1
|
He Q, Lai Z, Zhai Z, Zou B, Shi Y, Feng C. Advances of research in diabetic cardiomyopathy: diagnosis and the emerging application of sequencing. Front Cardiovasc Med 2025; 11:1501735. [PMID: 39872882 PMCID: PMC11769946 DOI: 10.3389/fcvm.2024.1501735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025] Open
Abstract
Diabetic cardiomyopathy (DCM) is one of the most prevalent and severe complications associated with diabetes mellitus (DM). The onset of DCM is insidious, with the symptoms being obvious only in the late stage. Consequently, the early diagnosis of DCM is a formidable challenge which significantly influences the treatment and prognosis of DCM. Thus, it becomes imperative to uncover innovative approaches to facilitate the prompt identification and diagnosis of DCM. On the traditional clinical side, we tend to use serum biomarkers as well as imaging as the most common means of diagnosing diseases because of their convenience as well as affordability. As we delve deeper into the mechanisms of DCM, a wide variety of biomarkers are becoming competitive diagnostic indicators. Meanwhile, the application of multiple imaging techniques has also made efforts to promote the diagnosis of DCM. Besides, the spurt in sequencing technology has made it possible to give hints about disease diagnosis from the genome as well as the transcriptome, making diagnosis less difficult, more sensitive, and more predictive. Overall, sequencing technology is expected to be the superior choice of plasma biomarkers for detecting lesions at an earlier stage than imaging, and its judicious utilization combined with imaging technologies will lead to a more sensitive diagnosis of DCM in the future. Therefore, this review meticulously consolidates the progress and utilization of various biomarkers, imaging methods, and sequencing technologies in the realm of DCM diagnosis, with the aim of furnishing novel theoretical foundation and guide future research endeavors towards enhancing the diagnostic and therapeutic landscape of DCM.
Collapse
Affiliation(s)
- Qianqian He
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Ze Lai
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Zhengyao Zhai
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Beibei Zou
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Yangkai Shi
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| | - Chao Feng
- Department of Cardiology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
2
|
Zhang Y, Li Y, Lin Y, Xie M, Zhang L, Sun W, Deng W, Zhao R, Shi J, Li W, Fang L, He S, Liu T, Yang Y, Lv Q, Hu J, Wang J. Association of Glycemic Control With Right Ventricular Function Assessed by Two-Dimensional Speckle-Tracking and Three-Dimensional Echocardiography in Type 2 Diabetes Mellitus. J Am Soc Echocardiogr 2024; 37:1156-1166. [PMID: 39278576 DOI: 10.1016/j.echo.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Right ventricular (RV) involvement has been reported in type 2 diabetes mellitus (T2DM). The relationship between glycemic control and RV function remains unknown. We aimed to investigate the association between glycemic control and RV function assessed by two-dimensional speckle-tracking echocardiography and three-dimensional echocardiography in T2DM individuals. METHODS This study prospectively enrolled 207 patients with T2DM and 84 individuals with normal glucose metabolism. The T2DM patients were divided into 2 subgroups according to glycated hemoglobin (HbA1c) level: controlled (HbA1c < 7.0%, n = 91) and uncontrolled subgroup (HbA1c ≥ 7.0%, n = 116). Right venticular free wall longitudinal strain (RVFWLS) was acquired by two-dimensional speckle-tracking echocardiography, and RV volumes and RV ejection fraction (RVEF) were assessed using three-dimensional echocardiography . Right ventricular coupling to pulmonary circulation was defined as the ratio of RVFWLS/pulmonary artery systolic pressure (PASP). RESULTS Controlled and uncontrolled T2DM subgroups had impaired RV function as reflected by reduced RVFWLS and RVEF compared to the normal glucose metabolism group. The reduction in RVFWLS was more pronounced in the uncontrolled subgroup than in the controlled subgroup (P < .001), whereas no significant difference was found in RVEF between these 2 T2DM subgroups. Higher PASP and lower RVFWLS/PASP ratio were also noted in uncontrolled T2DM patients. Additionally, the incidence of RV dysfunction was significantly higher in the uncontrolled T2DM patients than in the controlled subgroup (43.1% vs 17.6%, P < .001). After adjustment for potential clinical confounders, PASP, and left ventricular parameters, HbA1c level was independently associated with RVFWLS (β = 0.290, P = .003) and RVFWLS/PASP ratio (β = 0.028, P = .006). CONCLUSIONS Subclinical RV myocardial dysfunction is present in T2DM patients and is more pronounced in patients with uncontrolled blood glucose. HbA1c level is independently associated with subclinical RV myocardial dysfunction, providing further insight into a possible link between poor glycemic control and diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yanting Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yuman Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yixia Lin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Mingxing Xie
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wei Sun
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenhui Deng
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Ruohan Zhao
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jiawei Shi
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Wenqu Li
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Lingyun Fang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Shukun He
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Tianshu Liu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Yali Yang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Qing Lv
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
| | - Jin Hu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jing Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China.
| |
Collapse
|
3
|
Hassanein SA, Hassan MM, Samir M, Aboudeif MO, Thabet MS, Abdullatif M, Khedr D. The role of Cardiotrophin-1 and echocardiography in early detection of subclinical diabetic cardiomyopathy in children and adolescents with type 1 diabetes mellitus. J Pediatr Endocrinol Metab 2024; 37:875-884. [PMID: 39242187 DOI: 10.1515/jpem-2024-0323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 08/16/2024] [Indexed: 09/09/2024]
Abstract
OBJECTIVES To assess the role of Cardiotrophin-1 (CT-1) and echocardiography in early detection of subclinical Diabetic Cardiomyopathy (DCM) in children with type 1 Diabetes Mellitus (T1D). METHODS This case-control study included two groups of children and adolescents aged between 7 and 18. Group (1) included forty patients with T1D (duration > 5 years) regularly followed at the children's hospital of Cairo University, and Group (2) included forty age and sex-matched healthy subjects as a control group. The serum level of CT-1 was measured, and conventional echocardiography, tissue Doppler imaging (TDI), and 2D speckle tracking echocardiography were performed. RESULTS The level of CT-1 in the cases ranged from 11 to 1039.4 pg/ml with a median (IQR) of 19.4 (16.60-25.7) pg/ml, while its level in the control group ranged from 10.8 to 162.6 pg/ml with a median (IQR) of 20.2 (16.2-24.8) pg/ml. CT-1 levels showed no statistically significant difference between cases and controls. Patients had significantly higher mean left ventricle E/E' ratio (p<0.001), lower mean 2D global longitudinal strain (GLS) of the left ventricle (LV) (p<0.001), and lower mean GLS of the right ventricle (RV) (p<0.001) compared to controls. Ofpatients with diabetes, 75 % had LV diastolic dysfunction, 85 % had RV diastolic dysfunction, 97.5 % had LV systolic dysfunction, and 100 % had RV systolic dysfunction. CONCLUSIONS Non-conventional echocardiography is important for early perception of subclinical DCM in patients with T1D. CT-1 was not specific for early detection of DCM.
Collapse
Affiliation(s)
- Samah A Hassanein
- Pediatric Endocrinology, Diabetes, Endocrinology and Metabolism Pediatric Unit (DEMPU), Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mona M Hassan
- Pediatric Endocrinology, Diabetes, Endocrinology and Metabolism Pediatric Unit (DEMPU), Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Samir
- Pediatric Cardiology, Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mahmoud O Aboudeif
- Pediatric Cardiology, Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed S Thabet
- Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Pediatrics, Imbaba General Hospital, Cairo, Egypt
| | - Mona Abdullatif
- Clinical and Chemical Pathology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dina Khedr
- Pediatric Endocrinology, Diabetes, Endocrinology and Metabolism Pediatric Unit (DEMPU), Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Li XM, Wu ZJ, Fan JY, Liu MQ, Song CG, Chen HQ, Yin Y, Li A, Wang YH, Gao SL, Xu ZL, Liu G, Wu K. Role of 8-hydroxyguanine DNA glycosidase 1 deficiency in exacerbating diabetic cardiomyopathy through the regulation of insulin resistance. J Mol Cell Cardiol 2024; 194:3-15. [PMID: 38844061 DOI: 10.1016/j.yjmcc.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/24/2024]
Abstract
Diabetic cardiomyopathy (DCM) is a heart failure syndrome, and is one of the major causes of morbidity and mortality in diabetes. DCM is mainly characterized by ventricular dilation, myocardial hypertrophy, myocardial fibrosis and cardiac dysfunction. Clinical studies have found that insulin resistance is an independent risk factor for DCM. However, its specific mechanism of DCM remains unclear. 8-hydroxyguanine DNA glycosylase 1(OGG1)is involved in DNA base repair and the regulation of inflammatory genes. In this study, we show that OGG1 was associated with the occurrence of DCM. for the first time. The expression of OGG1 was increased in the heart tissue of DCM mice, and OGG1 deficiency aggravated the cardiac dysfunction of DCM mice. Metabolomics show that OGG1 deficiency resulted in obstruction of glycolytic pathway. At the molecular level, OGG1 regulated glucose uptake and insulin resistance by interacting with PPAR-γ in vitro. In order to explore the protective effect of exogenous OGG1 on DCM, OGG1 adeno-associated virus was injected into DCM mice through tail vein in the middle stage of the disease. We found that the overexpression of OGG1 could improve cardiac dysfunction of DCM mice, indicating that OGG1 had a certain therapeutic effect on DCM. These results demonstrate that OGG1 is a new molecular target for the treatment of DCM and has certain clinical significance.
Collapse
Affiliation(s)
- Xiao-Min Li
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Department of Urology, Changhai Hospital, Navel Medical University (Second Military Medical University), Shanghai 200433, China
| | - Zi-Jun Wu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Jun-Yu Fan
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Man-Qi Liu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Chu-Ge Song
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Hong-Qiao Chen
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Yu Yin
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Ao Li
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Ya-Hong Wang
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Sheng-Lan Gao
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China
| | - Zhi-Liang Xu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China.
| | - Gang Liu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| | - Keng Wu
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; Cardiovascular Center, The First Dongguan Affiliated Hospital of Guangdong Medical University, Dongguan 523000, China.
| |
Collapse
|
5
|
Yu SQ, Shi K, Li Y, Wang J, Gao Y, Shi R, Yan WF, Xu HY, Guo YK, Yang ZG. The impact of diabetes mellitus on cardiac function assessed by magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Cardiovasc Diabetol 2024; 23:293. [PMID: 39118078 PMCID: PMC11308483 DOI: 10.1186/s12933-024-02384-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND The adverse prognostic impact of diabetes on hypertrophic cardiomyopathy (HCM) is poorly understood. We sought to explore the underlying mechanisms in terms of structural and functional remodelling in HCM patients with coexisting diabetes (HCM-DM). METHODS A total of 45 HCM-DM patients were retrospectively included. Isolated HCM controls (HCM patients without diabetes) were matched to HCM-DM patients in terms of maximal wall thickness, age, and gender distribution. Left ventricular (LV) and atrial (LA) performance were evaluated using cardiac magnetic resonance feature tracking strain analyses. The associations between diabetes and LV/LA impairment were investigated by univariable and multivariable linear regression. RESULTS Compared with the isolated HCM controls, the HCM-DM patients had smaller end-diastolic volume and stroke volume, lower ejection fraction, larger mass/volume ratio and impaired strains in all three directions (all P < 0.05). In terms of the LA parameters, HCM-DM patients presented impaired LA reservoir and conduit strain/strain rate (all P < 0.05). Among all HCM patients, comorbidity with diabetes was independently associated with a low LV ejection fraction (β = - 6.05, P < 0.001) and impaired global longitudinal strain (β = 1.40, P = 0.007). Moreover, compared with the isolated HCM controls, HCM-DM patients presented with more myocardial fibrosis according to late gadolinium enhancement, which was an independent predictor of impaired LV global radial strain (β = - 45.81, P = 0.008), LV global circumferential strain (β = 18.25, P = 0.003), LA reservoir strain (β = - 59.20, P < 0.001) and strain rate (β = - 2.90, P = 0.002). CONCLUSIONS Diabetes has adverse effects on LV and LA function in HCM patients, which may be important contributors to severe manifestations and outcomes in those patients. The present study strengthened the evidence of the prevention and management of diabetes in HCM patients.
Collapse
Affiliation(s)
- Shi-Qin Yu
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Ke Shi
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| | - Yuan Li
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Jin Wang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yue Gao
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Rui Shi
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Wei-Feng Yan
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Hua-Yan Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
6
|
Wu M, Tan J, Cao Z, Cai Y, Huang Z, Chen Z, He W, Liu X, Jiang Y, Gao Q, Deng B, Wang J, Yuan W, Zhang H, Chen Y. Sirt5 improves cardiomyocytes fatty acid metabolism and ameliorates cardiac lipotoxicity in diabetic cardiomyopathy via CPT2 de-succinylation. Redox Biol 2024; 73:103184. [PMID: 38718533 PMCID: PMC11091707 DOI: 10.1016/j.redox.2024.103184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 05/04/2024] [Indexed: 06/14/2024] Open
Abstract
RATIONALE The disruption of the balance between fatty acid (FA) uptake and oxidation (FAO) leads to cardiac lipotoxicity, serving as the driving force behind diabetic cardiomyopathy (DbCM). Sirtuin 5 (Sirt5), a lysine de-succinylase, could impact diverse metabolic pathways, including FA metabolism. Nevertheless, the precise roles of Sirt5 in cardiac lipotoxicity and DbCM remain unknown. OBJECTIVE This study aims to elucidate the role and underlying mechanism of Sirt5 in the context of cardiac lipotoxicity and DbCM. METHODS AND RESULTS The expression of myocardial Sirt5 was found to be modestly elevated in diabetic heart failure patients and mice. Cardiac dysfunction, hypertrophy and lipotoxicity were exacerbated by ablation of Sirt5 but improved by forced expression of Sirt5 in diabetic mice. Notably, Sirt5 deficiency impaired FAO without affecting the capacity of FA uptake in the diabetic heart, leading to accumulation of FA intermediate metabolites, which mainly included medium- and long-chain fatty acyl-carnitines. Mechanistically, succinylomics analyses identified carnitine palmitoyltransferase 2 (CPT2), a crucial enzyme involved in the reconversion of fatty acyl-carnitines to fatty acyl-CoA and facilitating FAO, as the functional succinylated substrate mediator of Sirt5. Succinylation of Lys424 in CPT2 was significantly increased by Sirt5 deficiency, leading to the inactivation of its enzymatic activity and the subsequent accumulation of fatty acyl-carnitines. CPT2 K424R mutation, which mitigated succinylation modification, counteracted the reduction of enzymatic activity in CPT2 mediated by Sirt5 deficiency, thereby attenuating Sirt5 knockout-induced FAO impairment and lipid deposition. CONCLUSIONS Sirt5 deficiency impairs FAO, leading to cardiac lipotoxicity in the diabetic heart through the succinylation of Lys424 in CPT2. This underscores the potential roles of Sirt5 and CPT2 as therapeutic targets for addressing DbCM.
Collapse
Affiliation(s)
- Maoxiong Wu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Jing Tan
- Laboratory Animal Center and Department of Biochemistry, Institute of Guangdong Engineering and Technology Research Center for Disease-Model Animals, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhengyu Cao
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Yangwei Cai
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Zhaoqi Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Zhiteng Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Wanbing He
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Yuan Jiang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Qingyuan Gao
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Bingqing Deng
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China
| | - Jingfeng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China.
| | - Woliang Yuan
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China.
| | - Haifeng Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yangxin Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangzhou Key Laboratory of Molecular Mechanisms of Major Cardiovascular Disease, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Arrhythmia and Electrophysiology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
7
|
Tudurachi BS, Anghel L, Tudurachi A, Sascău RA, Zanfirescu RL, Stătescu C. Unraveling the Cardiac Matrix: From Diabetes to Heart Failure, Exploring Pathways and Potential Medications. Biomedicines 2024; 12:1314. [PMID: 38927520 PMCID: PMC11201699 DOI: 10.3390/biomedicines12061314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Myocardial infarction (MI) often leads to heart failure (HF) through acute or chronic maladaptive remodeling processes. This establishes coronary artery disease (CAD) and HF as significant contributors to cardiovascular illness and death. Therefore, treatment strategies for patients with CAD primarily focus on preventing MI and lessening the impact of HF after an MI event. Myocardial fibrosis, characterized by abnormal extracellular matrix (ECM) deposition, is central to cardiac remodeling. Understanding these processes is key to identifying new treatment targets. Recent studies highlight SGLT2 inhibitors (SGLT2i) and GLP-1 receptor agonists (GLP1-RAs) as favorable options in managing type 2 diabetes due to their low hypoglycemic risk and cardiovascular benefits. This review explores inflammation's role in cardiac fibrosis and evaluates emerging anti-diabetic medications' effectiveness, such as SGLT2i, GLP1-RAs, and dipeptidyl peptidase-4 inhibitors (DPP4i), in preventing fibrosis in patients with diabetes post-acute MI. Recent studies were analyzed to identify effective medications in reducing fibrosis risk in these patients. By addressing these areas, we can advance our understanding of the potential benefits of anti-diabetic medications in reducing cardiac fibrosis post-MI and improve patient outcomes in individuals with diabetes at risk of HF.
Collapse
Affiliation(s)
- Bogdan-Sorin Tudurachi
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania; (B.-S.T.); (R.A.S.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
| | - Larisa Anghel
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania; (B.-S.T.); (R.A.S.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
| | - Andreea Tudurachi
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
| | - Radu Andy Sascău
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania; (B.-S.T.); (R.A.S.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
| | - Răzvan-Liviu Zanfirescu
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
- Physiology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania
| | - Cristian Stătescu
- Internal Medicine Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700503 Iasi, Romania; (B.-S.T.); (R.A.S.); (C.S.)
- Cardiology Department, Cardiovascular Diseases Institute “Prof. Dr. George I. M. Georgescu”, 700503 Iasi, Romania; (A.T.); (R.-L.Z.)
| |
Collapse
|
8
|
Yesuf HA, Molla MD, Malik T, Seyoum Wendimagegn Z, Yimer Y. MicroRNA-29-mediated cross-talk between metabolic organs in the pathogenesis of diabetes mellitus and its complications: A narrative review. Cell Biochem Funct 2024; 42:e4053. [PMID: 38773932 DOI: 10.1002/cbf.4053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024]
Abstract
Diabetes mellitus (DM) is a heterogeneous group of disorders characterized by hyperglycemia. Microribonucleic acids (microRNAs) are noncoding RNA molecules synthesized in the nucleus, modified, and exported to the extracellular environment to bind to their complementary target sequences. It regulates protein synthesis in the targeted cells by inhibiting translation or triggering the degradation of the target messenger. MicroRNA-29 is one of noncoding RNA that can be secreted by adipose tissue, hepatocytes, islet cells, and brain cells. The expression level of the microRNA-29 family in several metabolic organs is regulated by body weight, blood concentrations of inflammatory mediators, serum glucose levels, and smoking habits. Several experimental studies have demonstrated the effect of microRNA-29 on the expression of target genes involved in glucose metabolism, insulin synthesis and secretion, islet cell survival, and proliferation. These findings shed new light on the role of microRNA-29 in the pathogenesis of diabetes and its complications, which plays a vital role in developing appropriate therapies. Different molecular pathways have been proposed to explain how microRNA-29 promotes the development of diabetes and its complications. However, to the best of our knowledge, no published review article has summarized the molecular mechanism of microRNA-29-mediated initiation of DM and its complications. Therefore, this narrative review aims to summarize the role of microRNA-29-mediated cross-talk between metabolic organs in the pathogenesis of diabetes and its complications.
Collapse
Affiliation(s)
- Hassen Ahmed Yesuf
- Department of Biomedical Science, School of Medicine, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Meseret Derbew Molla
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Division of Research and Development, Lovely Professional University, Phagwara, India
| | - Zeru Seyoum Wendimagegn
- Department of Biomedical Science, School of Medicine, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Yadelew Yimer
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
9
|
Lin J, Liu S, Liu T, Chuang S, Huang C, Chen Y, Lee C, Chien M, Hou CJ, Yeh H, Chiang C, Hung C. ELUCIDATE Trial: A Single-Center Randomized Controlled Study. J Am Heart Assoc 2024; 13:e033832. [PMID: 38639353 PMCID: PMC11179944 DOI: 10.1161/jaha.123.033832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Dapagliflozin, a sodium-glucose cotransporter 2 inhibitor, is an epochal oral antidiabetic drug that improves cardiorenal outcomes. However, the effect of early dapagliflozin intervention on left ventricular (LV) remodeling in patients with type 2 diabetes free from cardiovascular disease remains unclear. METHODS AND RESULTS The ELUCIDATE trial was a prospective, open-label, randomized, active-controlled study that enrolled 76 patients with asymptomatic type 2 diabetes with LV ejection fraction ≥50%, randomized to the dapagliflozin 10 mg/day add-on or standard-of-care group. Speckle-tracking echocardiography-based measurements of the cardiac global longitudinal strain were performed at baseline and 24 weeks after treatment initiation. Patients who received dapagliflozin had a greater reduction in LV dimension (1.68 mm [95% CI, 0.53-2.84]; P=0.005), LV end-systolic volume (5.51 mL [95% CI, 0.86-10.17]; P=0.021), and LV mass index (4.25 g/m2.7 [95% CI, 2.42-6.09]; P<0.0001) compared with standard of care in absolute mean differences. Dapagliflozin add-on therapy led to a significant LV global longitudinal strain increment (0.74% [95% CI, 1.00-0.49]; P<0.0001) and improved LV systolic and early diastolic strain rates (0.27/s [95% CI, 0.17-0.60]; and 0.11/s [95% CI, 0.06-0.16], respectively; both P<0.0001) but not in global circumferential strain. No significant changes were found in insulin resistance, NT-proBNP (N-terminal pro-B-type natriuretic peptide) levels, or other biomarkers at 6 months after the dapagliflozin administration. CONCLUSIONS Dapagliflozin add-on therapy could lead to more favorable cardiac remodeling accompanied by enhanced cardiac mechanical function among patients with asymptomatic type 2 diabetes. Our findings provide evidence of the efficacy of dapagliflozin use for the primary prevention of diabetic cardiomyopathy. REGISTRATION URL: https://www.clinicaltrials.gov; Unique identifier: NCT03871621.
Collapse
Affiliation(s)
- Jiun‐Lu Lin
- Division of Endocrinology and Metabolism, Department of Internal MedicineMacKay Memorial HospitalTaipeiTaiwan
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
| | - Sung‐Chen Liu
- Division of Endocrinology and Metabolism, Department of Internal MedicineMacKay Memorial HospitalTaipeiTaiwan
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
| | - Tze‐Fan Liu
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
| | - Shih‐Ming Chuang
- Division of Endocrinology and Metabolism, Department of Internal MedicineMacKay Memorial HospitalTaipeiTaiwan
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
| | - Chun‐Ta Huang
- Division of Endocrinology and Metabolism, Department of Internal MedicineMacKay Memorial HospitalTaipeiTaiwan
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
| | - Ying‐Ju Chen
- Department of TelehealthMacKay Memorial HospitalTaipeiTaiwan
| | - Chun‐Chuan Lee
- Division of Endocrinology and Metabolism, Department of Internal MedicineMacKay Memorial HospitalTaipeiTaiwan
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
| | - Ming‐Nan Chien
- Division of Endocrinology and Metabolism, Department of Internal MedicineMacKay Memorial HospitalTaipeiTaiwan
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
| | - Charles Jia‐Yin Hou
- Division of Cardiology, Department of Internal MedicineMacKay Memorial HospitalTaipeiTaiwan
| | - Hung‐I. Yeh
- Department of MedicineMacKay Medical CollegeNew Taipei CityTaiwan
- Division of Cardiology, Department of Internal MedicineMacKay Memorial HospitalTaipeiTaiwan
| | - Chern‐En Chiang
- Division of Cardiology, General Clinical Research CenterTaipei Veterans General Hospital, National Yang‐Ming UniversityTaipeiTaiwan
| | - Chung‐Lieh Hung
- Department of TelehealthMacKay Memorial HospitalTaipeiTaiwan
- Division of Cardiology, Department of Internal MedicineMacKay Memorial HospitalTaipeiTaiwan
- Institute of Biomedical Science, MacKay Medical CollegeNew Taipei CityTaiwan
| |
Collapse
|
10
|
Guo P, Hu S, Liu X, He M, Li J, Ma T, Huang M, Fang Q, Wang Y. CAV3 alleviates diabetic cardiomyopathy via inhibiting NDUFA10-mediated mitochondrial dysfunction. J Transl Med 2024; 22:390. [PMID: 38671439 PMCID: PMC11055322 DOI: 10.1186/s12967-024-05223-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND The progression of diabetic cardiomyopathy (DCM) is noticeably influenced by mitochondrial dysfunction. Variants of caveolin 3 (CAV3) play important roles in cardiovascular diseases. However, the potential roles of CAV3 in mitochondrial function in DCM and the related mechanisms have not yet been elucidated. METHODS Cardiomyocytes were cultured under high-glucose and high-fat (HGHF) conditions in vitro, and db/db mice were employed as a diabetes model in vivo. To investigate the role of CAV3 in DCM and to elucidate the molecular mechanisms underlying its involvement in mitochondrial function, we conducted Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis and functional experiments. RESULTS Our findings demonstrated significant downregulation of CAV3 in the cardiac tissue of db/db mice, which was found to be associated with cardiomyocyte apoptosis in DCM. Importantly, cardiac-specific overexpression of CAV3 effectively inhibited the progression of DCM, as it protected against cardiac dysfunction and cardiac remodeling associated by alleviating cardiomyocyte mitochondrial dysfunction. Furthermore, mass spectrometry analysis and immunoprecipitation assays indicated that CAV3 interacted with NDUFA10, a subunit of mitochondrial complex I. CAV3 overexpression reduced the degradation of lysosomal pathway in NDUFA10, restored the activity of mitochondrial complex I and improved mitochondrial function. Finally, our study demonstrated that CAV3 overexpression restored mitochondrial function and subsequently alleviated DCM partially through NDUFA10. CONCLUSIONS The current study provides evidence that CAV3 expression is significantly downregulated in DCM. Upregulation of CAV3 interacts with NDUFA10, inhibits the degradation of lysosomal pathway in NDUFA10, a subunit of mitochondrial complex I, restores the activity of mitochondrial complex I, ameliorates mitochondrial dysfunction, and thereby protects against DCM. These findings indicate that targeting CAV3 may be a promising approach for the treatment of DCM.
Collapse
Affiliation(s)
- Ping Guo
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Shuiqing Hu
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Xiaohui Liu
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Miaomiao He
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Jie Li
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Tingqiong Ma
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Man Huang
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Qin Fang
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| | - Yan Wang
- Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| |
Collapse
|
11
|
Manrique-Acevedo C, Hirsch IB, Eckel RH. Prevention of Cardiovascular Disease in Type 1 Diabetes. N Engl J Med 2024; 390:1207-1217. [PMID: 38598575 DOI: 10.1056/nejmra2311526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Affiliation(s)
- Camila Manrique-Acevedo
- From the Division of Endocrinology and Metabolism, Department of Medicine, and NextGen Precision Health, University of Missouri, and the Harry S. Truman Memorial Veterans' Hospital - both in Columbia (C.M.-A.); the Department of Medicine, University of Washington School of Medicine, Seattle (I.B.H.); and the Divisions of Endocrinology, Metabolism and Diabetes, and Cardiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora (R.H.E.)
| | - Irl B Hirsch
- From the Division of Endocrinology and Metabolism, Department of Medicine, and NextGen Precision Health, University of Missouri, and the Harry S. Truman Memorial Veterans' Hospital - both in Columbia (C.M.-A.); the Department of Medicine, University of Washington School of Medicine, Seattle (I.B.H.); and the Divisions of Endocrinology, Metabolism and Diabetes, and Cardiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora (R.H.E.)
| | - Robert H Eckel
- From the Division of Endocrinology and Metabolism, Department of Medicine, and NextGen Precision Health, University of Missouri, and the Harry S. Truman Memorial Veterans' Hospital - both in Columbia (C.M.-A.); the Department of Medicine, University of Washington School of Medicine, Seattle (I.B.H.); and the Divisions of Endocrinology, Metabolism and Diabetes, and Cardiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora (R.H.E.)
| |
Collapse
|
12
|
Zhan J, Jin K, Xie R, Fan J, Tang Y, Chen C, Li H, Wang DW. AGO2 Protects Against Diabetic Cardiomyopathy by Activating Mitochondrial Gene Translation. Circulation 2024; 149:1102-1120. [PMID: 38126189 DOI: 10.1161/circulationaha.123.065546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Diabetes is associated with cardiovascular complications. microRNAs translocate into subcellular organelles to modify genes involved in diabetic cardiomyopathy. However, functional properties of subcellular AGO2 (Argonaute2), a core member of miRNA machinery, remain elusive. METHODS We elucidated the function and mechanism of subcellular localized AGO2 on mouse models for diabetes and diabetic cardiomyopathy. Recombinant adeno-associated virus type 9 was used to deliver AGO2 to mice through the tail vein. Cardiac structure and functions were assessed by echocardiography and catheter manometer system. RESULTS AGO2 was decreased in mitochondria of diabetic cardiomyocytes. Overexpression of mitochondrial AGO2 attenuated diabetes-induced cardiac dysfunction. AGO2 recruited TUFM, a mitochondria translation elongation factor, to activate translation of electron transport chain subunits and decrease reactive oxygen species. Malonylation, a posttranslational modification of AGO2, reduced the importing of AGO2 into mitochondria in diabetic cardiomyopathy. AGO2 malonylation was regulated by a cytoplasmic-localized short isoform of SIRT3 through a previously unknown demalonylase function. CONCLUSIONS Our findings reveal that the SIRT3-AGO2-CYTB axis links glucotoxicity to cardiac electron transport chain imbalance, providing new mechanistic insights and the basis to develop mitochondria targeting therapies for diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Jiabing Zhan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China (J.Z.)
- Department of Cardiology, Fujian Medical Center for Cardiovascular Diseases, Fujian Institute of Coronary Heart Disease, Fujian Medical University, China (J.Z.)
| | - Kunying Jin
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
| | - Rong Xie
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
| | - Jiahui Fan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
| | - Yuyan Tang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (J.Z., K.J., R.X., J.F., Y.T., C.C., H.L., D.W.W.)
| |
Collapse
|
13
|
Break MKB, Syed RU, Hussein W, Alqarni S, Magam SM, Nawaz M, Shaikh S, Otaibi AA, Masood N, Younes KM. Noncoding RNAs as therapeutic targets in autophagy-related diabetic cardiomyopathy. Pathol Res Pract 2024; 256:155225. [PMID: 38442448 DOI: 10.1016/j.prp.2024.155225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/06/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
Diabetic cardiomyopathy, a multifaceted complication of diabetes mellitus, remains a major challenge in clinical management due to its intricate pathophysiology. Emerging evidence underscores the pivotal role of autophagy dysregulation in the progression of diabetic cardiomyopathy, providing a novel avenue for therapeutic intervention. Noncoding RNAs (ncRNAs), a diverse class of regulatory molecules, have recently emerged as promising candidates for targeted therapeutic strategies. The exploration of various classes of ncRNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) reveal their intricate regulatory networks in modulating autophagy and influencing the pathophysiological processes associated with diabetic cardiomyopathy. The nuanced understanding of the molecular mechanisms underlying ncRNA-mediated autophagic regulation offers a rationale for the development of precise and effective therapeutic interventions. Harnessing the regulatory potential of ncRNAs presents a promising frontier for the development of targeted and personalized therapeutic strategies, aiming to ameliorate the burden of diabetic cardiomyopathy in affected individuals. As research in this field advances, the identification and validation of specific ncRNA targets hold immense potential for the translation of these findings into clinically viable interventions, ultimately improving outcomes for patients with diabetic cardiomyopathy. This review encapsulates the current understanding of the intricate interplay between autophagy and diabetic cardiomyopathy, with a focus on the potential of ncRNAs as therapeutic targets.
Collapse
Affiliation(s)
- Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia; Medical and Diagnostic Research Centre, University of Hail, Hail 55473, Saudi Arabia.
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 55473, Saudi Arabia.
| | - Weiam Hussein
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia; Department of Pharmaceutical Chemistry, College of Pharmacy, Aden University, Aden 6075, Yemen
| | - Saad Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Sami M Magam
- Basic Science Department, Preparatory Year, University of Hail, Hail City 1560, Kingdom of Saudi Arabia; Department of Marine Chemistry and Pollution, Faculty of Marine Science and Environment, Hodeidah University, Hodeidah City, Yemen
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sameer Shaikh
- Division of Oral Diagnosis and Oral Medicine, Department of OMFS and Diagnostic Sciences, College of Dentistry, University of Hail, Ha'il, Saudi Arabia
| | - Ahmed Al Otaibi
- Chemistry Department, Faculty of Science, University of Ha'il, P.O. Box 2440, Ha'il 81451, Saudi Arabia
| | - Najat Masood
- Chemistry Department, Faculty of Science, University of Ha'il, P.O. Box 2440, Ha'il 81451, Saudi Arabia
| | - Kareem M Younes
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia; Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
14
|
Jin Q, Liu T, Ma F, Fu T, Yang L, Mao H, Wang Y, Peng L, Li P, Zhan Y. Roles of Sirt1 and its modulators in diabetic microangiopathy: A review. Int J Biol Macromol 2024; 264:130761. [PMID: 38467213 DOI: 10.1016/j.ijbiomac.2024.130761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Diabetic vascular complications include diabetic macroangiopathy and diabetic microangiopathy. Diabetic microangiopathy is characterised by impaired microvascular endothelial function, basement membrane thickening, and microthrombosis, which may promote renal, ocular, cardiac, and peripheral system damage in diabetic patients. Therefore, new preventive and therapeutic strategies are urgently required. Sirt1, a member of the nicotinamide adenine dinucleotide-dependent histone deacetylase class III family, regulates different organ growth and development, oxidative stress, mitochondrial function, metabolism, inflammation, and aging. Sirt1 is downregulated in vascular injury and microangiopathy. Moreover, its expression and distribution in different organs correlate with age and play critical regulatory roles in oxidative stress and inflammation. This review introduces the background of diabetic microangiopathy and the main functions of Sirt1. Then, the relationship between Sirt1 and different diabetic microangiopathies and the regulatory roles mediated by different cells are described. Finally, we summarize the modulators that target Sirt1 to ameliorate diabetic microangiopathy as an essential preventive and therapeutic measure for diabetic microangiopathy. In conclusion, targeting Sirt1 may be a new therapeutic strategy for diabetic microangiopathy.
Collapse
Affiliation(s)
- Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tongfei Fu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Peng
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Clinical Medical Sciences, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
15
|
Radzioch E, Dąbek B, Balcerczyk-Lis M, Frąk W, Fularski P, Młynarska E, Rysz J, Franczyk B. Diabetic Cardiomyopathy-From Basics through Diagnosis to Treatment. Biomedicines 2024; 12:765. [PMID: 38672121 PMCID: PMC11048005 DOI: 10.3390/biomedicines12040765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is the development of myocardial dysfunction in patients with diabetes despite the absence of comorbidities such as hypertension, atherosclerosis or valvular defect. The cardiovascular complications of poorly controlled diabetes are very well illustrated by the U.K. Prospective Diabetes Study (UKPDS), which showed a clear association between increasing levels of glycated hemoglobin and the development of heart failure (HF). The incidence of HF in patients with diabetes is projected to increase significantly, which is why its proper diagnosis and treatment is so important. Providing appropriate therapy focusing on antidiabetic and hypolipemic treatment with the consideration of pharmacotherapy for heart failure reduces the risk of CMD and reduces the incidence of cardiovascular complications. Health-promoting changes made by patients such as a low-carbohydrate diet, regular exercise and weight reduction also appear to be important in achieving appropriate outcomes. New hope for the development of therapies for DCM is offered by novel methods using stem cells and miRNA, which, however, require more thorough research to confirm their efficacy.
Collapse
Affiliation(s)
- Ewa Radzioch
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Bartłomiej Dąbek
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Marta Balcerczyk-Lis
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Weronika Frąk
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Piotr Fularski
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Ewelina Młynarska
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| | - Beata Franczyk
- Department of Nephrocardiology, Medical Univeristy of Lodz, ul. Zeromskiego 113, 90-549 Lodz, Poland
| |
Collapse
|
16
|
Zulet P, Islas F, Ferrández-Escarabajal M, Bustos A, Cabeza B, Gil-Abizanda S, Vidal M, Martín-Lores I, Hernández-Mateo P, de Agustín JA, Olmos C. Diabetes mellitus is associated to high-risk late gadolinium enhancement and worse outcomes in patients with nonischemic dilated cardiomyopathy. Cardiovasc Diabetol 2024; 23:35. [PMID: 38245750 PMCID: PMC10800059 DOI: 10.1186/s12933-024-02127-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is associated with a worse prognosis in patients with heart failure. Our aim was to analyze the clinical and imaging features of patients with DM and their association with outcomes in comparison to nondiabetic patients in a cohort of patients with nonischemic dilated cardiomyopathy (DCM). METHODS This is a prospective cohort study of patients with DCM evaluated in a tertiary care center from 2018 to 2021. Transthoracic echocardiography and cardiac magnetic resonance findings were assessed. A high-risk late gadolinium enhancement (LGE) pattern was defined as epicardial, transmural, or septal plus free-wall. The primary outcome was a composite of heart failure hospitalizations and all-cause mortality. Multivariable analyses were performed to evaluate the impact of DM on outcomes. RESULTS We studied 192 patients, of which 51 (26.6%) had DM. The median left ventricular ejection fraction was 30%, and 106 (55.2%) had LGE. No significant differences were found in systolic function parameters between patients with and without DM. E/e values were higher (15 vs. 11.9, p = 0.025), and both LGE (68.6% vs. 50.4%; p = 0.025) and a high-risk LGE pattern (31.4% vs. 18.5%; p = 0.047) were more frequently found in patients with DM. The primary outcome occurred more frequently in diabetic patients (41.2% vs. 23.6%, p = 0.017). DM was an independent predictor of outcomes (OR 2.01; p = 0.049) and of LGE presence (OR 2.15; p = 0.048) in the multivariable analysis. Patients with both DM and LGE had the highest risk of events (HR 3.1; p = 0.003). CONCLUSION DM is related to a higher presence of LGE in DCM patients and is an independent predictor of outcomes. Patients with DM and LGE had a threefold risk of events. A multimodality imaging approach allows better risk stratification of these patients and may influence therapeutic options.
Collapse
Affiliation(s)
- Pablo Zulet
- Instituto Cardiovascular, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), C/Profesor Martín Lagos s/n, Madrid, 28040, Spain
| | - Fabián Islas
- Instituto Cardiovascular, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), C/Profesor Martín Lagos s/n, Madrid, 28040, Spain
| | - Marcos Ferrández-Escarabajal
- Instituto Cardiovascular, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), C/Profesor Martín Lagos s/n, Madrid, 28040, Spain
| | - Ana Bustos
- Servicio de Diagnóstico por la Imagen, Hospital Clínico San Carlos, Madrid, Spain
| | - Beatriz Cabeza
- Servicio de Diagnóstico por la Imagen, Hospital Clínico San Carlos, Madrid, Spain
| | - Sandra Gil-Abizanda
- Instituto Cardiovascular, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), C/Profesor Martín Lagos s/n, Madrid, 28040, Spain
| | - María Vidal
- Servicio de Diagnóstico por la Imagen, Hospital Clínico San Carlos, Madrid, Spain
| | - Irene Martín-Lores
- Servicio de Diagnóstico por la Imagen, Hospital Clínico San Carlos, Madrid, Spain
| | | | - J Alberto de Agustín
- Instituto Cardiovascular, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), C/Profesor Martín Lagos s/n, Madrid, 28040, Spain
| | - Carmen Olmos
- Instituto Cardiovascular, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), C/Profesor Martín Lagos s/n, Madrid, 28040, Spain.
- Universidad Europea de Madrid, Madrid, Spain.
| |
Collapse
|
17
|
Quaiyoom A, Kumar R. An Overview of Diabetic Cardiomyopathy. Curr Diabetes Rev 2024; 20:e121023222139. [PMID: 37842898 DOI: 10.2174/0115733998255538231001122639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 10/17/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a myocardial disorder that is characterised by structural and functional abnormalities of the heart muscle in the absence of hypertension, valvular heart disease, congenital heart defects, or coronary artery disease (CAD). After witnessing a particular form of cardiomyopathy in diabetic individuals, Rubler et al. came up with the moniker diabetic cardiomyopathy in 1972. Four stages of DCM are documented, and the American College of Cardiology/American Heart Association Stage and New York Heart Association Class for HF have some overlap. Diabetes is linked to several distinct forms of heart failure. Around 40% of people with heart failure with preserved ejection fraction (HFpEF) have diabetes, which is thought to be closely associated with the pathophysiology of HFpEF. Diabetes and HF are uniquely associated in a bidirectional manner. When compared to the general population without diabetes, those with diabetes have a risk of heart failure that is up to four times higher. A biomarker is a trait that is reliably measured and assessed as a predictor of healthy biological activities, pathological processes, or pharmacologic responses to a clinical treatment. Several biomarker values have been discovered to be greater in patients with diabetes than in control subjects among those who have recently developed heart failure. Myocardial fibrosis and hypertrophy are the primary characteristics of DCM, and structural alterations in the diabetic myocardium are often examined by non-invasive, reliable, and reproducible procedures. An invasive method called endomyocardial biopsy (EMB) is most often used to diagnose many cardiac illnesses.
Collapse
Affiliation(s)
- Abdul Quaiyoom
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, India
| | - Ranjeet Kumar
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, India
| |
Collapse
|
18
|
Shi R, Jiang YN, Qian WL, Guo YK, Gao Y, Shen LT, Jiang L, Li XM, Yang ZG, Li Y. Assessment of left atrioventricular coupling and left atrial function impairment in diabetes with and without hypertension using CMR feature tracking. Cardiovasc Diabetol 2023; 22:295. [PMID: 37904206 PMCID: PMC10617180 DOI: 10.1186/s12933-023-01997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/18/2023] [Indexed: 11/01/2023] Open
Abstract
PURPOSE The study was designed to assess the effect of co-occurrence of diabetes mellitus (DM) and hypertension on the deterioration of left atrioventricular coupling index (LACI) and left atrial (LA) function in comparison to individuals suffering from DM only. METHODS From December 2015 to June 2022, we consecutively recruited patients with clinically diagnosed DM who underwent cardiac magnetic resonance (CMR) at our hospital. The study comprised a total of 176 patients with DM, who were divided into two groups based on their blood pressure status: 103 with hypertension (DM + HP) and 73 without hypertension (DM-HP). LA reservoir function (reservoir strain (εs), total LA ejection fraction (LAEF)), conduit function (conduit strain (εe), passive LAEF), booster-pump function (booster strain (εa) and active LAEF), LA volume index (LAVI), LV global longitudinal strain (LVGLS), and LACI were evaluated and compared between the two groups. RESULTS After adjusting for age, sex, body surface area (BSA), and history of current smoking, total LAEF (61.16 ± 14.04 vs. 56.05 ± 12.72, p = 0.013) and active LAEF (43.98 ± 14.33 vs. 38.72 ± 13.51, p = 0.017) were lower, while passive LAEF (33.22 ± 14.11 vs. 31.28 ± 15.01, p = 0.807) remained unchanged in the DM + HP group compared to the DM-HP group. The DM + HP group had decreased εs (41.27 ± 18.89 vs. 33.41 ± 13.94, p = 0.006), εe (23.69 ± 12.96 vs. 18.90 ± 9.90, p = 0.037), εa (17.83 ± 8.09 vs. 14.93 ± 6.63, p = 0.019), and increased LACI (17.40±10.28 vs. 22.72±15.01, p = 0.049) when compared to the DM-HP group. In patients with DM, multivariate analysis revealed significant independent associations between LV GLS and εs (β=-1.286, p < 0.001), εe (β=-0.919, p < 0.001), and εa (β=-0.324, p = 0.036). However, there was no significant association observed between LV GLS and LACI (β=-0.003, p = 0.075). Additionally, hypertension was found to independently contribute to decreased εa (β=-2.508, p = 0.027) and increased LACI in individuals with DM (β = 0.05, p = 0.011). CONCLUSIONS In DM patients, LV GLS showed a significant association with LA phasic strain. Hypertension was found to exacerbate the decline in LA booster strain and increase LACI in DM patients, indicating potential atrioventricular coupling index alterations.
Collapse
Affiliation(s)
- Rui Shi
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yi-Ning Jiang
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Wen-Lei Qian
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yue Gao
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Li-Ting Shen
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Li Jiang
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Xue-Ming Li
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| | - Yuan Li
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
19
|
Ghaedian T, Abdinejad M, Aieneh P, Ebrahimi S, Rezaei M. Characterization of left ventricular diastolic parameters of gated-single-photon emission computed tomography myocardial perfusion imaging in patients with diabetes and normal myocardial perfusion and systolic function. Nucl Med Commun 2023; 44:788-794. [PMID: 37334545 DOI: 10.1097/mnm.0000000000001721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
BACKGROUND Diabetic cardiomyopathy is defined as an independent entity with a specified pathological progression from diastolic dysfunction with preserved ejection fraction to overt heart failure. Myocardial perfusion imaging (MPI) with gated-single-photon emission computed tomography (G-SPECT) has been introduced as a feasible tool to evaluate left ventricular (LV) diastolic function. The aim of this study was to investigate the characteristics of diastolic parameters derived from G-SPECT MPI in diabetic patients compared to patients at very low risk of coronary artery disease (CAD) and with no other CAD risk factors. METHODS This cross-sectional study was performed on patients referred to the nuclear medicine department for G-SPECT MPI. Demographic and clinical data, as well as medical history, were extracted from a digital registry system including 4447 patients. Then, two matched groups of patients with only diabetes as cardiac risk factor ( n = 126) and those without any identifiable CAD risk factors ( n = 126) were selected. Diastolic parameters of MPI, including peak filling rate, time to peak filling rate, mean filling rate at the first third of diastole and second peak filling rate, were derived using quantitative software for eligible cases. RESULTS The mean age of the diabetic and nondiabetic groups was 57.1 ± 14.9 and 56.7 ± 10.6 years, respectively ( P = 0.823). Comparison of quantitative SPECT MPI parameters between the two groups showed a statistically significant difference only in total perfusion deficit scores, whereas none of the functional parameters, including diastolic and dyssynchrony indices and the shape index, were significantly different. There were also no significant differences in diastolic function parameters between diabetes and nondiabetes patients in the age and gender subgroups. CONCLUSION Based on the G-SPECT MPI findings, there is a comparable prevalence of diastolic dysfunction in patients with only diabetes as a cardiovascular risk factor and low-risk patients with no cardiovascular risk factors in the setting of normal myocardial perfusion and systolic function.
Collapse
Affiliation(s)
- Tahereh Ghaedian
- Nuclear Medicine Department, Nuclear Medicine and Molecular Imaging Research Center
| | | | - Pegah Aieneh
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences
| | | | - Mehdi Rezaei
- Department of Cardiology, Fars-Iranian Heart Association, Fars Society of Internal Medicine, Shiraz, Iran
| |
Collapse
|
20
|
Feng B, Yu P, Yu H, Qian B, Li Y, Sun K, Shi B, Zhang N, Xu G. Therapeutic effects on the development of heart failure with preserved ejection fraction by the sodium-glucose cotransporter 2 inhibitor dapagliflozin in type 2 diabetes. Diabetol Metab Syndr 2023; 15:141. [PMID: 37386620 DOI: 10.1186/s13098-023-01116-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is a common disease with high morbidity and lacks effective treatment. We investigated the protective effects of the long-term application of the sodium-glucose cotransporter 2 inhibitor (SGLT2i) dapagliflozin on diabetes-associated HFpEF in a rat model. Serum proteomics and metabolomics analysis were also conducted in type 2 diabetic patients with HFpEF treated with dapagliflozin. METHODS Male Zucker diabetic fatty (ZDF) rats were used as a model of diabetic cardiomyopathy. From weeks 16 to 28, animals were given a vehicle or dapagliflozin (1 mg/kg) once daily. Primary blood biochemistry indices, echocardiography, histopathology, and cardiac hemodynamics were determined during the study period. The key markers of myocardial fibrosis, nitro-oxidative stress, inflammation, apoptosis, autophagy, and AMPK/mTOR signaling were examined. Additionally, healthy controls and individuals with type 2 diabetes were enrolled and 16 serum samples from 4 groups were randomly selected. Serum proteome and metabolome changes after dapagliflozin treatment were analyzed in diabetic individuals with HFpEF. RESULTS Dapagliflozin effectively prevented the development of HFpEF in rats with diabetes by mitigating nitro-oxidative stress, pro-inflammatory cytokines, myocardial hypertrophy, and fibrosis, reducing apoptosis, and restoring autophagy through AMPK activating and mTOR pathway repressing. Proteomics and metabolomics revealed that cholesterol and high-density lipoprotein particle metabolism, nicotinate and nicotinamide metabolism, arginine biosynthesis, and cAMP and peroxisome proliferator-activated receptor (PPAR) signaling are the major disturbed pathways in HFpEF patients treated with dapagliflozin. CONCLUSION Long-term treatment with dapagliflozin significantly prevented the development of HFpEF in diabetic rats. Dapagliflozin could be a promising therapeutic strategy in managing HFpEF individuals with type 2 diabetes.
Collapse
Affiliation(s)
- Bin Feng
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Peiran Yu
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215008, Jiangsu, People's Republic of China
| | - Hao Yu
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215008, Jiangsu, People's Republic of China
| | - Buyun Qian
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215008, Jiangsu, People's Republic of China
| | - Yuan Li
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215008, Jiangsu, People's Republic of China
| | - Kangyun Sun
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215008, Jiangsu, People's Republic of China
| | - Bimin Shi
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, People's Republic of China
| | - Nannan Zhang
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215008, Jiangsu, People's Republic of China.
| | - Guidong Xu
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, 242 Guangji Road, Suzhou, 215008, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Hou J, Liang WY, Xiong S, Long P, Yue T, Wen X, Wang T, Deng H. Identification of hub genes and potential ceRNA networks of diabetic cardiomyopathy. Sci Rep 2023; 13:10258. [PMID: 37355664 PMCID: PMC10290640 DOI: 10.1038/s41598-023-37378-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023] Open
Abstract
Diabetic cardiomyopathy (DCM), a common complication of diabetes, is defined as ventricular dysfunction in the absence of underlying heart disease. Noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), play a crucial role in the development of DCM. Weighted Gene Co-Expression Network Analysis (WGCNA) was used to identify key modules in DCM-related pathways. DCM-related miRNA-mRNA network and DCM-related ceRNA network were constructed by miRNA-seq to identify hub genes in these modules. We identified five hub genes that are associated with the onset of DCM, including Troponin C1 (Tnnc1), Phospholamban (Pln), Fatty acid binding proteins 3 (Fabp3), Popeye domain containing 2 (Popdc2), and Tripartite Motif-containing Protein 63 (Trim63). miRNAs that target the hub genes were mainly involved in TGF-β and Wnt signaling pathways. GO BP enrichment analysis found these miRNAs were involved in the signaling of TGF-β and glucose homeostasis. Q-PCR results found the gene expressions of Pln, Fabp3, Trim63, Tnnc1, and Popdc2 were significantly increased in DCM. Our study identified five hub genes (Tnnc1, Pln, Fabp3, Popdc2, Trim63) whose associated ceRNA networks are responsible for the onset of DCM.
Collapse
Affiliation(s)
- Jun Hou
- Department of Cardiology, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Wan Yi Liang
- Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Shiqiang Xiong
- Department of Cardiology, The Third People's Hospital of Chengdu/Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Pan Long
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Tian Yue
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xudong Wen
- Department of Gastroenterology and Hepatology, Chengdu First People's Hospital, Chengdu, Sichuan, China
| | - Tianchen Wang
- Alfred E. Mann Department of Biomedical Engineering, University of South California, Los Angeles, CA, USA
| | - Haoyu Deng
- Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- Centre for Heart and Lung Innovation, St. Paul's Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada.
| |
Collapse
|
22
|
Shi R, Yang ZG, Guo YK, Qian WL, Gao Y, Li XM, Jiang L, Xu HY, Li Y. The right ventricular dysfunction and ventricular interdependence in patients with DM: assessment using cardiac MR feature tracking. Cardiovasc Diabetol 2023; 22:93. [PMID: 37085847 PMCID: PMC10122304 DOI: 10.1186/s12933-023-01806-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/16/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND To investigate the difference of right ventricular (RV) structural and functional alteration in patients with diabetes mellitus (DM) with preserved left ventricular ejection fraction (LVEF), and the ventricular interdependence in these patients, using cardiac MR (CMR) feature tracking. METHODS From December 2016 to February 2022, 148 clinically diagnosed patients with DM who underwent cardiac MR (CMR) in our hospital were consecutively recruited. Fifty-four healthy individuals were included as normal controls. Biventricular strains, including left/right ventricular global longitudinal strain (LV-/RVGLS), left/right ventricular global circumferential strain (LV-/RVGCS), left/right ventricular global radial strain (LV-/RVGRS) were evaluated, and compared between patients with DM and healthy controls. Multiple linear regression and mediation analyses were used to evaluate DM's direct and indirect effects on RV strains. RESULTS No differences were found in age (56.98 ± 10.98 vs. 57.37 ± 8.41, p = 0.985), sex (53.4% vs. 48.1%, p = 0.715), and body surface area (BSA) (1.70 ± 0.21 vs. 1.69 ± 0.17, p = 0.472) between DM and normal controls. Patients with DM had decreased RVGLS (- 21.86 ± 4.14 vs. - 24.49 ± 4.47, p = 0.001), RVGCS (- 13.16 ± 3.86 vs. - 14.92 ± 3.08, p = 0.011), and no decrease was found in RVGRS (22.62 ± 8.11 vs. 23.15 ± 9.05, p = 0.743) in patients with DM compared with normal controls. The difference in RVGLS between normal controls and patients with DM was totally mediated by LVGLS (indirect effecting: 0.655, bootstrapped 95%CI 0.138-0.265). The difference in RVGCS between normal controls and DM was partly mediated by the LVGLS (indirect effecting: 0.336, bootstrapped 95%CI 0.002-0.820) and LVGCS (indirect effecting: 0.368, bootstrapped 95%CI 0.028-0.855). CONCLUSIONS In the patients with DM and preserved LVEF, the difference in RVGLS between DM and normal controls was totally mediated by LVGLS. Although there were partly mediating effects of LVGLS and LVGCS, the decrease in RVGCS might be directly affected by the DM.
Collapse
Affiliation(s)
- Rui Shi
- Department of Radiology, West China Hospital, Sichuan University, No. 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Zhi-Gang Yang
- Department of Radiology, West China Hospital, Sichuan University, No. 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Ying-Kun Guo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Wen-Lei Qian
- Department of Radiology, West China Hospital, Sichuan University, No. 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yue Gao
- Department of Radiology, West China Hospital, Sichuan University, No. 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Xue-Ming Li
- Department of Radiology, West China Hospital, Sichuan University, No. 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Li Jiang
- Department of Radiology, West China Hospital, Sichuan University, No. 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Hua-Yan Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuan Li
- Department of Radiology, West China Hospital, Sichuan University, No. 37# Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
23
|
Liu L, Sun K, Luo Y, Wang B, Yang Y, Chen L, Zheng S, Wu T, Xiao P. Myocardin-related transcription factor A, regulated by serum response factor, contributes to diabetic cardiomyopathy in mice. Life Sci 2023; 317:121470. [PMID: 36758668 DOI: 10.1016/j.lfs.2023.121470] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/10/2023]
Abstract
AIMS Diabetic cardiomyopathy is a significant contributor to the global pandemic of heart failure. In the present study we investigated the involvement of myocardin-related transcription factor A (MRTF-A), a transcriptional regulator, in this process. MATERIALS AND METHODS Diabetic cardiomyopathy was induced in mice by feeding with a high-fat diet (HFD) or streptozotocin (STZ) injection. KEY FINDINGS We report that MRTF-A was up-regulated in the hearts of mice with diabetic cardiomyopathy. MRTF-A expression was also up-regulated by treatment with palmitate in cultured cardiomyocytes in vitro. Mechanistically, serum response factor (SRF) bound to the MRTF-A gene promoter and activated MRTF-A transcription in response to pro-diabetic stimuli. Knockdown of SRF abrogated MRTF-A induction in cardiomyocytes treated with palmitate. When cardiomyocytes conditional MRTF-A knockout mice (MRTF-A CKO) and wild type (WT) mice were placed on an HFD to induce diabetic cardiomyopathy, it was found that the CKO mice and the WT mice displayed comparable metabolic parameters including body weight, blood insulin concentration, blood cholesterol concentration, and glucose tolerance. However, both systolic and diastolic cardiac function were exacerbated by MRTF-A deletion in the heart. SIGNIFICANCE These data suggest that MRTF-A up-regulation might serve as an important compensatory mechanism to safeguard the deterioration of cardiac function during diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Li Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; Department of Cardiology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Ke Sun
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yajun Luo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bingshu Wang
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Medical Research Center of The First Affiliated Hospital, Hainan Women and Children Medical Center, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, China; Department of Pathology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570216, China
| | - Yuyu Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Long Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Shaojiang Zheng
- Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Medical Research Center of The First Affiliated Hospital, Hainan Women and Children Medical Center, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, China.
| | - Teng Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| | - Pingxi Xiao
- Department of Cardiology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
24
|
Macvanin MT, Gluvic Z, Radovanovic J, Essack M, Gao X, Isenovic ER. Diabetic cardiomyopathy: The role of microRNAs and long non-coding RNAs. Front Endocrinol (Lausanne) 2023; 14:1124613. [PMID: 36950696 PMCID: PMC10025540 DOI: 10.3389/fendo.2023.1124613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Diabetes mellitus (DM) is on the rise, necessitating the development of novel therapeutic and preventive strategies to mitigate the disease's debilitating effects. Diabetic cardiomyopathy (DCMP) is among the leading causes of morbidity and mortality in diabetic patients globally. DCMP manifests as cardiomyocyte hypertrophy, apoptosis, and myocardial interstitial fibrosis before progressing to heart failure. Evidence suggests that non-coding RNAs, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), regulate diabetic cardiomyopathy-related processes such as insulin resistance, cardiomyocyte apoptosis and inflammation, emphasizing their heart-protective effects. This paper reviewed the literature data from animal and human studies on the non-trivial roles of miRNAs and lncRNAs in the context of DCMP in diabetes and demonstrated their future potential in DCMP treatment in diabetic patients.
Collapse
Affiliation(s)
- Mirjana T. Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvic
- University Clinical-Hospital Centre Zemun-Belgrade, Clinic of Internal Medicine, Department of Endocrinology and Diabetes, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Radovanovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Magbubah Essack
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Xin Gao
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical, and Mathematical Sciences and Engineering (CEMSE) Division, Computational Bioscience Research Center (CBRC), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
25
|
Gitto M, Villaschi A, Federici M, Condorelli G, Stefanini GG. The Emerging Role of Sodium-glucose Cotransporter 2 Inhibitors in Heart Failure. Curr Pharm Des 2023; 29:481-493. [PMID: 36799420 DOI: 10.2174/1381612829666230217143324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/24/2022] [Accepted: 12/30/2022] [Indexed: 02/18/2023]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are a relatively novel drug class that most cardiologists are becoming familiar with. By contrasting glucose reabsorption in the proximal convoluted tubule of the nephron, SGLT2 inhibition results in glycosuria with improved glycemic control. Although originally introduced as anti-diabetic medications, the cardiovascular effects of SGLT2i have progressively emerged, leading them to become one of the four pillars for the treatment of heart failure with reduced ejection fraction (HFrEF) according to the 2021 guidelines from the European Society of Cardiology. Also, two recent randomized trials have demonstrated SGLT2i as the first compounds with proven prognostic impact in heart failure with preserved ejection fraction (HFpEF), setting a milestone in the treatment for this condition. While the exact pathogenic mechanisms mediating the substantial reduction in cardiovascular death and heart failure (HF) hospitalizations are still controversial, there is growing clinical evidence on the efficacy and safety of SGLT2i in various subsets of patients with HF. As known, heart failure is a complex and heterogeneous clinical syndrome with a magnitude of phenotypes and a variety of underlying hemodynamic and physiological aspects which cannot be fully incorporated into the traditional left ventricular ejection fraction based classification adopted in clinical trials. The aim of this review is to provide an overview of the cardiovascular benefits and indications of SGLT2i across different HF patterns and to highlight current gaps in knowledge that should be addressed by future research.
Collapse
Affiliation(s)
- Mauro Gitto
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano-Milan, Italy
| | - Alessandro Villaschi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano-Milan, Italy
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Center for Atherosclerosis, Policlinico Tor Vergata, Rome, Italy
| | - Gianluigi Condorelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano-Milan, Italy
| | - Giulio G Stefanini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano-Milan, Italy
| |
Collapse
|
26
|
The Molecular Mechanisms of Defective Copper Metabolism in Diabetic Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5418376. [PMID: 36238639 PMCID: PMC9553361 DOI: 10.1155/2022/5418376] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/22/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022]
Abstract
Copper is an essential trace metal element that significantly affects human physiology and pathology by regulating various important biological processes, including mitochondrial oxidative phosphorylation, connective tissue crosslinking, and antioxidant defense. Copper level has been proved to be closely related to the morbidity and mortality of cardiovascular diseases such as atherosclerosis, heart failure, and diabetic cardiomyopathy (DCM). Copper deficiency can induce cardiac hypertrophy and aggravate cardiomyopathy, while copper excess can mediate various types of cell death, such as autophagy, apoptosis, cuproptosis, pyroptosis, and cardiac hypertrophy and fibrosis. Both copper excess and copper deficiency lead to redox imbalance, activate inflammatory response, and aggravate diabetic cardiomyopathy. This defective copper metabolism suggests a specific metabolic pattern of copper in diabetes and a specific role in the pathogenesis and progression of DCM. This review is aimed at providing a timely summary of the effects of defective copper homeostasis on DCM and discussing potential underlying molecular mechanisms.
Collapse
|
27
|
Mordi IR, Lang CC. Glucose-Lowering and Metabolic Effects of SGLT2 Inhibitors. Heart Fail Clin 2022; 18:529-538. [PMID: 36216483 DOI: 10.1016/j.hfc.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Sodium-glucose cotransporter 2 (SGLT2) inhibitors have consistently demonstrated improved outcomes in patients with heart failure with or without type 2 diabetes; however, the mechanisms contributing to these benefits remain poorly understood. Although SGLT2 inhibitors do have glucose-lowering effects, it is unlikely that their cardiovascular benefits are solely due to improved glycemic control. This improved glycemia leads to consequent metabolic effects that could provide further explanation for their action. This review discusses the glucose-lowering and metabolic effects of SGLT2 inhibitors and how these might lead to improved cardiovascular outcomes in patients with heart failure.
Collapse
Affiliation(s)
- Ify R Mordi
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, United Kingdom
| | - Chim C Lang
- Division of Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, United Kingdom.
| |
Collapse
|
28
|
McMurray JJV, Sattar N. Heart failure: now centre-stage in diabetes. Lancet Diabetes Endocrinol 2022; 10:689-691. [PMID: 36057271 DOI: 10.1016/s2213-8587(22)00249-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 10/14/2022]
Affiliation(s)
- John J V McMurray
- British Heart Foundation Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | - Naveed Sattar
- British Heart Foundation Cardiovascular Research Centre, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
29
|
Cardiac autonomic neuropathy linked to left ventricular dysfunction in type 1 diabetic patients. Cardiovasc Endocrinol Metab 2022; 11:e0272. [PMID: 36168428 PMCID: PMC9509180 DOI: 10.1097/xce.0000000000000272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
Type 1 diabetes is a major cause of cardiovascular death; diabetic cardiomyopathy (DCM) is the most important cause of mortality among diabetic patients. There is an increasing body of evidence that the most important inducer of DCM is microvascular injury. The aim of this study is to establish a potential relationship between low frequency/high frequency (LF/HF) ratio and DCM and to set a possible predictive cutoff of LF:HF ratio for early detection of DCM.
Collapse
|
30
|
Gitto M, Kotinas AS, Terzi R, Oliva A, Zagoreo J, Reimers B, Stefanini GG, Mirani M, Favacchio G, Condorelli G, Panico C. Biochemical Efficacy of Sodium-Glucose Cotransporter 2 Inhibitors by Cardiovascular Risk Profile and Volume Status in a Real-World Diabetic Population. J Cardiovasc Pharmacol 2022; 80:140-147. [PMID: 35436244 PMCID: PMC9249071 DOI: 10.1097/fjc.0000000000001280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Despite large-scale randomized clinical trials (RCTs) highlighting a consistent prognostic benefit of sodium-glucose cotransporter 2 inhibitors (SGLT2is) both in diabetic patients at high cardiovascular risk and in those with heart failure, there is relative paucity of data on their biochemical effects in a real-world setting. We performed a retrospective analysis on consecutive diabetic patients who were prescribed a SGLT2i in a tertiary referral center and completed at least 1 year of treatment. Changes in glycated hemoglobin, weight, and hematocrit were compared across 2 cardiovascular risk categories, defined through the inclusion criteria of 3 large RCTs. Of the 459 patients screened, 312 completed 1 year of treatment (68.0%), 92 interrupted the treatment prematurely (20.0%), and 55 were lost to follow-up (12.0%). The most common cause of drug discontinuation was genital or urinary tract infections (9.4%). At 1 year, reduction in glycated hemoglobin concentration (-0.7 ± 1.5%, P < 0.001) and body weight (2.4 ± 4.6 kg, P < 0.001) was comparable between patients at high versus low cardiovascular risk, while hematocrit increase (2.3 ± 3.3%, P < 0.001) was more marked in patients with high cardiovascular risk and low baseline hematocrit. In a real-world population of diabetic patients, SGLT2is were well-tolerated at 1 year and led to improved glycemic control and weight loss. Hematocrit increase was more consistent in patients with high cardiovascular risk and signs of fluid overload, indicating euvolemic restoration as a potential cardioprotective mechanism mediated by these compounds.
Collapse
Affiliation(s)
- Mauro Gitto
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy; and
- Humanitas Research Hospital IRCCS, Rozzano-Milan, Italy
| | - Alexios S. Kotinas
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy; and
| | - Riccardo Terzi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy; and
| | - Angelo Oliva
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy; and
- Humanitas Research Hospital IRCCS, Rozzano-Milan, Italy
| | - Jorgele Zagoreo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy; and
| | - Bernhard Reimers
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy; and
- Humanitas Research Hospital IRCCS, Rozzano-Milan, Italy
| | - Giulio G. Stefanini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy; and
- Humanitas Research Hospital IRCCS, Rozzano-Milan, Italy
| | - Marco Mirani
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy; and
- Humanitas Research Hospital IRCCS, Rozzano-Milan, Italy
| | - Giuseppe Favacchio
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy; and
- Humanitas Research Hospital IRCCS, Rozzano-Milan, Italy
| | - Gianluigi Condorelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy; and
- Humanitas Research Hospital IRCCS, Rozzano-Milan, Italy
| | - Cristina Panico
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele-Milan, Italy; and
- Humanitas Research Hospital IRCCS, Rozzano-Milan, Italy
| |
Collapse
|
31
|
Kleissl-Muir S, Rasmussen B, Owen A, Zinn C, Driscoll A. Low Carbohydrate Diets for Diabetic Cardiomyopathy: A Hypothesis. Front Nutr 2022; 9:865489. [PMID: 35529461 PMCID: PMC9069235 DOI: 10.3389/fnut.2022.865489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Elevated blood glucose levels, insulin resistance (IR), hyperinsulinemia and dyslipidemia the key aspects of type 2 diabetes mellitus (T2DM), contribute to the development of a certain form of cardiomyopathy. This cardiomyopathy, also known as diabetic cardiomyopathy (DMCM), typically occurs in the absence of overt coronary artery disease (CAD), hypertension or valvular disease. DMCM encompasses a variety of pathophysiological processes impacting the myocardium, hence increasing the risk for heart failure (HF) and significantly worsening outcomes in this population. Low fat (LF), calorie-restricted diets have been suggested as the preferred eating pattern for patients with HF. However, LF diets are naturally higher in carbohydrates (CHO). We argue that in an insulin resistant state, such as in DMCM, LF diets may worsen glycaemic control and promote further insulin resistance (IR), contributing to a physiological and functional decline in DMCM. We postulate that CHO restriction targeting hyperinsulinemia may be able to improve tissue and systemic IR. In recent years low carbohydrate diets (LC) including ketogenic diets (KD), have emerged as a safe and effective tool for the management of various clinical conditions such as T2DM and other metabolic disorders. CHO restriction achieves sustained glycaemic control, lower insulin levels and successfully reverses IR. In addition to this, its pleiotropic effects may present a metabolic stress defense and facilitate improvement to cardiac function in patients with HF. We therefore hypothesize that patients who adopt a LC diet may require less medications and experience improvements in HF-related symptom burden.
Collapse
Affiliation(s)
| | - Bodil Rasmussen
- School of Nursing and Midwifery, Deakin University, Geelong, VIC, Australia
- Centre for Quality and Patient Safety, School of Nursing and Midwifery, Institute for Health Transformation, Deakin University, Geelong, VIC, Australia
- The Centre for Quality and Patient Safety, Institute of Health Transformation -Western Health Partnership, Western Health, St Albans, VIC, Australia
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health Sciences, University of Southern Denmark and Steno Diabetes Centre, Odense, Denmark
| | - Alice Owen
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Caryn Zinn
- Human Potential Centre, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Andrea Driscoll
- School of Nursing and Midwifery, Deakin University, Geelong, VIC, Australia
- Centre for Quality and Patient Safety, School of Nursing and Midwifery, Institute for Health Transformation, Deakin University, Geelong, VIC, Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Department of Cardiology, Austin Health, Heidelberg, VIC, Australia
| |
Collapse
|
32
|
Bioinformatics analysis for identifying micro-RNAs, long noncoding RNAs, transcription factors, and immune genes regulatory networks in diabetic cardiomyopathy using an integrated bioinformatics analysis. Inflamm Res 2022; 71:847-858. [PMID: 35438360 DOI: 10.1007/s00011-022-01571-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/26/2022] [Accepted: 04/03/2022] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES We identified functional genes and studied the underlying molecular mechanisms of diabetic cardiomyopathy (DCM) using bioinformatics tools. METHODS Original gene expression profiles were obtained from the GSE21610 and GSE112556 data sets. We used GEO2R to screen the differentially expressed genes (DEGs). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed on DEGs. Protein-protein interaction (PPI) networks of DEGs were constructed using STRING and hub genes of signaling pathways were identified using Cytoscape. Aberrant hub gene expression was verified using The Cancer Genome Atlas data set. RESULTS The DEGs in DCM were mainly enriched in the nuclei and cytoplasm and involved in DCM and chemokine-related signaling pathways. In the PPI network, 32 nodes were chosen as hub nodes and an RNA interaction network was constructed with 517 interactions. The expression of key genes (JPIK3R1, CCR9, XIST, WDFY3.AS2, hsa-miR-144-5p, and hsa-miR-146b-5p) was significantly different between DCM and normal tissues. CONCLUSIONS The identified hub genes could be associated with DCM pathogenesis and could be used for treating DCM.
Collapse
|
33
|
Advanced Glycation End Product Blocker Drugs Have a Great Potential to Prevent Diabetic Cardiomyopathy in an Animal Model of Diabetes Mellitus Type-2. Cardiovasc Ther 2022; 2022:7014680. [PMID: 35414826 PMCID: PMC8977315 DOI: 10.1155/2022/7014680] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 02/10/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction Sphingosine 1 phosphate (S1P) is a product of the sphingosine kinase 1 (SphK1) enzyme. Increased S1P can lead to tissue fibrosis that is also one of the pathways for developing diabetic cardiomyopathy. Advanced glycation end products (AGEs) increase S1P in cells. The study is aimed at using aminoguanidine (AG) as an AGEs blocker drug to prevent diabetic cardiomyopathy. Materials and methods. 210 rats were enrolled in the study. Diabetes mellitus type-2 was induced, and rats were divided into AG treated diabetic and nondiabetic groups. The heart histology was assessed with Masson's trichrome and hematoxylin-eosin staining. Cardiac function was measured with transthoracic echocardiography. S1P level and SphK1 gene expression were measured by western-blot and RT-qPCR, respectively. Results Results showed that S1P level increases in diabetes, and its augmentation in cardiac tissue with K6PC-5 leads to cardiac fibrosis. 50 and 200 mg/kg of AG prevented cardiac fibrosis, but 100 mg/kg had no significant preventive effect. AG suppressed the SphK1 gene expression and reduced the fibrotic effect of S1P. AG preserved cardiac function by keeping ejection fraction and fractional shortening within the normal range in diabetic rats. Conclusion AG has a suppressor effect on SphK1 gene expression besides its AGEs blocker role. AG is a potential drug to use in diabetic patients for preventing the development of diabetic cardiomyopathy. Other drugs that have AGEs or S1P blocker effects are a good choice for diabetic cardiomyopathy prevention.
Collapse
|
34
|
Inciardi RM, Claggett B, Gupta DK, Cheng S, Liu J, Echouffo Tcheugui JB, Ndumele C, Matsushita K, Selvin E, Solomon SD, Shah AM, Skali H. Cardiac Structure and Function and Diabetes-Related Risk of Death or Heart Failure in Older Adults. J Am Heart Assoc 2022; 11:e022308. [PMID: 35253447 PMCID: PMC9075318 DOI: 10.1161/jaha.121.022308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022]
Abstract
Background Whether cardiac structure and function abnormalities associated with dysglycemia are sufficient to explain the increased risk of death or heart failure (HF) remains unclear. Methods and Results We analyzed 6059 participants (mean age, 75±5 years; 58% women; and 22% Black individuals) who attended the ARIC (Atherosclerosis Risk in Communities) study visit 5 examination (2011-2013). Participants were categorized as no diabetes, pre-diabetes, and diabetes (on the basis of medical history and glycated hemoglobin values). We assessed whether diabetes modified the association between echocardiographic measures of cardiac structure and function and the composite of all-cause death or HF hospitalization and then estimated the extent to which the increased risk of the composite outcome associated with diabetes was explained by cardiac structure and function. Diabetes was prevalent in 33.5% of the subjects. Death or HF occurred in 1111 (18%) at a rate of 3.6 per 100 person-years. Both measures of cardiac structure and function and diabetes status were significantly associated with worse prognosis after accounting for clinical confounders. While diabetes was consistently associated with a higher risk of events, it did not significantly modify the association between cardiac abnormalities and the risk of death or HF, except for subjects with higher left atrial volume who showed higher relative risk of events (P for interaction <0.001). Measures of cardiac structure and function accounted for ≈16% of the increased risk of death or HF associated with diabetes. Similar results were observed analyzing subjects without prevalent heart disease. Conclusions In a biracial cohort of older adults, the increased risk of events associated with diabetes was partially explained by cardiac structure and function abnormalities.
Collapse
Affiliation(s)
- Riccardo M. Inciardi
- Brigham and Women’s Hospital and Harvard Medical SchoolBostonMA
- ASST Spedali Civili di Brescia and Department of Medical and Surgical SpecialtiesRadiological Sciences and Public HealthUniversity of BresciaBresciaItaly
| | - Brian Claggett
- Brigham and Women’s Hospital and Harvard Medical SchoolBostonMA
| | - Deepak K. Gupta
- Vanderbilt Translational and Clinical Cardiovascular Research CenterVanderbilt University Medical CenterNashvilleTN
| | - Susan Cheng
- Smidt Heart Institute, Cedars‐Sinai HospitalLos AngelesCA
| | - Jiankang Liu
- Brigham and Women’s Hospital and Harvard Medical SchoolBostonMA
| | | | - Chiadi Ndumele
- Johns Hopkins Medical CenterJohn Hopkins UniversityBaltimoreMD
| | | | | | | | - Amil M. Shah
- Brigham and Women’s Hospital and Harvard Medical SchoolBostonMA
| | - Hicham Skali
- Brigham and Women’s Hospital and Harvard Medical SchoolBostonMA
| |
Collapse
|
35
|
Gomes KP, Jadli AS, de Almeida LGN, Ballasy NN, Edalat P, Shandilya R, Young D, Belke D, Shearer J, Dufour A, Patel VB. Proteomic Analysis Suggests Altered Mitochondrial Metabolic Profile Associated With Diabetic Cardiomyopathy. Front Cardiovasc Med 2022; 9:791700. [PMID: 35310970 PMCID: PMC8924072 DOI: 10.3389/fcvm.2022.791700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/24/2022] [Indexed: 01/04/2023] Open
Abstract
Diabetic cardiomyopathy (DbCM) occurs independently of cardiovascular diseases or hypertension, leading to heart failure and increased risk for death in diabetic patients. To investigate the molecular mechanisms involved in DbCM, we performed a quantitative proteomic profiling analysis in the left ventricle (LV) of type 2 diabetic mice. Six-month-old C57BL/6J-lepr/lepr (db/db) mice exhibited DbCM associated with diastolic dysfunction and cardiac hypertrophy. Using quantitative shotgun proteomic analysis, we identified 53 differentially expressed proteins in the LVs of db/db mice, majorly associated with the regulation of energy metabolism. The subunits of ATP synthase that form the F1 domain, and Cytochrome c1, a catalytic core subunit of the complex III primarily responsible for electron transfer to Cytochrome c, were upregulated in diabetic LVs. Upregulation of these key proteins may represent an adaptive mechanism by diabetic heart, resulting in increased electron transfer and thereby enhancement of mitochondrial ATP production. Conversely, diabetic LVs also showed a decrease in peptide levels of NADH dehydrogenase 1β subcomplex subunit 11, a subunit of complex I that catalyzes the transfer of electrons to ubiquinone. Moreover, the atypical kinase COQ8A, an essential lipid-soluble electron transporter involved in the biosynthesis of ubiquinone, was also downregulated in diabetic LVs. Our study indicates that despite attempts by hearts from diabetic mice to augment mitochondrial ATP energetics, decreased levels of key components of the electron transport chain may contribute to impaired mitochondrial ATP production. Preserved basal mitochondrial respiration along with the markedly reduced maximal respiratory capacity in the LVs of db/db mice corroborate the association between altered mitochondrial metabolic profile and cardiac dysfunction in DbCM.
Collapse
Affiliation(s)
- Karina P. Gomes
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada
- Libin Cardiovascular Institute, Calgary, AB, Canada
| | - Anshul S. Jadli
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada
- Libin Cardiovascular Institute, Calgary, AB, Canada
| | - Luiz G. N. de Almeida
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Calgary, AB, Canada
| | - Noura N. Ballasy
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada
- Libin Cardiovascular Institute, Calgary, AB, Canada
| | - Pariya Edalat
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada
- Libin Cardiovascular Institute, Calgary, AB, Canada
| | - Ruchita Shandilya
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada
- Libin Cardiovascular Institute, Calgary, AB, Canada
| | - Daniel Young
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Calgary, AB, Canada
| | - Darrell Belke
- Libin Cardiovascular Institute, Calgary, AB, Canada
- Department of Cardiac Sciences, Cumming School of Medicine, Calgary, AB, Canada
| | - Jane Shearer
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Antoine Dufour
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada
- McCaig Institute for Bone and Joint Health, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Vaibhav B. Patel
- Department of Physiology and Pharmacology, Cumming School of Medicine, Calgary, AB, Canada
- Libin Cardiovascular Institute, Calgary, AB, Canada
- *Correspondence: Vaibhav B. Patel ;
| |
Collapse
|
36
|
DE Sensi F, Penela D, Soto-Iglesias D, Jauregui B, San Antonio R, Acosta J, Fernàndez-Armenta J, Berruezo A. Premature ventricular complex site of origin and ablation outcomes in patients with diabetes mellitus. Minerva Cardiol Angiol 2022; 70:403-411. [PMID: 35212502 DOI: 10.23736/s2724-5683.21.05815-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Premature ventricular complexes (PVCs) are frequent in patients with diabetes mellitus (DM). Still, the PVCs characteristics as well as the outcomes after catheter ablation in this population remain unknown. Aim of the study was to describe principal features of PVCs ablated in a wide DM-patients cohort and report postablation clinical outcomes in the follow-up of patients with DM and left ventricular dysfunction. METHODS From April 2012 to April 2020 data of 544 patients (315 [58%] men, 55±16 y), consecutive patients submitted for PVC ablation, were prospectively collected. Patients with left ventricle (LV) systolic disfunction (LVEF<50%) were included in a prospective protocol and followed at 6 and 12 months, and annually thereafter. Baseline characteristic as well ablation outcomes were analyzed based on the presence of DM. RESULTS Sixty (11%) patients had DM. Patients with DM more frequently had a PVC's site of origin (SOO) in the LV (45 [75%] vs. 229 [48%], P<0.001). The most frequent PVC's SOO in DM patients was the LV outflow tract (OT) (35 [58%] patients: 12 aortic cusps; 12 LV summit; 11 in the myocardium immediately inferior to the valvular plane). Fifty-five (92%) patients with DM had an acute successful ablation, without differences compared with patients without DM (55 [92%] vs. 437 [90%], P=0.9). Twenty-tree (38%) DM-patients had LV dysfunction at the ablation time. In these patients, mean PVC burden decreased from 26±11% at baseline to 4±5% (P<0.001); LVEF increased from 36±8% to 42±11% (P<0.01) and NYHA class improved from 2.2±0.6 to 1.8+0.5 (P<0.01), after a mean follow-up of 37±14 months. CONCLUSIONS Patients with DM frequently have PVC with a LV-SOO, being the LVOT the most frequent SOO in this population. Among DM patients with LV dysfunction, ablation persistently and significantly reduce the PVC burden improving functional status. Patients with DM have lower benefit in terms of LV function recovery after ablation compared with non-diabetic patients.
Collapse
Affiliation(s)
| | - Diego Penela
- Teknon Medical Center, Heart Institute, Barcelona, Spain
| | | | | | | | - Juan Acosta
- Virgen del Rocío University Hospital, Sevilla, Spain
| | | | | |
Collapse
|
37
|
Longo M, Scappaticcio L, Cirillo P, Maio A, Carotenuto R, Maiorino MI, Bellastella G, Esposito K. Glycemic Control and the Heart: The Tale of Diabetic Cardiomyopathy Continues. Biomolecules 2022; 12:biom12020272. [PMID: 35204778 PMCID: PMC8961546 DOI: 10.3390/biom12020272] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death in people with diabetes. Diabetic cardiomyopathy (DC) is an important complication of diabetes and represents a distinct subtype of heart failure that occurs in absence of cardiovascular diseases. Chronic hyperglycemia and hyperinsulinemia along with insulin resistance and inflammatory milieu are the main mechanisms involved in the pathophysiology of DC. Changes in lifestyle favoring healthy dietary patterns and physical activity, combined with more innovative anti-diabetes therapies, are the current treatment strategies to safeguard the cardiovascular system. This review aims at providing an updated comprehensive overview of clinical, pathogenetic, and molecular aspects of DC, with a focus on the effects of anti-hyperglycemic drugs on the prevention of pump dysfunction and consequently on cardiovascular health in type 2 diabetes.
Collapse
Affiliation(s)
- Miriam Longo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Lorenzo Scappaticcio
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
| | - Paolo Cirillo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
| | - Antonietta Maio
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
| | - Raffaela Carotenuto
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Maria Ida Maiorino
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giuseppe Bellastella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Katherine Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (M.L.); (L.S.); (P.C.); (A.M.); (R.C.); (M.I.M.); (G.B.)
- Division of Endocrinology and Metabolic Diseases, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Correspondence: ; Tel.: +39-08-156-65031
| |
Collapse
|
38
|
Zhang C, Zhang B, Zhang X, Wang M, Sun X, Sun G. Panax notoginseng Saponin Protects Against Diabetic Cardiomyopathy Through Lipid Metabolism Modulation. J Am Heart Assoc 2022; 11:e023540. [PMID: 35112884 PMCID: PMC9245810 DOI: 10.1161/jaha.121.023540] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background People with diabetes are more likely to develop cardiovascular diseases. Lipotoxicity plays a key role in the development of diabetic cardiomyopathy. Panax notoginseng saponin (PNS) has been used to treat diabetes and obesity. However, the role of PNS in diabetic cardiomyopathy remains unclear. Methods and Results Diabetic db/db mice received high‐dose (200 mg/kg per day) or medium‐dose (100 mg/kg per day) PNS by gavage for 12 weeks until week 36. Lipid accumulation and cardiac function in diabetic mice were detected and possible mechanisms involved were explored. PNS significantly improved body weight, body fat content, serum lipids, adipocytokines, and antioxidative function in db/db mice. Lipid accumulation in adipose tissue, liver, and heart were also alleviated by PNS treatment. Cardiac function and mitochondrial structure were also improved by PNS. H9c2 cells were treated with palmitate acid, and PNS pretreatment reduced lipid accumulation, mitochondrial reactive oxygen species, as well as improved mitochondrial membrane potential and mitochondrial oxygen consumption rate. Levels of proteins and expression of genes related to glucose and lipid metabolism, antioxidative function, and mitochondrial dynamics were also improved by PNS administration. Conclusions PNS attenuated heart dysfunction in diabetic mice by reducing lipotoxicity as well as modulating oxidative stress and improving mitochondrial function.
Collapse
Affiliation(s)
- Chenyang Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal MedicineMinistry of EducationBeijingChina
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic DisordersState Administration of Traditional Chinese MedicineBeijingChina
- NMPA Key Laboratory for Research and Evaluation of PharmacovigilanceBeijingChina
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health ProductsBeijingChina
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijingChina
| | - Bin Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal MedicineMinistry of EducationBeijingChina
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic DisordersState Administration of Traditional Chinese MedicineBeijingChina
- NMPA Key Laboratory for Research and Evaluation of PharmacovigilanceBeijingChina
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health ProductsBeijingChina
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijingChina
| | - Xuelian Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal MedicineMinistry of EducationBeijingChina
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic DisordersState Administration of Traditional Chinese MedicineBeijingChina
- NMPA Key Laboratory for Research and Evaluation of PharmacovigilanceBeijingChina
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health ProductsBeijingChina
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijingChina
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal MedicineMinistry of EducationBeijingChina
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic DisordersState Administration of Traditional Chinese MedicineBeijingChina
- NMPA Key Laboratory for Research and Evaluation of PharmacovigilanceBeijingChina
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health ProductsBeijingChina
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijingChina
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal MedicineMinistry of EducationBeijingChina
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic DisordersState Administration of Traditional Chinese MedicineBeijingChina
- NMPA Key Laboratory for Research and Evaluation of PharmacovigilanceBeijingChina
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health ProductsBeijingChina
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijingChina
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational MedicineInstitute of Medicinal Plant DevelopmentPeking Union Medical College and Chinese Academy of Medical SciencesBeijingChina
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal MedicineMinistry of EducationBeijingChina
- Key Laboratory of Efficacy Evaluation of Chinese Medicine against Glycolipid Metabolic DisordersState Administration of Traditional Chinese MedicineBeijingChina
- NMPA Key Laboratory for Research and Evaluation of PharmacovigilanceBeijingChina
- Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health ProductsBeijingChina
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine PrescriptionChinese Academy of Medical SciencesBeijingChina
| |
Collapse
|
39
|
Lorenzo-Almorós A, Cepeda-Rodrigo J, Lorenzo Ó. Diabetic cardiomyopathy. Rev Clin Esp 2022; 222:100-111. [DOI: 10.1016/j.rceng.2019.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/21/2019] [Indexed: 12/24/2022]
|
40
|
Tang Z, Wang P, Dong C, Zhang J, Wang X, Pei H. Oxidative Stress Signaling Mediated Pathogenesis of Diabetic Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5913374. [PMID: 35103095 PMCID: PMC8800599 DOI: 10.1155/2022/5913374] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/03/2022] [Indexed: 02/07/2023]
Abstract
As a serious cardiovascular complication, diabetic cardiomyopathy (DCM) refers to diabetes-related changes in myocardial structure and function, which is obviously different from those cardiomyopathy secondary to hypertension, coronary heart disease, and valvular disease. The clinical features of DCM are left ventricular hypertrophy, myocardial fibrosis, and impaired diastolic function. DCM will lead to cardiac dysfunction, eventually progress to cardiac arrhythmia, heart failure, and sudden cardiac death. At present, the pathogenesis of DCM is complex and not fully elucidated, and oxidative stress (OS), inflammatory response, glucolipid metabolism disorder, etc., are considered as the potential pathophysiological mechanisms. As a consequence, there is no specific and effective treatment for DCM. OS refers to the imbalance between reactive oxygen species (ROS) accumulation and scavenging, oxidation, and antioxidants in vivo, which is widely studied in DCM. Numerous studies have pointed out that regulating the OS signaling pathways and reducing the generation and accumulation of ROS are potential directions for the treatment of DCM. This review summarizes the major OS signaling pathways that are related to the pathogenesis of DCM, providing ideas about further research and therapy.
Collapse
Affiliation(s)
- Zhaobing Tang
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Peng Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Chao Dong
- Department of Rehabilitation Medicine, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Juan Zhang
- Emei Rehabilitation and Sanatorium Center of PLA, Leshan 614201, China
| | - Xiong Wang
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Haifeng Pei
- Department of Cardiology, The General Hospital of Western Theater Command, Chengdu 610083, China
| |
Collapse
|
41
|
Huang X, Zhang KJ, Jiang JJ, Jiang SY, Lin JB, Lou YJ. Identification of Crucial Genes and Key Functions in Type 2 Diabetic Hearts by Bioinformatic Analysis. Front Endocrinol (Lausanne) 2022; 13:801260. [PMID: 35242109 PMCID: PMC8885996 DOI: 10.3389/fendo.2022.801260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes (T2D) patients with SARS-CoV-2 infection hospitalized develop an acute cardiovascular syndrome. It is urgent to elucidate underlying mechanisms associated with the acute cardiac injury in T2D hearts. We performed bioinformatic analysis on the expression profiles of public datasets to identify the pathogenic and prognostic genes in T2D hearts. Cardiac RNA-sequencing datasets from db/db or BKS mice (GSE161931) were updated to NCBI-Gene Expression Omnibus (NCBI-GEO), and used for the transcriptomics analyses with public datasets from NCBI-GEO of autopsy heart specimens with COVID-19 (5/6 with T2D, GSE150316), or dead healthy persons (GSE133054). Differentially expressed genes (DEGs) and overlapping homologous DEGs among the three datasets were identified using DESeq2. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses were conducted for event enrichment through clusterProfile. The protein-protein interaction (PPI) network of DEGs was established and visualized by Cytoscape. The transcriptions and functions of crucial genes were further validated in db/db hearts. In total, 542 up-regulated and 485 down-regulated DEGs in mice, and 811 up-regulated and 1399 down-regulated DEGs in human were identified, respectively. There were 74 overlapping homologous DEGs among all datasets. Mitochondria inner membrane and serine-type endopeptidase activity were further identified as the top-10 GO events for overlapping DEGs. Cardiac CAPNS1 (calpain small subunit 1) was the unique crucial gene shared by both enriched events. Its transcriptional level significantly increased in T2D mice, but surprisingly decreased in T2D patients with SARS-CoV-2 infection. PPI network was constructed with 30 interactions in overlapping DEGs, including CAPNS1. The substrates Junctophilin2 (Jp2), Tnni3, and Mybpc3 in cardiac calpain/CAPNS1 pathway showed less transcriptional change, although Capns1 increased in transcription in db/db mice. Instead, cytoplasmic JP2 significantly reduced and its hydrolyzed product JP2NT exhibited nuclear translocation in myocardium. This study suggests CAPNS1 is a crucial gene in T2D hearts. Its transcriptional upregulation leads to calpain/CAPNS1-associated JP2 hydrolysis and JP2NT nuclear translocation. Therefore, attenuated cardiac CAPNS1 transcription in T2D patients with SARS-CoV-2 infection highlights a novel target in adverse prognostics and comprehensive therapy. CAPNS1 can also be explored for the molecular signaling involving the onset, progression and prognostic in T2D patients with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xin Huang
- Cardiovascular Key Laboratory of Zhejiang Province, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Biotherapy Research Center, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Xin Huang, ; Yi-jia Lou,
| | - Kai-jie Zhang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Chu Kochen Honors College, Zhejiang University, Hangzhou, China
| | - Jun-jie Jiang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Chu Kochen Honors College, Zhejiang University, Hangzhou, China
| | - Shou-yin Jiang
- Department of Emergency Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jia-bin Lin
- Clinical Research Center, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi-jia Lou
- Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Xin Huang, ; Yi-jia Lou,
| |
Collapse
|
42
|
Peng M, Liu H, Ji Q, Ma P, Niu Y, Ning S, Sun H, Pang X, Yang Y, Zhang Y, Han J, Hao G. Fufang Xueshuantong Improves Diabetic Cardiomyopathy by Regulating the Wnt/ β-Catenin Pathway. Int J Endocrinol 2022; 2022:3919161. [PMID: 36237833 PMCID: PMC9553353 DOI: 10.1155/2022/3919161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 07/02/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is one of the main complications of diabetic patients and the major reason for the high prevalence of heart failure in diabetic patients. Fufang Xueshuantong (FXST) is a traditional Chinese medicine formula commonly used in the treatment of diabetic retinopathy and stable angina pectoris. However, the role of FXST in DCM has not yet been clarified. This study was conducted to investigate the effects of FXST on diabetic myocardial lesions and reveal its molecular mechanism. The rats were intraperitoneally injected with 65 mg/kg streptozotocin (STZ) to induce diabetes mellitus (DM). DM rats were given saline or FXST. The rats in the control group were intraperitoneally injected with an equal amount of sodium citrate buffer and gavaged with saline. After 12 weeks, echocardiography, heart weight index (HWI), and myocardial pathological changes were determined. The expression of transforming growth factor-beta1 (TGF-β1), collagen I, and collagen III was examined using immunofluorescence staining and western blot. The expressions of Wnt/β-catenin signaling pathway-related proteins and mRNA were detected by western blot and real-time PCR. The results showed that FXST significantly improved cardiac function, ameliorated histopathological changes, and decreased HWI in the DM rats. FXST significantly inhibited the expression of myocardial TGF-β1, collagen I, and collagen III in DM rats. Furthermore, FXST significantly inhibited the Wnt/β-catenin pathway. Taken together, FXST has a protective effect on DCM, which might be mediated by suppressing the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Meizhong Peng
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hanying Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qingxuan Ji
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Pan Ma
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yiting Niu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shangqiu Ning
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Huihui Sun
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xinxin Pang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuqian Yang
- School of Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuting Zhang
- Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Han
- Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Gaimei Hao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Gansu Provincial Hospital of Traditional Chinese Medicine, Gansu, China
| |
Collapse
|
43
|
Wei Z, Jing Z, Pinfang K, Chao S, Shaohuan Q. Quercetin Inhibits Pyroptosis in Diabetic Cardiomyopathy through the Nrf2 Pathway. J Diabetes Res 2022; 2022:9723632. [PMID: 36624860 PMCID: PMC9825227 DOI: 10.1155/2022/9723632] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 01/02/2023] Open
Abstract
The present study investigated whether quercetin promotes the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2) to inhibit pyroptosis progression and ameliorate diabetic cardiomyopathy. We evaluated the protective effects of quercetin against diabetic cardiomyopathy by analyzing the expression of pyroptosis pathway proteins, myocardial cell apoptosis rate, degree of myocardial fibrosis, and serum inflammatory indices in the hearts of model rats with diabetes. We evaluated the expression of Nrf2 in the nucleus of cardiomyocytes and H9C2 cells to clarify the role of quercetin in promoting the nuclear translocation of Nrf2. In addition, we coincubated cardiomyocytes with the Nrf2 inhibitor ML385 to confirm that quercetin inhibits the diabetes-induced cardiomyocyte pyroptosis via the Nrf2 pathway. We found that quercetin promoted the nuclear translocation of Nrf2 in cardiac cells of diabetic rats, increased the expression of the antioxidant proteins HO-1, GCLC, and SOD, reduced the accumulation of ROS and the degree of cardiomyocyte apoptosis, and alleviated diabetes-induced cardiac fibrosis. The therapeutic effects of quercetin were further validated in H9C2 cardiomyocytes. Interestingly, ML385 prevented the beneficial effects of quercetin on diabetic cardiomyopathy, further indicating that the quercetin-mediated inhibition of pyroptosis requires the participation of the Nrf2 pathway. In conclusion, quercetin promoted the nuclear translocation of Nrf2, increased the expression of antioxidant factors in cells, and inhibited the progression of cell pyroptosis, thereby alleviating diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Zhang Wei
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui, China 233000
| | - Zhou Jing
- Department of Physiology of Bengbu Medical College, Bengbu City, Anhui, China 233000
| | - Kang Pinfang
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui, China 233000
- Department of Physiology of Bengbu Medical College, Bengbu City, Anhui, China 233000
| | - Shi Chao
- Department of Cardiac Surgery of The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui, China 233000
| | - Qian Shaohuan
- Department of Cardiovascular Medicine of The First Affiliated Hospital of Bengbu Medical College, Bengbu City, Anhui, China 233000
| |
Collapse
|
44
|
Zhan J, Chen C, Wang DW, Li H. Hyperglycemic memory in diabetic cardiomyopathy. Front Med 2021; 16:25-38. [PMID: 34921674 DOI: 10.1007/s11684-021-0881-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/25/2021] [Indexed: 12/26/2022]
Abstract
Cardiovascular diseases account for approximately 80% of deaths among individuals with diabetes mellitus, with diabetic cardiomyopathy as the major diabetic cardiovascular complication. Hyperglycemia is a symptom that abnormally activates multiple downstream pathways and contributes to cardiac hypertrophy, fibrosis, apoptosis, and other pathophysiological changes. Although glycemic control has long been at the center of diabetes therapy, multicenter randomized clinical studies have revealed that intensive glycemic control fails to reduce heart failure-associated hospitalization and mortality in patients with diabetes. This finding indicates that hyperglycemic stress persists in the cardiovascular system of patients with diabetes even if blood glucose level is tightly controlled to the normal level. This process is now referred to as hyperglycemic memory (HGM) phenomenon. We briefly reviewed herein the current advances that have been achieved in research on the underlying mechanisms of HGM in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Jiabing Zhan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| | - Huaping Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| |
Collapse
|
45
|
Doege C, Luedde M, Kostev K. Epilepsy is associated with an increased incidence of heart failure diagnoses. Epilepsy Behav 2021; 125:108393. [PMID: 34731722 DOI: 10.1016/j.yebeh.2021.108393] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Epilepsy is a complex disease with serious consequences for the quality of life and prognosis of those affected. The importance of comorbidities in disease progression and prognosis has gained increasing recognition in recent years. In the present study, we investigated the potential association between epilepsy and heart failure in an outpatient cohort in Germany. METHODS Using the IQVIA Disease Analyzer database, we identified a total of 9646 patients with late-onset epilepsy and a matched cohort of equal size without late-onset epilepsy who were followed up between 2005 and 2018. Cox regression models were used to evaluate the potential association between epilepsy and heart failure. RESULTS Within 10 years of the index date, 28.6% of patients with epilepsy and 20.4% of patients without epilepsy had been diagnosed with HF (log-rank p < 0.001). The incidences were 36.3 cases per 1,000 patient years in the epilepsy cohort versus 23.1 cases in the non-epilepsy cohort. In regression analyses, epilepsy was significantly associated with the incidence of HF (Hazard Ratio (HR): 1.56, p < 0.001). The association was somewhat stronger in men (HR: 1.63, p < 0.001) than in women (HR: 1.49, p < 0.001). The HR in the epilepsy group decreased with increasing age. CONCLUSION Our study provides strong evidence that epilepsy is associated with an increased incidence of heart failure. This finding should help raise awareness of this important comorbidity and could trigger specific cardiovascular screening programs in patients with epilepsy.
Collapse
Affiliation(s)
- Corinna Doege
- Department of Neuropediatrics, Center of Pediatrics and Adolescent Medicine, Central Hospital, Bremen, Germany
| | - Mark Luedde
- Christian-Albrechts-University of Kiel, Germany; KGP, Bremerhaven, Germany.
| | | |
Collapse
|
46
|
Tayanloo-Beik A, Roudsari PP, Rezaei-Tavirani M, Biglar M, Tabatabaei-Malazy O, Arjmand B, Larijani B. Diabetes and Heart Failure: Multi-Omics Approaches. Front Physiol 2021; 12:705424. [PMID: 34421642 PMCID: PMC8378451 DOI: 10.3389/fphys.2021.705424] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetes and heart failure, as important global issues, cause substantial expenses to countries and medical systems because of the morbidity and mortality rates. Most people with diabetes suffer from type 2 diabetes, which has an amplifying effect on the prevalence and severity of many health problems such as stroke, neuropathy, retinopathy, kidney injuries, and cardiovascular disease. Type 2 diabetes is one of the cornerstones of heart failure, another health epidemic, with 44% prevalence. Therefore, finding and targeting specific molecular and cellular pathways involved in the pathophysiology of each disease, either in diagnosis or treatment, will be beneficial. For diabetic cardiomyopathy, there are several mechanisms through which clinical heart failure is developed; oxidative stress with mediation of reactive oxygen species (ROS), reduced myocardial perfusion due to endothelial dysfunction, autonomic dysfunction, and metabolic changes, such as impaired glucose levels caused by insulin resistance, are the four main mechanisms. In the field of oxidative stress, advanced glycation end products (AGEs), protein kinase C (PKC), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) are the key mediators that new omics-driven methods can target. Besides, diabetes can affect myocardial function by impairing calcium (Ca) homeostasis, the mechanism in which reduced protein phosphatase 1 (PP1), sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a), and phosphorylated SERCA2a expressions are the main effectors. This article reviewed the recent omics-driven discoveries in the diagnosis and treatment of type 2 diabetes and heart failure with focus on the common molecular mechanisms.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ozra Tabatabaei-Malazy
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Kumric M, Ticinovic Kurir T, Borovac JA, Bozic J. Role of novel biomarkers in diabetic cardiomyopathy. World J Diabetes 2021; 12:685-705. [PMID: 34168722 PMCID: PMC8192249 DOI: 10.4239/wjd.v12.i6.685] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/22/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is commonly defined as cardiomyopathy in patients with diabetes mellitus in the absence of coronary artery disease and hypertension. As DCM is now recognized as a cause of substantial morbidity and mortality among patients with diabetes mellitus and clinical diagnosis is still inappropriate, various expert groups struggled to identify a suitable biomarker that will help in the recognition and management of DCM, with little success so far. Hence, we thought it important to address the role of biomarkers that have shown potential in either human or animal studies and which could eventually result in mitigating the poor outcomes of DCM. Among the array of biomarkers we thoroughly analyzed, long noncoding ribonucleic acids, soluble form of suppression of tumorigenicity 2 and galectin-3 seem to be most beneficial for DCM detection, as their plasma/serum levels accurately correlate with the early stages of DCM. The combination of relatively inexpensive and accurate speckle tracking echocardiography with some of the highlighted biomarkers may be a promising screening method for newly diagnosed diabetes mellitus type 2 patients. The purpose of the screening test would be to direct affected patients to more specific confirmation tests. This perspective is in concordance with current guidelines that accentuate the importance of an interdisciplinary team-based approach.
Collapse
Affiliation(s)
- Marko Kumric
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| | - Tina Ticinovic Kurir
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
- Department of Endocrinology, University Hospital of Split, Split 21000, Croatia
| | - Josip A Borovac
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
- Emergency Medicine, Institute of Emergency Medicine of Split-Dalmatia County, Split 21000, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Split 21000, Croatia
| |
Collapse
|
48
|
Mitochondrial remodelling-a vicious cycle in diabetic complications. Mol Biol Rep 2021; 48:4721-4731. [PMID: 34023988 DOI: 10.1007/s11033-021-06408-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/08/2021] [Indexed: 10/21/2022]
Abstract
Diabetes mellitus (DM) is a chronic, metabolic condition characterized by excessive blood glucose that causes perturbations in physiological functioning of almost all the organs of human body. This devastating metabolic disease has its implications in cognitive decline, heart damage, renal, retinal and neuronal complications that severely affects quality of life and associated with decreased life expectancy. Mitochondria possess adaptive mechanisms to meet the cellular energy demand and combat cellular stress. In recent years mitochondrial homeostasis has been point of focus where several mechanisms regulating mitochondrial health and function are evaluated. Mitochondrial dynamics plays crucial role in maintaining healthy mitochondria in cell under physiological as well as stress condition. Mitochondrial dynamics and corresponding regulating mechanisms have been implicated in progression of metabolic disorders including diabetes and its complications. In current review we have discussed about role of mitochondrial dynamics under physiological and pathological conditions. Also, modulation of mitochondrial fission and fusion in diabetic complications are described. The available literature supports mitochondrial remodelling as reliable target for diabetic complications.
Collapse
|
49
|
Li Z, Zhang J, Wang M, Qiu F, Jin C, Fu G. Expression of farnesyl pyrophosphate synthase is increased in diabetic cardiomyopathy. Cell Biol Int 2021; 45:1393-1403. [PMID: 33595160 DOI: 10.1002/cbin.11573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/25/2021] [Accepted: 02/14/2021] [Indexed: 12/19/2022]
Abstract
Farnesyl pyrophosphate synthase (FPPS)-catalyzed isoprenoid intermediates are involved in diabetic cardiomyopathy. This study investigated the specific role of FPPS in the development of diabetic cardiomyopathy. We demonstrated that FPPS expression was elevated in both in vivo and in vitro models of diabetic cardiomyopathy. FPPS inhibition decreased the expression of proteins related to cardiac fibrosis and cardiomyocytic hypertrophy, including collagen I, collagen III, connective tissue growth factor, natriuretic factor, brain natriuretic peptide, and β-myosin heavy chain. Furthermore, FPPS inhibition and knockdown prevented phosphorylated c-Jun N-terminal kinase 1/2 (JNK1/2) activation in vitro. In addition, a JNK1/2 inhibitor downregulated high-glucose-induced responses to diabetic cardiomyopathy. Finally, immunofluorescence revealed that cardiomyocytic size was elevated by high glucose and was decreased by zoledronate, small-interfering farnesyl pyrophosphate synthase (siFPPS), and a JNK1/2 inhibitor. Taken together, our findings indicate that FPPS and JNK1/2 may be part of a signaling pathway that plays an important role in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Zhengwei Li
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, PR China
| | - Jiefang Zhang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, PR China
| | - Min Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, PR China
| | - Fuyu Qiu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, PR China
| | - Chongyin Jin
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, PR China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, Zhejiang Province, PR China
| |
Collapse
|
50
|
Jakubik D, Fitas A, Eyileten C, Jarosz-Popek J, Nowak A, Czajka P, Wicik Z, Sourij H, Siller-Matula JM, De Rosa S, Postula M. MicroRNAs and long non-coding RNAs in the pathophysiological processes of diabetic cardiomyopathy: emerging biomarkers and potential therapeutics. Cardiovasc Diabetol 2021; 20:55. [PMID: 33639953 PMCID: PMC7916283 DOI: 10.1186/s12933-021-01245-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/13/2021] [Indexed: 02/08/2023] Open
Abstract
The epidemic of diabetes mellitus (DM) necessitates the development of novel therapeutic and preventative strategies to attenuate complications of this debilitating disease. Diabetic cardiomyopathy (DCM) is a frequent disorder affecting individuals diagnosed with DM characterized by left ventricular hypertrophy, diastolic and systolic dysfunction and myocardial fibrosis in the absence of other heart diseases. Progression of DCM is associated with impaired cardiac insulin metabolic signaling, increased oxidative stress, impaired mitochondrial and cardiomyocyte calcium metabolism, and inflammation. Various non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), as well as their target genes are implicated in the complex pathophysiology of DCM. It has been demonstrated that miRNAs and lncRNAs play an important role in maintaining homeostasis through regulation of multiple genes, thus they attract substantial scientific interest as biomarkers for diagnosis, prognosis and as a potential therapeutic strategy in DM complications. This article will review the different miRNAs and lncRNA studied in the context of DM, including type 1 and type 2 diabetes and the contribution of pathophysiological mechanisms including inflammatory response, oxidative stress, apoptosis, hypertrophy and fibrosis to the development of DCM .
Collapse
Affiliation(s)
- Daniel Jakubik
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Alex Fitas
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Joanna Jarosz-Popek
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland.,Doctoral School, Medical University of Warsaw, 02-091, Warsaw, Poland
| | - Anna Nowak
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Pamela Czajka
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland.,Centro de Matemática, Computação e Cognição, Universidade Federal Do ABC, São Paulo, Brazil
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland.,Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy.,Cardiovascular Research Center, "Magna Graecia" University, Catanzaro, Italy
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland.
| |
Collapse
|