1
|
Payne FM, Dabb AR, Harrison JC, Sammut IA. Inhibitors of NLRP3 Inflammasome Formation: A Cardioprotective Role for the Gasotransmitters Carbon Monoxide, Nitric Oxide, and Hydrogen Sulphide in Acute Myocardial Infarction. Int J Mol Sci 2024; 25:9247. [PMID: 39273196 PMCID: PMC11395567 DOI: 10.3390/ijms25179247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Myocardial ischaemia reperfusion injury (IRI) occurring from acute coronary artery disease or cardiac surgical interventions such as bypass surgery can result in myocardial dysfunction, presenting as, myocardial "stunning", arrhythmias, infarction, and adverse cardiac remodelling, and may lead to both a systemic and a localised inflammatory response. This localised cardiac inflammatory response is regulated through the nucleotide-binding oligomerisation domain (NACHT), leucine-rich repeat (LRR)-containing protein family pyrin domain (PYD)-3 (NLRP3) inflammasome, a multimeric structure whose components are present within both cardiomyocytes and in cardiac fibroblasts. The NLRP3 inflammasome is activated via numerous danger signals produced by IRI and is central to the resultant innate immune response. Inhibition of this inherent inflammatory response has been shown to protect the myocardium and stop the occurrence of the systemic inflammatory response syndrome following the re-establishment of cardiac circulation. Therapies to prevent NLRP3 inflammasome formation in the clinic are currently lacking, and therefore, new pharmacotherapies are required. This review will highlight the role of the NLRP3 inflammasome within the myocardium during IRI and will examine the therapeutic value of inflammasome inhibition with particular attention to carbon monoxide, nitric oxide, and hydrogen sulphide as potential pharmacological inhibitors of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Fergus M Payne
- Department of Pharmacology and Toxicology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Alisha R Dabb
- Department of Pharmacology and Toxicology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Joanne C Harrison
- Department of Pharmacology and Toxicology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Ivan A Sammut
- Department of Pharmacology and Toxicology and HeartOtago, School of Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
2
|
Li J, Simmons AJ, Hawkins CV, Chiron S, Ramirez-Solano MA, Tasneem N, Kaur H, Xu Y, Revetta F, Vega PN, Bao S, Cui C, Tyree RN, Raber LW, Conner AN, Pilat JM, Jacobse J, McNamara KM, Allaman MM, Raffa GA, Gobert AP, Asim M, Goettel JA, Choksi YA, Beaulieu DB, Dalal RL, Horst SN, Pabla BS, Huo Y, Landman BA, Roland JT, Scoville EA, Schwartz DA, Washington MK, Shyr Y, Wilson KT, Coburn LA, Lau KS, Liu Q. Identification and multimodal characterization of a specialized epithelial cell type associated with Crohn's disease. Nat Commun 2024; 15:7204. [PMID: 39169060 PMCID: PMC11339313 DOI: 10.1038/s41467-024-51580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Crohn's disease (CD) is a complex chronic inflammatory disorder with both gastrointestinal and extra-intestinal manifestations associated immune dysregulation. Analyzing 202,359 cells from 170 specimens across 83 patients, we identify a distinct epithelial cell type in both terminal ileum and ascending colon (hereon as 'LND') with high expression of LCN2, NOS2, and DUOX2 and genes related to antimicrobial response and immunoregulation. LND cells, confirmed by in-situ RNA and protein imaging, are rare in non-IBD controls but expand in active CD, and actively interact with immune cells and specifically express IBD/CD susceptibility genes, suggesting a possible function in CD immunopathogenesis. Furthermore, we discover early and late LND subpopulations with different origins and developmental potential. A higher ratio of late-to-early LND cells correlates with better response to anti-TNF treatment. Our findings thus suggest a potential pathogenic role for LND cells in both Crohn's ileitis and colitis.
Collapse
Affiliation(s)
- Jia Li
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alan J Simmons
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Caroline V Hawkins
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sophie Chiron
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Marisol A Ramirez-Solano
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Naila Tasneem
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Harsimran Kaur
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yanwen Xu
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Frank Revetta
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Paige N Vega
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shunxing Bao
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Can Cui
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Regina N Tyree
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Larry W Raber
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anna N Conner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer M Pilat
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Justin Jacobse
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kara M McNamara
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Margaret M Allaman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Gabriella A Raffa
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alain P Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeremy A Goettel
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yash A Choksi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Dawn B Beaulieu
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robin L Dalal
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sara N Horst
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Baldeep S Pabla
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuankai Huo
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Joseph T Roland
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Elizabeth A Scoville
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David A Schwartz
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Kay Washington
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA.
| | - Lori A Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA.
| | - Ken S Lau
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
3
|
Imazu N, Torisu T, Yokote A, Umeno J, Kawasaki K, Fujioka S, Matsuno Y, Nagasue T, Kawatoko S, Moriyama T, Nitahata T, Uchida Y, Aihara S, Taniguchi Y, Oda Y, Kitazono T. Arginase 2 attenuates ulcerative colitis by antioxidant effects of spermidine. J Gastroenterol 2024; 59:682-698. [PMID: 38695904 DOI: 10.1007/s00535-024-02104-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/13/2024] [Indexed: 07/29/2024]
Abstract
BACKGROUND Spermidine suppress oxidative stress and is involved in various disease pathogenesis including ulcerative colitis (UC). Arginase 2 (ARG2) plays a central role in the synthesis of spermidine. This study aimed to clarify the effect of endogenously produced spermidine on colitis. METHODS The physiological role of ARG2 and spermidine was investigated using Arg2-deficient mice with reduced spermidine. Immunohistochemical staining of the rectum was used to analyze ARG2 expression and spermidine levels in healthy controls and UC patients. RESULTS In mice with dextran sulfate sodium-induced colitis, ARG2 and spermidine levels were increased in the rectal epithelium. Spermidine protects colonic epithelial cells from oxidative stress and Arg2 knockdown cells reduced antioxidant activity. Organoids cultured from the small intestine and colon of Arg2-deficient mice both were more susceptible to oxidative stress. Colitis was exacerbated in Arg2-deficient mice compared to wild-type mice. Supplementation with spermidine result in comparable severity of colitis in both wild-type and Arg2-deficient mice. In the active phase of UC, rectal ARG2 expression and spermidine accumulation were increased compared to remission. ARG2 and spermidine levels were similar in healthy controls and UC remission patients. CONCLUSIONS ARG2 produces spermidine endogenously in the intestinal epithelium and has a palliative effect on ulcerative colitis. ARG2 and spermidine are potential novel therapeutic targets for UC.
Collapse
Affiliation(s)
- Noriyuki Imazu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takehiro Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Akihito Yokote
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Junji Umeno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Keisuke Kawasaki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shin Fujioka
- Department of Endoscopic Diagnostics and Therapeutics, Kyushu University Hospital, Fukuoka, Japan
| | - Yuichi Matsuno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomohiro Nagasue
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shinichiro Kawatoko
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomohiko Moriyama
- Department of International Medical Department, Kyushu University Hospital, Fukuoka, Japan
| | - Tomoki Nitahata
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yushi Uchida
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Seishi Aihara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshiaki Taniguchi
- Department of Anatomic Pathology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
4
|
Wang Z, Chang Y, Sun H, Li Y, Tang T. Advances in molecular mechanisms of inflammatory bowel disease‑associated colorectal cancer (Review). Oncol Lett 2024; 27:257. [PMID: 38646499 PMCID: PMC11027113 DOI: 10.3892/ol.2024.14390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/15/2024] [Indexed: 04/23/2024] Open
Abstract
The link between inflammation and cancer is well documented and colonic inflammation caused by inflammatory bowel disease (IBD) is thought to be a high-risk factor for the development of colorectal cancer (CRC). The complex crosstalk between epithelial and inflammatory cells is thought to underlie the progression from inflammation to cancer. The present review collates and summarises recent advances in the understanding of the pathogenesis of IBD-associated CRC (IBD-CRC), including the oncogenic mechanisms of the main inflammatory signalling pathways and genetic alterations induced by oxidative stress during colonic inflammation, and discusses the crosstalk between the tumour microenvironment, intestinal flora and host immune factors during inflammatory oncogenesis in colitis-associated CRC. In addition, the therapeutic implications of anti-inflammatory therapy for IBD-CRC were discussed, intending to provide new insight into improve clinical practice.
Collapse
Affiliation(s)
- Zhi Wang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yu Chang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Haibo Sun
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yuqin Li
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Tongyu Tang
- Department of Gastroenterology, The First Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
5
|
Rohith HS, Peddha MS, Halami PM. Probiotic Bacillus licheniformis MCC2514 and Bifidobacterium breve NCIM 5671 Regulates GATA3 and Foxp3 Expression in the Elevated Disease Condition. Probiotics Antimicrob Proteins 2024; 16:894-910. [PMID: 37195508 DOI: 10.1007/s12602-023-10080-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2023] [Indexed: 05/18/2023]
Abstract
TNBS-induced ulcerative colitis was evaluated using Bacillus licheniformis MCC 2514 (B. licheniformis) and Bifidobacterium breve NCIM 5671 (Bf. breve) as immune modulators. The study aims to analyze probiotic efficiency of ulcerative colitis induced by TNBS in Wistar rats. The tumor-like structure was found in the colon of TNBS inflammation-induced rats. Nitric oxide production was inhibited by about 65.2% fed with combination of bacteria and C-reactive protein, and decreased by 12% and 10.8% upon supplementing B. licheniformis and Bf. breve against the TNBS-treated rats, respectively. Liver damage was observed in the TNBS-treated rats; addition of probiotic bacteria reduced SGPT (75.4%) and SGOT (42.5%). On TNBS treatment, the transcriptional factor responsible for Th2 cell immune response (GATA3) was analyzed, and the elevation in gene expression (5.31-fold) was found. The FOXP-3 responsible for T-regulatory cells was expressed about 0.91-fold upon the treatment with a combination of bacteria. The expression of antioxidant genes such as iNOS (1.11-fold), GPx (1.29-fold), and PON1 (1.48-fold) has been increased when compared with that of the TNBS-treated group. The cytokines specific to Th2-driven immune response, such as IL-4, IL-5, and TNF-α, were reduced upon feeding the bacteria. It is observed that the B. licheniformis and Bf. breve used in the study have reduced Th2-driven immune response.
Collapse
Affiliation(s)
- H S Rohith
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, Karnataka, India
| | - Muthukumar Serva Peddha
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Prakash Motiram Halami
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute, Mysuru, 570020, Karnataka, India.
| |
Collapse
|
6
|
Huang JQ, Cheng N, Zhong YB, Zhang ZY, Huang L, Song LZ, Li MD, Deng YF, Zhou W, Zhao HM, Liu DY. Integrating network pharmacology and experimental verification to explore the mucosal protective effect of Chimonanthus nitens Oliv. Leaf Granule on ulcerative colitis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117540. [PMID: 38056534 DOI: 10.1016/j.jep.2023.117540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chimonanthus nitens Oliv. Leaf Granule (COG) is a commonly used clinical preparation of traditional Chinese medicine for the treatment of cold, but there are folk reports that it can treat diarrhea and other gastrointestinal diseases. Therefore, the mechanism of COG in the treatment of ulcerative colitis with diarrhea as the main symptom needs to be studied. AIM OF THE STUDY Combined network pharmacology and experimental validation to explore the mechanism of COG in the treatment of ulcerative colitis. MATERIALS AND METHODS First, the main components of COG were characterized by liquid chromatography-mass spectrometry (LC-MS); subsequently, a network pharmacology approach was used to screen the effective chemical components and action targets of COG to construct a target network of COG for the treatment of ulcerative colitis (UC). The protein-protein interaction network (PPI) and literature reports were combined to identify the potential targets of COG for the treatment of UC. Finally, the predicted results of network pharmacology were validated by animal and cellular experiments. RESULTS 19 components of COG were characterized by LC-MS, among which 10 bioactive components could act on 377 potential targets of UC. Key therapeutic targets were collected, including SRC, HSP90AA1, PIK3RI, MAPK1 and ESR1. KEGG results are enriched in pathways related to oxidative stress. Molecular docking analysis showed good binding activity of main components and target genes. Animal experiments showed that COG significantly relieved the colitis symptoms in mice, regulated the Treg/Th17 balance, and promoted the secretion of IL-10 and IL-4, along with the inhibition of IL-1β and TNF-α. Additionally, COG reduced the apoptosis of colon epithelial cells, and significantly improved the levels of SOD, MAO, GSH-px, and inhibited MDA, iNOS, eNOS in colon. Also, it increased the expression of tight junction proteins such as ZO-1, Claudin1, Occludin and E-cadherin. In vitro experiments, COG inhibited the oxidative stress and inflammatory injury of HCT116 cells induced by LPS. CONCLUSIONS Combining network pharmacology and in vitro and in vivo experiments, COG was verified to have a good protective effect in UC, which may be related to enhancing antioxidation in colon tissues.
Collapse
Affiliation(s)
- Jia-Qi Huang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Nian Cheng
- Department of Postgraduate, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - You-Bao Zhong
- Department of Postgraduate, Jiangxi University of Chinese Medicine, 330004, Nanchang, China; Laboratory Animal Research Center for Science and Technology, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Zhe-Yan Zhang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Li Huang
- Department of Postgraduate, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Li-Zhao Song
- Department of Postgraduate, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Ming-Da Li
- College of Science and Technology, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Yi-Fei Deng
- College of Chinese Medicine, Jiangxi University of Chinese Medicine, 330004, Nanchang, China
| | - Wen Zhou
- College of Chinese Medicine, Nanchang Medical College, 330004, Nanchang, China
| | - Hai-Mei Zhao
- College of Chinese Medicine, Jiangxi University of Chinese Medicine, 330004, Nanchang, China; Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, 330004, Nanchang, China.
| | - Duan-Yong Liu
- College of Chinese Medicine, Jiangxi University of Chinese Medicine, 330004, Nanchang, China; Formula-Pattern Research Center, Jiangxi University of Chinese Medicine, 330004, Nanchang, China; Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, China.
| |
Collapse
|
7
|
Sun T, Ren K, Xu G, Ma R, Wang X, Min T, Xie X, Sun A, Ma Y, Wang H, Zhang Y, Zhu K, Dang C, Zhang G, Zhang H. Plasma-Activated Solutions Mitigates DSS-Induced Colitis via Restoring Redox Homeostasis and Reversing Microbiota Dysbiosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304044. [PMID: 37870220 PMCID: PMC10700679 DOI: 10.1002/advs.202304044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/10/2023] [Indexed: 10/24/2023]
Abstract
Ulcerative colitis is a chronic disease that increases the risk of developing colorectal cancer. Conventional medications are limited by drug delivery and a weak capacity to modulate the inflammatory microenvironment. Further, gut microbiota dysbiosis caused by mucosal damage and dysregulated redox homeostasis leads to frequent recurrence. Therefore, promoting mucosal healing and restoring redox homeostasis is considered the initial step in treating ulcerative colitis. Plasma-activated solutions (PAS) are liquids rich in various reactive nitrogen species (RNS) and reactive oxygen species (ROS) and are used to treat multiple diseases. However, its effect on ulcerative colitis remains to be examined. Therefore, using a DSS-induced mice colitis model, it is found that PAS has the potential to treat colitis and prevent its recurrence by promoting intestinal mucosal repair, reducing inflammation, improving redox homeostasis, and reversing gut microbiota dysbiosis. Further, an equipment is designed for preparing PAS without using nitrogen; however, after treatment with the Nitro-free PAS, the therapeutic effect of PAS is significantly weakened or even lost, indicating that RNS may be the main mediator by which PAS exerts its therapeutic effects. Overall, this study demonstrates the treatment of ulcerative colitis as a novel application of PAS.
Collapse
Affiliation(s)
- Tuanhe Sun
- Department of Surgical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Kaijie Ren
- Department of Surgical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Guimin Xu
- State Key Laboratory of Electrical Insulation and Power EquipmentSchool of Electrical EngineeringXi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Rulan Ma
- Department of Surgical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Xueni Wang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Tianhao Min
- Department of Surgical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Xin Xie
- Department of Nuclear MedicineThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Anbang Sun
- State Key Laboratory of Electrical Insulation and Power EquipmentSchool of Electrical EngineeringXi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Yuyi Ma
- Department of Surgical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Haonan Wang
- Department of Surgical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Yong Zhang
- Department of Surgical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Kun Zhu
- Department of Surgical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Chengxue Dang
- Department of Surgical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Guanjun Zhang
- State Key Laboratory of Electrical Insulation and Power EquipmentSchool of Electrical EngineeringXi'an Jiaotong UniversityXi'anShaanxi710061China
| | - Hao Zhang
- Department of Surgical OncologyThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061China
| |
Collapse
|
8
|
Fahoum L, Belisowski S, Ghatpande N, Guttmann-Raviv N, Zhang W, Li K, Tong WH, Nyska A, Waterman M, Weisshof R, Zuckerman A, Meyron-Holtz E. Iron Regulatory Protein 1 is Required for the Propagation of Inflammation in Inflammatory Bowel Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525690. [PMID: 36789413 PMCID: PMC9928023 DOI: 10.1101/2023.01.27.525690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Objective Inflammatory bowel diseases (IBD) are complex disorders. Iron accumulates in the inflamed tissue of IBD patients, yet neither a mechanism for the accumulation nor its implication on the course of inflammation are known. We hypothesized that the inflammation modifies iron homeostasis, affects tissue iron distribution and that this in turn perpetuates the inflammation. Design This study analyzed human biopsies, animal models and cellular systems to decipher the role of iron homeostasis in IBD. Results We found inflammation-mediated modifications of iron distribution, and iron-decoupled activation of the iron regulatory protein (IRP)1. To understand the role of IRP1 in the course of this inflammation-associated iron pattern, a novel cellular co-culture model was established, that replicated the iron-pattern observed in vivo, and supported involvement of nitric oxide in the activation of IRP1 and the typical iron pattern in inflammation. Importantly, deletion of IRP1 from an IBD mouse model completely abolished both, the misdistribution of iron and intestinal inflammation. Conclusion These findings suggest that IRP1 plays a central role in the coordination of the inflammatory response in the intestinal mucosa and that it is a viable candidate for therapeutic intervention in IBD.
Collapse
Affiliation(s)
- L. Fahoum
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion– Israel Institute of Technology, Haifa, Israel
| | - S. Belisowski
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion– Israel Institute of Technology, Haifa, Israel
| | - N. Ghatpande
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion– Israel Institute of Technology, Haifa, Israel
| | - N. Guttmann-Raviv
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion– Israel Institute of Technology, Haifa, Israel
| | - W. Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - K. Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - W-H. Tong
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - A. Nyska
- Tel Aviv University and Consultant in Toxicologic Pathology, Tel Aviv, Israel
| | - M. Waterman
- Rambam / Technion– Israel Institute of Technology, Haifa, Israel
| | - R. Weisshof
- Rambam / Technion– Israel Institute of Technology, Haifa, Israel
| | | | - E.G. Meyron-Holtz
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion– Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
9
|
Hou M, Leng Y, Shi Y, Tan Z, Min X. Astragalus membranaceus as a Drug Candidate for Inflammatory Bowel Disease: The Preclinical Evidence. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1501-1526. [PMID: 37530507 DOI: 10.1142/s0192415x23500684] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Inflammatory bowel disease (IBD) is a group of chronic inflammatory disorders that include Crohn's disease (CD) and ulcerative colitis (UC). Today, IBD has no successful treatment. As a result, it is of paramount importance to develop novel therapeutic agents for IBD prevention and treatment. Astragalus membranaceus (AMS) is a traditional Chinese medicine found in the AMS root. Modern pharmacological studies indicate that AMS and its constituents exhibit multiple bioactivities, such as anti-inflammatory, anti-oxidant, immune regulatory, anticancer, hypolipidemic, hypoglycemic, hepatoprotective, expectorant, and diuretic effects. AMS and its active constituents, which have been reported to be effective in IBD treatment, are believed to be viable candidate drugs for IBD treatment. These underlying mechanisms are associated with anti-inflammation, anti-oxidation, immunomodulation, intestinal epithelial repair, gut microbiota homeostasis, and improved energy metabolism. In this review, we summarize the efficacy and underlying mechanisms involved in IBD treatment with AMS and its active constituents in preclinical studies.
Collapse
Affiliation(s)
- Min Hou
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yufang Leng
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, P. R. China
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - Yajing Shi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhiguo Tan
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiangzhen Min
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
10
|
Lu J, Shi T, Shi C, Chen F, Yang C, Xie X, Wang Z, Shen H, Xu J, Leong KW, Shao D. Thiol-Disulfide Exchange Coordinates the Release of Nitric Oxide and Dexamethasone for Synergistic Regulation of Intestinal Microenvironment in Colitis. RESEARCH (WASHINGTON, D.C.) 2023; 6:0204. [PMID: 37533463 PMCID: PMC10393581 DOI: 10.34133/research.0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
The cell-specific functions of nitric oxide (NO) in the intestinal microenvironment orchestrate its therapeutic effects in ulcerative colitis. While most biomaterials show promise by eliciting the characteristics of NO, the insufficient storage, burst release, and pro-inflammatory side effects of NO remain as challenges. Herein, we report the development of thiol-disulfide hybrid mesoporous organosilica nanoparticles (MONs) that improve the storage and sustained release of NO, broadening the therapeutic window of NO-based therapy against colitis. The tailored NO-storing nanomaterials coordinated the release of NO and the immunoregulator dexamethasone (Dex) in the intestinal microenvironment, specifically integrating the alleviation of oxidative stress in enterocytes and the reversal of NO-exacerbated macrophage activation. Mechanistically, such a synchronous operation was achieved by a self-motivated process wherein the thiyl radicals produced by NO release cleaved the disulfide bonds to degrade the matrix and release Dex via thiol-disulfide exchange. Specifically, the MON-mediated combination of NO and Dex greatly ameliorated intractable colitis compared with 5-aminosalicylic acid, even after delayed treatment. Together, our results reveal a key contribution of synergistic modulation of the intestinal microenvironment in NO-based colitis therapy and introduce thiol-disulfide hybrid nanotherapeutics for the management of inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Junna Lu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong 510006, China
| | - Tongfei Shi
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong 510006, China
| | - Chengxin Shi
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital of Zhejiang University, Hangzhou 310000, China
| | - Fangman Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 510006, China
| | - Chao Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 510006, China
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Xiaochun Xie
- School of Medicine, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zheng Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and NanoBionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - He Shen
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and NanoBionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jiaqi Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Dan Shao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong 510006, China
- Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
11
|
Zhu Y, Wang Y, Xia G, Zhang X, Deng S, Zhao X, Xu Y, Chang G, Tao Y, Li M, Li H, Huang X, Chan HF. Oral Delivery of Bioactive Glass-Loaded Core-Shell Hydrogel Microspheres for Effective Treatment of Inflammatory Bowel Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207418. [PMID: 37092589 PMCID: PMC10288274 DOI: 10.1002/advs.202207418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Resolving inflammation and promoting intestinal tissue regeneration are critical for inflammatory bowel disease (IBD) treatment. Bioactive glass (BG) is a clinically approved bone graft material and has been shown to modulate inflammatory response, but it is unknown whether BG can be applied to treat IBD. Here, it is reported that BG attenuates pro-inflammatory response of lipopolysaccharide (LPS)-stimulated macrophages and hence reduces inflammatory damage to intestinal organoids in vitro. In addition, zein/sodium alginate-based core-shell microspheres (Zein/SA/BG) are developed for oral delivery of BG, which helps prevent premature dissolution of BG in the stomach. The results show that Zein/SA/BG protects BG from a gastric-simulated environment while dissolved in an intestinal-simulated environment. When administered to acute and chronic colitis mice model, Zein/SA/BG significantly reduces intestinal inflammation, promotes epithelial tissue regeneration, and partially restores microbiota homeostasis. These findings are the first to reveal the therapeutic efficacy of BG against IBD, which may provide a new therapeutic approach at low cost for effective IBD treatment.
Collapse
Affiliation(s)
- Yanlun Zhu
- Key Laboratory for Regenerative Medicine of the Ministry of Education of ChinaSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
| | - Yiwei Wang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RdShanghai200233China
| | - Guanggai Xia
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RdShanghai200233China
| | - Xuerao Zhang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of ChinaSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
| | - Shuai Deng
- Key Laboratory for Regenerative Medicine of the Ministry of Education of ChinaSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
- Cell Therapy and Cell Drugs of Luzhou Key LaboratorySchool of PharmacySouthwest Medical UniversityLuzhouSichuan646000China
| | - Xiaoyu Zhao
- Key Laboratory for Regenerative Medicine of the Ministry of Education of ChinaSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Guozhu Chang
- Key Laboratory for Regenerative Medicine of the Ministry of Education of ChinaSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
| | - Yu Tao
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational MedicineCenter for NanomedicineThe Third Affiliated HospitalSun Yat‐sen UniversityGuangzhou510630China
- Guangdong Provincial Key Laboratory of Liver DiseaseGuangzhou510630China
| | - Haiyan Li
- Chemical and Environmental EngineeringSchool of EngineeringRMIT University124 La Trobe StMelbourneVIC3000Australia
| | - Xinyu Huang
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RdShanghai200233China
| | - Hon Fai Chan
- Key Laboratory for Regenerative Medicine of the Ministry of Education of ChinaSchool of Biomedical SciencesFaculty of MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
- Institute for Tissue Engineering and Regenerative MedicineThe Chinese University of Hong KongShatinHong Kong SAR999077China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics999077Hong Kong SARChina
- Center for Neuromusculoskeletal Restorative MedicineHong Kong Science ParkHong Kong SAR999077China
| |
Collapse
|
12
|
Oh C, Lee W, Park J, Choi J, Lee S, Li S, Jung HN, Lee JS, Hwang JE, Park J, Kim M, Baek S, Im HJ. Development of Spleen Targeting H 2S Donor Loaded Liposome for the Effective Systemic Immunomodulation and Treatment of Inflammatory Bowel Disease. ACS NANO 2023; 17:4327-4345. [PMID: 36744655 DOI: 10.1021/acsnano.2c08898] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nanoparticles are primarily taken up by immune cells after systemic administration. Thus, they are considered an ideal drug delivery vehicle for immunomodulation. Because the spleen is the largest lymphatic organ and regulates the systemic immune system, there have been studies to develop spleen targeting nanoparticles for immunomodulation of cancer and immunological disorders. Inflammatory bowel disease (IBD) includes disorders involving chronic inflammation in the gastrointestinal tract and is considered incurable despite a variety of treatment options. Hydrogen sulfide (H2S) is one of the gasotransmitters that carries out anti-inflammatory functions and has shown promising immunomodulatory effects in various inflammatory diseases including IBD. Herein, we developed a delicately tuned H2S donor delivering liposome for spleen targeting (ST-H2S lipo) and studied its therapeutic effects in a dextran sulfate sodium (DSS) induced colitis model. We identified the ideal PEG type and ratio of liposome for a high stability, loading efficiency, and spleen targeting effect. In the treatment of the DSS-induced colitis model, we found that ST-H2S lipo and conventional long-circulating liposomes loaded with H2S donors (LC-H2S lipo) reduced the severity of colitis, whereas unloaded H2S donors did not. Furthermore, the therapeutic effect of ST-H2S lipo was superior to that of LC-H2S lipo due to its better systemic immunomodulatory effect than that of LC-H2S lipo. Our findings demonstrate that spleen targeting H2S lipo may have therapeutic potential for IBD.
Collapse
Affiliation(s)
- Chiwoo Oh
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Wooseung Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeongbin Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Republic of Korea
| | - Jinyeong Choi
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Somin Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Republic of Korea
| | - Shengjun Li
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Republic of Korea
| | - Han Na Jung
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong-Seob Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jee-Eun Hwang
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Republic of Korea
| | - Jiwoo Park
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Republic of Korea
| | - MinKyu Kim
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungki Baek
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung-Jun Im
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul 03080, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
13
|
Vaghari-Tabari M, Moein S, Alipourian A, Qujeq D, Malakoti F, Alemi F, Yousefi B, Khazaie S. Melatonin and inflammatory bowel disease: From basic mechanisms to clinical application. Biochimie 2022; 209:20-36. [PMID: 36535545 DOI: 10.1016/j.biochi.2022.12.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/25/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel disease is a chronic inflammatory disease and has periods of recurrence and remission. Improper immune responses to gut flora bacteria, along with genetic susceptibility, appear to be involved in causing this complex disease. It seems dysbiosis and oxidative stress may also be involved in IBD pathogenesis. A significant number of clinical studies have shown an interesting association between sleep disturbances and IBD. Studies in animal models have also shown that sleep deprivation has a significant effect on the pathogenesis of IBD and can aggravate inflammation. These interesting findings have drawn attention to melatonin, a sleep-related hormone. Melatonin is mainly produced by the pineal gland, but many tissues in the body, including the intestines, can produce it. Melatonin can have an interesting effect on the pathogenesis of IBD. Melatonin can enhance the intestinal mucosal barrier, alter the composition of intestinal bacteria in favor of bacteria with anti-inflammatory properties, regulate the immune response, alleviate inflammation and attenuate oxidative stress. It seems that, melatonin supplementation is effective in relieving inflammation and healing intestinal ulcers in IBD animal models. Some clinical studies have also shown that melatonin supplementation as an adjuvant therapy may be helpful in reducing disease activity in IBD patients. In this review article, in addition to reviewing the effects of sleep disturbances and melatonin on key mechanisms involved in the pathogenesis of IBD, we will review the findings of clinical studies regarding the effects of melatonin supplementation on IBD treatment.
Collapse
Affiliation(s)
- Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Moein
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Alipourian
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran; Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
| | - Faezeh Malakoti
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Forough Alemi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sepideh Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
14
|
Zhang JL, Zhang MN, Wang HG, Yang XZ, Yu CG. Jatrorrhizine alleviates ulcerative colitis via regulating gut microbiota and NOS2 expression. Gut Pathog 2022; 14:41. [PMID: 36271438 PMCID: PMC9587631 DOI: 10.1186/s13099-022-00514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 10/04/2022] [Indexed: 11/30/2022] Open
Abstract
Background The natural protoberberine jatrorrhizine (JA) is reported to have several medicinal properties and a significant effect on the gut microbiota of mice. The regulation of gut microbiota is generally known to play an important role in the intestinal mucosal immune response to ulcerative colitis (UC). However, whether JA can be used in the treatment of UC is still unclear. Our study aimed to investigate the underlying therapeutic effects and mechanisms of JA in treating colitis. Results Compared with the DSS-induced colitis model group, the JA + DSS treated group had more significant improvements in weight loss, disease activity index score, colon length shortening, and pathological inflammation. 16s rRNA sequencing analysis showed that JA treatment protected colitis mice against DSS-induced disturbance of gut microbiota. At the phylum level, reductions in Deferribacteres and Proteobacteria were observed in the JA-treated group; At the genus level, the JA-treated group showed an increased relative abundance of Akkermansia and decreased abundance of Escherichia-Shigella, Desulfovibrio, Mucispirillum, etc. Network pharmacology was then used to screen out five drug-disease target genes (NOS2, ESR1, CALM1, CALM2, CALM3). Transcriptomics analysis further validated that the NOS2 expression was significantly reduced in colon tissue of JA-administered mice compared with DSS control mice. Additionally, analysis of correlation suggested that NOS2 expression was negatively correlated with the relative abundance of AKKermansia and positively correlated with Desulfovibrio, Rikenella. Conclusion JA alleviates ulcerative colitis via regulating gut microbiota and NOS2 expression. Supplementary Information The online version contains supplementary material available at 10.1186/s13099-022-00514-z.
Collapse
Affiliation(s)
- Jia Ling Zhang
- Department of Gastroenterology, Gulou School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of Gastroenterology, The Affiliated Huai'an No 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Min Na Zhang
- Department of Gastroenterology, The Affiliated Huai'an No 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Hong Gang Wang
- Department of Gastroenterology, The Affiliated Huai'an No 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China
| | - Xiao Zhong Yang
- Department of Gastroenterology, The Affiliated Huai'an No 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu Province, China.
| | - Cheng Gong Yu
- Department of Gastroenterology, Gulou School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
15
|
Citrullination: A modification important in the pathogenesis of autoimmune diseases. Clin Immunol 2022; 245:109134. [DOI: 10.1016/j.clim.2022.109134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022]
|
16
|
Ricci MF, Béla SR, Barbosa JL, Moraes MM, Mazzeti AL, Bahia MT, Horta LS, Santiago HDC, Cruz JS, Capettini LDSA, Arantes RME. A Potential Role of Cholinergic Dysfunction on Impaired Colon Motility in Experimental Intestinal Chagas Disease. J Neurogastroenterol Motil 2022; 28:483-500. [PMID: 35799242 PMCID: PMC9274474 DOI: 10.5056/jnm21074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/21/2021] [Accepted: 10/11/2021] [Indexed: 12/01/2022] Open
Abstract
Background/Aims Chagasic megacolon is caused by Trypanosoma cruzi, which promotes in several cases, irreversible segmental colonic dilation. This alteration is the major anatomic-clinical disorder, characterized by the enteric nervous system and muscle wall structural damage. Herein, we investigate how T. cruzi-induced progressive colonic structural changes modulate the colonic contractile pattern activity. Methods We developed a murine model of T. cruzi-infection that reproduced long-term modifications of the enlarged colon. We evaluated colonic and total intestinal transit time in animals. The patterns of motor response at several time intervals between the acute and chronic phases were evaluated using the organ bath assays. Enteric motor neurons were stimulated by electric field stimulation. The responses were analyzed in the presence of the nicotinic and muscarinic acetylcholine receptor antagonists. Western blot was performed to evaluate the expression of nicotinic and muscarinic receptors. The neurotransmitter expression was analyzed by real-time polymerase chain reaction. Results In the chronic phase of infection, there was decreased intestinal motility associated with decreased amplitude and rhythmicity of intestinal contractility. Pharmacological tests suggested a defective response mediated by acetylcholine receptors. The contractile response induced by acetylcholine was decreased by atropine in the acute phase while the lack of its action in the chronic phase was associated with tissue damage, and decreased expression of choline acetyltransferase, nicotinic subunits of acetylcholine receptors, and neurotransmitters. Conclusions T. cruzi-induced damage of smooth muscles was accompanied by motility disorders such as decreased intestinal peristalsis and cholinergic system response impairment. This study allows integration of the natural history of Chagasic megacolon motility disorders and opens new perspectives for the design of effective therapeutic.
Collapse
Affiliation(s)
- Mayra F Ricci
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Samantha R Béla
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
- Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Joana L Barbosa
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Michele M Moraes
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Ana L Mazzeti
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Maria T Bahia
- Escola de Medicina & Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - Laila S Horta
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Helton da C Santiago
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Jader S Cruz
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Luciano dos S A Capettini
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Rosa M E Arantes
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| |
Collapse
|
17
|
Nagao-Kitamoto H, Kitamoto S, Kamada N. Inflammatory bowel disease and carcinogenesis. Cancer Metastasis Rev 2022; 41:301-316. [PMID: 35416564 DOI: 10.1007/s10555-022-10028-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/27/2022] [Indexed: 11/24/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer and the fourth most common cause of cancer mortality worldwide. Colitis-associated colorectal cancer (CAC) is a subtype of CRC associated with inflammatory bowel disease (IBD). It is well known that individuals with IBD have a 2-3 times higher risk of developing CRC than those who do not, rendering CAC a major cause of death in this group. Although the etiology and pathogenesis of CAC are incompletely understood, animal models of chronic inflammation and human cohort data indicate that changes in the intestinal environment, including host response dysregulation and gut microbiota perturbations, may contribute to the development of CAC. Genomic alterations are a hallmark of CAC, with patterns that are distinct from those in sporadic CRC. The discovery of the biological changes that underlie the development of CAC is ongoing; however, current data suggest that chronic inflammation in IBD increases the risk of developing CAC. Therefore, a deeper understanding of the precise mechanisms by which inflammation triggers genetic alterations and disrupts intestinal homeostasis may provide insight into novel therapeutic strategies for the prevention of CAC.
Collapse
Affiliation(s)
- Hiroko Nagao-Kitamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA.
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
| | - Sho Kitamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Nobuhiko Kamada
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109, USA.
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
18
|
Islam MR, Arthur S, Haynes J, Butts MR, Nepal N, Sundaram U. The Role of Gut Microbiota and Metabolites in Obesity-Associated Chronic Gastrointestinal Disorders. Nutrients 2022; 14:624. [PMID: 35276983 PMCID: PMC8838694 DOI: 10.3390/nu14030624] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/13/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
The gut microbiota is a complex community of microorganisms that has become a new focus of attention due to its association with numerous human diseases. Research over the last few decades has shown that the gut microbiota plays a considerable role in regulating intestinal homeostasis, and disruption to the microbial community has been linked to chronic disease conditions such as inflammatory bowel disease (IBD), colorectal cancer (CRC), and obesity. Obesity has become a global pandemic, and its prevalence is increasing worldwide mostly in Western countries due to a sedentary lifestyle and consumption of high-fat/high-sugar diets. Obesity-mediated gut microbiota alterations have been associated with the development of IBD and IBD-induced CRC. This review highlights how obesity-associated dysbiosis can lead to the pathogenesis of IBD and CRC with a special focus on mechanisms of altered absorption of short-chain fatty acids (SCFAs).
Collapse
Affiliation(s)
| | | | | | | | | | - Uma Sundaram
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (M.R.I.); (S.A.); (J.H.); (M.R.B.); (N.N.)
| |
Collapse
|
19
|
Yener S, Akbulut KG, Karakuş R, Erdoğan D, Acartürk F. Development of melatonin loaded pectin nanoparticles for the treatment of inflammatory bowel disease: In vitro and in vivo studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Mohamed NI, Suddek GM, El-Kashef DH. Molsidomine alleviates acetic acid-induced colitis in rats by reducing oxidative stress, inflammation and apoptosis. Int Immunopharmacol 2021; 99:108005. [PMID: 34330056 DOI: 10.1016/j.intimp.2021.108005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022]
Abstract
Ulcerative colitis (UC) is a subcategory of intestinal inflammatory bowel disease characterized by up-regulation of proinflammatory cytokines and oxidative stress. The current study was designed to assess the probable protective effect of the nitric oxide (NO) donor, molsidomine, in experimental colitis model in rats. Rats were haphazardly classified into four groups: control, acetic acid, acetic acid + molsidomine (1 mg/kg) and acetic acid + molsidomine (2 mg/kg). Molsidomine (1 and 2 mg/kg/day) was administered by intra-peritoneal injection for 7 days prior to induction of UC. On the 8th day, colitis was induced by intra-rectal instillation of 2 ml of (4% v/v) acetic acid in normal saline using a pediatric plastic catheter. The rats were sacrificed 1 day following colitis induction, blood samples were obtained; colons and livers were isolated then underwent macroscopic, biochemical, histopathological and immunohistochemical examination. Pretreatment with molsidomine significantly reduced disease activity index, colon mass index, colonic macroscopic and histological damage. Besides, molsidomine significantly reduced the serum levels of alanine transaminase (ALT) (58.7 ± 8.9 & 59.7 ± 8 vs 288.75 ± 31.4 in AA group) and aspartate transaminase (AST) (196.2 ± 37.4 & 204 ± 30 vs 392.7 ± 35.6 in AA group). Moreover, molsidomine effectively decreased malondialdehyde (MDA) and total nitrate/nitrite (NOx) contents, and up regulated the enzymatic activity of superoxide dismutase (SOD) and glutathione level (GSH) in colonic and hepatic tissues. With regard to anti-inflammatory mechanisms, molsidomine suppressed tumor necrosis factor-alpha (TNF-α) (792.5 ± 16.7 & 448 ± 12.1 vs 1352.5 ± 45.8 in AA group) in colonic tissues and (701 ± 19 & 442.5 ± 22.5 vs 1501 ± 26 in AA group) in hepatic tissues as well as nuclear transcription factor kappa B (NF-kB/p65) levels (416.2 ± 4.1 & 185.5 ± 14.2 vs 659.2 ± 11.5 in AA group) in colonic tissues and (358 ± 6.2 & 163.5 ± 9.6 vs 732.5 ± 5.5 in AA group) in hepatic tissues. In addition, molsidomine significantly decreased inducible nitric oxide synthase (iNOS) levels (8.1 ± 0.1 & 4.9 ± 0.1 vs 16 ± 0.1 in AA group) in colonic tissues and (8.6 ± 0.3 & 6.1 ± 0.1 vs 17.8 ± 0.1 in AA group) in hepatic tissues, and myeloperoxidase (MPO) contents (10.5 ± 0.4 & 6.6 ± 0.3 vs 20.9 ± 0.6 in AA group) in colonic tissues and (13.1 ± 0.2 & 6.3 ± 0.06 vs 23.9 ± 1.4 in AA group) in hepatic tissues at p > 0.05. Furthermore, it suppressed apoptosis by reducing expression of Caspase 3 and Bax in colonic and hepatic tissues. Therefore, molsidomine might be a promising candidate for the treatment of UC.
Collapse
Affiliation(s)
- Nagwa I Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
21
|
Caballol B, Gudiño V, Panes J, Salas A. Ulcerative colitis: shedding light on emerging agents and strategies in preclinical and early clinical development. Expert Opin Investig Drugs 2021; 30:931-946. [PMID: 34365869 DOI: 10.1080/13543784.2021.1965122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Ulcerative colitis (UC) is an inflammatory disease of the large intestine. Progress in preclinical therapeutic target discovery and clinical trial design has resulted in the approval of new therapies. Nonetheless, remission rates remain below 30% thus underlining the need for novel, more effective therapies. AREAS COVERED This paper reviews current experimental techniques available for drug testing in intestinal inflammation and examines new therapies in clinical development for the treatment of UC. The authors searched the literature for 'ulcerative colitis' AND 'preclinical' OR 'drug target/drug name' (i.e. infliximab, vedolizumab, IL-12, IL-23, JAK, etc.). Studies that included preclinical in vivo or in vitro experiments are discussed. The clinicaltrial.gov site was searched for 'ulcerative colitis' AND 'Recruiting' OR 'Active, not recruiting' AND 'Interventional (Clinical Trial)' AND 'early phase 1' OR 'phase 1' OR 'phase 2' OR 'phase 3.' EXPERT OPINION Using in vivo, ex vivo, and/or in vitro models could increase the success rates of drugs moving to clinical trials, and hence increase the efficiency of this costly process. Selective JAK1 inhibitors, S1P modulators, and anti-p19 antibodies are the most promising options to improve treatment effectiveness. The development of drugs with gut-restricted exposure may provide increased efficacy and an improved safety.
Collapse
Affiliation(s)
- Berta Caballol
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigaciones Biomédicas en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Victoria Gudiño
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigaciones Biomédicas en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Julian Panes
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigaciones Biomédicas en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Azucena Salas
- Inflammatory Bowel Disease Unit, Department of Gastroenterology, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigaciones Biomédicas en Red en Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| |
Collapse
|
22
|
Lu P, Zhang C, Fu L, Wei Y, Huang Y, Wang X, Lv C, Chen L. Near-Infrared Fluorescent Probe for Imaging and Evaluating the Role of Vanin-1 in Chemotherapy. Anal Chem 2021; 93:10378-10387. [PMID: 34275284 DOI: 10.1021/acs.analchem.1c02386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pantetheinase (also known as Vanin-1) is highly expressed in the liver, kidneys, and intestine and is closely associated with a number of diseases. Vanin-1 can hydrolyze pantetheine to pantothenic acid (vitamin B5) and cysteamine and participate in the synthesis of glutathione (GSH). GSH is highly expressed in tumor cells and plays a major role in the resistance of tumor cells to cisplatin. Therefore, we urgently need a method to monitor the activity level of Vanin-1 in tumor cells and tissues and elucidate the relationship between the role of Vanin-1 in GSH synthesis and tumor resistance. Herein, we report a Cy-Pa fluorescent probe for imaging Vanin-1 in cells and in vivo that can qualitatively and quantitatively detect the fluctuation of Vanin-1 concentrations in HepG2 and HepG2/DDP cells or tumor tissues of tumor-bearing mice. This probe shows excellent potential in in situ real-time monitoring of endogenous Vanin-1. Moreover, we proved that Vanin-1 can inhibit GSH synthesis using the probe. When the Vanin-1 inhibitor RR6 was used in combination with cisplatin, HepG2 and HepG2/DDP cells showed increased resistance to cisplatin, while the therapeutic efficiency of cisplatin was reduced in HepG2 and HepG2/DDP xenografts. In this study, Vanin-1 was shown to play an important role in the treatment of cancer, and the study of Vanin-1 may provide an idea for the treatment of cancer in the future.
Collapse
Affiliation(s)
- Pengpeng Lu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.,CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Caiyun Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Lili Fu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.,CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yinghui Wei
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.,Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Yan Huang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.,CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.,CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Changjun Lv
- Department of Respiratory Medicine, Binzhou Medical University Hospital, Binzhou 256603, China
| | - Lingxin Chen
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China.,CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.,College of Chemistry and Chemical Engineering, Qufu Normal University, University, Qufu 273165, China
| |
Collapse
|
23
|
Nakanishi R, Shimizu T, Kumagai K, Takai A, Marusawa H. Genetic Pathogenesis of Inflammation-Associated Cancers in Digestive Organs. Pathogens 2021; 10:453. [PMID: 33918902 PMCID: PMC8069378 DOI: 10.3390/pathogens10040453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022] Open
Abstract
Epidemiological, clinical, and biological studies convincingly demonstrate that chronic inflammation predisposes to the development of human cancers. In digestive organs, inflammation-associated cancers include colitis-associated colorectal cancers, Helicobacter pylori-associated gastric cancer, as well as Barrett's esophagus and esophageal adenocarcinoma associated with chronic duodenogastric-esophageal reflux. Cancer is a genomic disease, and stepwise accumulation of genetic and epigenetic alterations of tumor-related genes leads to the development of tumor cells. Recent genome analyses show that genetic alterations, which are evoked by inflammation, are latently accumulated in inflamed epithelial cells of digestive organs. Production of reactive oxygen and aberrant expression of activation-induced cytidine deaminase, a nucleotide-editing enzyme, could be induced in inflamed gastrointestinal epithelial cells and play a role as a genomic modulator of inflammation-associated carcinogenesis. Understanding the molecular linkage between inflammation and genetic alterations will open up a new field of tumor biology and provide a novel strategy for the prevention of inflammation-associated tumorigenesis.
Collapse
Affiliation(s)
- Risa Nakanishi
- Department of Gastroenterology, Red Cross Osaka Hospital, Osaka 543-8555, Japan;
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (T.S.); (K.K.); (A.T.)
| | - Takahiro Shimizu
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (T.S.); (K.K.); (A.T.)
| | - Ken Kumagai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (T.S.); (K.K.); (A.T.)
| | - Atsushi Takai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; (T.S.); (K.K.); (A.T.)
| | - Hiroyuki Marusawa
- Department of Gastroenterology, Red Cross Osaka Hospital, Osaka 543-8555, Japan;
| |
Collapse
|
24
|
Ebselen prevents cigarette smoke-induced gastrointestinal dysfunction in mice. Clin Sci (Lond) 2021; 134:2943-2957. [PMID: 33125061 PMCID: PMC7676466 DOI: 10.1042/cs20200886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/16/2020] [Accepted: 10/30/2020] [Indexed: 11/30/2022]
Abstract
Gastrointestinal (GI) dysfunction is a common comorbidity of chronic obstructive
pulmonary disease (COPD) for which a major cause is cigarette smoking (CS). The
underlying mechanisms and precise effects of CS on gut contractility, however,
are not fully characterised. Therefore, the aim of the present study was to
investigate whether CS impacts GI function and structure in a mouse model of
CS-induced COPD. We also aimed to investigate GI function in the presence of
ebselen, an antioxidant that has shown beneficial effects on lung inflammation
resulting from CS exposure. Mice were exposed to CS for 2 or 6 months. GI
structure was analysed by histology and immunofluorescence. After 2 months of CS
exposure, ex vivo gut motility was analysed using video-imaging
techniques to examine changes in colonic migrating motor complexes (CMMCs). CS
decreased colon length in mice. Mice exposed to CS for 2 months had a higher
frequency of CMMCs and a reduced resting colonic diameter but no change in
enteric neuron numbers. Ten days cessation after 2 months CS reversed CMMC
frequency changes but not the reduced colonic diameter phenotype. Ebselen
treatment reversed the CS-induced reduction in colonic diameter. After 6 months
CS, the number of myenteric nitric-oxide producing neurons was significantly
reduced. This is the first evidence of colonic dysmotility in a mouse model of
CS-induced COPD. Dysmotility after 2 months CS is not due to altered neuron
numbers; however, prolonged CS-exposure significantly reduced enteric neuron
numbers in mice. Further research is needed to assess potential therapeutic
applications of ebselen in GI dysfunction in COPD.
Collapse
|
25
|
Omayone TP, Olaleye SB. Biochemical and histopathological effects of low dose vanadium in the healing of acetic acid-induced colitis in male wistar rats. J Basic Clin Physiol Pharmacol 2021; 33:273-283. [PMID: 33592685 DOI: 10.1515/jbcpp-2020-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/31/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Vanadium has been reported to possess relevant therapeutic properties such as anti-diabetic and anti-tumoral. This study aimed at determining the effects of vanadium on experimentally induced colitis in rats. METHODS Forty-five male Wistar rats (103 ± 3.90 g, n=15) were used for this study and were divided into three groups. Group 1 (Untreated control) had nothing added to their drinking, while groups 2 and 3 received sodium metavanadate at a dose of 50 and 200 mg/L respectively in their drinking water for 10 weeks. Colitis was thereafter induced by intra colonic administration of 1.50 mL of 6% acetic acid. Animals were sacrificed on day 0 (pre-induction), three- and seven-days post induction. Blood samples were collected for haematological variables and the distal 8 cm of the colon was collected for macroscopic, histological and biochemical (malondialdehyde-MDA, superoxide dismutase-SOD, catalase-CAT, glutathione peroxidase- GPx and nitrite concentration- NO) assessment. RESULTS Low dose vanadium proved beneficial in ameliorating acetic acid-induced colitis by improving both histopathological and haematological changes. Gross observation showed a faster healing rate in vanadium treated groups (50 and 200 mg/L) compared with untreated control at day 3 (40 and 26.20 vs. 2.50%) and day 7 (80 and 66.70 vs. 42%) respectively. Vanadium also appears to exert its beneficial effects on acetic acid-induced colitis via up regulation of antioxidant enzymes (SOD, CAT, GPx) and NO while decreasing the over production of MDA. CONCLUSIONS Vanadium at small concentration functions as an essential trace element and may be able to promote healing process during ulcerative colitis.
Collapse
Affiliation(s)
- Tosan Peter Omayone
- Gastrointestinal Secretion and Inflammation Research Unit, Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria.,Department of Physiology, School of Health and Health Technology, Federal University of Technology Akure, Akure, Nigeria
| | - Samuel Babafemi Olaleye
- Gastrointestinal Secretion and Inflammation Research Unit, Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria
| |
Collapse
|
26
|
Abstract
Inflammatory Bowel Disease (IBD) is a term used to describe a group of complex disorders of the gastrointestinal (GI) tract. IBDs include two main forms: Crohn’s Disease (CD) and Ulcerative Colitis (UC), which share similar clinical symptoms but differ in the anatomical distribution of the inflammatory lesions. The etiology of IBDs is undetermined. Several hypotheses suggest that Crohn’s Disease and Ulcerative Colitis result from an abnormal immune response against endogenous flora and luminal antigens in genetically susceptible individuals. While there is no cure for IBDs, most common treatments (medication and surgery) aim to reduce inflammation and help patients to achieve remission. There is growing evidence and focus on the prophylactic and therapeutic potential of probiotics in IBDs. Probiotics are live microorganisms that regulate the mucosal immune system, the gut microbiota and the production of active metabolites such as Short-Chain Fatty Acids (SCFAs). This review will focus on the role of intestinal dysbiosis in the immunopathogenesis of IBDs and understanding the health-promoting effects of probiotics and their metabolites.
Collapse
|
27
|
Estimation of Nitrite-Nitric Oxide Derivative-In Horses with Intestinal Colic by ESR Spectroscopy. Vet Sci 2020; 7:vetsci7040191. [PMID: 33260335 PMCID: PMC7712281 DOI: 10.3390/vetsci7040191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/03/2022] Open
Abstract
Diseases of the gastrointestinal tract of horses are caused by many factors and have a complex pathogenesis. Developing effective methods of differential diagnostics is of high fundamental and applied importance. The pathogenesis of diseases of the digestive tract of horses accompanied by the development of inflammation and oxidative stress, can be associated with a lack of the nitrogen monoxide which controls many signaling pathways in the body. The level of the nitric oxide (NO) is involved in the regulation of the immune and nervous systems, the tone of all the blood vessels, and the courses of many pathological processes. The nitric oxide activates guanylate cyclase (sGC) and leads to vascular relaxation. The aim of this investigation was to study the metabolites of nitric oxide in horses suffered from intestinal diseases. The levels of nitric oxide in the blood serum of horses depending on their age and health state was studied. The concentration of nitrites in the blood serum of horses aged 6–25 years was 3.4 ± 4.2 μM, and in the young horses (1–5 years) the level of this indicator was 8.2 ± 5.4 μM. A sharp decrease in nitrite was observed in all the horses with intestinal diseases of 2 ± 0.9 μM, especially with tympanitic caecun of 0.6 ± 0.4 μM and with spasmodic colic of 1.8 ± 0.5 μM. The level of nitrosylhemoglobin HbNO in the blood of the diseased animals was higher than that in clinically healthy horses, regardless of age.
Collapse
|
28
|
Baier J, Gänsbauer M, Giessler C, Arnold H, Muske M, Schleicher U, Lukassen S, Ekici A, Rauh M, Daniel C, Hartmann A, Schmid B, Tripal P, Dettmer K, Oefner PJ, Atreya R, Wirtz S, Bogdan C, Mattner J. Arginase impedes the resolution of colitis by altering the microbiome and metabolome. J Clin Invest 2020; 130:5703-5720. [PMID: 32721946 PMCID: PMC7598089 DOI: 10.1172/jci126923] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/16/2020] [Indexed: 02/06/2023] Open
Abstract
Arginase 1 (Arg1), which converts l-arginine into ornithine and urea, exerts pleiotropic immunoregulatory effects. However, the function of Arg1 in inflammatory bowel disease (IBD) remains poorly characterized. Here, we found that Arg1 expression correlated with the degree of inflammation in intestinal tissues from IBD patients. In mice, Arg1 was upregulated in an IL-4/IL-13- and intestinal microbiota-dependent manner. Tie2-Cre Arg1fl/fl mice lacking Arg1 in hematopoietic and endothelial cells recovered faster from colitis than Arg1-expressing (Arg1fl/fl) littermates. This correlated with decreased vessel density, compositional changes in intestinal microbiota, diminished infiltration by myeloid cells, and an accumulation of intraluminal polyamines that promote epithelial healing. The proresolving effect of Arg1 deletion was reduced by an l-arginine-free diet, but rescued by simultaneous deletion of other l-arginine-metabolizing enzymes, such as Arg2 or Nos2, demonstrating that protection from colitis requires l-arginine. Fecal microbiota transfers from Tie2-Cre Arg1fl/fl mice into WT recipients ameliorated intestinal inflammation, while transfers from WT littermates into Arg1-deficient mice prevented an advanced recovery from colitis. Thus, an increased availability of l-arginine as well as altered intestinal microbiota and metabolic products accounts for the accelerated resolution from colitis in the absence of Arg1. Consequently, l-arginine metabolism may serve as a target for clinical intervention in IBD patients.
Collapse
Affiliation(s)
- Julia Baier
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
| | | | - Claudia Giessler
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
| | - Harald Arnold
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
| | - Mercedes Muske
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
| | - Ulrike Schleicher
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
| | | | | | | | | | - Arndt Hartmann
- Pathologisches Institut, Universitätsklinikum Erlangen and Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Schmid
- Optical Imaging Centre Erlangen (OICE), FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Philipp Tripal
- Optical Imaging Centre Erlangen (OICE), FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Katja Dettmer
- Institut für Funktionelle Genomik, Universität Regensburg, Regensburg, Germany
| | - Peter J. Oefner
- Institut für Funktionelle Genomik, Universität Regensburg, Regensburg, Germany
| | - Raja Atreya
- Medizinische Klinik 1–Gastroenterologie, Pneumologie and Endokrinologie, Universitätsklinikum Erlangen and FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Stefan Wirtz
- Medizinische Klinik 1–Gastroenterologie, Pneumologie and Endokrinologie, Universitätsklinikum Erlangen and FAU Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Bogdan
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut, Klinische Mikrobiologie, Immunologie und Hygiene
- Medical Immunology Campus Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
29
|
Nijakowski K, Surdacka A. Salivary Biomarkers for Diagnosis of Inflammatory Bowel Diseases: A Systematic Review. Int J Mol Sci 2020; 21:ijms21207477. [PMID: 33050496 PMCID: PMC7589027 DOI: 10.3390/ijms21207477] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Saliva as a biological fluid has a remarkable potential in the non-invasive diagnostics of several systemic disorders. Inflammatory bowel diseases are chronic inflammatory disorders of the gastrointestinal tract. This systematic review was designed to answer the question “Are salivary biomarkers reliable for the diagnosis of inflammatory bowel diseases?”. Following the inclusion and exclusion criteria, eleven studies were included (according to PRISMA statement guidelines). Due to their heterogeneity, the potential salivary markers for IBD were divided into four groups: oxidative status markers, inflammatory cytokines, microRNAs and other biomarkers. Active CD patients manifest decreased activity of antioxidants (e.g., glutathione, catalase) and increased lipid peroxidation. Therefore, malondialdehyde seems to be a good diagnostic marker of CD. Moreover, elevated concentrations of proinflammatory cytokines (such as interleukin 1β, interleukin 6 or tumour necrosis factor α) are associated with the activity of IBD. Additionaly, selected miRNAs are altered in saliva (overexpressed miR-101 in CD; overexpressed miR-21, miR-31, miR-142-3p and underexpressed miR-142-5p in UC). Among other salivary biomarkers, exosomal PSMA7, α-amylase and calprotectin are detected. In conclusion, saliva contains several biomarkers which can be used credibly for the early diagnosis and regular monitoring of IBD. However, further investigations are necessary to validate these findings, as well as to identify new reliable salivary biomarkers.
Collapse
|
30
|
Serezhenkov VA, Tkachev NA, Artyushina ZS, Kuznetsova MI, Kovac M, Vanin AF. Reduced Nitric Oxide Bioavailability in Horses with Colic: Evaluation by ESR Spectroscopy. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920050176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
31
|
Kamalian A, Sohrabi Asl M, Dolatshahi M, Afshari K, Shamshiri S, Momeni Roudsari N, Momtaz S, Rahimi R, Abdollahi M, Abdolghaffari AH. Interventions of natural and synthetic agents in inflammatory bowel disease, modulation of nitric oxide pathways. World J Gastroenterol 2020; 26:3365-3400. [PMID: 32655263 PMCID: PMC7327787 DOI: 10.3748/wjg.v26.i24.3365] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/09/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) refers to a group of disorders characterized by chronic inflammation of the gastrointestinal (GI) tract. The elevated levels of nitric oxide (NO) in serum and affected tissues; mainly synthesized by the inducible nitric oxide synthase (iNOS) enzyme; can exacerbate GI inflammation and is one of the major biomarkers of GI inflammation. Various natural and synthetic agents are able to ameliorate GI inflammation and decrease iNOS expression to the extent comparable with some IBD drugs. Thereby, the purpose of this study was to gather a list of natural or synthetic mediators capable of modulating IBD through the NO pathway. Electronic databases including Google Scholar and PubMed were searched from 1980 to May 2018. We found that polyphenols and particularly flavonoids are able to markedly attenuate NO production and iNOS expression through the nuclear factor κB (NF-κB) and JAK/STAT signaling pathways. Prebiotics and probiotics can also alter the GI microbiota and reduce NO expression in IBD models through a broad array of mechanisms. A number of synthetic molecules have been found to suppress NO expression either dependent on the NF-κB signaling pathway (i.e., dexamethasone, pioglitazone, tropisetron) or independent from this pathway (i.e., nicotine, prednisolone, celecoxib, β-adrenoceptor antagonists). Co-administration of natural and synthetic agents can affect the tissue level of NO and may improve IBD symptoms mainly by modulating the Toll like receptor-4 and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Aida Kamalian
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Masoud Sohrabi Asl
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mahsa Dolatshahi
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Khashayar Afshari
- Department of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Shiva Shamshiri
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Nazanin Momeni Roudsari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran 1417614411, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran 1417614411, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran 1417614411, Iran
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran 1417614411, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| |
Collapse
|
32
|
Zhang Y, Zhang H, Zhang K, Li Z, Guo T, Wu T, Hou X, Feng N. Co-hybridized composite nanovesicles for enhanced transdermal eugenol and cinnamaldehyde delivery and their potential efficacy in ulcerative colitis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102212. [PMID: 32334099 DOI: 10.1016/j.nano.2020.102212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/16/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023]
Abstract
Percutaneous absorption of drugs can be enhanced by ethosomes, which are nanocarriers with excellent deformability and drug-loading properties. However, the ethanol within ethosomes increases phospholipid membrane fluidity and permeability, leading to drug leakage during storage. Here, we developed and characterized a new phospholipid nanovesicles that is co-hybridized with hyaluronic acid (HA), ethanol and the encapsulated volatile oil medicines (eugenol and cinnamaldehyde [EUG/CAH]) for transdermal administration. In comparison with EUG/CAH-loaded ethosomes (ES), the formulation stability and percutaneous drug absorption of EUG/CAH-loaded HA-immobilized ethosomes (HA-ES) were significantly improved. After transdermal administration of HA-ES, the interstitial cells of Cajal in the colon of rats with trinitrobenzene sulfonate-induced ulcerative colitis (UC) were significantly increased, and the stem cell factor/c-kit signaling pathway was partly repaired. Overall, HA-ES possesses excellent deformability and showed improved efficacy against UC compared with ES, which is demonstrated as a promising transdermal delivery vehicle for volatile oil medicines.
Collapse
Affiliation(s)
- Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongyu Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhe Li
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Teng Guo
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Wu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuefeng Hou
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
33
|
Sharna SS, Balasuriya GK, Hosie S, Nithianantharajah J, Franks AE, Hill-Yardin EL. Altered Caecal Neuroimmune Interactions in the Neuroligin-3 R451C Mouse Model of Autism. Front Cell Neurosci 2020; 14:85. [PMID: 32327975 PMCID: PMC7160799 DOI: 10.3389/fncel.2020.00085] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
The intrinsic nervous system of the gut interacts with the gut-associated lymphoid tissue (GALT) via bidirectional neuroimmune interactions. The caecum is an understudied region of the gastrointestinal (GI) tract that houses a large supply of microbes and is involved in generating immune responses. The caecal patch is a lymphoid aggregate located within the caecum that regulates microbial content and immune responses. People with Autism Spectrum Disorder (ASD; autism) experience serious GI dysfunction, including inflammatory disorders, more frequently than the general population. Autism is a highly prevalent neurodevelopmental disorder defined by the presence of repetitive behavior or restricted interests, language impairment, and social deficits. Mutations in genes encoding synaptic adhesion proteins such as the R451C missense mutation in neuroligin-3 (NL3) are associated with autism and impair synaptic transmission. We previously reported that NL3R451C mice, a well-established model of autism, have altered enteric neurons and GI dysfunction; however, whether the autism-associated R451C mutation alters the caecal enteric nervous system and immune function is unknown. We assessed for gross anatomical changes in the caecum and quantified the proportions of caecal submucosal and myenteric neurons in wild-type and NL3R451C mice using immunofluorescence. In the caecal patch, we assessed total cellular density as well as the density and morphology of Iba-1 labeled macrophages to identify whether the R451C mutation affects neuro-immune interactions. NL3R451C mice have significantly reduced caecal weight compared to wild-type mice, irrespective of background strain. Caecal weight is also reduced in mice lacking Neuroligin-3. NL3R451C caecal ganglia contain more neurons overall and increased numbers of Nitric Oxide (NO) producing neurons (labeled by Nitric Oxide Synthase; NOS) per ganglion in both the submucosal and myenteric plexus. Overall caecal patch cell density was unchanged however NL3R451C mice have an increased density of Iba-1 labeled enteric macrophages. Macrophages in NL3R451C were smaller and more spherical in morphology. Here, we identify changes in both the nervous system and immune system caused by an autism-associated mutation in Nlgn3 encoding the postsynaptic cell adhesion protein, Neuroligin-3. These findings provide further insights into the potential modulation of neural and immune pathways.
Collapse
Affiliation(s)
- Samiha Sayed Sharna
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | | | - Suzanne Hosie
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | | | - Ashley E Franks
- School of Life Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Elisa L Hill-Yardin
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
34
|
Singh S, Arthur S, Sundaram U. Mechanisms of Regulation of Transporters of Amino Acid Absorption in Inflammatory Bowel Diseases. Compr Physiol 2020; 10:673-686. [PMID: 32163200 DOI: 10.1002/cphy.c190016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intestinal absorption of dietary amino acids/peptides is essential for protein homeostasis, which in turn is crucial for maintaining health as well as restoration of health from significant diseases. Dietary amino acids/peptides are absorbed by unique transporter processes present in the brush border membrane of absorptive villus cells, which line the entire length of the intestine. To date, the only nutrient absorptive system described in the secretory crypt cells in the mammalian intestine is the one that absorbs the amino acid glutamine. Majority of the amino acid transporters are sodium dependent and therefore require basolateral membrane Na-K-ATPase to maintain an efficient transcellular Na gradient for their activity. These transport processes are tightly regulated by various cellular and molecular mechanisms that facilitate their optimal activity during normal physiological processes. Malabsorption of amino acids, recently described in pathophysiological states such as in inflammatory bowel disease (IBD), is undoubtedly responsible for the debilitating symptoms of IBD such as malnutrition, weight loss and ultimately a failure to thrive. Also recently, in vivo models of IBD and in vitro studies have demonstrated that specific immune-inflammatory mediators/pathways regulate specific amino acid transporters. This provides possibilities to derive novel nutrition and immune-based treatment options for conditions such as IBD. © 2020 American Physiological Society. Compr Physiol 10:673-686, 2020.
Collapse
Affiliation(s)
- Soudamani Singh
- Department of Clinical and Translational Sciences and Appalachian Clinical and Translational Science Institute, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Subha Arthur
- Department of Clinical and Translational Sciences and Appalachian Clinical and Translational Science Institute, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| | - Uma Sundaram
- Department of Clinical and Translational Sciences and Appalachian Clinical and Translational Science Institute, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, USA
| |
Collapse
|
35
|
Krzystek-Korpacka M, G. Fleszar M, Bednarz-Misa I, Lewandowski Ł, Szczuka I, Kempiński R, Neubauer K. Transcriptional and Metabolomic Analysis of L-Arginine/Nitric Oxide Pathway in Inflammatory Bowel Disease and Its Association with Local Inflammatory and Angiogenic Response: Preliminary Findings. Int J Mol Sci 2020; 21:ijms21051641. [PMID: 32121248 PMCID: PMC7084352 DOI: 10.3390/ijms21051641] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
L-arginine/nitric oxide pathway in Crohn's disease (CD) and ulcerative colitis (UC) is poorly investigated. The aim of current study is to quantify pathway serum metabolites in 52 CD (40 active), 48 UC (33 active), and 18 irritable bowel syndrome patients and 40 controls using mass spectrometry and at determining mRNA expression of pathway-associated enzymes in 91 bowel samples. Arginine and symmetric dimethylarginine decreased (p < 0.05) in active-CD (129 and 0.437 µM) compared to controls (157 and 0.494 µM) and active-UC (164 and 0.52 µM). Citrulline and dimethylamine increased (p < 0.05) in active-CD (68.7 and 70.9 µM) and active-UC (65.9 and 73.9 µM) compared to controls (42.7 and 50.4 µM). Compared to normal, CD-inflamed small bowel had downregulated (p < 0.05) arginase-2 by 2.4-fold and upregulated dimethylarginine dimethylaminohydrolase (DDAH)-2 (1.5-fold) and arginine N-methyltransferase (PRMT)-2 (1.6-fold). Quiescent-CD small bowel had upregulated (p < 0.05) arginase-2 (1.8-fold), DDAH1 (2.9-fold), DDAH2 (1.5-fold), PRMT1 (1.5-fold), PRMT2 (1.7-fold), and PRMT5 (1.4-fold). Pathway enzymes were upregulated in CD-inflamed/quiescent and UC-inflamed colon as compared to normal. Compared to inflamed, quiescent CD-colon had upregulated DDAH1 (5.7-fold) and ornithine decarboxylase (1.6-fold). Concluding, the pathway is deregulated in CD and UC, also in quiescent bowel, reflecting inflammation severity and angiogenic potential. Functional analysis of PRMTs and DDAHs as potential targets for therapy is warranted.
Collapse
Affiliation(s)
- Małgorzata Krzystek-Korpacka
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland; (M.G.F.); (I.B.-M.); (Ł.L.); (I.S.)
- Correspondence: ; Tel.: +48-71-784-1375
| | - Mariusz G. Fleszar
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland; (M.G.F.); (I.B.-M.); (Ł.L.); (I.S.)
| | - Iwona Bednarz-Misa
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland; (M.G.F.); (I.B.-M.); (Ł.L.); (I.S.)
| | - Łukasz Lewandowski
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland; (M.G.F.); (I.B.-M.); (Ł.L.); (I.S.)
| | - Izabela Szczuka
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wrocław, Poland; (M.G.F.); (I.B.-M.); (Ł.L.); (I.S.)
| | - Radosław Kempiński
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, 50-556 Wrocław, Poland; (R.K.); (K.N.)
| | - Katarzyna Neubauer
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, 50-556 Wrocław, Poland; (R.K.); (K.N.)
| |
Collapse
|
36
|
Synthesis and biological evaluation of asymmetrical diarylpentanoids as antiinflammatory, anti-α-glucosidase, and antioxidant agents. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02430-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
37
|
Pompili S, Sferra R, Gaudio E, Viscido A, Frieri G, Vetuschi A, Latella G. Can Nrf2 Modulate the Development of Intestinal Fibrosis and Cancer in Inflammatory Bowel Disease? Int J Mol Sci 2019; 20:E4061. [PMID: 31434263 PMCID: PMC6720292 DOI: 10.3390/ijms20164061] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/15/2022] Open
Abstract
One of the main mechanisms carried out by the cells to counteract several forms of stress is the activation of the nuclear factor erythroid 2-related factor (Nrf2) signaling. Nrf2 signaling controls the expression of many genes through the binding of a specific cis-acting element known as the antioxidant response element (ARE). Activation of Nrf2/ARE signaling can mitigate several pathologic mechanisms associated with an autoimmune response, digestive and metabolic disorders, as well as respiratory, cardiovascular, and neurodegenerative diseases. Indeed, several studies have demonstrated that Nrf2 pathway plays a key role in inflammation and in cancer development in many organs, including the intestine. Nrf2 appears to be involved in inflammatory bowel disease (IBD), an immune-mediated chronic and disabling disease, with a high risk of developing intestinal fibrotic strictures and cancer. Currently, drugs able to increase cytoprotective Nrf2 function are in clinical trials or already being used in clinical practice to reduce the progression of some degenerative conditions. The role of Nrf2 in cancer development and progression is controversial, and drugs able to inhibit abnormal levels of Nrf2 are also under investigation. The goal of this review is to analyze and discuss Nrf2-dependent signals in the initiation and progression of intestinal fibrosis and cancers occurring in IBD.
Collapse
Affiliation(s)
- Simona Pompili
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Angelo Viscido
- Department of Life, Health and Environmental Sciences, Gastroenterology, Hepatology and Nutrition Division, University of L'Aquila, 67100 L'Aquila, Italy
| | - Giuseppe Frieri
- Department of Life, Health and Environmental Sciences, Gastroenterology, Hepatology and Nutrition Division, University of L'Aquila, 67100 L'Aquila, Italy
| | - Antonella Vetuschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Giovanni Latella
- Department of Life, Health and Environmental Sciences, Gastroenterology, Hepatology and Nutrition Division, University of L'Aquila, 67100 L'Aquila, Italy.
| |
Collapse
|
38
|
Protopapas AA, Vradelis S, Karampitsakos T, Steiropoulos P, Chatzimichael A, Paraskakis E. Elevated Levels of Alveolar Nitric Oxide May Indicate Presence of Small Airway Inflammation in Patients with Inflammatory Bowel Disease. Lung 2019; 197:663-670. [PMID: 31317255 DOI: 10.1007/s00408-019-00253-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Pulmonary manifestations of inflammatory bowel disease (IBD), albeit not rare, are largely overlooked in clinical practice. The role of exhaled nitric oxide (eNO) as an established biological marker of airway inflammation compels us to use it as a tool to investigate the exact nature of these manifestations. METHODS Fractional eNO (FeNO) was measured in multiple flows, and with the use of a mathematical model, alveolar concentration of NO (CANO) and bronchial flux of NO (JawNO) were assessed in 27 patients with IBD [17 with Crohn's disease (CD) and 10 with ulcerative colitis (UC)] and in 39 healthy controls. Carefully selected criteria were used to exclude patients or healthy controls that presented factors considered to be correlated with eNO measurements. Disease activity was measured in Crohn's patients using the CD activity index (CDAI) score and in UC using the partial Mayo score. RESULTS CANO was significantly higher in the IBD group, compared to the control group (p < 0.0001). FeNO was significantly increased in patients with IBD (p = 0.023), while there was no statistical significance found regarding levels of JawNO in patients with IBD (p = 0.106), both compared to controls. There was no significant correlation between any eNO component and markers of disease activity. CONCLUSIONS Alveolar concentration of NO is elevated in patients with IBD, regardless of disease activity. This may suggest that subclinical small airway inflammation is present in patients with IBD, even those with mild or inactive disease.
Collapse
Affiliation(s)
- Adonis A Protopapas
- Department of Pediatrics, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100, Alexandroupolis, Greece.
| | - Stergios Vradelis
- Second Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Theodoros Karampitsakos
- Department of Pediatrics, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Paschalis Steiropoulos
- Department of Pneumonology, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Athanasios Chatzimichael
- Department of Pediatrics, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| | - Emmanouil Paraskakis
- Department of Pediatrics, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100, Alexandroupolis, Greece
| |
Collapse
|
39
|
Bourgonje AR, von Martels JZH, Bulthuis MLC, van Londen M, Faber KN, Dijkstra G, van Goor H. Crohn's Disease in Clinical Remission Is Marked by Systemic Oxidative Stress. Front Physiol 2019; 10:499. [PMID: 31080419 PMCID: PMC6497730 DOI: 10.3389/fphys.2019.00499] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/08/2019] [Indexed: 01/16/2023] Open
Abstract
Introduction: Crohn’s disease (CD) is characterized by chronic and relapsing inflammation of the gastro-intestinal tract. It is assumed that oxidative stress contributes to CD pathogenesis, but systemic biomarkers for oxidative stress in CD are not yet identified. A reduction in free thiol groups in plasma proteins (“plasma free thiols”) reflects systemic oxidative stress since they are prime substrates for reactive oxygen species. Here, we determined the concentrations of plasma free thiols in CD patients and healthy controls and studied the putative correlation with disease parameters. Methods: Free thiols were quantified in plasma of patients with CD in clinical remission [according to the Harvey Bradshaw Index (HBI)] and healthy controls and adjusted for plasma albumin. Albumin-adjusted free thiol concentrations were analyzed for associations with clinical and biochemical disease markers. Results: Mean plasma free thiol concentrations were significantly lower in patients with CD (n = 51) compared to healthy controls (n = 27) (14.7 ± 2.4 vs. 17.9 ± 1.8 μmol/g albumin; P < 0.001). Patients with CD with above-average free thiols had significantly lower CRP levels (median 1.4 [interquartile range] [0.4; 2.6] vs. 3.6 [0.6; 7.0] mg/L; P < 0.05) and BMI (23.6 ± 4.8 vs. 27.1 ± 5.2 kg/m2; P < 0.05). Patients with CD having solely colonic disease demonstrated markedly reduced plasma free thiol concentrations compared to patients with ileocolonic involvement (13.2 ± 1.8 vs. 15.2 ± 2.2 μmol/g; P < 0.05). Finally, plasma free thiol concentrations negatively correlated with biomarkers of inflammation, including hsCRP, SAA, IL-17A (all P < 0.05), and VEGF. Conclusion: Plasma free thiols are reduced in patients with CD in clinical remission compared to healthy controls. Thus, subclinical CD disease activity is reflected by systemic oxidative stress and plasma free thiols may be a relevant therapeutic target and biomarker to monitor disease activity in CD.
Collapse
Affiliation(s)
- Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Julius Z H von Martels
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marian L C Bulthuis
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marco van Londen
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
40
|
Bódi N, Szalai Z, Bagyánszki M. Nitrergic Enteric Neurons in Health and Disease-Focus on Animal Models. Int J Mol Sci 2019; 20:ijms20082003. [PMID: 31022832 PMCID: PMC6515552 DOI: 10.3390/ijms20082003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
Nitrergic enteric neurons are key players of the descending inhibitory reflex of intestinal peristalsis, therefore loss or damage of these neurons can contribute to developing gastrointestinal motility disturbances suffered by patients worldwide. There is accumulating evidence that the vulnerability of nitrergic enteric neurons to neuropathy is strictly region-specific and that the two main enteric plexuses display different nitrergic neuronal damage. Alterations both in the proportion of the nitrergic subpopulation and in the total number of enteric neurons suggest that modification of the neurochemical character or neuronal death occurs in the investigated gut segments. This review aims to summarize the gastrointestinal region and/or plexus-dependent pathological changes in the number of nitric oxide synthase (NOS)-containing neurons, the NO release and the cellular and subcellular expression of different NOS isoforms. Additionally, some of the underlying mechanisms associated with the nitrergic pathway in the background of different diseases, e.g., type 1 diabetes, chronic alcoholism, intestinal inflammation or ischaemia, will be discussed.
Collapse
Affiliation(s)
- Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary.
| | - Zita Szalai
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary.
| | - Mária Bagyánszki
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary.
| |
Collapse
|
41
|
Unique Regulation of Enterocyte Brush Border Membrane Na-Glutamine and Na-Alanine Co-Transport by Peroxynitrite during Chronic Intestinal Inflammation. Int J Mol Sci 2019; 20:ijms20061504. [PMID: 30917504 PMCID: PMC6470611 DOI: 10.3390/ijms20061504] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022] Open
Abstract
Na-amino acid co-transporters (NaAAcT) are uniquely affected in rabbit intestinal villus cell brush border membrane (BBM) during chronic intestinal inflammation. Specifically, Na-alanine co-transport (ASCT1) is inhibited secondary to a reduction in the affinity of the co-transporter for alanine, whereas Na-glutamine co-transport (B0AT1) is inhibited secondary to a reduction in BBM co-transporter numbers. During chronic intestinal inflammation, there is abundant production of the potent oxidant peroxynitrite (OONO). However, whether OONO mediates the unique alteration in NaAAcT in intestinal epithelial cells during chronic intestinal inflammation is unknown. In this study, ASCT1 and B0AT1 were inhibited by OONO in vitro. The mechanism of inhibition of ASCT1 by OONO was secondary to a reduction in the affinity of the co-transporter for alanine, and secondary to a reduction in the number of co-transporters for B0AT1, which were further confirmed by Western blot analyses. In conclusion, peroxynitrite inhibited both BBM ASCT1 and B0AT1 in intestinal epithelial cells but by different mechanisms. These alterations in the villus cells are similar to those seen in the rabbit model of chronic enteritis. Therefore, this study indicates that peroxynitrite may mediate the inhibition of ASCT1 and B0AT1 during inflammation, when OONO levels are known to be elevated in the mucosa.
Collapse
|
42
|
Singh K, Gobert AP, Coburn LA, Barry DP, Allaman M, Asim M, Luis PB, Schneider C, Milne GL, Boone HH, Shilts MH, Washington MK, Das SR, Piazuelo MB, Wilson KT. Dietary Arginine Regulates Severity of Experimental Colitis and Affects the Colonic Microbiome. Front Cell Infect Microbiol 2019; 9:66. [PMID: 30972302 PMCID: PMC6443829 DOI: 10.3389/fcimb.2019.00066] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/04/2019] [Indexed: 12/11/2022] Open
Abstract
There is great interest in safe and effective alternative therapies that could benefit patients with inflammatory bowel diseases (IBD). L-arginine (Arg) is a semi-essential amino acid with a variety of physiological effects. In this context, our aim was to investigate the role of dietary Arg in experimental colitis. We used two models of colitis in C57BL/6 mice, the dextran sulfate sodium (DSS) model of injury and repair, and Citrobacter rodentium infection. Animals were given diets containing (1) no Arg (Arg0), 6.4 g/kg (ArgNL), or 24.6 g/kg Arg (ArgHIGH); or (2) the amino acids downstream of Arg: 28 g/kg L-ornithine (OrnHIGH) or 72 g/kg L-proline (ProHIGH). Mice with DSS colitis receiving the ArgHIGH diet had increased levels of Arg, Orn, and Pro in the colon and improved body weight loss, colon length shortening, and histological injury compared to ArgNL and Arg0 diets. Histology was improved in the ArgNL vs. Arg0 group. OrnHIGH or ProHIGH diets did not provide protection. Reduction in colitis with ArgHIGH diet also occurred in C. rodentium-infected mice. Diversity of the intestinal microbiota was significantly enhanced in mice on the ArgHIGH diet compared to the ArgNL or Arg0 diets, with increased abundance of Bacteroidetes and decreased Verrucomicrobia. In conclusion, dietary supplementation of Arg is protective in colitis models. This may occur by restoring overall microbial diversity and Bacteroidetes prevalence. Our data provide a rationale for Arg as an adjunctive therapy in IBD.
Collapse
Affiliation(s)
- Kshipra Singh
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Alain P. Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Lori A. Coburn
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, United States
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States
| | - Daniel P. Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Margaret Allaman
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Paula B. Luis
- Department of Pharmacology, Vanderbilt University Medical School, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical School, Nashville, TN, United States
| | - Claus Schneider
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University Medical School, Nashville, TN, United States
- Division of Clinical Pharmacology, Vanderbilt University Medical School, Nashville, TN, United States
| | - Ginger L. Milne
- Division of Clinical Pharmacology, Vanderbilt University Medical School, Nashville, TN, United States
| | - Helen H. Boone
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Meghan H. Shilts
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
| | - M. Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Suman R. Das
- Division of Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - M. Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Keith T. Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, United States
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
43
|
Rashidian A, Keshavarz-Bahaghighat H, Abdollahi A, Chamanara M, Faghir-Ghanesefat H, Hoseini-Ahmadabadi M, Dehpour AR. Agmatine ameliorates acetic acid-induced colitis in rats: involvement of nitrergic system. Immunopharmacol Immunotoxicol 2019; 41:242-249. [DOI: 10.1080/08923973.2019.1578973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Amir Rashidian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hedieh Keshavarz-Bahaghighat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, Imam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Hedyeh Faghir-Ghanesefat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Tun X, Yasukawa K, Yamada KI. Nitric Oxide Is Involved in Activation of Toll-Like Receptor 4 Signaling through Tyrosine Nitration of Src Homology Protein Tyrosine Phosphatase 2 in Murine Dextran Sulfate-Induced Colitis. Biol Pharm Bull 2018; 41:1843-1852. [DOI: 10.1248/bpb.b18-00558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xin Tun
- Physical Chemistry for Life Science Laboratory, Graduate School of Pharmaceutical Sciences, Kyushu University
| | - Keiji Yasukawa
- Laboratory of Advanced Pharmacology, Daiichi University of Pharmacy
| | - Ken-ichi Yamada
- Physical Chemistry for Life Science Laboratory, Graduate School of Pharmaceutical Sciences, Kyushu University
- Japan Science and Technology Agency, PRESTO
| |
Collapse
|
45
|
McKay R, Ghodasra M, Schardt J, Quan D, Pottash AE, Shang W, Jay SM, Payne GF, Chang MW, March JC, Bentley WE. A platform of genetically engineered bacteria as vehicles for localized delivery of therapeutics: Toward applications for Crohn's disease. Bioeng Transl Med 2018; 3:209-221. [PMID: 30377661 PMCID: PMC6195910 DOI: 10.1002/btm2.10113] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/22/2018] [Accepted: 08/22/2018] [Indexed: 12/14/2022] Open
Abstract
For therapies targeting diseases of the gastrointestinal tract, we and others envision probiotic bacteria that synthesize and excrete biotherapeutics at disease sites. Toward this goal, we have engineered commensal E. coli that selectively synthesize and secrete a model biotherapeutic in the presence of nitric oxide (NO), an intestinal biomarker for Crohn's disease (CD). This is accomplished by co‐expressing the pore forming protein TolAIII with the biologic, granulocyte macrophage‐colony stimulating factor (GM‐CSF). We have additionally engineered these bacteria to accumulate at sites of elevated NO by engineering their motility circuits and controlling pseudotaxis. Importantly, because we have focused on in vitro test beds, motility and biotherapeutics production are spatiotemporally characterized. Together, the targeted recognition, synthesis, and biomolecule delivery comprises a “smart” probiotics platform that may have utility in the treatment of CD. Further, this platform could be modified to accommodate other pursuits by swapping the promoter and therapeutic gene to reflect other disease biomarkers and treatments, respectively.
Collapse
Affiliation(s)
- Ryan McKay
- Fischell Dept. of Bioengineering University of Maryland College Park MD.,Institute for Bioscience and Biotechnology Research University of Maryland College Park MD
| | - Monil Ghodasra
- Fischell Dept. of Bioengineering University of Maryland College Park MD
| | - John Schardt
- Fischell Dept. of Bioengineering University of Maryland College Park MD.,Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute National Institutes of Health Bethesda MD
| | - David Quan
- Fischell Dept. of Bioengineering University of Maryland College Park MD.,Institute for Bioscience and Biotechnology Research University of Maryland College Park MD
| | - Alex Eli Pottash
- Fischell Dept. of Bioengineering University of Maryland College Park MD
| | - Wu Shang
- Fischell Dept. of Bioengineering University of Maryland College Park MD.,Institute for Bioscience and Biotechnology Research University of Maryland College Park MD
| | - Steven M Jay
- Fischell Dept. of Bioengineering University of Maryland College Park MD.,Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute National Institutes of Health Bethesda MD.,Marlene and Stewart Greenebaum Comprehensive Cancer Center University of Maryland School of Medicine Baltimore MD.,Program in Molecular and Cellular Biology University of Maryland College Park MD
| | - Gregory F Payne
- Fischell Dept. of Bioengineering University of Maryland College Park MD.,Institute for Bioscience and Biotechnology Research University of Maryland College Park MD
| | - Matthew Wook Chang
- Dept. of Biochemistry, Yong Loo Lin School of Medicine National University of Singapore Singapore.,NUS Synthetic Biology for Clinical and Technological Innovation, Life Sciences Institute National University of Singapore Singapore
| | - John C March
- Dept. of Biological and Environmental Engineering Cornell University Ithaca NY
| | - William E Bentley
- Fischell Dept. of Bioengineering University of Maryland College Park MD.,Institute for Bioscience and Biotechnology Research University of Maryland College Park MD
| |
Collapse
|
46
|
Manoharan P, Sundaram S, Singh S, Sundaram U. Inducible Nitric Oxide Regulates Brush Border Membrane Na-Glucose Co-transport, but Not Na:H Exchange via p38 MAP Kinase in Intestinal Epithelial Cells. Cells 2018; 7:cells7080111. [PMID: 30126234 PMCID: PMC6115905 DOI: 10.3390/cells7080111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/14/2018] [Accepted: 08/16/2018] [Indexed: 12/12/2022] Open
Abstract
During chronic intestinal inflammation in rabbit intestinal villus cells brush border membrane (BBM) Na-glucose co-transport (SGLT1), but not Na/H exchange (NHE3) is inhibited. The mechanism of inhibition is secondary to a decrease in the number of BBM co-transporters. In the chronic enteritis mucosa, inducible nitric oxide (iNO) and superoxide production are known to be increased and together they produce abundant peroxynitrite (OONO), a potent oxidant. However, whether OONO mediates the SGLT1 and NHE3 changes in intestinal epithelial cells during chronic intestinal inflammation is unknown. Thus, we determined the effect of OONO on SGLT1 and NHE3 in small intestinal epithelial cell (IEC-18) monolayers grown on trans well plates. In cells treated with 100 μM SIN-1 (OONO donor) for 24 h, SGLT1 was inhibited while NHE3 activity was unaltered. SIN-1 treated cells produced 40 times more OONO fluorescence compared to control cells. Uric acid (1mM) a natural scavenger of OONO prevented the OONO mediated SGLT1 inhibition. Na+/K+-ATPase which maintains the favorable trans-cellular Na gradient for Na-dependent absorptive processes was decreased by OONO. Kinetics studies demonstrated that the mechanism of inhibition of SGLT1 by OONO was secondary to reduction in the number of co-transporters (Vmax) without an alteration in the affinity. Western blot analysis showed a significant decrease in SGLT1 protein expression. Further, p38 mitogen-activated protein (MAP) kinase pathway appeared to mediate the OONO inhibition of SGLT1. Finally, at the level of the co-transporter, 3-Nitrotyrosine formation appears to be the mechanism of inhibition of SGLT1. In conclusion, peroxynitrite inhibited BBM SGLT1, but not NHE3 in intestinal epithelial cells. These changes and the mechanism of SGLT1 inhibition by OONO in IEC-18 cells is identical to that seen in villus cells during chronic enteritis. Thus, these data indicate that peroxynitrite, known to be elevated in the mucosa, may mediate the inhibition of villus cell BBM SGLT1 in vivo in the chronically inflamed intestine.
Collapse
Affiliation(s)
- Palanikumar Manoharan
- Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati, Cincinnati, OH 45221, USA.
| | - Shanmuga Sundaram
- Department of Clinical and Translational Sciences and Appalachian Clinical and Translational Science Institute, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA.
| | - Soudamani Singh
- Department of Clinical and Translational Sciences and Appalachian Clinical and Translational Science Institute, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA.
| | - Uma Sundaram
- Department of Clinical and Translational Sciences and Appalachian Clinical and Translational Science Institute, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA.
| |
Collapse
|
47
|
Rahman SU, Li Y, Huang Y, Zhu L, Feng S, Wu J, Wang X. Treatment of inflammatory bowel disease via green tea polyphenols: possible application and protective approaches. Inflammopharmacology 2018. [DOI: 10.1007/s10787-018-0462-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Adesso S, Russo R, Quaroni A, Autore G, Marzocco S. Astragalus membranaceus Extract Attenuates Inflammation and Oxidative Stress in Intestinal Epithelial Cells via NF-κB Activation and Nrf2 Response. Int J Mol Sci 2018; 19:E800. [PMID: 29534459 PMCID: PMC5877661 DOI: 10.3390/ijms19030800] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 03/01/2018] [Accepted: 03/09/2018] [Indexed: 12/17/2022] Open
Abstract
Astragalus membranaceus, dried root extract, also known as Astragali radix, is used in traditional Chinese medicine as a tonic remedy. Moreover, it has been reported that Astragalus membranaceus could attenuate intestinal inflammation; however, the underlying mechanism for its anti-inflammatory activity in intestinal epithelial cells (IECs) remains unclear. In this study, we evaluated Astragalus membranaceus extract (5-100 µg/mL) in a model of inflammation and oxidative stress for IECs. We showed that Astragalus membranaceus extract reduced the inflammatory response induced by lipopolysaccharide from E. coli (LPS) plus interferon-γ (IFN), decreasing tumor necrosis factor-α (TNF-α) release, cycloxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, nitrotyrosine formation, nuclear factor-κB (NF-κB) activation, and reactive oxygen species (ROS) release in the non-tumorigenic intestinal epithelial cell line (IEC-6). The antioxidant potential of Astragalus membranaceus extract was also evaluated in a model of hydrogen peroxide (H₂O₂)-induced oxidative stress in IEC-6, indicating that this extract reduced ROS release and increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activation and the expression of antioxidant cytoprotective factors in these cells. The results contributed to clarify the mechanisms involved in Astragalus membranaceus extract-reduced inflammation and highlighted the potential use of this extract as an anti-inflammatory and antioxidant remedy for intestinal diseases.
Collapse
Affiliation(s)
- Simona Adesso
- Department of Pharmacy, University of Salerno-Via Giovanni Paolo II, 132-84084 Fisciano-Salerno, Italy.
| | - Rosario Russo
- Giellepi S.p.A. Health Science Department, Via Benvenuto Cellini 37, 20851 Lissone (Monza Brianza), Italy.
| | - Andrea Quaroni
- Department of Biomedical Sciences, Cornell University, Veterinary Research Tower, Cornell University, Ithaca, NY 14853-6401, USA.
| | - Giuseppina Autore
- Department of Pharmacy, University of Salerno-Via Giovanni Paolo II, 132-84084 Fisciano-Salerno, Italy.
| | - Stefania Marzocco
- Department of Pharmacy, University of Salerno-Via Giovanni Paolo II, 132-84084 Fisciano-Salerno, Italy.
| |
Collapse
|
49
|
Sharma S, Sinha VR. Current pharmaceutical strategies for efficient site specific delivery in inflamed distal intestinal mucosa. J Control Release 2018; 272:97-106. [DOI: 10.1016/j.jconrel.2018.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/03/2018] [Accepted: 01/05/2018] [Indexed: 02/07/2023]
|
50
|
Korkmaz AG, Popov T, Peisl L, Codrea MC, Nahnsen S, Steimle A, Velic A, Macek B, von Bergen M, Bernhardt J, Frick JS. Proteome and phosphoproteome analysis of commensally induced dendritic cell maturation states. J Proteomics 2017; 180:11-24. [PMID: 29155090 DOI: 10.1016/j.jprot.2017.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 09/18/2017] [Accepted: 11/14/2017] [Indexed: 01/18/2023]
Abstract
Dendritic cells (DCs) can shape the immune system towards an inflammatory or tolerant state depending on the bacterial antigens and the environment they encounter. In this study we provide a proteomic catalogue of differentially expressed proteins between distinct DC maturation states, brought about by bacteria that differ in their endotoxicity. To achieve this, we have performed proteomics and phosphoproteomics on murine DC cultures. Symbiont and pathobiont bacteria were used to direct dendritic cells into a semi-mature and fully-mature state, respectively. The comparison of semi-mature and fully-mature DCs revealed differential expression in 103 proteins and differential phosphorylation in 118 phosphosites, including major regulatory factors of central immune processes. Our analyses predict that these differences are mediated by upstream elements such as SOCS1, IRF3, ABCA1, TLR4, and PTGER4. Our analyses indicate that the symbiont bacterial strain affects DC proteome in a distinct way, by downregulating inflammatory proteins and activating anti-inflammatory upstream regulators. Biological significance In this study we have investigated the responses of immune cells to distinct bacterial stimuli. We have used the symbiont bacterial strain B. vulgatus and the pathobiont E. coli strain to stimulate cultured primary dendritic cells and performed a shotgun proteome analysis to investigate the protein expression and phosphorylation level differences on a genome level. We have observed expression and phosphorylation level differences in key immune regulators, transcription factors and signal transducers. Moreover, our subsequent bioinformatics analysis indicated regulation at several signaling pathways such as PPAR signaling, LXR/RXR activation and glucocorticoid signaling pathways, which are not studied in detail in an inflammation and DC maturation context. Our phosphoproteome analysis showed differential phosphorylation in 118 phosphosites including those belonging to epigenetic regulators, transcription factors and major cell cycle regulators. We anticipate that our study will facilitate further investigation of immune cell proteomes under different inflammatory and non-inflammatory conditions.
Collapse
Affiliation(s)
- Ali Giray Korkmaz
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Germany.
| | - Todor Popov
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Germany
| | - Loulou Peisl
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Germany
| | | | - Sven Nahnsen
- Quantitative Biology Center, University of Tübingen, Germany
| | - Alexander Steimle
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Germany
| | - Ana Velic
- Proteome Center, University of Tübingen, Germany
| | - Boris Macek
- Proteome Center, University of Tübingen, Germany
| | | | - Joerg Bernhardt
- Ernst-Moritz-Arndt Universität Greifswald, Institute for Microbiology, Germany
| | | |
Collapse
|