role of biomarkers in the diagnosis and management, and identify current gaps in knowledge to pave the way for future scientific discoveries.
Collapse
Affiliation(s)
- Sammy Ameri
- Department of Respiratory Medicine, Bispebjerg Hospital, Bispebjerg Bakke 23, Building 66, København NV 2400, Denmark.
| | - Julie Stang
- Department of Sports Medicine, Norwegian School of Sport Sciences, Sognsveien 220, Oslo 0863, Norway
| | - Emil Walsted
- Department of Respiratory Medicine, Bispebjerg Hospital, Bispebjerg Bakke 23, Building 66, København NV 2400, Denmark
| | - Oliver J Price
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Department of Respiratory Medicine, Leeds Teaching Hospitals NHS Trust, UK
| |
Collapse
|
2
|
Santana AB, Spelta LE, Martinez-Sobalvarro JV, Garcia RCT, Dos Reis TM, Torres LHL. Gestational triclosan exposure and its effects on childneurodevelopment - A systematic review. Reprod Toxicol 2025; 132:108849. [PMID: 39892772 DOI: 10.1016/j.reprotox.2025.108849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
Triclosan (TCS) is a lipophilic antimicrobial agent present in commercial and healthcare products. Despite its beneficial properties, TCS disrupts thyroid hormone homeostasis and may be linked to metabolic disorders, cardiotoxicity, and increased cancer risk. Evidence on prenatal TCS exposure and adverse neurobehavioral outcomes is limited. This systematic review aimed to verify whether prenatal exposure to TCS is associated with neurobehavioral impairments. Observational studies with pregnant women exposed to TCS during pregnancy were included. The MEDLINE, EMBASE, Scopus, Web of Science, and LILACS databases were searched for studies up to February 27, 2024. Titles and abstracts were first screened, followed by full-text readings by two independent reviewers. Data extraction was performed independently, with conflicts resolved by consensus with a third reviewer. The included studies were assessed using an adapted Downs and Black tool and qualitatively synthesized. Certainty of evidence was assessed by GRADE. The study protocol was registered with PROSPERO (CRD42024526426). Among 17 studies, 14 cohort studies met the inclusion criteria. The sample size ranged from 193 to 794 pairs of pregnant women and children. Exposure to TCS throughout pregnancy resulted in median concentrations from 0.40 ng/mL to 28.2 ng/mL. Four studies suggested a potential association between prenatal TCS exposure and neurodevelopmental deficits, such as externalizing problems, attention issues, hyperactivity, somatization, emotional symptoms, social awareness, and communication; in contrast, eight studies found no significant effect. The studies had low certainty of evidence. Considering the heterogeneity and confounding factors, further investigation is required to confirm that prenatal TCS exposure leads to neurobehavioral disorders.
Collapse
Affiliation(s)
- Aleksander Brandão Santana
- Department of Food and Drugs, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Lídia EmmanuelaWiazowski Spelta
- Laboratory of Nuclear Medicine, Department of Radiology and Oncology, School of Medicine, University of São Paulo, Rua Dr. Ovidio Pires de Campos, 872, Cerqueira César, Brazil
| | - Joselin Valeska Martinez-Sobalvarro
- Department of Food and Drugs, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, MG, Brazil; Sector of Health Sciences, Pharmaceutical Sciences, Federal University of Paraná, Av. Mayor Lothário Meissner, 623 - Jardim Botânico, Curitiba, PR 80210-170, Brazil
| | - Raphael Caio Tamborelli Garcia
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, Diadema, SP, Brazil
| | - Tiago Marques Dos Reis
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, MG, Brazil
| | - Larissa Helena Lobo Torres
- Department of Food and Drugs, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, MG, Brazil.
| |
Collapse
|
3
|
Dickinson JW, Smyth CME, Winter SL. Breathing pattern changes in response to bronchoconstriction in physically active adults. J Asthma 2025; 62:14-23. [PMID: 39058599 DOI: 10.1080/02770903.2024.2383632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVES To determine whether Opto-Electronic Plethysmography (OEP) can distinguish Exercise-Induced Bronchoconstriction (EIB) breathing patterns by comparing individuals with and without EIB, and between broncho-constriction and recovery. Breathing pattern was quantified in terms of regional contribution, breathing timing, and the phase between chest sub-compartments which indicates the synchronization in movement of the different sub-compartments. METHODS Individuals (n = 47) reporting no respiratory symptoms and no history of any respiratory disease or disorder were assumed to have a healthy breathing pattern. Of 38 participants reporting respiratory symptoms during exercise, and/or a previous diagnosis of asthma or EIB, 10 participants had a positive result to the Eucapnic Voluntary Hyperpnea test, defined as a fall of at least 10% in FEV1 from baseline at two consecutive time points and were classified into the EIB group. OEP data was obtained from 89 markers and an 11-camera motion capture system operating at 100 Hz as follows: pre- and post-EVH challenge, and post-inhaler in participants who experienced a bronchoconstriction, and 2) for the healthy group during tidal breathing. RESULTS RCpRCa-Phase (upper versus lower ribcage), RCaS-Phase (lower ribcage versus shoulders), and RCpS-Phase (upper ribcage versus shoulders) differed between bronchoconstriction and rest in athletes with EIB and rest in healthy participants (p < 0.05), in all cases indicating greater asynchrony post-bronchoconstriction, and later movement of the abdominal ribcage (RCa) post-bronchoconstriction. RCpS-Phase was different (p < 0.05) between all conditions (rest, post-bronchoconstriction, and post-inhaler) in EIB. CONCLUSIONS OEP can characterize and distinguish EIB-associated breathing patterns compared to rest and individuals without EIB at rest.
Collapse
Affiliation(s)
- John W Dickinson
- School of Sport and Exercise Sciences, University of Kent, Canterbury, Kent, UK
| | - Carol M E Smyth
- School of Sport and Exercise Sciences, University of Kent, Canterbury, Kent, UK
| | - Samantha L Winter
- School of Sport, Exercise and Health Sciences, Loughborough University, National Centre for Sport and Exercise Medicine, Loughborough, UK
| |
Collapse
|
4
|
Hull JH, Williams ZJ, Jackson AR, Wootten M, Ranson C, Arnold L, Redgrave A. Respiratory problems in rowers: outcomes from a systematic assessment of an elite squad. Br J Sports Med 2024; 58:1478-1485. [PMID: 39122371 DOI: 10.1136/bjsports-2024-108542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/12/2024]
Abstract
OBJECTIVES To characterise the respiratory health of elite rowers using a systematic screening approach to assess respiratory health (SARAH) and identify the associations between SARAH findings and acute respiratory illness (ARI) and chest wall injury (CWI). METHODS A systematic screening approach was conducted in a cohort of elite rowers. The assessment employed validated respiratory questionnaires and multiple physiological measures. An analysis of ARI and CWI incidence and burden from the 18 months before the SARAH assessment was conducted. RESULTS Full respiratory surveillance was completed in 48 rowers (50% female, aged 27 [25-28] years). The incidence and burden of ARI were similar between male and female rowers. The incidence of CWI was greater in female rowers compared to males (1.6 versus 0.4 per 1000 athlete training days, respectively; incidence rate ratio of 4.3, 95% C.I. 1.5 to 12.2, p=0.005) and more common in younger rowers with greater lung function. SARAH detected at least one respiratory problem in 39 (81%) rowers, and two or more problems in 26 (54%). Sino-nasal problems (44%), allergy-related problems (42%) and breathing pattern disorder (42%) were the most prevalent problems identified. Exercise-associated cough was reported in 34 (71%) rowers, with objective evidence of asthma found in only five (10%). CONCLUSIONS In elite rowers, respiratory problems, including ARI and CWI, are common and impact health. A systematic screening approach identifies multiple underlying respiratory problems, presenting the opportunity to optimise athlete health and improve training availability.
Collapse
Affiliation(s)
- James H Hull
- Institute of Sport, Exercise and Health, University College London, London, UK
- UK Sports Institute, Manchester, UK
- Respiratory Medicine, Royal Brompton Hospital, London, UK
| | | | | | | | | | - Liz Arnold
- UK Sports Institute, Manchester, UK
- British Rowing, London, UK
| | | |
Collapse
|
5
|
Bostancı Ö, Karaduman E, Yılmaz AK, Kabadayı M, Bilgiç S. Midterm Effects of SARS-CoV-2 on Respiratory Function in Judokas With and Without Exercise-Induced Bronchoconstriction: A Retrospective Study. Clin J Sport Med 2024. [DOI: 10.1097/jsm.0000000000001312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/07/2023] [Indexed: 01/04/2025]
Abstract
Objectives:
The clinical consequences of coronavirus infection in elite judokas with exercise-induced bronchoconstriction (EIB) are unclear. We aimed to determine potential respiratory function abnormalities and recovery in athletes with and without EIB after severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection.
Design:
Retrospective cohort study.
Setting:
Türkiye Olympic Preparation Centre.
Participants:
This retrospective study analyzed data collected from 25 consecutive elite judokas diagnosed with and without EIB and SARS-CoV-2 infection, routinely followed at an Olympic Sports Center between September 2020 and 2021.
Independent Variables:
Respiratory muscle strength and pulmonary function data were collected before and up to 90 days after SARS-CoV-2 infection.
Main Outcome Measures:
Measurements included maximal inspiratory pressure (MIP), maximal expiratory pressure (MEP), forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), FEV1/FVC ratio, and peak expiratory flow (PEF).
Results:
Infected athletes with EIB had more markedly reduced respiratory muscle strength and pulmonary function than those without EIB. Maximal inspiratory pressure was decreased by 14% and MEP by 8% from baseline in infected athletes with EIB during follow-up. Likewise, FEV1 and FVC decreased by 4%. Maximal inspiratory pressure, MEP, FEV1, and FVC remained abnormal after 90 days of SARS-CoV-2 infection in EIB athletes but normalized rapidly in non-EIB athletes. Peak expiratory flow seemed unaffected during follow-up. Exercise-induced bronchoconstriction severity was moderately correlated with the maximum fall in MEP during follow-up.
Conclusions:
Severe acute respiratory syndrome coronavirus-2 infection notably decreases respiratory muscle strength and pulmonary function in judokas, especially those with pre-existing EIB, thereby prolonging spontaneous recovery time.
Collapse
Affiliation(s)
- Özgür Bostancı
- Faculty of Sport Sciences, University of Ondokuz Mayıs, Samsun, Türkiye; and
| | - Emre Karaduman
- Faculty of Sport Sciences, University of Ondokuz Mayıs, Samsun, Türkiye; and
| | - Ali Kerim Yılmaz
- Faculty of Sport Sciences, University of Ondokuz Mayıs, Samsun, Türkiye; and
| | - Menderes Kabadayı
- Faculty of Sport Sciences, University of Ondokuz Mayıs, Samsun, Türkiye; and
| | - Sait Bilgiç
- Faculty of Medicine, University of Ondokuz Mayıs, Samsun, Türkiye
| |
Collapse
|
6
|
Persch H, Bizjak DA, Takabayashi K, Schober F, Winkert K, Dreyhaupt J, Harps LC, Diel P, Parr MK, Zügel M, Steinacker JM. Left ventricular systolic function after inhalation of beta-2 agonists in healthy athletes. Sci Rep 2024; 14:23437. [PMID: 39379505 PMCID: PMC11461498 DOI: 10.1038/s41598-024-74095-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Inhaled beta-2 adrenoceptor agonists (iβ2A) are routinely used as bronchodilators in the treatment of asthma. However, their cardiac effects in athletes are scarcely examined. Thus, the aim of this study was to evaluate the effects of iβ2A on left ventricular (LV) systolic function (SF) by echocardiography in healthy, non-asthmatic female and male endurance athletes. A randomized, double-blinded, placebo-controlled, balanced, 4-way complete block cross-over study was conducted. Twenty-four healthy athletes (12f/12m: 22.9 ± 2.7/24.4 ± 4.6 years) randomly completed 4 study arms (placebo; salbutamol; formoterol; formoterol + salbutamol). After inhalation of the study medication, the participants performed a 10-min time trial (TT) on a bicycle ergometer. After each TT an echocardiography was performed to determine LVSF. Blood samples were collected pre, post, 3 h and 24 h post TT. In females, total serum concentrations for salbutamol and formoterol were higher. LV ejection fraction (LVEF) and LV global longitudinal strain (LVendoGLS) showed a treatment effect for the whole study group (p < 0.0001) and a sex effect on LVEF (p = 0.0085). In women, there was a significant treatment effect for all medication arms (at least p ≤ 0.01) both on LVEF and LVendoGLS. In men only formoterol and formoterol + salbutamol displayed a treatment effect on LVEF (p = 0.0427, p = 0.0330; respectively), whereas on LVendoGLS only formoterol + salbutamol was significant (p = 0.0473). The iβ2A significantly influenced LVSF after an acute bout of exercise in healthy endurance athletes. These effects were even more pronounced when combining both iβ2A that supports a dose-dependent effect on cardiac function. Moreover, female athletes had higher serum concentrations of β2 agonists and stronger effects on LVSF compared to male athletes. This is mainly explained by differences in body weight and related plasma volume and may indicate a potential risk when increasing dose above the tested concentrations. Trial registration: At the European Union Drug Regulating Authorities Clinical Trials (Eudra CT) with the number 201,500,559,819 (registered prospectively on 09/12/2015) and at the German register for clinical studies (DRKS number 00010574 registered retrospectively on 16/11/2021).
Collapse
Affiliation(s)
- H Persch
- Division of Sports and Rehabilitation Medicine, Center of Internal Medicine, Ulm University Hospital, Leimgrubenweg 14, 80975, Ulm, Germany.
| | - D A Bizjak
- Division of Sports and Rehabilitation Medicine, Center of Internal Medicine, Ulm University Hospital, Leimgrubenweg 14, 80975, Ulm, Germany
| | - K Takabayashi
- Division of Sports and Rehabilitation Medicine, Center of Internal Medicine, Ulm University Hospital, Leimgrubenweg 14, 80975, Ulm, Germany
- Hirakata Kohsai Hospital, Hirakata, Osaka, Japan
| | - F Schober
- Division of Sports and Rehabilitation Medicine, Center of Internal Medicine, Ulm University Hospital, Leimgrubenweg 14, 80975, Ulm, Germany
| | - K Winkert
- Division of Sports and Rehabilitation Medicine, Center of Internal Medicine, Ulm University Hospital, Leimgrubenweg 14, 80975, Ulm, Germany
| | - J Dreyhaupt
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - L C Harps
- Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Freie Universität Berlin, Berlin, Germany
| | - P Diel
- Institute for Cardiovascular Research and Sports Medicine, Department of Molecular and Cellular Sports Medicine, German Sports University Cologne, Cologne, Germany
| | - M K Parr
- Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Freie Universität Berlin, Berlin, Germany
| | - M Zügel
- Division of Sports and Rehabilitation Medicine, Center of Internal Medicine, Ulm University Hospital, Leimgrubenweg 14, 80975, Ulm, Germany
| | - J M Steinacker
- Division of Sports and Rehabilitation Medicine, Center of Internal Medicine, Ulm University Hospital, Leimgrubenweg 14, 80975, Ulm, Germany
| |
Collapse
|
7
|
Guidetti M, Marceglia S, Bocci T, Duncan R, Fasano A, Foote K, Hamani C, Krauss J, Kühn AA, Lena F, Limousin P, Lozano A, Maiorana N, Modugno N, Moro E, Okun M, Oliveri S, Santilli M, Schnitzler A, Temel Y, Timmermann L, Visser-Vandewalle V, Volkmann J, Priori A. Physical therapy in patients with Parkinson's disease treated with Deep Brain Stimulation: a Delphi panel study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.20.24314037. [PMID: 39399050 PMCID: PMC11469472 DOI: 10.1101/2024.09.20.24314037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Although deep brain stimulation of the subthalamic nucleus (STN-DBS) induces motor benefits in people with Parkinson's disease (PwPD), the size and duration of the effects of STN-DBS on motor axial (e.g., postural instability, trunk posture alterations) and gait impairments (e.g., freezing of gait - FOG) are still ambiguous. Physical therapy (PT) effectively complements pharmacological treatment to improve postural stability, gait performance, and other dopamine-resistant symptoms (e.g. festination, hesitation, axial motor dysfunctions, and FOG) in PwPD who are non-surgically treated. Despite the potential for positive adjuvant effects of PT following STN-DBS surgery, there is a paucity of science available on the topic. In such a scenario, gathering the opinion and expertise of leading investigators worldwide was pursued to study motor rehabilitation in PwPD following STN-DBS. After summarizing the few available findings through a systematic review, we identified clinical and academically experienced DBS clinicians (n=21) to discuss the challenges related to PT following STN-DBS. A 5-point Likert scale questionnaire was used and based on the results of the systematic review along with a Delphi method. Thirty-nine questions were submitted to the panel - half related to general considerations on PT following STN-DBS, half related to PT treatments. Despite the low-to-moderate quality, the few available rehabilitative studies suggested that PT could improve dynamic and static balance, gait performance and posture. Similarly, panellists strongly agreed that PT might help in improving motor symptoms and quality of life, and it may be possibly prescribed to maximize the effects of the stimulation. The experts agreed that physical therapists could be part of the multidisciplinary team taking care of the patients. Also, they agreed on prescribing of conventional PT, but not massage or manual therapy. Our results will inform the rehabilitation and the DBS community to engage, publish and deepen this area of research. Such efforts may spark guidelines for PT following STN-DBS.
Collapse
Affiliation(s)
- M. Guidetti
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - S. Marceglia
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - T. Bocci
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- Clinical Neurology Unit, “Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo”, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - R. Duncan
- Washington University in St. Louis, School of Medicine, Program in Physical Therapy, St. Louis, MO, USA
- Washington University in St. Louis, School of Medicine, Department of Neurology, St. Louis, MO, USA
| | - A. Fasano
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, ON, Canada
- KITE, University Health Network, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson’s Disease Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - K.D. Foote
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, 3011 SW Williston Rd, Gainesville, FL 32608, USA
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - C. Hamani
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, M4N 3M5, ON, Canada
- Harquail Centre for Neuromodulation, 2075 Bayview Avenue, Toronto, M4N 3M5, ON, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, M5T 1P5, ON, Canada
| | - J.K. Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - A. A. Kühn
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität, Berlin, Germany
- NeuroCure, Exzellenzcluster, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZNE, German Center for Neurodegenerative Diseases, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - F. Lena
- Department of Medicine and Health, University of Molise, 86100 Campobasso, Italy
- IRCCS INM Neuromed, 86077 Pozzilli, Italy
| | - P. Limousin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - A.M. Lozano
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - N.V. Maiorana
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - N. Modugno
- IRCCS INM Neuromed, 86077 Pozzilli, Italy
| | - E. Moro
- Division of Neurology, CHU of Grenoble, Grenoble Institute of Neurosciences, INSERM U1216, Grenoble Alpes University, Grenoble, France
| | - M.S. Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, United States
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, United States
| | - S. Oliveri
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- Clinical Neurology Unit, “Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo”, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | | | - A. Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - Y. Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - L. Timmermann
- Department of Neurology, University Hospital of Marburg, Marburg, Germany
| | - V. Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - J. Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - A. Priori
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- Clinical Neurology Unit, “Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo”, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| |
Collapse
|
8
|
Mackie MR, Schwellnus M, Thornton JS. Infographic. International Olympic Committee (IOC) consensus statement and clinical decision-making guide on acute respiratory illness in athletes. Br J Sports Med 2024; 58:1083-1086. [PMID: 39054045 DOI: 10.1136/bjsports-2024-108624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Affiliation(s)
- Mark R Mackie
- Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Martin Schwellnus
- Sport, Exercise Medicine and Lifestyle Institute, University of Pretoria, Faculty of Health Sciences, Pretoria, South Africa
- IOC Research Centre, Faculty of Health Sciences, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Jane S Thornton
- Western Centre for Public Health and Family Medicine, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada
| |
Collapse
|
9
|
Cohn RM, Neufeld EV, Goodwillie AD, Sgaglione NA. Management of Sideline Medical Emergencies. J Am Acad Orthop Surg 2024; 32:e839-e849. [PMID: 39150745 DOI: 10.5435/jaaos-d-24-00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/27/2024] [Indexed: 08/17/2024] Open
Abstract
Sideline medical care is typically provided by musculoskeletal specialists and orthopaedic surgeons with varying levels of training and experience. While the most common sports injuries are often benign, the potential for catastrophic injury is omnipresent. Prompt recognition of sideline emergencies and expeditious medical management are necessary to minimize the risk of calamitous events. Paramount to successful sideline coverage are both preseason and game-day preparations. Because the skillset needed for the sideline physician may involve management of injuries not commonly seen in everyday clinical practice, sideline providers should review basic life support protocols, spine boarding, and equipment removal related to their sport(s) before the season begins. Before every game, the medical bag should be adequately stocked, location of the automatic external defibrillator/emergency medical services identified, and introductions to the trainers, coaches, and referees made. In addition to musculoskeletal injuries, the sideline orthopaedic surgeon must also be acquainted with the full spectrum of nonmusculoskeletal emergencies spanning the cardiopulmonary, central nervous, and integumentary systems. Familiarity with anaphylaxis as well as abdominal and neck trauma is also critical. Prompt identification of potential life-threatening conditions, carefully orchestrated treatment, and the athlete's subsequent disposition are essential for the team physician to provide quality care.
Collapse
Affiliation(s)
- Randy M Cohn
- From the Northwell, New Hyde Park, NY (Dr. Cohn, Dr. Neufeld, Dr. Goodwillie, and Dr. Sgaglione), the Department of Orthopaedic Surgery, Long Island Jewish Valley Stream, Valley Stream, NY (Dr. Cohn), the Department of Orthopaedic Surgery, Long Island Jewish Medical Center, New Hyde Park, NY (Dr. Neufeld, Dr. Goodwillie, and Dr. Sgaglione), and the Donald and Barbara Zucker School of Medicine, Hofstra/Northwell, Hempstead, NY (Dr. Cohn, Dr. Neufeld, Dr. Goodwillie, and Dr. Sgaglione)
| | | | | | | |
Collapse
|
10
|
Wallbanks S, Griffiths B, Thomas M, Price OJ, Sylvester KP. Impact of environmental air pollution on respiratory health and function. Physiol Rep 2024; 12:e70006. [PMID: 39175108 PMCID: PMC11341277 DOI: 10.14814/phy2.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/24/2024] Open
Abstract
Environmental air pollution presents a considerable risk to global respiratory health. If critical levels are exceeded, inhaled pollutants can lead to the development of respiratory dysfunction and provoke exacerbation in those with pre-existing chronic respiratory disease. Over 90% of the global population currently reside in areas where environmental air pollution is considered excessive-with adverse effects ranging from acute airway irritation to complex immunomodulatory alterations. This narrative review provides an up-to-date perspective concerning the impact of environmental air pollution on respiratory health and function and describes the underpinning mechanisms that contribute to the development and progression of chronic respiratory disease.
Collapse
Affiliation(s)
- Samuel Wallbanks
- Birmingham Heartlands HospitalUniversity Hospitals BirminghamBirminghamUK
| | - Benjamin Griffiths
- School of Biomedical Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsUK
| | - Maximillian Thomas
- Respiratory PhysiologyUniversity Hospitals Sussex NHS Foundation TrustBrightonUK
| | - Oliver J. Price
- School of Biomedical Sciences, Faculty of Biological SciencesUniversity of LeedsLeedsUK
- Department of Respiratory MedicineLeeds Teaching Hospitals NHS TrustLeedsUK
| | - Karl P. Sylvester
- Respiratory PhysiologyPapworth Hospital NHS Foundation TrustCambridgeUK
- Respiratory PhysiologyCambridge University Hospitals NHS Foundation TrustCambridgeUK
| |
Collapse
|
11
|
Mougin L, Bougault V, Racinais S, Mountjoy ML, Stephenson B, Carter S, James LJ, Mears SA, Taylor L. Environmental challenges facing athletes, stakeholders and spectators at Paris 2024 Olympic and Paralympic Games: an evidence-based review of mitigation strategies and recommendations. Br J Sports Med 2024; 58:870-881. [PMID: 38955507 DOI: 10.1136/bjsports-2024-108281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2024] [Indexed: 07/04/2024]
Abstract
The upcoming Paris 2024 Olympic and Paralympic Games could face environmental challenges related to heat, air quality and water quality. These challenges will pose potential threats to athletes and impact thousands of stakeholders and millions of spectators. Recognising the multifaceted nature of these challenges, a range of strategies will be essential for mitigating adverse effects on participants, stakeholders and spectators alike. From personalised interventions for athletes and attendees to comprehensive measures implemented by organisers, a holistic approach is crucial to address these challenges and the possible interplay of heat, air and water quality factors during the event. This evidence-based review highlights various environmental challenges anticipated at Paris 2024, offering strategies applicable to athletes, stakeholders and spectators. Additionally, it provides recommendations for Local Organising Committees and the International Olympic Committee that may be applicable to future Games. In summary, the review offers solutions for consideration by the stakeholders responsible for and affected by the anticipated environmental challenges at Paris 2024.
Collapse
Affiliation(s)
- Loïs Mougin
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
| | | | - Sébastien Racinais
- Environmental Stress Unit, CREPS Montpellier Font-Romeu, Montpellier, France
- DMEM, UMR 866 INRAE / University of Montpellier, Montpellier, France
| | - Margo L Mountjoy
- Department of Family Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Ben Stephenson
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
- UK Sports Institute, Loughborough, UK
| | - Sarah Carter
- Faculty of Health, Exercise and Sports Science, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Lewis J James
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
| | - Stephen A Mears
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
| | - Lee Taylor
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
- University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Csoma BALÁ, Sydó N, SZŰcs G, Seres É, Erdélyi T, Horváth G, Csulak E, Merkely B, Müller V. Exhaled and Systemic Biomarkers to Aid the Diagnosis of Bronchial Asthma in Elite Water Sports Athletes. Med Sci Sports Exerc 2024; 56:1256-1264. [PMID: 38650115 DOI: 10.1249/mss.0000000000003419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
PURPOSE Our aim was to evaluate the accuracy of a combined airway inflammatory biomarker assessment in diagnosing asthma in elite water sports athletes. METHODS Members of the Hungarian Olympic and Junior Swim Team and elite athletes from other aquatic disciplines were assessed for asthma by objective lung function measurements, and blood eosinophil count (BEC), serum total immunoglobulin E (IgE), fractional exhaled nitric oxide (F ENO ) measurements, and skin prick testing were performed. A scoring system from BEC, F ENO , serum IgE, and skin test positivity was constructed by dichotomizing the variables and assigning a score of 1 if the variable is elevated. These scores were summed to produce a final composite score ranging from 0 to 4. RESULTS A total of 48 participants were enrolled (age 21 ± 4 yr, 42% male), of which 22 were diagnosed with asthma. Serum total IgE and F ENO levels were higher in asthmatic individuals (68 [27-176] vs 24 [1-43], P = 0.01; 20 [17-26] vs 15 [11-22], P = 0.02), and positive prick test was also more frequent (55% vs 8%, P < 0.01). Asthmatic participants had higher composite variable scores (2 [1-3] vs 1 [0-1], P = 0.02). Receiver operating characteristic analysis showed that total IgE, F ENO , and composite variable were suitablefor identifying asthmatic participants (area under the curve = 0.72, P = 0.01; 0.70, P = 0.02, and 0.69, P = 0.03). A composite score of >2 reached a specificity of 96.2%, a sensitivity of 36.4%, and a likelihood ratio of 9.5. Logistic regression model revealed a strong association between the composite variable and the asthma diagnosis (OR = 2.71, 95% confidence interval = 1.17-6.23, P = 0.02). CONCLUSIONS Our data highlight the diagnostic value of combined assessment of Th2-type inflammation in elite water sports athletes. The proposed scoring system may be helpful in ruling in asthma in this population upon clinical suspicion.
Collapse
Affiliation(s)
- BALÁzs Csoma
- Department of Pulmonology, Semmelweis University, Budapest, HUNGARY
| | - Nóra Sydó
- Heart and Vascular Centre, Semmelweis University, Budapest, HUNGARY
| | - Gergő SZŰcs
- Department of Pulmonology, Semmelweis University, Budapest, HUNGARY
| | - Éva Seres
- Department of Pulmonology, Semmelweis University, Budapest, HUNGARY
| | - Tamás Erdélyi
- Department of Pulmonology, Semmelweis University, Budapest, HUNGARY
| | - Gábor Horváth
- Department of Pulmonology, Semmelweis University, Budapest, HUNGARY
| | - Emese Csulak
- Heart and Vascular Centre, Semmelweis University, Budapest, HUNGARY
| | - Béla Merkely
- Heart and Vascular Centre, Semmelweis University, Budapest, HUNGARY
| | - Veronika Müller
- Department of Pulmonology, Semmelweis University, Budapest, HUNGARY
| |
Collapse
|
13
|
Ora J, De Marco P, Gabriele M, Cazzola M, Rogliani P. Exercise-Induced Asthma: Managing Respiratory Issues in Athletes. J Funct Morphol Kinesiol 2024; 9:15. [PMID: 38249092 PMCID: PMC10801521 DOI: 10.3390/jfmk9010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Asthma is a complex respiratory condition characterized by chronic airway inflammation and variable expiratory airflow limitation, affecting millions globally. Among athletes, particularly those competing at elite levels, the prevalence of respiratory conditions is notably heightened, varying between 20% and 70% across specific sports. Exercise-induced bronchoconstriction (EIB) is a common issue among athletes, impacting their performance and well-being. The prevalence rates vary based on the sport, training environment, and genetics. Exercise is a known trigger for asthma, but paradoxically, it can also improve pulmonary function and alleviate EIB severity. However, athletes' asthma phenotypes differ, leading to varied responses to medications and challenges in management. The unique aspects in athletes include heightened airway sensitivity, allergen, pollutant exposure, and temperature variations. This review addresses EIB in athletes, focusing on pathogenesis, diagnosis, and treatment. The pathogenesis of EIB involves complex interactions between physiological and environmental factors. Airway dehydration and cooling are key mechanisms, leading to osmotic and thermal theories. Airway inflammation and hyper-responsiveness are common factors. Elite athletes often exhibit distinct inflammatory responses and heightened airway sensitivity, influenced by sport type, training, and environment. Swimming and certain sports pose higher EIB risks, with chlorine exposure in pools being a notable factor. Immune responses, lung function changes, and individual variations contribute to EIB in athletes. Diagnosing EIB in athletes requires objective testing, as baseline lung function tests can yield normal results. Both EIB with asthma (EIBA) and without asthma (EIBwA) must be considered. Exercise and indirect bronchoprovocation tests provide reliable diagnoses. In athletes, exercise tests offer effectiveness in diagnosing EIB. Spirometry and bronchodilation tests are standard approaches, but the diagnostic emphasis is shifting toward provocation tests. Despite its challenges, achieving an optimal diagnosis of EIA constitutes the cornerstone for effective management, leading to improved performance, reduced risk of complications, and enhanced quality of life. The management of EIB in athletes aligns with the general principles for symptom control, prevention, and reducing complications. Non-pharmacological approaches, including trigger avoidance and warming up, are essential. Inhaled corticosteroids (ICS) are the cornerstone of asthma therapy in athletes. Short-acting beta agonists (SABA) are discouraged as sole treatments. Leukotriene receptor antagonists (LTRA) and mast cell stabilizing agents (MCSA) are potential options. Optimal management improves the athletes' quality of life and allows them to pursue competitive sports effectively.
Collapse
Affiliation(s)
- Josuel Ora
- Division of Respiratory Medicine, University Hospital “Tor Vergata”, 00133 Rome, Italy
| | - Patrizia De Marco
- Division of Respiratory Medicine, University Hospital “Tor Vergata”, 00133 Rome, Italy
| | - Mariachiara Gabriele
- Division of Respiratory Medicine, University Hospital “Tor Vergata”, 00133 Rome, Italy
| | - Mario Cazzola
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Paola Rogliani
- Division of Respiratory Medicine, University Hospital “Tor Vergata”, 00133 Rome, Italy
- Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
14
|
Hostrup M, Hansen ESH, Rasmussen SM, Jessen S, Backer V. Asthma and exercise-induced bronchoconstriction in athletes: Diagnosis, treatment, and anti-doping challenges. Scand J Med Sci Sports 2024; 34:e14358. [PMID: 36965010 DOI: 10.1111/sms.14358] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 02/14/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
Athletes often experience lower airway dysfunction, such as asthma and exercise-induced bronchoconstriction (EIB), which affects more than half the athletes in some sports, not least in endurance sports. Symptoms include coughing, wheezing, and breathlessness, alongside airway narrowing, hyperresponsiveness, and inflammation. Early diagnosis and management are essential. Not only because untreated or poorly managed asthma and EIB potentially affects competition performance and training, but also because untreated airway inflammation can result in airway epithelial damage, remodeling, and fibrosis. Asthma and EIB do not hinder performance, as advancements in treatment strategies have made it possible for affected athletes to compete at the highest level. However, practitioners and athletes must ensure that the treatment complies with general guidelines and anti-doping regulations to prevent the risk of a doping sanction because of inadvertently exceeding specified dosing limits. In this review, we describe considerations and challenges in diagnosing and managing athletes with asthma and EIB. We also discuss challenges facing athletes with asthma and EIB, while also being subject to anti-doping regulations.
Collapse
Affiliation(s)
- Morten Hostrup
- The August Krogh Section, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Erik S H Hansen
- Centre for Physical Activity Research (CFAS), Rigshospitalet, Copenhagen, Denmark
| | - Søren M Rasmussen
- Centre for Physical Activity Research (CFAS), Rigshospitalet, Copenhagen, Denmark
- Medical Department, Nykøbing Falster Hospital, Nykøbing Falster, Denmark
| | - Søren Jessen
- The August Krogh Section, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Vibeke Backer
- Centre for Physical Activity Research (CFAS), Rigshospitalet, Copenhagen, Denmark
- Department of Otorhinolaryngology Head & Neck Surgery and Audiology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
15
|
He T, Song T. Exercise-induced bronchoconstriction in elite athletes: a narrative review. PHYSICIAN SPORTSMED 2023; 51:549-557. [PMID: 36373406 DOI: 10.1080/00913847.2022.2148137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Exercise-induced bronchoconstriction (EIB) is the most common chronic disease among elite athletes and when left untreated, can impact both respiratory health and sports performance. In recent years, there has been an increase in the awareness and detection of EIB in elite athletes. This narrative review aims to evaluate the risk, prevention, diagnosis, medication, and anti-doping policies of EIB in elite athletes, and to provide more references for athletes with EIB. The results showed that athletes of endurance, winter, and water sports generally have a higher prevalence of EIB than athletes of other sports. Adaptive warm-up before formal exercise and using heat exchange masks at low temperatures are effective ways for athletes to prevent EIB. For physicians, the exercise challenge test and eucapnic voluntary hyperpnea are the recommended diagnostic methods for EIB in athletes. The treatment of athletes with EIB is medication-based, such as inhaled corticosteroids and beta-2 agonists, but current anti-doping policies should be considered when used.
Collapse
Affiliation(s)
- Tianchang He
- Department of research, Shenyang Sport University, Shenyang, Liaoning, China
| | - Tienan Song
- Department of research, Shenyang Sport University, Shenyang, Liaoning, China
| |
Collapse
|
16
|
Wang L, Wu S, He B, Liu S, Liang S, Luo Y. Exercise-induced bronchoconstriction assessed by a ratio of surface diaphragm EMG to tidal volume. Physiol Rep 2023; 11:e15860. [PMID: 37960999 PMCID: PMC10643992 DOI: 10.14814/phy2.15860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Exercise-induced bronchoconstriction (EIB) is usually assessed by changes in forced expiratory volume in 1 s (FEV1 ) which is effort dependent. The purpose of this study was to determine whether the diaphragm electromyogram (EMGdi ) recorded from chest wall surface electrodes could be used to reflect changes in airway resistance during an exercise challenge test and to distinguish patients with EIB from those without EIB. Ninety participants with or without asthma history were included in the study. FEV1 was recorded before and 5, 10, 15, and 20 min after exercise. EIB was defined as an FEV1 decline greater than 10% after exercise. A ratio of root mean square of EMGdi to tidal volume (EMGdi /VT ) was used to assess changes in airway resistance. Based on changes in FEV1 , 25 of 90 participants exhibited EIB; the remainder were defined as non-EIB participants. EMGdi /VT in EIB increased by 124% (19%-478%) which was significantly higher than that of 21% (-39% to 134%) in non-EIB participants (p < 0.001). At the optimal cutoff point (54% in EMGdi /VT ), the area under the ROC curve (AUC) for detection of a positive test was 0.92 (p < 0.001) with sensitivity 92% and specificity 88%. EMGdi /VT can be used to assess changes in airway resistance after exercise and could be used to distinguish participants with EIB from those without EIB.
Collapse
Affiliation(s)
- Lishuang Wang
- State Key Laboratory of Respiratory DiseaseGuangzhou Medical UniversityGuangzhouChina
| | - Senrui Wu
- State Key Laboratory of Respiratory DiseaseGuangzhou Medical UniversityGuangzhouChina
| | - Baiting He
- State Key Laboratory of Respiratory DiseaseGuangzhou Medical UniversityGuangzhouChina
| | - Simin Liu
- State Key Laboratory of Respiratory DiseaseGuangzhou Medical UniversityGuangzhouChina
| | - Shanfeng Liang
- State Key Laboratory of Respiratory DiseaseGuangzhou Medical UniversityGuangzhouChina
| | - Yuanming Luo
- State Key Laboratory of Respiratory DiseaseGuangzhou Medical UniversityGuangzhouChina
- Division of Sleep and Circadian DisordersBrigham and Women's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
- College of Medicine and Public Health, Adelaide Institute for Sleep HealthFlinders UniversityAdelaideSouth AustraliaAustralia
| |
Collapse
|
17
|
Price OJ, Del Giacco S, Gawlik R, Janson C, Odemyr M, Papadopoulos NG, Bonini M. Exercise and physical activity for asthma management: The European Academy of Allergy and Clinical Immunology perspective. Allergy 2023; 78:2823-2825. [PMID: 37340667 DOI: 10.1111/all.15789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/19/2023] [Accepted: 06/11/2023] [Indexed: 06/22/2023]
Affiliation(s)
- Oliver J Price
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Department of Respiratory Medicine, Leeds Teaching Hospital NHS Trust, Leeds, UK
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health and Unit of Allergy and Clinical Immunology, University Hospital "Duilio Casula", University of Cagliari, Cagliari, Italy
| | | | - Christer Janson
- Department of Medical Sciences, Respiratory, Allergy and Sleep Research, Uppsala University, Uppsala, Sweden
| | - Mikaela Odemyr
- EFA European Federation of Allergy and Airways Diseases Patients' Associations, Brussels, Belgium
| | - Nikolaos G Papadopoulos
- Allergy Department, 2nd Pediatric Clinic, National Kapodistrian University of Athens, Athens, Greece
| | - Matteo Bonini
- Fondazione Policlinico Universitario A. Gemelli - IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
- National Heart and Lung Institute (NHLI), Imperial College London, London, UK
| |
Collapse
|
18
|
Jong M, Hanstock HG, Stenfors N, Ainegren M. Elite skiers' experiences of heat- and moisture-exchanging devices and training and competition in the cold: A qualitative survey. Health Sci Rep 2023; 6:e1511. [PMID: 37662540 PMCID: PMC10469044 DOI: 10.1002/hsr2.1511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Background and Aims Winter endurance athletes have a high prevalence of exercise-induced bronchoconstriction (EIB) and asthma, probably due to repeated and prolonged inhalation of cold and dry air. Heat- and moisture-exchanging devices (HME) warm and humidify inhaled air and prevent EIB. The aim of this study was to share cross-country skiers and biathletes' experiences of training and competition in low temperatures, views on temperature limits, usage of HME, and consequences of cold exposure on their health. Methods Eleven Swedish World Championship or Olympic medalists in cross-country skiing and biathlon were interviewed and transcripts were analyzed using qualitative content analysis. Results Participants described how cold temperatures predominantly affected the airways, face, and extremities. During training, extreme cold was managed by choosing warmer clothing, modification of planned sessions, use of HME, delaying training, or changing location. In competition, participants described limited possibility for such choices and would prefer adjustment of existing rules (i.e., more conservative temperature limits), especially since they understood elite skiing in low temperatures to present an occupational hazard to their health. Participants had at times used HMEs during training in cold environments but described mixed motives for their use-that HMEs warm and humidify cold inhaled air but introduce additional resistance to breathing and can cause problems due to mucus and ice build-up. Skiers also perceived that they had become more sensitive to cold during the latter part of their careers. Conclusions The present study gives a unique insight into the "cold" reality of being an elite athlete in skiing and biathlon. Cold exposure results in negative health consequences that are preventable, which means that rules must be followed, and organizers should acknowledge responsibility in protecting athletes from occupational hazards. Development of evidence-based guidelines for protection of athletes' respiratory health should be a focus for future translational research.
Collapse
Affiliation(s)
- Mats Jong
- Department of Health Sciences/Public Health, Swedish Winter Sports Research CentreMid Sweden UniversityÖstersundSweden
| | - Helen G. Hanstock
- Department of Health Sciences/Public Health, Swedish Winter Sports Research CentreMid Sweden UniversityÖstersundSweden
| | - Nikolai Stenfors
- Department of Public Health and Clinical Medicine, Division of MedicineUmeå UniversityUmeåSweden
| | - Mats Ainegren
- Department of Engineering, Mathematics, and Science Education, SportsTech Research CentreMid Sweden UniversityÖstersundSweden
| |
Collapse
|
19
|
Bizjak DA, Nussbaumer D, Winkert K, Treff G, Takabajashi K, Mentz L, Schober F, Buhl JL, John L, Dreyhaupt J, Steeb L, Harps LC, Parr MK, Diel P, Zügel M, Steinacker JM. Acute Effects of Single Versus Combined Inhaled β2-Agonists Salbutamol and Formoterol on Time Trial Performance, Lung Function, Metabolic and Endocrine Variables. SPORTS MEDICINE - OPEN 2023; 9:79. [PMID: 37640958 PMCID: PMC10462601 DOI: 10.1186/s40798-023-00630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND High prevalence rates of β2-agonist use among athletes in competitive sports makes it tempting to speculate that illegitimate use of β2-agonists boosts performance. However, data regarding the potential performance-enhancing effects of inhaled β2-agonists and its underlying molecular basis are scarce. METHODS In total, 24 competitive endurance athletes (12f/12m) participated in a clinical double-blinded balanced four-way block cross-over trial to investigate single versus combined effects of β2-agonists salbutamol (SAL) and formoterol (FOR), to evaluate the potential performance enhancement of SAL (1200 µg, Cyclocaps, Pb Pharma GmbH), FOR (36 µg, Sandoz, HEXAL AG) and SAL + FOR (1200 µg + 36 µg) compared to placebo (PLA, Gelatine capsules containing lactose monohydrate, Pharmacy of the University Hospital Ulm). Measurements included skeletal muscle gene and protein expression, endocrine regulation, urinary/serum β2-agonist concentrations, cardiac markers, cardiopulmonary and lung function testing and the 10-min time trial (TT) performance on a bicycle ergometer as outcome variables. Blood and urine samples were collected pre-, post-, 3 h post- and 24 h post-TT. RESULTS Mean power output during TT was not different between study arms. Treatment effects regarding lung function (p < 0.001), echocardiographic (left ventricular end-systolic volume p = 0.037; endocardial global longitudinal strain p < 0.001) and metabolic variables (e.g. NR4A2 and ATF3 pathway) were observed without any influence on performance. In female athletes, total serum β2-agonist concentrations for SAL and FOR were higher. Microarray muscle gene analysis showed a treatment effect for target genes in energy metabolism with strongest effect by SAL + FOR (NR4A2; p = 0.001). Of endocrine variables, follicle-stimulating hormone (3 h Post-Post-TT), luteinizing hormone (3 h Post-Pre-TT) and insulin (Post-Pre-TT) concentrations showed a treatment effect (all p < 0.05). CONCLUSIONS No endurance performance-enhancing effect for SAL, FOR or SAL + FOR within the permitted dosages compared to PLA was found despite an acute effect on lung and cardiac function as well as endocrine and metabolic variables in healthy participants. The impact of combined β2-agonists on performance and sex-specific thresholds on the molecular and cardiac level and their potential long-term performance enhancing or health effects have still to be determined. TRIAL REGISTRATION Registered at Eudra CT with the number: 2015-005598-19 (09.12.2015) and DRKS with number DRKS00010574 (16.11.2021, retrospectively registered).
Collapse
Affiliation(s)
- Daniel A Bizjak
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, University Hospital Ulm, 89075, Ulm, Germany.
| | - Dorle Nussbaumer
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, University Hospital Ulm, 89075, Ulm, Germany
| | - Kay Winkert
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, University Hospital Ulm, 89075, Ulm, Germany
| | - Gunnar Treff
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, University Hospital Ulm, 89075, Ulm, Germany
- Institute of Sports Medicine, Paracelsus Medical University Salzburg, 5020, Salzburg, Austria
| | - Kensuke Takabajashi
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, University Hospital Ulm, 89075, Ulm, Germany
| | - Lennart Mentz
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, University Hospital Ulm, 89075, Ulm, Germany
| | - Franziska Schober
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, University Hospital Ulm, 89075, Ulm, Germany
| | - Jasmine-Lèonike Buhl
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, University Hospital Ulm, 89075, Ulm, Germany
| | - Lucas John
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, University Hospital Ulm, 89075, Ulm, Germany
| | - Jens Dreyhaupt
- Institute of Epidemiology and Medical Biometry, Ulm University, 89075, Ulm, Germany
| | - Luise Steeb
- Institute of Epidemiology and Medical Biometry, Ulm University, 89075, Ulm, Germany
| | - Lukas C Harps
- Pharmaceutical Analysis and Metabolism, Institute of Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Maria K Parr
- Pharmaceutical Analysis and Metabolism, Institute of Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
| | - Patrick Diel
- Institute of Cardiovascular Research and Sports Medicine, Molecular and Cellular Sports Medicine, German Sport University Cologne, 50933, Cologne, Germany
| | - Martina Zügel
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, University Hospital Ulm, 89075, Ulm, Germany
| | - Jürgen M Steinacker
- Department of Internal Medicine, Division of Sports and Rehabilitation Medicine, University Hospital Ulm, 89075, Ulm, Germany
| |
Collapse
|
20
|
Hull JH, Koehle MS. Air athletes breathe: weighing benefits against harm. Thorax 2023; 78:743-744. [PMID: 37290922 DOI: 10.1136/thorax-2023-220210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 06/10/2023]
Affiliation(s)
- James H Hull
- Respiratory Medicine, Royal Brompton Hospital, London, UK
- Institute of Sport, Exercise and Health (ISEH), UCL, London, UK
| | - Michael Stephen Koehle
- Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Sports Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
Goossens J, Jonckheere AC, Seys SF, Dilissen E, Decaesteker T, Goossens C, Peers K, Vanbelle V, Stappers J, Aertgeerts S, De Wilde B, Leus J, Verelst S, Raes M, Dupont L, Bullens DM. Activation of epithelial and inflammatory pathways in adolescent elite athletes exposed to intense exercise and air pollution. Thorax 2023; 78:775-783. [PMID: 36927754 PMCID: PMC10359548 DOI: 10.1136/thorax-2022-219651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/07/2023] [Indexed: 03/18/2023]
Abstract
RATIONALE Participation in high-intensity exercise in early life might act as stressor to the airway barrier. OBJECTIVES To investigate the effect of intense exercise and associated exposure to air pollution on the airway barrier in adolescent elite athletes compared with healthy controls and to study exercise-induced bronchoconstriction (EIB) in this population. METHODS Early-career elite athletes attending 'Flemish-Elite-Sports-Schools' (12-18 years) of 4 different sport disciplines (n=90) and control subjects (n=25) were recruited. Presence of EIB was tested by the eucapnic voluntary hyperventilation (EVH) test. Markers at mRNA and protein level; RNA-sequencing; carbon load in airway macrophages were studied on induced sputum samples. RESULTS 444 genes were differentially expressed in sputum from athletes compared with controls, which were related to inflammation and epithelial cell damage and sputum samples of athletes contained significantly more carbon loaded airway macrophages compared with controls (24%, 95% CI 20% to 36%, p<0.0004). Athletes had significantly higher substance P (13.3 pg/mL, 95% CI 2.0 to 19.2) and calprotectin (1237 ng/mL, 95% CI 531 to 2490) levels as well as IL-6, IL-8 and TNF-α mRNA levels compared with controls (p<0.05). The incidence of EIB in athletes was 9%. The maximal fall in forced expiratory volume in 1 s (%) after EVH test in athletes was significantly associated with prior PM10 and PM2.5 exposure. CONCLUSION Early-career elite athletes showed increased markers of air pollution exposure, epithelial damage and airway inflammation compared with controls. Acute exposure to increased air pollution PM10 levels was linked to increased airway hyper-reactivity. TRIAL REGISTRATION NUMBER NCT03587675.
Collapse
Affiliation(s)
- Janne Goossens
- Allergy and Clinical Immunology Research Group, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Anne-Charlotte Jonckheere
- Allergy and Clinical Immunology Research Group, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Sven F Seys
- Allergy and Clinical Immunology Research Group, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Ellen Dilissen
- Allergy and Clinical Immunology Research Group, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Tatjana Decaesteker
- Allergy and Clinical Immunology Research Group, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Camille Goossens
- Allergy and Clinical Immunology Research Group, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Koen Peers
- Sport Medical Advice Centre, University Hospitals Leuven, Leuven, Belgium
| | | | | | - Sven Aertgeerts
- Academic Centre for General Practitioners, Catholic University, Leuven, Belgium
| | | | - Jasmine Leus
- Pediatric Allergy, AZ Maria Middelares, Sint-Niklaas, Belgium
- Clinical Division of Paediatrics, Katholieke Universiteit, Leuven, Flanders, Belgium
| | - Sophie Verelst
- Clinical Division of Paediatrics, Katholieke Universiteit, Leuven, Flanders, Belgium
- Pediatrics, Jessa Hospital Campus Virga Jesse, Hasselt, Belgium
| | - Marc Raes
- Clinical Division of Paediatrics, Katholieke Universiteit, Leuven, Flanders, Belgium
- Pediatrics, Jessa Hospital Campus Virga Jesse, Hasselt, Belgium
| | - Lieven Dupont
- Department of Respiratory Medicine, University Hospital Gasthuisberg, Leuven, Belgium
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Dominique M Bullens
- Allergy and Clinical Immunology Research Group, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
- Clinical Division of Paediatrics, Katholieke Universiteit, Leuven, Flanders, Belgium
| |
Collapse
|
22
|
Reier-Nilsen T, Stang JS, Flatsetøy H, Isachsen M, Ljungberg H, Bahr R, Nordlund B. Unsupervised field-based exercise challenge tests to support the detection of exercise-induced lower airway dysfunction in athletes. BMJ Open Sport Exerc Med 2023; 9:e001680. [PMID: 37520311 PMCID: PMC10373716 DOI: 10.1136/bmjsem-2023-001680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2023] [Indexed: 08/01/2023] Open
Abstract
Background Athletes are at risk for developing exercise-induced lower airway narrowing. The diagnostic assessment of such lower airway dysfunction (LAD) requires an objective bronchial provocation test (BPT). Objectives Our primary aim was to assess if unsupervised field-based exercise challenge tests (ECTs) could confirm LAD by using app-based spirometry. We also aimed to evaluate the diagnostic test performance of field-based and sport-specific ECTs, compared with established eucapnic voluntary hyperpnoea (EVH) and methacholine BPT. Methods In athletes with LAD symptoms, sensitivity and specificity analyses were performed to compare outcomes of (1) standardised field-based 8 min ECT at 85% maximal heart rate with forced expiratory volume in 1 s (FEV1) measured prechallenge and 1 min, 3 min, 5 min, 10 min, 15 min and 30 min postchallenge, (2) unstandardised field-based sport-specific ECT with FEV1 measured prechallenge and within 10 min postchallenge, (3) EVH and (4) methacholine BPT. Results Of 60 athletes (median age 17.5; range 16-28 years.; 40% females), 67% performed winter-sports, 43% reported asthma diagnosis. At least one positive BPT was observed in 68% (n=41/60), with rates of 51% (n=21/41) for standardised ECT, 49% (n=20/41) for unstandardised ECT, 32% (n=13/41) for EVH and methacholine BPT, while both standardised and unstandardised ECTs were simultaneously positive in only 20% (n=7/35). Standardised and unstandardised ECTs confirmed LAD with 54% sensitivity and 70% specificity, and 46% sensitivity and 68% specificity, respectively, using EVH as a reference, while EVH and methacholine BPT were both 33% sensitive and 85% specific, using standardised ECTs as reference. Conclusion App-based spirometry for unsupervised field-based ECTs may support the diagnostic process in athletes with LAD symptoms. Trial registration number NCT04275648.
Collapse
Affiliation(s)
- Tonje Reier-Nilsen
- The Norwegian Olympic Sports Centre, Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway
- Oslo Sports Trauma Research Center, Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway
| | - Julie Sørbø Stang
- Department of Sports Medicine, Norwegian School of Sports Sciences, Oslo, Norway
| | - Hanne Flatsetøy
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Martine Isachsen
- Department of Women’s and Children’s Health, Karolinska Institute, Stockholm, Sweden
| | - Henrik Ljungberg
- Department of Women’s and Children’s Health, Karolinska Institute, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Stockholm, Sweden
| | - Roald Bahr
- The Norwegian Olympic Sports Centre, Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway
- Oslo Sports Trauma Research Center, Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway
| | - Björn Nordlund
- Department of Women’s and Children’s Health, Karolinska Institute, Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Stockholm, Sweden
| |
Collapse
|
23
|
Ersson K, Mallmin E, Nordang L, Malinovschi A, Johansson H. A longitudinal study of exercise-induced bronchoconstriction and laryngeal obstruction in high school athletes. Scand J Med Sci Sports 2023. [PMID: 37082779 DOI: 10.1111/sms.14373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Exercise-induced bronchoconstriction (EIB) and exercise-induced laryngeal obstruction (EILO) are common in elite athletes. Knowledge of which factors are related to incident EIB and EILO is limited. The aim of this study was to explore the course of EIB and EILO in adolescent athletes over a 2 years period and baseline characteristics related to incident EIB. METHODS Questionnaire data on respiratory symptoms, asthma, and aeroallergy and results of objective EIB and EILO tests were collected from 58 participants (27 tested for EILO) at baseline and after 2 years (follow-up). Associations between incident EIB and baseline asthma-like symptoms, exercise-induced symptoms, fractional exhaled nitric oxide (FeNO), aeroallergy, and sex were assessed using logistic regression models. RESULTS Ten participants had incident EIB, and eight participants had persistent EIB. Five were EIB positive at baseline but negative at follow-up, while 35 participants were EIB negative at both time points. Having incident EIB was associated with reporting waking up with chest tightness (OR = 4.38; 95% CI: 1.06, 22.09). Reporting an increased number of asthma-like symptoms increased the likelihood of incident EIB (OR = 2.78; 95% CI: 1.16, 6.58). No associations were found between exercise-induced symptoms, FeNO, aeroallergy, or sex and incident EIB. Incident EILO was found in three and persistent EILO in two of the 27 participants tested. CONCLUSION Two in nine had incident EIB and one eighth had incident EILO, suggesting that recurrent testing for EIB and EILO may be relevant in young athletes. Particularly, EIB-negative athletes reporting multiple asthma-like symptoms could benefit from recurrent EIB testing.
Collapse
Affiliation(s)
- Karin Ersson
- Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala, Sweden
- Department of Women's and Children's Health, Physiotherapy, Uppsala University, Uppsala, Sweden
| | - Elisabet Mallmin
- Department of Surgical Sciences, Otorhinolaryngology and Head & Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Leif Nordang
- Department of Surgical Sciences, Otorhinolaryngology and Head & Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Andrei Malinovschi
- Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala, Sweden
| | - Henrik Johansson
- Department of Medical Sciences, Clinical Physiology, Uppsala University, Uppsala, Sweden
- Department of Women's and Children's Health, Physiotherapy, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Respiratory-, Allergy- and Sleep Research, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Price OJ, Simpson AJ. Exercise and asthma - Trigger or treatment? Respir Med 2023; 213:107247. [PMID: 37086818 DOI: 10.1016/j.rmed.2023.107247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/16/2023] [Accepted: 04/03/2023] [Indexed: 04/24/2023]
Abstract
Exercise is one of the most commonly reported symptom triggers for people with asthma. However, a growing body of evidence indicates that regular exercise and physical activity are associated with improved clinical and patient reported outcomes. In this article, we summarise and consolidate recent original studies evaluating exercise and physical activity profiles in people with asthma and provide an up-to-date perspective concerning the role of exercise training and physical activity promotion in the context of asthma management. To conclude, we identify key unmet needs and provide directions for future research.
Collapse
Affiliation(s)
- Oliver J Price
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, UK; Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK; Department of Respiratory Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| | - Andrew J Simpson
- School of Sport, Exercise and Rehabilitation Sciences, University of Hull, Hull, UK
| |
Collapse
|
25
|
Dickinson J, Gowers W, Sturridge S, Williams N, Kippelen P, Simpson A, Jackson A, Hull JH, Price OJ. Fractional exhaled nitric oxide in the assessment of exercise-induced bronchoconstriction: A multicenter retrospective analysis of UK-based athletes. Scand J Med Sci Sports 2023. [PMID: 37051807 DOI: 10.1111/sms.14367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/03/2023] [Accepted: 03/25/2023] [Indexed: 04/14/2023]
Abstract
INTRODUCTION Exercise-induced bronchoconstriction (EIB) is not only highly prevalent in people with asthma, but can also occur independently, particularly in athletes. Fractional exhaled nitric oxide (FeNO) is an indirect biomarker of type 2 airway inflammation that has an established role in the assessment and management of asthma. The aim was to evaluate the value of FeNO in the assessment of EIB in athletes. METHOD Multicenter retrospective analysis. In total, 488 athletes (male: 76%) performed baseline FeNO, and spirometry pre- and post-indirect bronchial provocation via eucapnic voluntary hyperpnea (EVH). Sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) were calculated for established FeNO thresholds-that is, intermediate (≥25 ppb) and high FeNO (≥40 ppb and ≥ 50 ppb)-and were evaluated against objective evidence of EIB (≥10% fall in FEV1 ). The diagnostic accuracy of FeNO was calculated using receiver operating characteristics area under the curve (ROC-AUC). RESULTS Thirty-nine percent of the athletes had a post-EVH fall in FEV1 consistent with EIB. FeNO values ≥25 ppb, ≥40 ppb, and ≥ 50 ppb were observed in 42%, 23%, and 17% of the cohort, respectively. The sensitivity of FeNO ≥25 ppb was 55%, which decreased to 37% and 27% at ≥40 ppb and ≥ 50 ppb, respectively. The specificity of FeNO ≥25 ppb, ≥40 ppb, and ≥ 50 ppb was 66%, 86%, and 89%, respectively. The ROC-AUC for FeNO was 0.656. CONCLUSIONS FeNO ≥40 ppb provides good specificity, that is, the ability to rule-in a diagnosis of EIB. However, due to the poor sensitivity and predictive values, FeNO should not be employed as a replacement for indirect bronchial provocation in athletes.
Collapse
Affiliation(s)
- John Dickinson
- School of Sport and Exercise Sciences, University of Kent, Canterbury, UK
| | - William Gowers
- School of Sport and Exercise Sciences, University of Kent, Canterbury, UK
| | - Savannah Sturridge
- School of Sport and Exercise Sciences, University of Kent, Canterbury, UK
| | - Neil Williams
- SHAPE Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Pascale Kippelen
- Centre for Physical Activity in Health and Disease, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Andrew Simpson
- School of Sport, Exercise and Rehabilitation Sciences, University of Hull, Hull, UK
| | | | - James H Hull
- Department of Respiratory Medicine, Royal Brompton Hospital, London, UK
- Institute of Sport, Exercise and Health (ISEH), Division of Surgery and Interventional Science, University College London (UCL), London, UK
| | - Oliver J Price
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
- Department of Respiratory Medicine, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
26
|
Goossens J, Vandekerckhove J, Jonckheere AC, Dilissen E, Seys SF, Vanbelle V, Aertgeerts S, Stappers J, Peers K, Raes M, Verelst S, Leus J, Dupont LJ, Bullens DMA. Can AQUA© questionnaire and FeNO predict atopy in early-career athletes? Pediatr Allergy Immunol 2023; 34:e13936. [PMID: 36974645 DOI: 10.1111/pai.13936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023]
Affiliation(s)
- Janne Goossens
- Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Josefien Vandekerckhove
- Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
- Clinical Division of Paediatrics, UZ Leuven, Leuven, Belgium
| | | | - Ellen Dilissen
- Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Sven F Seys
- Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | | | - Sven Aertgeerts
- Academic Centre for General Practitioners, KU Leuven, Leuven, Belgium
| | | | - Koen Peers
- Sport Medical Advice Centre, UZ Leuven, Leuven, Belgium
| | - Marc Raes
- Clinical Division of Paediatrics, UZ Leuven, Leuven, Belgium
- Pediatrics, Jessa Hospital Hasselt, Hasselt, Belgium
| | - Sophie Verelst
- Clinical Division of Paediatrics, UZ Leuven, Leuven, Belgium
- Pediatrics, Jessa Hospital Hasselt, Hasselt, Belgium
| | - Jasmine Leus
- Clinical Division of Paediatrics, UZ Leuven, Leuven, Belgium
- Pediatric Allergy, AZ Maria Middelares Gent, Ghent, Belgium
| | - Lieven J Dupont
- Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
- Clinical Division of Respiratory Medicine, UZ Leuven, Leuven, Belgium
| | - Dominique M A Bullens
- Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
- Clinical Division of Paediatrics, UZ Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Reier-Nilsen T, Sewry N, Chenuel B, Backer V, Larsson K, Price OJ, Pedersen L, Bougault V, Schwellnus M, Hull JH. Diagnostic approach to lower airway dysfunction in athletes: a systematic review and meta-analysis by a subgroup of the IOC consensus on 'acute respiratory illness in the athlete'. Br J Sports Med 2023; 57:481-489. [PMID: 36717213 DOI: 10.1136/bjsports-2022-106059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 01/31/2023]
Abstract
OBJECTIVES To compare the performance of various diagnostic bronchoprovocation tests (BPT) in the assessment of lower airway dysfunction (LAD) in athletes and inform best clinical practice. DESIGN Systematic review with sensitivity and specificity meta-analyses. DATA SOURCES PubMed, EBSCOhost and Web of Science (1 January 1990-31 December 2021). ELIGIBILITY CRITERIA Original full-text studies, including athletes/physically active individuals (15-65 years) who underwent assessment for LAD by symptom-based questionnaires/history and/or direct and/or indirect BPTs. RESULTS In 26 studies containing data for quantitative meta-analyses on BPT diagnostic performance (n=2624 participants; 33% female); 22% had physician diagnosed asthma and 51% reported LAD symptoms. In athletes with symptoms of LAD, eucapnic voluntary hyperpnoea (EVH) and exercise challenge tests (ECTs) confirmed the diagnosis with a 46% sensitivity and 74% specificity, and 51% sensitivity and 84% specificity, respectively, while methacholine BPTs were 55% sensitive and 56% specific. If EVH was the reference standard, the presence of LAD symptoms was 78% sensitive and 45% specific for a positive EVH, while ECTs were 42% sensitive and 82% specific. If ECTs were the reference standard, the presence of LAD symptoms was 80% sensitive and 56% specific for a positive ECT, while EVH demonstrated 65% sensitivity and 65% specificity for a positive ECT. CONCLUSION In the assessment of LAD in athletes, EVH and field-based ECTs offer similar and moderate diagnostic test performance. In contrast, methacholine BPTs have lower overall test performance. PROSPERO REGISTRATION NUMBER CRD42020170915.
Collapse
Affiliation(s)
- Tonje Reier-Nilsen
- The Norwegian Olympic Sports Centre, Norwegian Olympic and Paralympic Committee and Confederation of Sports, Oslo, Norway .,Oslo Sports Trauma Research Center, Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway
| | - Nicola Sewry
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,International Olympic Committee (IOC) Research Centre of South Africa, University of Pretoria, Pretoria, South Africa
| | - Bruno Chenuel
- Centre Hospitalier Régional Universitaire de Nancy, Department of Lung function and Exercise Physiology - University Center of Sports Medicine and Adapted Physical Activity, Université de Lorraine, Nancy, France.,Université de Lorraine, DevAH, Nancy, France
| | - Vibeke Backer
- Department of ENT, Rigshospitalet, Copenhagen University, Copenhagen, Denmark.,CFAS, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | - Kjell Larsson
- Integrative Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Oliver J Price
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
| | - Lars Pedersen
- Department of Respiratory Medicine and Infectious Diseases, Bispebjerg Hospital, Copenhagen, Denmark
| | - Valerie Bougault
- Laboratoire Motricité Humaine Expertise Sport Santé, Université Côte d'Azur, Nice, France
| | - Martin Schwellnus
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,International Olympic Committee (IOC) Research Centre of South Africa, University of Pretoria, Pretoria, South Africa
| | - James H Hull
- Department of Respiratory Medicine, Royal Brompton Hospital, London, UK.,Institute of Sport, Exercise and Health (ISEH), Division of surgery and Interventional science, University College London, London, UK
| |
Collapse
|
28
|
Rasmussen SM, Hansen ESH, Backer V. Asthma in elite athletes - do they have Type 2 or non-Type 2 disease? A new insight on the endotypes among elite athletes. FRONTIERS IN ALLERGY 2022; 3:973004. [PMID: 36340019 PMCID: PMC9633848 DOI: 10.3389/falgy.2022.973004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/03/2022] [Indexed: 01/24/2023] Open
Abstract
Asthma and exercise-induced bronchoconstriction are highly prevalent in elite athletes compared with the general population. Some athletes have classic asthma with allergic sensitization; however, it seems that a proportion of athletes develop asthma as a result of several years of intensive training. It leads us to believe that asthma in athletes consists of at least two distinct endotypes - classic early-onset, Type 2 mediated asthma, and asthma with later onset caused by exercise which might be classified as non-Type 2 asthma. The purpose of this review is to evaluate the current literature on asthma in athletes focusing on inflammation and examine if asthma in athletes could be characterized as either Type 2- or non-Type 2 asthma.
Collapse
Affiliation(s)
- Søren Malte Rasmussen
- Medical Department, Nykøbing Falster Hospital, Nykøbing Falster, Denmark,Centre for Physical Activity Research (CFAS), Rigshospitalet, Copenhagen, Denmark,Correspondence: Søren Malte Rasmussen
| | - Erik Sören Halvard Hansen
- Centre for Physical Activity Research (CFAS), Rigshospitalet, Copenhagen, Denmark,Department of Respiratory Medicine, Copenhagen University Hospital, Hvidovre, Hospital, Hvidovre, Denmark
| | - Vibeke Backer
- Centre for Physical Activity Research (CFAS), Rigshospitalet, Copenhagen, Denmark,Department of Otorhinolaryngology Head / Neck surgery and Audiology, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| |
Collapse
|
29
|
Price OJ, Walsted ES, Bonini M, Brannan JD, Bougault V, Carlsen K, Couto M, Kippelen P, Moreira A, Pite H, Rukhadze M, Hull JH. Diagnosis and management of allergy and respiratory disorders in sport: An EAACI task force position paper. Allergy 2022; 77:2909-2923. [PMID: 35809082 PMCID: PMC9796481 DOI: 10.1111/all.15431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 01/27/2023]
Abstract
Allergy and respiratory disorders are common in young athletic individuals. In the context of elite sport, it is essential to secure an accurate diagnosis in order to optimize health and performance. It is also important, however, to consider the potential impact or consequences of these disorders, in recreationally active individuals engaging in structured exercise and/or physical activity to maintain health and well-being across the lifespan. This EAACI Task Force was therefore established, to develop an up-to-date, research-informed position paper, detailing the optimal approach to the diagnosis and management of common exercise-related allergic and respiratory conditions. The recommendations are informed by a multidisciplinary panel of experts including allergists, pulmonologists, physiologists and sports physicians. The report is structured as a concise, practically focussed document, incorporating diagnostic and treatment algorithms, to provide a source of reference to aid clinical decision-making. Throughout, we signpost relevant learning resources to consolidate knowledge and understanding and conclude by highlighting future research priorities and unmet needs.
Collapse
Affiliation(s)
- Oliver J. Price
- School of Biomedical SciencesFaculty of Biological Sciences, University of LeedsLeedsUK
- Leeds Institute of Medical Research at St James'sUniversity of LeedsLeedsUK
| | - Emil S. Walsted
- Department of Respiratory MedicineRoyal Brompton HospitalLondonUK
- Department of Respiratory MedicineBispebjerg HospitalCopenhagenDenmark
| | - Matteo Bonini
- Fondazione Policlinico Universitario A. Gemelli – IRCCSUniversità Cattolica del Sacro CuoreRomeItaly
- National Heart and Lung Institute (NHLI)Imperial College LondonLondonUK
| | | | | | - Kai‐Håkon Carlsen
- Division of Paediatric and Adolescent MedicineOslo University HospitalOsloNorway
- Faculty of Medicine, University of OsloInstitute of Clinical MedicineOsloNorway
| | - Mariana Couto
- Allergy CenterCUF Descobertas HospitalLisbonPortugal
| | - Pascale Kippelen
- Division of Sport, Health and Exercise SciencesCollege of Health, Medicine and Life Sciences, Brunel University LondonUK
| | - André Moreira
- Centro Hospitalar Universitário de São JoãoPortoPortugal
- Epidemiology Unit (EPIUnit)Laboratory for Integrative and Translational Research in Population Health (ITR)Basic and Clinical Immunology, Department of Pathology, Faculty of MedicineUniversity of PortoPortoPortugal
| | - Helena Pite
- Allergy Center, CUF Descobertas Hospital and CUF Tejo HospitalCEDOC, NOVA University, Universidade NOVA de LisboaLisbonPortugal
| | | | - James H. Hull
- Department of Respiratory MedicineRoyal Brompton HospitalLondonUK
- Institute of Sport, Exercise and Health (ISEH)Division of Surgery and Interventional Science, University College London (UCL)LondonUK
| |
Collapse
|
30
|
Komici K, D’Amico F, Verderosa S, Piomboni I, D’Addona C, Picerno V, Bianco A, Caiazzo A, Bencivenga L, Rengo G, Guerra G. Impact of Body Composition Parameters on Lung Function in Athletes. Nutrients 2022; 14:nu14183844. [PMID: 36145219 PMCID: PMC9500777 DOI: 10.3390/nu14183844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Given the potential risk of unhealthy weight management, the monitoring of body composition in athletes is advised. However, limited data reveal how body composition measurements can benefit athlete health and, in particular, respiratory function. The aim of this study is to evaluate the impact of body composition on pulmonary function in a population of adult athletes. Methods: Data from 435 competitive adult athletes regarding body compositions parameters and spirometry are retrospectively analyzed. Results: Our study population consists of 335 males and 100 female athletes. Muscle mass and fat-free mass are significantly and positively associated with forced expiratory volume in the first second (FEV1) and forced vital capacity (FVC) in the male and female population, while waist-to-height ratio is negatively associated with FEV1, FVC, and FEV1/FVC in the male population. In multivariable analysis, muscle mass and fat-free mass show significant association with FEV1 and FVC in both males and females (p < 0.05), and waist-to-height ratio is significantly and inversely associated with FEV1 and FVC in males (p < 0.05). Conclusions: Fat-free mass and muscle mass are positively and independently associated with FEV1 and FVC in athletes of both genders, and waist-to-height ratio is inversely associated with FEV1 and FVC only among male athletes. These findings suggest that body composition in athletes may be helpful in monitoring respiratory function.
Collapse
Affiliation(s)
- Klara Komici
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
- Exercise and Sports Medicine Unit, Antonio Cardarelli Hospital, 86100 Campobasso, Italy
- Correspondence: ; Tel.: +39-0874404739
| | - Fabio D’Amico
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
- Exercise and Sports Medicine Unit, Antonio Cardarelli Hospital, 86100 Campobasso, Italy
| | - Sofia Verderosa
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
- Exercise and Sports Medicine Unit, Antonio Cardarelli Hospital, 86100 Campobasso, Italy
| | - Iacopo Piomboni
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
| | - Carmine D’Addona
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
| | - Vito Picerno
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
| | - Antonio Bianco
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
- Exercise and Sports Medicine Unit, Antonio Cardarelli Hospital, 86100 Campobasso, Italy
| | - Andrea Caiazzo
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
- Exercise and Sports Medicine Unit, Antonio Cardarelli Hospital, 86100 Campobasso, Italy
| | - Leonardo Bencivenga
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Gérontopôle de Toulouse, Institut du Vieillissement, CHU de Toulouse, 31000 Toulouse, France
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Istituti Clinici Scientifici Maugeri SpA Società Benefit (ICS Maugeri SpA SB), 82037 Telese Terme, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences, University of Molise, 86100 Campobasso, Italy
- Exercise and Sports Medicine Unit, Antonio Cardarelli Hospital, 86100 Campobasso, Italy
| |
Collapse
|
31
|
Schwellnus M, Adami PE, Bougault V, Budgett R, Clemm HH, Derman W, Erdener U, Fitch K, Hull JH, McIntosh C, Meyer T, Pedersen L, Pyne DB, Reier-Nilsen T, Schobersberger W, Schumacher YO, Sewry N, Soligard T, Valtonen M, Webborn N, Engebretsen L. International Olympic Committee (IOC) consensus statement on acute respiratory illness in athletes part 2: non-infective acute respiratory illness. Br J Sports Med 2022; 56:bjsports-2022-105567. [PMID: 35623888 DOI: 10.1136/bjsports-2022-105567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2022] [Indexed: 01/03/2023]
Abstract
Acute respiratory illness (ARill) is common and threatens the health of athletes. ARill in athletes forms a significant component of the work of Sport and Exercise Medicine (SEM) clinicians. The aim of this consensus is to provide the SEM clinician with an overview and practical clinical approach to non-infective ARill in athletes. The International Olympic Committee (IOC) Medical and Scientific Committee appointed an international consensus group to review ARill in athletes. Key areas of ARill in athletes were originally identified and six subgroups of the IOC Consensus group established to review the following aspects: (1) epidemiology/risk factors for ARill, (2) infective ARill, (3) non-infective ARill, (4) acute asthma/exercise-induced bronchoconstriction and related conditions, (5) effects of ARill on exercise/sports performance, medical complications/return-to-sport (RTS) and (6) acute nasal/laryngeal obstruction presenting as ARill. Following several reviews conducted by subgroups, the sections of the consensus documents were allocated to 'core' members for drafting and internal review. An advanced draft of the consensus document was discussed during a meeting of the main consensus core group, and final edits were completed prior to submission of the manuscript. This document (part 2) of this consensus focuses on respiratory conditions causing non-infective ARill in athletes. These include non-inflammatory obstructive nasal, laryngeal, tracheal or bronchial conditions or non-infective inflammatory conditions of the respiratory epithelium that affect the upper and/or lower airways, frequently as a continuum. The following aspects of more common as well as lesser-known non-infective ARill in athletes are reviewed: epidemiology, risk factors, pathology/pathophysiology, clinical presentation and diagnosis, management, prevention, medical considerations and risks of illness during exercise, effects of illness on exercise/sports performance and RTS guidelines.
Collapse
Affiliation(s)
- Martin Schwellnus
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- SEMLI, IOC Research Centre, Pretoria, Gauteng, South Africa
| | - Paolo Emilio Adami
- Health & Science Department, World Athletics, Monaco, Monaco Principality
| | - Valerie Bougault
- Laboratoire Motricité Humaine Expertise Sport Santé, Université Côte d'Azur, Nice, Provence-Alpes-Côte d'Azu, France
| | - Richard Budgett
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
| | - Hege Havstad Clemm
- Department of Pediatric and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Wayne Derman
- Institute of Sport and Exercise Medicine (ISEM), Department of Sport Science, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
- ISEM, IOC Research Center, South Africa, Stellenbosch, South Africa
| | - Uğur Erdener
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
| | - Ken Fitch
- School of Human Science; Sports, Exercise and Health, The University of Western Australia, Perth, Western Australia, Australia
| | - James H Hull
- Department of Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
- Institute of Sport, Exercise and Health (ISEH), University College London (UCL), London, UK
| | - Cameron McIntosh
- Dr CND McIntosh INC, Edge Day Hospital, Port Elizabeth, South Africa
| | - Tim Meyer
- Institute of Sports and Preventive Medicine, Saarland University, Saarbrucken, Germany
| | - Lars Pedersen
- Department of Respiratory Medicine, Bispebjerg Hospital, Copenhagen, Denmark
| | - David B Pyne
- Research Institute for Sport and Exercise, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Tonje Reier-Nilsen
- Oslo Sports Trauma Research Centre, The Norwegian Olympic Sports Centre, Oslo, Norway
- Trauma Research Center, Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway
| | - Wolfgang Schobersberger
- Insitute for Sports Medicine, Alpine Medicine and Health Tourism (ISAG), Kliniken Innsbruck and Private University UMIT Tirol, Hall, Austria
| | | | - Nicola Sewry
- Sport, Exercise Medicine and Lifestyle Institute (SEMLI), Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- SEMLI, IOC Research Centre, Pretoria, Gauteng, South Africa
| | - Torbjørn Soligard
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, Calgary, Alberta, Canada
| | - Maarit Valtonen
- KIHU, Research Institute for Olympic Sports, Jyväskylä, Finland
| | - Nick Webborn
- Centre for Sport and Exercise Science and Medicine, University of Brighton, Brighton, UK
| | - Lars Engebretsen
- Medical and Scientific Department, International Olympic Committee, Lausanne, Switzerland
- Trauma Research Center, Department of Sports Medicine, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
32
|
Gavrielatos A, Ratkevica I, Stenfors N, Hanstock HG. Influence of exercise duration on respiratory function and systemic immunity among healthy, endurance-trained participants exercising in sub-zero conditions. Respir Res 2022; 23:121. [PMID: 35550109 PMCID: PMC9103459 DOI: 10.1186/s12931-022-02029-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/07/2022] [Indexed: 11/12/2022] Open
Abstract
Background Strenuous endurance exercise in sub-zero temperatures can cause airway damage that may lead to EIB. Prolonged exercise can also elicit greater immune perturbations than short-duration exercise. However, the influence of exercise duration on lung function and systemic immunity in sub-zero temperatures has not been established. Additionally, it is currently unknown whether atopic disposition, which is risk factor for EIB, influences respiratory responses in a sub-zero climate. The aim of this study was to compare respiratory and systemic immune responses to two cold air running trials of short and long duration, as well as to examine whether the responses differed between atopic and non-atopic subjects. Methods Eighteen healthy, endurance-trained subjects (males/females: 14/4; age: 29.4 ± 5.9 years old; BMI: 23.1 ± 1.7; atopic/non-atopic: 10/8) completed two moderate-intensity climate chamber running trials at − 15 °C, lasting 30 and 90 min, in a randomized, cross-over design. Lung function (spirometry and impulse oscillometry), serum CC16, respiratory symptoms, and blood leukocyte counts were examined before and after the trials. Results Lung function was not significantly affected by exercise or exercise duration. CC16 concentration increased after both trials (p = 0.027), but the response did not differ between trials. Respiratory symptom intensity was similar after each trial. There was a greater increase in neutrophils (p < 0.001), and a decrease in eosinophils (p < 0.001) after the 90-min bout. The 90-min protocol increased X5 compared to the 30-min protocol only in atopic subjects (p = 0.015) while atopy increased lower airway symptoms immediately after the 90-min session (p = 0.004). Conclusions Our results suggest that a 90-min bout of moderate-intensity exercise at − 15 °C does not cause substantial lung function decrements, airway epithelial damage or respiratory symptoms compared to 30 min running in the same environment, despite a heightened redistribution of white blood cells. However, exercise at − 15 °C may cause airway injury and evoke respiratory symptoms, even at moderate intensity. Atopic status may lead to greater peripheral bronchodilation and higher frequency of respiratory symptoms after long-duration exercise in cold. Trial registration: 01/02/2022 ISRCTN13977758. This trial was retrospectively registered upon submission to satisfy journal guidelines. The authors had not initially registered the study, as the intervention was considered to be a controlled simulation of exercise in a naturally occurring environment (i.e. sub-zero air) for healthy volunteers. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02029-2.
Collapse
Affiliation(s)
- Angelos Gavrielatos
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Iluta Ratkevica
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden.,Department of Science and Health, Institute of Technology Carlow, Carlow, Ireland
| | - Nikolai Stenfors
- Division of Medicine, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Helen G Hanstock
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden.
| |
Collapse
|
33
|
Bougault V, Adami PE, Sewry N, Fitch K, Carlsten C, Villiger B, Schwellnus M, Schobersberger W. Environmental factors associated with non-infective acute respiratory illness in athletes: A systematic review by a subgroup of the IOC consensus group on “acute respiratory illness in the athlete”. J Sci Med Sport 2022; 25:466-473. [DOI: 10.1016/j.jsams.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/02/2022] [Accepted: 03/06/2022] [Indexed: 11/29/2022]
|