1
|
Zhao H, Zhao S, Wang S, Liu Y. Human β-defensins: The multi-functional natural peptide. Biochem Pharmacol 2024; 227:116451. [PMID: 39059771 DOI: 10.1016/j.bcp.2024.116451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
The increasing threat of antibiotic resistance among pathogenic microorganisms and the urgent demand for new antibiotics require immediate attention. Antimicrobial peptides exhibit effectiveness against microorganisms, fungi, viruses, and protozoa. The discovery of human β-defensins represents a major milestone in biomedical research, opening new avenues for scientific investigation into the innate immune system and its resistance mechanisms against pathogenic microorganisms. Multiple defensins present a promising alternative in the context of antibiotic abuse. However, obstacles to the practical application of defensins as anti-infective therapies persist due to the unique properties of human β-defensins themselves and serious pharmacological and technical challenges. To overcome these challenges, diverse delivery vehicles have been developed and progressively improved for the conjugation or encapsulation of human β-defensins. This review briefly introduces the biology of human β-defensins, focusing on their multistage structure and diverse functions. It also discusses several heterologous systems for producing human β-defensins, various delivery systems created for these peptides, and patent applications related to their utilization, concluding with a summary of current challenges and potential solutions.
Collapse
Affiliation(s)
- Haile Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Shuli Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Simeng Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Ying Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China.
| |
Collapse
|
2
|
Wu E, Zhu J, Ma Z, Tuo B, Terai S, Mizuno K, Li T, Liu X. Gastric alarmin release: A warning signal in the development of gastric mucosal diseases. Front Immunol 2022; 13:1008047. [PMID: 36275647 PMCID: PMC9583272 DOI: 10.3389/fimmu.2022.1008047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Alarmins exist outside cells and are early warning signals to the immune system; as such, alarmin receptors are widely distributed on various immune cells. Alarmins, proinflammatory molecular patterns associated with tissue damage, are usually released into the extracellular space, where they induce immune responses and participate in the damage and repair processes of mucosal diseases.In the stomach, gastric alarmin release has been shown to be involved in gastric mucosal inflammation, antibacterial defense, adaptive immunity, and wound healing; moreover, this release causes damage and results in the development of gastric mucosal diseases, including various types of gastritis, ulcers, and gastric cancer. Therefore, it is necessary to understand the role of alarmins in gastric mucosal diseases. This review focuses on the contribution of alarmins, including IL33, HMGB1, defensins and cathelicidins, to the gastric mucosal barrier and their role in gastric mucosal diseases. Here, we offer a new perspective on the prevention and treatment of gastric mucosal diseases.
Collapse
Affiliation(s)
- Enqin Wu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shuji Terai
- Division of Gastroenterology & Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kenichi Mizuno
- Division of Gastroenterology & Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Xuemei Liu, ; Taolang Li,
| | - Xuemei Liu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- *Correspondence: Xuemei Liu, ; Taolang Li,
| |
Collapse
|
3
|
Host Cell Antimicrobial Responses against Helicobacter pylori Infection: From Biological Aspects to Therapeutic Strategies. Int J Mol Sci 2022; 23:ijms231810941. [PMID: 36142852 PMCID: PMC9504325 DOI: 10.3390/ijms231810941] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 02/07/2023] Open
Abstract
The colonization of Helicobacter pylori (H. pylori) in human gastric mucosa is highly associated with the occurrence of gastritis, peptic ulcer, and gastric cancer. Antibiotics, including amoxicillin, clarithromycin, furazolidone, levofloxacin, metronidazole, and tetracycline, are commonly used and considered the major treatment regimens for H. pylori eradication, which is, however, becoming less effective by the increasing prevalence of H pylori resistance. Thus, it is urgent to understand the molecular mechanisms of H. pylori pathogenesis and develop alternative therapeutic strategies. In this review, we focus on the virulence factors for H. pylori colonization and survival within host gastric mucosa and the host antimicrobial responses against H. pylori infection. Moreover, we describe the current treatments for H. pylori eradication and provide some insights into new therapeutic strategies for H. pylori infection.
Collapse
|
4
|
Meliț LE, Mărginean CO, Săsăran MO. The Challenges of Eradicating Pediatric Helicobacter pylori Infection in the Era of Probiotics. CHILDREN 2022; 9:children9060795. [PMID: 35740732 PMCID: PMC9222169 DOI: 10.3390/children9060795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/26/2022] [Accepted: 05/26/2022] [Indexed: 01/10/2023]
Abstract
Helicobacter pylori (H. pylori), the most common infection of childhood, results in life-threatening complications during adulthood if left untreated. Most of these complications are related to H. pylori-induced chronic inflammation. The dysbiosis caused by H. pylori is not limited to the gastric microenvironment, but it affects the entire gastrointestinal tract. Eradication of H. pylori has recently become a real challenge for clinicians due to both the persistent increase in antibiotic resistance worldwide and the wide spectrum of side effects associated with the eradication regimens resulting; therefore, there is an urgent need for more effective and less noxious treatment options. Thus, probiotics might be a promising choice in both adults and children with H. pylori infection since their role in improving the eradication rate of this infection has been proved in multiple studies. The positive effects of probiotics might be explained by their abilities to produce antimicrobial compounds and antioxidants, alter local gastric pH, and subsequently decrease H. pylori colonization and adherence to gastric epithelial cells. Nevertheless, if used alone probiotics do not considerably increase the eradication rate.
Collapse
Affiliation(s)
- Lorena Elena Meliț
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Târgu Mureș, Romania;
| | - Cristina Oana Mărginean
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Târgu Mureș, Romania;
- Correspondence:
| | - Maria Oana Săsăran
- Department of Pediatrics III, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, Gheorghe Marinescu Street No. 38, 540136 Târgu Mureș, Romania;
| |
Collapse
|
5
|
Genetic polymorphism relationship of four SNP in beta defensins genes 1 and 2 with susceptibility and effect of triple therapy of Helicobacter pylori infection in Iraq. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Cieślik M, Bagińska N, Górski A, Jończyk-Matysiak E. Human β-Defensin 2 and Its Postulated Role in Modulation of the Immune Response. Cells 2021; 10:cells10112991. [PMID: 34831214 PMCID: PMC8616480 DOI: 10.3390/cells10112991] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 12/17/2022] Open
Abstract
Studies described so far suggest that human β-defensin 2 is an important protein of innate immune response which provides protection for the human organism against invading pathogens of bacterial, viral, fungal, as well as parasitical origin. Its pivotal role in enhancing immunity was proved in infants. It may also be considered a marker of inflammation. Its therapeutic administration has been suggested for maintenance of the balance of systemic homeostasis based on the appropriate composition of the microbiota. It has been suggested that it may be an important therapeutic tool for modulating the response of the immune system in many inflammatory diseases, offering new treatment modalities. For this reason, its properties and role in the human body discussed in this review should be studied in more detail.
Collapse
Affiliation(s)
- Martyna Cieślik
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
| | - Natalia Bagińska
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
- Phage Therapy Unit, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
- Infant Jesus Hospital, The Medical University of Warsaw, 02-006 Warsaw, Poland
- Correspondence:
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland; (M.C.); (N.B.); (E.J.-M.)
| |
Collapse
|
7
|
Zhang Y, Zhang Y, Liu Z. Effects of Acanthopanax senticosus supplementation on innate immunity and changes of related immune factors in healthy mice. Innate Immun 2020; 27:461-469. [PMID: 32938286 PMCID: PMC8504262 DOI: 10.1177/1753425920955200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Modern scientific research has shown that Acanthopanax senticosus (AS) can regulate the innate immunity of healthy animals, thus affecting the health of animals. However, there are few systematic reports on the changes of innate immune indices of healthy animals after consuming AS. The purpose of this project was to study the effect on healthy mice’s innate immunity and changes of related immune factors induced by feeding AS root powder supplementation. The results showed that the killing rate of natural cells increased in a dose-dependent manner in a certain time period. Compared to the control group, the treatment groups (T1, T2 and T3) improved significantly in the innate immune index (lysozyme, β-defensin-2 and duodenal secretory IgA (SIgA) to varying degrees) and induced corresponding changes of immune factors at certain time periods. The correlation between SIgA and IFN-γ in mouse serum was enhanced, and the higher the concentration of AS in the diet, the stronger the correlation was. However, there was no significant difference in growth performance among groups. It is proved that AS supplementation can enhance innate immunity and change several relevant immune factors and cells of healthy mice without affecting growth performance.
Collapse
Affiliation(s)
- YunQiang Zhang
- Hunan Agricultural University Veterinary Faculty, PR China
| | - YunLu Zhang
- Hunan Agricultural University Veterinary Faculty, PR China
| | - ZiKui Liu
- Hunan Agricultural University Veterinary Faculty, PR China.,Hunan Canzoho Biological Technology Co. Ltd, PR China
| |
Collapse
|
8
|
Wu Q, Wang D, Zhang Z, Wang Y, Yu W, Sun K, Maimela NR, Sun Z, Liu J, Yuan W, Zhang Y. DEFB4A is a potential prognostic biomarker for colorectal cancer. Oncol Lett 2020; 20:114. [PMID: 32863927 PMCID: PMC7448564 DOI: 10.3892/ol.2020.11975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-associated mortality. The present study aimed to investigate novel biomarkers to predict prognosis and provide a theoretical basis for studies of the pathogenesis and the development of therapies for CRC. The present study compared mRNA expression levels of patients with CRC with short- and long-term prognosis and of individuals with and without tumors in The Cancer Genome Atlas (TCGA) database. Differentially expressed genes (DEGs) were identified via volcano plot and Venn diagram analysis. Gene Ontology (GO) analysis and gene set enrichment analysis (GSEA) were performed to identify the functions of the DEGs, and the DEGs were further verified using clinical CRC samples. A total of 10 DEGs were identified as candidate genes using the TCGA database, and four DEGs [defensin β 4A (DEFB4A), hyaluronan binding protein 2 (HABP2), oleoyl-ACP hydrolase and TBC1 domain family member 3G] were associated with poor prognosis of patients with CRC. Two DEGs (DEFB4A and HABP2) were upregulated in tumor tissues of patients with CRC in the TCGA database. GO and GSEA analyses revealed that DEFB4A was highly associated with immunosuppression, participates in ‘myeloid leukocyte differentiation’, ‘leukocyte proliferation’ and ‘positive regulation of leukocyte-mediated immunity’, and was positively correlated with CD11b, CD14, CD45, CD163 and IL17A. Furthermore, DEFB4A expression was significantly upregulated in patients with large tumors, advanced cancer stage, lymph node metastasis and liver metastasis. Survival analysis revealed that DEFB4A upregulation was associated with poor prognosis. DEFB4A gene knockdown experiments demonstrated that DEF4BA promotes cell migration. These results indicated that DEFB4A potentially promotes tumor growth by regulating immunosuppressive activity and provided novel insights into the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Qian Wu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Dan Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhen Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yaping Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Weina Yu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Kai Sun
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Nomathamsanqa Resegofetse Maimela
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhenqiang Sun
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jinbo Liu
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Weitang Yuan
- Department of Anorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China.,Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
9
|
Pero R, Angrisano T, Brancaccio M, Falanga A, Lombardi L, Natale F, Laneri S, Lombardo B, Galdiero S, Scudiero O. Beta-defensins and analogs in Helicobacter pylori infections: mRNA expression levels, DNA methylation, and antibacterial activity. PLoS One 2019; 14:e0222295. [PMID: 31537016 PMCID: PMC6752957 DOI: 10.1371/journal.pone.0222295] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial peptides can protect the gastric mucosa from bacteria, but Helicobacter pylori (H. pylori) can equally colonize the gastric apparatus. To understand beta-defensin function in H. pylori-associated chronic gastritis, we investigated susceptibility, human beta-defensin mRNA expression, and DNA methylation changes to promoters in the gastric mucosa with or without H. pylori infection. We studied the expression of HBD2 (gene name DEFB4A), HBD3 (DEFB103A), and HBD4 (DEFB104) using real-time PCR in 15 control and 10 H. pylori infection patient gastric specimens. This study demonstrates that H. pylori infection is related to gastric enhancement of inducible HBD2, but inducible HBD3 and HBD4 expression levels remained unchanged. HBD2 gene methylation levels were overall higher in H. pylori-negative samples than in H. pylori-positive samples. We also assessed antimicrobial susceptibility using growth on blood agar. The H. pylori strain Tox+ was susceptible to all defensins tested and their analogs (3N, 3NI). These results show that HBD2 is involved in gastritis development driven by H. pylori, which facilitates the creation of an epigenetic field during H. pylori-associated gastric tumorigenesis.
Collapse
Affiliation(s)
- Raffaela Pero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- Task Force sugli Studi del Microbioma, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- * E-mail: (RP); (OS)
| | - Tiziana Angrisano
- Dipartimento di Biologia, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Mariarita Brancaccio
- Dipartimento di Biologia ed Evoluzione degli Organismi Marini, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Annarita Falanga
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Lucia Lombardi
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Francesco Natale
- Dipartimento di Biologia, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Sonia Laneri
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Barbara Lombardo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- CEINGE-Biotecnologie Avanzate Scarl, Napoli, Italy
| | - Stefania Galdiero
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Olga Scudiero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- Task Force sugli Studi del Microbioma, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- CEINGE-Biotecnologie Avanzate Scarl, Napoli, Italy
- * E-mail: (RP); (OS)
| |
Collapse
|
10
|
Semper RP, Vieth M, Gerhard M, Mejías-Luque R. Helicobacter pylori Exploits the NLRC4 Inflammasome to Dampen Host Defenses. THE JOURNAL OF IMMUNOLOGY 2019; 203:2183-2193. [PMID: 31511355 DOI: 10.4049/jimmunol.1900351] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori colonizes the stomach of around 50% of humans. This chronic infection can lead to gastric pathologic conditions such as gastric ulcers and gastric adenocarcinomas. The strong inflammatory response elicited by H. pylori is characterized by the induction of the expression of several cytokines. Among those, IL-18 is found highly upregulated in infected individuals, and its expression correlates with the severity of gastric inflammation. IL-18 is produced as inactive proform and has to be cleaved by the multiprotein complex inflammasome to be active. In immune cells, the NLRC4 inflammasome, which is activated by flagellin or bacterial secretion systems, was shown to be dispensable for H. pylori-induced inflammasome activation. However, apart from immune cells, gastric epithelial cells can also produce IL-18. In this study, we analyzed the role of the NLRC4 inflammasome during H. pylori infection. Our results indicate that NLRC4 and a functional type IV secretion system are crucial for the production of IL-18 from human and murine gastric epithelial cells. In vivo, Nlrc4-/- mice failed to produce gastric IL-18 upon H. pylori infection. Compared with wild type mice, Nlrc4-/- mice controlled H. pylori better without showing strong inflammation. Moreover, H. pylori-induced IL-18 inhibits β-defensin 1 expression in a NF-κB-dependent manner, resulting in higher bacterial colonization. At the same time, inflammasome activation enhances neutrophil infiltration, resulting in inflammation. Thus, NLRC4 inflammasome activation and subsequent IL-18 production favors bacterial persistence by inhibiting antimicrobial peptide production and, at the same time, contributes to gastric inflammation.
Collapse
Affiliation(s)
- Raphaela P Semper
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Fakultät für Medizin, Technische Universität München, 81675 Munich, Germany; and
| | - Michael Vieth
- Institut für Pathologie, Klinikum Bayreuth, 95445 Bayreuth, Germany
| | - Markus Gerhard
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Fakultät für Medizin, Technische Universität München, 81675 Munich, Germany; and
| | - Raquel Mejías-Luque
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Fakultät für Medizin, Technische Universität München, 81675 Munich, Germany; and
| |
Collapse
|
11
|
Pero R, Brancaccio M, Laneri S, Biasi MGD, Lombardo B, Scudiero O. A Novel View of Human Helicobacter pylori Infections: Interplay between Microbiota and Beta-Defensins. Biomolecules 2019; 9:biom9060237. [PMID: 31216758 PMCID: PMC6627275 DOI: 10.3390/biom9060237] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota is significantly involved in the preservation of the immune system of the host, protecting it against the pathogenic bacteria of the stomach. The correlation between gut microbiota and the host response supports human gastric homeostasis. Gut microbes may be shifted in Helicobacter pylori (Hp)-infected individuals to advance gastric inflammation and distinguished diseases. Particularly interesting is the establishment of cooperation between gut microbiota and antimicrobial peptides (AMPs) of the host in the gastrointestinal tract. AMPs have great importance in the innate immune reactions to Hp and participate in conservative co-evolution with an intricate microbiome. β-Defensins, a class of short, cationic, arginine-rich proteins belonging to the AMP group, are produced by epithelial and immunological cells. Their expression is enhanced during Hp infection. In this review, we discuss the impact of the gut microbiome on the host response, with particular regard to β-defensins in Hp-associated infections. In microbial infections, mostly in precancerous lesions induced by Hp infection, these modifications could lead to different outcomes.
Collapse
Affiliation(s)
- Raffaela Pero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy.
- Task Force sugli Studi del Microbioma, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy.
| | - Mariarita Brancaccio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy.
| | - Sonia Laneri
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via Montesano 49, 80131 Napoli, Italy.
| | | | - Barbara Lombardo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy.
- CEINGE-Biotecnologie Avanzate Scarl, Via G. Salvatore 486, 80145 Napoli, Italy.
| | - Olga Scudiero
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy.
- Task Force sugli Studi del Microbioma, Università degli Studi di Napoli "Federico II", 80131 Napoli, Italy.
- CEINGE-Biotecnologie Avanzate Scarl, Via G. Salvatore 486, 80145 Napoli, Italy.
| |
Collapse
|
12
|
Carbohydrate-Dependent and Antimicrobial Peptide Defence Mechanisms Against Helicobacter pylori Infections. Curr Top Microbiol Immunol 2019; 421:179-207. [PMID: 31123890 DOI: 10.1007/978-3-030-15138-6_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human stomach is a harsh and fluctuating environment for bacteria with hazards such as gastric acid and flow through of gastric contents into the intestine. H. pylori gains admission to a stable niche with nutrient access from exudates when attached to the epithelial cells under the mucus layer, whereof adherence to glycolipids and other factors provides stable and intimate attachment. To reach this niche, H. pylori must overcome mucosal defence mechanisms including the continuously secreted mucus layer, which provides several layers of defence: (1) mucins in the mucus layer can bind H. pylori and transport it away from the gastric niche with the gastric emptying, (2) mucins can inhibit H. pylori growth, both via glycans that can have antibiotic like function and via an aggregation-dependent mechanism, (3) antimicrobial peptides (AMPs) have antimicrobial activity and are retained in a strategic position in the mucus layer and (4) underneath the mucus layer, the membrane-bound mucins provide a second barrier, and can function as releasable decoys. Many of these functions are dependent on H. pylori interactions with host glycan structures, and both the host glycosylation and concentration of antimicrobial peptides change with infection and inflammation, making these interactions dynamic. Here, we review our current understanding of mucin glycan and antimicrobial peptide-dependent host defence mechanisms against H. pylori infection.
Collapse
|
13
|
Dias Bastos PA, Lara Santos L, Pinheiro Vitorino RM. How are the expression patterns of gut antimicrobial peptides modulated by human gastrointestinal diseases? A bridge between infectious, inflammatory, and malignant diseases. J Pept Sci 2018. [PMID: 29542263 DOI: 10.1002/psc.3071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The human gut barrier is the tissue exposed to the highest load of microorganisms, harbouring 100 trillion bacteria. In addition, the gut's renewal rate outruns that of any other human tissue. Antimicrobial peptides (AMPs) are highly optimized defense molecules in the intestinal barrier optimized to maintain gastrointestinal homeostasis. Alterations in AMPs activity can lead to or result from human gastrointestinal diseases. In this review, unique, conserved, or otherwise regular alterations in the expression patterns of human AMPs across gastrointestinal inflammatory and infectious diseases were analyzed for pattern elucidation. Human gastrointestinal diseases are associated with alterations in gut AMPs' expression patterns in a peptide-specific, disease-specific, and pathogen-specific way, modulating human gastrointestinal functioning. Across diseases, there is a (i) marked reduction in otherwise constitutively expressed AMPs, leading to increased disease susceptibility, and a (ii) significant increase in the expression of inducible AMPs, leading to tissue damage and disease severity. Infections and inflammatory conditions are associated with altered gene expression in the gut, whose patterns may favour cellular metaplasia, mucosal dysfunction, and disease states. Altered expression of AMPs can thus thrive disease severity and evolution since its early stages. Nevertheless, the modulation of AMP expression patterns unveils promising therapeutic targets.
Collapse
Affiliation(s)
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group - Research Center, Portuguese Oncology Institute - Porto (IPO-Porto), Porto, Portugal.,Department of Surgical Oncology, Portuguese Oncology Institute - Porto (IPO-Porto), Porto, Portugal
| | - Rui Miguel Pinheiro Vitorino
- iBiMED, Institute for Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.,Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
14
|
Cremniter J, Bodet C, Tougeron D, Dray X, Guilhot J, Jégou JF, Morel F, Lecron JC, Silvain C, Burucoa C. Th-17 response and antimicrobial peptide expression are uniformly expressed in gastric mucosa of Helicobacter pylori-infected patients independently of their clinical outcomes. Helicobacter 2018; 23:e12479. [PMID: 29582503 DOI: 10.1111/hel.12479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND The pathological determinism of H. pylori infection is explained by complex interplay between bacterial virulence and host inflammatory response. In a large prospective multicenter clinical study, Th17 response, expression of antimicrobial peptides (AMPs), cagA and vacA status, and bacterial density were investigated in the gastric mucosa of H. pylori -infected patients. MATERIALS AND METHODS Gastric inflammatory response was analyzed by RT-qPCR for quantification of Th17 cytokines (IL-17A, IL-22), CXCL-8, and AMPs (BD2 and S100A9) mRNA levels in gastric biopsies. Detection and genotyping of H. pylori strains were achieved by bacterial culture and PCR. RESULTS Among 787 patients screened for H. pylori, 269 were analyzed (147 H. pylori -infected and 122 uninfected patients). In H. pylori -infected patients, distribution was 83 gastritis, 12 duodenal ulcers, 5 gastric ulcers, and 47 precancerous and cancerous lesions. CXCL-8, IL-17A, BD2, and S100A9 mRNA levels were significantly increased in H. pylori -infected patients but, surprisingly, IL-22 was not, and no difference was shown between H. pylori -related diseases. A positive correlation was identified between S100A9 expression and bacterial density. Although expression of the virulence genes cagA and vacA did not impact inflammatory response, patients infected with a cagA-positive strain were associated with severe H. pylori -related diseases. CONCLUSION This study showed that CXCL-8, IL-17A, and AMPs are not differently expressed according to the various H. pylori -related diseases. The clinical outcome determinism of H. pylori infection is most likely not driven by gastric inflammation but rather tends to mainly influenced by bacterial virulence factors.
Collapse
Affiliation(s)
- Julie Cremniter
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), Université de Poitiers, Poitiers, France.,Department of Bacteriology, Poitiers University Hospital, Poitiers, France
| | - Charles Bodet
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), Université de Poitiers, Poitiers, France
| | - David Tougeron
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), Université de Poitiers, Poitiers, France.,Department of Gastroenterology, Poitiers University Hospital, Poitiers, France
| | - Xavier Dray
- Department of Gastroenterology, Sorbonne Paris Cité Paris 7 University, APHP Lariboisière Hospital, Paris, France
| | - Joëlle Guilhot
- Centre d'Investigation Clinique1402 INSERM, Poitiers University Hospital, Poitiers, France
| | - Jean-François Jégou
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), Université de Poitiers, Poitiers, France
| | - Franck Morel
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), Université de Poitiers, Poitiers, France
| | - Jean-Claude Lecron
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), Université de Poitiers, Poitiers, France.,Department of Inflammation and Immunology, Poitiers University Hospital, Poitiers, France
| | - Christine Silvain
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), Université de Poitiers, Poitiers, France.,Department of Gastroenterology, Poitiers University Hospital, Poitiers, France
| | - Christophe Burucoa
- Laboratoire Inflammation, Tissus Epithéliaux et Cytokines (LITEC), Université de Poitiers, Poitiers, France.,Department of Bacteriology, Poitiers University Hospital, Poitiers, France
| |
Collapse
|
15
|
Mejías-Luque R, Gerhard M. Immune Evasion Strategies and Persistence of Helicobacter pylori. Curr Top Microbiol Immunol 2017; 400:53-71. [PMID: 28124149 DOI: 10.1007/978-3-319-50520-6_3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helicobacter pylori infection is commonly acquired during childhood, can persist lifelong if not treated, and can cause different gastric pathologies, including chronic gastritis, peptic ulcer disease, and eventually gastric cancer. H. pylori has developed a number of strategies in order to cope with the hostile conditions found in the human stomach as well as successful mechanisms to evade the strong innate and adaptive immune responses elicited upon infection. Thus, by manipulating innate immune receptors and related signaling pathways, inducing tolerogenic dendritic cells and inhibiting effector T cell responses, H. pylori ensures low recognition by the host immune system as well as its persistence in the gastric epithelium. Bacterial virulence factors such as cytotoxin-associated gene A, vacuolating cytotoxin A, or gamma-glutamyltranspeptidase have been extensively studied in the context of bacterial immune escape and persistence. Further, the bacterium possesses other factors that contribute to immune evasion. In this chapter, we discuss in detail the main evasion and persistence strategies evolved by the bacterium as well as the specific bacterial virulence factors involved.
Collapse
Affiliation(s)
- Raquel Mejías-Luque
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany. .,German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| | - Markus Gerhard
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany.,German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| |
Collapse
|
16
|
β-Defensins in the Fight against Helicobacter pylori. Molecules 2017; 22:molecules22030424. [PMID: 28272373 PMCID: PMC6155297 DOI: 10.3390/molecules22030424] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/04/2017] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) play a pivotal role in the innate immune responses to Helicobacter pylori (Hp) in humans. β-Defensins, a class of cationic arginine-rich AMPs, are small peptides secreted by immune cells and epithelial cells that exert antimicrobial activity against a broad spectrum of microorganisms, including Gram-positive and Gram-negative bacteria and fungi. During Hp infections, AMP expression is able to eradicate the bacteria, thereby preventing Hp infections in gastrointestinal tract. It is likely that gastric β-defensins expression is increased during Hp infection. The aim of this review is to focus on increased knowledge of the role of β-defensins in response to Hp infection. We also briefly discuss the potential use of AMPs, either alone or in combination with conventional antibiotics, for the treatment of Hp infection.
Collapse
|
17
|
Moyat M, Bouzourene H, Ouyang W, Iovanna J, Renauld JC, Velin D. IL-22-induced antimicrobial peptides are key determinants of mucosal vaccine-induced protection against H. pylori in mice. Mucosal Immunol 2017; 10:271-281. [PMID: 27143303 DOI: 10.1038/mi.2016.38] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 03/16/2016] [Indexed: 02/06/2023]
Abstract
Despite the recent description of the mucosal vaccine-induced reduction of Helicobacter pylori natural infection in a phase 3 clinical trial, the absence of immune correlates of protection slows the final development of the vaccine. In this study, we evaluated the role of interleukin (IL)-22 in mucosal vaccine-induced protection. Gastric IL-22 levels were increased in mice intranasally immunized with urease+cholera toxin and challenged with H. felis, as compared with controls. Flow cytometry analysis showed that a peak of CD4+IL-22+IL-17+ T cells infiltrating the gastric mucosa occurred in immunized mice in contrast to control mice. The inhibition of the IL-22 biological activity prevented the vaccine-induced reduction of H. pylori infection. Remarkably, anti-microbial peptides (AMPs) extracted from the stomachs of vaccinated mice, but not from the stomachs of non-immunized or immunized mice, injected with anti-IL-22 antibodies efficiently killed H. pylori in vitro. Finally, H. pylori infection in vaccinated RegIIIβ-deficient mice was not reduced as efficiently as in wild-type mice. These results demonstrate that IL-22 has a critical role in vaccine-induced protection, by promoting the expression of AMPs, such as RegIIIβ, capable of killing Helicobacter. Therefore, it can be concluded that urease-specific memory Th17/Th22 cells could constitute immune correlates of vaccine protection in humans.
Collapse
Affiliation(s)
- M Moyat
- Service of Gastroenterology and Hepatology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - H Bouzourene
- UNISciences, University of Lausanne, UniLabs, Lausanne, Switzerland
| | - W Ouyang
- Department of Immunology, Genentech, South San Francisco, California, USA
| | - J Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - J-C Renauld
- Ludwig Institute for Cancer Research, Brussels Branch, Brussels, Belgium
| | - D Velin
- Service of Gastroenterology and Hepatology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
18
|
Donnarumma G, Paoletti I, Fusco A, Perfetto B, Buommino E, de Gregorio V, Baroni A. β-Defensins: Work in Progress. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 901:59-76. [DOI: 10.1007/5584_2015_5016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Muhammad JS, Zaidi SF, Zhou Y, Sakurai H, Sugiyama T. Novel epidermal growth factor receptor pathway mediates release of human β-defensin 3 fromHelicobacter pylori-infected gastric epithelial cells. Pathog Dis 2016; 74:ftv128. [DOI: 10.1093/femspd/ftv128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2015] [Indexed: 12/11/2022] Open
|
20
|
Romero R, Chaemsaithong P, Korzeniewski SJ, Tarca AL, Bhatti G, Xu Z, Kusanovic JP, Dong Z, Docheva N, Martinez-Varea A, Yoon BH, Hassan SS, Chaiworapongsa T, Yeo L. Clinical chorioamnionitis at term II: the intra-amniotic inflammatory response. J Perinat Med 2016; 44:5-22. [PMID: 25938217 PMCID: PMC5891100 DOI: 10.1515/jpm-2015-0045] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/26/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Recent studies indicate that clinical chorioamnionitis is a heterogeneous condition and only approximately one-half of the patients have bacteria in the amniotic cavity, which is often associated with intra-amniotic inflammation. The objective of this study is to characterize the nature of the inflammatory response within the amniotic cavity in patients with clinical chorioamnionitis at term according to the presence or absence of 1) bacteria in the amniotic cavity and 2) intra-amniotic inflammation. MATERIALS AND METHODS A retrospective cross-sectional case-control study was conducted to examine cytokine and chemokine concentrations in the amniotic fluid (AF). Cases consisted of women with clinical chorioamnionitis at term (n=45). Controls were women with uncomplicated pregnancies at term who did not have intra-amniotic inflammation and were in labor (n=24). Women with clinical chorioamnionitis were classified according to the results of AF cultures, broad-range polymerase chain reaction coupled with electrospray ionization mass spectrometry, and AF concentration of interleukin-6 (IL-6) into those: 1) without intra-amniotic inflammation, 2) with microbial-associated intra-amniotic inflammation, and 3) with intra-amniotic inflammation without detectable bacteria. The AF concentrations of 29 cytokines/chemokines were determined using sensitive and specific V-PLEX immunoassays. RESULTS 1) The AF concentrations of pro- and anti-inflammatory cytokines/chemokines such as interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), interleukin-4 (IL-4), macrophage inflammatory protein-1 beta (MIP-1β), and interleukin-8 (IL-8) (except Eotaxin-3) were significantly higher in women with clinical chorioamnionitis at term than in controls (term labor without intra-amniotic inflammation); 2) patients with microbial-associated intra-amniotic inflammation, and those with intra-amniotic inflammation without detectable bacteria, had a dramatic differential expression of cytokines and chemokines in AF compared to patients with spontaneous labor without intra-amniotic inflammation. However, no difference could be detected in the pattern of the intra-amniotic inflammatory response between patients with intra-amniotic inflammation with and without detectable bacteria; and 3) in patients with clinical chorioamnionitis at term but without intra-amniotic inflammation, the behavior of cytokines and chemokines in the AF was similar to those in spontaneous labor at term. CONCLUSIONS Patients with clinical chorioamnionitis who had microbial-associated intra-amniotic inflammation or intra-amniotic inflammation without detectable bacteria had a dramatic upregulation of the intra-amniotic inflammatory response assessed by amniotic fluid concentrations of cytokines. A subset of patients with term clinical chorioamnionitis does not have intra-amniotic infection/inflammation, as demonstrated by elevated AF concentrations of inflammation-related proteins, when compared to women in term labor with uncomplicated pregnancies, suggesting over-diagnosis. These observations constitute the first characterization of the cytokine/chemokine network in the amniotic cavity of patients with clinical chorioamnionitis at term.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Department of Molecular Obstetrics and Genetics, Wayne State University, Detroit, MI, USA
| | - Piya Chaemsaithong
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Steven J. Korzeniewski
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Adi L. Tarca
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Gaurav Bhatti
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhonghui Xu
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Juan P. Kusanovic
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Center for Research and Innovation in Maternal-Fetal Medicine (CIMAF), Sótero del Río Hospital, Santiago, Chile
- Department of Obstetrics and Gynecology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Zhong Dong
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nikolina Docheva
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Alicia Martinez-Varea
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bo Hyun Yoon
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Sonia S. Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lami Yeo
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
21
|
Oyinloye BE, Adenowo AF, Kappo AP. Reactive oxygen species, apoptosis, antimicrobial peptides and human inflammatory diseases. Pharmaceuticals (Basel) 2015; 8:151-75. [PMID: 25850012 PMCID: PMC4491653 DOI: 10.3390/ph8020151] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/25/2015] [Accepted: 03/25/2015] [Indexed: 12/18/2022] Open
Abstract
Excessive free radical generation, especially reactive oxygen species (ROS) leading to oxidative stress in the biological system, has been implicated in the pathogenesis and pathological conditions associated with diverse human inflammatory diseases (HIDs). Although inflammation which is considered advantageous is a defensive mechanism in response to xenobiotics and foreign pathogen; as a result of cellular damage arising from oxidative stress, if uncontrolled, it may degenerate to chronic inflammation when the ROS levels exceed the antioxidant capacity. Therefore, in the normal resolution of inflammatory reactions, apoptosis is acknowledged to play a crucial role, while on the other hand, dysregulation in the induction of apoptosis by enhanced ROS production could also result in excessive apoptosis identified in the pathogenesis of HIDs. Apparently, a careful balance must be maintained in this complex environment. Antimicrobial peptides (AMPs) have been proposed in this review as an excellent candidate capable of playing prominent roles in maintaining this balance. Consequently, in novel drug design for the treatment and management of HIDs, AMPs are promising candidates owing to their size and multidimensional properties as well as their wide spectrum of activities and indications of reduced rate of resistance.
Collapse
Affiliation(s)
- Babatunji Emmanuel Oyinloye
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
- Department of Biochemistry, College of Sciences, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria.
| | - Abiola Fatimah Adenowo
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| | - Abidemi Paul Kappo
- Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa.
| |
Collapse
|
22
|
Complexity of antimicrobial peptide regulation during pathogen-host interactions. Int J Antimicrob Agents 2014; 45:447-54. [PMID: 25532742 DOI: 10.1016/j.ijantimicag.2014.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/10/2014] [Accepted: 11/07/2014] [Indexed: 12/16/2022]
Abstract
Antimicrobial peptides (AMPs) are a key component of the immune system and are expressed by a large variety of organisms. AMPs are capable of eliminating a broad range of micro-organisms, illustrated by murine models where lack of AMP expression resulted in enhanced susceptibility to infection. Despite the importance of AMPs in immune defences, it is not clear whether a change in AMP expression is pathogen-specific or reflects a general response to groups of pathogens. Furthermore, it is unclear how the evoked change in AMP expression affects the host. To fully exploit the therapeutic potential of AMPs - by direct application of peptides or by using AMP-inducers - it is crucial to gain an insight into the complexity involved in pathogen-mediated regulation of AMP expression. This review summarises current knowledge on how AMP expression is affected by pathogens. In addition, the relevance and specificity of these changes in AMPs during infection will be discussed.
Collapse
|
23
|
Heimlich DR, Harrison A, Mason KM. Host Antimicrobial Peptides in Bacterial Homeostasis and Pathogenesis of Disease. Antibiotics (Basel) 2014; 3:645-76. [PMID: 26029470 PMCID: PMC4448142 DOI: 10.3390/antibiotics3040645] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 01/10/2023] Open
Abstract
Innate immune responses function as a first line of host defense against the development of bacterial infection, and in some cases to preserve the sterility of privileged sites in the human host. Bacteria that enter these sites must counter host responses for colonization. From the host's perspective, the innate immune system works expeditiously to minimize the bacterial threat before colonization and subsequent dysbiosis. The multifactorial nature of disease further challenges predictions of how each independent variable influences bacterial pathogenesis. From bacterial colonization to infection and through disease, the microenvironments of the host are in constant flux as bacterial and host factors contribute to changes at the host-pathogen interface, with the host attempting to eradicate bacteria and the bacteria fighting to maintain residency. A key component of this innate host response towards bacterial infection is the production of antimicrobial peptides (AMPs). As an early component of the host response, AMPs modulate bacterial load and prevent establishment of infection. Under quiescent conditions, some AMPs are constitutively expressed by the epithelium. Bacterial infection can subsequently induce production of other AMPs in an effort to maintain sterility, or to restrict colonization. As demonstrated in various studies, the absence of a single AMP can influence pathogenesis, highlighting the importance of AMP concentration in maintaining homeostasis. Yet, AMPs can increase bacterial virulence through the co-opting of the peptides or alteration of bacterial virulence gene expression. Further, bacterial factors used to subvert AMPs can modify host microenvironments and alter colonization of the residential flora that principally maintain homeostasis. Thus, the dynamic interplay between host defense peptides and bacterial factors produced to quell peptide activity play a critical role in the progression and outcome of disease.
Collapse
Affiliation(s)
- Derek R. Heimlich
- The Research Institute at Nationwide Children’s Center for Microbial Pathogenesis, Columbus, OH 43205, USA; E-Mails: (D.R.H.); (A.H.)
| | - Alistair Harrison
- The Research Institute at Nationwide Children’s Center for Microbial Pathogenesis, Columbus, OH 43205, USA; E-Mails: (D.R.H.); (A.H.)
| | - Kevin M. Mason
- The Research Institute at Nationwide Children’s Center for Microbial Pathogenesis, Columbus, OH 43205, USA; E-Mails: (D.R.H.); (A.H.)
- The Ohio State University College of Medicine, Department of Pediatrics, Columbus, OH 43205, USA
| |
Collapse
|
24
|
Kim KH, Lee J, Han JH, Myung SC. Beta-Defensin 124 Is Required for Efficient Innate Immune Responses in Prostate Epithelial RWPE-1 Cells. Korean J Urol 2014; 55:417-25. [PMID: 24955228 PMCID: PMC4064052 DOI: 10.4111/kju.2014.55.6.417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/09/2014] [Indexed: 11/18/2022] Open
Abstract
Purpose The present study aimed to determine the role played by β-defensin 124 (DEFB124) in the innate immunity of prostate epithelial RWPE-1 cells during bacterial infection. Materials and Methods The expression of DEFB124 was examined by quantitative real-time polymerase chain reaction (PCR), Western blotting, and immunocytochemistry. Enzyme-linked immunosorbent assays and quantitative real-time PCR were performed to determine the production of cytokines and chemokines. Western blotting and chromatin immunoprecipitation studies were performed to assess the interaction between DEFB124 and nuclear factor-kappa B (NF-κB) in peptidoglycan (PGN)-stimulated RWPE-1 cells. By chemotaxis assay, we assessed the effect of DEFB124 on the migration of monocytes. Results Exposure to PGN induced DEFB124 upregulation and NF-κB activation through IκBα phosphorylation and IκBα degradation. Bay11-7082, an NF-κB inhibitor, blocked PGN-induced DEFB124 production. Also, NF-κB was shown to be a direct regulator and to directly bind to the -3.14 kb site of the DEFB124 promoter in PGN-treated human prostate epithelial RWPE-1 cells. When DEFB124 was overexpressed in RWPE-1 cells, interestingly, the production of cytokines (interleukin [IL] 6 and IL-12) and chemokines (CCL5, CCL22, and CXCL8) was significantly increased. These DEFB124-upregulated RWPE-1 cells markedly induced chemotactic activity for THP-1 monocytes. Conclusions Taken together, these results provide strong evidence for the first time that increased DEFB124 expression via NF-κB activation in PGN-exposed RWPE-1 cells enhances the production of cytokines and chemokines, which may contribute to an efficient innate immune defense.
Collapse
Affiliation(s)
- Kyeoung-Hwa Kim
- Research Institute for Translational System Biomics, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jaehyouk Lee
- Research Institute for Translational System Biomics, Chung-Ang University College of Medicine, Seoul, Korea
| | - Jun Hyun Han
- Department of Urology, Hallym University Dontan Sacred Heart Hospital, Hwaseong, Korea
| | - Soon Chul Myung
- Research Institute for Translational System Biomics, Chung-Ang University College of Medicine, Seoul, Korea. ; Department of Urology, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
25
|
Chemokines and antimicrobial peptides have a cag-dependent early response to Helicobacter pylori infection in primary human gastric epithelial cells. Infect Immun 2014; 82:2881-9. [PMID: 24778119 DOI: 10.1128/iai.01517-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Helicobacter pylori infection systematically causes chronic gastric inflammation that can persist asymptomatically or evolve toward more severe gastroduodenal pathologies, such as ulcer, mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric cancer. The cag pathogenicity island (cag PAI) of H. pylori allows translocation of the virulence protein CagA and fragments of peptidoglycan into host cells, thereby inducing production of chemokines, cytokines, and antimicrobial peptides. In order to characterize the inflammatory response to H. pylori, a new experimental protocol for isolating and culturing primary human gastric epithelial cells was established using pieces of stomach from patients who had undergone sleeve gastrectomy. Isolated cells expressed markers indicating that they were mucin-secreting epithelial cells. Challenge of primary epithelial cells with H. pylori B128 underscored early dose-dependent induction of expression of mRNAs of the inflammatory mediators CXCL1 to -3, CXCL5, CXCL8, CCL20, BD2, and tumor necrosis factor alpha (TNF-α). In AGS cells, significant expression of only CXCL5 and CXCL8 was observed following infection, suggesting that these cells were less reactive than primary epithelial cells. Infection of both cellular models with H. pylori B128ΔcagM, a cag PAI mutant, resulted in weak inflammatory-mediator mRNA induction. At 24 h after infection of primary epithelial cells with H. pylori, inflammatory-mediator production was largely due to cag PAI substrate-independent virulence factors. Thus, H. pylori cag PAI substrate appears to be involved in eliciting an epithelial response during the early phases of infection. Afterwards, other virulence factors of the bacterium take over in development of the inflammatory response. Using a relevant cellular model, this study provides new information on the modulation of inflammation during H. pylori infection.
Collapse
|
26
|
Ayala G, Escobedo-Hinojosa WI, Cruz-Herrera CFDL, Romero I. Exploring alternative treatments for Helicobacter pylori infection. World J Gastroenterol 2014; 20:1450-1469. [PMID: 24587621 PMCID: PMC3925854 DOI: 10.3748/wjg.v20.i6.1450] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 12/21/2013] [Accepted: 01/05/2014] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) is a successful pathogen that can persist in the stomach of an infected person for their entire life. It provokes chronic gastric inflammation that leads to the development of serious gastric diseases such as peptic ulcers, gastric cancer and Mucosa associated lymphoid tissue lymphoma. It is known that these ailments can be avoided if the infection by the bacteria can be prevented or eradicated. Currently, numerous antibiotic-based therapies are available. However, these therapies have several inherent problems, including the appearance of resistance to the antibiotics used and associated adverse effects, the risk of re-infection and the high cost of antibiotic therapy. The delay in developing a vaccine to prevent or eradicate the infection has furthered research into new therapeutic approaches. This review summarises the most relevant recent studies on vaccine development and new treatments using natural resources such as plants, probiotics and nutraceuticals. In addition, novel alternatives based on microorganisms, peptides, polysaccharides, and intragastric violet light irradiation are presented. Alternative therapies have not been effective in eradicating the bacteria but have been shown to maintain low bacterial levels. Nevertheless, some of them are useful in preventing the adverse effects of antibiotics, modulating the immune response, gastroprotection, and the general promotion of health. Therefore, those agents can be used as adjuvants of allopathic anti-H. pylori eradication therapy.
Collapse
|
27
|
The induction expression of human β-defensins in gingival epithelial cells and fibroblasts. Arch Oral Biol 2013; 58:1415-21. [DOI: 10.1016/j.archoralbio.2013.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 04/18/2013] [Accepted: 04/26/2013] [Indexed: 01/09/2023]
|
28
|
Nuding S, Gersemann M, Hosaka Y, Konietzny S, Schaefer C, Beisner J, Schroeder BO, Ostaff MJ, Saigenji K, Ott G, Schaller M, Stange EF, Wehkamp J. Gastric antimicrobial peptides fail to eradicate Helicobacter pylori infection due to selective induction and resistance. PLoS One 2013; 8:e73867. [PMID: 24040100 PMCID: PMC3770654 DOI: 10.1371/journal.pone.0073867] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 07/31/2013] [Indexed: 12/16/2022] Open
Abstract
Background Although antimicrobial peptides protect mucus and mucosa from bacteria, Helicobacter pylori is able to colonize the gastric mucus. To clarify in which extend Helicobacter escapes the antimicrobial defense, we systematically assessed susceptibility and expression levels of different antimicrobial host factors in gastric mucosa with and without H. pylori infection. Materials and Methods We investigated the expression levels of HBD1 (gene name DEFB1), HBD2 (DEFB4A), HBD3 (DEFB103A), HBD4 (DEFB104A), LL37 (CAMP) and elafin (PI3) by real time PCR in gastric biopsy samples in a total of 20 controls versus 12 patients colonized with H. pylori. Immunostaining was performed for HBD2 and HBD3. We assessed antimicrobial susceptibility by flow cytometry, growth on blood agar, radial diffusion assay and electron microscopy. Results H. pylori infection was associated with increased gastric levels of the inducible defensin HBD2 and of the antiprotease elafin, whereas the expression levels of the constitutive defensin HBD1, inducible HBD3 and LL37 remained unchanged. HBD4 was not expressed in significant levels in gastric mucosa. H. pylori strains were resistant to the defensins HBD1 as well as to elafin, and strain specific minimally susceptible to HBD2, whereas HBD3 and LL37 killed all H. pylori strains effectively. We demonstrated the binding of HBD2 and LL37 on the surface of H. pylori cells. Comparing the antibacterial activity of extracts from H. pylori negative and positive biopsies, we found only a minimal killing against H. pylori that was not increased by the induction of HBD2 in H. pylori positive samples. Conclusion These data support the hypothesis that gastric H. pylori evades the host defense shield to allow colonization.
Collapse
Affiliation(s)
- Sabine Nuding
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
- * E-mail:
| | - Michael Gersemann
- Department of Internal Medicine I, Robert-Bosch Hospital, Stuttgart, Germany
| | - Yoshio Hosaka
- Department of Internal Medicine, Isuzu Hospital, Tokyo, Japan
| | - Sabrina Konietzny
- Department of Internal Medicine I, Robert-Bosch Hospital, Stuttgart, Germany
| | - Christian Schaefer
- Department of Internal Medicine I, Robert-Bosch Hospital, Stuttgart, Germany
| | - Julia Beisner
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
| | - Bjoern O. Schroeder
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
| | - Maureen J. Ostaff
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
| | - Katunori Saigenji
- Department of Gastroenterology, Kitasato University, Kanagawa, Japan
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch Hospital, Stuttgart, Germany
| | - Martin Schaller
- Department of Dermatology, Eberhard Karls University, Tübingen, Tübingen, Germany
| | - Eduard F. Stange
- Department of Internal Medicine I, Robert-Bosch Hospital, Stuttgart, Germany
| | - Jan Wehkamp
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
- Department of Internal Medicine I, Robert-Bosch Hospital, Stuttgart, Germany
| |
Collapse
|
29
|
Patel SR, Smith K, Letley DP, Cook KW, Memon AA, Ingram RJM, Staples E, Backert S, Zaitoun AM, Atherton JC, Robinson K. Helicobacter pylori downregulates expression of human β-defensin 1 in the gastric mucosa in a type IV secretion-dependent fashion. Cell Microbiol 2013; 15:2080-92. [PMID: 23870035 PMCID: PMC4028989 DOI: 10.1111/cmi.12174] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 05/23/2013] [Accepted: 07/15/2013] [Indexed: 02/06/2023]
Abstract
Helicobacter pylori establishes a chronic lifelong infection in the human gastric mucosa, which may lead to peptic ulcer disease or gastric adenocarcinoma. The human beta-defensins (hβDs) are antimicrobial peptides, hβD1 being constitutively expressed in the human stomach. We hypothesized that H. pylori may persist, in part, by downregulating gastric hβD1 expression. We measured hβD1 and hβD2 expression in vivo in relation to the presence, density and severity of H. pylori infection, investigated differential effects of H. pylori virulence factors, and studied underlying signalling mechanisms in vitro. Significantly lower hβD1 and higher hβD2 mRNA and protein concentrations were present in gastric biopsies from infected patients. Those patients with higher-level bacterial colonization and inflammation had significantly lower hβD1 expression, but there were no differences in hβD2. H. pylori infection of human gastric epithelial cell lines also downregulated hβD1. Using wild-type strains and isogenic mutants, we showed that a functionalcag pathogenicity island-encoded type IV secretion system induced this downregulation. Treatment with chemical inhibitors or siRNA revealed that H. pylori usurped NF-κB signalling to modulate hβD1 expression. These data indicate that H. pylori downregulates hβD1 expression via NF-κB signalling, and suggest that this may promote bacterial survival and persistence in the gastric niche.
Collapse
Affiliation(s)
- S R Patel
- Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham, NG7 2RD, UK; Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gollwitzer H, Dombrowski Y, Prodinger PM, Peric M, Summer B, Hapfelmeier A, Saldamli B, Pankow F, von Eisenhart-Rothe R, Imhoff AB, Schauber J, Thomas P, Burgkart R, Banke IJ. Antimicrobial peptides and proinflammatory cytokines in periprosthetic joint infection. J Bone Joint Surg Am 2013; 95:644-51. [PMID: 23553300 DOI: 10.2106/jbjs.l.00205] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Differentiation between septic and aseptic loosening of joint replacements is essential for successful revision surgery, but reliable markers for the diagnosis of low-grade infection are lacking. The present study was performed to assess intra-articular and systemic levels of antimicrobial peptides and proinflammatory cytokines as diagnostic markers for periprosthetic joint infection. METHODS Fifteen consecutive patients with staphylococcal periprosthetic joint infections and twenty control patients with aseptic loosening of total hip and knee replacements were included in this prospective, single-center, controlled clinical trial. Expression of the antimicrobial peptides human β-defensin-2 (HBD-2), human β-defensin-3 (HBD-3), and cathelicidin LL-37 (LL-37) was determined by ELISA (enzyme-linked immunosorbent assay) in serum and joint aspirates. Proinflammatory cytokines were assessed in serum and joint aspirates with use of cytometric bead arrays. C-reactive protein in serum, microbiology, and histopathology of periprosthetic tissue served as the "gold standard" for the diagnosis of infection. RESULTS The antimicrobial peptides HBD-3 and LL-37 were significantly elevated in joint aspirates from patients with periprosthetic joint infection compared with patients with aseptic loosening, and the area under the curve (AUC) in a receiver operating characteristic curve analysis was equal to 0.745 and 0.875, respectively. Additionally, significant local increases in the proinflammatory cytokines interleukin (IL)-1β, IL-4, IL-6, IL-17A, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α were observed to be associated with infection. Logistic regression analysis indicated that the combination of an antimicrobial peptide with another synovial fluid biomarker improved diagnostic accuracy; the AUC value was 0.916 for LL-37 and IL-4, 0.895 for LL-37 and IL-6, 0.972 for HBD-3 and IL-4, and 0.849 for HBD-3 and IL-6. In contrast, the only antimicrobial peptides and cytokines in serum that showed a significant systemic increase in association with infection were HBD-2, IL-4, and IL-6 (all of which had an AUC value of <0.75). CONCLUSIONS The present study showed promising results for the use of antimicrobial peptides and other biomarkers in synovial fluid for the diagnosis of periprosthetic joint infection, and analysis of the levels in synovial fluid was more accurate than analysis of serum.
Collapse
Affiliation(s)
- Hans Gollwitzer
- Clinic of Orthopedics and Sports Orthopedics, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straβe 22, 81675 München, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bauer B, Wex T, Kuester D, Meyer T, Malfertheiner P. Differential expression of human beta defensin 2 and 3 in gastric mucosa of Helicobacter pylori-infected individuals. Helicobacter 2013; 18:6-12. [PMID: 23067102 DOI: 10.1111/hel.12000] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Antimicrobial peptides are key players of initial innate immune responses to human pathogens. Two major representatives, the human beta defensin 2 and 3 (hBD2 and hBD3), are both known to be regulated by, and to affect viability of, Helicobacter pylori. Previously, it was demonstrated in vitro that H. pylori actively abrogates hBD3 expression during prolonged infections. Here, we comprehensively assessed hBD2 and hBD3 expression ex vivo in the gastric mucosa of healthy individuals. MATERIALS AND METHODS Twenty volunteers (H. pylori positive and H. pylori negative: n = 10) were enrolled. Helicobacter pylori-positive subjects underwent eradication therapy and repeated the protocol. Expression of both defensins was assessed by quantitative RT-PCR and ELISA, and correlated with histopathologic degree of gastritis. RESULTS hBD2 and hBD3 were found to be ubiquitously expressed in all three groups. In general, hBD2 levels were elevated in relation to H. pylori infection (up to 40-fold). This upregulation correlated with degree of gastritis in corpus and antrum. In contrast, hBD3 protein levels were significantly decreased, while corresponding mRNA amounts remained unchanged. Eradication therapy led to normalization of mucosal hBD2 expression, while hBD3 expression demonstrated high interindividual variations among individuals. CONCLUSIONS Both defensins are ubiquitously but differentially expressed in gastric mucosa in relation to H. pylori infection. Ex vivo data support the notion that H. pylori infection is associated with reduced hBD3 expression in chronic active gastritis.
Collapse
Affiliation(s)
- Bianca Bauer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, 10117, Berlin, Germany
| | | | | | | | | |
Collapse
|
32
|
de Oca EPM. Antimicrobial peptide elicitors: New hope for the post-antibiotic era. Innate Immun 2012; 19:227-41. [DOI: 10.1177/1753425912460708] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial peptides or host defense peptides are fundamental components of human innate immunity. Recent and growing evidence suggests they have a role in a broad range of diseases, including cancer, allergies and susceptibility to infection, including HIV/AIDS. Antimicrobial peptide elicitors (APEs) are physical, biological or chemical agents that boost human antimicrobial peptide expression. The current knowledge of APEs and their potential use in the treatment of human infectious diseases are reviewed, and a classification system for APEs is proposed. The efficient use of APEs in clinical practice could mark the beginning of the urgently needed post-antibiotic era, but further trials assessing their efficacy and safety are required.
Collapse
Affiliation(s)
- Ernesto Prado Montes de Oca
- Molecular Biology Laboratory, Biosecurity Area, CIATEJ – National Council of Science and Technology, Guadalajara, Jalisco, Mexico
- In silico Laboratory, Pharmaceutical and Medical Biotechnology Unit, CIATEJ – National Council of Science and Technology, Guadalajara, Jalisco, Mexico
| |
Collapse
|
33
|
Edwards LA, O'Neill C, Furman MA, Hicks S, Torrente F, Pérez-Machado M, Wellington EM, Phillips AD, Murch SH. Enterotoxin-producing staphylococci cause intestinal inflammation by a combination of direct epithelial cytopathy and superantigen-mediated T-cell activation. Inflamm Bowel Dis 2012; 18:624-40. [PMID: 21887731 DOI: 10.1002/ibd.21852] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 07/13/2011] [Indexed: 12/31/2022]
Abstract
BACKGROUND Enterotoxin-producing Staphylococcus aureus may cause severe inflammatory intestinal disease, particularly in infants or immunodeficient or elderly patients. They are also recognized to be associated with sudden infant death syndrome. Little is known, however, about mucosal responses to staphylococci. METHODS The mucosal lesion in three infants with staphylococcal enterocolitis was assessed by immunohistochemistry and electron microscopy. The organisms underwent extensive molecular analysis. Their toxins were assessed for capacity to induce T-cell activation and host mucosal responses examined by in vitro organ culture. Epithelial responses were studied by coculture with HEp-2 and Caco-2 cells. RESULTS Intestinal biopsies from the patients showed marked epithelial damage with mucosal inflammation. The three staphylococci, representing two distinct clones, were methicillin-sensitive, producing SEG/I enterotoxins and Rho-inactivating EDIN toxins. Their enterotoxins potently activated T cells, but only whole organisms could induce in vitro enteropathy, characterized by remarkable epithelial desquamation uninhibited by tacrolimus. EDIN-producing staphylococci, but not their supernatants, induced striking cytopathy in HEp-2 epithelial cells but not in Caco-2 cells. Although HEp-2 and Caco-2 cells produced similar IL-8, CCL20, and cathelicidin LL37 responses upon bacterial exposure, only Caco-2 cells expressed mRNA for the β-defensins HBD2 and HBD3, while HEp-2 cells were unable to do so. CONCLUSIONS Staphylococci induce enterocolitis by a combination of direct enterocyte cytopathy mediated by EDIN toxins, disrupting the epithelial barrier, and enterotoxin superantigen-induced mucosal T-cell activation. Gut epithelial production of β-defensins may contribute to host defense against invasive staphylococcal disease.
Collapse
Affiliation(s)
- Lindsey A Edwards
- Centre for Paediatric Gastroenterology Royal Free and University College Medical School, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zanin V, Segat L, Bianco AM, Padovan L, Tavares NDAC, Crovella S. DEFB1 gene 5' untranslated region (UTR) polymorphisms in inflammatory bowel diseases. Clinics (Sao Paulo) 2012; 67:395-8. [PMID: 22522766 PMCID: PMC3317250 DOI: 10.6061/clinics/2012(04)14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Affiliation(s)
- Valentina Zanin
- Institute for Maternal and Child Health-IRCCS Burlo Garofolo, University of Trieste, Trieste, Italy
| | | | | | | | | | | |
Collapse
|
35
|
Silva ON, Mulder KCL, Barbosa AEAD, Otero-Gonzalez AJ, Lopez-Abarrategui C, Rezende TMB, Dias SC, Franco OL. Exploring the pharmacological potential of promiscuous host-defense peptides: from natural screenings to biotechnological applications. Front Microbiol 2011; 2:232. [PMID: 22125552 PMCID: PMC3222093 DOI: 10.3389/fmicb.2011.00232] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 11/01/2011] [Indexed: 02/02/2023] Open
Abstract
In the last few years, the number of bacteria with enhanced resistance to conventional antibiotics has dramatically increased. Most of such bacteria belong to regular microbial flora, becoming a real challenge, especially for immune-depressed patients. Since the treatment is sometimes extremely expensive, and in some circumstances completely inefficient for the most severe cases, researchers are still determined to discover novel compounds. Among them, host-defense peptides (HDPs) have been found as the first natural barrier against microorganisms in nearly all living groups. This molecular class has been gaining attention every day for multiple reasons. For decades, it was believed that these defense peptides had been involved only with the permeation of the lipid bilayer in pathogen membranes, their main target. Currently, it is known that these peptides can bind to numerous targets, as well as lipids including proteins and carbohydrates, from the surface to deep within the cell. Moreover, by using in vivo models, it was shown that HDPs could act both in pathogens and cognate hosts, improving immunological functions as well as acting through multiple pathways to control infections. This review focuses on structural and functional properties of HDP peptides and the additional strategies used to select them. Furthermore, strategies to avoid problems in large-scale manufacture by using molecular and biochemical techniques will also be explored. In summary, this review intends to construct a bridge between academic research and pharmaceutical industry, providing novel insights into the utilization of HDPs against resistant bacterial strains that cause infections in humans.
Collapse
Affiliation(s)
- Osmar N Silva
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Centro de Análises Protômicas e Bioquímicas, Universidade Católica de Brasília Brasília, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Edwards LA, Bajaj-Elliott M, Klein NJ, Murch SH, Phillips AD. Bacterial-epithelial contact is a key determinant of host innate immune responses to enteropathogenic and enteroaggregative Escherichia coli. PLoS One 2011; 6:e27030. [PMID: 22046438 PMCID: PMC3203933 DOI: 10.1371/journal.pone.0027030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/09/2011] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Enteropathogenic (EPEC) and Enteroaggregative (EAEC) E. coli have similar, but distinct clinical symptoms and modes of pathogenesis. Nevertheless when they infect the gastrointestinal tract, it is thought that their flagellin causes IL-8 release leading to neutrophil recruitment and gastroenteritis. However, this may not be the whole story as the effect of bacterial adherence to IEC innate response(s) remains unclear. Therefore, we have characterized which bacterial motifs contribute to the innate epithelial response to EPEC and EAEC, using a range of EPEC and EAEC isogenic mutant strains. METHODOLOGY Caco-2 and HEp-2 cell lines were exposed to prototypical EPEC strain E2348/69 or EAEC strain O42, in addition to a range of isogenic mutant strains. E69 [LPS, non-motile, non-adherent, type three secretion system (TTSS) negative, signalling negative] or O42 [non-motile, non-adherent]. IL-8 and CCL20 protein secretion was measured. Bacterial surface structures were assessed by negative staining Transmission Electron Microscopy. The Fluorescent-actin staining test was carried out to determine bacterial adherence. RESULTS Previous studies have reported a balance between the host pro-inflammatory response and microbial suppression of this response. In our system an overall balance towards the host pro-inflammatory response is seen with the E69 WT and to a greater extent O42 WT, which is in fit with clinical symptoms. On removal of the external EPEC structures flagella, LPS, BFP, EspA and EspC; and EAEC flagella and AAF, the host inflammatory response is reduced. However, removal of E69 lymphostatin increases the host inflammatory response suggesting involvement in the bacterial mediated anti-inflammatory response. CONCLUSION Epithelial responses were due to combinations of bacterial agonists, with host-bacterial contact a key determinant of these innate responses. Host epithelial recognition was offset by the microbe's ability to down-regulate the inflammatory response. Understanding the complexity of this host-microbial balance will contribute to improved vaccine design for infectious gastroenteritis.
Collapse
Affiliation(s)
- Lindsey A Edwards
- Centre for Paediatric Gastroenterology, Royal Free Hospital, London, United Kingdom.
| | | | | | | | | |
Collapse
|
37
|
McCormick TS, Weinberg A. Epithelial cell-derived antimicrobial peptides are multifunctional agents that bridge innate and adaptive immunity. Periodontol 2000 2010; 54:195-206. [PMID: 20712640 DOI: 10.1111/j.1600-0757.2010.00373.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Allison CC, Ferrero RL. Role of virulence factors and host cell signaling in the recognition of Helicobacter pylori and the generation of immune responses. Future Microbiol 2010; 5:1233-55. [PMID: 20722601 DOI: 10.2217/fmb.10.84] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori colonizes a large proportion of the world's population, with infection invariably leading to chronic, lifelong gastritis. While the infection often persists undiagnosed and without causing severe pathology, there are a number of host, bacterial and environmental factors that can influence whether infection provokes a mild inflammatory response or results in significant morbidity. Intriguingly, the most virulent H. pylori strains appear to deliberately induce the epithelial signaling cascades responsible for activating the innate immune system. While the reason for this remains unclear, the resulting adaptive immune responses are largely ineffective in clearing the bacterium once infection has become established and, as a result, inflammation likely causes more damage to the host itself.
Collapse
Affiliation(s)
- Cody C Allison
- Centre for Innate Immunity & Infectious Diseases, Monash Institute of Medical Research, Clayton, Australia.
| | | |
Collapse
|
39
|
Townes CL, Ali A, Robson W, Pickard R, Hall J. Tolerance of bacteriuria after urinary diversion is linked to antimicrobial peptide activity. Urology 2010; 77:509.e1-8. [PMID: 21094991 DOI: 10.1016/j.urology.2010.08.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 07/16/2010] [Accepted: 08/14/2010] [Indexed: 02/06/2023]
Abstract
OBJECTIVES To compare the cationic antimicrobial peptide gene expression profiles and urinary cationic antimicrobial activities of patients after urinary diversion according to their urinary tract infection (UTI) status. Ileal conduit urinary diversion joins the bacterial-tolerant ileal epithelium and intolerant urothelium. After this procedure, one quarter of patients develop repeated symptomatic UTIs. Such development might reflect the altered innate immune mechanisms centered on epithelial expression and urinary activity of cationic antimicrobial peptides, such as defensins. METHODS Ileal and ureteral biopsy specimens from ileal conduit subjects with (n = 18) and without (n = 18) recurrent symptomatic UTIs were assessed for cationic antimicrobial peptide gene expression using quantitative reverse transcriptase polymerase chain reaction. Overnight urine collections were analyzed for antimicrobial activity against a laboratory Escherichia coli strain, and infecting organisms were isolated from individual subjects. RESULTS Overall, the ureteral epithelium showed increased expression of human α-defensin 5 and decreased expression of the human β-defensin 1 after urinary diversion (P < .05). No significant changes were seen for the ileal epithelium. The expression levels of both defensins also did not differ significantly according to UTI status. Urinary cationic activity against infecting bacterial isolates from the individual subjects was significantly greater in those with symptomatic UTI (P < .001), and the activities against the laboratory E. coli strain were similar. CONCLUSIONS The changes in the human β-defensin 1 and human α-defensin 5 expression profiles and the link between symptomatic infection and high urinary antimicrobial activity suggest that innate mechanisms play significant roles in balancing bacterial tolerance and killing after ileal conduit urinary diversion. Future work needs to determine whether these changes can be therapeutically modulated to benefit the patients.
Collapse
Affiliation(s)
- Claire L Townes
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | | | | |
Collapse
|
40
|
Defensin-mRNA expression in the upper gastrointestinal tract is modulated in children with celiac disease and Helicobacter pylori-positive gastritis. J Pediatr Gastroenterol Nutr 2010; 50:596-600. [PMID: 20400909 DOI: 10.1097/mpg.0b013e3181cd26cd] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Defensins are expressed in epithelial cells as cationic peptides with antimicrobial properties. Because of their role as immunologically important effector molecules, their contribution in maintaining a stable microenvironment in the gastrointestinal tract has recently received much attention. The present study was designed to further characterize expression patterns of defensins in diseases of the upper gastrointestinal tract in children, particularly in Helicobacter pylori (Hp)-associated gastritis or celiac disease (CD). PATIENTS AND METHODS Semiquantitative real-time reverse transcriptase-polymerase chain reaction (PCR) was carried out with gene-specific primers for human beta-defensin 1 to 6 (hBD1 to 6) and human alpha-defensin 5 and 6 (hD5 and 6) in mucosal biopsies of children diagnosed as having CD (n = 11; 4.2-16.2 years) or Hp gastritis (n = 18; 3.2-16.7 years). Levels of expression were compared with those of healthy individuals (n = 21; 2.8-14.6 years). Expression levels in Hp-infected specimens were furthermore compared with those with histologic inflammation not associated with Hp infection (n = 30; 3.6-15.7 years). RESULTS Expression of hBD2 was upregulated in the antrum and corpus of patients with Hp gastritis, whereas inflammation without detection of Hp was not associated with any change in defensin gene expression. In patients with CD, expression of hBD2 was upregulated in the antrum, whereas hBD1 and 4 were downregulated in duodenal biopsies. CONCLUSIONS Different pathological conditions of the upper gastrointestinal tract lead to specific modulations of defensin gene expression in children. Especially the pathophysiological role of hBD2 in Hp infection and hBD1 and 4 in CD warrant further attention.
Collapse
|
41
|
McGuckin MA, Eri RD, Das I, Lourie R, Florin TH. ER stress and the unfolded protein response in intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 2010; 298:G820-32. [PMID: 20338921 DOI: 10.1152/ajpgi.00063.2010] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Endoplasmic reticulum (ER) stress is a phenomenon that occurs when excessive protein misfolding occurs during biosynthesis. ER stress triggers a series of signaling and transcriptional events known as the unfolded protein response (UPR). The UPR attempts to restore homeostasis in the ER but if unsuccessful can trigger apoptosis in the stressed cells and local inflammation. Intestinal secretory cells are susceptible to ER stress because they produce large amounts of complex proteins for secretion, most of which are involved in mucosal defense. This review focuses on ER stress in intestinal secretory cells and describes how increased protein misfolding could occur in these cells, the process of degradation of misfolded proteins, the major molecular elements of the UPR pathway, and links between the UPR and inflammation. Evidence is reviewed from mouse models and human inflammatory bowel diseases that ties ER stress and activation of the UPR with intestinal inflammation, and possible therapeutic approaches to ameliorate ER stress are discussed.
Collapse
Affiliation(s)
- Michael A McGuckin
- Mucosal Diseases Program, Mater Medical Research Institute, Mater Health Services, South Brisbane, Qld 4029, Australia.
| | | | | | | | | |
Collapse
|
42
|
Zhao W, Dong BR, Teng LH, Ma Y, Huang CQ. Regulation of β-defensin-2 gene expression by lentinan in human pulmonary epithelial cells. FOOD AGR IMMUNOL 2009. [DOI: 10.1080/09540100903045264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
43
|
Paris S, Wolgin M, Kielbassa AM, Pries A, Zakrzewicz A. Gene expression of human beta-defensins in healthy and inflamed human dental pulps. J Endod 2009; 35:520-3. [PMID: 19345797 DOI: 10.1016/j.joen.2008.12.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 12/23/2008] [Accepted: 12/28/2008] [Indexed: 11/25/2022]
Abstract
Human beta-defensins (hBDs) are antimicrobial peptides that play an important role in the innate host defense against bacterial invasion, contribute to promotion of adaptive immune responses, and show chemotactic activities. The aim of this study was to compare the gene expression of hBD-1, -2, -3, and -4 in healthy teeth and teeth with pulpitis. Samples of healthy and inflamed dental pulps were obtained from extracted third molars and during treatment of teeth with pulpitis. Gene expression was assessed by using reverse transcriptase reaction and real-time polymerase chain reaction. HBD-2 and hBD -3 were only weakly expressed in healthy and inflamed pulps. In contrast, the expression of hBD-1 and hBD -4 was significantly increased in inflamed compared with healthy pulps. These results suggest that hBD-1 and hBD-4 might play a role in the pulpal host defense.
Collapse
Affiliation(s)
- Sebastian Paris
- Department of Operative Dentistry and Periodontology, University School of Dental Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | |
Collapse
|
44
|
Defensins are differentially expressed with respect to the anatomic region in the upper gastrointestinal tract of children. J Pediatr Gastroenterol Nutr 2009; 49:139-42. [PMID: 19516187 DOI: 10.1097/mpg.0b013e31818f0a51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Defensins are antimicrobial peptides expressed on various epithelial surfaces. Although they are believed to contribute to intestinal homeostasis, their expression pattern in children is not well characterized. As determined by real-time polymerase chain reaction, amount of human alpha-defensins (hD)-5 and -6 mRNA in duodenal biopsies were significantly higher than in biopsies taken from the gastric mucosa. On the contrary, expression of human beta-defensins (hBD)-1 and -2 mRNA showed a significantly higher expression in the stomach. Expression of hBD3 to 6 was inconsistently detected. These results suggest a distinct role for various defensins in host defense in the upper gastrointestinal tract of children.
Collapse
|
45
|
Dhaliwal W, Kelly P, Bajaj-Elliott M. Differential effects of Staphylococcal enterotoxin B-mediated immune activation on intestinal defensins. Clin Exp Immunol 2009; 156:263-70. [PMID: 19386083 DOI: 10.1111/j.1365-2249.2008.03808.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the small intestine members of both the alpha-defensin (DEFA5 and DEFA6) and beta-defensin (DEFB1 and DEFB2) family contribute to the anti-microbial barrier against infection. The aim of this study was to determine whether Staphylococcal enterotoxin B (SEB)-mediated immune activation and proinflammatory cytokines play a role in the regulation of intestinal defensin expression. Defensin mRNA and peptide secretion was studied after ex vivo tissue culture of duodenal biopsies over 24 h. Immune (T cell and macrophage) activation was induced by SEB, and in separate experiments exogenous proinflammatory cytokines were added individually. Defensin mRNA levels were quantified by reverse transcription-polymerase chain reaction, and peptide release into culture supernatants was quantified by immuno dot blot or enzyme-linked immunosorbent assay. Increasing concentrations of SEB down-regulated DEFA5, DEFA6 and DEFB1 mRNA in a dose-dependent manner but increased DEFB2 simultaneously. The down-regulation of alpha-defensins was reversed by dexamethasone. DEFA5 and DEFB2 peptide secretion levels were altered in parallel with mRNA. Interferon-gamma and interleukin (IL)-1beta exhibited a dose-dependent down-regulation of alpha-defensin mRNA, IL-6 significantly down-regulated only DEFA6; in contrast, tumour necrosis factor-alpha and IL-4 had no significant effect. Immune cell activation and proinflammatory cytokines down-regulated the constitutively expressed DEFA5, DEFA6 and DEFB1 defensins, and up-regulated DEFB2 in intact human intestinal tissue explants in short-term culture. The effect of local immune activation on innate defence may explain the reduced alpha-defensin expression noted in inflammatory T cell-mediated enteropathies.
Collapse
Affiliation(s)
- W Dhaliwal
- Centre for Gastroenterology, Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, London, UK.
| | | | | |
Collapse
|
46
|
Kocsis AK, Kiss ZF, Tiszlavicz L, Tiszlavicz Z, Mándi Y. Potential role of human beta-defensin 1 in Helicobacter pylori-induced gastritis. Scand J Gastroenterol 2009; 44:289-95. [PMID: 18991164 DOI: 10.1080/00365520802530879] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Helicobacter pylori-induced gastric inflammation is dependent on the persistence of the microorganism in the gastric epithelium. Modulation of the host epithelial antimicrobial responses may be a critical determinant in H. pylori-induced gastritis. Human beta-defensins (hBDs) are important components of the host defence at mucosal surfaces. The aim of the present study was to investigate the relevance of three single nucleotide polymorphisms (SNPs) of the human beta defensin-1 (hBD-1) gene in H. pylori-induced gastritis and to assess the mRNA expression of hBD-1 in H. pylori-infected AGS cells. MATERIAL AND METHODS Three SNPs of the beta defensin DEFB1 gene, DEFB1 G-20A (rs11362), DEFB1 C-44G (rs1800972) and DEFB1 G-52A (rs1799946), were genotyped either by Custom TaqMan SNP genotyping assays or by restriction fragment length polymorphism (RFLP) in 150 patients with chronic active gastritis; 100 serologically H. pylori-positive subjects without gastric or duodenal symptoms served as controls. hBD-1 mRNA expression in AGS cells was measured by quantitative reverse transcription-polymerase chain reaction (RT-PCR). RESULTS Significant differences in frequencies of the GA and AA genotypes of G-52A SNPs were observed between patients with chronic active gastritis and healthy controls. The maximum level of hBD-1 mRNA expression in AGS cells was observed at 24 h after infection with H. pylori, this not being dependent on the presence of the cag pathogenicity island (PAI). CONCLUSIONS The results of these genetic and in vitro experiments suggest that not only the inducible, but also the constitutive form of hBD may be important in the pathogenesis of H. pylori-induced gastritis.
Collapse
Affiliation(s)
- Agnes Katalin Kocsis
- Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary
| | | | | | | | | |
Collapse
|
47
|
McGuckin MA, Eri R, Simms LA, Florin THJ, Radford-Smith G. Intestinal barrier dysfunction in inflammatory bowel diseases. Inflamm Bowel Dis 2009; 15:100-13. [PMID: 18623167 DOI: 10.1002/ibd.20539] [Citation(s) in RCA: 432] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The etiology of human inflammatory bowel diseases (IBDs) is believed to involve inappropriate host responses to the complex commensal microbial flora in the gut, although an altered commensal flora is not completely excluded. A multifunctional cellular and secreted barrier separates the microbial flora from host tissues. Altered function of this barrier remains a major largely unexplored pathway to IBD. Although there is evidence of barrier dysfunction in IBD, it remains unclear whether this is a primary contributor to disease or a consequence of mucosal inflammation. Recent evidence from animal models demonstrating that genetic defects restricted to the epithelium can initiate intestinal inflammation in the presence of normal underlying immunity has refocused attention on epithelial dysfunction in IBD. We review the components of the secreted and cellular barrier, their regulation, including interactions with underlying innate and adaptive immunity, evidence from animal models of the barrier's role in preventing intestinal inflammation, and evidence of barrier dysfunction in both Crohn's disease and ulcerative colitis.
Collapse
Affiliation(s)
- Michael A McGuckin
- Mucosal Diseases Program, Mater Medical Research Institute, University of Queensland, Aubigny Place, Mater Health Services, South Brisbane, Queensland, Australia.
| | | | | | | | | |
Collapse
|
48
|
Tanabe H, Sato T, Watari J, Maemoto A, Fujiya M, Kono T, Ashida T, Ayabe T, Kohgo Y. Functional role of metaplastic paneth cell defensins in Helicobacter pylori-infected stomach. Helicobacter 2008; 13:370-9. [PMID: 19250512 DOI: 10.1111/j.1523-5378.2008.00621.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIMS Chronic gastritis is caused by Helicobacter pylori infection, and gastritis is classified as inflammation, atrophy, and intestinal metaplasia. Detailed pathologic studies have shown that H. pylori settles on the surface of gastric mucosa, and that it is eliminated from metaplastic mucosa. However, its mechanism of natural protection is not well known. METHODS Antimicrobial human enteric defensin expression was determined in the RNA and protein levels. Recombinant enteric defensins were produced with a bacterial expression system and their anti-H. pylori activities were assessed by bactericidal assay. RESULTS Human enteric defensin (HD)-5 and HD-6 were detected in Paneth cells, which are observed in the gastric metaplastic mucosa as well as small intestinal epithelia. HD-5 protein was coexpressed with trypsin, which is considered to be an activating enzyme of HD-5. Less H. pylori was observed in the intestinal metaplasia with HD-5 expressing Paneth cells. The recombinant defensins showed killing activity against H. pylori at a low concentration in vitro. CONCLUSIONS The human defensins that are expressed in the metaplastic Paneth cells eliminate H. pylori. Metaplastic change may be a purposive development of the human stomach.
Collapse
Affiliation(s)
- Hiroki Tanabe
- Department of Internal Medicine, Division of Gastroenterology and Haematology/Oncology, Asahikawa Medical College, Asahikawa, Hokkaido, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Modulation of cytokine and β-defensin 2 expressions in human gingival fibroblasts infected with Chlamydia pneumoniae. Int Immunopharmacol 2008; 8:1239-47. [DOI: 10.1016/j.intimp.2008.04.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 04/11/2008] [Accepted: 04/28/2008] [Indexed: 02/05/2023]
|
50
|
Walter J, Loach DM, Alqumber M, Rockel C, Hermann C, Pfitzenmaier M, Tannock GW. D-alanyl ester depletion of teichoic acids in Lactobacillus reuteri 100-23 results in impaired colonization of the mouse gastrointestinal tract. Environ Microbiol 2008; 9:1750-60. [PMID: 17564608 DOI: 10.1111/j.1462-2920.2007.01292.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The dlt operon of Gram-positive bacteria encodes proteins required for the incorporation of D-alanine esters into cell wall-associated teichoic acids (TA). D-alanylation of TA has been shown to be important for acid tolerance, resistance to antimicrobial peptides, adhesion, biofilm formation, and virulence of a variety of pathogenic organisms. The aim of this study was to determine the importance of D-alanylation for colonization of the gastrointestinal tract by Lactobacillus reuteri 100-23. Insertional inactivation of the dltA gene resulted in complete depletion of D-alanine substitution of lipoteichoic acids. The dlt mutant had similar growth characteristics as the wild type under standard in vitro conditions, but formed lower population sizes in the gastrointestinal tract of ex-Lactobacillus-free mice, and was almost eliminated from the habitat in competition experiments with the parental strain. In contrast to the wild type, the dlt mutant was unable to form a biofilm on the forestomach epithelium during gut colonization. Transmission electron microscope observations showed evidence of cell wall damage of mutant bacteria present in the forestomach. The dlt mutant had impaired growth under acidic culture conditions and increased susceptibility to the cationic peptide nisin relative to the wild type. Ex vivo adherence of the dlt mutant to the forestomach epithelium was not impaired. This study showed that D-alanylation is an important cell function of L. reuteri that seems to protect this commensal organism against the hostile conditions prevailing in the murine forestomach.
Collapse
Affiliation(s)
- Jens Walter
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin, New Zealand.
| | | | | | | | | | | | | |
Collapse
|