1
|
Peruhova M, Stoyanova D, Miteva DG, Kitanova M, Mirchev MB, Velikova T. Genetic factors that predict response and failure of biologic therapy in inflammatory bowel disease. World J Exp Med 2025; 15:97404. [PMID: 40115750 PMCID: PMC11718585 DOI: 10.5493/wjem.v15.i1.97404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/09/2024] [Accepted: 11/14/2024] [Indexed: 12/26/2024] Open
Abstract
Inflammatory bowel disease (IBD) represents a significant disease burden marked by chronic inflammation and complications that adversely affect patients' quality of life. Effective diagnostic strategies involve clinical assessments, endoscopic evaluations, imaging studies, and biomarker testing, where early diagnosis is essential for effective management and prevention of long-term complications, highlighting the need for continual advancements in diagnostic methods. The intricate interplay between genetic factors and the outcomes of biological therapy is of critical importance. Unraveling the genetic determinants that influence responses and failures to biological therapy holds significant promise for optimizing treatment strategies for patients with IBD on biologics. Through an in-depth examination of current literature, this review article synthesizes critical genetic markers associated with therapeutic efficacy and resistance in IBD. Understanding these genetic actors paves the way for personalized approaches, informing clinicians on predicting, tailoring, and enhancing the effectiveness of biological therapies for improved outcomes in patients with IBD.
Collapse
Affiliation(s)
- Milena Peruhova
- Department of Gastroenterology, University Hospital Heart and Brain, Burgas 1000, Bulgaria
| | - Daniela Stoyanova
- Department of Gastroenterology, Military Medical Academy, Sofia 1606, Bulgaria
| | | | - Meglena Kitanova
- Department of Genetics, Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia 1164, Bulgaria
| | | | - Tsvetelina Velikova
- Department of Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| |
Collapse
|
2
|
Wang J, Guay H, Chang D. Crohn's Disease and Ulcerative Colitis Share 2 Molecular Subtypes With Different Mechanisms and Drug Responses. J Crohns Colitis 2025; 19:jjae152. [PMID: 39361323 DOI: 10.1093/ecco-jcc/jjae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/04/2024] [Accepted: 10/02/2024] [Indexed: 03/29/2025]
Abstract
BACKGROUND AND AIMS Several therapies have been approved to treat Crohn's disease (CD) and ulcerative colitis (UC), indicating that both diseases may share the same molecular subtypes. The aim of this study is to identify shared patient subtypes with common molecular drivers of disease. METHODS Five public datasets with 406 CD and 421 UC samples were integrated to identify molecular subtypes. Then, the patient labels from 6 independent datasets and 8 treatment datasets were predicted for validating subtypes and identifying the relationship with response status of corticosteroids, infliximab, vedolizumab, and ustekinumab. RESULTS Two molecular subtypes were identified from the training datasets, in which CD and UC patients were relatively evenly represented in each subtype. We found 6 S1-specific gene modules related to innate/adaptive immune responses and tissue remodeling and 9 S1-specific cell types (cycling T cells, Tregs, CD8+ lamina propria, follicular B cells, cycling B cells, plasma cells, inflammatory monocytes, inflammatory fibroblasts, and postcapillary venules). Subtype S2 was associated with 3 modules related to metabolism functions and 4 cell types (immature enterocytes, transit amplifying cells, immature goblet cells, and WNT5B+ cells). The subtypes can be replicated in 6 independent datasets based on a 20-gene classifier. Furthermore, response rates to 4 treatments in subtype S2 were significantly higher than those in subtype S1. CONCLUSIONS This study discovered and validated a robust transcriptome-based molecular classification shared by CD and UC and built a 20-gene classifier. Because 2 subtypes have different molecular mechanisms and drug response, our classification may aid interpretation of heterogeneous molecular and clinical information in inflammatory bowel disease patients.
Collapse
Affiliation(s)
- Jing Wang
- Genomic Research Center, AbbVie Inc., Cambridge, MA, USA
| | - Heath Guay
- AbbVie Bioresearch Center, Worcester, MA, USA
| | - Dan Chang
- Genomic Research Center, AbbVie Inc., Cambridge, MA, USA
| |
Collapse
|
3
|
Ito Y, Watanabe D, Okamoto N, Miyazaki H, Tokunaga E, Ku Y, Ooi M, Hoshi N, Kohashi M, Kanzawa M, Kodama Y. Activated type 17 helper T cells affect tofacitinib treatment outcomes. Sci Rep 2025; 15:6112. [PMID: 39971758 PMCID: PMC11840122 DOI: 10.1038/s41598-025-87076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025] Open
Abstract
The incidence of ulcerative colitis (UC) is on the rise also in Japan. Simultaneously, therapeutic options, including biologics and Janus kinase (JAK) inhibitors, have significantly expanded over the past decade. Although tofacitinib (TOF), one of JAK inhibitors, is a viable option for patients with moderate to severe UC, there is insufficient data to predict responsiveness of TOF treatment. The present study aimed to determine whether the infiltration of IL-17 A-positive mononuclear cells into the colonic mucosa can predict responsiveness to TOF treatment. Patients with UC who underwent TOF treatment were divided into responder and failure groups. Subsequently, we conducted a comparative analysis to identify differences in the infiltration of IL-17 A-positive cells into the colonic mucosa through immunohistochemical examination of colon biopsy samples. The proportion of IL-17 A positive mononuclear cells in colon biopsy samples was significantly higher in the failure group than among responders (38.2% vs. 21.2%). Consistent with this finding, our re-analysis of RNA sequence datasets available in the Gene Expression Omnibus (GEO) database suggested that TOF exerts a more pronounced influence on Th1 cells compared with IL-17-producing Th17 cells. In summary, an abundance of IL-17 A-positive mononuclear cells in the colonic mucosa has the potential to predict the responsiveness to TOF treatment.
Collapse
Affiliation(s)
- Yuki Ito
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
| | - Daisuke Watanabe
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan.
| | - Norihiro Okamoto
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
| | - Haruka Miyazaki
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
| | - Eri Tokunaga
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
| | - Yuna Ku
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
| | - Makoto Ooi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
| | - Namiko Hoshi
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
| | - Michitaka Kohashi
- Department of Gastroenterology, Kakogawa Central City Hospital, Kakogawa, Hyogo, Japan
| | - Maki Kanzawa
- Department of Diagnostic Pathology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yuzo Kodama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Hospital, Kobe, Japan
| |
Collapse
|
4
|
van Oostrom J, Hanzel J, Verstockt B, Singh S, Smith J, Gecse K, Mathot R, Vermeire S, D'Haens G. Anti-TNF nonresponse in ulcerative colitis: correcting for mucosal drug exposure reveals distinct cytokine profiles. J Crohns Colitis 2025; 19:jjae200. [PMID: 39745888 DOI: 10.1093/ecco-jcc/jjae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/04/2025]
Abstract
INTRODUCTION It remains unclear why up to 30% of ulcerative colitis (UC) patients do not respond to tumor necrosis factor inhibitors (TNFi). Validated biomarkers for nonresponse (N)R) are lacking. Most studies investigating underlying mechanisms do not differentiate between pharmacokinetic and inflammatory mechanisms. We therefore aimed to develop a framework to correct for mucosal drug exposure (MDE) and applied this to mucosal cytokine profiles previously linked to (N)R. METHODS In a prospective international cohort, we studied patients with active moderate-severe UC starting TNFi treatment. Patients underwent endoscopy before (baseline) and after induction treatment (follow-up). NR was defined as the absence of Mayo endoscopic subscore improvement by central read or need for colectomy. The ratio of mucosal concentrations of TNFi/TNF was used to define high or low MDE. Mucosal concentrations of interleukin-6 (IL-6), Oncostatin M (OSM), interleukin-10 (IL-10), and interleukin-12/23p40 (IL-12/IL-23p40) were measured. RESULTS Fifty-four UC patients were included (43 infliximab, 11 adalimumab) of whom 39 (72%) were endoscopic responders (after a median treatment of 62 days [48-96]). NR with high MDE had high IL-6 at both time points. R with low MDE exhibited low mucosal IL-10 at baseline. At follow-up, high OSM was associated with NR (irrespective of MDE) and high IL-12/IL-23p40 with R. CONCLUSIONS We incorporated MDE in mucosal cytokine research to avoid bias due to the insufficient presence of anti-TNF. When applied to mucosal cytokines previously linked to (N)R, IL-6 appears to drive inflammation in TNFi-resistant UC patients, while OSM seems to parallel inflammation and does not cause refractoriness.
Collapse
Affiliation(s)
- Joep van Oostrom
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jurij Hanzel
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Gastroenterology, UMC Ljubljana, University of Ljubljana, Ljubljana, Slovenia
| | - Bram Verstockt
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Sharat Singh
- Biora Therapeutics, San Diego, CA, United States
| | | | - Krisztina Gecse
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Ron Mathot
- Department of Hospital Pharmacy and Clinical Pharmacology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Séverine Vermeire
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
- Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Geert D'Haens
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Yu Z, Zhao D, Zhang Y, Shen K, Shao S, Chen X, Shu J, Li G. Uncovering novel therapeutic clues for hypercoagulable active ulcerative colitis: novel findings from old data. Gastroenterol Rep (Oxf) 2024; 12:goae105. [PMID: 39735422 PMCID: PMC11681937 DOI: 10.1093/gastro/goae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/18/2024] [Accepted: 10/27/2024] [Indexed: 12/31/2024] Open
Abstract
Background Hypercoagulability has been shown to act as an important component of ulcerative colitis (UC) pathogenesis and disease activity, and is strongly correlated with the occurrence of venous thromboembolism (VTE). This study aimed at providing novel therapeutic clues for hypercoagulable active UC. Methods The coagulation score model was developed using VTE cohorts, and the predictive performance of this model was evaluated by coagulation subtypes of UC patients, which were clustered by the unsupervised method. Subsequently, the response of UC of distinct coagulation types, as identified by the coagulation scoring model, to different biological agents was evaluated. Immunoinflammatory cells and molecules that were associated with hypercoagulable active UC were explored by employing gene set variation analysis, single-sample gene set enrichment analysis, univariate logistic regression analysis, and immunohistochemistry. Results A coagulation scoring model was established, which includes five key coagulation factors (ARHGAP35, CD46, BTK, C1QB, and F2R), and accurately distinguished the coagulation subtypes of UC. When comparing anti-TNF-α agents with other biological agents after determining the model, especially golimumab, it showed more effective treatment for hypercoagulable active UC. CXCL8 has been identified as playing an important role in the tightly interconnected network between the immune-inflammatory system and coagulation system in UC. Immunohistochemical analysis showed that the expression of CXCL8, BTK, C1QB, and F2R was upregulated in active UC. Conclusions Anti-TNF-α agents have significant therapeutic effects on hypercoagulable active UC, and the strong association between CXCL8, hypercoagulation, and disease activity provides a novel therapeutic insight into hypercoagulable active UC.
Collapse
Affiliation(s)
- Zhexuan Yu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P. R. China
| | - Danya Zhao
- Department of Gastroenterology, Hangzhou Red Cross Hospital/Hospital of Integrated Chinese and Western Medicine Hospital of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P. R. China
| | - Yusen Zhang
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P. R. China
| | - Kezhan Shen
- Department of Oncology, Hangzhou Traditional Chinese Medicine Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P. R. China
| | - Shisi Shao
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P. R. China
| | - Xiaobo Chen
- Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, Guangdong, P. R. China
| | - Jianlong Shu
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P. R. China
| | - Guanhua Li
- Department of Cardiovascular Surgery, Shenshan Medical Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Shanwei, Guangdong, P. R. China
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
6
|
Zhang Y, Jin Y, Wang Y, Wang S, Niu Y, Ma B, Li J. Insights of Expression Profile of Chemokine Family in Inflammatory Bowel Diseases and Carcinogenesis. Int J Mol Sci 2024; 25:10857. [PMID: 39409185 PMCID: PMC11476924 DOI: 10.3390/ijms251910857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/16/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Chemokines are integral components of the immune system and deeply involved in the pathogenesis and progression of inflammatory bowel disease (IBD) and colorectal cancer (CRC). Although a considerable amount of transcriptome data has been accumulated on these diseases, most of them are limited to a specific stage of the disease. The purpose of this study is to visually demonstrate the dynamic changes in chemokines across various stages of bowel diseases by integrating relevant datasets. Integrating the existing datasets for IBD and CRC, we compare the expression changes of chemokines across different pathological stages. This study collected 11 clinical databases from various medical centers around the world. Patients: Data of patient tissue types were classified into IBD, colorectal adenoma, primary carcinoma, metastasis, and healthy control according to the publisher's annotation. The expression changes in chemokines in various pathological stages are statistically analyzed. The chemokines were clustered by different expression patterns. The chemokine family was clustered into four distinct expression patterns, which correspond to varying expression changes in different stages of colitis and tumor development. Certain chemokines and receptors associated with inflammation and tumorigenesis have been identified. Furthermore, it was confirmed that the 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis model and the azoxymethane (AOM)/ dextran sulfate sodium (DSS)-induced colon cancer model shows stronger correlations with the clinical data in terms of chemokine expression levels. This study paints a panoramic picture of the expression profiles of chemokine families at multiple stages from IBD to advanced colon cancer, facilitating a comprehensive understanding of the regulation patterns of chemokines and guiding the direction of drug development. This study provides researchers with a clear atlas of chemokine expression in the pathological processes of inflammatory bowel disease and colon cancer.
Collapse
Affiliation(s)
- Yinjie Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Y.J.); (Y.W.); (S.W.); (Y.N.); (B.M.)
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yue Jin
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Y.J.); (Y.W.); (S.W.); (Y.N.); (B.M.)
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yanjing Wang
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Y.J.); (Y.W.); (S.W.); (Y.N.); (B.M.)
| | - Siyi Wang
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Y.J.); (Y.W.); (S.W.); (Y.N.); (B.M.)
| | - Yuchen Niu
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Y.J.); (Y.W.); (S.W.); (Y.N.); (B.M.)
| | - Buyong Ma
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Y.J.); (Y.W.); (S.W.); (Y.N.); (B.M.)
| | - Jingjing Li
- Engineering Research Center of Cell & Therapeutic Antibody, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Y.J.); (Y.W.); (S.W.); (Y.N.); (B.M.)
| |
Collapse
|
7
|
Shanthamallu US, Kilpatrick C, Jones A, Rubin J, Saleh A, Barabási AL, Akmaev VR, Ghiassian SD. A Network-Based Framework to Discover Treatment-Response-Predicting Biomarkers for Complex Diseases. J Mol Diagn 2024; 26:917-930. [PMID: 39067570 DOI: 10.1016/j.jmoldx.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024] Open
Abstract
The potential of precision medicine to transform complex autoimmune disease treatment is often challenged by limited data availability and inadequate sample size when compared with the number of molecular features found in high-throughput multi-omics data sets. To address this issue, the novel framework PRoBeNet (Predictive Response Biomarkers using Network medicine) was developed. PRoBeNet operates under the hypothesis that the therapeutic effect of a drug propagates through a protein-protein interaction network to reverse disease states. PRoBeNet prioritizes biomarkers by considering i) therapy-targeted proteins, ii) disease-specific molecular signatures, and iii) an underlying network of interactions among cellular components (the human interactome). PRoBeNet helped discover biomarkers predicting patient responses to both an established autoimmune therapy (infliximab) and an investigational compound (a mitogen-activated protein kinase 3/1 inhibitor). The predictive power of PRoBeNet biomarkers was validated with retrospective gene-expression data from patients with ulcerative colitis and rheumatoid arthritis and prospective data from tissues from patients with ulcerative colitis and Crohn disease. Machine-learning models using PRoBeNet biomarkers significantly outperformed models using either all genes or randomly selected genes, especially when data were limited. These results illustrate the value of PRoBeNet in reducing features and for constructing robust machine-learning models when data are limited. PRoBeNet may be used to develop companion and complementary diagnostic assays, which may help stratify suitable patient subgroups in clinical trials and improve patient outcomes.
Collapse
Affiliation(s)
- Uday S Shanthamallu
- Department of Data Science and Network Medicine, Scipher Medicine, Waltham, Massachusetts
| | - Casey Kilpatrick
- Department of Therapeutics, Scipher Medicine, Waltham, Massachusetts
| | - Alex Jones
- Department of Data Science and Network Medicine, Scipher Medicine, Waltham, Massachusetts
| | | | - Alif Saleh
- Department of Data Science and Network Medicine, Scipher Medicine, Waltham, Massachusetts
| | - Albert-László Barabási
- Center for Complex Network Research, Northeastern University, Boston, Massachusetts; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Network and Data Science, Central European University, Budapest, Hungary
| | - Viatcheslav R Akmaev
- Department of Data Science and Network Medicine, Scipher Medicine, Waltham, Massachusetts
| | - Susan D Ghiassian
- Department of Data Science and Network Medicine, Scipher Medicine, Waltham, Massachusetts.
| |
Collapse
|
8
|
Rioux JD, Boucher G, Forest A, Bouchard B, Coderre L, Daneault C, Frayne IR, Legault JT, Bitton A, Ananthakrishnan A, Lesage S, Xavier RJ, Des Rosiers C. A pilot study to identify blood-based markers associated with response to treatment with Vedolizumab in patients with Inflammatory Bowel Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.19.24314034. [PMID: 39371119 PMCID: PMC11451768 DOI: 10.1101/2024.09.19.24314034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The inflammatory bowel diseases (IBD) known as Crohn's disease (CD) and ulcerative colitis (UC) are chronic inflammatory diseases of the gastrointestinal tract believed to arise because of an imbalance between the epithelial, immune and microbial systems. It has been shown that biological differences (genetic, epigenetic, microbial, environmental, etc.) exist between patients with IBD, with multiple risk factors been associated with disease susceptibility and IBD-related phenotypes (e.g. disease location). It is also known that there is heterogeneity in terms of response to therapy in patients with IBD, including to biological therapies that target very specific biological pathways (e.g. TNF-alpha signaling, IL-23R signaling, immune cell trafficking, etc.). It is hypothesized that the better the match between the biology targeted by these advanced therapies and the predominant disease-associated pathways at play in each patient will favor a beneficial response. The aim of this pilot study was to identify potential biological differences associated with differential treatment response to the anti α4β7 integrin therapy known as Vedolizumab. Our approach was to measure a broad range of analytes in the serum of patients prior to initiation of therapy and at the first clinical assessment visit, to identify potential markers of biological differences between patients at baseline and to see which biomarkers are most affected by treatment in responders. Our focus on early clinical response was to study the most proximal effects of therapy and to minimize confounders such as loss of response that occurs further distal to treatment initiation. Specifically, we performed targeted analyses of >150 proteins and metabolites, and untargeted analyses of >1100 lipid entities, in serum samples from 92 IBD patients (42 CD, 50 UC) immediately prior to initiation of therapy with vedolizumab (baseline samples) and at their first clinical assessment (14-week samples). We found lower levels of SDF-1a, but higher levels of PDGF-ββ, lactate, lysine, phenylalanine, branched chain amino acids, alanine, short/medium chain acylcarnitines, and triglycerides containing myristic acid in baseline serum samples of responders as compared to non-responders. We also observed an increase in serum levels of CXCL9 and citrate, as well as a decrease in IL-10, between baseline and week 14 samples. In addition, we observed that a group of metabolites and protein analytes was strongly associated with both treatment response and BMI status, although BMI status was not associated with treatment response.
Collapse
Affiliation(s)
- John D. Rioux
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
- Université de Montréal, Faculty of Medicine, Montreal, Quebec, Canada
| | | | - Anik Forest
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
| | | | - Lise Coderre
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada
| | | | | | | | | | - Alain Bitton
- McGill University Health Centre, Division of Gastroenterology, Montreal, Quebec, Canada
| | - Ashwin Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sylvie Lesage
- Maisonneuve-Rosemont Hospital Research Center, Montréal, Québec, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Ramnik J. Xavier
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Christine Des Rosiers
- Montreal Heart Institute Research Center, Montreal, Quebec, Canada
- Département de Nutrition, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
9
|
Vedantham M, Polari L, Poosakkannu A, Pinto RG, Sakari M, Laine J, Sipilä P, Määttä J, Gerke H, Rissanen T, Rantakari P, Toivola DM, Pulliainen AT. Body-wide genetic deficiency of poly(ADP-ribose) polymerase 14 sensitizes mice to colitis. FASEB J 2024; 38:e23775. [PMID: 38967223 DOI: 10.1096/fj.202400484r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic disease of the gastrointestinal tract affecting millions of people. Here, we investigated the expression and functions of poly(ADP-ribose) polymerase 14 (Parp14), an important regulatory protein in immune cells, with an IBD patient cohort as well as two mouse colitis models, that is, IBD-mimicking oral dextran sulfate sodium (DSS) exposure and oral Salmonella infection. Parp14 was expressed in the human colon by cells in the lamina propria, but, in particular, by the epithelial cells with a granular staining pattern in the cytosol. The same expression pattern was evidenced in both mouse models. Parp14-deficiency caused increased rectal bleeding as well as stronger epithelial erosion, Goblet cell loss, and immune cell infiltration in DSS-exposed mice. The absence of Parp14 did not affect the mouse colon bacterial microbiota. Also, the colon leukocyte populations of Parp14-deficient mice were normal. In contrast, bulk tissue RNA-Seq demonstrated that the colon transcriptomes of Parp14-deficient mice were dominated by abnormalities in inflammation and infection responses both prior and after the DSS exposure. Overall, the data indicate that Parp14 has an important role in the maintenance of colon epithelial barrier integrity. The prognostic and predictive biomarker potential of Parp14 in IBD merits further investigation.
Collapse
Affiliation(s)
| | - Lauri Polari
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | | | - Rita G Pinto
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Moona Sakari
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jukka Laine
- Department of Pathology, Turku University Hospital, Turku, Finland
| | - Petra Sipilä
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Jorma Määttä
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | - Heidi Gerke
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Tiia Rissanen
- Department of Biostatistics, University of Turku, Turku, Finland
| | - Pia Rantakari
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Diana M Toivola
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
- Turku Center for Disease Modeling, University of Turku, Turku, Finland
| | | |
Collapse
|
10
|
HuangFu R, Li H, Luo Y, He F, Huan C, Ahmed Z, Zhang B, Lei C, Yi K. Illuminating Genetic Diversity and Selection Signatures in Matou Goats through Whole-Genome Sequencing Analysis. Genes (Basel) 2024; 15:909. [PMID: 39062688 PMCID: PMC11275394 DOI: 10.3390/genes15070909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Matou goats, native to Hunan and Hubei provinces in China, are renowned for their exceptional meat and skin quality. However, a comprehensive whole-genome-based exploration of the genetic architecture of this breed is scant in the literature. (2) Methods: To address this substantial gap, we used whole-genome sequences of 20 Matou goats and compared them with published genomic data of 133 goats of different breeds across China. This comprehensive investigation sought to assess genetic diversity, population structure, and the presence of genomic selection signals. (3) Results: The whole genome of Matou goat populations yielded a substantial catalog of over 19 million single nucleotide polymorphisms (SNPs), primarily distributed within intergenic and intron regions. The phylogenetic tree analysis revealed distinct clades corresponding to each goat population within the dataset. Notably, this analysis positioned Matou goats in a closer genetic affinity with Guizhou White goats, compared to other recognized goat breeds. This observation was corroborated by principal component analysis (PCA) and admixture analysis. Remarkably, Matou goats exhibited diminished genetic diversity and a notable degree of inbreeding, signifying a reduced effective population size. Moreover, the study employed five selective sweep detection methods (including PI, CLR, PI-Ratio, Fst, and XP-EHH) to screen top signal genes associated with critical biological functions, encompassing cardiomyocytes, immunity, coat color, and meat quality. (4) Conclusions: In conclusion, this study significantly advances our understanding of the current genetic landscape and evolutionary dynamics of Matou goats. These findings underscore the importance of concerted efforts in resource conservation and genetic enhancement for this invaluable breed.
Collapse
Affiliation(s)
- Ruiyao HuangFu
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712000, China;
| | - Haobang Li
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| | - Yang Luo
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| | - Fang He
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| | - Cheng Huan
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| | - Zulfiqar Ahmed
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Rawalakot 12350, Pakistan;
| | - Baizhong Zhang
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712000, China;
| | - Kangle Yi
- Hunan Institute of Animal and Veterinary Science, Changsha 410131, China; (H.L.); (Y.L.); (F.H.); (C.H.); (B.Z.)
| |
Collapse
|
11
|
Atreya R, Neurath MF. Biomarkers for Personalizing IBD Therapy: The Quest Continues. Clin Gastroenterol Hepatol 2024; 22:1353-1364. [PMID: 38320679 DOI: 10.1016/j.cgh.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024]
Abstract
Despite recent advances in the understanding of the pathogenesis of inflammatory bowel diseases (IBD) and advent of multiple targeted therapies, approximately one-third of patients are primary non-responders to initiated treatment, and half of patients lose response over time. There is currently a lack of available biomarkers that would prognosticate therapeutic effectiveness of these advanced therapies. This is partly explained by insufficient characterization of the functional roles assumed by the chosen molecular targets during disease treatment. There is a dire need for validated objective biomarkers, which could be indicators of a biological process, that can be applied in clinical practice to assist us in assigning therapies to patients with the highest probability of response. An appropriate molecular and cellular characterization that accounts for the interindividual differences in drug efficacy and potential side effects would help to guide clinicians in the management of patients with IBD and represent a major step to tailor a more personalized approach to treatment. An appropriate combination of complementing biomarkers should ideally incorporate a multimodal analysis in which genetic, microbial, transcriptional, proteomic, metabolic, and immunologic data are combined to enable a truly personalized approach. This would classify patients into disease subgroups according to molecular characteristics, which would enable us to initiate the most appropriate therapeutic substance. Emergence of single-cell technologies to map the intestinal cellular landscape and multiomic approaches have helped to further dissect the pathogenic mechanisms of mucosal inflammation, but the clinical translation of potential biomarkers remains cumbersome, and an ongoing concerted effort by the IBD community is required.
Collapse
Affiliation(s)
- Raja Atreya
- First Department of Medicine, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany.
| | - Markus F Neurath
- First Department of Medicine, Erlangen University Hospital, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
12
|
Li Q, Huang Z, Yang H, Tang J, Zuo T, Yang Q, Huang Z, Guo Q, Li M, Gao X, Chao K. Intestinal mRNA expression profiles associated with mucosal healing in ustekinumab-treated Crohn's disease patients: bioinformatics analysis and prospective cohort validation. J Transl Med 2024; 22:595. [PMID: 38926732 PMCID: PMC11210135 DOI: 10.1186/s12967-024-05427-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Variations exist in the response of patients with Crohn's disease (CD) to ustekinumab (UST) treatment, but the underlying cause remains unknown. Our objective was to investigate the involvement of immune cells and identify potential biomarkers that could predict the response to interleukin (IL) 12/23 inhibitors in patients with CD. METHODS The GSE207022 dataset, which consisted of 54 non-responders and 9 responders to UST in a CD cohort, was analyzed. Differentially expressed genes (DEGs) were identified and subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Least absolute shrinkage and selection operator (LASSO) regression was used to screen the most powerful hub genes. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the predictive performances of these genes. Single-sample Gene Set Enrichment Analysis (ssGSEA) was used to estimate the proportions of immune cell types. These significantly altered genes were subjected to cluster analysis into immune cell-related infiltration. To validate the reliability of the candidates, patients prescribed UST as a first-line biologic in a prospective cohort were included as an independent validation dataset. RESULTS A total of 99 DEGs were identified in the integrated dataset. GO and KEGG analyses revealed significant enrichment of immune response pathways in patients with CD. Thirteen genes (SOCS3, CD55, KDM5D, IGFBP5, LCN2, SLC15A1, XPNPEP2, HLA-DQA2, HMGCS2, DDX3Y, ITGB2, CDKN2B and HLA-DQA1), which were primarily associated with the response versus nonresponse patients, were identified and included in the LASSO analysis. These genes accurately predicted treatment response, with an area under the curve (AUC) of 0.938. T helper cell type 1 (Th1) cell polarization was comparatively strong in nonresponse individuals. Positive connections were observed between Th1 cells and the LCN2 and KDM5D genes. Furthermore, we employed an independent validation dataset and early experimental verification to validate the LCN2 and KDM5D genes as effective predictive markers. CONCLUSIONS Th1 cell polarization is an important cause of nonresponse to UST therapy in patients with CD. LCN2 and KDM5D can be used as predictive markers to effectively identify nonresponse patients. TRIAL REGISTRATION Trial registration number: NCT05542459; Date of registration: 2022-09-14; URL: https://www. CLINICALTRIALS gov .
Collapse
Affiliation(s)
- Qing Li
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, No.26 Yuancun Road II, Tianhe District, Guangzhou, 510000, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zicheng Huang
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, No.26 Yuancun Road II, Tianhe District, Guangzhou, 510000, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Hongsheng Yang
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, No.26 Yuancun Road II, Tianhe District, Guangzhou, 510000, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Jian Tang
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, No.26 Yuancun Road II, Tianhe District, Guangzhou, 510000, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases, Ministry of Education, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Biomedical Innovation Centre, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Qingfan Yang
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, No.26 Yuancun Road II, Tianhe District, Guangzhou, 510000, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhaopeng Huang
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, No.26 Yuancun Road II, Tianhe District, Guangzhou, 510000, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Qin Guo
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, No.26 Yuancun Road II, Tianhe District, Guangzhou, 510000, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Miao Li
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, No.26 Yuancun Road II, Tianhe District, Guangzhou, 510000, People's Republic of China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xiang Gao
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, No.26 Yuancun Road II, Tianhe District, Guangzhou, 510000, People's Republic of China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| | - Kang Chao
- Department of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, No.26 Yuancun Road II, Tianhe District, Guangzhou, 510000, People's Republic of China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China.
| |
Collapse
|
13
|
Wang C, Gao X, Li Y, Li C, Ma Z, Sun D, Liang X, Zhang X. A molecular subtyping associated with the cGAS-STING pathway provides novel perspectives on the treatment of ulcerative colitis. Sci Rep 2024; 14:12683. [PMID: 38831059 PMCID: PMC11148070 DOI: 10.1038/s41598-024-63695-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024] Open
Abstract
Ulcerative colitis (UC) is characterized by an abnormal immune response, and the pathogenesis lacks clear understanding. The cGAS-STING pathway is an innate immune signaling pathway that plays a significant role in various pathophysiological processes. However, the role of the cGAS-STING pathway in UC remains largely unclear. In this study, we obtained transcriptome sequencing data from multiple publicly available databases. cGAS-STING related genes were obtained through literature search, and differentially expressed genes (DEGs) were analyzed using R package limma. Hub genes were identified through protein-protein interaction (PPI) network analysis and module construction. The ConsensuClusterPlus package was utilized to identify molecular subtypes based on hub genes. The therapeutic response, immune microenvironment, and biological pathways of subtypes were further investigated. A total of 18 DEGs were found in UC patients. We further identified IFI16, MB21D1 (CGAS), TMEM173 (STING) and TBK1 as the hub genes. These genes are highly expressed in UC. IFI16 exhibited the highest diagnostic value and predictive value for response to anti-TNF therapy. The expression level of IFI16 was higher in non-responders to anti-TNF therapy. Furthermore, a cluster analysis based on genes related to the cGAS-STING pathway revealed that patients with higher gene expression exhibited elevated immune burden and inflammation levels. This study is a pioneering analysis of cGAS-STING pathway-related genes in UC. These findings provide new insights for the diagnosis of UC and the prediction of therapeutic response.
Collapse
Affiliation(s)
- Chen Wang
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Xin Gao
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yanchen Li
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Chenyang Li
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Zhimin Ma
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
- Department of Respirology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Donglei Sun
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Xiaonan Liang
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Xiaolan Zhang
- Department of Gastroenterology, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Hebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
14
|
Wetwittayakhlang P, Kotrri G, Bessissow T, Lakatos PL. How close are we to a success stratification tool for improving biological therapy in ulcerative colitis? Expert Opin Biol Ther 2024; 24:433-441. [PMID: 38903049 DOI: 10.1080/14712598.2024.2371049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
INTRODUCTION Biological therapies have become the standard treatment for ulcerative colitis (UC). However, clinical remission rates post-induction therapy remain modest at 40-50%, with many initial responders losing response over time. Current treatment strategies frequently rely on a 'trial and error' approach, leading to prolonged periods of ineffective and costly therapies for patients, accompanied by associated treatment complications. AREA COVERED This review discusses current evidence on risk stratification tools for predicting therapeutic efficacy and minimizing adverse events in UC management. Recent studies have identified predictive factors for biologic therapy response. In the context of personalized medicine, the goal is to identify patients at high risk of progression and complications, as well as those likely to respond to specific therapies. Essential risk stratification tools include clinical decision-making aids, biomarkers, genomics, multi-omics factors, endoscopic, imaging, and histological assessments. EXPERT OPINION Employing risk stratification tools to predict therapeutic response and prevent treatment-related complications is essential for precision medicine in the biological management of UC. These tools are necessary to select the most suitable treatment for each individual patient, thereby enhancing efficacy and safety.
Collapse
Affiliation(s)
- Panu Wetwittayakhlang
- Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Division of Gastroenterology and Hepatology, McGill University Health Center, Montreal, QC, Canada
| | - Gynter Kotrri
- Division of Gastroenterology and Hepatology, McGill University Health Center, Montreal, QC, Canada
| | - Talat Bessissow
- Division of Gastroenterology and Hepatology, McGill University Health Center, Montreal, QC, Canada
| | - Peter L Lakatos
- Division of Gastroenterology and Hepatology, McGill University Health Center, Montreal, QC, Canada
- Department of Oncology and Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
15
|
Koustenis K, Dovrolis N, Viazis N, Ioannou A, Bamias G, Karamanolis G, Gazouli M. Insights into Therapeutic Response Prediction for Ustekinumab in Ulcerative Colitis Using an Ensemble Bioinformatics Approach. Int J Mol Sci 2024; 25:5532. [PMID: 38791570 PMCID: PMC11122545 DOI: 10.3390/ijms25105532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
INTRODUCTION Optimizing treatment with biological agents is an ideal goal for patients with ulcerative colitis (UC). Recent data suggest that mucosal inflammation patterns and serum cytokine profiles differ between patients who respond and those who do not. Ustekinumab, a monoclonal antibody targeting the p40 subunit of interleukin (IL)-12 and IL-23, has shown promise, but predicting treatment response remains a challenge. We aimed to identify prognostic markers of response to ustekinumab in patients with active UC, utilizing information from their mucosal transcriptome. METHODS We performed a prospective observational study of 36 UC patients initiating treatment with ustekinumab. Colonic mucosal biopsies were obtained before treatment initiation for a gene expression analysis using a microarray panel of 84 inflammatory genes. A differential gene expression analysis (DGEA), correlation analysis, and network centrality analysis on co-expression networks were performed to identify potential biomarkers. Additionally, machine learning (ML) models were employed to predict treatment response based on gene expression data. RESULTS Seven genes, including BCL6, CXCL5, and FASLG, were significantly upregulated, while IL23A and IL23R were downregulated in non-responders compared to responders. The co-expression analysis revealed distinct patterns between responders and non-responders, with key genes like BCL6 and CRP highlighted in responders and CCL11 and CCL22 in non-responders. The ML algorithms demonstrated a high predictive power, emphasizing the significance of the IL23R, IL23A, and BCL6 genes. CONCLUSIONS Our study identifies potential biomarkers associated with ustekinumab response in UC patients, shedding light on its underlying mechanisms and variability in treatment outcomes. Integrating transcriptomic approaches, including gene expression analyses and ML, offers valuable insights for personalized treatment strategies and highlights avenues for further research to enhance therapeutic outcomes for patients with UC.
Collapse
Affiliation(s)
- Kanellos Koustenis
- Gastroenterology Department, Evangelismos-Polykliniki General Hospital, 115 27 Athens, Greece; (K.K.); (N.V.)
| | - Nikolas Dovrolis
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 115 27 Athens, Greece;
| | - Nikos Viazis
- Gastroenterology Department, Evangelismos-Polykliniki General Hospital, 115 27 Athens, Greece; (K.K.); (N.V.)
| | | | - Giorgos Bamias
- GI-Unit, 3rd Academic Department of Internal Medicine, National and Kapodistrian University of Athens, Sotiria Hospital, 115 27 Athens, Greece;
| | - George Karamanolis
- Gastroenterology Unit, Second Department of Surgery, Aretaieio Hospital, Medical School, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 115 27 Athens, Greece;
| |
Collapse
|
16
|
Kurumi H, Yokoyama Y, Hirano T, Akita K, Hayashi Y, Kazama T, Isomoto H, Nakase H. Cytokine Profile in Predicting the Effectiveness of Advanced Therapy for Ulcerative Colitis: A Narrative Review. Biomedicines 2024; 12:952. [PMID: 38790914 PMCID: PMC11117845 DOI: 10.3390/biomedicines12050952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Cytokine-targeted therapies have shown efficacy in treating patients with ulcerative colitis (UC), but responses to these advanced therapies can vary. This variability may be due to differences in cytokine profiles among patients with UC. While the etiology of UC is not fully understood, abnormalities of the cytokine profiles are deeply involved in its pathophysiology. Therefore, an approach focused on the cytokine profile of individual patients with UC is ideal. Recent studies have demonstrated that molecular analysis of cytokine profiles in UC can predict response to each advanced therapy. This narrative review summarizes the molecules involved in the efficacy of various advanced therapies for UC. Understanding these associations may be helpful in selecting optimal therapeutic agents.
Collapse
Affiliation(s)
- Hiroki Kurumi
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Tottori University Faculty of Medicine, 36-1, Nishi-cho, Yonago 683-8504, Tottori, Japan
| | - Yoshihiro Yokoyama
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Takehiro Hirano
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Kotaro Akita
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Yuki Hayashi
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Tomoe Kazama
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| | - Hajime Isomoto
- Division of Gastroenterology and Nephrology, Department of Multidisciplinary Internal Medicine, Tottori University Faculty of Medicine, 36-1, Nishi-cho, Yonago 683-8504, Tottori, Japan
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, S-1, W-16, Chuo-ku, Sapporo 060-8543, Hokkaido, Japan; (H.K.)
| |
Collapse
|
17
|
Hanzel J, Ma C, Jairath V. Upadacitinib for the treatment of moderate-to-severe Crohn's disease. Immunotherapy 2024; 16:345-357. [PMID: 38362641 DOI: 10.2217/imt-2023-0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
Despite an increasing number of therapies for Crohn's disease (CD), half of patients do not respond to initial treatment or lose response over time, highlighting the need for novel therapies. Inhibition of Janus kinases (JAKs) has emerged as an important therapeutic target for CD. Upadacitinib is an orally administered selective JAK1 inhibitor, which is effective for the induction and maintenance of remission in moderately-to-severely active CD, including in patients with prior failure of biological therapy. Nonselective JAK inhibition has been associated with thromboembolic disease, cardiovascular events and malignancy in patients older than 50 years with rheumatoid arthritis and pre-existing cardiovascular risk factors, which should be considered upon prescription. Upadacitinib is the first and currently only oral advanced therapy for CD.
Collapse
Affiliation(s)
- Jurij Hanzel
- Department of Gastroenterology, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia
- Alimentiv Inc, London, Ontario, N6A 5B6, Canada
| | - Christopher Ma
- Alimentiv Inc, London, Ontario, N6A 5B6, Canada
- Division of Gastroenterology & Hepatology, Departments of Medicine & Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4Z6, Canada
| | - Vipul Jairath
- Alimentiv Inc, London, Ontario, N6A 5B6, Canada
- Schulich School of Medicine & Dentistry, Western University, London, Ontario, N6A 5C1, Canada
- Department of Epidemiology & Biostatistics, Western University, London, Ontario, N6G 2M1, Canada
| |
Collapse
|
18
|
Arosa L, Camba-Gómez M, Lorenzo-Martín LF, Clavaín L, López M, Conde-Aranda J. RNA Expression of MMP12 Is Strongly Associated with Inflammatory Bowel Disease and Is Regulated by Metabolic Pathways in RAW 264.7 Macrophages. Int J Mol Sci 2024; 25:3167. [PMID: 38542140 PMCID: PMC10970096 DOI: 10.3390/ijms25063167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Macrophage metalloelastase or matrix metalloproteinase-12 (MMP12) is a macrophage-specific proteolytic enzyme involved in the physiopathology of many inflammatory diseases, including inflammatory bowel disease. Although previously published data suggested that the modulation of MMP12 in macrophages could be a determinant for the development of intestinal inflammation, scarce information is available on the mechanisms underlying the regulation of MMP12 expression in those phagocytes. Therefore, in this study, we aimed to delineate the association of MMP12 with inflammatory bowel disease and the molecular events leading to the transcriptional control of this metalloproteinase. For that, we used publicly available transcriptional data. Also, we worked with the RAW 264.7 macrophage cell line for functional experiments. Our results showed a strong association of MMP12 expression with the severity of inflammatory bowel disease and the response to relevant biological therapies. In vitro assays revealed that the inhibition of mechanistic target of rapamycin complex 1 (mTORC1) and the stimulation of the AMP-activated protein kinase (AMPK) signaling pathway potentiated the expression of Mmp12. Additionally, AMPK and mTOR required a functional downstream glycolytic pathway to fully engage with Mmp12 expression. Finally, the pharmacological inhibition of MMP12 abolished the expression of the proinflammatory cytokine Interleukin-6 (Il6) in macrophages. Overall, our findings provide a better understanding of the mechanistic regulation of MMP12 in macrophages and its relationship with inflammation.
Collapse
Affiliation(s)
- Laura Arosa
- Molecular and Cellular Gastroenterology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (L.A.); (M.C.-G.)
| | - Miguel Camba-Gómez
- Molecular and Cellular Gastroenterology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (L.A.); (M.C.-G.)
| | | | - Laura Clavaín
- EGO Genomics, Scientific Park of the University of Salamanca, Adaja Street 4, Building M2, 37185 Villamayor, Spain;
| | - Miguel López
- NeurObesity Group, Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- CIBER Fisiopatologia de la Obesidad y Nutrición (CIBERobn), 15706 Santiago de Compostela, Spain
| | - Javier Conde-Aranda
- Molecular and Cellular Gastroenterology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (L.A.); (M.C.-G.)
| |
Collapse
|
19
|
Bai BYH, Reppell M, Smaoui N, Waring JF, Pivorunas V, Guay H, Lin S, Chanchlani N, Bewshea C, Goodhand JR, Kennedy NA, Ahmad T, Anderson CA. Baseline Expression of Immune Gene Modules in Blood is Associated With Primary Response to Anti-TNF Therapy in Crohn's Disease Patients. J Crohns Colitis 2024; 18:431-445. [PMID: 37776235 PMCID: PMC10906954 DOI: 10.1093/ecco-jcc/jjad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/22/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND AND AIMS Anti-tumour necrosis factor [anti-TNF] therapy is widely used for the treatment of inflammatory bowel disease, yet many patients are primary non-responders, failing to respond to induction therapy. We aimed to identify blood gene expression differences between primary responders and primary non-responders to anti-TNF monoclonal antibodies [infliximab and adalimumab], and to predict response status from blood gene expression and clinical data. METHODS The Personalised Anti-TNF Therapy in Crohn's Disease [PANTS] study is a UK-wide prospective observational cohort study of anti-TNF therapy outcome in anti-TNF-naive Crohn's disease patients [ClinicalTrials.gov identifier: NCT03088449]. Blood gene expression in 324 unique patients was measured by RNA-sequencing at baseline [week 0], and at weeks 14, 30, and 54 after treatment initiation [total sample size = 814]. RESULTS After adjusting for clinical covariates and estimated blood cell composition, baseline expression of major histocompatibility complex, antigen presentation, myeloid cell enriched receptor, and other innate immune gene modules was significantly higher in anti-TNF responders vs non-responders. Expression changes from baseline to week 14 were generally of consistent direction but greater magnitude [i.e. amplified] in responders, but interferon-related genes were upregulated uniquely in non-responders. Expression differences between responders and non-responders observed at week 14 were maintained at weeks 30 and 54. Prediction of response status from baseline clinical data, cell composition, and module expression was poor. CONCLUSIONS Baseline gene module expression was associated with primary response to anti-TNF therapy in PANTS patients. However, these baseline expression differences did not predict response with sufficient sensitivity for clinical use.
Collapse
Affiliation(s)
- Benjamin Y H Bai
- Genomics of Inflammation and Immunity Group, Wellcome Sanger Institute, Hinxton, UK
- Postgraduate School of Life Sciences, University of Cambridge, Cambridge, UK
| | | | | | | | | | | | - Simeng Lin
- Department of Gastroenterology, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
- Exeter Inflammatory Bowel Disease and Pharmacogenetics Research Group, University of Exeter, Exeter, UK
| | - Neil Chanchlani
- Department of Gastroenterology, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
- Exeter Inflammatory Bowel Disease and Pharmacogenetics Research Group, University of Exeter, Exeter, UK
| | - Claire Bewshea
- Exeter Inflammatory Bowel Disease and Pharmacogenetics Research Group, University of Exeter, Exeter, UK
| | - James R Goodhand
- Department of Gastroenterology, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
- Exeter Inflammatory Bowel Disease and Pharmacogenetics Research Group, University of Exeter, Exeter, UK
| | - Nicholas A Kennedy
- Department of Gastroenterology, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
- Exeter Inflammatory Bowel Disease and Pharmacogenetics Research Group, University of Exeter, Exeter, UK
| | - Tariq Ahmad
- Department of Gastroenterology, Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
- Exeter Inflammatory Bowel Disease and Pharmacogenetics Research Group, University of Exeter, Exeter, UK
| | - Carl A Anderson
- Genomics of Inflammation and Immunity Group, Wellcome Sanger Institute, Hinxton, UK
| |
Collapse
|
20
|
Puca P, Capobianco I, Coppola G, Di Vincenzo F, Trapani V, Petito V, Laterza L, Pugliese D, Lopetuso LR, Scaldaferri F. Cellular and Molecular Determinants of Biologic Drugs Resistance and Therapeutic Failure in Inflammatory Bowel Disease. Int J Mol Sci 2024; 25:2789. [PMID: 38474034 DOI: 10.3390/ijms25052789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The advent of biologic drugs has revolutionized the treatment of Inflammatory Bowel Disease, increasing rates of response and mucosal healing in comparison to conventional therapies by allowing the treatment of corticosteroid-refractory cases and reducing corticosteroid-related side effects. However, biologic therapies (anti-TNFα inhibitors, anti-α4β7 integrin and anti-IL12/23) are still burdened by rates of response that hover around 40% (in biologic-naïve patients) or lower (for biologic-experienced patients). Moreover, knowledge of the mechanisms underlying drug resistance or loss of response is still scarce. Several cellular and molecular determinants are implied in therapeutic failure; genetic predispositions, in the form of single nucleotide polymorphisms in the sequence of cytokines or Human Leukocyte Antigen, or an altered expression of cytokines and other molecules involved in the inflammation cascade, play the most important role. Accessory mechanisms include gut microbiota dysregulation. In this narrative review of the current and most recent literature, we shed light on the mentioned determinants of therapeutic failure in order to pave the way for a more personalized approach that could help avoid unnecessary treatments and toxicities.
Collapse
Affiliation(s)
- Pierluigi Puca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ivan Capobianco
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gaetano Coppola
- IBD Unit, UOC CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Federica Di Vincenzo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Valentina Trapani
- Alleanza Contro il Cancro, Istituto Superiore di Sanità, 00144 Rome, Italy
| | - Valentina Petito
- IBD Unit, UOC CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Lucrezia Laterza
- IBD Unit, UOC CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Daniela Pugliese
- IBD Unit, UOC CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Loris Riccardo Lopetuso
- IBD Unit, UOC CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medicine and Ageing Sciences, "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
- Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, 66100 Chieti, Italy
| | - Franco Scaldaferri
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- IBD Unit, UOC CEMAD Centro Malattie dell'Apparato Digerente, Dipartimento di Scienze Mediche e Chirurgiche Addominali ed Endocrino Metaboliche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
21
|
Wu J, Xu X, Duan J, Chai Y, Song J, Gong D, Wang B, Hu Y, Han T, Ding Y, Liu Y, Li J, Cao X. EFHD2 suppresses intestinal inflammation by blocking intestinal epithelial cell TNFR1 internalization and cell death. Nat Commun 2024; 15:1282. [PMID: 38346956 PMCID: PMC10861516 DOI: 10.1038/s41467-024-45539-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
TNF acts as one pathogenic driver for inducing intestinal epithelial cell (IEC) death and substantial intestinal inflammation. How the IEC death is regulated to physiologically prevent intestinal inflammation needs further investigation. Here, we report that EF-hand domain-containing protein D2 (EFHD2), highly expressed in normal intestine tissues but decreased in intestinal biopsy samples of ulcerative colitis patients, protects intestinal epithelium from TNF-induced IEC apoptosis. EFHD2 inhibits TNF-induced apoptosis in primary IECs and intestinal organoids (enteroids). Mice deficient of Efhd2 in IECs exhibit excessive IEC death and exacerbated experimental colitis. Mechanistically, EFHD2 interacts with Cofilin and suppresses Cofilin phosphorylation, thus blocking TNF receptor I (TNFR1) internalization to inhibit IEC apoptosis and consequently protecting intestine from inflammation. Our findings deepen the understanding of EFHD2 as the key regulator of membrane receptor trafficking, providing insight into death receptor signals and autoinflammatory diseases.
Collapse
Affiliation(s)
- Jiacheng Wu
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Xiaoqing Xu
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Jiaqi Duan
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yangyang Chai
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Jiaying Song
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Dongsheng Gong
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Bingjing Wang
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Ye Hu
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Taotao Han
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yuanyuan Ding
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, 215123, China
| | - Yin Liu
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Jingnan Li
- Department of Gastroenterology, Key Laboratory of Gut Microbiota Translational Medicine Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Xuetao Cao
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China.
- Frontier Research Center for Cell Response, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
22
|
Ananthakrishnan AN. Precision medicine in inflammatory bowel diseases. Intest Res 2024; 22:8-14. [PMID: 37939722 PMCID: PMC10850693 DOI: 10.5217/ir.2023.00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/16/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023] Open
Abstract
Inflammatory bowel diseases comprising Crohn's disease and ulcerative colitis have emerged as global diseases. Multiple distinct therapeutic mechanisms have allowed us to increase our rates of achieving remission and reducing permanent disease-related morbidity. However, there is limited data to inform relative positioning of different therapies. This review will summarize existing literature on use of clinical decision models to inform relative efficacy of one therapeutic mechanism compared to the other given individual patient characteristics. It will also demonstrate the value of serologic, transcriptomic (from biopsies), and microbiome-based biomarkers in identifying which therapy is most likely to work for a given patient. We will review the existing gaps in the literature in this field and suggest a path forward for future studies to better inform patient care, incorporating the principles of precision medicine in the management of inflammatory bowel disease.
Collapse
Affiliation(s)
- Ashwin N. Ananthakrishnan
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Cook SA. Understanding interleukin 11 as a disease gene and therapeutic target. Biochem J 2023; 480:1987-2008. [PMID: 38054591 PMCID: PMC10754292 DOI: 10.1042/bcj20220160] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Interleukin 11 (IL11) is an elusive member of the IL6 family of cytokines. While initially thought to be a haematopoietic and cytoprotective factor, more recent data show instead that IL11 is redundant for haematopoiesis and toxic. In this review, the reasons that led to the original misunderstandings of IL11 biology, which are now understandable, are explained with particular attention on the use of recombinant human IL11 in mice and humans. Following tissue injury, as part of an evolutionary ancient homeostatic response, IL11 is secreted from damaged mammalian cells to signal via JAK/STAT3, ERK/P90RSK, LKB1/mTOR and GSK3β/SNAI1 in autocrine and paracrine. This activates a program of mesenchymal transition of epithelial, stromal, and endothelial cells to cause inflammation, fibrosis, and stalled endogenous tissue repair, leading to organ failure. The role of IL11 signalling in cell- and organ-specific pathobiology is described, the large unknowns about IL11 biology are discussed and the promise of targeting IL11 signalling as a therapeutic approach is reviewed.
Collapse
Affiliation(s)
- Stuart A. Cook
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore, Singapore
- Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| |
Collapse
|
24
|
Ahmad R, Kumar B, Thapa I, Talmon GA, Salomon J, Ramer-Tait AE, Bastola DK, Dhawan P, Singh AB. Loss of claudin-3 expression increases colitis risk by promoting Gut Dysbiosis. Gut Microbes 2023; 15:2282789. [PMID: 38010872 PMCID: PMC10730149 DOI: 10.1080/19490976.2023.2282789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023] Open
Abstract
Dysregulation of both the gut barrier and microbiota (dysbiosis) promotes susceptibility to and severity of Inflammatory Bowel Diseases (IBD). Leaky gut and dysbiosis often coexist; however, potential interdependence and molecular regulation are not well understood. Robust expression of claudin-3 (CLDN3) characterizes the gut epithelium, and studies have demonstrated a positive association between CLDN3 expression and gut barrier maturity and integrity, including in response to probiotics. However, the exact status and causal role of CLDN3 in IBD and regulation of gut dysbiosis remain unknown. Analysis of mouse and human IBD cohorts helped examine CLDN3 expression in IBD. The causal role was determined by modeling CLDN3 loss of expression during experimental colitis. 16S sequencing and in silico analysis helped examine gut microbiota diversity between Cldn3KO and WT mice and potential host metabolic responses. Fecal microbiota transplant (FMT) studies were performed to assess the role of gut dysbiosis in the increased susceptibility of Cldn3KO mice to colitis. A significant decrease in CLDN3 expression characterized IBD and CLDN3 loss of expression promoted colitis. 16S sequencing analysis suggested gut microbiota changes in Cldn3KO mice that were capable of modulating fatty acid metabolism and oxidative stress response. FMT from naïve Cldn3KO mice promoted colitis susceptibility in recipient germ-free mice (GFM) compared with GFM-receiving microbiota from WT mice. Our data demonstrate a critical role of CLDN3 in maintaining normal gut microbiota and inflammatory responses, which can be harnessed to develop novel therapeutic opportunities for patients with IBD.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Balawant Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ishwor Thapa
- School of Interdisciplinary Informatics, College of Information Science & Technology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Geoffrey A. Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jeffrey Salomon
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Amanda E. Ramer-Tait
- Department of Food Science and Technology and the Nebraska Food for Health Center, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Dhundy K. Bastola
- School of Interdisciplinary Informatics, College of Information Science & Technology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| |
Collapse
|
25
|
Zeng Z, Jiang M, Li X, Yuan J, Zhang H. Precision medicine in inflammatory bowel disease. PRECISION CLINICAL MEDICINE 2023; 6:pbad033. [PMID: 38638127 PMCID: PMC11025389 DOI: 10.1093/pcmedi/pbad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/13/2023] [Indexed: 04/20/2024] Open
Abstract
Inflammatory bowel disease (IBD) is an incurable disease characterized by remission-relapse cycles throughout its course. Both Crohn's disease (CD) and ulcerative colitis (UC), the two main forms of IBD, exhibit tendency to develop complications and substantial heterogeneity in terms of frequency and severity of relapse, thus posing great challenges to the clinical management for IBD. Current treatment strategies are effective in different ways in induction and maintenance therapies for IBD. Recent advances in studies of genetics, pharmacogenetics, proteomics and microbiome provide a strong driving force for identifying molecular markers of prognosis and treatment response, which should help clinicians manage IBD patients more effectively, and then, improve clinical outcomes and reduce treatment costs of patients. In this review, we summarize and discuss precision medicine in IBD, focusing on predictive markers of disease course and treatment response, and monitoring indices during therapeutic drug monitoring.
Collapse
Affiliation(s)
- Zhen Zeng
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingshan Jiang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xi Li
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- General Practice Ward/International Medical Center Ward, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Yuan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
- Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China
- Lab of Inflammatory Bowel Disease, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
26
|
Ahmad R, Kumar B, Thapa I, Tamang RL, Yadav SK, Washington MK, Talmon GA, Yu AS, Bastola DK, Dhawan P, Singh AB. Claudin-2 protects against colitis-associated cancer by promoting colitis-associated mucosal healing. J Clin Invest 2023; 133:e170771. [PMID: 37815870 PMCID: PMC10688979 DOI: 10.1172/jci170771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
Patients with inflammatory bowel disease (IBD) are susceptible to colitis-associated cancer (CAC). Chronic inflammation promotes the risk for CAC. In contrast, mucosal healing predicts improved prognosis in IBD and reduced risk of CAC. However, the molecular integration among colitis, mucosal healing, and CAC remains poorly understood. Claudin-2 (CLDN2) expression is upregulated in IBD; however, its role in CAC is not known. The current study was undertaken to examine the role for CLDN2 in CAC. The AOM/DSS-induced CAC model was used with WT and CLDN2-modified mice. High-throughput expression analyses, murine models of colitis/recovery, chronic colitis, ex vivo crypt culture, and pharmacological manipulations were employed in order to increase our mechanistic understanding. The Cldn2KO mice showed significant inhibition of CAC despite severe colitis compared with WT littermates. Cldn2 loss also resulted in impaired recovery from colitis and increased injury when mice were subjected to intestinal injury by other methods. Mechanistic studies demonstrated a possibly novel role of CLDN2 in promotion of mucosal healing downstream of EGFR signaling and by regulation of Survivin expression. An upregulated CLDN2 expression protected from CAC and associated positively with crypt regeneration and Survivin expression in patients with IBD. We demonstrate a potentially novel role of CLDN2 in promotion of mucosal healing in patients with IBD and thus regulation of vulnerability to colitis severity and CAC, which can be exploited for improved clinical management.
Collapse
Affiliation(s)
- Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Balawant Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ishwor Thapa
- School of Interdisciplinary Informatics, University of Nebraska Omaha, Omaha, Nebraska, USA
| | - Raju Lama Tamang
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Santosh K. Yadav
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Mary K. Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Geoffrey A. Talmon
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Alan S. Yu
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Dhundy K. Bastola
- School of Interdisciplinary Informatics, University of Nebraska Omaha, Omaha, Nebraska, USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
| |
Collapse
|
27
|
Derakhshan Nazari MH, Shahrokh S, Ghanbari-Maman L, Maleknia S, Ghorbaninejad M, Meyfour A. Prediction of anti-TNF therapy failure in ulcerative colitis patients by ensemble machine learning: A prospective study. Heliyon 2023; 9:e21154. [PMID: 37928018 PMCID: PMC10623293 DOI: 10.1016/j.heliyon.2023.e21154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023] Open
Abstract
Nowadays, anti-TNF therapy remarkably improves the medical management of ulcerative colitis (UC), but approximately 40 % of patients do not respond to this treatment. In this study, we used 79 anti-TNF-naive patients with moderate-to-severe UC from four cohorts to discover alternative therapeutic targets and develop a personalized medicine approach that can diagnose UC non-responders (UCN) prior to receiving anti-TNF therapy. To this end, two microarray data series were integrated to create a discovery cohort with 35 UC samples. A comprehensive gene expression and functional analysis was performed and identified 313 significantly altered genes, among which IL6 and INHBA were highlighted as overexpressed genes in the baseline mucosal biopsies of UCN, whose cooperation may lead to a decrease in the Tregs population. Besides, screening the abundances of immune cell subpopulations showed neutrophils' accumulation increasing the inflammation. Furthermore, the correlation of KRAS signaling activation with unresponsiveness to anti-TNF mAb was observed using network analysis. Using 50x repeated 10-fold cross-validation LASSO feature selection and a stack ensemble machine learning algorithm, a five-mRNA prognostic panel including IL13RA2, HCAR3, CSF3, INHBA, and MMP1 was introduced that could predict the response of UC patients to anti-TNF antibodies with an average accuracy of 95.3 %. The predictive capacity of the introduced biomarker panel was also validated in two independent cohorts (44 UC patients). Moreover, we presented a distinct immune cell landscape and gene signature for UCN to anti-TNF drugs and further studies should be considered to make this predictive biomarker panel and therapeutic targets applicable in the clinical setting.
Collapse
Affiliation(s)
- Mohammad Hossein Derakhshan Nazari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Shahrokh
- Research Center for Gastroenterology and Liver Diseases, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Ghanbari-Maman
- Basic and Molecular Epidemiology of Gastrointestinal Disorders, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Computer Science, Faculty of Mathematical Sciences, University of Kashan, Kashan, Iran
| | - Samaneh Maleknia
- Basic and Molecular Epidemiology of Gastrointestinal Disorders, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Ghorbaninejad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Xiong Z, Fang Y, Lu S, Sun Q, Huang J. Identification and Validation of Signature Genes and Potential Therapy Targets of Inflammatory Bowel Disease and Periodontitis. J Inflamm Res 2023; 16:4317-4330. [PMID: 37795494 PMCID: PMC10545806 DOI: 10.2147/jir.s426004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023] Open
Abstract
Background Inflammatory bowel disease (IBD) and periodontitis (PD) are correlated, although the pathogenic mechanism behind their correlation has not been clarified. This study aims to explore the common signature genes and potential therapeutic targets of IBD and PD using transcriptomic analysis. Methods The GEO database was used to download datasets of IBD and PD, and differential expression analysis was used to identify DEGs. We then conducted GO and KEGG enrichment analyses of the shared genes. Next, we applied 4 machine learning (ML) algorithms (GLM, RF, GBM, and SVM) to select the best prediction model for diagnosing the disease and obtained the hub genes of IBD and PD. The diagnostic value of the signature genes was verified by a validation set and qRT‒PCR experiments. Subsequently, immune cell infiltration in IBD samples and PD samples was analyzed by ssGSEA. Finally, we investigated and validated the response of hub genes to infliximab therapy. Results We identified 43 upregulated genes as shared genes by intersecting the DEGs of IBD and PD. Functional enrichment analysis suggested that the shared genes were closely associated with immunity and inflammation. The ML algorithm and qRT‒PCR results indicated that IGKC and COL4A1 were the hub genes with the most diagnostic value for IBD and PD. Subsequently, through immune infiltration analysis, CD4 T cells, NK cells and neutrophils were identified to play crucial roles in the pathogenesis of IBD and PD. Finally, through in vivo and in vitro experiments, we found that IGKC and COL4A1 were significantly downregulated during the treatment of patients with IBD using infliximab. Conclusion We investigated the potential association between IBD and PD using transcriptomic analysis. The IGKC and COL4A1 genes were identified as characteristic genes and novel intervention targets for these two diseases. Infliximab may be used to treat or prevent IBD and PD.
Collapse
Affiliation(s)
- Zhe Xiong
- Department of Gastroenterology, the Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
- Graduate School of Dalian Medical University, Dalian, Liaoning Province, People’s Republic of China
| | - Ying Fang
- Department of Gastroenterology, the Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
- Graduate School of Dalian Medical University, Dalian, Liaoning Province, People’s Republic of China
| | - Shuangshuang Lu
- Department of Gastroenterology, the Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Qiuyue Sun
- Department of Gastroenterology, the Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
- Graduate School of Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Jin Huang
- Department of Gastroenterology, the Affiliated Changzhou No.2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| |
Collapse
|
29
|
Gao X, Wang C, Shen XT, Li CY, Li YC, Gao H, Qian JM, Zhang XL. Pyroptosis burden is associated with anti-TNF treatment outcome in inflammatory bowel disease: new insights from bioinformatics analysis. Sci Rep 2023; 13:15821. [PMID: 37740137 PMCID: PMC10516897 DOI: 10.1038/s41598-023-43091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023] Open
Abstract
Biological agents known as anti-tumor necrosis factor (TNF) drugs are frequently utilized in the treatment of inflammatory bowel disease (IBD). In this study, we analyzed the shared processes of pyroptosis in Ulcerative colitis (UC) and Crohn's disease (CD), as well as explored the correlation between the burden of pyroptosis and the results of anti-TNF treatment based on bioinformatics analyses. We identified CAPS1, CASP5, GSDMD, AIM2, and NLRP3 as the hub genes, with AIM2 being the most effective indicator for predicting the response to anti-TNF therapy. We also noticed that non-responders received anti-TNF therapy exhibited elevated AIM2 protein expression. Subsequently, we conducted a cluster analysis based on AIM2-inflammasome-related genes and discovered that patients with a higher burden of AIM2 inflammasome displayed stronger immune function and a poor response to anti-TNF therapy. Overall, our study elucidates the pathway of pyroptosis in IBD and reveals AIM2 expression level as a potential biomarker for predicting the effectiveness of anti-TNF therapy.
Collapse
Affiliation(s)
- Xin Gao
- Department of GastroenterologyHebei Key Laboratory of GastroenterologyHebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Hebei Institute of Gastroenterology, Shijiazhuang, 050035, Hebei, China
| | - Chen Wang
- Department of GastroenterologyHebei Key Laboratory of GastroenterologyHebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Hebei Institute of Gastroenterology, Shijiazhuang, 050035, Hebei, China
| | - Xiao-Tong Shen
- Department of GastroenterologyHebei Key Laboratory of GastroenterologyHebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Hebei Institute of Gastroenterology, Shijiazhuang, 050035, Hebei, China
| | - Chen-Yang Li
- Department of GastroenterologyHebei Key Laboratory of GastroenterologyHebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Hebei Institute of Gastroenterology, Shijiazhuang, 050035, Hebei, China
| | - Yan-Chen Li
- Department of GastroenterologyHebei Key Laboratory of GastroenterologyHebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Hebei Institute of Gastroenterology, Shijiazhuang, 050035, Hebei, China
| | - He Gao
- Department of GastroenterologyHebei Key Laboratory of GastroenterologyHebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Hebei Institute of Gastroenterology, Shijiazhuang, 050035, Hebei, China
| | - Jia-Ming Qian
- Department of GastroenterologyHebei Key Laboratory of GastroenterologyHebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Hebei Institute of Gastroenterology, Shijiazhuang, 050035, Hebei, China.
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Xiao-Lan Zhang
- Department of GastroenterologyHebei Key Laboratory of GastroenterologyHebei Clinical Research Center for Digestive Diseases, The Second Hospital of Hebei Medical University, Hebei Institute of Gastroenterology, Shijiazhuang, 050035, Hebei, China.
| |
Collapse
|
30
|
Iacucci M, Jeffery L, Acharjee A, Grisan E, Buda A, Nardone OM, Smith SCL, Labarile N, Zardo D, Ungar B, Hunter S, Mao R, Cannatelli R, Shivaji UN, Parigi TL, Reynolds GM, Gkoutos GV, Ghosh S. Computer-Aided Imaging Analysis of Probe-Based Confocal Laser Endomicroscopy With Molecular Labeling and Gene Expression Identifies Markers of Response to Biological Therapy in IBD Patients: The Endo-Omics Study. Inflamm Bowel Dis 2023; 29:1409-1420. [PMID: 36378498 PMCID: PMC10472745 DOI: 10.1093/ibd/izac233] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND We aimed to predict response to biologics in inflammatory bowel disease (IBD) using computerized image analysis of probe confocal laser endomicroscopy (pCLE) in vivo and assess the binding of fluorescent-labeled biologics ex vivo. Additionally, we investigated genes predictive of anti-tumor necrosis factor (TNF) response. METHODS Twenty-nine patients (15 with Crohn's disease [CD], 14 with ulcerative colitis [UC]) underwent colonoscopy with pCLE before and 12 to 14 weeks after starting anti-TNF or anti-integrin α4β7 therapy. Biopsies were taken for fluorescein isothiocyanate-labeled infliximab and vedolizumab staining and gene expression analysis. Computer-aided quantitative image analysis of pCLE was performed. Differentially expressed genes predictive of response were determined and validated in a public cohort. RESULTS In vivo, vessel tortuosity, crypt morphology, and fluorescein leakage predicted response in UC (area under the receiver-operating characteristic curve [AUROC], 0.93; accuracy 85%, positive predictive value [PPV] 89%; negative predictive value [NPV] 75%) and CD (AUROC, 0.79; accuracy 80%; PPV 75%; NPV 83%) patients. Ex vivo, increased binding of labeled biologic at baseline predicted response in UC (UC) (AUROC, 83%; accuracy 77%; PPV 89%; NPV 50%) but not in Crohn's disease (AUROC 58%). A total of 325 differentially expressed genes distinguished responders from nonresponders, 86 of which fell within the most enriched pathways. A panel including ACTN1, CXCL6, LAMA4, EMILIN1, CRIP2, CXCL13, and MAPKAPK2 showed good prediction of anti-TNF response (AUROC >0.7). CONCLUSIONS Higher mucosal binding of the drug target is associated with response to therapy in UC. In vivo, mucosal and microvascular changes detected by pCLE are associated with response to biologics in inflammatory bowel disease. Anti-TNF-responsive UC patients have a less inflamed and fibrotic state pretreatment. Chemotactic pathways involving CXCL6 or CXCL13 may be novel targets for therapy in nonresponders.
Collapse
Affiliation(s)
- Marietta Iacucci
- National Institute for Health Research Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK
- Gastroenterology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Louisa Jeffery
- Gastroenterology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Animesh Acharjee
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
- National Institute for Health Research Surgical Reconstruction, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Enrico Grisan
- Department of Information Engineering, University of Padova, Padova, Italy
- School of Engineering Computer Science and Informatics, London South Bank University, London, UK
| | - Andrea Buda
- Gastroenterology Unit, Department of Gastrointestinal Oncological Surgery, S. Maria del Prato Hospital, Feltre, Italy
| | - Olga M Nardone
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Samuel C L Smith
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Nunzia Labarile
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Davide Zardo
- Gastroenterology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Bella Ungar
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Stuart Hunter
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Rosanna Cannatelli
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Uday N Shivaji
- Gastroenterology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | | | - Gary M Reynolds
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Georgios V Gkoutos
- National Institute for Health Research Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Subrata Ghosh
- National Institute for Health Research Birmingham Biomedical Research Centre, University of Birmingham, Birmingham, UK
- Gastroenterology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|
31
|
Yang X, Shi J, Wang G, Chen H, Ye Y, Zhong J, Wang Z. Novel mRNA Signature for Anti-TNF-α Therapy Primary Response in Patients With Ulcerative Colitis. Inflamm Bowel Dis 2023; 29:1458-1469. [PMID: 37080716 DOI: 10.1093/ibd/izad060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Ulcerative colitis (UC), an idiopathic, chronic inflammatory disorder of the colonic mucosa, is commonly treated with antitumor necrosis factor α (anti-TNF-α) agents. However, only approximately two-thirds have an initial response to these therapies. METHODS We integrated gene expression profiling from 3 independent data sets of 79 UC patients before they began anti-TNF-α therapy and calculated the differentially expressed genes between patient response and nonresponse to anti-TNF-α therapy and developed a de novo response-associated transcription signature score (logOR_Score) to demonstrate the predictive capability of anti-TNF-α therapy for therapeutic efficacy. Furthermore, we performed association analysis of the logOR_Score and clinical features, such as disease activity and immune microenvironment. RESULTS A total of 2522 responsive and 1824 nonresponsive genes were identified from the integrated data set. Responsive genes were significantly enriched in metabolism-related pathways, whereas nonresponsive ones were associated with immune response-related pathways. The logOR_Score enabled the accurate prediction of the therapeutic efficacy of anti-TNF-α in 4 independent patient cohorts and outperformed the predictions made based on 6 transcriptome-based signatures. In terms of clinical features, the logOR_Score correlated highly with the activity of UC. From an immune microenvironment perspective, logOR_Scores of CD8+IL-17+ T cells, follicular B cells, and innate lymphoid cells significantly decreased in inflamed UC tissue. CONCLUSIONS The de novo response-associated transcription signature may provide novel insights into the personalized treatment of patients with UC. Comprehensive analyses of the response-related subtypes and the association between logOR_Score and clinical features and immune microenvironment may provide insights into the underlying UC pathogenesis.
Collapse
Affiliation(s)
- Xinhui Yang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Jintong Shi
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Gaoyang Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Huifang Chen
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Youqiong Ye
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P.R. China
| | - Jie Zhong
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Zhengting Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
32
|
Annese V, Annese M. Precision Medicine in Inflammatory Bowel Disease. Diagnostics (Basel) 2023; 13:2797. [PMID: 37685335 PMCID: PMC10487169 DOI: 10.3390/diagnostics13172797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Ulcerative colitis and Crohn's disease are traditionally defined as the two main subtypes of inflammatory bowel disease. However, a more recent view considers IBD as a spectrum of heterogeneous phenotypes with consistent differences in clinical presentation and behaviors, likely explained by differences in underlying pathogenetic mechanisms. The etiology is still elusive, and the suggested pathogenesis is a complex interplay among genetic predisposition and abnormal immune response at the mucosal intestinal level, activated by only partially identified environmental triggers leading to altered intestinal permeability and impaired handling of gut microbiota. The undeniable continuous progress of medical therapy with more frequent shifts from traditional to more advanced modalities also underlines the actual unmet needs. We are using medications with completely different mechanisms of action, with a lack of predictive factors of outcomes and response and still an unsatisfactory rate of success. In addition, we are missing still valuable and accurate markers to predict disease progression and severity in order to avoid under- or over-treatment. In such a complex scenario, it is undoubtful that the application of artificial intelligence and machine learning algorithms may improve the management and pave the way for precision and eventually personalized medicine in these patients; however, there are still several challenges that will be the focus of this review.
Collapse
Affiliation(s)
- Vito Annese
- Department Gastroenterology IRCCS San Donato Policlinic, Vita-Salute San Raffaele University, 20100 Milan, Italy
| | - Monica Annese
- Department Gastroenterology, IRCCS Hospital Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
33
|
Krušič M, Jezernik G, Potočnik U. Gene Ontology Analysis Highlights Biological Processes Influencing Responsiveness to Biological Therapy in Psoriasis. Pharmaceutics 2023; 15:2024. [PMID: 37631238 PMCID: PMC10459906 DOI: 10.3390/pharmaceutics15082024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/27/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Psoriasis is a chronic, immune-mediated and inflammatory skin disease. Although various biological drugs are available for psoriasis treatment, some patients have poor responses or do not respond to treatment. The aim of the present study was to highlight the molecular mechanism of responsiveness to current biological drugs for psoriasis treatment. To this end, we reviewed previously published articles that reported genes associated with treatment response to biological drugs in psoriasis, and gene ontology analysis was subsequently performed using the Cytoscape platform. Herein, we revealed a statistically significant association between NF-kappaB signaling (p value = 3.37 × 10-9), regulation of granulocyte macrophage colony-stimulating factor production (p value = 6.20 × 10-6), glial cell proliferation (p value = 2.41 × 10-5) and treatment response in psoriatic patients. To the best of our knowledge, we are the first to directly associate glial cells with treatment response. Taken together, our study revealed gene ontology (GO) terms, some of which were previously shown to be implicated in the molecular pathway of psoriasis, as novel GO terms involved in responsiveness in psoriatic disease patients.
Collapse
Affiliation(s)
- Martina Krušič
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.K.); (G.J.)
| | - Gregor Jezernik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.K.); (G.J.)
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia; (M.K.); (G.J.)
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Department for Science and Research, University Clinical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
| |
Collapse
|
34
|
Coufal S, Kverka M, Kreisinger J, Thon T, Rob F, Kolar M, Reiss Z, Schierova D, Kostovcikova K, Roubalova R, Bajer L, Jackova Z, Mihula M, Drastich P, Tresnak Hercogova J, Novakova M, Vasatko M, Lukas M, Tlaskalova-Hogenova H, Jiraskova Zakostelska Z. Serum TGF- β1 and CD14 Predicts Response to Anti-TNF- α Therapy in IBD. J Immunol Res 2023; 2023:1535484. [PMID: 37383609 PMCID: PMC10299888 DOI: 10.1155/2023/1535484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Background Tumor necrosis factor-alpha (TNF-α) agonists revolutionized therapeutic algorithms in inflammatory bowel disease (IBD) management. However, approximately every third IBD patient does not respond to this therapy in the long term, which delays efficient control of the intestinal inflammation. Methods We analyzed the power of serum biomarkers to predict the failure of anti-TNF-α. We collected serum of 38 IBD patients at therapy prescription and 38 weeks later and analyzed them with relation to therapy response (no-, partial-, and full response). We used enzyme-linked immunosorbent assay to quantify 16 biomarkers related to gut barrier (intestinal fatty acid-binding protein, liver fatty acid-binding protein, trefoil factor 3, and interleukin (IL)-33), microbial translocation, immune system regulation (TNF-α, CD14, lipopolysaccharide-binding protein, mannan-binding lectin, IL-18, transforming growth factor-β1 (TGF-β1), osteoprotegerin (OPG), insulin-like growth factor 2 (IGF-2), endocrine-gland-derived vascular endothelial growth factor), and matrix metalloproteinase system (MMP-9, MMP-14, and tissue inhibitors of metalloproteinase-1). Results We found that future full-responders have different biomarker profiles than non-responders, while partial-responders cannot be distinguished from either group. When future non-responders were compared to responders, their baseline contained significantly more TGF-β1, less CD14, and increased level of MMP-9, and concentration of these factors could predict non-responders with high accuracy (AUC = 0.938). Interestingly, during the 38 weeks, levels of MMP-9 decreased in all patients, irrespective of the outcome, while OPG, IGF-2, and TGF-β1 were higher in non-responders compared to full-responders both at the beginning and the end of the treatment. Conclusions The TGF-β1 and CD14 can distinguish non-responders from responders. The changes in biomarker dynamics during the therapy suggest that growth factors (such as OPG, IGF-2, and TGF-β) are not markedly influenced by the treatment and that anti-TNF-α therapy decreases MMP-9 without influencing the treatment outcome.
Collapse
Affiliation(s)
- Stepan Coufal
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miloslav Kverka
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Kreisinger
- Laboratory of Animal Evolutionary Biology, Faculty of Science, Department of Zoology, Charles University, Prague, Czech Republic
| | - Tomas Thon
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Filip Rob
- Second Faculty of Medicine, University Hospital Bulovka, Dermatovenerology Department, Charles University, Prague, Czech Republic
| | - Martin Kolar
- ISCARE a.s., IBD Clinical and Research Centre, Prague, Czech Republic
| | - Zuzana Reiss
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Dagmar Schierova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Klara Kostovcikova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Radka Roubalova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lukas Bajer
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Zuzana Jackova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Mihula
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Drastich
- Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jana Tresnak Hercogova
- Second Faculty of Medicine, University Hospital Bulovka, Dermatovenerology Department, Charles University, Prague, Czech Republic
- Dermatology Prof. Hercogova, Center for Biological Therapy, Prague, Czech Republic
| | - Michaela Novakova
- Second Faculty of Medicine, University Hospital Bulovka, Dermatovenerology Department, Charles University, Prague, Czech Republic
| | - Martin Vasatko
- ISCARE a.s., IBD Clinical and Research Centre, Prague, Czech Republic
| | - Milan Lukas
- ISCARE a.s., IBD Clinical and Research Centre, Prague, Czech Republic
- Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Helena Tlaskalova-Hogenova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Jiraskova Zakostelska
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
35
|
Kriger-Sharabi OA, Kopylov U. Harnessing the Power of Precision Medicine and Novel Biomarkers to Treat Crohn’s Disease. J Clin Med 2023; 12:jcm12072696. [PMID: 37048779 PMCID: PMC10094767 DOI: 10.3390/jcm12072696] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/11/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
Crohn’s disease (CD) is a chronic inflammatory condition that affects the gastrointestinal tract. It is part of a spectrum of inflammatory Bowel Diseases (IBD). The disease is complex, characterized by significant inter and intra-individual heterogeneity, which contributes to a diverse and multifaceted portrayal of the disease. Consequently, applying specific and accurate treatment is challenging, and therapeutic success rates remain disappointing and insufficient. In recent years, significant advances in the therapeutic potential of CD have been made. Hope has been provided by these developments in the form of an expanding treatment toolkit. However, even with these beneficial adjustments, patients are frequently treated using an ineffective “one size fits all” treatment protocol, ultimately leading to a plateau in drug effectiveness and a decline in overall treatment success rates. Furthermore, with the advancement in the genome-wide association study, in combination with significant bioinformatic developments, the world of medicine has moved in the direction of personalized, tailored-treatment medicine, and this trend has not escaped the world of IBDs. Prediction models, novel biomarkers, and complex algorithms are emerging and inspiring optimism that CD patients will be treated with “precision medicine” in the near future, meaning that their treatments will be selected based on the patient’s various unique features. In this review, we will outline the current diagnostic and therapeutic limitations that lead to a glass ceiling effect and thus send us in pursuit of discovering novel biomarkers. We will illustrate the challenges and difficulties in discovering relevant and innovative biomarkers and implementing them into everyday clinical practice. We will also heighten the progress made in practicing personalized medicine for CD patients and shed light on future directions and horizons.
Collapse
Affiliation(s)
- Ofra Aviva Kriger-Sharabi
- Department of Gatsroenterology, Assuta Ashdod Medical Center, Affiliated to The Ben-Gurion University (BGU) Medical School, Ashdod 7747629, Israel
| | - Uri Kopylov
- Department of Gastroenterology, Sheba Medical Center, Tel Hashomer, Affliated to Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
36
|
Apolit C, Campos N, Vautrin A, Begon-Pescia C, Lapasset L, Scherrer D, Gineste P, Ehrlich H, Garcel A, Santo J, Tazi J. ABX464 (Obefazimod) Upregulates miR-124 to Reduce Proinflammatory Markers in Inflammatory Bowel Diseases. Clin Transl Gastroenterol 2023; 14:e00560. [PMID: 36573890 PMCID: PMC10132720 DOI: 10.14309/ctg.0000000000000560] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
Advanced therapies have transformed the treatment of inflammatory bowel disease; however, many patients fail to respond, highlighting the need for therapies tailored to the underlying cell and molecular disease drivers. The first-in-class oral molecule ABX464 (obefazimod), which selectively upregulates miR-124, has demonstrated its ability to be a well-tolerated treatment with rapid and sustained efficacy in patients with ulcerative colitis (UC). Here, we provide evidence that ABX464 affects the immune system in vitro , in the murine model of inflammatory bowel disease, and in patients with UC. In vitro , ABX464 treatment upregulated miR-124 and led to decreases in proinflammatory cytokines including interleukin (IL) 17 and IL6, and in the chemokine CCL2. Consistently, miR-124 expression was upregulated in the rectal biopsies and blood samples of patients with UC, and a parallel reduction in Th17 cells and IL17a levels was observed in serum samples. In a mouse model of induced intestinal inflammation with dextran sulfate sodium, ABX464 reversed the increases in multiple proinflammatory cytokines in the colon and the upregulation of IL17a secretion in the mesenteric lymph nodes. By upregulating miR-124, ABX464 acts as "a physiological brake" of inflammation, which may explain the efficacy of ABX464 with a favorable tolerability and safety profile in patients with UC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jamal Tazi
- Abivax, Montpellier, France
- Abivax, Paris, France
| |
Collapse
|
37
|
Haglund S, Söderman J, Almer S. Differences in Whole-Blood Transcriptional Profiles in Inflammatory Bowel Disease Patients Responding to Vedolizumab Compared with Non-Responders. Int J Mol Sci 2023; 24:ijms24065820. [PMID: 36982892 PMCID: PMC10052064 DOI: 10.3390/ijms24065820] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Vedolizumab is efficacious in the treatment of Crohn's disease (CD) and ulcerative colitis (UC). However, a significant proportion of patients present with a non-response. To investigate whether differences in the clinical response to vedolizumab is reflected in changes in gene expression levels in whole blood, samples were collected at baseline before treatment, and at follow-up after 10-12 weeks. Whole genome transcriptional profiles were established by RNA sequencing. Before treatment, no differentially expressed genes were noted between responders (n = 9, UC 4, CD 5) and non-responders (n = 11, UC 3, CD 8). At follow-up, compared with baseline, responders displayed 201 differentially expressed genes, and 51 upregulated (e.g., translation initiation, mitochondrial translation, and peroxisomal membrane protein import) and 221 downregulated (e.g., Toll-like receptor activating cascades, and phagocytosis related) pathways. Twenty-two of the upregulated pathways in responders were instead downregulated in non-responders. The results correspond with a dampening of inflammatory activity in responders. Although considered a gut-specific drug, our study shows a considerable gene regulation in the blood of patients responding to vedolizumab. It also suggests that whole blood is not optimal for identifying predictive pre-treatment biomarkers based on individual genes. However, treatment outcomes may depend on several interacting genes, and our results indicate a possible potential of pathway analysis in predicting response to treatment, which merits further investigation.
Collapse
Affiliation(s)
- Sofie Haglund
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
- Laboratory Medicine, Region Jönköping County, 551 85 Jönköping, Sweden
| | - Jan Söderman
- Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden
- Laboratory Medicine, Region Jönköping County, 551 85 Jönköping, Sweden
| | - Sven Almer
- IBD-Unit, Division of Gastroenterology, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Department of Medicine, Karolinska Institutet-Solna, 171 76 Stockholm, Sweden
| |
Collapse
|
38
|
Friedrich M, Travis S. Shining a Light on Barrier Function. Gastroenterology 2023; 164:184-186. [PMID: 36410444 DOI: 10.1053/j.gastro.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Affiliation(s)
- Matthias Friedrich
- Translational Gastroenterology Unit, Nuffield Department of Medicine and, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences and, Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Simon Travis
- Translational Gastroenterology Unit, Nuffield Department of Medicine and, Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences and, Biomedical Research Centre, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
39
|
Vieujean S, Louis E. Precision medicine and drug optimization in adult inflammatory bowel disease patients. Therap Adv Gastroenterol 2023; 16:17562848231173331. [PMID: 37197397 PMCID: PMC10184262 DOI: 10.1177/17562848231173331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/16/2023] [Indexed: 05/19/2023] Open
Abstract
Inflammatory bowel diseases (IBD) encompass two main entities including ulcerative colitis and Crohn's disease. Although having a common global pathophysiological mechanism, IBD patients are characterized by a significant interindividual heterogeneity and may differ by their disease type, disease locations, disease behaviours, disease manifestations, disease course as well as treatment needs. Indeed, although the therapeutic armamentarium for these diseases has expanded rapidly in recent years, a proportion of patients remains with a suboptimal response to medical treatment due to primary non-response, secondary loss of response or intolerance to currently available drugs. Identifying, prior to treatment initiation, which patients are likely to respond to a specific drug would improve the disease management, avoid unnecessary side effects and reduce the healthcare expenses. Precision medicine classifies individuals into subpopulations according to clinical and molecular characteristics with the objective to tailor preventative and therapeutic interventions to the characteristics of each patient. Interventions would thus be performed only on those who will benefit, sparing side effects and expense for those who will not. This review aims to summarize clinical factors, biomarkers (genetic, transcriptomic, proteomic, metabolic, radiomic or from the microbiota) and tools that could predict disease progression to guide towards a step-up or top-down strategy. Predictive factors of response or non-response to treatment will then be reviewed, followed by a discussion about the optimal dose of drug required for patients. The time at which these treatments should be administered (or rather can be stopped in case of a deep remission or in the aftermath of a surgery) will also be addressed. IBD remain biologically complex, with multifactorial etiopathology, clinical heterogeneity as well as temporal and therapeutic variabilities, which makes precision medicine especially challenging in this area. Although applied for many years in oncology, it remains an unmet medical need in IBD.
Collapse
Affiliation(s)
- Sophie Vieujean
- Hepato-Gastroenterology and Digestive Oncology, University Hospital CHU of Liège, Liège, Belgium
| | | |
Collapse
|
40
|
Dailey J, Hyams JS. Natural History of Ulcerative Colitis in Children. PEDIATRIC INFLAMMATORY BOWEL DISEASE 2023:103-111. [DOI: 10.1007/978-3-031-14744-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
41
|
Wang Y, Huang X, Zhou G, Han J, Xie Z, Zhang M, Li X, Wu QR, Li L, Ye Z, Chen M, Qiu Y, Zhang S. A Novel Nomogram Combining Mucus Barrier Index for Predicting Treatment Failures in Ulcerative Colitis. J Inflamm Res 2023; 16:1879-1894. [PMID: 37152865 PMCID: PMC10162100 DOI: 10.2147/jir.s410057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/21/2023] [Indexed: 05/09/2023] Open
Abstract
Background Treatment failures (TFs) generally exist in the course of ulcerative colitis (UC), while early reliable predictors of TFs are still lacking. We aimed to generate nomograms for the prediction of TFs. Methods In this retrospective case-control study, the endpoint was the occurrence of TFs, which included medically associated treatment failures and surgery-associated treatment failures (colectomy). Clinical features and mucus integrity evident by goblet cells (GCs) number, expression levels of MUC2 and SLC26A3 were enrolled in the univariate analysis. Nomogram performance was evaluated by discrimination and calibration. Results We identified 256 UC patients at our center from January 2010 to June 2022. Fourteen variables for TFs and 9 for colectomy were identified by univariate analysis. Five baseline indices were incorporated into the nomogram for the prediction of TFs: area of GCs, age at diagnosis, disease duration, hemoglobin, and Mayo score. The model was presented with decent discrimination (C index of 0.822) and well calibration. In addition, the colectomy predictive nomogram was built using MUC2 intensity, age at onset, and Mayo score with a good discrimination (C index of 0.92). Conclusion Nomograms based on comprehensive factors including mucus barrier function were developed to predict TFs in UC patients with great discrimination, which may serve as practical tools aiming to identify high-risk subgroups warrant timely intervention.
Collapse
Affiliation(s)
- Ying Wang
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Xuanzhi Huang
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Gaoshi Zhou
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Jing Han
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Zhuo Xie
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Mudan Zhang
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Xiaoling Li
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Qi-rui Wu
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Li Li
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Ziyin Ye
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Minhu Chen
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Yun Qiu
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
| | - Shenghong Zhang
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, People’s Republic of China
- Correspondence: Shenghong Zhang; Yun Qiu, Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, 58 Zhongshan Road 2, Guangzhou Province, 510080, People’s Republic of China, Tel/Fax +86-20-87332916, Email ;
| |
Collapse
|
42
|
Colonocyte keratin 7 is expressed de novo in inflammatory bowel diseases and associated with pathological changes and drug-resistance. Sci Rep 2022; 12:22213. [PMID: 36564440 PMCID: PMC9789078 DOI: 10.1038/s41598-022-26603-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The clinical course of IBD, characterized by relapses and remissions, is difficult to predict. Initial diagnosis can be challenging, and novel disease markers are needed. Keratin 7 (K7) is a cytoskeletal intermediate filament protein not expressed in the colonic epithelium but has been reported in IBD-associated colorectal tumors. Our aim was to analyze whether K7 is expressed in chronic colonic inflammatory diseases and evaluate its potential as a novel biomarker. K7 was analyzed in two patient cohorts using immunohistochemistry-stained colon samples and single-cell quantitative digital pathology methods. K7 was correlated to pathological changes and clinical patient characteristics. Our data shows that K7 is expressed de novo in the colonic epithelium of ulcerative colitis and Crohn's disease IBD patients, but not in collagenous or lymphocytic colitis. K7 mRNA expression was significantly increased in colons of IBD patients compared to controls when assessed in publicly available datasets. While K7 increased in areas with inflammatory activity, it was not expressed in specific crypt compartments and did not correlate with neutrophils or stool calprotectin. K7 was increased in areas proximal to pathological alterations and was most pronounced in drug-resistant ulcerative colitis. In conclusion, colonic epithelial K7 is neo-expressed selectively in IBD patients and could be investigated for its potential as a disease biomarker.
Collapse
|
43
|
Genetic and Epigenetic Etiology of Inflammatory Bowel Disease: An Update. Genes (Basel) 2022; 13:genes13122388. [PMID: 36553655 PMCID: PMC9778199 DOI: 10.3390/genes13122388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic disease with periods of exacerbation and remission of the disease. The etiology of IBD is not fully understood. Many studies point to the presence of genetic, immunological, environmental, and microbiological factors and the interactions between them in the occurrence of IBD. The review looks at genetic factors in the context of both IBD predisposition and pharmacogenetics.
Collapse
|
44
|
Wang J, Macoritto M, Guay H, Davis JW, Levesque MC, Cao X. The Clinical Response of Upadacitinib and Risankizumab Is Associated With Reduced Inflammatory Bowel Disease Anti-TNF-α Inadequate Response Mechanisms. Inflamm Bowel Dis 2022; 29:771-782. [PMID: 36515243 DOI: 10.1093/ibd/izac246] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Janus kinase (JAK) 1 inhibitor upadacitinib and IL-23 inhibitor risankizumab are efficacious in inflammatory bowel disease (IBD) patients who are antitumor necrosis factor (anti-TNF)-α inadequate responders (TNF-IRs). We aimed to understand the mechanisms mediating the response of upadacitinib and risankizumab. METHODS Eight tissue transcriptomic data sets from IBD patients treated with anti-TNF-α therapies along with single-cell RNAseq data from ulcerative colitis were integrated to identify TNF-IR mechanisms. The RNAseq colon tissue data from clinical studies of TNF-IR Crohn's disease patients treated with upadacitinib or risankizumab were used to identify TNF-IR mechanisms that were favorably modified by upadacitinib and risankizumab. RESULTS We found 7 TNF-IR upregulated modules related to innate/adaptive immune responses, interferon signaling, and tissue remodeling and 6 TNF-IR upregulated cell types related to inflammatory fibroblasts, postcapillary venules, inflammatory monocytes, macrophages, dendritic cells, and cycling B cells. Upadacitinib was associated with a significant decrease in the expression of most TNF-IR upregulated modules in JAK1 responders (JAK1-R); in contrast, there was no change in these modules among TNF-IR patients treated with a placebo or among JAK1 inadequate responders (JAK1-IR). In addition, 4 of the 6 TNF-IR upregulated cell types were significantly decreased after upadacitinib treatment in JAK1-R but not among subjects treated with a placebo or among JAK1-IR patients. We observed similar findings from colon biopsy samples from TNF-IR patients treated with risankizumab. CONCLUSIONS Collectively, these data suggest that upadacitinib and risankizumab affect TNF-IR upregulated mechanisms, which may account for their clinical response among TNF-IR IBD patients.
Collapse
Affiliation(s)
- Jing Wang
- Genomic Research Center, AbbVie Inc, Cambridge, MA, 02139, USA
| | | | - Heath Guay
- AbbVie Bioresearch Center, Worcester, MA, 01605, USA
| | - Justin W Davis
- Genomic Research Center, AbbVie Inc, North Chicago, IL, 60064, USA
| | | | - Xiaohong Cao
- Genomic Research Center, AbbVie Inc, Cambridge, MA, 02139, USA
| |
Collapse
|
45
|
Clarkston K, Karns R, Jegga AG, Sharma M, Fox S, Ojo BA, Minar P, Walters TD, Griffiths AM, Mack DR, Boyle B, LeLeiko NS, Markowitz J, Rosh JR, Patel AS, Shah S, Baldassano RN, Pfefferkorn M, Sauer C, Kugathasan S, Haberman Y, Hyams JS, Denson LA, Rosen MJ. Targeted Assessment of Mucosal Immune Gene Expression Predicts Clinical Outcomes in Children with Ulcerative Colitis. J Crohns Colitis 2022; 16:1735-1750. [PMID: 35665804 PMCID: PMC9683081 DOI: 10.1093/ecco-jcc/jjac075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS We aimed to determine whether a targeted gene expression panel could predict clinical outcomes in paediatric ulcerative colitis [UC] and investigated putative pathogenic roles of predictive genes. METHODS In total, 313 rectal RNA samples from a cohort of newly diagnosed paediatric UC patients (PROTECT) were analysed by a real-time PCR microfluidic array for expression of type 1, 2 and 17 inflammation genes. Associations between expression and clinical outcomes were assessed by logistic regression. Identified prognostic markers were further analysed using existing RNA sequencing (RNA-seq) data sets and tissue immunostaining. RESULTS IL13RA2 was associated with a lower likelihood of corticosteroid-free remission (CSFR) on mesalamine at week 52 (p = .002). A model including IL13RA2 and only baseline clinical parameters was as accurate as an established clinical model, which requires week 4 remission status. RORC was associated with a lower likelihood of colectomy by week 52. A model including RORC and PUCAI predicted colectomy by 52 weeks (area under the receiver operating characteristic curve 0.71). Bulk RNA-seq identified IL13RA2 and RORC as hub genes within UC outcome-associated expression networks related to extracellular matrix and innate immune response, and lipid metabolism and microvillus assembly, respectively. Adult UC single-cell RNA-seq data revealed IL13RA2 and RORC co-expressed genes were localized to inflammatory fibroblasts and undifferentiated epithelial cells, respectively, which was supported by protein immunostaining. CONCLUSION Targeted assessment of rectal mucosal immune gene expression predicts 52-week CSFR in treatment-naïve paediatric UC patients. Further exploration of IL-13Rɑ2 as a therapeutic target in UC and future studies of the epithelial-specific role of RORC in UC pathogenesis are warranted.
Collapse
Affiliation(s)
- Kathryn Clarkston
- Division of Gastroenterology, Hepatology and Nutrition
- Division of Pediatric Gastroenterology, Children’s Mercy Hospital, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology and Nutrition
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mihika Sharma
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Sejal Fox
- Division of Gastroenterology, Hepatology and Nutrition
| | - Babajide A Ojo
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Phillip Minar
- Division of Gastroenterology, Hepatology and Nutrition
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Thomas D Walters
- Division of Pediatric Gastroenterology, Hospital for Sick Children, Toronto, ON, Canada
| | - Anne M Griffiths
- Division of Pediatric Gastroenterology, Hospital for Sick Children, Toronto, ON, Canada
| | - David R Mack
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Eastern Ontario and University of Ottawa, Ottawa, ON, Canada
| | - Brendan Boyle
- Division of Gastroenterology, Hepatology, and Nutrition, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Neal S LeLeiko
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons and NewYork-Presbyterian Morgan Stanley Children’s Hospital, New York, NY, USA
| | - James Markowitz
- Division of Gastroenterology, Hepatology, and Nutrition, Cohen Children’s Medical Center of New York, New Hyde Park, NY, USA
| | - Joel R Rosh
- Division of Gastroenterology, Hepatology, and Nutrition, Goryeb Children’s Hospital, Atlantic Health, Morristown, NJ, USA
| | - Ashish S Patel
- Division of Gastroenterology, Phoenix Children’s Hospital, Phoenix, AZ, USA
| | - Sapana Shah
- Division of Gastroenterology, Hepatology and Nutrition, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Robert N Baldassano
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marian Pfefferkorn
- Division of Gastroenterology, Hepatology, and Nutrition, Riley Children’s Hospital, Indianapolis, IN, USA
| | - Cary Sauer
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University and Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Subra Kugathasan
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University and Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Yael Haberman
- Division of Gastroenterology, Hepatology and Nutrition
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Sheba Medical Center, Tel Hashomer, Israel
| | - Jeffrey S Hyams
- Division of Digestive Diseases, Hepatology, and Nutrition, Connecticut Children’s Medical Center, Hartford, CT, USA
| | - Lee A Denson
- Division of Gastroenterology, Hepatology and Nutrition
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Michael J Rosen
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
- Division of Gastroenterology, Hepatology and Nutrition
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
46
|
Tsou AM, Yano H, Parkhurst CN, Mahlakõiv T, Chu C, Zhang W, He Z, Jarick KJ, Zhong C, Putzel GG, Hatazaki M, Lorenz IC, Andrew D, Balderes P, Klose CSN, Lira SA, Artis D. Neuropeptide regulation of non-redundant ILC2 responses at barrier surfaces. Nature 2022; 611:787-793. [PMID: 36323781 PMCID: PMC10225046 DOI: 10.1038/s41586-022-05297-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 08/31/2022] [Indexed: 11/06/2022]
Abstract
Emerging studies indicate that cooperation between neurons and immune cells regulates antimicrobial immunity, inflammation and tissue homeostasis. For example, a neuronal rheostat provides excitatory or inhibitory signals that control the functions of tissue-resident group 2 innate lymphoid cells (ILC2s) at mucosal barrier surfaces1-4. ILC2s express NMUR1, a receptor for neuromedin U (NMU), which is a prominent cholinergic neuropeptide that promotes ILC2 responses5-7. However, many functions of ILC2s are shared with adaptive lymphocytes, including the production of type 2 cytokines8,9 and the release of tissue-protective amphiregulin (AREG)10-12. Consequently, there is controversy regarding whether innate lymphoid cells and adaptive lymphocytes perform redundant or non-redundant functions13-15. Here we generate a new genetic tool to target ILC2s for depletion or gene deletion in the presence of an intact adaptive immune system. Transgenic expression of iCre recombinase under the control of the mouse Nmur1 promoter enabled ILC2-specific deletion of AREG. This revealed that ILC2-derived AREG promotes non-redundant functions in the context of antiparasite immunity and tissue protection following intestinal damage and inflammation. Notably, NMU expression levels increased in inflamed intestinal tissues from both mice and humans, and NMU induced AREG production in mouse and human ILC2s. These results indicate that neuropeptide-mediated regulation of non-redundant functions of ILC2s is an evolutionarily conserved mechanism that integrates immunity and tissue protection.
Collapse
Affiliation(s)
- Amy M Tsou
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Weill Cornell Medical College, New York, NY, USA
| | - Hiroshi Yano
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Christopher N Parkhurst
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Tanel Mahlakõiv
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Coco Chu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Wen Zhang
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Zhengxiang He
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katja J Jarick
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Berlin, Germany
| | - Connie Zhong
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Gregory G Putzel
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Mai Hatazaki
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Ivo C Lorenz
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - David Andrew
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Paul Balderes
- Tri-Institutional Therapeutics Discovery Institute, New York, NY, USA
| | - Christoph S N Klose
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Microbiology, Infectious Diseases and Immunology, Berlin, Germany
| | - Sergio A Lira
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA.
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
47
|
Pavlidis P, Tsakmaki A, Pantazi E, Li K, Cozzetto D, Digby-Bell J, Yang F, Lo JW, Alberts E, Sa ACC, Niazi U, Friedman J, Long AK, Ding Y, Carey CD, Lamb C, Saqi M, Madgwick M, Gul L, Treveil A, Korcsmaros T, Macdonald TT, Lord GM, Bewick G, Powell N. Interleukin-22 regulates neutrophil recruitment in ulcerative colitis and is associated with resistance to ustekinumab therapy. Nat Commun 2022; 13:5820. [PMID: 36192482 PMCID: PMC9530232 DOI: 10.1038/s41467-022-33331-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 09/14/2022] [Indexed: 11/28/2022] Open
Abstract
The function of interleukin-22 (IL-22) in intestinal barrier homeostasis remains controversial. Here, we map the transcriptional landscape regulated by IL-22 in human colonic epithelial organoids and evaluate the biological, functional and clinical significance of the IL-22 mediated pathways in ulcerative colitis (UC). We show that IL-22 regulated pro-inflammatory pathways are involved in microbial recognition, cancer and immune cell chemotaxis; most prominently those involving CXCR2+ neutrophils. IL-22-mediated transcriptional regulation of CXC-family neutrophil-active chemokine expression is highly conserved across species, is dependent on STAT3 signaling, and is functionally and pathologically important in the recruitment of CXCR2+ neutrophils into colonic tissue. In UC patients, the magnitude of enrichment of the IL-22 regulated transcripts in colonic biopsies correlates with colonic neutrophil infiltration and is enriched in non-responders to ustekinumab therapy. Our data provide further insights into the biology of IL-22 in human disease and highlight its function in the regulation of pathogenic immune pathways, including neutrophil chemotaxis. The transcriptional networks regulated by IL-22 are functionally and clinically important in UC, impacting patient trajectories and responsiveness to biological intervention.
Collapse
Affiliation(s)
| | - Anastasia Tsakmaki
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Eirini Pantazi
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Katherine Li
- Janssen Research & Development, 1400 McKean Rd, Spring House, PA, 19477, USA
| | - Domenico Cozzetto
- Translational Bioinformatics, National Institute for Health Research Biomedical Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Jonathan Digby-Bell
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Feifei Yang
- Janssen Research & Development, 1400 McKean Rd, Spring House, PA, 19477, USA
| | - Jonathan W Lo
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Elena Alberts
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | | | - Umar Niazi
- Translational Bioinformatics, National Institute for Health Research Biomedical Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Joshua Friedman
- Janssen Research & Development, 1400 McKean Rd, Spring House, PA, 19477, USA
| | - Anna K Long
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Yuchun Ding
- Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | - Christopher D Carey
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | - Christopher Lamb
- Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, UK
| | - Mansoor Saqi
- Translational Bioinformatics, National Institute for Health Research Biomedical Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Matthew Madgwick
- Earlham Institute, Norwich Research Park, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Leila Gul
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Agatha Treveil
- Earlham Institute, Norwich Research Park, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Tamas Korcsmaros
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Thomas T Macdonald
- Centre for Immunobiology, Barts and the London School of Medicine and Dentistry, QMUL, London, UK
| | - Graham M Lord
- School of Immunology and Microbial Sciences, King's College London, London, UK
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Gavin Bewick
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Nick Powell
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
48
|
Pavlidis P, Tsakmaki A, Treveil A, Li K, Cozzetto D, Yang F, Niazi U, Hayee BH, Saqi M, Friedman J, Korcsmaros T, Bewick G, Powell N. Cytokine responsive networks in human colonic epithelial organoids unveil a molecular classification of inflammatory bowel disease. Cell Rep 2022; 40:111439. [PMID: 36170836 PMCID: PMC10731404 DOI: 10.1016/j.celrep.2022.111439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/03/2021] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
Interactions between the epithelium and the immune system are critical in the pathogenesis of inflammatory bowel disease (IBD). In this study, we mapped the transcriptional landscape of human colonic epithelial organoids in response to different cytokines responsible for mediating canonical mucosal immune responses. By profiling the transcriptome of human colonic organoids treated with the canonical cytokines interferon gamma, interleukin-13, -17A, and tumor necrosis factor alpha with next-generation sequencing, we unveil shared and distinct regulation patterns of epithelial function by different cytokines. An integrative analysis of cytokine responses in diseased tissue from patients with IBD (n = 1,009) reveals a molecular classification of mucosal inflammation defined by gradients of cytokine-responsive transcriptional signatures. Our systems biology approach detected signaling bottlenecks in cytokine-responsive networks and highlighted their translational potential as theragnostic targets in intestinal inflammation.
Collapse
Affiliation(s)
- Polychronis Pavlidis
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, UK; School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Anastasia Tsakmaki
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Agatha Treveil
- Earlham Institute, Norwich Research Park, Norwich, UK; Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Katherine Li
- Janssen Research and Development, 1400 McKean Road, Spring House, PA 19477, USA
| | - Domenico Cozzetto
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Feifei Yang
- Janssen Research and Development, 1400 McKean Road, Spring House, PA 19477, USA
| | - Umar Niazi
- Translational Bioinformatics, National Institute for Health Research Biomedical Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Bu Hussain Hayee
- School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Mansoor Saqi
- Translational Bioinformatics, National Institute for Health Research Biomedical Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Joshua Friedman
- Janssen Research and Development, 1400 McKean Road, Spring House, PA 19477, USA
| | - Tamas Korcsmaros
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK
| | - Gavin Bewick
- Diabetes Research Group, School of Life Course Sciences, Faculty of Life Science and Medicine, King's College London, London, UK
| | - Nick Powell
- Division of Digestive Diseases, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
49
|
Longitudinal multi-omics analysis identifies early blood-based predictors of anti-TNF therapy response in inflammatory bowel disease. Genome Med 2022; 14:110. [PMID: 36153599 PMCID: PMC9509553 DOI: 10.1186/s13073-022-01112-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
Background and aims Treatment with tumor necrosis factor α (TNFα) antagonists in IBD patients suffers from primary non-response rates of up to 40%. Biomarkers for early prediction of therapy success are missing. We investigated the dynamics of gene expression and DNA methylation in blood samples of IBD patients treated with the TNF antagonist infliximab and analyzed the predictive potential regarding therapy outcome. Methods We performed a longitudinal, blood-based multi-omics study in two prospective IBD patient cohorts receiving first-time infliximab therapy (discovery: 14 patients, replication: 23 patients). Samples were collected at up to 7 time points (from baseline to 14 weeks after therapy induction). RNA-sequencing and genome-wide DNA methylation data were analyzed and correlated with clinical remission at week 14 as a primary endpoint. Results We found no consistent ex ante predictive signature across the two cohorts. Longitudinally upregulated transcripts in the non-remitter group comprised TH2- and eosinophil-related genes including ALOX15, FCER1A, and OLIG2. Network construction identified transcript modules that were coherently expressed at baseline and in non-remitting patients but were disrupted at early time points in remitting patients. These modules reflected processes such as interferon signaling, erythropoiesis, and platelet aggregation. DNA methylation analysis identified remission-specific temporal changes, which partially overlapped with transcriptomic signals. Machine learning approaches identified features from differentially expressed genes cis-linked to DNA methylation changes at week 2 as a robust predictor of therapy outcome at week 14, which was validated in a publicly available dataset of 20 infliximab-treated CD patients. Conclusions Integrative multi-omics analysis reveals early shifts of gene expression and DNA methylation as predictors for efficient response to anti-TNF treatment. Lack of such signatures might be used to identify patients with IBD unlikely to benefit from TNF antagonists at an early time point. Supplementary Information The online version contains supplementary material available at 10.1186/s13073-022-01112-z.
Collapse
|
50
|
Evangelatos G, Bamias G, Kitas GD, Kollias G, Sfikakis PP. The second decade of anti-TNF-a therapy in clinical practice: new lessons and future directions in the COVID-19 era. Rheumatol Int 2022; 42:1493-1511. [PMID: 35503130 PMCID: PMC9063259 DOI: 10.1007/s00296-022-05136-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
Since the late 1990s, tumor necrosis factor alpha (TNF-α) inhibitors (anti-TNFs) have revolutionized the therapy of immune-mediated inflammatory diseases (IMIDs) affecting the gut, joints, skin and eyes. Although the therapeutic armamentarium in IMIDs is being constantly expanded, anti-TNFs remain the cornerstone of their treatment. During the second decade of their application in clinical practice, a large body of additional knowledge has accumulated regarding various aspects of anti-TNF-α therapy, whereas new indications have been added. Recent experimental studies have shown that anti-TNFs exert their beneficial effects not only by restoring aberrant TNF-mediated immune mechanisms, but also by de-activating pathogenic fibroblast-like mesenchymal cells. Real-world data on millions of patients further confirmed the remarkable efficacy of anti-TNFs. It is now clear that anti-TNFs alter the physical course of inflammatory arthritis and inflammatory bowel disease, leading to inhibition of local and systemic bone loss and to a decline in the number of surgeries for disease-related complications, while anti-TNFs improve morbidity and mortality, acting beneficially also on cardiovascular comorbidities. On the other hand, no new safety signals emerged, whereas anti-TNF-α safety in pregnancy and amid the COVID-19 pandemic was confirmed. The use of biosimilars was associated with cost reductions making anti-TNFs more widely available. Moreover, the current implementation of the "treat-to-target" approach and treatment de-escalation strategies of IMIDs were based on anti-TNFs. An intensive search to discover biomarkers to optimize response to anti-TNF-α treatment is currently ongoing. Finally, selective targeting of TNF-α receptors, new forms of anti-TNFs and combinations with other agents, are being tested in clinical trials and will probably expand the spectrum of TNF-α inhibition as a therapeutic strategy for IMIDs.
Collapse
Affiliation(s)
- Gerasimos Evangelatos
- Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Giorgos Bamias
- Gastrointestinal Unit, Third Department of Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George D Kitas
- Department of Rheumatology, Russells Hall Hospital, Dudley Group NHS Foundation Trust, Dudley, UK
- Arthritis Research UK Centre for Epidemiology, University of Manchester, Manchester, UK
| | - George Kollias
- Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Petros P Sfikakis
- Joint Academic Rheumatology Program, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- First Department of Propaedeutic Internal Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|