1
|
Zhang YT, Shen G, Zhuo LC, Yang X, Wang SY, Ruan TC, Jiang C, Wang X, Wang Y, Yang YH, Shen Y. Novel variations in TENT5D lead to teratozoospermia in infertile patients. Andrology 2024; 12:1336-1346. [PMID: 38228861 DOI: 10.1111/andr.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/18/2024]
Abstract
PURPOSE Teratozoospermia is the main pathogenic factor of male infertility. However, the genetic etiology of teratozoospermia is largely unknown. This study aims to clarify the relationship between novel variations in TENT5D and teratozoospermia in infertile patients. MATERIALS AND METHODS Two infertile patients were enrolled. Routine semen analysis of patients and normal controls was conducted with the WHO guidelines. Whole-exome sequencing (WES) was conducted to identify pathogenic variants in the two patients. Morphology and ultrastructure analysis of spermatozoa in the two patients was determined by Papanicolaou staining, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The functional effect of the identified variants was analyzed by immunofluorescence staining and western blotting. The expression of TENT5D in different germ cells was detected by immunofluorescence staining. RESULTS Two new hemizygous variations, c.101C > T (p.P34L) and c.125A > T (p.D42V), in TENT5D were detected in two patients with male infertility. Morphology analysis showed abnormalities in spermatozoa morphology in the two patients, including multiple heads, headless, multiple tails, coiled, and/or bent flagella. Ultrastructure analysis showed that most of the spermatozoa exhibited missing or irregularly arranged '9+2' structures. Further functional experiments confirmed the abrogated TENT5D protein expression in patients. In addition, both p.P34L and p.D42V substitutions resulted in a conformational change of the TENT5D protein. We precisely analyzed the subcellular localization of TENT5D in germ cells in humans and mice. And we found that TENT5D was predominantly detected in the head and flagellum of elongating spermatids and epididymal spermatozoa. CONCLUSIONS Our results showed further evidence of a relationship between TENT5D mutation and human male infertility, providing new genetic insight for use in the diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Ying-Teng Zhang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Gan Shen
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Liang-Chai Zhuo
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xue Yang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Su-Yan Wang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Tie-Chao Ruan
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chuan Jiang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiang Wang
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Wang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| | - Yi-Hong Yang
- Reproduction Medical Center of West China Second University Hospital, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University, Chengdu, China
| | - Ying Shen
- Department of Obstetrics/Gynecology, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Jovanovic M, Marini JC. Update on the Genetics of Osteogenesis Imperfecta. Calcif Tissue Int 2024:10.1007/s00223-024-01266-5. [PMID: 39127989 DOI: 10.1007/s00223-024-01266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Osteogenesis imperfecta (OI) is a heterogeneous heritable skeletal dysplasia characterized by bone fragility and deformity, growth deficiency, and other secondary connective tissue defects. OI is now understood as a collagen-related disorder caused by defects of genes whose protein products interact with collagen for folding, post-translational modification, processing and trafficking, affecting bone mineralization and osteoblast differentiation. This review provides the latest updates on genetics of OI, including new developments in both dominant and rare OI forms, as well as the signaling pathways involved in OI pathophysiology. There is a special emphasis on discoveries of recessive mutations in TENT5A, MESD, KDELR2 and CCDC134 whose causality of OI types XIX, XX, XXI and XXI, respectively, is now established and expends the complexity of mechanisms underlying OI to overlap LRP5/6 and MAPK/ERK pathways. We also review in detail new discoveries connecting the known OI types to each other, which may underlie an eventual understanding of a final common pathway in OI cellular and bone biology.
Collapse
Affiliation(s)
- Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- Section on Adolescent Bone and Body Composition, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Sillence DO. A Dyadic Nosology for Osteogenesis Imperfecta and Bone Fragility Syndromes 2024. Calcif Tissue Int 2024:10.1007/s00223-024-01248-7. [PMID: 38942908 DOI: 10.1007/s00223-024-01248-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/17/2024] [Indexed: 06/30/2024]
Abstract
In 2023 following extensive consultation with key stakeholders, the expert Nosology Working Group of the International Skeletal Dysplasia Society (ISDS) published the new Dyadic Nosology for Genetic Disorders of the Skeleton. Some 770 entities were delineated associated with 552 genes. From these entities, over 40 genes resulting in distinct forms of Osteogenesis Imperfecta (OI) and Bone Fragility and/or Familial Osteoporosis were identified. To assist clinicians and lay stake holders and bring the considerable body of knowledge of the matrix biology and genomics to people with OI as well as to clinicians and scientists, a dyadic nosology has been recommended. This combines a genomic co-descriptor with a phenotypic naming based on the widely used Sillence nosology for the OI syndromes and the many other syndromes characterized in part by bone fragility.This review recapitulates and explains the evolution from the simple Congenita and Tarda subclassification of OI in the 1970 nosology, which was replaced by the Sillence types I-IV nosology which was again replaced in 2009 with 5 clinical groups, type 1 to 5. Qualitative and quantitative defects in type I collagen polypeptides were postulated to account for the genetic heterogeneity in OI for nearly 30 years, when OI type 5, a non-collagen disorder was recognized. Advances in matrix biology and genomics since that time have confirmed a surprising complexity both in transcriptional as well as post-translational mechanisms of collagens as well as in the many mechanisms of calcified tissue homeostasis and integrity.
Collapse
Affiliation(s)
- David Owen Sillence
- Specialities of Genomic Medicine and Paediatrics and Adolescent Health, Children's Hospital Westmead, Sydney University Clinical School, Westmead, NSW, 2145, Australia.
- Department of Genetic Medicine, Honorary Emeritus Consultant, Westmead Hospital, Westmead, NSW, 2145, Australia.
| |
Collapse
|
4
|
Lai G, De Grossi F, Catusi I, Pesce E, Manfrini N. Dissecting the Puzzling Roles of FAM46C: A Multifaceted Pan-Cancer Tumour Suppressor with Increasing Clinical Relevance. Cancers (Basel) 2024; 16:1706. [PMID: 38730656 PMCID: PMC11083040 DOI: 10.3390/cancers16091706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
FAM46C is a well-established tumour suppressor with a role that is not completely defined or universally accepted. Although FAM46C expression is down-modulated in several tumours, significant mutations in the FAM46C gene are only found in multiple myeloma (MM). Consequently, its tumour suppressor activity has primarily been studied in the MM context. However, emerging evidence suggests that FAM46C is involved also in other cancer types, namely colorectal, prostate and gastric cancer and squamous cell and hepatocellular carcinoma, where FAM46C expression was found to be significantly reduced in tumoural versus non-tumoural tissues and where FAM46C was shown to possess anti-proliferative properties. Accordingly, FAM46C was recently proposed to function as a pan-cancer prognostic marker, bringing FAM46C under the spotlight and attracting growing interest from the scientific community in the pathways modulated by FAM46C and in its mechanistic activity. Here, we will provide the first comprehensive review regarding FAM46C by covering (1) the intracellular pathways regulated by FAM46C, namely the MAPK/ERK, PI3K/AKT, β-catenin and TGF-β/SMAD pathways; (2) the models regarding its mode of action, specifically the poly(A) polymerase, intracellular trafficking modulator and inhibitor of centriole duplication models, focusing on connections and interdependencies; (3) the regulation of FAM46C expression in different environments by interferons, IL-4, TLR engagement or transcriptional modulators; and, lastly, (4) how FAM46C expression levels associate with increased/decreased tumour cell sensitivity to anticancer agents, such as bortezomib, dexamethasone, lenalidomide, pomalidomide, doxorubicin, melphalan, SK1-I, docetaxel and norcantharidin.
Collapse
Affiliation(s)
- Giancarlo Lai
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.L.); (F.D.G.); (E.P.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Federica De Grossi
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.L.); (F.D.G.); (E.P.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Ilaria Catusi
- SC Clinical Pathology, SS Medical Genetics Laboratory, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Elisa Pesce
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.L.); (F.D.G.); (E.P.)
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy
| | - Nicola Manfrini
- INGM, Istituto Nazionale Genetica Molecolare Romeo ed Enrica Invernizzi, 20122 Milan, Italy; (G.L.); (F.D.G.); (E.P.)
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
5
|
Selvaraj V, Sekaran S, Dhanasekaran A, Warrier S. Type 1 collagen: Synthesis, structure and key functions in bone mineralization. Differentiation 2024; 136:100757. [PMID: 38437764 DOI: 10.1016/j.diff.2024.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/02/2024] [Accepted: 02/26/2024] [Indexed: 03/06/2024]
Abstract
Collagen is a highly abundant protein in the extracellular matrix of humans and mammals, and it plays a critical role in maintaining the body's structural integrity. Type I collagen is the most prevalent collagen type and is essential for the structural integrity of various tissues. It is present in nearly all connective tissues and is the main constituent of the interstitial matrix. Mutations that affect collagen fiber formation, structure, and function can result in various bone pathologies, underscoring the significance of collagen in sustaining healthy bone tissue. Studies on type 1 collagen have revealed that mutations in its encoding gene can lead to diverse bone diseases, such as osteogenesis imperfecta, a disorder characterized by fragile bones that are susceptible to fractures. Knowledge of collagen's molecular structure, synthesis, assembly, and breakdown is vital for comprehending embryonic and foetal development and several aspects of human physiology. In this review, we summarize the structure, molecular biology of type 1 collagen, its biomineralization and pathologies affecting bone.
Collapse
Affiliation(s)
- Vimalraj Selvaraj
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai, 600 036, Tamil Nadu, India.
| | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, Tamil Nadu, India.
| | | | - Sudha Warrier
- Department of Biotechnology, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, 600116, Tamil Nadu, India
| |
Collapse
|
6
|
Nethander M, Movérare-Skrtic S, Kämpe A, Coward E, Reimann E, Grahnemo L, Borbély É, Helyes Z, Funck-Brentano T, Cohen-Solal M, Tuukkanen J, Koskela A, Wu J, Li L, Lu T, Gabrielsen ME, Mägi R, Hoff M, Lerner UH, Henning P, Ullum H, Erikstrup C, Brunak S, Langhammer A, Tuomi T, Oddsson A, Stefansson K, Pettersson-Kymmer U, Ostrowski SR, Pedersen OBV, Styrkarsdottir U, Mäkitie O, Hveem K, Richards JB, Ohlsson C. An atlas of genetic determinants of forearm fracture. Nat Genet 2023; 55:1820-1830. [PMID: 37919453 PMCID: PMC10632131 DOI: 10.1038/s41588-023-01527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 09/13/2023] [Indexed: 11/04/2023]
Abstract
Osteoporotic fracture is among the most common and costly of diseases. While reasonably heritable, its genetic determinants have remained elusive. Forearm fractures are the most common clinically recognized osteoporotic fractures with a relatively high heritability. To establish an atlas of the genetic determinants of forearm fractures, we performed genome-wide association analyses including 100,026 forearm fracture cases. We identified 43 loci, including 26 new fracture loci. Although most fracture loci associated with bone mineral density, we also identified loci that primarily regulate bone quality parameters. Functional studies of one such locus, at TAC4, revealed that Tac4-/- mice have reduced mechanical bone strength. The strongest forearm fracture signal, at WNT16, displayed remarkable bone-site-specificity with no association with hip fractures. Tall stature and low body mass index were identified as new causal risk factors for fractures. The insights from this atlas may improve fracture prediction and enable therapeutic development to prevent fractures.
Collapse
Grants
- Wellcome Trust
- IngaBritt och Arne Lundbergs Forskningsstiftelse (Ingabritt and Arne Lundberg Research Foundation)
- Novo Nordisk Fonden (Novo Nordisk Foundation)
- Knut och Alice Wallenbergs Stiftelse (Knut and Alice Wallenberg Foundation)
- the Swedish state under the agreement between the Swedish government and the county councils, the ALF-agreement (ALFGBG-720331 and ALFGBG-965235)
- the Hungarian Brain research Program 3.0, Hungarian National Research, Development and Innovation Office (OTKA K- 138046, OTKA FK-137951, TKP2021-EGA-16), New National Excellence Program of the Ministry for Innovation and Technology (ÚNKP-22-5-PTE-1447), János Bolyai János Scholarship (BO/00496/21/5) of the Hungarian Academy of Sciences, Eotvos Lorad Research Network, National Laboratory for Drug Research and Development.
- Vetenskapsrådet (Swedish Research Council)
- Svenska Läkaresällskapet (Swedish Society of Medicine)
- Kempestiftelserna (Kempe Foundations)
- the Swedish Sports Research Council (87/06) the Medical Faculty of Umeå University (ALFVLL:968:22-2005, ALFVLL: 937-2006, ALFVLL:223:11-2007, ALFVLL:78151-2009) the county council of Västerbotten (Spjutspetsanslag VLL:159:33-2007)
Collapse
Affiliation(s)
- Maria Nethander
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sofia Movérare-Skrtic
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Kämpe
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Eivind Coward
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ene Reimann
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Louise Grahnemo
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Eotvos Lorand Research Network, Chronic Pain Research Group, University of Pécs, Pécs, Hungary
| | - Thomas Funck-Brentano
- BIOSCAR UMRS 1132, Université Paris Diderot, Sorbonne Paris Cité, INSERM, Paris, France
| | - Martine Cohen-Solal
- BIOSCAR UMRS 1132, Université Paris Diderot, Sorbonne Paris Cité, INSERM, Paris, France
| | - Juha Tuukkanen
- Department of Anatomy and Cell Biology, Faculty of Medicine, Institute of Cancer Research and Translational Medicine, University of Oulu, Oulu, Finland
| | - Antti Koskela
- Department of Anatomy and Cell Biology, Faculty of Medicine, Institute of Cancer Research and Translational Medicine, University of Oulu, Oulu, Finland
| | - Jianyao Wu
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lei Li
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tianyuan Lu
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Maiken E Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Mari Hoff
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Rheumatology, St Olavs Hospital, Trondheim, Norway
| | - Ulf H Lerner
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Petra Henning
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Kari Stefansson
- deCODE genetics, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Sisse Rye Ostrowski
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Copenhagen Hospital Biobank Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Ole Birger Vesterager Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Koege, Denmark
| | | | - Outi Mäkitie
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Children's Hospital and Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, and Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - J Brent Richards
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Claes Ohlsson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Centre for Bone and Arthritis Research at the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Drug Treatment, Gothenburg, Sweden.
| |
Collapse
|
7
|
Aida N, Saito A, Azuma T. Current Status of Next-Generation Sequencing in Bone Genetic Diseases. Int J Mol Sci 2023; 24:13802. [PMID: 37762102 PMCID: PMC10530486 DOI: 10.3390/ijms241813802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The development of next-generation sequencing (NGS) has dramatically increased the speed and volume of genetic analysis. Furthermore, the range of applications of NGS is rapidly expanding to include genome, epigenome (such as DNA methylation), metagenome, and transcriptome analyses (such as RNA sequencing and single-cell RNA sequencing). NGS enables genetic research by offering various sequencing methods as well as combinations of methods. Bone tissue is the most important unit supporting the body and is a reservoir of calcium and phosphate ions, which are important for physical activity. Many genetic diseases affect bone tissues, possibly because metabolic mechanisms in bone tissue are complex. For instance, the presence of specialized immune cells called osteoclasts in the bone tissue, which absorb bone tissue and interact with osteoblasts in complex ways to support normal vital functions. Moreover, the many cell types in bones exhibit cell-specific proteins for their respective activities. Mutations in the genes encoding these proteins cause a variety of genetic disorders. The relationship between age-related bone tissue fragility (also called frailty) and genetic factors has recently attracted attention. Herein, we discuss the use of genomic, epigenomic, transcriptomic, and metagenomic analyses in bone genetic disorders.
Collapse
Affiliation(s)
- Natsuko Aida
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (A.S.); (T.A.)
| | - Akiko Saito
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (A.S.); (T.A.)
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan; (A.S.); (T.A.)
- Oral Health Science Center, Tokyo Dental College, 2-9-18 Kandamisaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
| |
Collapse
|
8
|
Yu H, Li C, Wu H, Xia W, Wang Y, Zhao J, Xu C. Pathogenic mechanisms of osteogenesis imperfecta, evidence for classification. Orphanet J Rare Dis 2023; 18:234. [PMID: 37559063 PMCID: PMC10411007 DOI: 10.1186/s13023-023-02849-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a connective tissue disorder affecting the skeleton and other organs, which has multiple genetic patterns, numerous causative genes, and complex pathogenic mechanisms. The previous classifications lack structure and scientific basis and have poor applicability. In this paper, we summarize and sort out the pathogenic mechanisms of OI, and analyze the molecular pathogenic mechanisms of OI from the perspectives of type I collagen defects(synthesis defects, processing defects, post-translational modification defects, folding and cross-linking defects), bone mineralization disorders, osteoblast differentiation and functional defects respectively, and also generalize several new untyped OI-causing genes and their pathogenic mechanisms, intending to provide the evidence of classification and a scientific basis for the precise diagnosis and treatment of OI.
Collapse
Affiliation(s)
- Hongjie Yu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
| | - Changrong Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
| | - Huixiao Wu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology, Peking Union Medical College Hospital, National Commission of Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China, 100730
| | - Yanzhou Wang
- Department of Pediatric Orthopedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China
| | - Chao Xu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China.
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
9
|
Zhou W, van Rooij JGJ, van de Laarschot DM, Zervou Z, Bruggenwirth H, Appelman‐Dijkstra NM, Ebeling PR, Demirdas S, Verkerk AJMH, Zillikens MC. Prevalence of Monogenic Bone Disorders in a Dutch Cohort of Atypical Femur Fracture Patients. J Bone Miner Res 2023; 38:896-906. [PMID: 37076969 PMCID: PMC10946469 DOI: 10.1002/jbmr.4801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 02/12/2023] [Accepted: 03/07/2023] [Indexed: 04/21/2023]
Abstract
Atypical femur fractures (AFFs), considered rare associations of bisphosphonates, have also been reported in patients with monogenic bone disorders without bisphosphonate use. The exact association between AFFs and monogenic bone disorders remains unknown. Our aim was to determine the prevalence of monogenic bone disorders in a Dutch AFF cohort. AFF patients were recruited from two specialist bone centers in the Netherlands. Medical records of the AFF patients were reviewed for clinical features of monogenic bone disorders. Genetic variants identified by whole-exome sequencing in 37 candidate genes involved in monogenic bone disorders were classified based on the American College of Medical Genetics and Genomics (ACMG) classification guidelines. Copy number variations overlapping the candidate genes were also evaluated using DNA array genotyping data. The cohort comprises 60 AFF patients (including a pair of siblings), with 95% having received bisphosphonates. Fifteen AFF patients (25%) had clinical features of monogenic bone disorders. Eight of them (54%), including the pair of siblings, had a (likely) pathogenic variant in either PLS3, COL1A2, LRP5, or ALPL. One patient carried a likely pathogenic variant in TCIRG1 among patients not suspected of monogenic bone disorders (2%). In total, nine patients in this AFF cohort (15%) had a (likely) pathogenic variant. In one patient, we identified a 12.7 Mb deletion in chromosome 6, encompassing TENT5A. The findings indicate a strong relationship between AFFs and monogenic bone disorders, particularly osteogenesis imperfecta and hypophosphatasia, but mainly in individuals with symptoms of these disorders. The high yield of (likely) pathogenic variants in AFF patients with a clinical suspicion of these disorders stresses the importance of careful clinical evaluation of AFF patients. Although the relevance of bisphosphonate use in this relationship is currently unclear, clinicians should consider these findings in medical management of these patients. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Wei Zhou
- Department of Internal MedicineErasmus MCRotterdamThe Netherlands
| | | | | | - Zografia Zervou
- Department of Internal MedicineErasmus MCRotterdamThe Netherlands
| | | | - Natasha M Appelman‐Dijkstra
- Department of Internal Medicine, Division of EndocrinologyLeiden University Medical CenterLeidenThe Netherlands
| | - Peter R Ebeling
- Department of MedicineSchool of Clinical Sciences, Monash UniversityClaytonAustralia
| | - Serwet Demirdas
- Department of Clinical GeneticsErasmus MCRotterdamThe Netherlands
| | | | | |
Collapse
|
10
|
Gaume M, El Yahiaouni S, De Tienda M, Baujat G, Cormier-Daire V, Dumaine V, Pannier S, Finidori G, Pejin Z. Bone allografting: an original method for biological osteosynthesis and bone reinforcement in children with osteogenesis imperfecta. INTERNATIONAL ORTHOPAEDICS 2023:10.1007/s00264-023-05818-6. [PMID: 37171515 DOI: 10.1007/s00264-023-05818-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/11/2023] [Indexed: 05/13/2023]
Abstract
PURPOSE Osteogenesis imperfecta (OI) is a genetic disorder responsible for various symptoms including deformities and frequent fractures. Bone allografting is poorly documented in this condition. The objective of this study was to describe our experience and assessments in a consecutive series of OI patients. METHODS Thirty-nine lower limb allograft procedures (28 femurs, 11 tibias) were performed in 26OI patients (mean age, 12.9 years). They were classified as type III of Sillence (17), type IV (6), and 3 recessive forms. The indications for surgery were correction of deformity (19), fracture (16), and non-union (4). In all cases, bone allografting was added to reinforce areas of fragility and in 28 cases for osteosynthesis to lock the rotations at the osteotomy site and to avoid screwed metallic plate. The duration of bone consolidation and allograft fusion was assessed. Complications and Gillette functional score were reported. RESULTS The mean follow-up was 6.7years (range, 2 to 10 years). On average, bone consolidation was achieved after 3.3 months and graft fusion after 7.7 months. No bone allograft-related complications were observed and there was any secondary displacement. The Gillette functional score was improved in 23 patients and stable in three cases. Complications were reported in two cases: one partial allograft resorption and one delayed consolidation of a non-union. One refracture was observed but after a significant trauma in a child who had regained significant physical activity. CONCLUSIONS Bone allografting in children with OI is a reliable method of biological fixation, allowing efficient fusion and contributing to increased bone capital and functional outcome.
Collapse
Affiliation(s)
- Mathilde Gaume
- Department of Pediatric Orthopaedics Surgery, Necker Hospital, Assistance Publique Hopitaux de Paris, Université Paris-Cité, 149 rue de Sèvres, 75015, Paris, France.
| | - Sarah El Yahiaouni
- Department of Pediatric Orthopaedics Surgery, Necker Hospital, Assistance Publique Hopitaux de Paris, Université Paris-Cité, 149 rue de Sèvres, 75015, Paris, France
| | - Marine De Tienda
- Department of Pediatric Orthopaedics Surgery, Necker Hospital, Assistance Publique Hopitaux de Paris, Université Paris-Cité, 149 rue de Sèvres, 75015, Paris, France
| | - Genevieve Baujat
- Department of Pediatric Genetics, Necker Hospital, Assistance Publique Hopitaux de Paris, Université Paris-Cité, Paris, France
| | - Valérie Cormier-Daire
- Department of Pediatric Genetics, Necker Hospital, Assistance Publique Hopitaux de Paris, Université Paris-Cité, Paris, France
| | - Valérie Dumaine
- Department of Orthopaedics Surgery, Cochin Hospital, Assistance Publique Hopitaux de Paris, Université Paris-Cité, Paris, France
| | - Stéphanie Pannier
- Department of Pediatric Orthopaedics Surgery, Necker Hospital, Assistance Publique Hopitaux de Paris, Université Paris-Cité, 149 rue de Sèvres, 75015, Paris, France
| | - Georges Finidori
- Department of Pediatric Orthopaedics Surgery, Necker Hospital, Assistance Publique Hopitaux de Paris, Université Paris-Cité, 149 rue de Sèvres, 75015, Paris, France
| | - Zagorka Pejin
- Department of Pediatric Orthopaedics Surgery, Necker Hospital, Assistance Publique Hopitaux de Paris, Université Paris-Cité, 149 rue de Sèvres, 75015, Paris, France
| |
Collapse
|
11
|
Panzaru MC, Florea A, Caba L, Gorduza EV. Classification of osteogenesis imperfecta: Importance for prophylaxis and genetic counseling. World J Clin Cases 2023; 11:2604-2620. [PMID: 37214584 PMCID: PMC10198117 DOI: 10.12998/wjcc.v11.i12.2604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a genetically heterogeneous monogenic disease characterized by decreased bone mass, bone fragility, and recurrent fractures. The phenotypic spectrum varies considerably ranging from prenatal fractures with lethal outcomes to mild forms with few fractures and normal stature. The basic mechanism is a collagen-related defect, not only in synthesis but also in folding, processing, bone mineralization, or osteoblast function. In recent years, great progress has been made in identifying new genes and molecular mechanisms underlying OI. In this context, the classification of OI has been revised several times and different types are used. The Sillence classification, based on clinical and radiological characteristics, is currently used as a grading of clinical severity. Based on the metabolic pathway, the functional classification allows identifying regulatory elements and targeting specific therapeutic approaches. Genetic classification has the advantage of identifying the inheritance pattern, an essential element for genetic counseling and prophylaxis. Although genotype-phenotype correlations may sometimes be challenging, genetic diagnosis allows a personalized management strategy, accurate family planning, and pregnancy management decisions including options for mode of delivery, or early antenatal OI treatment. Future research on molecular pathways and pathogenic variants involved could lead to the development of genotype-based therapeutic approaches. This narrative review summarizes our current understanding of genes, molecular mechanisms involved in OI, classifications, and their utility in prophylaxis.
Collapse
Affiliation(s)
- Monica-Cristina Panzaru
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Andreea Florea
- Department of Medical Genetics - Medical Genetics resident, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Lavinia Caba
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Eusebiu Vlad Gorduza
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, Iasi 700115, Romania
| |
Collapse
|
12
|
Liu S, Chen H, Yin Y, Lu D, Gao G, Li J, Bai XC, Zhang X. Inhibition of FAM46/TENT5 activity by BCCIPα adopting a unique fold. SCIENCE ADVANCES 2023; 9:eadf5583. [PMID: 37018411 PMCID: PMC10075960 DOI: 10.1126/sciadv.adf5583] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
The FAM46 (also known as TENT5) proteins are noncanonical poly(A) polymerases (PAPs) implicated in regulating RNA stability. The regulatory mechanisms of FAM46 are poorly understood. Here, we report that the nuclear protein BCCIPα, but not the alternatively spliced isoform BCCIPβ, binds FAM46 and inhibits their PAP activity. Unexpectedly, our structures of the FAM46A/BCCIPα and FAM46C/BCCIPα complexes show that, despite sharing most of the sequence and differing only at the C-terminal portion, BCCIPα adopts a unique structure completely different from BCCIPβ. The distinct C-terminal segment of BCCIPα supports the adoption of the unique fold but does not directly interact with FAM46. The β sheets in BCCIPα and FAM46 pack side by side to form an extended β sheet. A helix-loop-helix segment in BCCIPα inserts into the active site cleft of FAM46, thereby inhibiting the PAP activity. Our results together show that the unique fold of BCCIPα underlies its interaction with and functional regulation of FAM46.
Collapse
Affiliation(s)
- Shun Liu
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hua Chen
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yan Yin
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Defen Lu
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Guoming Gao
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jie Li
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xuewu Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
13
|
Tan Z, Shek HT, Dong Z, Feng L, Zhou Y, Yin S, Qiu A, Dong L, Gao B, Chen P, To MKT. Retrospective analyses of clinical features in 28 Chinese patients with type V osteogenesis imperfecta: new perspectives in an old issue. Osteoporos Int 2023; 34:369-377. [PMID: 36456709 PMCID: PMC9852172 DOI: 10.1007/s00198-022-06581-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/19/2022] [Indexed: 12/04/2022]
Abstract
UNLABELLED Type V osteogenesis imperfecta (OI) is a form of OI characterized by radial head dislocation (RHD), calcification of interosseous membrane (CIM), and hyperplastic callus (HPC). In this study, we characterized the clinical features of 28 type V OI patients. We presented that dysfunctions of elbow, hip joint, and abnormal epiphyseal growth plate were associated with ectopic calcification and summarized the history of HPC progression and treatment. INTRODUCTION The current study aims to systematically characterize the skeletal phenotypes of patients with type V OI and suggested possible surgical solutions. METHODS A total of 28 patients were admitted for inpatient care at The Hong Kong University-Shenzhen Hospital diagnosed with type V OI (either clinically diagnosed or genetically confirmed with the IFITM5 c.-14C > T mutation). RESULTS Prevalence of type V radiological features was comparable to previous literatures (RHD, 100%; CIM, 100%; HPC, 44%; and scoliosis, 50%). Novel skeletal phenotypes were presented including extension of coronoid process, acetabular labrum, acetabular protrusion, spontaneous autofusion of the hip, bulbous epiphysis, and popcorn calcification. Significant increase in BMD was observed in patients with bisphosphonate treatment. Twenty-five percent (3/12) of patients with preoperative use of indomethacin developed HPC postoperatively, and HPCs were absorbed in 2 young patients 2 years later. CONCLUSION This retrospective study summarized the clinical features and highlighted the abnormalities in elbow, hip joint, and growth plate in type V OI patients. Our study contributed to a more comprehensive clinical spectrum of type V OI. We also characterized the natural progression of HPC formation and resorption in patients in different ages. The use of bisphosphonate treatment is effective in improving bone mineral density in type V OI patients, and whether indomethacin can reduce incidence of HPC formation deserves further investigation.
Collapse
Affiliation(s)
- Zhijia Tan
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hiu Tung Shek
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Zhongxin Dong
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Lin Feng
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yapeng Zhou
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Shijie Yin
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Anmei Qiu
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Lina Dong
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Bo Gao
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Peikai Chen
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Michael Kai Tsun To
- Department of Orthopaedics and Traumatology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
14
|
Chen P, Tan Z, Qiu A, Yin S, Zhou Y, Dong Z, Qiu Y, Xu J, Li K, Dong L, Shek HT, Liu J, Yeung EHK, Gao B, Cheung KMC, To MKT. Patient-reported outcomes in a Chinese cohort of osteogenesis imperfecta unveil psycho-physical stratifications associated with clinical manifestations. Orphanet J Rare Dis 2022; 17:249. [PMID: 35765008 PMCID: PMC9238011 DOI: 10.1186/s13023-022-02394-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 06/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background Osteogenesis imperfecta (OI) is a rare congenital disorder of the skeletal system, inflicting debilitating physical and psychological distress on patients and caregivers. Over the decades, much effort has been channeled towards understanding molecular mechanisms and developing new treatments. It has recently become more apparent that patient-reported outcome measurements (PROM) during treatment, healing and rehabilitation are helpful in facilitating smoother communication, refining intervention strategies and achieving higher quality of life. To date, systematic analyses of PROM in OI patients remain scarce. Results Here, utilizing a PROM Information System, we report a cross-sectional and longitudinal study in a southern Chinese cohort of 90 OI patients, covering both the child and adult age-groups. In the child group where both self and parental surveys were obtained, we identified two clusters of comparable sizes showing different outlooks in physical mobility and emotional experiences. One cluster (Cluster 1) is more negative about themselves than the other (Cluster 2). A concordance of 84.7% between self and parental assessments was recorded, suggesting the stability and validity of PROM-based stratification. Clinical subtyping, deformity, leg length discrepancy, and limited joint mobility were significantly associated with this stratification, with Cluster 1 showing higher percentages of severe phenotypes than Cluster 2. Since OI is a genetic disorder, we performed genetic testing on 72 of the 90 patients, but found no obvious association between genotypes and the PROM stratification. Analyses of longitudinal data suggested that patients tended to stay in the same psychological state, in both clusters. Adult patients also showed a continuous spectrum of self-evaluation that matches their clinical manifestations. Conclusion By systematically analyzing patient-reported outcomes, our study demonstrated the link between the sociopsychological wellbeing of OI patients, and their clinical manifestations, which may serve as the basis for evaluating clinical interventions and help achieve better patient-centric medical practices. The lack of genotype-PROM association may be due to the diverse mutational spectrum in OI, which warrants further investigation when a larger sample size is available. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02394-7.
Collapse
Affiliation(s)
- Peikai Chen
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China. .,School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| | - Zhijia Tan
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China.,Department of Orthopedics and Traumatology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Anmei Qiu
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
| | - Shijie Yin
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
| | - Yapeng Zhou
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
| | - Zhongxin Dong
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
| | - Yan Qiu
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
| | - Jichun Xu
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
| | - Kangsen Li
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
| | - Lina Dong
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
| | - Hiu Tung Shek
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
| | - Jingwen Liu
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
| | - Eric H K Yeung
- Department of Physiotherapy, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China
| | - Bo Gao
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Kenneth Man Chee Cheung
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China.,Department of Orthopedics and Traumatology, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Michael Kai-Tsun To
- Department of Orthopedics and Traumatology, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, 518053, Guangdong, China. .,Department of Orthopedics and Traumatology, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
15
|
Tan W, Ji Y, Qian Y, Lin Y, Ye R, Wu W, Li Y, Sun Y, Pan J. Mutational Screening of Skeletal Genes in 14 Chinese Children with Osteogenesis Imperfecta Using Targeted Sequencing. J Immunol Res 2022; 2022:5068523. [PMID: 35647203 PMCID: PMC9135566 DOI: 10.1155/2022/5068523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022] Open
Abstract
Background As a heterogeneous hereditary connective tissue disorder, osteogenesis imperfecta (OI) is clinically characterized by increased fracture susceptibility. Analysis of genetic pathogenic variants in patients with OI provides a basis for genetic counseling and prenatal diagnosis. Methods In this study, 14 diagnosed OI patients from sporadic Chinese families were enrolled to be screened for potential mutations from these patients by next-generation sequencing technology. Results 34 different variants were identified. 18 variants were from 4 OI-related genes including COL1A1, COL1A2, P3H1, and WNT1, and 10 variants are novel. Most OI patients (11 out of 14, 78%) harbor variants in type I collagen genes. Conclusions Our results support previously established estimates of the distribution and prevalence of OI mutations and highlight both phenotype and genetic heterogeneity among and within families. We report several novel variants of OI, which expands the clinical spectrum of OI. In summary, our data provides disease-causing genes information for genetic counseling towards OI patients and families and also provides a reference for clinicians in the diagnosis of OI, also in prenatal diagnosis of this disease.
Collapse
Affiliation(s)
- Wei Tan
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
| | - Yuelun Ji
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
| | - Yuepeng Qian
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
| | - Yongchang Lin
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
| | - Ruolian Ye
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
| | - Weiping Wu
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
| | - Yibin Li
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
| | - Yongjian Sun
- Department of Pediatric Orthopedic, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
| | - Jianyin Pan
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
16
|
Schindeler A, Lee LR, O'Donohue AK, Ginn SL, Munns CF. Curative Cell and Gene Therapy for Osteogenesis Imperfecta. J Bone Miner Res 2022; 37:826-836. [PMID: 35306687 PMCID: PMC9324990 DOI: 10.1002/jbmr.4549] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/03/2022] [Accepted: 02/27/2022] [Indexed: 11/17/2022]
Abstract
Osteogenesis imperfecta (OI) describes a series of genetic bone fragility disorders that can have a substantive impact on patient quality of life. The multidisciplinary approach to management of children and adults with OI primarily involves the administration of antiresorptive medication, allied health (physiotherapy and occupational therapy), and orthopedic surgery. However, advances in gene editing technology and gene therapy vectors bring with them the promise of gene-targeted interventions to provide an enduring or perhaps permanent cure for OI. This review describes emergent technologies for cell- and gene-targeted therapies, major hurdles to their implementation, and the prospects of their future success with a focus on bone disorders. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Aaron Schindeler
- Bioengineering and Molecular Medicine Laboratorythe Children's Hospital at Westmead and the Westmead Institute for Medical ResearchWestmeadAustralia
- Children's Hospital Westmead Clinical SchoolUniversity of SydneyCamperdownAustralia
| | - Lucinda R Lee
- Bioengineering and Molecular Medicine Laboratorythe Children's Hospital at Westmead and the Westmead Institute for Medical ResearchWestmeadAustralia
- Children's Hospital Westmead Clinical SchoolUniversity of SydneyCamperdownAustralia
| | - Alexandra K O'Donohue
- Bioengineering and Molecular Medicine Laboratorythe Children's Hospital at Westmead and the Westmead Institute for Medical ResearchWestmeadAustralia
- Children's Hospital Westmead Clinical SchoolUniversity of SydneyCamperdownAustralia
| | - Samantha L Ginn
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and HealthThe University of Sydney and Sydney Children's Hospitals NetworkWestmeadAustralia
| | - Craig F Munns
- Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
- Department of Endocrinology and DiabetesQueensland Children's HospitalBrisbaneQLDAustralia
- Child Health Research Centre and Faculty of MedicineThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
17
|
Luo M, Yang H, Wu D, You X, Huang S, Song Y. Tent5a modulates muscle fiber formation in adolescent idiopathic scoliosis via maintenance of myogenin expression. Cell Prolif 2022; 55:e13183. [PMID: 35137485 PMCID: PMC8891553 DOI: 10.1111/cpr.13183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/04/2021] [Accepted: 01/02/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Paravertebral muscle asymmetry may be involved in the pathogenesis of adolescent idiopathic scoliosis (AIS), and the Tent5a protein was recently identified as a novel active noncanonical poly(A) polymerase. We, therefore, explored the function of the AIS susceptibility gene Tent5a in myoblasts. MATERIALS AND METHODS RNA-seq of AIS paravertebral muscle was performed, and the molecular differences in paravertebral muscle were investigated. Twenty-four AIS susceptibility genes were screened, and differential expression of Tent5a in paravertebral muscles was confirmed with qPCR and Western blot. After the knockdown of Tent5a, the functional effects of Tent5a on C2C12 cell proliferation, migration, and apoptosis were detected by Cell Counting Kit-8 assay, wound-healing assay, and TUNEL assay, respectively. Myogenic differentiation markers were tested with immunofluorescence and qPCR in vitro, and muscle fiber formation was compared in vivo. RESULTS The AIS susceptibility gene Tent5a was differentially expressed in AIS paravertebral muscles. Tent5a knockdown inhibited the proliferation and migration of C2C12 cells and inhibited the maturation of type I muscle fibers in vitro and in vivo. Mechanistically, the expression of myogenin was decreased along with the suppression of Tent5a. CONCLUSIONS Tent5a plays an important role in the proliferation and migration of myoblasts, and it regulates muscle fiber maturation by maintaining the stability of myogenin. Tent5a may be involved in the pathogenesis of AIS by regulating the formation of muscle fiber type I.
Collapse
Affiliation(s)
- Ming Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.,Department of Orthopedics, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Huiliang Yang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Diwei Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Xuanhe You
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Shishu Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yueming Song
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Tüysüz B, Elkanova L, Uludağ Alkaya D, Güleç Ç, Toksoy G, Güneş N, Yazan H, Bayhan AI, Yıldırım T, Yeşil G, Uyguner ZO. Osteogenesis imperfecta in 140 Turkish families: Molecular spectrum and, comparison of long-term clinical outcome of those with COL1A1/A2 and biallelic variants. Bone 2022; 155:116293. [PMID: 34902613 DOI: 10.1016/j.bone.2021.116293] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous group of diseases characterized by increased bone fragility and deformities. Although most patients with OI have heterozygous mutations in COL1A1 or COL1A2, 17 genes have been reported to cause OI, most of which are autosomal recessive (AR) inherited, during the last years. The aim of this study is to determine the mutation spectrum in Turkish OI cohort and to investigate the genotype-phenotype correlation. METHODS 150 patients from 140 Turkish families with OI phenotype were included in this study. Mutations in OI-related genes were identified using targeted gene panel, MLPA analysis for COL1A1 and whole exome sequencing. 113 patients who had OI disease-causing variants were followed for 1-20 years. RESULTS OI disease-causing variants were detected in 117 families, of which 62.4% in COL1A1/A2, 35.9% in AR-related genes. A heterozygous variant in IFITM5 and a hemizygous in MBTPS2 were also described, one in each patient. Eighteen biallelic variants (13 novel) were identified in nine genes (FKBP10, P3H1, SERPINF1, TMEM38B, WNT1, BMP1, CRTAP, FAM46A, MESD) among which FKBP10, P3H1 and SERPINF1 were most common. The most severe phenotypes were in patients with FKBP10, SERPINF1, CRTAP, FAM46A and MESD variants. P3H1 patients had moderate, while BMP1 had the mild phenotype. Clinical phenotypes were variable in patients with WNT1 and TMEM38B mutations. We also found mutations in ten genes (PLS3, LRP5, ANO5, SLC34A1, EFEMP2, PRDM5, GORAB, OCRL1, TNFRSF11B, DPH1) associated with diseases presenting clinical features which overlap OI, in eleven families. CONCLUSION We identified disease-causing mutations in 83.6% in a large Turkish pediatric OI cohort. 40 novel variants were described. Clinical features and long-term follow-up findings of AR inherited OI types and especially very rare biallelic variants were presented for the first time. Unlike previously reported studies, the mutations that we found in P3H1 were all missense, causing a moderate phenotype.
Collapse
Affiliation(s)
- Beyhan Tüysüz
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey.
| | - Leyla Elkanova
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Dilek Uludağ Alkaya
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Çağrı Güleç
- Department of Medical Genetics, Istanbul University, Medical Faculty, Istanbul, Turkey
| | - Güven Toksoy
- Department of Medical Genetics, Istanbul University, Medical Faculty, Istanbul, Turkey
| | - Nilay Güneş
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Hakan Yazan
- Department of Pediatric Genetics, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - A Ilhan Bayhan
- Department of Orthopedics and Traumatology, University of Health Sciences Turkey, Baltalimani Bone Diseases Training and Research Center, Istanbul, Turkey
| | - Timur Yıldırım
- Department of Orthopedics and Traumatology, University of Health Sciences Turkey, Baltalimani Bone Diseases Training and Research Center, Istanbul, Turkey
| | - Gözde Yeşil
- Department of Medical Genetics, Bezmialem University, Istanbul, Turkey
| | - Z Oya Uyguner
- Department of Medical Genetics, Istanbul University, Medical Faculty, Istanbul, Turkey
| |
Collapse
|
19
|
Jovanovic M, Guterman-Ram G, Marini JC. Osteogenesis Imperfecta: Mechanisms and Signaling Pathways Connecting Classical and Rare OI Types. Endocr Rev 2022; 43:61-90. [PMID: 34007986 PMCID: PMC8755987 DOI: 10.1210/endrev/bnab017] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Osteogenesis imperfecta (OI) is a phenotypically and genetically heterogeneous skeletal dysplasia characterized by bone fragility, growth deficiency, and skeletal deformity. Previously known to be caused by defects in type I collagen, the major protein of extracellular matrix, it is now also understood to be a collagen-related disorder caused by defects in collagen folding, posttranslational modification and processing, bone mineralization, and osteoblast differentiation, with inheritance of OI types spanning autosomal dominant and recessive as well as X-linked recessive. This review provides the latest updates on OI, encompassing both classical OI and rare forms, their mechanism, and the signaling pathways involved in their pathophysiology. There is a special emphasis on mutations in type I procollagen C-propeptide structure and processing, the later causing OI with strikingly high bone mass. Types V and VI OI, while notably different, are shown to be interrelated by the interferon-induced transmembrane protein 5 p.S40L mutation that reveals the connection between the bone-restricted interferon-induced transmembrane protein-like protein and pigment epithelium-derived factor pathways. The function of regulated intramembrane proteolysis has been extended beyond cholesterol metabolism to bone formation by defects in regulated membrane proteolysis components site-2 protease and old astrocyte specifically induced-substance. Several recently proposed candidate genes for new types of OI are also presented. Discoveries of new OI genes add complexity to already-challenging OI management; current and potential approaches are summarized.
Collapse
Affiliation(s)
- Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Gali Guterman-Ram
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
20
|
Mukamel RE, Handsaker RE, Sherman MA, Barton AR, Zheng Y, McCarroll SA, Loh PR. Protein-coding repeat polymorphisms strongly shape diverse human phenotypes. Science 2021; 373:1499-1505. [PMID: 34554798 PMCID: PMC8549062 DOI: 10.1126/science.abg8289] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Many human proteins contain domains that vary in size or copy number because of variable numbers of tandem repeats (VNTRs) in protein-coding exons. However, the relationships of VNTRs to most phenotypes are unknown because of difficulties in measuring such repetitive elements. We developed methods to estimate VNTR lengths from whole-exome sequencing data and impute VNTR alleles into single-nucleotide polymorphism haplotypes. Analyzing 118 protein-altering VNTRs in 415,280 UK Biobank participants for association with 786 phenotypes identified some of the strongest associations of common variants with human phenotypes, including height, hair morphology, and biomarkers of health. Accounting for large-effect VNTRs further enabled fine-mapping of associations to many more protein-coding mutations in the same genes. These results point to cryptic effects of highly polymorphic common structural variants that have eluded molecular analyses to date.
Collapse
Affiliation(s)
- Ronen E Mukamel
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Boston, MA, USA
| | - Robert E Handsaker
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Maxwell A Sherman
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Boston, MA, USA
- Computer Science and Artificial Intelligence Laboratory, MIT, Boston, MA, USA
| | - Alison R Barton
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Boston, MA, USA
- Bioinformatics and Integrative Genomics Program, Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Yiming Zheng
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Boston, MA, USA
| | - Steven A McCarroll
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard University, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Po-Ru Loh
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard University, Boston, MA, USA
| |
Collapse
|
21
|
Abstract
Osteogenesis imperfecta (OI) is a disease characterised by altered bone tissue material properties together with abnormal micro and macro-architecture and thus bone fragility, increased bone turnover and hyperosteocytosis. Increasingly appreciated are the soft tissue changes, sarcopenia in particular. Approaches to treatment are now multidisciplinary, with bisphosphonates having been the primary pharmacological intervention over the last 20 years. Whilst meta-analyses suggest that anti-fracture efficacy across the life course is equivocal, there is good evidence that for children bisphosphonates reduce fracture risk, increase vertebral size and improve vertebral shape, as well as improving motor function and mobility. The genetics of OI continues to provide insights into the molecular pathogenesis of the disease, although the pathophysiology is less clear. The complexity of the multi-scale interactions of bone tissue with cellular function are gradually being disentangled, but the fundamental question of why increased tissue brittleness should be associated with so many other changes is unclear; ER stress, pro-inflammatory cytokines, accelerated senesence and altered matrix component release might all contribute, but a unifying hypothesis remains elusive. New approaches to therapy are focussed on increasing bone mass, following the paradigm established by the treatment of postmenopausal osteoporosis. For adults, this brings the prospect of restoring previously lost bone - for children, particularly at the severe end of the spectrum, the possibility of further reducing fracture frequency and possibly altering growth and long term function are attractive. The alternatives that might affect tissue brittleness are autophagy enhancement (through the removal of abnormal type I collagen aggregates) and stem cell transplantation - both still at the preclinical stage of assessment. Preclinical assessment is not supportive of targeting inflammatory pathways, although understanding why TGFb signalling is increased, and whether that presents a treatment target in OI, remains to be established.
Collapse
Affiliation(s)
- Fawaz Arshad
- Academic Unit of Child Health, Sheffield Children's Hospital, Department of Oncology and Metabolism, University of Sheffield, S10 2TH, UK
| | - Nick Bishop
- Academic Unit of Child Health, Sheffield Children's Hospital, Department of Oncology and Metabolism, University of Sheffield, S10 2TH, UK.
| |
Collapse
|
22
|
Claeys L, Storoni S, Eekhoff M, Elting M, Wisse L, Pals G, Bravenboer N, Maugeri A, Micha D. Collagen transport and related pathways in Osteogenesis Imperfecta. Hum Genet 2021; 140:1121-1141. [PMID: 34169326 PMCID: PMC8263409 DOI: 10.1007/s00439-021-02302-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022]
Abstract
Osteogenesis Imperfecta (OI) comprises a heterogeneous group of patients who share bone fragility and deformities as the main characteristics, albeit with different degrees of severity. Phenotypic variation also exists in other connective tissue aspects of the disease, complicating disease classification and disease course prediction. Although collagen type I defects are long established as the primary cause of the bone pathology, we are still far from comprehending the complete mechanism. In the last years, the advent of next generation sequencing has triggered the discovery of many new genetic causes for OI, helping to draw its molecular landscape. It has become clear that, in addition to collagen type I genes, OI can be caused by multiple proteins connected to different parts of collagen biosynthesis. The production of collagen entails a complex process, starting from the production of the collagen Iα1 and collagen Iα2 chains in the endoplasmic reticulum, during and after which procollagen is subjected to a plethora of posttranslational modifications by chaperones. After reaching the Golgi organelle, procollagen is destined to the extracellular matrix where it forms collagen fibrils. Recently discovered mutations in components of the retrograde transport of chaperones highlight its emerging role as critical contributor of OI development. This review offers an overview of collagen regulation in the context of recent gene discoveries, emphasizing the significance of transport disruptions in the OI mechanism. We aim to motivate exploration of skeletal fragility in OI from the perspective of these pathways to identify regulatory points which can hint to therapeutic targets.
Collapse
Affiliation(s)
- Lauria Claeys
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Silvia Storoni
- Department of Internal Medicine Section Endocrinology, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Marelise Eekhoff
- Department of Internal Medicine Section Endocrinology, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mariet Elting
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lisanne Wisse
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gerard Pals
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, Amsterdam /UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alessandra Maugeri
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dimitra Micha
- Department of Clinical Genetics, Amsterdam UMC, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Stürznickel J, Jähn-Rickert K, Zustin J, Hennig F, Delsmann MM, Schoner K, Rehder H, Kreczy A, Schinke T, Amling M, Kornak U, Oheim R. Compound Heterozygous Frameshift Mutations in MESD Cause a Lethal Syndrome Suggestive of Osteogenesis Imperfecta Type XX. J Bone Miner Res 2021; 36:1077-1087. [PMID: 33596325 DOI: 10.1002/jbmr.4277] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/03/2021] [Accepted: 02/14/2021] [Indexed: 12/11/2022]
Abstract
Multiple genes are known to be associated with osteogenesis imperfecta (OI), a phenotypically and genetically heterogenous bone disorder, marked predominantly by low bone mineral density and increased risk of fractures. Recently, mutations affecting MESD, which encodes for a chaperone required for trafficking of the low-density lipoprotein receptors LRP5 and LRP6 in the endoplasmic reticulum, were described to cause autosomal-recessive OI XX in homozygous children. In the present study, whole-exome sequencing of three stillbirths in one family was performed to evaluate the presence of a hereditary disorder. To further characterize the skeletal phenotype, fetal autopsy, bone histology, and quantitative backscattered electron imaging (qBEI) were performed, and the results were compared with those from an age-matched control with regular skeletal phenotype. In each of the affected individuals, compound heterozygous mutations in MESD exon 2 and exon 3 were detected. Based on the skeletal phenotype, which was characterized by multiple intrauterine fractures and severe skeletal deformity, OI XX was diagnosed in these individuals. Histological evaluation of MESD specimens revealed an impaired osseous development with an altered osteocyte morphology and reduced canalicular connectivity. Moreover, analysis of bone mineral density distribution by qBEI indicated an impaired and more heterogeneous matrix mineralization in individuals with MESD mutations than in controls. In contrast to the previously reported phenotypes of individuals with OI XX, the more severe phenotype in the present study is likely explained by a mutation in exon 2, located within the chaperone domain of MESD, that leads to a complete loss of function, which indicates the relevance of MESD in early skeletal development. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR)..
Collapse
Affiliation(s)
- Julian Stürznickel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jozef Zustin
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Floriane Hennig
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.,Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Maximilian M Delsmann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Schoner
- Institute of Pathology, Fetal Pathology, Philipps-University Marburg, Marburg, Germany
| | - Helga Rehder
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Alfons Kreczy
- Department of Pathology, REGIOMED Klinikum Coburg, Coburg, Germany
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Uwe Kornak
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.,Institute of Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany.,BIH Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
24
|
The Interaction of the Tumor Suppressor FAM46C with p62 and FNDC3 Proteins Integrates Protein and Secretory Homeostasis. Cell Rep 2021; 32:108162. [PMID: 32966780 DOI: 10.1016/j.celrep.2020.108162] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/23/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
FAM46C is a non-canonical poly(A) polymerase uniquely mutated in up to 20% of multiple myeloma (MM) patients, implying a tissue-specific tumor suppressor function. Here, we report that FAM46C selectively stabilizes mRNAs encoding endoplasmic reticulum (ER)-targeted proteins, thereby concertedly enhancing the expression of proteins that control ER protein import, folding, N-glycosylation, and trafficking and boosting protein secretion. This role requires the interaction with the ER membrane resident proteins FNDC3A and FNDC3B. In MM cells, FAM46C expression raises secretory capacity beyond sustainability, inducing ROS accumulation, ATP shortage, and cell death. FAM46C activity is regulated through rapid proteasomal degradation or the inhibitory interaction with the ZZ domain of the autophagic receptor p62 that hinders its association with FNDC3 proteins via sequestration in p62+ aggregates. Altogether, our data disclose a p62/FAM46C/FNDC3 circuit coordinating sustainable secretory activity and survival, providing an explanation for the MM-specific oncosuppressive role of FAM46C and uncovering potential therapeutic opportunities against cancer.
Collapse
|
25
|
Youlten SE, Kemp JP, Logan JG, Ghirardello EJ, Sergio CM, Dack MRG, Guilfoyle SE, Leitch VD, Butterfield NC, Komla-Ebri D, Chai RC, Corr AP, Smith JT, Mohanty ST, Morris JA, McDonald MM, Quinn JMW, McGlade AR, Bartonicek N, Jansson M, Hatzikotoulas K, Irving MD, Beleza-Meireles A, Rivadeneira F, Duncan E, Richards JB, Adams DJ, Lelliott CJ, Brink R, Phan TG, Eisman JA, Evans DM, Zeggini E, Baldock PA, Bassett JHD, Williams GR, Croucher PI. Osteocyte transcriptome mapping identifies a molecular landscape controlling skeletal homeostasis and susceptibility to skeletal disease. Nat Commun 2021; 12:2444. [PMID: 33953184 PMCID: PMC8100170 DOI: 10.1038/s41467-021-22517-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
Osteocytes are master regulators of the skeleton. We mapped the transcriptome of osteocytes from different skeletal sites, across age and sexes in mice to reveal genes and molecular programs that control this complex cellular-network. We define an osteocyte transcriptome signature of 1239 genes that distinguishes osteocytes from other cells. 77% have no previously known role in the skeleton and are enriched for genes regulating neuronal network formation, suggesting this programme is important in osteocyte communication. We evaluated 19 skeletal parameters in 733 knockout mouse lines and reveal 26 osteocyte transcriptome signature genes that control bone structure and function. We showed osteocyte transcriptome signature genes are enriched for human orthologs that cause monogenic skeletal disorders (P = 2.4 × 10-22) and are associated with the polygenic diseases osteoporosis (P = 1.8 × 10-13) and osteoarthritis (P = 1.6 × 10-7). Thus, we reveal the molecular landscape that regulates osteocyte network formation and function and establish the importance of osteocytes in human skeletal disease.
Collapse
Affiliation(s)
- Scott E Youlten
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - John P Kemp
- University of Queensland Diamantina Institute, UQ, Brisbane, QLD, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - John G Logan
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Elena J Ghirardello
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Claudio M Sergio
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Michael R G Dack
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Siobhan E Guilfoyle
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Victoria D Leitch
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- RMIT Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, VIC, UK
| | - Natalie C Butterfield
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Davide Komla-Ebri
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Ryan C Chai
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Alexander P Corr
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- Faculty of Science, University of Bath, Bath, UK
| | - James T Smith
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- Faculty of Science, University of Bath, Bath, UK
| | - Sindhu T Mohanty
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - John A Morris
- New York Genome Center, New York, NY, USA
- Faculty of Arts and Science, Department of Biology, New York University, New York, NY, USA
| | - Michelle M McDonald
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Julian M W Quinn
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Amelia R McGlade
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Nenad Bartonicek
- Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Darlinghurst, Sydney, NSW, Australia
| | - Matt Jansson
- Viapath Genetics Laboratory, Viapath Analytics LLP, Guy's Hospital, London, UK
- Department of Clinical Genetics, Guy's Hospital, London, UK
| | - Konstantinos Hatzikotoulas
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Phoenix, AZ, USA
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Melita D Irving
- Department of Clinical Genetics, Guy's and St Thomas' NHS Trust, London, UK
| | | | | | - Emma Duncan
- Faculty of Life Sciences and Medicine, Department of Twin Research & Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
- Australian Translational Genomics Centre, Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia
- Faculty of Medicine, University of Queensland, St Lucia, QLD, Australia
| | - J Brent Richards
- Faculty of Life Sciences and Medicine, Department of Twin Research & Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
- Faculty of Medicine, McGill University, Quebec, Canada
| | | | | | - Robert Brink
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- Division of Immunology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - Tri Giang Phan
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- Division of Immunology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - John A Eisman
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
- School of Medicine Sydney, University of Notre Dame Australia, Fremantle, Australia
| | - David M Evans
- University of Queensland Diamantina Institute, UQ, Brisbane, QLD, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Eleftheria Zeggini
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, Phoenix, AZ, USA
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Paul A Baldock
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Peter I Croucher
- Bone Biology, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia.
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.
- School of Biotechnology and Biomolecular Sciences, UNSW Australia, Sydney, Australia.
| |
Collapse
|
26
|
Xi L, Lv S, Zhang H, Zhang ZL. Novel mutations in BMP1 result in a patient with autosomal recessive osteogenesis imperfecta. Mol Genet Genomic Med 2021; 9:e1676. [PMID: 33818922 PMCID: PMC8222833 DOI: 10.1002/mgg3.1676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/07/2021] [Accepted: 03/23/2021] [Indexed: 11/30/2022] Open
Abstract
Background Osteogenesis imperfecta (OI) is a rare heritable bone disorder that is characterised by increased bone fragility and recurrent fractures. To date, only 19 OI patients have been reported, as caused by BMP1 gene mutations, worldwide. Here, we report a patient with a BMP1 gene mutation to explore the relationship between genotype and phenotype, and the patient was followed up for 4 years. Methods Detailed clinical features were collected, and BMP1 mutational analysis was performed by next‐generation sequencing and Sanger sequencing. Results The patient had recurrent fractures, low bone mass, bone deformities and growth retardation but did not have hearing loss or dentinogenesis imperfecta. Next‐generation sequencing and Sanger sequencing revealed a heterozygous novel missense variant (c.362C>T in exon 3, p.Ala121Val) and a heterozygous novel deletion mutation (c.1252delA in exon 10, p.Ser418AlafsX22). The parents of the proband were heterozygous carriers of these mutations. The patient received regular weekly treatment of 70 mg oral alendronate for 3 years, and her BMD Z‐score for the femur significantly increased from −1.3 to 0.9 at L1‐4 and from −1.7 to −0.1. She had no fracture during 4 years of follow‐up. Conclusion We discovered two heterozygous novel mutations in an OI patient with BMP1 gene mutations, expanding the spectrum of gene mutations in OI.
Collapse
Affiliation(s)
- Lei Xi
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shanshan Lv
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hao Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhen-Lin Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
27
|
Gewartowska O, Aranaz-Novaliches G, Krawczyk PS, Mroczek S, Kusio-Kobiałka M, Tarkowski B, Spoutil F, Benada O, Kofroňová O, Szwedziak P, Cysewski D, Gruchota J, Szpila M, Chlebowski A, Sedlacek R, Prochazka J, Dziembowski A. Cytoplasmic polyadenylation by TENT5A is required for proper bone formation. Cell Rep 2021; 35:109015. [PMID: 33882302 DOI: 10.1016/j.celrep.2021.109015] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/23/2021] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
Osteoblasts orchestrate bone formation through the secretion of type I collagen and other constituents of the matrix on which hydroxyapatite crystals mineralize. Here, we show that TENT5A, whose mutations were found in congenital bone disease osteogenesis imperfecta patients, is a cytoplasmic poly(A) polymerase playing a crucial role in regulating bone mineralization. Direct RNA sequencing revealed that TENT5A is induced during osteoblast differentiation and polyadenylates mRNAs encoding Col1α1, Col1α2, and other secreted proteins involved in osteogenesis, increasing their expression. We postulate that TENT5A, possibly together with its paralog TENT5C, is responsible for the wave of cytoplasmic polyadenylation of mRNAs encoding secreted proteins occurring during bone mineralization. Importantly, the Tent5a knockout (KO) mouse line displays bone fragility and skeletal hypomineralization phenotype resulting from quantitative and qualitative collagen defects. Thus, we report a biologically relevant posttranscriptional regulator of collagen production and, more generally, bone formation.
Collapse
Affiliation(s)
- Olga Gewartowska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109 Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Goretti Aranaz-Novaliches
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 142 20 Prague 4, Czech Republic
| | - Paweł S Krawczyk
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109 Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Seweryn Mroczek
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Monika Kusio-Kobiałka
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109 Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Bartosz Tarkowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109 Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Frantisek Spoutil
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 142 20 Prague 4, Czech Republic; Czech Centre for Phenogenomics, Institute of Molecular Genetics of the CAS, Prague, Czech Republic
| | - Oldrich Benada
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., 142 20 Prague 4, Czech Republic
| | - Olga Kofroňová
- Institute of Microbiology of the Czech Academy of Sciences, v.v.i., 142 20 Prague 4, Czech Republic
| | - Piotr Szwedziak
- Laboratory of Structural Cell Biology, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; ReMedy-International Research Agenda Unit, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Dominik Cysewski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Jakub Gruchota
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109 Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Marcin Szpila
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109 Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Aleksander Chlebowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 142 20 Prague 4, Czech Republic; Czech Centre for Phenogenomics, Institute of Molecular Genetics of the CAS, Prague, Czech Republic
| | - Jan Prochazka
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i., 142 20 Prague 4, Czech Republic; Czech Centre for Phenogenomics, Institute of Molecular Genetics of the CAS, Prague, Czech Republic
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109 Warsaw, Poland; Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland; Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
28
|
Zaripova AR, Khusainova RI. Modern classification and molecular-genetic aspects of osteogenesis imperfecta. Vavilovskii Zhurnal Genet Selektsii 2021; 24:219-227. [PMID: 33659802 PMCID: PMC7716575 DOI: 10.18699/vj20.614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Osteogenesis imperfecta (imperfect osteogenesis in the Russian literature) is the most common hereditary form of bone fragility, it is a genetically and clinically heterogeneous disease with a wide range of clinical severity, often leading to disability from early childhood. It is based on genetic disorders leading to a violation of the structure of bone tissue, which leads to frequent fractures, impaired growth and posture, with the development of characteristic disabling bone deformities and associated problems, including respiratory, neurological, cardiac, renal impairment, hearing loss. Osteogenesis imperfecta occurs in both men and women, the disease is inherited in both autosomal dominant and autosomal recessive types, there are sporadic cases of the disease due to de novo mutations, as well as X-linked forms. The term "osteogenesis imperfecta" was coined by W. Vrolick in the 1840s. The first classification of the disease was made in 1979 and has been repeatedly reviewed due to the identification of the molecular cause of the disease and the discovery of new mechanisms for the development of osteogenesis imperfecta. In the early 1980s, mutations in two genes of collagen type I (COL1A1 and COL1A2) were first associated with an autosomal dominant inheritance type of osteogenesis imperfecta. Since then, 18 more genes have been identified whose products are involved in the formation and mineralization of bone tissue. The degree of genetic heterogeneity of the disease has not yet been determined, researchers continue to identify new genes involved in its pathogenesis, the number of which has reached 20. In the last decade, it has become known that autosomal recessive, autosomal dominant and X-linked mutations in a wide range of genes, encoding proteins that are involved in the synthesis of type I collagen, its processing, secretion and post-translational modification, as well as in proteins that regulate the differentiation and activity of bone-forming cells, cause imperfect osteogenesis. A large number of causative genes complicated the classical classification of the disease and, due to new advances in the molecular basis of the disease, the classification of the disease is constantly being improved. In this review, we systematized and summarized information on the results of studies in the field of clinical and genetic aspects of osteogenesis imperfecta and reflected the current state of the classification criteria for diagnosing the disease.
Collapse
Affiliation(s)
- A R Zaripova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
| | - R I Khusainova
- Institute of Biochemistry and Genetics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia Republican Medical-Genetic Center, Ufa, Russia
| |
Collapse
|
29
|
Liu G, Zhao H, Yan Z, Zhao S, Niu Y, Li X, Wang S, Yang Y, Liu S, Zhang TJ, Wu Z, Wu N. Whole-genome methylation analysis reveals novel epigenetic perturbations of congenital scoliosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:1281-1287. [PMID: 33717649 PMCID: PMC7907230 DOI: 10.1016/j.omtn.2021.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 02/05/2021] [Indexed: 11/24/2022]
Abstract
Congenital scoliosis (CS) is a congenital disease caused by malformations of vertebrae. Recent studies demonstrated that DNA modification could contribute to the pathogenesis of disease. This study aims to identify epigenetic perturbations that may contribute to the pathogenesis of CS. Four CS patients with hemivertebra were enrolled and underwent spine correction operations. DNA was extracted from the hemivertebrae and spinal process collected from the specimen during the hemivertebra resection. Genome-wide DNA methylation profiling was examined at base-pair resolution using whole-genome bisulfite sequencing (WGBS). We identified 343 genes with hyper-differentially methylated regions (DMRs) and 222 genes with hypo-DMRs, respectively. These genes were enriched in the mitogen-activated protein kinase (MAPK) signaling pathway, calcium signaling pathway, and axon guidance in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and were enriched in positive regulation of cell morphogenesis involved in differentiation, regulation of cell morphogenesis involved in differentiation, and regulation of neuron projection development in Biological Process of Gene Ontology (GO-BP) terms. Hyper-DMR-related genes, including IGHG1, IGHM, IGHG3, RNF213, and GSE1, and hypo DMR-related genes, including SORCS2, COL5A1, GRID1, RGS3, and ROBO2, may contribute to the pathogenesis of hemivertebra. The aberrant DNA methylation may be associated with the formation of hemivertebra and congenital scoliosis.
Collapse
Affiliation(s)
- Gang Liu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Key Laboratory of Big Data for Spinal Deformities, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hengqiang Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Key Laboratory of Big Data for Spinal Deformities, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zihui Yan
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Sen Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Key Laboratory of Big Data for Spinal Deformities, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shengru Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Key Laboratory of Big Data for Spinal Deformities, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yang Yang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Key Laboratory of Big Data for Spinal Deformities, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Sen Liu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Key Laboratory of Big Data for Spinal Deformities, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Key Laboratory of Big Data for Spinal Deformities, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Nan Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Key Laboratory of Big Data for Spinal Deformities, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730, China.,Key Laboratory of Big Data for Spinal Deformities, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
30
|
Costantini A, Alm JJ, Tonelli F, Valta H, Huber C, Tran AN, Daponte V, Kirova N, Kwon YU, Bae JY, Chung WY, Tan S, Sznajer Y, Nishimura G, Näreoja T, Warren AJ, Cormier-Daire V, Kim OH, Forlino A, Cho TJ, Mäkitie O. Novel RPL13 Variants and Variable Clinical Expressivity in a Human Ribosomopathy With Spondyloepimetaphyseal Dysplasia. J Bone Miner Res 2021; 36:283-297. [PMID: 32916022 PMCID: PMC7988564 DOI: 10.1002/jbmr.4177] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/31/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022]
Abstract
Spondyloepimetaphyseal dysplasias (SEMDs) are a heterogeneous group of disorders with variable growth failure and skeletal impairments affecting the spine and long bone epiphyses and metaphyses. Here we report on four unrelated families with SEMD in which we identified two monoallelic missense variants and one monoallelic splice site variant in RPL13, encoding the ribosomal protein eL13. In two out of four families, we observed autosomal dominant inheritance with incomplete penetrance and variable clinical expressivity; the phenotypes of the mutation-positive subjects ranged from normal height with or without hip dysplasia to severe SEMD with severe short stature and marked skeletal dysplasia. In vitro studies on patient-derived dermal fibroblasts harboring RPL13 missense mutations demonstrated normal eL13 expression, with proper subcellular localization but reduced colocalization with eL28 (p < 0.001). Cellular functional defects in fibroblasts from mutation-positive subjects indicated a significant increase in the ratio of 60S subunits to 80S ribosomes (p = 0.007) and attenuated global translation (p = 0.017). In line with the human phenotype, our rpl13 mutant zebrafish model, generated by CRISPR-Cas9 editing, showed cartilage deformities at embryonic and juvenile stages. These findings extend the genetic spectrum of RPL13 mutations causing this novel human ribosomopathy with variable skeletal features. Our study underscores for the first time incomplete penetrance and broad phenotypic variability in SEMD-RPL13 type and confirms impaired ribosomal function. Furthermore, the newly generated rpl13 mutant zebrafish model corroborates the role of eL13 in skeletogenesis. © 2020 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR)..
Collapse
Affiliation(s)
- Alice Costantini
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jessica J Alm
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Helena Valta
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Céline Huber
- Department of Clinical Genetics, INSERM UMR 1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Necker Enfans Malades Hospital (AP-HP), Paris, France
| | - Anh N Tran
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Valentina Daponte
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Nadi Kirova
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yong-Uk Kwon
- Department of Orthopaedic Surgery, Busan Paik Hospital, Inje University College of Medicine, Busan, South Korea
| | - Jung Yun Bae
- Department of Orthopaedic Surgery, Pusan National University Yangsan Hospital, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Woo Yeong Chung
- Department of Pediatrics, Busan Paik Hospital, College of Medicine, Inje University, Busan, Republic of Korea
| | - Shengjiang Tan
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge, UK.,Department of Haematology, University of Cambridge, Cambridge, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Yves Sznajer
- Centre de Génétique Humaine - CGH, Cliniques Universitaires St. Luc, UCL, Bruxelles, Belgium
| | - Gen Nishimura
- Center for Intractable Diseases, Saitama Medical University Hospital, Saitama, Japan
| | - Tuomas Näreoja
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Alan J Warren
- Cambridge Institute for Medical Research, Keith Peters Building, Cambridge, UK.,Department of Haematology, University of Cambridge, Cambridge, UK.,Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Valérie Cormier-Daire
- Department of Clinical Genetics, INSERM UMR 1163, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Necker Enfans Malades Hospital (AP-HP), Paris, France
| | - Ok-Hwa Kim
- Department of Radiology, I-Bone Hospital, Cheonan, Republic of Korea
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Tae-Joon Cho
- Division of Pediatric Orthopaedics, Seoul National University Children's Hospital, Seoul, Republic of Korea
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.,Folkhälsan Institute of Genetics, and Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
| |
Collapse
|
31
|
El-Gazzar A, Högler W. Mechanisms of Bone Fragility: From Osteogenesis Imperfecta to Secondary Osteoporosis. Int J Mol Sci 2021; 22:ijms22020625. [PMID: 33435159 PMCID: PMC7826666 DOI: 10.3390/ijms22020625] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/13/2022] Open
Abstract
Bone material strength is determined by several factors, such as bone mass, matrix composition, mineralization, architecture and shape. From a clinical perspective, bone fragility is classified as primary (i.e., genetic and rare) or secondary (i.e., acquired and common) osteoporosis. Understanding the mechanism of rare genetic bone fragility disorders not only advances medical knowledge on rare diseases, it may open doors for drug development for more common disorders (i.e., postmenopausal osteoporosis). In this review, we highlight the main disease mechanisms underlying the development of human bone fragility associated with low bone mass known to date. The pathways we focus on are type I collagen processing, WNT-signaling, TGF-ß signaling, the RANKL-RANK system and the osteocyte mechanosensing pathway. We demonstrate how the discovery of most of these pathways has led to targeted, pathway-specific treatments.
Collapse
Affiliation(s)
| | - Wolfgang Högler
- Correspondence: ; Tel.: +43-(0)5-7680-84-22001; Fax: +43-(0)5-7680-84-22004
| |
Collapse
|
32
|
Wang Y, Cai R, Wang P, Huang C, Zhang C, Liu Z. FAM46A expression is elevated in glioblastoma and predicts poor prognosis of patients. Clin Neurol Neurosurg 2020; 201:106421. [PMID: 33370626 DOI: 10.1016/j.clineuro.2020.106421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To study the expression of FAM46A in glioblastoma (GBM) and analyze its significance in predicting the prognosis of patients. MATERIALS AND METHODS mRNA expression and clinical data of patients with GBM were retrieved from ONCOMINE databases and The Cancer Genome Atlas (TCGA) database. Immunohistochemistry was performed in a tissue microarray including 110 GBM cases and 12 normal controls to determine the expression of FAM46A protein. Then, Kaplan-Meier curve and Cox regression model were used to investigate the relationship between FAM46A expression and clinical outcome. Coexpressed genes of FAM46A were analyzed by Linked Omics, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). RESULTS Upregulated expression of FAM46A was found in both TCGA and our cohort. High FAM46A expression was associated with the poor prognosis of patients with GBM and could be identified as an independent risk factor for overall survival (HR = 1.652, p = 0.022). Further bioinformatics analysis revealed that FAM46A might be involved in cell motility and endoplasmic reticulum proteostasis and stress to promote GBM progression. CONCLUSION Our findings suggest that increased expression of FAM46A in GBM is a novel biomarker for predicting poor outcome of patients and that targeting FAM46A may serve as a potential therapy for this disease.
Collapse
Affiliation(s)
- Yibiao Wang
- Department of Neurosurgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Renduan Cai
- Department of Neurosurgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Pengcheng Wang
- Department of Neurosurgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Chuixue Huang
- Department of Neurosurgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Chaocai Zhang
- Department of Neurosurgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China.
| | - Zhaohui Liu
- Department of Neurosurgery, Hainan General Hospital/Hainan Affiliated Hospital of Hainan Medical University, Haikou, 570311, China.
| |
Collapse
|
33
|
Darbà J, Marsà A. Hospital incidence, management and direct cost of osteogenesis imperfecta in Spain: a retrospective database analysis. J Med Econ 2020; 23:1435-1440. [PMID: 33030390 DOI: 10.1080/13696998.2020.1834402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The objective of this study was to analyse hospital incidence of osteogenesis imperfecta (OI) in Spanish hospitals and the associated medical costs from a healthcare system perspective. METHODS To this aim, a retrospective multicentre study was designed analysing admission records from patients admitted with OI in specialized care settings in Spain between 2000 and 2017. Direct medical costs were calculated based on the diagnosis-related group-based hospital payment systems, determined by the Spanish Ministry of Health. RESULTS Overall, 3,747 admissions were reviewed, corresponding to 998 patients, 48.20% of which were males and 51.80% females. Hospital incidence was 5.64 per 100,000 patients (95% CI, 4.80-6.60) over the study period, whereas incidence at birth was 10.14 per 100,000 (95% CI, 8.16-12.05). In-hospital mortality appeared primarily associated to neonatal conditions and acute respiratory failure. Mean length of hospital stay was 2.83 days, decreasing significantly during the study period (p < 0.0001). Readmission rate was significantly higher in younger patients (p = 0.0110). In most hospital admissions other disorders of bone and cartilage (osteoporosis and pathologic fractures) were registered, together with delayed growth and hypocalcaemia. The mean annual direct medical cost per hospital admission was €2,571, increasing significantly over the study period (p < 0.0001). CONCLUSIONS Overall, this study provides data that should be taken into account for the development of improved and more efficient treatment protocols, and in reducing the burden of OI at the healthcare system level.
Collapse
Affiliation(s)
- Josep Darbà
- Department of Economics, Universitat de Barcelona, Barcelona, Spain
| | - Alicia Marsà
- Department of Health Economics, BCN Health Economics & Outcomes Research S.L., Barcelona, Spain
| |
Collapse
|
34
|
Marom R, Rabenhorst BM, Morello R. Osteogenesis imperfecta: an update on clinical features and therapies. Eur J Endocrinol 2020; 183:R95-R106. [PMID: 32621590 PMCID: PMC7694877 DOI: 10.1530/eje-20-0299] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Osteogenesis imperfecta (OI) is an inherited skeletal dysplasia characterized by bone fragility and skeletal deformities. While the majority of cases are associated with pathogenic variants in COL1A1 and COL1A2, the genes encoding type I collagen, up to 25% of cases are associated with other genes that function within the collagen biosynthesis pathway or are involved in osteoblast differentiation and bone mineralization. Clinically, OI is heterogeneous in features and variable in severity. In addition to the skeletal findings, it can affect multiple systems including dental and craniofacial abnormalities, muscle weakness, hearing loss, respiratory and cardiovascular complications. A multi-disciplinary approach to care is recommended to address not only the fractures, reduced mobility, growth and bone pain but also other extra-skeletal manifestations. While bisphosphonates remain the mainstay of treatment in OI, new strategies are being explored, such as sclerostin inhibitory antibodies and TGF beta inhibition, to address not only the low bone mineral density but also the inherent bone fragility. Studies in animal models have expanded the understanding of pathomechanisms of OI and, along with ongoing clinical trials, will allow to develop better therapeutic approaches for these patients.
Collapse
Affiliation(s)
- Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital, Houston, TX
| | - Brien M. Rabenhorst
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Roy Morello
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR
- Division of Genetics, University of Arkansas for Medical Sciences, Little Rock, AR
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
35
|
Etich J, Rehberg M, Eckes B, Sengle G, Semler O, Zaucke F. Signaling pathways affected by mutations causing osteogenesis imperfecta. Cell Signal 2020; 76:109789. [PMID: 32980496 DOI: 10.1016/j.cellsig.2020.109789] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous connective tissue disorder characterized by bone fragility and skeletal deformity. To maintain skeletal strength and integrity, bone undergoes constant remodeling of its extracellular matrix (ECM) tightly controlled by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. There are at least 20 recognized OI-forms caused by mutations in the two collagen type I-encoding genes or genes implicated in collagen folding, posttranslational modifications or secretion of collagen, osteoblast differentiation and function, or bone mineralization. The underlying disease mechanisms of non-classical forms of OI that are not caused by collagen type I mutations are not yet completely understood, but an altered ECM structure as well as disturbed intracellular homeostasis seem to be the main defects. The ECM orchestrates local cell behavior in part by regulating bioavailability of signaling molecules through sequestration, release and activation during the constant bone remodeling process. Here, we provide an overview of signaling pathways that are associated with known OI-causing genes and discuss the impact of these genes on signal transduction. These pathways include WNT-, RANK/RANKL-, TGFβ-, MAPK- and integrin-mediated signaling as well as the unfolded protein response.
Collapse
Affiliation(s)
- Julia Etich
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, Frankfurt/Main, 60528, Germany.
| | - Mirko Rehberg
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Beate Eckes
- Translational Matrix Biology, Faculty of Medicine, University of Cologne, Cologne 50931, Germany
| | - Gerhard Sengle
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne 50931, Germany; Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Oliver Semler
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Center for Rare Diseases, University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, Frankfurt/Main, 60528, Germany
| |
Collapse
|
36
|
Etich J, Leßmeier L, Rehberg M, Sill H, Zaucke F, Netzer C, Semler O. Osteogenesis imperfecta-pathophysiology and therapeutic options. Mol Cell Pediatr 2020; 7:9. [PMID: 32797291 PMCID: PMC7427672 DOI: 10.1186/s40348-020-00101-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/29/2020] [Indexed: 12/31/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a rare congenital disease with a wide spectrum of severity characterized by skeletal deformity and increased bone fragility as well as additional, variable extraskeletal symptoms. Here, we present an overview of the genetic heterogeneity and pathophysiological background of OI as well as OI-related bone fragility disorders and highlight current therapeutic options. The most common form of OI is caused by mutations in the two collagen type I genes. Stop mutations usually lead to reduced collagen amount resulting in a mild phenotype, while missense mutations mainly provoke structural alterations in the collagen protein and entail a more severe phenotype. Numerous other causal genes have been identified during the last decade that are involved in collagen biosynthesis, modification and secretion, the differentiation and function of osteoblasts, and the maintenance of bone homeostasis. Management of patients with OI involves medical treatment by bisphosphonates as the most promising therapy to inhibit bone resorption and thereby facilitate bone formation. Surgical treatment ensures pain reduction and healing without an increase of deformities. Timely remobilization and regular strengthening of the muscles by physiotherapy are crucial to improve mobility, prevent muscle wasting and avoid bone resorption caused by immobilization. Identification of the pathomechanism for SERPINF1 mutations led to the development of a tailored mechanism-based therapy using denosumab, and unraveling further pathomechanisms will likely open new avenues for innovative treatment approaches.
Collapse
Affiliation(s)
- Julia Etich
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, Frankfurt/Main, Germany
| | - Lennart Leßmeier
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Human Genetics, Cologne, Germany
| | - Mirko Rehberg
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, Cologne, Germany
| | - Helge Sill
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, Cologne, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, Frankfurt/Main, Germany
| | - Christian Netzer
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Human Genetics, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Center for rare diseases, University of Cologne, Cologne, Germany
| | - Oliver Semler
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Straße 62, Cologne, Germany. .,Faculty of Medicine and University Hospital Cologne, Center for rare diseases, University of Cologne, Cologne, Germany.
| |
Collapse
|
37
|
Liudkovska V, Dziembowski A. Functions and mechanisms of RNA tailing by metazoan terminal nucleotidyltransferases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1622. [PMID: 33145994 PMCID: PMC7988573 DOI: 10.1002/wrna.1622] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/28/2022]
Abstract
Termini often determine the fate of RNA molecules. In recent years, 3' ends of almost all classes of RNA species have been shown to acquire nontemplated nucleotides that are added by terminal nucleotidyltransferases (TENTs). The best-described role of 3' tailing is the bulk polyadenylation of messenger RNAs in the cell nucleus that is catalyzed by canonical poly(A) polymerases (PAPs). However, many other enzymes that add adenosines, uridines, or even more complex combinations of nucleotides have recently been described. This review focuses on metazoan TENTs, which are either noncanonical PAPs or terminal uridylyltransferases with varying processivity. These enzymes regulate RNA stability and RNA functions and are crucial in early development, gamete production, and somatic tissues. TENTs regulate gene expression at the posttranscriptional level, participate in the maturation of many transcripts, and protect cells against viral invasion and the transposition of repetitive sequences. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Vladyslava Liudkovska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
38
|
A tale of non-canonical tails: gene regulation by post-transcriptional RNA tailing. Nat Rev Mol Cell Biol 2020; 21:542-556. [PMID: 32483315 DOI: 10.1038/s41580-020-0246-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2020] [Indexed: 01/06/2023]
Abstract
RNA tailing, or the addition of non-templated nucleotides to the 3' end of RNA, is the most frequent and conserved type of RNA modification. The addition of tails and their composition reflect RNA maturation stages and have important roles in determining the fate of the modified RNAs. Apart from canonical poly(A) polymerases, which add poly(A) tails to mRNAs in a transcription-coupled manner, a family of terminal nucleotidyltransferases (TENTs), including terminal uridylyltransferases (TUTs), modify RNAs post-transcriptionally to control RNA stability and activity. The human genome encodes 11 different TENTs with distinct substrate specificity, intracellular localization and tissue distribution. In this Review, we discuss recent advances in our understanding of non-canonical RNA tails, with a focus on the functions of human TENTs, which include uridylation, mixed tailing and post-transcriptional polyadenylation of mRNAs, microRNAs and other types of non-coding RNA.
Collapse
|
39
|
Zhytnik L, Simm K, Salumets A, Peters M, Märtson A, Maasalu K. Reproductive options for families at risk of Osteogenesis Imperfecta: a review. Orphanet J Rare Dis 2020; 15:128. [PMID: 32460820 PMCID: PMC7251694 DOI: 10.1186/s13023-020-01404-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023] Open
Abstract
Background Osteogenesis Imperfecta (OI) is a rare genetic disorder involving bone fragility. OI patients typically suffer from numerous fractures, skeletal deformities, shortness of stature and hearing loss. The disorder is characterised by genetic and clinical heterogeneity. Pathogenic variants in more than 20 different genes can lead to OI, and phenotypes can range from mild to lethal forms. As a genetic disorder which undoubtedly affects quality of life, OI significantly alters the reproductive confidence of families at risk. The current review describes a selection of the latest reproductive approaches which may be suitable for prospective parents faced with a risk of OI. The aim of the review is to alleviate suffering in relation to family planning around OI, by enabling prospective parents to make informed and independent decisions. Main body The current review provides a comprehensive overview of possible reproductive options for people with OI and for unaffected carriers of OI pathogenic genetic variants. The review considers reproductive options across all phases of family planning, including pre-pregnancy, fertilisation, pregnancy, and post-pregnancy. Special attention is given to the more modern techniques of assisted reproduction, such as preconception carrier screening, preimplantation genetic testing for monogenic diseases and non-invasive prenatal testing. The review outlines the methodologies of the different reproductive approaches available to OI families and highlights their advantages and disadvantages. These are presented as a decision tree, which takes into account the autosomal dominant and autosomal recessive nature of the OI variants, and the OI-related risks of people without OI. The complex process of decision-making around OI reproductive options is also discussed from an ethical perspective. Conclusion The rapid development of molecular techniques has led to the availability of a wide variety of reproductive options for prospective parents faced with a risk of OI. However, such options may raise ethical concerns in terms of methodologies, choice management and good clinical practice in reproductive care, which are yet to be fully addressed.
Collapse
Affiliation(s)
- Lidiia Zhytnik
- Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia.
| | - Kadri Simm
- Institute of Philosophy and Semiotics, Faculty of Arts and Humanities, University of Tartu, Tartu, Estonia.,Centre of Ethics, University of Tartu, Tartu, Estonia
| | - Andres Salumets
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Institute of Genomics, University of Tartu, Tartu, Estonia.,COMBIVET ERA Chair, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Maire Peters
- Competence Centre on Health Technologies, Tartu, Estonia.,Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Aare Märtson
- Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia.,Department of Traumatology and Orthopaedics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Katre Maasalu
- Clinic of Traumatology and Orthopaedics, Tartu University Hospital, Tartu, Estonia.,Department of Traumatology and Orthopaedics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
40
|
Lin HH, Lo YL, Wang WC, Huang KY, I KY, Chang GW. Overexpression of FAM46A, a Non-canonical Poly(A) Polymerase, Promotes Hemin-Induced Hemoglobinization in K562 Cells. Front Cell Dev Biol 2020; 8:414. [PMID: 32528962 PMCID: PMC7264091 DOI: 10.3389/fcell.2020.00414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/05/2020] [Indexed: 01/11/2023] Open
Abstract
FAM46A belongs to the FAM46 subfamily of the nucleotidyltransferase-fold superfamily and is predicted to be a non-canonical poly(A) polymerase. FAM46A has been linked to several human disorders including retinitis pigmentosa, bone abnormality, cancer, and obesity. However, its molecular and functional characteristics are largely unknown. We herein report that FAM46A is expressed in cells of the hematopoietic system and plays a role in hemin-induced hemoglobinization. FAM46A is a nucleocytoplasmic shuttle protein modified by Tyr-phosphorylation only in the cytosol, where it is closely associated with ER. On the other hand, it is located proximal to the chromatin regions of active transcription in the nucleus. FAM46A is a cell cycle-dependent poly-ubiquitinated short-lived protein degraded mostly by proteasome and its overexpression inhibits cell growth and promotes hemin-induced hemoglobinization in K562 cell. Site-directed mutagenesis experiments confirm the non-canonical poly(A) polymerase activity of FAM46A is essential for enhanced hemin-induced hemoglobinization. In summary, FAM46A is a novel poly(A) polymerase that functions as a critical intracellular modulator of hemoglobinization.
Collapse
Affiliation(s)
- Hsi-Hsien Lin
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Yu-Ling Lo
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Chih Wang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuan-Yeh Huang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuan-Yu I
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Gin-Wen Chang
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
41
|
Hu JL, Liang H, Zhang H, Yang MZ, Sun W, Zhang P, Luo L, Feng JX, Bai H, Liu F, Zhang T, Yang JY, Gao Q, Long Y, Ma XY, Chen Y, Zhong Q, Yu B, Liao S, Wang Y, Zhao Y, Zeng MS, Cao N, Wang J, Chen W, Yang HT, Gao S. FAM46B is a prokaryotic-like cytoplasmic poly(A) polymerase essential in human embryonic stem cells. Nucleic Acids Res 2020; 48:2733-2748. [PMID: 32009146 PMCID: PMC7049688 DOI: 10.1093/nar/gkaa049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 01/11/2023] Open
Abstract
Family with sequence similarity (FAM46) proteins are newly identified metazoan-specific poly(A) polymerases (PAPs). Although predicted as Gld-2-like eukaryotic non-canonical PAPs, the detailed architecture of FAM46 proteins is still unclear. Exact biological functions for most of FAM46 proteins also remain largely unknown. Here, we report the first crystal structure of a FAM46 protein, FAM46B. FAM46B is composed of a prominently larger N-terminal catalytic domain as compared to known eukaryotic PAPs, and a C-terminal helical domain. FAM46B resembles prokaryotic PAP/CCA-adding enzymes in overall folding as well as certain inter-domain connections, which distinguishes FAM46B from other eukaryotic non-canonical PAPs. Biochemical analysis reveals that FAM46B is an active PAP, and prefers adenosine-rich substrate RNAs. FAM46B is uniquely and highly expressed in human pre-implantation embryos and pluripotent stem cells, but sharply down-regulated following differentiation. FAM46B is localized to both cell nucleus and cytosol, and is indispensable for the viability of human embryonic stem cells. Knock-out of FAM46B is lethal. Knock-down of FAM46B induces apoptosis and restricts protein synthesis. The identification of the bacterial-like FAM46B, as a pluripotent stem cell-specific PAP involved in the maintenance of translational efficiency, provides important clues for further functional studies of this PAP in the early embryonic development of high eukaryotes.
Collapse
Affiliation(s)
- Jia-Li Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.,Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - He Liang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ming-Zhu Yang
- MOE Key Laboratory for Stem Cells and Tissue Engineering, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Sun
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, P.R. China.,Laboratory for Functional Genomics and Systems Biology, The Berlin Institute for Medical Systems Biology, 13092 Berlin, Germany
| | - Peng Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jian-Xiong Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Huajun Bai
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fang Liu
- MOE Key Laboratory for Stem Cells and Tissue Engineering, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Tianpeng Zhang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jin-Yu Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Qingsong Gao
- Laboratory for Functional Genomics and Systems Biology, The Berlin Institute for Medical Systems Biology, 13092 Berlin, Germany
| | - Yongkang Long
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Xiao-Yan Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yang Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Bing Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Shuang Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yongbo Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yong Zhao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Nan Cao
- MOE Key Laboratory for Stem Cells and Tissue Engineering, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jichang Wang
- MOE Key Laboratory for Stem Cells and Tissue Engineering, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Huang-Tian Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510530, China
| |
Collapse
|
42
|
Rehberg M, Etich J, Leßmeier L, Sill H, Netzer C, Semler O. Osteogenesis imperfecta – Pathophysiologie und aktuelle Behandlungsstrategien. MED GENET-BERLIN 2020. [DOI: 10.1007/s11825-020-00287-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Zusammenfassung
Die Osteogenesis imperfecta (OI) ist eine angeborene Erkrankung des Knochens und Bindegewebes. Sie geht mit einer erhöhten Frakturneigung, Deformierung der Extremität, aber auch mit extraskelettalen Symptomen einher. Nach einer kurzen Darstellung von Klinik, Diagnostik und aktueller Therapie folgt ein umfassender Überblick über die genetischen und pathophysiologischen Grundlagen der Erkrankung und die daraus abgeleiteten zukünftigen therapeutischen Möglichkeiten.
Ungefähr 80 % der Patienten haben eine Mutation in den Kollagen-Genen COL1A1 und COL1A2. Bei diesen Patienten ist für das Kollektiv keine klare Genotyp-Phänotyp-Korrelation beschrieben. Stoppmutationen führen in der Regel zu einem quantitativen Kollagendefekt, wodurch weniger normales Kollagen gebildet wird und ein eher leichter Phänotyp entsteht. Missense-Mutationen führen zu strukturell verändertem Kollagen (qualitativer Defekt) und zu einem schwereren Phänotyp. Trotzdem gibt es Unterschiede und Vorhersagen über den individuellen Verlauf sind nur sehr eingeschränkt möglich. Neben Veränderungen in den Kollagen-Genen gibt es Mutationen, welche die Kollagenmodifikation und die Kollagensekretion betreffen. Eine eigene Gruppe bilden Gene, welche an der Osteoblastendifferenzierung beteiligt sind. Wie auch bei den weiteren, nicht näher zugeordneten Genen sind dies häufig übergeordnete Gene, deren Funktion in der Osteogenese nicht völlig verstanden ist.
Abgeleitet aus den pathophysiologischen Grundlagen, können vorhandene Medikamente zukünftig womöglich zielgerichtet eingesetzt werden. So ist der „Receptor-Activator-of-Nuclear-Factor-Kappa B-Ligand“ (RANKL)-Antikörper Denosumab spezifischer als Bisphosphonate und wird schon heute bei OI-Typ VI (SERPINF1) verwendet. Weitere Medikamente wie Anti-Sklerostin oder Stammzelltherapien werden unter Berücksichtigung der Pathophysiologie aktuell entwickelt.
Collapse
Affiliation(s)
- Mirko Rehberg
- 1 grid.6190.e 0000 0000 8580 3777 Medizinische Fakultät und Uniklinik Köln, Klinik und Poliklinik für Kinder- und Jugendmedizin Universität zu Köln Kerpenerstraße 62 50931 Köln Deutschland
| | - Julia Etich
- 2 grid.459906.7 0000 0001 0061 4027 Dr. Rolf M. Schwiete Forschungsbereich für Arthrose Orthopädische Universitätsklinik Friedrichsheim gGmbH Frankfurt/Main Deutschland
| | - Lennart Leßmeier
- 3 grid.6190.e 0000 0000 8580 3777 Medizinische Fakultät und Uniklinik Köln, Institut für Humangenetik Universität zu Köln 50931 Köln Deutschland
| | - Helge Sill
- 1 grid.6190.e 0000 0000 8580 3777 Medizinische Fakultät und Uniklinik Köln, Klinik und Poliklinik für Kinder- und Jugendmedizin Universität zu Köln Kerpenerstraße 62 50931 Köln Deutschland
| | - Christian Netzer
- 3 grid.6190.e 0000 0000 8580 3777 Medizinische Fakultät und Uniklinik Köln, Institut für Humangenetik Universität zu Köln 50931 Köln Deutschland
| | - Oliver Semler
- 1 grid.6190.e 0000 0000 8580 3777 Medizinische Fakultät und Uniklinik Köln, Klinik und Poliklinik für Kinder- und Jugendmedizin Universität zu Köln Kerpenerstraße 62 50931 Köln Deutschland
| |
Collapse
|
43
|
Abstract
Mendelian bone fragility disorders are caused by genetic variants that can be inherited in an autosomal dominant, autosomal recessive or X-linked manner and have a large detrimental effect on bone strength. As a rule, the more damaging the genetic defect is, the earlier the first fracture will occur, typically during bone development. This review focusses on conditions where bone fragility is the most conspicuous characteristic, of which osteogenesis imperfecta (OI) is the best-known disorder. The large majority of individuals with an OI phenotype have disease-causing dominant variants in COL1A1 or COL1A2, the genes coding for collagen type I. Interestingly, large sequencing databases indicate that there are about 10 times more carriers of COL1A1/COL1A2 variants that should lead to OI than there are individuals with a diagnosis of OI. It is possible that at least some of these variants lead to incomplete OI phenotypes and are diagnosed as osteoporosis during adulthood. Apart from mutations affecting collagen type I production, biallelic mutations in LRP5 and WNT1 can cause very rare and severe bone fragility disorders. Heterozygous pathogenic variants in these genes are much more common and can cause the clinical picture of primary osteoporosis. As sequencing studies are more widely performed in adults with bone fragility disorders, evidence is emerging that what appears as primary osteoporosis in fact can be due to mutations in bona fide OI genes. The distinction between OI and primary osteoporosis is therefore likely to blur in future.
Collapse
Affiliation(s)
| | - Frank Rauch
- Shriners Hospital for Children, Montreal, Quebec, Canada.
| |
Collapse
|
44
|
Temtamy SA. The Development of Human Genetics at the National Research Centre, Cairo, Egypt: A Story of 50 Years. Annu Rev Genomics Hum Genet 2019; 20:1-19. [PMID: 30848958 DOI: 10.1146/annurev-genom-083118-015201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This article describes my experiences over more than 50 years in initiating and maintaining research on human genetics and genomics at the National Research Centre in Cairo, Egypt, from its beginnings in a small unit of human genetics to the creation of the Center of Excellence for Human Genetics. This was also the subject of a lecture I gave at the 10th Conference of the African Society of Human Genetics, held in Cairo in November 2017, after which Professor Michèle Ramsay, president of the society, suggested that I write an autobiographical article for the Annual Review of Genomics and Human Genetics. I hope that I succeeded in the difficult assignment of summarizing the efforts of a researcher from a developing country to initiate and maintain the rapidly advancing science of human genetics and genomics in my own country and make contributions to the worldwide scientific community.
Collapse
Affiliation(s)
- Samia A Temtamy
- Center of Excellence for Human Genetics, National Research Centre, Cairo 12622, Egypt;
| |
Collapse
|
45
|
Besio R, Chow CW, Tonelli F, Marini JC, Forlino A. Bone biology: insights from osteogenesis imperfecta and related rare fragility syndromes. FEBS J 2019; 286:3033-3056. [PMID: 31220415 PMCID: PMC7384889 DOI: 10.1111/febs.14963] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/06/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022]
Abstract
The limited accessibility of bone and its mineralized nature have restricted deep investigation of its biology. Recent breakthroughs in identification of mutant proteins affecting bone tissue homeostasis in rare skeletal diseases have revealed novel pathways involved in skeletal development and maintenance. The characterization of new dominant, recessive and X-linked forms of the rare brittle bone disease osteogenesis imperfecta (OI) and other OI-related bone fragility disorders was a key player in this advance. The development of in vitro models for these diseases along with the generation and characterization of murine and zebrafish models contributed to dissecting previously unknown pathways. Here, we describe the most recent advances in the understanding of processes involved in abnormal bone mineralization, collagen processing and osteoblast function, as illustrated by the characterization of new causative genes for OI and OI-related fragility syndromes. The coordinated role of the integral membrane protein BRIL and of the secreted protein PEDF in modulating bone mineralization as well as the function and cross-talk of the collagen-specific chaperones HSP47 and FKBP65 in collagen processing and secretion are discussed. We address the significance of WNT ligand, the importance of maintaining endoplasmic reticulum membrane potential and of regulating intramembrane proteolysis in osteoblast homeostasis. Moreover, we also examine the relevance of the cytoskeletal protein plastin-3 and of the nucleotidyltransferase FAM46A. Thanks to these advances, new targets for the development of novel therapies for currently incurable rare bone diseases have been and, likely, will be identified, supporting the important role of basic science for translational approaches.
Collapse
Affiliation(s)
- Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Chi-Wing Chow
- Bone and Extracellular Matrix Branch, NICHD, National Institute of Health, Bethesda, MD 20892, USA
| | - Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Joan C Marini
- Bone and Extracellular Matrix Branch, NICHD, National Institute of Health, Bethesda, MD 20892, USA
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| |
Collapse
|
46
|
Lu Y, Zhang S, Wang Y, Ren X, Han J. Molecular mechanisms and clinical manifestations of rare genetic disorders associated with type I collagen. Intractable Rare Dis Res 2019; 8:98-107. [PMID: 31218159 PMCID: PMC6557237 DOI: 10.5582/irdr.2019.01064] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Type I collagen is an important structural protein of bone, skin, tendon, ligament and other connective tissues. It is initially synthesized as a precursor form, procollagen, consisting of two identical pro-α1(I) and one proα2(I) chains, encoded by COL1A1 and COL1A2, respectively. The N- and C- terminal propeptides of procollagen are cleavage by N-proteinase and C-proteinase correspondingly, to form the central triple helix structure with Gly-X-Y repeat units. Mutations of COL1A1 and COL1A2 genes are associated with osteogenesis imperfecta, some types of Ehlers-Danlos syndrome, Caffey diseases, and osteogenesis imperfect/Ehlers- Danlos syndrome overlapping diseases. Clinical symptoms caused by different variations can be variable or similar, mild to lethal, and vice versa. We reviewed the relationship between clinical manifestations and type I collagen - related rare genetic disorders and their possible molecular mechanisms for different mutations and disorders.
Collapse
Affiliation(s)
- Yanqin Lu
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Ji'nan, China
- Address correspondence to:Dr. Yanqin Lu, Shandong First Medical University & Shandong Academy of Medical Sciences, 18877 Jingshi Road, Ji'nan 250062, China. E-mail:
| | - Shie Zhang
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Ji'nan, China
| | - Yanzhou Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Ji'nan, China
| | - Xiuzhi Ren
- Department of Orthopaedic Surgery, The People’s Hospital of Wuqing District, Tianjin, China
| | - Jinxiang Han
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Ji'nan, China
| |
Collapse
|
47
|
Novel mutations in BMP1 induce a rare type of osteogenesis imperfecta. Clin Chim Acta 2019; 489:21-28. [DOI: 10.1016/j.cca.2018.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 10/27/2018] [Accepted: 11/02/2018] [Indexed: 11/20/2022]
|
48
|
Mäkitie RE, Costantini A, Kämpe A, Alm JJ, Mäkitie O. New Insights Into Monogenic Causes of Osteoporosis. Front Endocrinol (Lausanne) 2019; 10:70. [PMID: 30858824 PMCID: PMC6397842 DOI: 10.3389/fendo.2019.00070] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/24/2019] [Indexed: 12/17/2022] Open
Abstract
Osteoporosis, characterized by deteriorated bone microarchitecture and low bone mineral density, is a chronic skeletal disease with high worldwide prevalence. Osteoporosis related to aging is the most common form and causes significant morbidity and mortality. Rare, monogenic forms of osteoporosis have their onset usually in childhood or young adulthood and have specific phenotypic features and clinical course depending on the underlying cause. The most common form is osteogenesis imperfecta linked to mutations in COL1A1 and COL1A2, the two genes encoding type I collagen. However, in the past years, remarkable advancements in bone research have expanded our understanding of the intricacies behind bone metabolism and identified novel molecular mechanisms contributing to skeletal health and disease. Especially high-throughput sequencing techniques have made family-based studies an efficient way to identify single genes causative of rare monogenic forms of osteoporosis and these have yielded several novel genes that encode proteins partaking in type I collagen modification or regulating bone cell function directly. New forms of monogenic osteoporosis, such as autosomal dominant osteoporosis caused by WNT1 mutations or X-linked osteoporosis due to PLS3 mutations, have revealed previously unidentified bone-regulating proteins and clarified specific roles of bone cells, expanded our understanding of possible inheritance mechanisms and paces of disease progression, and highlighted the potential of monogenic bone diseases to extend beyond the skeletal tissue. The novel gene discoveries have introduced new challenges to the classification and diagnosis of monogenic osteoporosis, but also provided promising new molecular targets for development of pharmacotherapies. In this article we give an overview of the recent discoveries in the area of monogenic forms of osteoporosis, describing the key cellular mechanisms leading to skeletal fragility, the major recent research findings and the essential challenges and avenues in future diagnostics and treatments.
Collapse
Affiliation(s)
- Riikka E. Mäkitie
- Folkhälsan Institute of Genetics and University of Helsinki, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alice Costantini
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anders Kämpe
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jessica J. Alm
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Outi Mäkitie
- Folkhälsan Institute of Genetics and University of Helsinki, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Children's Hospital, Pediatric Research Center, University of Helsinki and HUS Helsinki University Hospital, Helsinki, Finland
- Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- *Correspondence: Outi Mäkitie
| |
Collapse
|
49
|
Warkocki Z, Liudkovska V, Gewartowska O, Mroczek S, Dziembowski A. Terminal nucleotidyl transferases (TENTs) in mammalian RNA metabolism. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0162. [PMID: 30397099 PMCID: PMC6232586 DOI: 10.1098/rstb.2018.0162] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2018] [Indexed: 12/15/2022] Open
Abstract
In eukaryotes, almost all RNA species are processed at their 3′ ends and most mRNAs are polyadenylated in the nucleus by canonical poly(A) polymerases. In recent years, several terminal nucleotidyl transferases (TENTs) including non-canonical poly(A) polymerases (ncPAPs) and terminal uridyl transferases (TUTases) have been discovered. In contrast to canonical polymerases, TENTs' functions are more diverse; some, especially TUTases, induce RNA decay while others, such as cytoplasmic ncPAPs, activate translationally dormant deadenylated mRNAs. The mammalian genome encodes 11 different TENTs. This review summarizes the current knowledge about the functions and mechanisms of action of these enzymes. This article is part of the theme issue ‘5′ and 3′ modifications controlling RNA degradation’.
Collapse
Affiliation(s)
- Zbigniew Warkocki
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan, Poland
| | - Vladyslava Liudkovska
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Olga Gewartowska
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Seweryn Mroczek
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland .,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
50
|
Abstract
Bone disease in the neonatal period has often been regarded as an issue affecting premature infants, or a collection of rare and ultra-rare disorders that most neonatologists will see only once or twice each year, or possibly each decade. The emergence of targeted therapies for some of these rare disorders means that neonatologists may be faced with diagnostic dilemmas that need a rapid solution in order to access management options that did not previously exist. The diagnostic modalities available to the neonatologist have not changed a great deal in recent years; blood tests and radiographs still form the mainstays with other techniques usually reserved for research studies, but rapid access to genomic testing is emergent. This paper provides an update around diagnosis and management of bone problems likely to present to the neonatologist.
Collapse
Affiliation(s)
- Stephanie A Borg
- Academic Unit of Child Health, Department of Oncology and Metabolism, University of Sheffield, Sheffield Children's Hospital, Western Bank, Sheffield S10 2TH.
| | - Nicholas J Bishop
- Academic Unit of Child Health, Department of Oncology and Metabolism, University of Sheffield, Sheffield Children's Hospital, Western Bank, Sheffield S10 2TH.
| |
Collapse
|