1
|
Zhang X, Nguyen MH. Metabolic dysfunction-associated steatotic liver disease: A sexually dimorphic disease and breast and gynecological cancer. Metabolism 2025; 167:156190. [PMID: 40081614 DOI: 10.1016/j.metabol.2025.156190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/26/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has become a global public health and economic burden worldwide in the past few decades. Epidemiological studies have shown that MASLD is a multisystem disease that is associated not only with liver-related complications but also with an increased risk of developing extrahepatic cancers. MASLD is a sexually dimorphic disease with sex hormones playing an important role in the development and progression of MASLD, especially by the levels and ratios of circulating estrogens and androgens. MASLD is associated with hormone-sensitive cancers including breast and gynecological cancer. The risk of breast and gynecological cancer is elevated in individuals with MASLD driven by shared metabolic risk factors including obesity and insulin resistance. Multiple potential mechanisms underline these associations including metabolic dysfunction, gut dysbiosis, chronic inflammation and dysregulated release of hepatokines. However, the effect of hormone therapy including hormone replacement therapy and anti-estrogen treatment on MASLD and female-specific cancers remains debatable at this time. This synopsis will review the associations between MASLD and breast and gynecological cancer, their underlying mechanisms, implications of hormonal therapies, and their future directions.
Collapse
Affiliation(s)
- Xinrong Zhang
- Division of Gastroenterology and Hepatology, School of Medicine, Stanford University Medical Center, Palo Alto, CA, United States
| | - Mindie H Nguyen
- Division of Gastroenterology and Hepatology, School of Medicine, Stanford University Medical Center, Palo Alto, CA, United States; Department of Epidemiology and Population Health, Stanford University Medical Center, Palo Alto, CA, United States; Stanford Cancer Institute, Stanford University Medical Center, Palo Alto, CA, United States.
| |
Collapse
|
2
|
Ayares G, Diaz LA, Idalsoaga F, Alkhouri N, Noureddin M, Bataller R, Loomba R, Arab JP, Arrese M. MetALD: New Perspectives on an Old Overlooked Disease. Liver Int 2025; 45:e70017. [PMID: 40179033 PMCID: PMC11967760 DOI: 10.1111/liv.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/02/2025] [Accepted: 01/24/2025] [Indexed: 04/05/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and alcohol-associated liver disease (ALD) are the major contributors to the liver disease burden globally. The rise in these conditions is linked to obesity, type 2 diabetes, metabolic syndrome and increased alcohol consumption. MASLD and ALD share risk factors, pathophysiology and histological features but differ in their thresholds for alcohol use, and the ALD definition does not require the presence of metabolic dysfunction. A recent multi-society consensus overhauled the nomenclature of liver steatosis and introduced the term MetALD to describe patients with metabolic dysfunction who drink more than those with MASLD and less than those with ALD. This new terminology aims to enhance the understanding and management of liver disease but poses challenges, such as the need to accurately measure alcohol consumption in research and clinical practice settings. Recent studies show that MetALD has significant implications for patient management, as it is associated with increased mortality risks and more severe liver outcomes compared to MASLD alone. MetALD patients face increased risks of liver disease progression, cancer and cardiovascular disease. The diagnosis of MetALD involves the adequate quantification of alcohol use through standardised questionnaires and/or biomarkers as well as proper assessment of liver disease stage and progression risk using non-invasive tools including serologic markers, imaging, elastography techniques and genetic testing. Effective management requires addressing both metabolic and alcohol-related factors to improve outcomes. This review intends to provide a comprehensive overview of MetALD, covering pathogenesis, potential diagnostic approaches, management strategies and emerging therapies.
Collapse
Affiliation(s)
- Gustavo Ayares
- Departamento de GastroenterologíaEscuela de Medicina, Pontificia Universidad Católica de ChileSantiagoChile
- Escuela de Medicina, Universidad Finis TerraeSantiagoChile
| | - Luis Antonio Diaz
- Departamento de GastroenterologíaEscuela de Medicina, Pontificia Universidad Católica de ChileSantiagoChile
- MASLD Research Center, Division of Gastroenterology and HepatologyUniversity of California San DiegoCaliforniaUSA
| | - Francisco Idalsoaga
- Departamento de GastroenterologíaEscuela de Medicina, Pontificia Universidad Católica de ChileSantiagoChile
- Division of Gastroenterology Department of MedicineSchulich School of Medicine, Western University & London Health Sciences CentreLondonOntarioCanada
| | - Naim Alkhouri
- Department of HepatologyArizona Liver HealthChandlerArizonaUSA
| | | | - Ramon Bataller
- Liver UnitHospital Clinic and Institut d'Investigacions Biomediques August Pi I Sunyer (IDIBAPS)BarcelonaSpain
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and HepatologyUniversity of California San DiegoCaliforniaUSA
| | - Juan Pablo Arab
- Departamento de GastroenterologíaEscuela de Medicina, Pontificia Universidad Católica de ChileSantiagoChile
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal MedicineVirginia Commonwealth University School of MedicineVirginiaUSA
| | - Marco Arrese
- Departamento de GastroenterologíaEscuela de Medicina, Pontificia Universidad Católica de ChileSantiagoChile
| |
Collapse
|
3
|
Yu Y, Yang Y, Li Q, Yuan J, Zha Y. Predicting metabolic dysfunction associated steatotic liver disease using explainable machine learning methods. Sci Rep 2025; 15:12382. [PMID: 40216893 PMCID: PMC11992218 DOI: 10.1038/s41598-025-96478-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Early and accurate identification of patients at high risk of metabolic dysfunction-associated steatotic liver disease (MASLD) is critical to prevent and improve prognosis potentially. We aimed to develop and validate an explainable prediction model based on machine learning (ML) approaches for MASLD among the adult population. The national cross-sectional study collected data from the National Health and Nutrition Examination Survey from 2017 to 2020, consisting of 13,436 participants, who were randomly split into 70% training, 20% internal validation, and 10% external validation cohorts. MASLD was defined based on transient elastography and cardiometabolic risk factors. With 50 medical characteristics easily obtained, six ML algorithms were used to develop prediction models. Several evaluation parameters were used to compare the predictive performance, including the area under the receiver-operating-characteristic curve (AUC) and precision-recall (P-R) curve. The recursive feature elimination method was applied to select the optimal feature subset. The Shapley Additive exPlanations method offered global and local explanations for the model. The random forest (RF) model performed best in discriminative ability among 6 ML models, and the optimal 10-feature RF model was finally chosen. The final model could accurately predict MASLD in internal and external validation cohorts (AUC: 0.928, 0.918; area under P-R curve: 0.876, 0.863, respectively). The final model performed better than each of the traditional risk indicators for MASLD. An explainable 10-feature prediction model with excellent discrimination and calibration performance was successfully developed and validated for MASLD based on clinical data easily extracted using an RF algorithm.
Collapse
Affiliation(s)
- Yihao Yu
- Master of Finance, Australian National University, Canberra, Australia
| | - Yuqi Yang
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Qian Li
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Jing Yuan
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, 550002, China
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Yan Zha
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
- NHC Key Laboratory of Pulmonary Immunological Disease, Guizhou Provincial People's Hospital, Guiyang, 550002, China.
| |
Collapse
|
4
|
Mantovani A, Morandin R, Fiorio V, Lando MG, Gaviraghi A, Motta L, Gobbi F, Tilg H, Byrne CD, Targher G. Association between MASLD and increased risk of serious bacterial infections requiring hospital admission: A meta-analysis. Liver Int 2025; 45:e16101. [PMID: 39258758 DOI: 10.1111/liv.16101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Previous studies have reported an association between metabolic dysfunction-associated steatotic liver disease (MASLD) and the risk of serious bacterial infections. However, the magnitude of the risk and whether this risk varies with the severity of MASLD remains uncertain. We performed a meta-analysis of observational studies to quantify the association between MASLD and serious bacterial infections requiring hospital admission. METHODS We systematically searched PubMed, Scopus, Web of Science and Embase from database inception to 1 April 2024, using predefined keywords to identify studies examining the risk of serious bacterial infections among individuals with and without MASLD. MASLD was diagnosed using liver biopsy, imaging or International Classification of Diseases codes. Meta-analysis was performed using random-effects modelling. RESULTS We identified six cross-sectional and two prospective cohort studies with aggregate data on ~26.6 million individuals. MASLD was significantly associated with higher odds of serious bacterial infections (pooled random-effects odds ratio 1.93, 95% confidence interval [CI] 1.44-2.58; I2 = 93%). Meta-analysis of prospective cohort studies showed that MAFLD was associated with an increased risk of developing serious bacterial infections (pooled random-effects hazard ratio 1.80, 95% CI 1.62-2.0; I2 = 89%). This risk further increased across the severity of MASLD, especially the severity of fibrosis (pooled random-effects hazard ratio 2.42, 95% CI 1.89-2.29; I2 = 92%). These results remained significant after adjusting for age, sex, obesity, diabetes and other potential confounders. Sensitivity analyses did not modify these findings. The funnel plot did not reveal any significant publication bias. CONCLUSIONS This meta-analysis shows a significant association between MASLD and an increased risk of serious bacterial infections requiring hospital admission.
Collapse
Affiliation(s)
- Alessandro Mantovani
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Riccardo Morandin
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Veronica Fiorio
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Maria Giovanna Lando
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Verona, Verona, Italy
| | - Alberto Gaviraghi
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Leonardo Motta
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Federico Gobbi
- Department of Infectious Tropical Diseases and Microbiology, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar di Valpolicella, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Christopher D Byrne
- National Institute for Health and Care Research, Southampton Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton, UK
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar di Valpolicella, Italy
| |
Collapse
|
5
|
Zhu Z, Feng S, Zeng A, Song L. Advances in Palmitoylation: A key Regulator of liver cancer development and therapeutic targets. Biochem Pharmacol 2025; 234:116810. [PMID: 39978688 DOI: 10.1016/j.bcp.2025.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/06/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Liver cancer ranks as the second leading cause of cancer-related deaths globally, which remains a significant public health concern. The development of liver cancer is associated with several signaling pathways, particularly metabolic reprogramming. Protein S-palmitoylation, a type of lipid post-translational modification (PTM), involves the reversible attachment of palmitic acid to a cysteine residue through a thioester bond. This modification is found in a wide range of proteins, including enzymes, cancer promoters, tumor suppressors, and transcription factors. The palmitoylation process is catalyzed by the zinc finger DHHC-type containing (ZDHHC) protein family, while the reverse process, depalmitoylation, is facilitated by palmitoyl-protein thioesterases (PPTs). Dysregulation of palmitoylation has been linked to various cancer hallmark functions, cancer metabolism, and tumor microenvironment regulation. Currently, membrane palmitoylated protein (MPP) and PPT1 have been identified as prognostic markers and potential therapeutic targets in liver cancer. In this review, we summarize recent advances in understanding the effects of palmitoylation on liver cancer development, metastasis, and prognosis prediction, and explore potential therapeutic strategies for managing liver cancer.
Collapse
Affiliation(s)
- Zilong Zhu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Shenghui Feng
- Intensive Care Unit, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan 610041, PR China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| |
Collapse
|
6
|
Gui PP, Deng YL, Zhang M, Miao Y, Liu PH, Zeng JY, Wu Y, Li CR, Liu XY, Li YJ, Zhu JQ, Liu AX, Zhou B, Yang F, Zeng Q. Urinary biomarkers of drinking water disinfection byproducts in relation to blood-based liver function parameters among reproductive-aged Chinese women. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:179016. [PMID: 40037233 DOI: 10.1016/j.scitotenv.2025.179016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND Toxicological studies have documented that disinfection byproducts (DBPs), the ubiquitous drinking water pollutants, induce hepatotoxicity. Yet epidemiological evidence is sparse. OBJECTIVE To assess urinary biomarkers of drinking water DBPs in relation to liver function parameters. METHODS We included 1204 reproductive-aged women from the Tongji Reproductive and Environmental (TREE) study in Wuhan, China between December 2018 and July 2021. Urinary trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA) as biomarkers of drinking water DBPs were assessed. Serum liver function parameters such as albumin (ALB), total cholesterol (TC), and alkaline phosphatase (ALP) were determined. Urinary DCAA and TCAA concentrations in relation to liver function parameters were examined by multivariate linear regression or restricted cubic spline (RCS) models. RESULTS There was no evidence of urinary TCAA in relation to serum parameters of liver function. However, monotonic dose-response relationships were estimated between elevated tertiles of urinary DCAA concentrations and increased serum ALP (percent change = 4.25 %; 95 % CI: 0.34 %, 8.32 % for the upper vs. lower tertile) and TC levels (percent change = 3.84 %; 95 % CI: 0.63 %, 7.17 % for the upper vs. lower tertile). These associations remained for urinary DCAA modeled as the continuous exposure variable and were linear in the RCS models. Age, body mass index, and passive smoking status did not modify these associations. CONCLUSION DCAA but not TCAA exposure may contribute to damaged liver function in reproductive-aged women.
Collapse
Affiliation(s)
- Ping-Ping Gui
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China
| | - Yan-Ling Deng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Min Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yu Miao
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peng-Hui Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jia-Yue Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang Wu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cheng-Ru Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiao-Ying Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yang-Juan Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin-Qin Zhu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - A-Xue Liu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Zhou
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, China.
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Zheng L, Lei H, Tang X, Zheng Y, Wu Q, Chen P, Chen Y, Cai L. Association Between Hepatic Steatosis Index and Endometrial Cancer Risk: A Cross-Sectional Study. Int J Womens Health 2025; 17:825-833. [PMID: 40123758 PMCID: PMC11927498 DOI: 10.2147/ijwh.s497621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/20/2025] [Indexed: 03/25/2025] Open
Abstract
Purpose To investigate the relationship between hepatic steatosis index (HSI) and endometrial cancer (EC) and its diagnostic value for EC. Patients and Methods A total of 114 patients with pathologically diagnosed EC in Mindong Hospital, Ningde City, Fujian Province from 2016 to 2022 were retrospectively included as the EC group. A total of 175 patients with pathologically confirmed benign endometrial lesions (endometrial polyps and uterine submucosal fibroids) in the same hospital during the same period were selected as the control group. Non-parametric test were used to compare the differences in HSI and non-alcoholic fatty liver disease (NAFLD) between the two groups, and the diagnostic value of HSI and NAFLD levels on EC was analysed. The cut-off point of continuous variables was determined by receiver operating characteristic (ROC) curve analysis. Logistic regression analysis was used to calculate odds ratios (ORs). Results The results showed that compared with the control group, serum GGT, CA125, HDL-C and HSI were significantly increased in the EC group (P<0.05). 27.19% of the EC patients (31/114) and 12% of the control group (21/175) had NAFLD, and the difference between the two groups was statistically significant (P<0.05). The results of univariate logistic regression analysis showed that GGT, CA125, HDL-C, HSI and NAFLD were significantly correlated with the occurrence of EC (P<0.05). Further multivariate logistic regression analysis showed that CA125 and HSI elevation were independent risk factors for EC (P<0.05). Conclusion NAFLD is closely associated with EC, and elevated HSI is an independent risk factor for EC.
Collapse
Affiliation(s)
- Lili Zheng
- Department of Gynecology, Mindong Hospital Affiliated to Fujian Medical University, Ningde, People’s Republic of China
| | - Huifang Lei
- Department of Gynecology, Mindong Hospital Affiliated to Fujian Medical University, Ningde, People’s Republic of China
| | - Xiaoyi Tang
- Department of Laboratory, Mindong Hospital Affiliated to Fujian Medical University, Ningde, People’s Republic of China
| | - Yuanyin Zheng
- Department of Pathology, Mindong Hospital Affiliated to Fujian Medical University, Ningde, People’s Republic of China
| | - Qiuzhen Wu
- Department of Pathology, Mindong Hospital Affiliated to Fujian Medical University, Ningde, People’s Republic of China
| | - Peixuan Chen
- Department of Gynecology, Mindong Hospital Affiliated to Fujian Medical University, Ningde, People’s Republic of China
| | - Yanhong Chen
- Department of Gynecology, Mindong Hospital Affiliated to Fujian Medical University, Ningde, People’s Republic of China
| | - Liangzhi Cai
- Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Women and Children’s Critical Diseases Research, Fuzhou, People’s Republic of China
| |
Collapse
|
8
|
Marjot T. Positioning the liver at the centre of fructose-associated extrahepatic cancer. J Hepatol 2025:S0168-8278(25)00130-8. [PMID: 40102073 DOI: 10.1016/j.jhep.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/20/2025]
Affiliation(s)
- Thomas Marjot
- Oxford Centre for Diabetes Endocrinology and Metabolism (OCDEM), Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, UK; Translational Gastroenterology and Liver Unit (TGLU), Nuffield Department of Medicine, John Radcliffe Hospital, University of Oxford, UK
| |
Collapse
|
9
|
Xiang Y, Yuan Y, Wang ZY, Zhu YM, Li WY, Ye QG, Wang YN, Sun Q, Ding XW, Longi F, Tang DH, Xu GF. Comorbidities related to metachronous recurrence for early gastric cancer in elderly patients. World J Gastrointest Endosc 2025; 17:99540. [PMID: 40125504 PMCID: PMC11923980 DOI: 10.4253/wjge.v17.i3.99540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/15/2024] [Accepted: 12/05/2024] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND A significant association between increased age and an increased risk of metachronous gastric cancer (MGC) following curative endoscopic submucosal dissection (ESD) has previously been reported. AIM To determine risk factors for the metachronous occurrence of early gastric cancer (EGC) in elderly individuals. METHODS This retrospective cohort study comprised 653 elderly patients (aged ≥ 65 years) who underwent curative ESD for EGC between January 2014 and June 2020 at Nanjing Drum Tower Hospital. Comprehensive analyses were conducted to compare lifestyle habits, comorbidities, and Helicobacter pylori (H. pylori) infections as potential indicators. RESULTS During a median follow-up of 38 months, 46 patients (7.0%, 20.46/1000 person-years) developed MGC in the elderly cohort. The cumulative incidences of MGC at 2, 3, and 5 years were 3.3%, 5.3%, and 11.5%, respectively. In multivariate Cox regression analyses, the independent risk factors for MGC included metabolic dysfunction-associated steatotic liver disease (MASLD) [hazard ratio (HR) = 2.44, 95% confidence interval (CI): 1.15-5.17], persistent H. pylori infection (HR = 10.38, 95%CI: 3.36-32.07), severe mucosal atrophy (HR = 2.71, 95%CI: 1.45-5.08), and pathological differentiation of EGC (well/moderately differentiated vs poorly differentiated: HR = 10.18, 95%CI: 1.30-79.65). Based on these risk factors, a risk stratification system was developed to categorize individuals into low (0-1 point), intermediate (2-3 points), and high (4-8 points) risk categories for MGC, with cumulative incidence rates of 12.3%, 21.6%, and 45%, respectively. CONCLUSION Among elderly individuals, MASLD, persistent H. pylori infection, severe mucosal atrophy, and well/moderately differentiated EGC were associated with an increased risk of MGC. Elderly patients are recommended to adopt healthy lifestyle practices, and undergo regular endoscopic screening and H. pylori testing after curative ESD for EGC.
Collapse
Affiliation(s)
- Ying Xiang
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, Jiangsu Province, China
| | - Ying Yuan
- Department of Gastroenterology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Zhen-Yu Wang
- Department of Gastroenterology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Yan-Mei Zhu
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, Jiangsu Province, China
| | - Wen-Ying Li
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, Jiangsu Province, China
| | - Qian-Ge Ye
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing 210008, Jiangsu Province, China
| | - Ya-Nan Wang
- Department of Gastroenterology, Hospital Clinical College of Nanjing Medical University, Nanjing 210008, Jiangsu Province, China
| | - Qi Sun
- Department of Pathology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Xi-Wei Ding
- Department of Gastroenterology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Faraz Longi
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60601, United States
| | - De-Hua Tang
- Department of Gastroenterology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Gui-Fang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, Jiangsu Province, China
- Department of Gastroenterology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
- Department of Gastroenterology, Hospital Clinical College of Nanjing Medical University, Nanjing 210008, Jiangsu Province, China
| |
Collapse
|
10
|
Diaz LA, Arab JP, Idalsoaga F, Perelli J, Vega J, Dirchwolf M, Carreño J, Samith B, Valério C, Moreira RO, Acevedo M, Brahm J, Hernández N, Gadano A, Oliveira CP, Arrese M, Castro-Narro G, Pessoa MG. Updated recommendations for the management of metabolic dysfunction-associated steatotic liver disease (MASLD) by the Latin American working group. Ann Hepatol 2025:101903. [PMID: 40089151 DOI: 10.1016/j.aohep.2025.101903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 03/17/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is one of the leading causes of chronic liver disease globally. Based on the 2023 definition, MASLD is characterized by the presence of metabolic dysfunction and limited alcohol consumption (<140 grams/week for women, <210 grams/week for men). Given the significant burden of MASLD in Latin America, this guidance was developed by the Latin American Association for the Study of the Liver (ALEH) Working Group to address key aspects of its clinical assessment and therapeutic strategies. In Latin America, ultrasonography is recommended as the initial screening tool for hepatic steatosis due to its accessibility, while Fibrosis-4 (FIB-4) is preferred for fibrosis risk stratification, with further evaluation using more specific techniques (i.e., vibration-controlled transient elastography or Enhanced Liver Fibrosis [ELF] test). A Mediterranean diet is advised for all MASLD patients, with a target of 7-10% weight loss for those with excess weight. Complete alcohol abstinence is recommended for patients with significant fibrosis, and smoking cessation is encouraged regardless of fibrosis stage. Pharmacological options should be tailored based on the presence of steatohepatitis, liver fibrosis, excess weight, and diabetes, including resmetirom, incretin-based therapies, pioglitazone, and sodium-glucose cotransporter-2 inhibitors. Bariatric surgery may be considered for MASLD patients with obesity unresponsive to lifestyle and medical interventions. Hepatocellular carcinoma screening is advised for all cirrhotic patients, with consideration given to those with advanced fibrosis based on individual risk. Finally, routine cardiovascular risk assessment and proper diabetes prevention and management remain crucial for all patients with MASLD.
Collapse
Affiliation(s)
- Luis Antonio Diaz
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California San Diego, San Diego, CA, USA; Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Francisco Idalsoaga
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Division of Gastroenterology, Department of Medicine, Schulich School of Medicine, Western University & London Health Sciences Centre, London, Ontario, Canada
| | - Javiera Perelli
- Unidad de Diabetes y Nutrición Clínica, Clínica Universidad de los Andes, Santiago, Chile
| | - Javier Vega
- Departamento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Javiera Carreño
- Asociación Latinoamericana para el Estudio del Hígado (ALEH), Santiago, Chile
| | - Bárbara Samith
- Departamento de Nutrición, Diabetes y Metabolismo, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cynthia Valério
- Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione, Rio de Janeiro, RJ, Brasil
| | - Rodrigo Oliveira Moreira
- Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione, Rio de Janeiro, RJ, Brasil; Faculdade de Medicina de Valença, Centro Universitário de Valença, Valença, RJ, Brasil; Faculdade de Medicina, Centro Universitário Presidente Antônio Carlos, Juiz de Fora, MG, Brasil
| | - Mónica Acevedo
- División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Javier Brahm
- Unidad de Gastroenterología, Clínica Universidad de los Andes, Santiago, Chile
| | - Nelia Hernández
- Asociación Latinoamericana para el Estudio del Hígado (ALEH), Santiago, Chile; Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Adrian Gadano
- Liver Unit, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina; Department of Research, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Claudia P Oliveira
- Gastroenterology Department, Hospital das Clínicas (LIM07) HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Asociación Latinoamericana para el Estudio del Hígado (ALEH), Santiago, Chile
| | - Graciela Castro-Narro
- Asociación Latinoamericana para el Estudio del Hígado (ALEH), Santiago, Chile; Department of Gastroenterology, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico; Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Mario G Pessoa
- Asociación Latinoamericana para el Estudio del Hígado (ALEH), Santiago, Chile; Gastroenterology Department, Hospital das Clínicas (LIM07) HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| |
Collapse
|
11
|
Ma Z, Wu Q, Wu Q. The predictive value of FAH model for the occurrence of colorectal cancer. Front Med (Lausanne) 2025; 12:1512173. [PMID: 40124679 PMCID: PMC11926160 DOI: 10.3389/fmed.2025.1512173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/24/2025] [Indexed: 03/25/2025] Open
Abstract
Background Fatty liver is characterized by hepatic steatosis and is associated with dyslipidemia and insulin resistance. Carotid atherosclerosis, characterized by plaque formation, may be related to increased lipid deposition. High-density lipoprotein cholesterol (HDL-C) plays a role in reverse cholesterol transport. Colorectal cancer (CRC) is significantly associated with lipid metabolism-related diseases. However, there is a paucity of research on the relationship between lipid metabolism disorders and CRC. Objective To determine whether fatty liver (F), carotid atherosclerosis (A), and HDL-C (H) models (FAH) have predictive value for the occurrence of CRC and can be used for CRC screening. Methods A case-control study was conducted on 166 patients with CRC and 448 patients who underwent physical examinations at Ziyang People's Hospital between September 2018 and August 2023. A 1:3 individual matching strategy was used to establish the independent risk factors for CRC using univariate and multivariate analyses. A model was constructed based on independent risk factors, and its accuracy and sensitivity were verified. The discriminative ability, calibration, and clinical utility of the predictive model were evaluated using the Receiver Operating Characteristic curve, bootstrap resampling method, the Hosmer-Lemeshow goodness-of-fit test, and Decision Curve Analysis (DCA). Results Fatty liver (F), carotid atherosclerosis (A), HDL-C (H), and intestinal dysbiosis (D) were identified as independent risk factors for CRC. The odds ratios were 2.885, 11.452, 24.659, and 22.445, respectively, p < 0.001. Based on these results, an FAH prediction model was established. The Horser-Lemeshow test for the FAH prediction model yielded p = 0.710. The cut-off value was 0.275, with the area under the curve of 0.902 (95% Confidence Interval: 0.875-0.929), p < 0.001. The sensitivity was 86.7%, and the specificity was 78.1%. A nomogram was created, and the internal calibration chart showed that the calibration curve closely aligned with the standard curve, indicating good discrimination and predictive ability of the model. DCA demonstrated that the model had a favorable clinical net benefit. Conclusion The FAH model has predictive value for CRC occurrence owing to its noninvasive nature and easy availability of data, making it worthy of further clinical research.
Collapse
Affiliation(s)
- Zhixuan Ma
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
- Department of Gastroenterology, Ziyang People's Hospital, Ziyang, China
| | - Qing Wu
- Department of Critical Care Medicine, Ziyang People's Hospital, Ziyang, China
| | - Qingming Wu
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Lim J, Kim B, Han K, Lim JU. Fatty liver index and development of lung cancer: a nationwide cohort study. Korean J Intern Med 2025; 40:275-285. [PMID: 39434606 PMCID: PMC11938715 DOI: 10.3904/kjim.2024.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND/AIMS This study aimed to evaluate the impact of steatotic liver disease severity on the cumulative incidence of lung cancer utilizing data from the Korea National Health Insurance Service (NHIS). METHODS This study examined the risk of lung cancer in the general population in conjunction with the incidence of steatotic liver disease. The study population consisted of 3,261,438 individuals aged 20 years or older who underwent a general health examination in 2009. RESULTS Individuals with fatty liver index (FLI) of 30-59 exhibited a 1.08-fold increased risk of lung cancer (95% CI: 1.04-1.11), while FLI ≥ 60 was associated with a 1.22-fold elevated risk of lung cancer (95% CI: 1.17-1.28) compared to those with FLI < 30. The risk varied with smoking status; in current smokers, the adjusted HR for the FLI 30-59 group was 1.05 (95% CI: 1.00-1.10), while that in the FLI ≥ 60 group was 1.11 (95% CI: 1.04-1.18). In never- or past-smokers, the adjusted HR for the FLI 30-59 group was 1.10, and that for the FLI ≥ 60 group was 1.31. Subgroup analysis revealed an incidence rate of 1.06 per 1,000 person-years in the consistently high FLI group compared to 1.15 in those with improved FLI. Improving FLI over time was associated with a 0.93-fold decrease in lung cancer risk. CONCLUSION Our study demonstrated a correlational relationship between lung cancer incidence and the severity of steatotic liver disease as measured by FLI.
Collapse
Affiliation(s)
- Jihye Lim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Bongseong Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul,
Korea
| | - Jeong Uk Lim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| |
Collapse
|
13
|
Petta S, Armandi A, Bugianesi E. Impact of PNPLA3 I148M on Clinical Outcomes in Patients With MASLD. Liver Int 2025; 45:e16133. [PMID: 39412170 DOI: 10.1111/liv.16133] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/23/2024] [Accepted: 10/02/2024] [Indexed: 01/03/2025]
Abstract
BACKGROUND AND AIMS Metabolic dysfunction-associated steatotic liver disease (MASLD) is a heterogenous clinical and histopathological entity, where multiple metabolic co-factors are intertwined with high interindividual variability. The impact and severity of each factor (including obesity and type 2 diabetes) define a systemic dysmetabolism that can lead to either advanced liver disease and its complication (including hepatocellular carcinoma and clinical events related to portal hypertension) or extrahepatic events: incident cardiovascular disease, chronic kidney disease and extrahepatic cancers. The balance between environmental factors and genetic susceptibility has unique implications in MASLD: the intermittent injury of metabolic co-factors, their fluctuation over time and their specific management, are counterbalanced by the presence of gene variants that can significantly impact the disease at multiple levels. The I148M variant in the PNPLA3 gene is the most investigated genetic susceptibility that induces a more severe steatohepatitis, enhanced fibrogenesis and can shape the incidence of long-term clinical events regardless of, or worsened by, other metabolic risk factors. METHODS AND RESULTS In this review, we will summarise the updated evidence on the natural history of MASLD accounting for classical metabolic risk factors, the role of PNPLA3 in clinical sub-phenotyping (e.g., 'lean MASLD'), impact on disease severity and fibrosis progression, as well as its role for prognostication, alone or in combination with non-invasive tools into polygenic risk scores.
Collapse
Affiliation(s)
- Salvatore Petta
- Sezione di Gastroenterologia, Di.Bi.M.I.S, University of Palermo, Palermo, Italy
| | - Angelo Armandi
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Elisabetta Bugianesi
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
14
|
Byrne CD, Armandi A, Pellegrinelli V, Vidal-Puig A, Bugianesi E. Μetabolic dysfunction-associated steatotic liver disease: a condition of heterogeneous metabolic risk factors, mechanisms and comorbidities requiring holistic treatment. Nat Rev Gastroenterol Hepatol 2025:10.1038/s41575-025-01045-z. [PMID: 39962331 DOI: 10.1038/s41575-025-01045-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 03/09/2025]
Abstract
Μetabolic dysfunction-associated steatotic liver disease (MASLD) comprises a heterogeneous condition in the presence of steatotic liver. There can be a hierarchy of metabolic risk factors contributing to the severity of metabolic dysfunction and, thereby, the associated risk of both liver and extrahepatic outcomes, but the precise ranking and combination of metabolic syndrome (MetS) traits that convey the highest risk of major adverse liver outcomes and extrahepatic disease complications remains uncertain. Insulin resistance, low-grade inflammation, atherogenic dyslipidaemia and hypertension are key to the mechanisms of liver and extrahepatic complications. The liver is pivotal in MetS progression as it regulates lipoprotein metabolism and secretes substances that affect insulin sensitivity and inflammation. MASLD affects the kidneys, heart and the vascular system, contributing to hypertension and oxidative stress. To address the global health burden of MASLD, intensified by obesity and type 2 diabetes mellitus epidemics, a holistic, multidisciplinary approach is essential. This approach should focus on both liver disease management and cardiometabolic risk factors. This Review examines the link between metabolic dysfunction and liver dysfunction and extrahepatic disease outcomes, the diverse mechanisms in MASLD due to metabolic dysfunction, and a comprehensive, personalized management model for patients with MASLD.
Collapse
Affiliation(s)
- Christopher D Byrne
- National Institute for Health and Care Research, Southampton Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton, UK
| | - Angelo Armandi
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Vanessa Pellegrinelli
- Institute of Metabolic Science, MRC MDU Unit, University of Cambridge, Cambridge, UK
- Centro de Investigacion Principe Felipe, Valencia, Spain
| | - Antonio Vidal-Puig
- Institute of Metabolic Science, MRC MDU Unit, University of Cambridge, Cambridge, UK
- Centro de Investigacion Principe Felipe, Valencia, Spain
| | - Elisabetta Bugianesi
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
15
|
Pan Q, Xu QY, Zhang LH, He YF. What is the role of nonalcoholic fatty liver disease in pulmonary carcinoma development? World J Gastroenterol 2025; 31:97500. [PMID: 39926215 PMCID: PMC11718604 DOI: 10.3748/wjg.v31.i5.97500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/02/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
This article summarizes the epidemiological characteristics and clinical manifestations of nonalcoholic fatty liver disease (NAFLD). The incidence of NAFLD has been increased dramatically and become the leading cause of chronic liver disease worldwide. In addition to its adverse outcomes of liver fibrosis, cirrhosis, and hepatocellular carcinoma, and related complications, NAFLD has recently been found to be associated with the high-risk extrahepatic carcinomas, such as various types of lung cancer (i.e., lung adenocarcinoma, squamous cell carcinoma, and small cell lung cancer). The presence of hepatic steatosis also predisposes lung cancer to liver metastasis, but has better response to immune checkpoint inhibitors. Whether other factors (i.e., gender, smoking, etc.) are associated with NAFLD and lung cancer remains controversial. We also comment on the reciprocal relationships between NAFLD and components of metabolic syndrome. Most metabolic syndrome components are suggested to facilitate lung cancer development via activating insulin/insulin-like growth factor axis. In addition, suppressed anti-tumor immunity and accelerated tumor progression could be attributed to the cell-specific metabolic reprogramming in condition of high-fat diet and related obesity. These findings may reveal the role of NAFLD in pulmonary carcinoma and help develop new treatment strategies for this disease.
Collapse
Affiliation(s)
- Qin Pan
- Shanghai Institute of Pediatric Research, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qing-Yang Xu
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Lang-Hua Zhang
- School of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Ya-Fang He
- Department of Pediatric Respiratory, Xinhua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200092, China
| |
Collapse
|
16
|
Danpanichkul P, Suparan K, Auttapracha T, Tothanarungroj P, Kongarin S, Rakwong K, Tan DJH, Sukphutanan B, Muthiah MD, Tung D, Luo J, Morishita A, Tan EY, Takahashi H, Mousa OY, Lui RN, Noureddin M, Kim D, Harnois DM, Yang JD, Roberts LR, Wallace MB, Wijarnpreecha K. Early-Onset Gastrointestinal Cancers and Metabolic Risk Factors: Global Trends From the Global Burden of Disease Study 2021. Mayo Clin Proc 2025. [DOI: 10.1016/j.mayocp.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
|
17
|
Sohn W, Lee YS, Kim SS, Kim JH, Jin YJ, Kim GA, Sung PS, Yoo JJ, Chang Y, Lee EJ, Lee HW, Choi M, Yu SJ, Jung YK, Jang BK. KASL clinical practice guidelines for the management of metabolic dysfunction-associated steatotic liver disease 2025. Clin Mol Hepatol 2025; 31:S1-S31. [PMID: 39967303 PMCID: PMC11925433 DOI: 10.3350/cmh.2025.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 02/19/2025] [Indexed: 02/20/2025] Open
Affiliation(s)
- Won Sohn
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young-Sun Lee
- Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Soon Sun Kim
- Department of Internal Medicine, Ajou University School of Medicine, Suwon, Korea
| | - Jung Hee Kim
- Department of Internal Medicine, Dongtan Sacred Heart Hospital, Hallym University School of Medicine, Hwaseong, Korea
| | - Young-Joo Jin
- Department of Internal Medicine, Inha University Hospital, Inha University School of Medicine, Incheon, Korea
| | - Gi-Ae Kim
- Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University School of Medicine, Seoul, Korea
| | - Pil Soo Sung
- Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Jeong-Ju Yoo
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Young Chang
- Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Eun Joo Lee
- Department of Pediatrics, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Won Lee
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Miyoung Choi
- Clinical Evidence Research, National Evidence-Based Healthcare Collaborating Agency, Seoul, Korea
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Young Kul Jung
- Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Byoung Kuk Jang
- Department of Internal Medicine, Keimyung University School of Medicine, Daegu, Korea
| |
Collapse
|
18
|
Younossi ZM, Kalligeros M, Henry L. Epidemiology of metabolic dysfunction-associated steatotic liver disease. Clin Mol Hepatol 2025; 31:S32-S50. [PMID: 39159948 PMCID: PMC11925440 DOI: 10.3350/cmh.2024.0431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024] Open
Abstract
As the rates of obesity and type 2 diabetes (T2D) continue to increase globally, so does the prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD). Currently, 38% of all adults and 7-14% of children and adolescents have MASLD. By 2040, the MASLD prevalence rate for adults is projected to increase to more than 55%. Although MASLD does not always develop into progressive liver disease, it has become the top indication for liver transplant in the United States for women and those with hepatocellular carcinoma (HCC). Nonetheless, the most common cause of mortality among patients with MASLD remains cardiovascular disease. In addition to liver outcomes (cirrhosis and HCC), MASLD is associated with an increased risk of developing de novo T2D, chronic kidney disease, sarcopenia, and extrahepatic cancers. Furthermore, MASLD is associated with decreased health-related quality of life, decreased work productivity, fatigue, increased healthcare resource utilization, and a substantial economic burden. Similar to other metabolic diseases, lifestyle interventions such as a heathy diet and increased physical activity remain the cornerstone of managing these patients. Although several obesity and T2D drugs are available to treat co-morbid disease, resmetirom is the only MASH-targeted medication for patients with stage 2-3 fibrosis that has approved by the Food and Drug Administration for use in the United States. This review discusses MASLD epidemiology and its related risk factors and outcomes and demonstrates that without further global initiatives, MASLD incidence could continue to increase.
Collapse
Affiliation(s)
- Zobair M Younossi
- The Global NASH Council, Washington DC, USA
- Beatty Liver and Obesity Program, Inova Health System, Falls Church, VA, USA
- Center for Outcomes Research in Liver Disease, Washington DC, USA
| | - Markos Kalligeros
- Beth Israel Deaconess Medical Center, Harvard University, Cambridge, MA, USA
| | - Linda Henry
- The Global NASH Council, Washington DC, USA
- Beatty Liver and Obesity Program, Inova Health System, Falls Church, VA, USA
- Center for Outcomes Research in Liver Disease, Washington DC, USA
| |
Collapse
|
19
|
Kimura T, Tamaki N, Wakabayashi SI, Tanaka N, Umemura T, Izumi N, Loomba R, Kurosaki M. Colorectal Cancer Incidence in Steatotic Liver Disease (MASLD, MetALD, and ALD). Clin Gastroenterol Hepatol 2025:S1542-3565(25)00074-6. [PMID: 39892626 DOI: 10.1016/j.cgh.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 02/04/2025]
Abstract
BACKGROUND AND AIMS Obesity and alcohol consumption are established risk factors for colorectal cancer (CRC). Recently, a multisociety consensus group has introduced a new classification for steatotic liver disease (SLD), which encompasses metabolic dysfunction-associated steatotic liver disease (MASLD), MASLD and increased alcohol intake (MetALD), and alcohol-associated liver disease (ALD). However, the risk of developing CRC in each of these SLD subgroups is unknown. This nationwide cohort study investigated the risk of CRC in MASLD, MetALD, and ALD patients. The primary endpoint was the occurrence of CRC in each SLD subgroup. METHODS We conducted a nationwide, population-based study that included 1,497,813 patients diagnosed with MASLD, MetALD, or ALD, alongside 4,885,536 individuals with no known liver disease as a comparison group. The primary outcome was the incidence of CRC and the risk of CRC was compared between MASLD, MetALD and ALD. RESULTS The 5- and 10-year cumulative CRC incidence rates were 0.22% and 0.48% for MASLD, 0.32% and 0.73% for MetALD, and 0.43% and 0.97% for ALD, and 0.15% and 0.31% for the comparison group, respectively. The cumulative incidence of CRC was highest for ALD and significantly greater than that for MetALD, MASLD, and the comparison group (both P < .001). Using the comparison group as the reference and adjusting for age, sex, smoking habit, number of colorectal examinations, diabetes mellitus, dyslipidemia, hypertension, and medication use, the adjusted hazard ratios for CRC were 1.73 (95% CI, 1.59-1.87) for ALD, 1.36 (95% CI, 1.28-1.45) for MetALD, and 1.28 (95% CI, 1.22-1.35) for MASLD. CONCLUSIONS The risk of CRC differs significantly among patients with SLD, with the highest incidence observed in those with ALD, followed by MetALD and MASLD.
Collapse
Affiliation(s)
- Takefumi Kimura
- Division of Gastroenterology, Department of Medicine, Shinshu University School of Medicine, Nagano, Japan
| | - Nobuharu Tamaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Shun-Ichi Wakabayashi
- Division of Gastroenterology, Department of Medicine, Shinshu University School of Medicine, Nagano, Japan
| | - Naoki Tanaka
- Department of Global Medical Research Promotion, Shinshu University Graduate School of Medicine, Matsumoto, Japan; International Relations Office, Shinshu University School of Medicine, Matsumoto, Japan; Research Center for Social Systems, Shinshu University, Matsumoto, Japan
| | - Takeji Umemura
- Division of Gastroenterology, Department of Medicine, Shinshu University School of Medicine, Nagano, Japan
| | - Namiki Izumi
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and Hepatology, Department of Medicine, University of California San Diego, La Jolla, California
| | - Masayuki Kurosaki
- Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan.
| |
Collapse
|
20
|
Leopold M, Mass-Sanchez PB, Krizanac M, Štancl P, Karlić R, Prabutzki P, Parafianczuk V, Schiller J, Asimakopoulos A, Engel KM, Weiskirchen R. How the liver transcriptome and lipid composition influence the progression of nonalcoholic fatty liver disease to hepatocellular carcinoma in a murine model. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159574. [PMID: 39510374 DOI: 10.1016/j.bbalip.2024.159574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
The incidence of nonalcoholic fatty liver disease (NAFLD) has been steadily increasing in Western society in recent years and has been recognized as a risk factor for the development of hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying the progression from NAFLD to HCC are still unclear, despite the use of suitable mouse models. To identify the transcriptional and lipid profiles of livers from mice with NAFLD-HCC, we induced both NAFLD and NAFLD-HCC pathologies in C57BL/6J mice and performed RNA-sequencing (RNA-seq) and targeted lipidomic analysis. Our RNA-seq analysis revealed that the transcriptional signature of NAFLD in mice is characterized by changes in inflammatory response and fatty acid metabolism. Moreover, the signature of NAFLD-HCC is characterized by processes typically observed in cancer, such as epithelial to mesenchymal transition, angiogenesis and inflammatory responses. Furthermore, we found that the diet used in this study inhibited cholesterol synthesis in both models. The analysis of lipid composition also showed a significant impact of the provided diet. Therefore, our study supports the idea that a Western diet (WD) affects metabolic processes and hepatic lipid composition. Additionally, the combination of a WD with the administration of a carcinogen drives the progression from NAFLD to HCC.
Collapse
Affiliation(s)
- Marvin Leopold
- Institute for Medical Physics and Biophysics, Leipzig University, Faculty of Medicine, 04107 Leipzig, Germany; Klinik für Neurologie, Sana Klinikum Borna, 04552 Borna, Germany.
| | - Paola Berenice Mass-Sanchez
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074 Aachen, Germany.
| | - Marinela Krizanac
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074 Aachen, Germany.
| | - Paula Štancl
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | - Rosa Karlić
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | - Patricia Prabutzki
- Institute for Medical Physics and Biophysics, Leipzig University, Faculty of Medicine, 04107 Leipzig, Germany.
| | - Victoria Parafianczuk
- Institute for Medical Physics and Biophysics, Leipzig University, Faculty of Medicine, 04107 Leipzig, Germany
| | - Jürgen Schiller
- Institute for Medical Physics and Biophysics, Leipzig University, Faculty of Medicine, 04107 Leipzig, Germany.
| | - Anastasia Asimakopoulos
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074 Aachen, Germany
| | - Kathrin M Engel
- Institute for Medical Physics and Biophysics, Leipzig University, Faculty of Medicine, 04107 Leipzig, Germany.
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, 52074 Aachen, Germany.
| |
Collapse
|
21
|
Shah N, Sanyal AJ. A Pragmatic Management Approach for Metabolic Dysfunction-Associated Steatosis and Steatohepatitis. Am J Gastroenterol 2025; 120:75-82. [PMID: 39569874 DOI: 10.14309/ajg.0000000000003215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Obesity and associated insulin resistance induce a chronic metaboinflammatory state that lead to injury and dysfunction of multiple organs resulting in a cluster of noncommunicable diseases such as type 2 diabetes mellitus, hypertension, cardiovascular disease, chronic kidney disease, and metabolic dysfunction-associated steatotic liver disease (MASLD). Metabolic dysfunction-associated steatohepatitis (MASH) is a histologically active form of MASLD and characterized by greater injury and inflammation and progresses to cirrhosis with greater certainty than steatosis alone. The progression to cirrhosis is characterized by increasing fibrosis. The goal of treatment of MASLD/MASH was to improve the metaboinflammatory state i.e., the root cause of the liver disease and to prevent fibrosis progression to cirrhosis whereas in those who already have cirrhosis need additional care to prevent portal hypertension-related outcomes. Fibrosis regression is thus a key objective of treatment. The recent approval of resmetirom for MASH with fibrosis and the use of glucagon-like peptide-1 receptor agonists for obesity and type 2 diabetes has increased awareness of these NCDs and resulted in the growing demand for liver assessment and care in obese individuals. Patients with MASLD also have multiple metabolic comorbidities which represent competing threats to life, and the care of the patient requires both assessment of the totality of the risk and a more holistic approach integrating the care of all of the threats to life. Here, we provide a pragmatic and easily implementable risk-based approach to the evaluation and management of MASLD.
Collapse
Affiliation(s)
- Neha Shah
- Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Arun J Sanyal
- Department of Internal Medicine, Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
22
|
Liu C, Xin Y, Huang Y, Xu L, Zhou R, Wang Y, Wang W. Reduction of Hepatic Fat Content by Dulaglutide for the Treatment of Diabetes Mellitus: A Two-Centre Open, Single-Arm Trial. Endocrinol Diabetes Metab 2025; 8:e70021. [PMID: 39718468 DOI: 10.1002/edm2.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/07/2024] [Accepted: 11/06/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND With the elevated level of NAFLD prevalence, the incidence of diabetes, hypertension, metabolic syndrome and other diseases is also significantly elevated. GLP-1RA can exert weight loss, glucose-lowering effects and various nonglycaemic effects. However, the relationship between quantitative reduction in hepatic fat content and improvement of pancreatic islet function by GLP-1RA is unclear. METHODS This trial was a single-arm open cohort study. A total of 38 patients with T2DM and NAFLD were enrolled in the GLP-1RA treatment group. The included patients were tested for biochemical and blood glucose levels, adiponectin and FGF21 levels, and liver fat content was measured using MRI. Measure the above indicators again after at least 3 months of GLP-1RA treatment. Divided into Q1 (average decrease of 0.37%) and Q2 (average decrease of 8.6%) groups based on the degree of reduction in liver fat content. RESULTS Q2 group showed an average reduction in liver fat content of 8.6%, a decrease in glycated haemoglobin of 18.17%, a weight loss of 7.29% and an increase in fasting c-peptide release by 1.03%, 1-h and 2-h postprandial c-peptide release by 28.86% and 18.28% respectively. In contrast, Q1 group had an average reduction in liver fat content of 0.37%, a decrease in glycated haemoglobin of only 6.53%, a weight loss of 3.41%, a decrease in fasting c-peptide release by 1.91% and an increase in 1-h and 2-h postprandial c-peptide release by 19.18% and 11.66% respectively. CONCLUSION Reduction in liver fat content effectively improves pancreatic islet function secretion, particularly postprandial c-peptide secretion, especially in the first hour after a meal. This improvement leads to a decrease in glycated haemoglobin levels and promotes better compliance with blood glucose control.
Collapse
Affiliation(s)
- Chuanfeng Liu
- Department of Hematology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yu Xin
- Department of Endocrinology and Metabolic Diseases, Jiaozuo People's Hospital, Jiaozuo, China
- Department of Endocrinology and Metabolic Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yajing Huang
- Department of Endocrinology and Metabolic Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Lili Xu
- Department of Endocrinology and Metabolic Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruizhi Zhou
- Department of Radiology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yangang Wang
- Department of Endocrinology and Metabolic Diseases, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Wang
- Department of Hematology, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
23
|
Cai Y, Fang L, Chen F, Zhong P, Zheng X, Xing H, Fan R, Yuan L, Peng W, Li X. Targeting AMPK related signaling pathways: A feasible approach for natural herbal medicines to intervene non-alcoholic fatty liver disease. J Pharm Anal 2025; 15:101052. [PMID: 40034684 PMCID: PMC11873010 DOI: 10.1016/j.jpha.2024.101052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 03/05/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disease characterized by abnormal deposition of lipid in hepatocytes. If not intervened in time, NAFLD may develop into liver fibrosis or liver cancer, and ultimately threatening life. NAFLD has complicated etiology and pathogenesis, and there are no effective therapeutic means and specific drugs. Currently, insulin sensitizers, lipid-lowering agents and hepatoprotective agents are often used for clinical intervention, but these drugs have obvious side effects, and their effectiveness and safety need to be further confirmed. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) plays a central role in maintaining energy homeostasis. Activated AMPK can enhance lipid degradation, alleviate insulin resistance (IR), suppress oxidative stress and inflammatory response, and regulate autophagy, thereby alleviating NAFLD. Natural herbal medicines have received extensive attention recently because of their regulatory effects on AMPK and low side effects. In this article, we reviewed the biologically active natural herbal medicines (such as natural herbal medicine formulas, extracts, polysaccharides, and monomers) that reported in recent years to treat NAFLD via regulating AMPK, which can serve as a foundation for subsequent development of candidate drugs for NAFLD.
Collapse
Affiliation(s)
- Yongqing Cai
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lu Fang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, 400016, China
| | - Fei Chen
- Department of Pharmacy, Dazhou Integrated Traditional Chinese Medicine and Western Medicine Hospital, Dazhou, Sichuan, 635000, China
| | - Peiling Zhong
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, 400016, China
| | - Xiangru Zheng
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Haiyan Xing
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Rongrong Fan
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, 14152, Sweden
| | - Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, 400016, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, 400016, China
| |
Collapse
|
24
|
Danpanichkul P, Suparan K, Prasitsumrit V, Ahmed A, Wijarnpreecha K, Kim D. Long-term outcomes and risk modifiers of metabolic dysfunction-associated steatotic liver disease between lean and non-lean populations. Clin Mol Hepatol 2025; 31:74-89. [PMID: 39439408 PMCID: PMC11791619 DOI: 10.3350/cmh.2024.0631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024] Open
Abstract
One-third of adults across the globe exhibit metabolic dysfunction-associated steatotic liver disease (MASLD)-formerly known as nonalcoholic fatty liver disease (NAFLD). To date, MASLD is the fastest-growing etiology of chronic liver disease and hepatocellular carcinoma (HCC). Besides the population with obesity, MASLD can also be found in lean populations, accounting for 13% of the global population, especially Asians. Notably, individuals with lean MASLD face equal or higher overall mortality rates compared to their non-lean counterparts. Risk modifiers encompass advanced age, hepatic fibrosis, and type 2 diabetes mellitus (T2DM). Moreover, the population with lean MASLD is associated with an increased risk of HCC, while their non-lean counterparts are more prone to cardiovascular outcomes and T2DM. Existing evidence indicates a similar risk of liver-related events and extrahepatic cancer between the two groups. However, MASLD-related genetic variants, such as PNPLA3 and TM6SF2, did not significantly affect mortality between the two populations. Still, underreporting alcohol consumption and regional representation limits the study's comprehensiveness. Longitudinal studies and mechanistic explorations are needed to understand differences in lean versus non-lean MASLD populations. This review highlights the need for awareness and tailored interventions in managing MASLD, considering lean individuals' unique risks.
Collapse
Affiliation(s)
- Pojsakorn Danpanichkul
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kanokphong Suparan
- Immunology Unit, Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Aijaz Ahmed
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Karn Wijarnpreecha
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Banner University Medical Center, Phoenix, AZ, USA
- BIO5 Institute, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Donghee Kim
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
25
|
Armandi A, Rosso C, Caviglia GP, Bugianesi E. An updated overview on hepatocellular carcinoma in patients with Metabolic dysfunction-Associated Steatotic Liver Disease: Trends, pathophysiology and risk-based surveillance. Metabolism 2025; 162:156080. [PMID: 39571891 DOI: 10.1016/j.metabol.2024.156080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
Hepatocellular carcinoma (HCC) is a relevant complication occurring in individuals with advanced Metabolic dysfunction-Associated Steatotic Liver Disease (MASLD). Recent epidemiological data suggest an alarming increase in the HCC burden worldwide, with a relevant proportion attributable to MASLD (up to 38 %), either in cirrhotic or non-cirrhotic livers. In view of the changing landscape of metabolic syndrome as "silent pandemic", this narrative review aims to provide an updated picture of the burden of HCC in individuals with MASLD. In the complex pathophysiological pathways linking insulin resistance to MASLD and cardiometabolic syndrome, metabolic inflammation appears a relevant driver of systemic as well as organ-specific complications. Novel insights from the field of immunology, gut-derived liver damage, and association with extra-hepatic cancers will be discussed. Finally, strategies for risk-based HCC surveillance (circulating biomarkers, prognostic models and polygenic risk scores) will be provided and the potential impact of novel drug targeting fibrosing Metabolic dysfunction-Associated Steatohepatitis (MASH) on incident HCC will be discussed.
Collapse
Affiliation(s)
- Angelo Armandi
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Torino, Italy.
| | - Chiara Rosso
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Torino, Italy.
| | - Gian Paolo Caviglia
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Torino, Italy.
| | - Elisabetta Bugianesi
- Division of Gastroenterology and Hepatology, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Torino, Italy.
| |
Collapse
|
26
|
Bril F, Elbert A. Metabolic dysfunction-associated steatotic liver disease and urinary system cancers: Mere coincidence or reason for concern? Metabolism 2025; 162:156066. [PMID: 39551388 DOI: 10.1016/j.metabol.2024.156066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a systemic disease characterized by insulin resistance and lipotoxicity. Its association with type 2 diabetes, cardiovascular disease, liver cirrhosis, and hepatocellular carcinoma are well described. However, the association of MASLD and extra-hepatic cancers has received significantly less attention. This narrative review will summarize the conflicting evidence regarding the association between MASLD and cancers of the urinary system, including renal cell carcinoma, urothelial carcinoma, and prostate adenocarcinoma. It will explore potential mechanisms that could be responsible for a higher risk of urinary system cancers in patients with MASLD. We hope that our comprehensive assessment of the literature will help the readers to better interpret the available evidence.
Collapse
Affiliation(s)
- Fernando Bril
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Alabama at Birmingham, Birmingham (UAB), AL, USA; UAB Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Alicia Elbert
- Centro de Enfermedades Renales e Hipertension Arterial (CEREHA), Buenos Aires, Argentina
| |
Collapse
|
27
|
Lee HY, Han KD, Kwon HS. Cumulative Burden of Fatty Liver and Kidney Cancer in Young Men: A National Population-Based Study. J Clin Med 2024; 14:148. [PMID: 39797231 PMCID: PMC11721000 DOI: 10.3390/jcm14010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Background: This national population-based study aimed to assess the cumulative burden of non-alcoholic fatty liver disease (NAFLD) measured via the fatty liver index (FLI) and its association with kidney cancer risk in young men aged 20-39. Methods: Using the Korean National Health Insurance Service database, we examined a cohort of 1,007,906 men (age 20-39) who underwent four consecutive annual check-ups from 2009 to 2012. The FLI, calculated from body mass index values, waist circumference, triglyceride levels, and gamma-glutamyl transferase levels, was used to quantify the cumulative burden of NAFLD (FLI ≥ 60). The study population was followed until a kidney cancer diagnosis was made, death occurred, or the advent of 2020. Results: Over a mean follow-up of 7.74 years, 649 subjects developed kidney cancer. An increasing mean FLI was associated with an elevated hazard ratio (HR) for kidney cancer. The cumulative frequency of NAFLD (0-4) showed a corresponding increase in the HR for kidney cancer. This association persisted after adjusting for lifestyle factors including smoking, alcohol consumption, and physical activity. Subjects with improved NAFLD had a decreased risk of kidney cancer compared to those with persistent or aggravated NAFLD. Conclusions: This study revealed a significant association between NAFLD and kidney cancer in young men. Addressing NAFLD may offer a valuable opportunity to mitigate premature morbidity and mortality associated with young-onset kidney cancer in subsequent generations.
Collapse
Affiliation(s)
- Hee Yeon Lee
- Division of Oncology, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 07345, Republic of Korea;
| | - Kyung Do Han
- Department of Statistics and Actuarial Science, Soongsil University, 369, Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| | - Hyuk-Sang Kwon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Republic of Korea
| |
Collapse
|
28
|
Orfanidou M, Polyzos SA. Retinopathy in Metabolic Dysfunction-Associated Steatotic Liver Disease. MEDICINA (KAUNAS, LITHUANIA) 2024; 61:38. [PMID: 39859020 PMCID: PMC11766779 DOI: 10.3390/medicina61010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a multisystemic disease, i.e., influencing various organ systems beyond the liver and, thus, contributing to comorbidities. Characterized by excessive fat accumulation in the hepatocytes, MASLD is frequently linked to metabolic syndrome components, such as obesity, insulin resistance, dyslipidemia, and hypertension. Therefore, exploring the intricate connection between MASLD and other organ systems, including the eyes, seems to be essential. In this context, retinopathy has been investigated for its potential association with MASLD, since both conditions share common pathogenetic pathways. Chronic low-grade inflammation, oxidative stress, insulin resistance, and endothelial dysfunction are only some of those mechanisms contributing to disease progression and, possibly, determining the bidirectional interplay between the liver and retinal pathology. This narrative review aims to summarize data concerning the multisystemicity of MASLD, primarily focusing on its potential association with the eyes and, particularly, retinopathy. Identifying this possible association may emphasize the need for early screening and integrated management approaches that address the liver and eyes as interconnected components within the framework of a systemic disease. Further research is necessary to delineate the precise mechanisms and develop targeted interventions to mitigate the bidirectional impact between the liver and eyes, aiming to reduce the overall burden of disease and improve patient outcomes.
Collapse
Affiliation(s)
- Myrsini Orfanidou
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- First Department of Ophthalmology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stergios A. Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
29
|
Perry AS, Hadad N, Chatterjee E, Jimenez-Ramos M, Farber-Eger E, Roshani R, Stolze LK, Betti MJ, Zhao S, Huang S, Martens L, Kendall TJ, Thone T, Amancherla K, Bailin S, Gabriel CL, Koethe J, Carr JJ, Terry JG, Vaitinadin NS, Freedman JE, Tanriverdi K, Alsop E, Van Keuren-Jensen K, Sauld JFK, Mahajan G, Khan SS, Colangelo L, Nayor M, Fisher-Hoch S, McCormick JB, North KE, Below JE, Wells QS, Abel ED, Kalhan R, Scott C, Guilliams M, Gamazon ER, Fallowfield JA, Banovich NE, Das S, Shah R. A prognostic molecular signature of hepatic steatosis is spatially heterogeneous and dynamic in human liver. Cell Rep Med 2024; 5:101871. [PMID: 39657669 PMCID: PMC11722105 DOI: 10.1016/j.xcrm.2024.101871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/06/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
Hepatic steatosis is a central phenotype in multi-system metabolic dysfunction and is increasing in parallel with the obesity pandemic. We use a translational approach integrating clinical phenotyping and outcomes, circulating proteomics, and tissue transcriptomics to identify dynamic, functional biomarkers of hepatic steatosis. Using multi-modality imaging and broad proteomic profiling, we identify proteins implicated in the progression of hepatic steatosis that are largely encoded by genes enriched at the transcriptional level in the human liver. These transcripts are differentially expressed across areas of steatosis in spatial transcriptomics, and several are dynamic during stages of steatosis. Circulating multi-protein signatures of steatosis strongly associate with fatty liver disease and multi-system metabolic outcomes. Using a humanized "liver-on-a-chip" model, we induce hepatic steatosis, confirming cell-specific expression of prioritized targets. These results underscore the utility of this approach to identify a prognostic, functional, dynamic "liquid biopsy" of human liver, relevant to biomarker discovery and mechanistic research applications.
Collapse
Affiliation(s)
- Andrew S Perry
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Niran Hadad
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Emeli Chatterjee
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Maria Jimenez-Ramos
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | | | - Rashedeh Roshani
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Michael J Betti
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shilin Zhao
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Shi Huang
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Liesbet Martens
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Timothy J Kendall
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK; Edinburgh Pathology, University of Edinburgh, Edinburgh, UK
| | - Tinne Thone
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | - Samuel Bailin
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Curtis L Gabriel
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John Koethe
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - J Jeffrey Carr
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | - Jane E Freedman
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | - Eric Alsop
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | | | | | - Sadiya S Khan
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Laura Colangelo
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matthew Nayor
- Sections of Cardiovascular Medicine and Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Susan Fisher-Hoch
- School of Public Health, The University of Texas Health Science Center at Houston, Brownsville, TX, USA
| | - Joseph B McCormick
- School of Public Health, The University of Texas Health Science Center at Houston, Brownsville, TX, USA
| | - Kari E North
- CVD Genetic Epidemiology Computational Laboratory, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Jennifer E Below
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quinn S Wells
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | - E Dale Abel
- Department of Medicine, David Geffen School of Medicine and UCLA Health, University of California-Los Angeles, Los Angeles, CA, USA
| | - Ravi Kalhan
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Charlotte Scott
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Martin Guilliams
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Eric R Gamazon
- Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
| | - Ravi Shah
- Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
30
|
Tan EY, Muthiah MD, Sanyal AJ. Metabolomics at the cutting edge of risk prediction of MASLD. Cell Rep Med 2024; 5:101853. [PMID: 39657668 PMCID: PMC11722125 DOI: 10.1016/j.xcrm.2024.101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/12/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a major public health threat globally. Management of patients afflicted with MASLD and research in this domain are limited by the lack of robust well-established non-invasive biomarkers for diagnosis, prognostication, and monitoring. The circulating metabolome reflects both the systemic metabo-inflammatory milieu and changes in the liver in affected individuals. In this review we summarize the available literature on changes in the different components of the metabolome in MASLD with a focus on changes that are linked to the presence of underlying steatohepatitis, severity of disease activity, and fibrosis stage. We further summarize the existing literature around biomarker panels that are derived from interrogation of the metabolome. Their relevance to disease biology and utility in practice are also discussed. We further highlight potential direction for future studies particularly to ensure they are fit for purpose and suitable for widespread use.
Collapse
Affiliation(s)
- En Ying Tan
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore.
| | - Mark D Muthiah
- Division of Gastroenterology and Hepatology, Department of Medicine, National University Health System, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Arun J Sanyal
- Stravitz-Sanyal Institute for Liver Disease and Metabolic Health, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.
| |
Collapse
|
31
|
Zhu N, Wang X, Zhu H, Zheng Y. Exploring the role of alternative lengthening of telomere-related genes in diagnostic modeling for non-alcoholic fatty liver disease. Sci Rep 2024; 14:30309. [PMID: 39638831 PMCID: PMC11621558 DOI: 10.1038/s41598-024-81129-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Previous studies have reported an association between telomere length and non-alcoholic fatty liver disease (NAFLD). This study aimed to explore the involvement of alternative lengthening of telomere-related genes (ALTRGs) in the pathology of NAFLD, construct a risk signature, and evaluate both treatment and prognosis. Three NAFLD datasets (GSE48452, GSE89632, and GSE63067) were collected from the GEO database and merged into combined GEO datasets. ALTRGs were collected from GeneCards and PubMed databases. Differentially expressed genes (DEGs) were identified, and functional enrichment analysis was performed. This study employed a support vector machine algorithm and least absolute shrinkage and selection operator regression analysis to identify key genes for constructing a diagnostic model. High- and low-risk groups were identified from the combined GEO datasets using the diagnostic model. Gene set enrichment analysis, regulatory network analysis, and intergroup immune infiltration analysis were performed. This study identified the key genes using receiver operating characteristic and Friends analysis. Expression of these genes was validated in a mouse model of NAFLD. Twenty-five genes were differentially expressed, with a positive correlation between FOS and EGR1 and a negative correlation between MYC and CEBPA. A diagnostic model was constructed using 12 genes, and high- and low-risk groups were identified. CAMK2G, ERBB2, FOSB, WT1, and CEBPA showed certain accuracy, and their expression levels were significantly different in the model. Immune infiltration analysis between the risk groups revealed that six immune cells were statistically significant. This includes a strong negative interaction between type 2 T helper cells and SPHK2 in the high-risk group. These findings suggest that ALTRDEGs are potential therapeutic targets and prognostic indicators for NAFLD. However, further investigations are required to elucidate the specific underlying mechanisms.
Collapse
Affiliation(s)
- Nan Zhu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Department of Internal Medicine, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei Province, China
| | - Xiaoliang Wang
- Department of Cardiology, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei Province, China
| | - Huiting Zhu
- Department of Internal Medicine, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei Province, China
| | - Yue Zheng
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Department of Gastroenterology, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei Province, China.
| |
Collapse
|
32
|
Anson M, Poon JS, Henney AE, Riley D, Ibarbaru GH, Sieberhagen C, Cuthbertson DJ, Alam U, Hydes T. The chemoprotective effect of anti-platelet agents on cancer incidence in people with non-alcoholic fatty liver disease (NAFLD): a retrospective cohort study. BMC Med 2024; 22:574. [PMID: 39627877 PMCID: PMC11613771 DOI: 10.1186/s12916-024-03802-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/28/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is associated with an increased incidence of hepatic and extrahepatic cancers, in particular those linked to obesity. In people with chronic liver disease, aspirin may confer protection against hepatocellular carcinoma (HCC). We explore the potential chemoprotective effect of aspirin/other anti-platelet agents on obesity-related cancers, including HCC in people with NAFLD. METHODS We performed a retrospective cohort study of anonymised electronic medical records using the TriNetX network (Cambridge, MA, USA), a global federated database. We identified adults aged 18 or over with a diagnosis of NAFLD, prior to commencing antiplatelet agents. Two groups were created: antiplatelet (1) versus no antiplatelet use (2). We propensity score matched for nine variables. Antiplatelet use was defined as aspirin, ticagrelor, cangrelor, clopidogrel or prasugrel use for at least 1 year. The outcomes of interest were incidence of HCC and other obesity-related cancers. Follow-up was for 5 years. We performed subgroup analyses on aspirin users only and stratified findings for sex and age. Sensitivity analysis was conducted on individuals with 3- and 5-year aspirin exposure. RESULTS Post matching, there were 42,192 people per group. Antiplatelet use in people with NAFLD was associated with statistically significant reduction in all obesity-related cancers (HR 0.71, 95% CI 0.65-0.78, p < 0.001) and individually for HCC (HR 0.52, 95% CI 0.40-0.68, p < 0.001), breast carcinoma (HR 0.78, 95% CI 0.66-0.92, p = 0.003), pancreatic carcinoma (HR 0.61, 95% CI 0.47-0.78, p < 0.001) and colorectal carcinoma (HR 0.68, 95% CI 0.56-0.84, p < 0.001). For women, there was a significant reduction in risk of ovarian carcinoma (HR 0.75, 95% CI 0.57-0.98, p = 0.034). Aspirin monotherapy was similarly associated with reduced incidence of HCC (HR 0.46, 95% CI 0.32-0.64, p < 0.001) and all obesity-related cancers (HR 0.71, 95% CI, 0.56-0.90, p = 0.004), with benefits observed in males (HR 0.71, 95% CI 0.56-0.90, p = 0.004), females (HR 0.77, 95% CI 0.67-0.88, p < 0.001) and in older (HR 0.72, 95% CI 0.63-0.82, p < 0.001) but not younger people (HR 0.78, 95% CI 0.60-1.03, p = 0.589). CONCLUSIONS Aspirin/antiplatelet agents may have a role in primary cancer prevention in people living with NAFLD.
Collapse
Affiliation(s)
- Matthew Anson
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
- University Hospital Aintree, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Jun Shang Poon
- University Hospital Aintree, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Alex E Henney
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
- University Hospital Aintree, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - David Riley
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
- University Hospital Aintree, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | | | - Cyril Sieberhagen
- University Hospital Aintree, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Daniel J Cuthbertson
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
- University Hospital Aintree, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Uazman Alam
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK
- University Hospital Aintree, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Theresa Hydes
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
- Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool, UK.
- University Hospital Aintree, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
33
|
Lan T, Tacke F. Diagnostics and omics technologies for the detection and prediction of metabolic dysfunction-associated steatotic liver disease-related malignancies. Metabolism 2024; 161:156015. [PMID: 39216799 DOI: 10.1016/j.metabol.2024.156015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to rise, making it the leading etiology of chronic liver diseases and a prime cause of liver-related mortality. MASLD can progress into steatohepatitis (termed MASH), fibrosis, cirrhosis, and ultimately cancer. MASLD is associated with increased risks of hepatocellular carcinoma (HCC) and also extrahepatic malignancies, which can develop in both cirrhotic and non-cirrhotic patients, emphasizing the importance of identifying patients with MASLD at risk of developing MASLD-associated malignancies. However, the optimal screening, diagnostic, and risk stratification strategies for patients with MASLD at risk of cancer are still under debate. Individuals with MASH-associated cirrhosis are recommended to undergo surveillance for HCC (e.g. by ultrasound and biomarkers) every six months. No specific screening approaches for MASLD-related malignancies in non-cirrhotic cases are established to date. The rapidly developing omics technologies, including genetics, metabolomics, and proteomics, show great potential for discovering non-invasive markers to fulfill this unmet need. This review provides an overview on the incidence and mortality of MASLD-associated malignancies, current strategies for HCC screening, surveillance and diagnosis in patients with MASLD, and the evolving role of omics technologies in the discovery of non-invasive markers for the prediction and risk stratification of MASLD-associated HCC.
Collapse
Affiliation(s)
- Tian Lan
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany; Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| |
Collapse
|
34
|
Williams DM, Ali J, Cragg J, Ch'ng CL, Williams NW, Stephens JW, Min T. The Bidirectional Relationship Between Type 2 Diabetes and Metabolic Dysfunction-Associated Steatotic Liver Disease: A Retrospective Cohort Study. Cureus 2024; 16:e75993. [PMID: 39835079 PMCID: PMC11743228 DOI: 10.7759/cureus.75993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Type 2 diabetes (T2D) and metabolic dysfunction-associated steatotic liver disease (MASLD) have shared pathophysiology. We aim to explore associations between these diseases and the impact of T2D therapies on MASLD-related outcomes in a real-world population. Methods A retrospective cohort study included 153 patients with biopsy-proven MASLD. Health records were reviewed for biochemical or radiological changes over follow-up and compared by T2D status. The rate of incident T2D was determined, and in those with T2D, the changes over follow-up were compared by prescribed treatment. The statistical significance of changes over follow-up was evaluated by Student's t-test, and logistic regression was undertaken to determine the impact of variables on T2D development. Results One hundred and fifty-three patients were included with a mean follow-up of 48.0±22.0 months. Patients with T2D (n=73) were older than patients without T2D (n=80; 56.3 vs 51.9 years, p<0.05). Patients with T2D had a greater stage of hepatic fibrosis (2.6 vs 1.7, p<0.001). Nine (12.3%) patients with T2D and four (5.0%) without T2D died during follow-up (p=0.10). Patients without T2D had greater glycosylated haemoglobin (HbA1c) over follow-up (3.0 mmol/mol, p<0.01), and 21 (26.3%) developed T2D. Patients with T2D treated with sodium-glucose transporter-2 inhibitors (SGLT-2i) and/or glucagon-like peptide-1 receptor analogues (GLP-1RA) had a reduction in FibroScan®-controlled attenuation parameter (-33.7dB/m, p<0.001) but not liver stiffness measure. There were no significant FibroScan® changes in those receiving other treatments. Conclusions Patients with T2D had greater hepatic fibrosis, and one in four patients with MASLD developed T2D over four years. Treatment with SGLT-2i and/or GLP-1RA in patients with T2D is associated with improved measures of steatosis but not fibrosis.
Collapse
Affiliation(s)
- David M Williams
- Department of Diabetes and Endocrinology, Morriston Hospital, Swansea, GBR
| | - Jumaina Ali
- Department of General Medicine, Morriston Hospital, Swansea, GBR
| | - Jake Cragg
- Department of General Medicine, Morriston Hospital, Swansea, GBR
| | - Chin L Ch'ng
- Department of Hepatology, Singleton Hospital, Swansea, GBR
| | | | - Jeffrey W Stephens
- Diabetes Research Group, Swansea University Medical School, Swansea, GBR
| | - Thinzar Min
- Diabetes Research Group, Swansea University Medical School, Swansea, GBR
| |
Collapse
|
35
|
Ramesh PR, Krishnan P, Prabu S, Srinivasan V, Niranjan V. Diagnosis and management of metabolic dysfunction- associated steatotic liver disease in South Asians- A clinical review. OBESITY PILLARS 2024; 12:100142. [PMID: 39498281 PMCID: PMC11532278 DOI: 10.1016/j.obpill.2024.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024]
Abstract
Background Metabolic dysfunction-associated steatotic liver disease (MASLD), previously termed as nonalcoholic fatty liver disease (NAFLD) is a hepatic manifestation of obesity and metabolic syndrome. It is mainly caused by insulin resistance. With the increased risk of visceral obesity in South Asians, the prevalence of MASLD is on the rise. The morbidity associated with MASLD and its complications, including hepatocellular carcinoma is projected to increase in this South Asian population. Methods In this narrative review we explore the diagnosis and management of MASLD in the South Asian population. We summarize the findings from the recent literature on the diagnostic methods and management options for MASLD in this population. Results Through our search we found no specific guidelines for the diagnosis and management of MASLD in the South Asian population. The existing general guidelines may not be applied to South Asian populations due to the differences in phenotype, genotype, social and cultural aspects. South Asian countries also have limited resources with the non-availability of newer pharmacotherapeutic agents. Conclusion The goal of this review is to guide obesity physicians and primary care providers to have a stepwise approach to treat patients at risk for MASLD with a main focus on interdisciplinary management most applicable to South Asian patients. More research is needed to formulate guidelines and algorithm that are specific for the South Asian population.
Collapse
Affiliation(s)
- Prajith Raj Ramesh
- Department of Gastroenterology and Hepatology, Mayo Clinic, 1216 2nd St SW, Rochester, MN, 55902, USA
| | - Priya Krishnan
- Department of Medicine, University of Louisville, Chief of Medicine, RRVAMC, University of Louisville, 550 South Jackson Street, 3rd Floor, Ste. A3K00, Louisville, KY, 40202, USA
| | - Samyuktha Prabu
- Department of Endocrinology, Mayo Clinic, 1216 2nd St SW, Rochester, MN, 55902, USA
| | - Varshini Srinivasan
- Department of Endocrinology, Mayo Clinic, 1216 2nd St SW, Rochester, MN, 55902, USA
| | - Varalakshmi Niranjan
- Department of Medicine, University of Connecticut, Farmington Avenue, Farmington, 06030, USA
| |
Collapse
|
36
|
Molla MD, Symonds EL, Winter JM, Debie A, Wassie MM. Metabolic risk factors of colorectal cancer: Umbrella review. Crit Rev Oncol Hematol 2024; 204:104502. [PMID: 39245299 DOI: 10.1016/j.critrevonc.2024.104502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND AND AIM The association between metabolic factors and colorectal cancer (CRC) risk is inconclusive. This umbrella review aimed to summarise and describe the association using existing systematic reviews and/or meta-analyses. METHOD Four databases (Medline, Scopus, Web of Science, and Cochrane Library) were searched for systematic reviews and/or meta-analyses of observational studies. Two independent authors extracted data on the summary estimated effect and heterogeneity of studies using I2 from the individual reviews. The Assessing the Methodological Quality of Systematic Reviews (AMSTAR 2) tool was used to evaluate the methodological quality. RESULTS 49 articles were included in this review. Although most included studies were graded with critically low methodological quality (81.6 %), we found a significant positive association between obesity (summary relative risk (SRR) range 1.19-1.49), diabetes mellitus (SRR range 1.20-1.37), hypertension (SRR range 1.07-1.62), metabolic syndrome (SRR range 1.25-1.36), non-alcoholic fatty liver disease (pooled odds ratio (POR) range 1.13-1.56), and risk of CRC. Higher serum high-density lipoprotein cholesterol levels were associated with a lower risk of CRC in 3/6 reviews, while others did not find any association. There was no clear association between high triglyceride levels, total cholesterol levels, low-density lipoprotein cholesterol levels, and risk of CRC. CONCLUSION This umbrella review identified that most metabolic factors are significantly associated with increased risk of CRC. Thus, people affected by metabolic factors may be benefited from CRC screening and surveillance.
Collapse
Affiliation(s)
- Meseret Derbew Molla
- Flinders University, College of Medicine and PublicHealth, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia; Department of Biochemistry, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
| | - Erin L Symonds
- Flinders University, College of Medicine and PublicHealth, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia; Gastroenterology and Hepatology Department, Flinders Medical Centre, Southern Adelaide Local Health Network, Bedford Park, South Australia, Australia
| | - Jean M Winter
- Flinders University, College of Medicine and PublicHealth, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Ayal Debie
- Flinders University, College of Medicine and PublicHealth, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia; Department of Health Systems and Policy, Institute of Public Health, University of Gondar, Gondar, Ethiopia
| | - Molla M Wassie
- Flinders University, College of Medicine and PublicHealth, Flinders Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
37
|
Fan JG, Xu XY, Yang RX, Nan YM, Wei L, Jia JD, Zhuang H, Shi JP, Li XY, Sun C, Li J, Wong VWS, Duan ZP. Guideline for the Prevention and Treatment of Metabolic Dysfunction-associated Fatty Liver Disease (Version 2024). J Clin Transl Hepatol 2024; 12:955-974. [PMID: 39544247 PMCID: PMC11557364 DOI: 10.14218/jcth.2024.00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
With the rising epidemic of obesity, metabolic syndrome, and type 2 diabetes mellitus in China, metabolic dysfunction-associated non-alcoholic fatty liver disease has become the most prevalent chronic liver disease. This condition frequently occurs in Chinese patients with alcoholic liver disease and chronic hepatitis B. To address the impending public health crisis of non-alcoholic fatty liver disease and its underlying metabolic issues, the Chinese Society of Hepatology and the Chinese Medical Association convened a panel of clinical experts to revise and update the "Guideline of prevention and treatment of non-alcoholic fatty liver disease (2018, China)". The new edition, titled "Guideline for the prevention and treatment of metabolic dysfunction-associated fatty liver disease (Version 2024)", offers comprehensive recommendations on key clinical issues, including screening and monitoring, diagnosis and evaluation, treatment, and follow-up for metabolic dysfunction-associated fatty liver disease and metabolic dysfunction-associated steatotic liver disease. Metabolic dysfunction-associated fatty liver disease is now the preferred English term and is used interchangeably with metabolic dysfunction-associated steatotic liver disease. Additionally, the guideline emphasizes the importance of multidisciplinary collaboration among hepatologists and other specialists to manage cardiometabolic disorders and liver disease effectively.
Collapse
Affiliation(s)
- Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Yuan Xu
- Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Rui-Xu Yang
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue-Min Nan
- Department of Traditional and Western Medical Hepatology, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
| | - Lai Wei
- Hepatopancreatobiliary Centre, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Ji-Dong Jia
- Liver Research Centre, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hui Zhuang
- Department of Microbiology and Centre for Infectious Diseases, Peking University Health Science Centre, Beijing, China
| | - Jun-Ping Shi
- Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiao-Ying Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chao Sun
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Li
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Vincent Wai-Sun Wong
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhong-Ping Duan
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Chinese Society of Hepatology, Chinese Medical Association
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Infectious Diseases, Peking University First Hospital, Beijing, China
- Department of Traditional and Western Medical Hepatology, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
- Hepatopancreatobiliary Centre, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
- Liver Research Centre, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Department of Microbiology and Centre for Infectious Diseases, Peking University Health Science Centre, Beijing, China
- Department of Hepatology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
38
|
Choi W, Park M, Park S, Park JY, Hong AR, Yoon JH, Ha KH, Kim DJ, Kim HK, Kang HC. Combined impact of prediabetes and hepatic steatosis on cardiometabolic outcomes in young adults. Cardiovasc Diabetol 2024; 23:422. [PMID: 39574105 PMCID: PMC11583572 DOI: 10.1186/s12933-024-02516-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024] Open
Abstract
OBJECTIVES This study aimed to investigate the impact of hepatic steatosis on cardiometabolic outcomes in young adults with prediabetes. METHODS A nationwide cohort study was conducted with 896,585 young adults under 40 years old without diabetes or previous history of cardiovascular disease. Hepatic steatosis was identified using a fatty liver index of ≥ 60. The outcomes of this study were incident diabetes (DM) and composite major adverse cardiovascular events (MACE), including myocardial infarction, stroke, or cardiovascular death. RESULTS During a median follow-up of 11.8 years, 27,437 (3.1%) incident DM cases and 6,584 (0.7%) MACE cases were recorded. Young adults with prediabetes had a significantly higher risk of incident DM (hazard ratio [HR]: 2.81; 95% confidence interval [CI]: 2.74-2.88; P-value: <0.001) and composite MACE risk (HR: 1.10; 95% CI: 1.03-1.17; P-value: 0.003) compared to individuals with normoglycemia, after adjusting for relevant covariates. Stratification based on hepatic steatosis showed that the combination of prediabetes and hepatic steatosis posed the highest risk for these outcomes, after adjusting for relevant covariates. For incident DM, the HRs (95% CI; P-value) were: 3.15 (3.05-3.26; <0.001) for prediabetes without hepatic steatosis, 2.89 (2.78-3.01; <0.001) for normoglycemia with hepatic steatosis, and 6.60 (6.33-6.87; <0.001) for prediabetes with hepatic steatosis. For composite MACE, the HRs (95% CI; P-value) were 1.05 (0.97-1.13; 0.235) for prediabetes without hepatic steatosis, 1.39 (1.27-1.51; <0.001) for normoglycemia with hepatic steatosis, and 1.60 (1.44-1.78; <0.001) for prediabetes with hepatic steatosis. CONCLUSIONS Prediabetes and hepatic steatosis additively increased the risk of cardiometabolic outcomes in young adults. These findings hold significance for physicians as they provide insights into assessing high-risk individuals among young adults with prediabetes.
Collapse
Affiliation(s)
- Wonsuk Choi
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, 322, Seoyang-ro, Hwasun-eup, Hwasun-gun, Hwasun, 58128, Jeollanam-do, Republic of Korea.
- Department of Biological Chemistry, University of California Irvine School of Medicine, Irvine, CA, USA.
| | - Minae Park
- Data Science Team, Hanmi Pharm. Co., Ltd, Seoul, Korea
| | - Sojeong Park
- Data Science Team, Hanmi Pharm. Co., Ltd, Seoul, Korea
| | - Ji Yong Park
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, 322, Seoyang-ro, Hwasun-eup, Hwasun-gun, Hwasun, 58128, Jeollanam-do, Republic of Korea
| | - A Ram Hong
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, 322, Seoyang-ro, Hwasun-eup, Hwasun-gun, Hwasun, 58128, Jeollanam-do, Republic of Korea
| | - Jee Hee Yoon
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, 322, Seoyang-ro, Hwasun-eup, Hwasun-gun, Hwasun, 58128, Jeollanam-do, Republic of Korea
| | - Kyoung Hwa Ha
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Korea
| | - Dae Jung Kim
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon, Korea
| | - Hee Kyung Kim
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, 322, Seoyang-ro, Hwasun-eup, Hwasun-gun, Hwasun, 58128, Jeollanam-do, Republic of Korea.
| | - Ho-Cheol Kang
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, 322, Seoyang-ro, Hwasun-eup, Hwasun-gun, Hwasun, 58128, Jeollanam-do, Republic of Korea
| |
Collapse
|
39
|
Sapmaz A, Paik A, Henry L, Younossi ZM. A comprehensive review of patient-reported outcomes in metabolic dysfunction-associated steatotic liver disease. METABOLISM AND TARGET ORGAN DAMAGE 2024; 4. [DOI: 10.20517/mtod.2024.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The global prevalence of obesity and type 2 diabetes has increased, contributing to an increased worldwide prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD). Currently, one in three adults is affected by MASLD and/or its progressive form, metabolic dysfunction-associated steatohepatitis (MASH), making this liver disease a significant public health challenge. Along with MASH-related cirrhosis, these conditions are poised to become the leading causes of chronic liver disease and liver transplants in the near future. Given the growing burden of MASLD and MASH, it is crucial to understand their impact from the patients’ perspective. One way to do this is by assessing patient-reported outcomes (PROs), including health-related quality of life (HRQL). HRQL can be assessed using generic instruments like the short form 36 version (SF-36) and the European quality of life-5 dimensions questionnaire (EQ-5D), or disease-specific tools such as the chronic liver disease questionnaire for nonalcoholic steatohepatitis (CLDQ-NASH). Given the limitations of each instrument, the best approach generally involves using both generic and disease-specific instruments. Evidence indicates that HRQL scores are significantly lower in individuals with MASLD, especially in areas assessing physical activity and the ability to perform daily living tasks. Fatigue and impaired work productivity are also important PROs for those with MASLD/MASH. These decrements in PROs worsen with disease progression but appear to improve with disease regression, including improvements linked to treatment. In this context, measuring PROs enhances the assessment of other patient-centric outcomes and provides insights for the healthcare community to develop interventions that could improve both clinical and humanistic outcomes for individuals living with MASLD/MASH.
Collapse
|
40
|
Lonardo A, Ballestri S, Baffy G, Weiskirchen R. Liver fibrosis as a barometer of systemic health by gauging the risk of extrahepatic disease. METABOLISM AND TARGET ORGAN DAMAGE 2024; 4. [DOI: 10.20517/mtod.2024.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
This review article proposes the theory that liver fibrosis, the abnormal accumulation of excessive extracellular matrix, is not just an indicator of liver disease but also a negative reflection of overall systemic health. Liver fibrosis poses a heavy financial burden on healthcare systems worldwide and can develop due to chronic liver disease from various causes, often due to sustained inflammation. Liver fibrosis may not generate symptoms and become apparent only when it reaches the stage of cirrhosis and is associated with clinically significant portal hypertension and leads to decompensation events or promotes the development of hepatocellular carcinoma. While chronic viral hepatitis and excessive alcohol consumption were once the primary causes of chronic liver disease featuring fibrosis, this role is now increasingly taken over by metabolic dysfunction-associated steatotic liver disease (MASLD). In MASLD, endothelial dysfunction is an essential component in pathogenesis, promoting the development of liver fibrosis, but it is also present in endothelial cells of other organs such as the heart, lungs, and kidneys. Accordingly, liver fibrosis is a significant predictor of liver-related outcomes, as well as all-cause mortality, cardiovascular risk, and extrahepatic cancer. Physicians should be aware that individuals seeking medical attention for reasons unrelated to liver health may also have advanced fibrosis. Early identification of these at-risk individuals can lead to a more comprehensive assessment and the use of various treatment options, both approved and investigational, to slow or reverse the progression of liver fibrosis.
Collapse
|
41
|
Barberá A, White TM, Arora AK, Henry L, Lazarus JV, Younossi ZM. Patient-Reported Outcomes in Metabolic Dysfunction-Associated Steatotic Liver Disease. Semin Liver Dis 2024. [PMID: 39374917 DOI: 10.1055/a-2435-2091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide and can progress to serious complications, including metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, end-stage liver disease, and hepatocellular carcinoma. Predisposing risk factors for MASH include obesity, type 2 diabetes, dyslipidemia, and metabolic syndrome. Patients with MASH often experience significant impairments in their health-related quality of life and other patient-reported outcomes (PROs), particularly in physical functioning domains, fatigue, and vitality. Incorporating PROs offers valuable insights into patients' perspectives on their symptoms, treatment efficacy, and overall well-being, thereby guiding more holistic and patient-centered care strategies. This review aims to investigate the utilization of patient-reported outcome measures (PROMs) in the context of MASLD and MASH care, identify which PROMs are employed, and summarize the outcomes reported.
Collapse
Affiliation(s)
- Aurora Barberá
- The Global NASH Council, Washington, District of Columbia
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Trenton M White
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Anish K Arora
- Department of Family and Community Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Linda Henry
- The Global NASH Council, Washington, District of Columbia
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia
| | - Jeffrey V Lazarus
- The Global NASH Council, Washington, District of Columbia
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- CUNY Graduate School of Public Health and Health Policy, New York City, New York
| | - Zobair M Younossi
- The Global NASH Council, Washington, District of Columbia
- Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, Virginia
- Center for Outcomes Research in Liver Disease (CORLD), Washington, District of Columbia
| |
Collapse
|
42
|
Pontikoglou CG, Filippatos TD, Matheakakis A, Papadaki HA. Steatotic liver disease in the context of hematological malignancies and anti-neoplastic chemotherapy. Metabolism 2024; 160:156000. [PMID: 39142602 DOI: 10.1016/j.metabol.2024.156000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/26/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
The rising prevalence of obesity-related illnesses, such as metabolic steatotic liver disease (MASLD), represents a significant global public health concern. This disease affects approximately 30 % of the adult population and is the result of metabolic abnormalities rather than alcohol consumption. Additionally, MASLD is associated with an increased risk of cardiovascular disease (CVD), chronic liver disease, and a variety of cancers, particularly gastrointestinal cancers. Clonal hematopoiesis (CH) is a biological state characterized by the expansion of a population of blood cells derived from a single mutated hematopoietic stem cell. The presence of CH in the absence of a diagnosed blood disorder or cytopenia is known as clonal hematopoiesis of indeterminate potential (CHIP), which itself increases the risk of hematological malignancies and CVD. Steatotic liver disease may also complicate the clinical course of cancer patients receiving antineoplastic agents, a condition referred to as chemotherapy induced steatohepatitis (CASH). This review will present an outline of the various aspects of MASLD, including complications. Furthermore, it will summarize the existing knowledge on the emerging association between CHIP and MASLD and present the available data on patient cases with concurrent MASLD and hematological neoplasms. Finally, it will provide a brief overview of the chemotherapeutic drugs associated with CASH, the underlying pathophysiologic mechanisms and their clinical implications.
Collapse
Affiliation(s)
- Charalampos G Pontikoglou
- Department of Hematology, University Hospital of Heraklion, & School of Medicine of the University of Crete, Crete, Greece
| | - Theodosios D Filippatos
- Department of Internal Medicine, University Hospital of Heraklion, & School of Medicine of the University of Crete, Crete, Greece
| | - Angelos Matheakakis
- Department of Hematology, University Hospital of Heraklion, & School of Medicine of the University of Crete, Crete, Greece
| | - Helen A Papadaki
- Department of Hematology, University Hospital of Heraklion, & School of Medicine of the University of Crete, Crete, Greece.
| |
Collapse
|
43
|
Pennisi G, Infantino G, Celsa C, Di Maria G, Enea M, Vaccaro M, Cannella R, Ciccioli C, La Mantia C, Mantovani A, Mercurio F, Tilg H, Targher G, Di Marco V, Cammà C, Petta S. Clinical outcomes of MAFLD versus NAFLD: A meta-analysis of observational studies. Liver Int 2024; 44:2939-2949. [PMID: 39157862 DOI: 10.1111/liv.16075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
IMPORTANCE The recent change in terminology from nonalcoholic fatty liver disease (NAFLD) to metabolic dysfunction-associated fatty liver disease (MAFLD) and metabolic dysfunction-associated steatotic liver disease (MASLD) highlights the link between hepatic steatosis and metabolic dysfunction, taking out the stigmata of alcohol. OBJECTIVE We compared the effects of NAFLD and MAFLD definitions on the risk of overall and cardiovascular (CV) mortality, liver-related events (LRE), nonfatal CV events (CVE), chronic kidney disease (CKD), and extra-hepatic cancers (EHC). DATA SOURCES AND STUDY SELECTION We systematically searched four large electronic databases for cohort studies (published through August 2023) that simultaneously used NAFLD and MAFLD definitions for examining the risk of mortality and adverse CV, renal, or oncological outcomes associated with both definitions. In total, 21 eligible cohort studies were identified. Meta-analysis was performed using random-effects modelling. RESULTS Compared with those with NAFLD, individuals with MAFLD had significantly higher rates of overall mortality (random-effect OR 1.12, 95% CI 1.04-1.21, p = .004) and CV mortality (random-effect OR 1.15, 95% CI 1.04-1.26, p = .004), and a marginal trend towards higher rates of developing CKD (random-effect OR 1.06, 95% CI 1.00-1.12, p = .058) and EHC events (random-effect OR 1.11, 95% CI 1.00-1.23, p = .052). We found no significant differences in the risk LREs and nonfatal CVE between MAFLD and NAFLD. Meta-regression analyses identified male sex and metabolic comorbidities as the strongest risk factors related to the risk of adverse clinical outcomes in MAFLD compared to NAFLD. CONCLUSIONS AND RELEVANCE Individuals with MAFLD have higher rates of overall and CV mortality and higher rates of developing CKD and EHC events than those with NAFLD, possibly due to the dysmetabolic risk profile related to MAFLD.
Collapse
Affiliation(s)
- Grazia Pennisi
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Giuseppe Infantino
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Ciro Celsa
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Gabriele Di Maria
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Marco Enea
- Dipartimento di Scienze Economiche, Aziendali e Statistiche, University of Palermo, Palermo, Italy
| | - Marco Vaccaro
- Dipartimento di Scienze Economiche, Aziendali e Statistiche, University of Palermo, Palermo, Italy
| | - Roberto Cannella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo, Italy
| | - Carlo Ciccioli
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Claudia La Mantia
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Alessandro Mantovani
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Verona, Verona, Italy
| | - Francesco Mercurio
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Vito Di Marco
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Calogero Cammà
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Salvatore Petta
- Section of Gastroenterology and Hepatology, Dipartimento Di Promozione Della Salute, Materno Infantile, Medicina Interna e Specialistica Di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| |
Collapse
|
44
|
Kalligeros M, Henry L, Younossi ZM. Metabolic dysfunction-associated steatotic liver disease and its link to cancer. Metabolism 2024; 160:156004. [PMID: 39182603 DOI: 10.1016/j.metabol.2024.156004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Metabolic-dysfunction associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD), is a growing global health concern with significant implications for oncogenesis. This review synthesizes current evidence on the association between MASLD and cancer risk, highlighting its role as a risk factor for both intrahepatic and extrahepatic malignancies. MASLD is increasingly recognized as a major cause of hepatocellular carcinoma (HCC), with its incidence rising in parallel with the prevalence of metabolic dysfunction. Furthermore, MASLD is associated with an elevated risk of various gastrointestinal cancers, including colorectal, esophageal, stomach, and pancreatic cancers. Beyond the digestive tract, evidence suggests that MASLD may also contribute to an increased risk of other cancers such as breast, prostate, thyroid, gynecological, renal and lung cancers. Understanding the mechanisms underlying these associations and the impact of MASLD on cancer risk is crucial for developing targeted screening and prevention strategies.
Collapse
Affiliation(s)
- Markos Kalligeros
- Division of Gastroenterology and Hepatology Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| | - Linda Henry
- The Global NASH Council, Washington, DC, United States of America; Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA, United States of America; Center for Outcomes Research in Liver Diseases, Washington, DC, United States of America
| | - Zobair M Younossi
- The Global NASH Council, Washington, DC, United States of America; Beatty Liver and Obesity Research Program, Inova Health System, Falls Church, VA, United States of America; Center for Outcomes Research in Liver Diseases, Washington, DC, United States of America.
| |
Collapse
|
45
|
Mantovani A, Lonardo A, Stefan N, Targher G. Metabolic dysfunction-associated steatotic liver disease and extrahepatic gastrointestinal cancers. Metabolism 2024; 160:156014. [PMID: 39182602 DOI: 10.1016/j.metabol.2024.156014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/09/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) poses a significant and ever-increasing health and economic burden worldwide. Substantial epidemiological evidence shows that MASLD is a multisystem disease that is associated not only with liver-related complications but is also associated with an increased risk of developing cardiometabolic comorbidities and extrahepatic cancers (principally gastrointestinal [GI] cancers). GI cancers account for a quarter of the global cancer incidence and a third of cancer-related deaths. In this narrative review, we provide an overview of the literature on (a) the epidemiological data on the risk of non-liver GI cancers in MASLD, (b) the putative mechanisms by which MASLD (and factors linked with MASLD) may increase this risk, and (c) the possible pharmacotherapies beneficially affecting both MASLD and extrahepatic GI cancer risk. There are multiple potential pathophysiological mechanisms by which MASLD may increase extrahepatic GI cancer risk. Although further studies are needed, the current evidence supports a possible extrahepatic carcinogenic role for MASLD, regardless of obesity and diabetes status, thus highlighting the potential role of tailoring cancer screening for individuals with MASLD. Although there are conflicting data in the literature, aspirin, statins and metformin appear to exert some chemo-preventive effects against GI cancer.
Collapse
Affiliation(s)
- Alessandro Mantovani
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Amedeo Lonardo
- Department of Internal Medicine, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Norbert Stefan
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University of Tübingen, Tübingen, Germany; Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Tübingen, Germany
| | - Giovanni Targher
- Department of Medicine, University of Verona, Italy; Metabolic Diseases Research Unit, IRCCS Sacro Cuore - Don Calabria Hospital, Negrar di Valpolicella, Italy.
| |
Collapse
|
46
|
Hosseini Shabanan S, Martins VF, Wolfson T, Weeks JT, Ceriani L, Behling C, Chernyak V, El Kaffas A, Borhani AA, Han A, Wang K, Fowler KJ, Sirlin CB. MASLD: What We Have Learned and Where We Need to Go-A Call to Action. Radiographics 2024; 44:e240048. [PMID: 39418184 PMCID: PMC11580021 DOI: 10.1148/rg.240048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 10/19/2024]
Abstract
Since its introduction in 1980, fatty liver disease (now termed metabolic dysfunction-associated steatotic liver disease [MASLD]) has grown in prevalence significantly, paralleling the rise of obesity worldwide. While MASLD has been the subject of extensive research leading to significant progress in the understanding of its pathophysiology and progression factors, several gaps in knowledge remain. In this pictorial review, the authors present the latest insights into MASLD, covering its recent nomenclature change, spectrum of disease, epidemiology, morbidity, and mortality. The authors also discuss current qualitative and quantitative imaging methods for assessing and monitoring MASLD. Last, they propose six unsolved challenges in MASLD assessment, which they term the proliferation, reproducibility, reporting, needle-in-the-haystack, availability, and knowledge problems. These challenges offer opportunities for the radiology community to proactively contribute to their resolution. The authors conclude with a call to action for the entire radiology community to claim a seat at the table, collaborate with other societies, and commit to advancing the development, validation, dissemination, and accessibility of the imaging technologies required to combat the looming health care crisis of MASLD.
Collapse
Affiliation(s)
| | | | - Tanya Wolfson
- From the Department of Radiology, UC San Diego Altman Clinical and
Translational Research Institute Liver Imaging Group, University of California
San Diego, 9452 Medical Center Dr, La Jolla, CA 92037 (S.H.S., V.F.M., T.W.,
J.T.W., L.C., K.J.F., C.B.S.); Pacific Rim Pathology, San Diego, Calif (C.B.);
Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
(V.C.); Department of Radiology, Stanford University School of Medicine,
Stanford, Calif (A.E.K.); Department of Radiology, Northwestern University
Feinberg School of Medicine, Chicago, Ill (A.A.B.); Department of Biomedical
Engineering and Mechanics, Virginia Polytechnic Institute and State University,
Blacksburg, Va (A.H.); and Department of Radiology, University of California San
Francisco, Calif (K.W.)
| | - Jake T. Weeks
- From the Department of Radiology, UC San Diego Altman Clinical and
Translational Research Institute Liver Imaging Group, University of California
San Diego, 9452 Medical Center Dr, La Jolla, CA 92037 (S.H.S., V.F.M., T.W.,
J.T.W., L.C., K.J.F., C.B.S.); Pacific Rim Pathology, San Diego, Calif (C.B.);
Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
(V.C.); Department of Radiology, Stanford University School of Medicine,
Stanford, Calif (A.E.K.); Department of Radiology, Northwestern University
Feinberg School of Medicine, Chicago, Ill (A.A.B.); Department of Biomedical
Engineering and Mechanics, Virginia Polytechnic Institute and State University,
Blacksburg, Va (A.H.); and Department of Radiology, University of California San
Francisco, Calif (K.W.)
| | - Lael Ceriani
- From the Department of Radiology, UC San Diego Altman Clinical and
Translational Research Institute Liver Imaging Group, University of California
San Diego, 9452 Medical Center Dr, La Jolla, CA 92037 (S.H.S., V.F.M., T.W.,
J.T.W., L.C., K.J.F., C.B.S.); Pacific Rim Pathology, San Diego, Calif (C.B.);
Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
(V.C.); Department of Radiology, Stanford University School of Medicine,
Stanford, Calif (A.E.K.); Department of Radiology, Northwestern University
Feinberg School of Medicine, Chicago, Ill (A.A.B.); Department of Biomedical
Engineering and Mechanics, Virginia Polytechnic Institute and State University,
Blacksburg, Va (A.H.); and Department of Radiology, University of California San
Francisco, Calif (K.W.)
| | - Cynthia Behling
- From the Department of Radiology, UC San Diego Altman Clinical and
Translational Research Institute Liver Imaging Group, University of California
San Diego, 9452 Medical Center Dr, La Jolla, CA 92037 (S.H.S., V.F.M., T.W.,
J.T.W., L.C., K.J.F., C.B.S.); Pacific Rim Pathology, San Diego, Calif (C.B.);
Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
(V.C.); Department of Radiology, Stanford University School of Medicine,
Stanford, Calif (A.E.K.); Department of Radiology, Northwestern University
Feinberg School of Medicine, Chicago, Ill (A.A.B.); Department of Biomedical
Engineering and Mechanics, Virginia Polytechnic Institute and State University,
Blacksburg, Va (A.H.); and Department of Radiology, University of California San
Francisco, Calif (K.W.)
| | - Victoria Chernyak
- From the Department of Radiology, UC San Diego Altman Clinical and
Translational Research Institute Liver Imaging Group, University of California
San Diego, 9452 Medical Center Dr, La Jolla, CA 92037 (S.H.S., V.F.M., T.W.,
J.T.W., L.C., K.J.F., C.B.S.); Pacific Rim Pathology, San Diego, Calif (C.B.);
Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
(V.C.); Department of Radiology, Stanford University School of Medicine,
Stanford, Calif (A.E.K.); Department of Radiology, Northwestern University
Feinberg School of Medicine, Chicago, Ill (A.A.B.); Department of Biomedical
Engineering and Mechanics, Virginia Polytechnic Institute and State University,
Blacksburg, Va (A.H.); and Department of Radiology, University of California San
Francisco, Calif (K.W.)
| | - Ahmed El Kaffas
- From the Department of Radiology, UC San Diego Altman Clinical and
Translational Research Institute Liver Imaging Group, University of California
San Diego, 9452 Medical Center Dr, La Jolla, CA 92037 (S.H.S., V.F.M., T.W.,
J.T.W., L.C., K.J.F., C.B.S.); Pacific Rim Pathology, San Diego, Calif (C.B.);
Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
(V.C.); Department of Radiology, Stanford University School of Medicine,
Stanford, Calif (A.E.K.); Department of Radiology, Northwestern University
Feinberg School of Medicine, Chicago, Ill (A.A.B.); Department of Biomedical
Engineering and Mechanics, Virginia Polytechnic Institute and State University,
Blacksburg, Va (A.H.); and Department of Radiology, University of California San
Francisco, Calif (K.W.)
| | - Amir A. Borhani
- From the Department of Radiology, UC San Diego Altman Clinical and
Translational Research Institute Liver Imaging Group, University of California
San Diego, 9452 Medical Center Dr, La Jolla, CA 92037 (S.H.S., V.F.M., T.W.,
J.T.W., L.C., K.J.F., C.B.S.); Pacific Rim Pathology, San Diego, Calif (C.B.);
Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
(V.C.); Department of Radiology, Stanford University School of Medicine,
Stanford, Calif (A.E.K.); Department of Radiology, Northwestern University
Feinberg School of Medicine, Chicago, Ill (A.A.B.); Department of Biomedical
Engineering and Mechanics, Virginia Polytechnic Institute and State University,
Blacksburg, Va (A.H.); and Department of Radiology, University of California San
Francisco, Calif (K.W.)
| | - Aiguo Han
- From the Department of Radiology, UC San Diego Altman Clinical and
Translational Research Institute Liver Imaging Group, University of California
San Diego, 9452 Medical Center Dr, La Jolla, CA 92037 (S.H.S., V.F.M., T.W.,
J.T.W., L.C., K.J.F., C.B.S.); Pacific Rim Pathology, San Diego, Calif (C.B.);
Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
(V.C.); Department of Radiology, Stanford University School of Medicine,
Stanford, Calif (A.E.K.); Department of Radiology, Northwestern University
Feinberg School of Medicine, Chicago, Ill (A.A.B.); Department of Biomedical
Engineering and Mechanics, Virginia Polytechnic Institute and State University,
Blacksburg, Va (A.H.); and Department of Radiology, University of California San
Francisco, Calif (K.W.)
| | - Kang Wang
- From the Department of Radiology, UC San Diego Altman Clinical and
Translational Research Institute Liver Imaging Group, University of California
San Diego, 9452 Medical Center Dr, La Jolla, CA 92037 (S.H.S., V.F.M., T.W.,
J.T.W., L.C., K.J.F., C.B.S.); Pacific Rim Pathology, San Diego, Calif (C.B.);
Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
(V.C.); Department of Radiology, Stanford University School of Medicine,
Stanford, Calif (A.E.K.); Department of Radiology, Northwestern University
Feinberg School of Medicine, Chicago, Ill (A.A.B.); Department of Biomedical
Engineering and Mechanics, Virginia Polytechnic Institute and State University,
Blacksburg, Va (A.H.); and Department of Radiology, University of California San
Francisco, Calif (K.W.)
| | - Kathryn J. Fowler
- From the Department of Radiology, UC San Diego Altman Clinical and
Translational Research Institute Liver Imaging Group, University of California
San Diego, 9452 Medical Center Dr, La Jolla, CA 92037 (S.H.S., V.F.M., T.W.,
J.T.W., L.C., K.J.F., C.B.S.); Pacific Rim Pathology, San Diego, Calif (C.B.);
Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
(V.C.); Department of Radiology, Stanford University School of Medicine,
Stanford, Calif (A.E.K.); Department of Radiology, Northwestern University
Feinberg School of Medicine, Chicago, Ill (A.A.B.); Department of Biomedical
Engineering and Mechanics, Virginia Polytechnic Institute and State University,
Blacksburg, Va (A.H.); and Department of Radiology, University of California San
Francisco, Calif (K.W.)
| | - Claude B. Sirlin
- From the Department of Radiology, UC San Diego Altman Clinical and
Translational Research Institute Liver Imaging Group, University of California
San Diego, 9452 Medical Center Dr, La Jolla, CA 92037 (S.H.S., V.F.M., T.W.,
J.T.W., L.C., K.J.F., C.B.S.); Pacific Rim Pathology, San Diego, Calif (C.B.);
Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY
(V.C.); Department of Radiology, Stanford University School of Medicine,
Stanford, Calif (A.E.K.); Department of Radiology, Northwestern University
Feinberg School of Medicine, Chicago, Ill (A.A.B.); Department of Biomedical
Engineering and Mechanics, Virginia Polytechnic Institute and State University,
Blacksburg, Va (A.H.); and Department of Radiology, University of California San
Francisco, Calif (K.W.)
| |
Collapse
|
47
|
Zhou BG, Jiang X, She Q, Ding YB. Association of MASLD with the risk of extrahepatic cancers: A systematic review and meta-analysis of 18 cohort studies. Eur J Clin Invest 2024; 54:e14276. [PMID: 38943276 DOI: 10.1111/eci.14276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND Numerous recent studies have explored the association between metabolic dysfunction-associated steatotic liver disease (MASLD) and the risk of various extrahepatic cancers. However, the conclusions were inconclusive. The aim of this study was to clarify this relationship by conducting a robust meta-analysis. METHODS Systematic searches were conducted on PubMed, Embase and Web of Science databases to identify relevant cohort studies published prior to February 2024. Hazard ratios (HRs) and their corresponding 95% confidence intervals (95% CIs) were combined using a random-effects model in this meta-analysis. RESULTS Eighteen cohort studies (approximately 16.7 million participants) were finally included in this meta-analysis. MASLD was linked to a higher risk of extrahepatic cancers, such as gastric (n = 10, HR = 1.47, 95% CI: 1.07-2.01), colorectal (n = 13, HR = 1.33, 95% CI: 1.16-1.53), pancreatic (n = 8, HR = 1.41, 95% CI: 1.11-1.79), biliary tract (n = 5, HR = 1.27, 95% CI: 1.18-1.37), thyroid (n = 6, HR = 1.46, 95% CI: 1.02-2.09), urinary system (n = 10, HR = 1.45, 95% CI: 1.25-1.69), breast (n = 11, HR = 1.17, 95% CI: 1.08-1.26) and female genital organ cancers (n = 10, HR = 1.36, 95% CI: 1.11-1.66). However, there was no statistically significant association between MASLD and the risk of head and neck (n = 6, HR = 1.03, 95% CI: 99-1.07), oesophageal (n = 9, HR = 1.26, 95% CI: 0.86-1.86), lung (n = 9, HR = 1.01, 95% CI: 0.92-1.10), prostate (n = 9, HR = 1.06, 95% CI: 0.94-1.19) or small intestine cancer (n = 2, HR = 1.75, 95% CI: 1.00-3.06). CONCLUSIONS This latest large-scale meta-analysis indicated that MASLD was associated with an increased risk of various extrahepatic cancers, such as gastric, colorectal, pancreatic, biliary duct, thyroid, urinary system, breast, skin and female genital cancers. Further research is needed to investigate the mechanisms underlying these associations.
Collapse
Affiliation(s)
- Ben-Gang Zhou
- Dalian Medical University, Dalian, Liaoning Province, China
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Xin Jiang
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Qiang She
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Yan-Bing Ding
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province, China
| |
Collapse
|
48
|
Wang P, Yu J, Zhao Y, Simayi R, Shi D. The independent and joint associations of vitamin B12 and methylmalonic acid on the risk of mortality in individuals with metabolic dysfunction-associated steatotic liver disease. Eur J Nutr 2024; 63:2541-2553. [PMID: 38864864 DOI: 10.1007/s00394-024-03448-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024]
Abstract
PURPOSE To investigate the independent and joint associations of vitamin B12 and methylmalonic acid (MMA) with all-cause, cardiovascular disease (CVD), and cancer mortality in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS We included 6797 individuals with MASLD from the U.S. National Health and Nutrition Examination Survey. Serum MMA was measured using gas/liquid chromatography-mass spectrometry. Serum vitamin B12 was measured using commercial kits. The separate and joint associations of dietary intake and serum vitamin B12 (cutoff: 400 pg/mL) and MMA (cutoff: 250 nmol/L) levels with mortality were assessed by Cox proportional hazards regression. RESULTS During a median follow-up of 9.3 years, 1604 deaths were documented, including 438 from CVD and 365 from cancer. In MASLD patients, dietary intake and serum vitamin B12 did not associate with mortality, while MMA was associated with a 1.35-fold increased risk of all-cause mortality (P-trend < 0.001). The adjusted hazard ratios for the joint association of vitamin B12 and MMA with all-cause and CVD mortality were 1 in the B12lowMMAlow group (reference), 1.02 (0.87-1.20) and 1.15 (0.90-1.47) in the B12highMMAlow group, 1.55 (1.29-1.86) and 1.84 (1.28-2.65) in the B12lowMMAhigh group, and 1.82 (1.49-2.21) and 2.28 (1.40-3.71) in the B12highMMAhigh group, respectively. The joint association was modified by serum folate (P-interaction = 0.001). CONCLUSIONS In MASLD patients, MMA rather than dietary and serum vitamin B12 was positively associated with all-cause mortality. The joint effect of high levels of MMA and vitamin B12 showed the strongest associations with all-cause and CVD mortality, with a significant interaction with serum folate.
Collapse
Affiliation(s)
- Peng Wang
- Department of Nutrition Food and Children's Health, School of Public Health, Weifang Medical University, Weifang, China
| | - Jing Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Yaxuan Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Rukiya Simayi
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Dan Shi
- Department of Nutrition and Food Hygiene, School of Public Health, Chongqing Medical University, Chongqing, China.
- Research Centre for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, China.
- Nutrition Innovation Platform-Sichuan and Chongqing, School of Public Health, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
49
|
Hagström H, Shang Y, Hegmar H, Nasr P. Natural history and progression of metabolic dysfunction-associated steatotic liver disease. Lancet Gastroenterol Hepatol 2024; 9:944-956. [PMID: 39243773 DOI: 10.1016/s2468-1253(24)00193-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 09/09/2024]
Abstract
The natural history of metabolic dysfunction-associated steatotic liver disease (MASLD), previously referred to as non-alcoholic fatty liver disease (NAFLD), is complex and long. A minority of patients develop inflammation and risk progressive fibrosis that can result in cirrhosis. Progression to cirrhosis occurs in 3-5% of patients and often takes more than 20 years. This narrative review presents an update on the natural history of MASLD, discussing studies and risk estimates for progression to severe outcomes, such as decompensated cirrhosis or hepatocellular carcinoma. We highlight the dynamic progression of liver damage, how to identify patients whose disease progresses over time, and how risk factors might be mitigated to reduce the risk for disease progression.
Collapse
Affiliation(s)
- Hannes Hagström
- Division of Hepatology, Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Ying Shang
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hannes Hegmar
- Division of Hepatology, Department of Upper GI, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Nasr
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden; Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
50
|
Chan CH, Chang CC, Peng YC. The Clinical Significance of Pancreatic Steatosis in Pancreatic Cancer: A Hospital-Based Study. Diagnostics (Basel) 2024; 14:2128. [PMID: 39410531 PMCID: PMC11475449 DOI: 10.3390/diagnostics14192128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: Pancreatic cancer remains one of the deadliest malignancies worldwide with a pressing need for early detection and intervention strategies. Emerging evidence has suggested a potential link between pancreas steatosis, characterized by excessive pancreatic fat accumulation, and an increased risk of pancreatic cancer development. This retrospective imaging study aims to elucidate the association between pancreatic steatosis and the subsequent development of pancreatic cancer. In the study, we aimed to determine the characteristics of pancreatic cancer with pancreatic steatosis. Methods: During the period of January 2022 to December 2022, we conducted a retrospective study, collecting 101 newly diagnosed pancreas cancer cases from the available image datasets. A comprehensive database of retrospective abdominal imaging studies, comprising computed tomography (CT) and magnetic resonance imaging (MRI), was established from a diverse patient population and subsequently analyzed. Inclusion criteria encompassed patients having available baseline imaging data, allowing for the assessment of pancreatic fat content. Pancreatic fat content was quantified using validated radiological techniques, while demographic, clinical, and histopathological data were all collected. The clinical data and patient characteristics were collected from medical records and analyzed. Results: Preliminary analysis revealed a significant correlation between elevated pancreatic fat content and an increased incidence of subsequent pancreatic cancer. Moreover, subgroup analysis based on age, gender, and comorbidities provided valuable insight into potential risk factors associated with this progression. Additionally, the study identified novel radiological markers that may serve as early indicators of pancreatic cancer development in individuals with pancreatic steatosis. Conclusions: In the imaging study, approximately 30% (30/101) of pancreatic cancer patients presented with pancreatic steatosis. Chronic pancreatitis emerged as the primary factor contributing to pancreatic steatosis in these patients. Importantly, pancreatic steatosis did not significantly impact the prognosis of pancreatic cancer. Follow-up data revealed no significant differences in survival duration between patients with or without pancreatic steatosis. Additionally, no association was found between pancreatic steatosis and hepatic steatosis.
Collapse
Affiliation(s)
- Chia-Hao Chan
- Department of Radiology, Taipei Veterans General Hospital Taitung Branch, Taitung 950410, Taiwan;
- Department of Radiology, Taichung Veterans General Hospital, Taichung 407219, Taiwan
| | - Chia-Chen Chang
- Department of Medical Imaging, China Medical University Hospital, China Medical University, Taichung 404327, Taiwan;
| | - Yen-Chun Peng
- Division of Gastroenterology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 407219, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|