1
|
Kim AH, Sakin I, Viviano S, Tuncel G, Aguilera SM, Goles G, Jeffries L, Ji W, Lakhani SA, Kose CC, Silan F, Oner SS, Kaplan OI, Ergoren MC, Mishra-Gorur K, Gunel M, Sag SO, Temel SG, Deniz E. CC2D1A causes ciliopathy, intellectual disability, heterotaxy, renal dysplasia, and abnormal CSF flow. Life Sci Alliance 2024; 7:e202402708. [PMID: 39168639 PMCID: PMC11339347 DOI: 10.26508/lsa.202402708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
Intellectual and developmental disabilities result from abnormal nervous system development. Over a 1,000 genes have been associated with intellectual and developmental disabilities, driving continued efforts toward dissecting variant functionality to enhance our understanding of the disease mechanism. This report identified two novel variants in CC2D1A in a cohort of four patients from two unrelated families. We used multiple model systems for functional analysis, including Xenopus, Drosophila, and patient-derived fibroblasts. Our experiments revealed that cc2d1a is expressed explicitly in a spectrum of ciliated tissues, including the left-right organizer, epidermis, pronephric duct, nephrostomes, and ventricular zone of the brain. In line with this expression pattern, loss of cc2d1a led to cardiac heterotaxy, cystic kidneys, and abnormal CSF circulation via defective ciliogenesis. Interestingly, when we analyzed brain development, mutant tadpoles showed abnormal CSF circulation only in the midbrain region, suggesting abnormal local CSF flow. Furthermore, our analysis of the patient-derived fibroblasts confirmed defective ciliogenesis, further supporting our observations. In summary, we revealed novel insight into the role of CC2D1A by establishing its new critical role in ciliogenesis and CSF circulation.
Collapse
Affiliation(s)
| | - Irmak Sakin
- Department of ENT, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Acibadem University School of Medicine, Istanbul, Turkey
| | - Stephen Viviano
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Gulten Tuncel
- DESAM Research Institute, Near East University, Nicosia, Cyprus
| | | | - Gizem Goles
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA
| | - Lauren Jeffries
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Weizhen Ji
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Saquib A Lakhani
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Canan Ceylan Kose
- Canakkale 18 March University, Faculty of Medicine, Department of Medical Genetics, Canakkale, Turkey
| | - Fatma Silan
- Canakkale 18 March University, Faculty of Medicine, Department of Medical Genetics, Canakkale, Turkey
| | - Sukru Sadik Oner
- Department of Pharmacology, Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, Turkey
- Istanbul Medeniyet University, Science and Advanced Technologies Research Center (BILTAM), Istanbul, Turkey
| | - Oktay I Kaplan
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkey
| | - Mahmut Cerkez Ergoren
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
| | - Ketu Mishra-Gorur
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Program in Brain Tumor Research, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Sebnem Ozemri Sag
- Department of Medical Genetics, Faculty of Medicine, Uludag University, Bursa, Turkey
| | - Sehime G Temel
- Department of Medical Genetics, Faculty of Medicine, Uludag University, Bursa, Turkey
- Department of Histology and Embryology and Health Sciences Institute, Department of Translational Medicine, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Engin Deniz
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
- Pediatric Genomics Discovery Program, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
2
|
Bhattacharya A, Parlanti P, Cavallo L, Farrow E, Spivey T, Renieri A, Mari F, Manzini MC. A novel framework for functional annotation of variants of uncertain significance in ID/ASD risk gene CC2D1A. Hum Mol Genet 2024; 33:1229-1240. [PMID: 38652285 DOI: 10.1093/hmg/ddae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/07/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Intellectual disability (ID) and autism spectrum disorder (ASD) are genetically heterogeneous with hundreds of identified risk genes, most affecting only a few patients. Novel missense variants in these genes are being discovered as clinical exome sequencing is now routinely integrated into diagnosis, yet most of them are annotated as variants of uncertain significance (VUS). VUSs are a major roadblock in using patient genetics to inform clinical action. We developed a framework to characterize VUSs in Coiled-coil and C2 domain containing 1A (CC2D1A), a gene causing autosomal recessive ID with comorbid ASD in 40% of cases. We analyzed seven VUSs (p.Pro319Leu, p.Ser327Leu, p.Gly441Val, p.Val449Met, p.Thr580Ile, p.Arg886His and p.Glu910Lys) from four cases of individuals with ID and ASD. Variants were cloned and overexpressed in HEK293 individually and in their respective heterozygous combination. CC2D1A is a signaling scaffold that positively regulates PKA-CREB signaling by repressing phosphodiesterase 4D (PDE4D) to prevent cAMP degradation. After testing multiple parameters including direct interaction between PDE4D and CC2D1A, cAMP levels and CREB activation, we found that the most sensitive readout was CREB transcriptional activity using a luciferase assay. Compared to WT CC2D1A, five VUSs (p.Pro319Leu, p.Gly441Val, p.Val449Met, p.Thr580Ile, and p.Arg886His) led to significantly blunted response to forskolin induced CREB activation. This luciferase assay approach can be scaled up to annotate ~150 CC2D1A VUSs that are currently listed in ClinVar. Since CREB activation is a common denominator for multiple ASD/ID genes, our paradigm can also be adapted for their VUSs.
Collapse
Affiliation(s)
- Aniket Bhattacharya
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Rutgers - Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, United States
| | - Paola Parlanti
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Rutgers - Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, United States
| | - Luca Cavallo
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Rutgers - Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, United States
| | - Edward Farrow
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, 2121 I St NW, Washington, DC 20052, United States
| | - Tyler Spivey
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, 2121 I St NW, Washington, DC 20052, United States
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Viale Bracci 2, 53100 Siena, Italy
| | - Francesca Mari
- Medical Genetics, University of Siena, Viale Bracci 2, 53100 Siena, Italy
| | - M Chiara Manzini
- Child Health Institute of New Jersey and Department of Neuroscience and Cell Biology, Rutgers - Robert Wood Johnson Medical School, 89 French Street, New Brunswick, NJ 08901, United States
| |
Collapse
|
3
|
Yi S, Tang X, Zhang Q, Liang Y, Huang J, Zhang S, Huang L, Yi S, Huang M, Qin Z, Luo J. A nonsense CC2D1A variant is associated with congenital anomalies, motor delay, hypotonia, and slight deformities. Heliyon 2024; 10:e27946. [PMID: 38496842 PMCID: PMC10944275 DOI: 10.1016/j.heliyon.2024.e27946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024] Open
Abstract
Background Autosomal recessive intellectual developmental disorder-3 is caused by homozygous or compound heterozygous mutations in the CC2D1A gene. The disorder is characterized by intellectual disability (ID) and autism spectrum disorder (ASD). To date, 39 patients from 17 families with CC2D1A -related disorders have been reported worldwide, in whom only six pathogenic or likely pathogenic loss-of-function variants and three variants of uncertain significance (VUS) in the CC2D1A gene have been identified in these patients. Methods We described a patient with ID from a non-consanguineous Chinese family and whole-exome sequencing (WES) was used to identify the causative gene. Results The patient presented with severe ID and ASD, speech impairment, motor delay, hypotonia, slight facial anomalies, and finger deformities. Threatened abortion and abnormal fetal movements occurred during pregnancy with the proband but not his older healthy sister. WES analysis identified a homozygous nonsense variant, c.736C > T (p.Gln246Ter), in the CC2D1A gene. In addition, six novel likely pathogenic CC2D1A variants were identified by a retrospective review of the in-house database. Conclusions This study expands the genetic and clinical spectra of CC2D1A-associated disorders, and may aid in increasing awareness of this rare condition. Our findings have provided new insights into the clinical heterogeneity of the disease and further phenotype-genotype correlation, which could help to offer scope for more accurate genetic testing and counseling to affected families.
Collapse
Affiliation(s)
- Sheng Yi
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xianglian Tang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qiang Zhang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yu Liang
- Department of Pathology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jing Huang
- Department of Obstetrics, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shujie Zhang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Limei Huang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shang Yi
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Minpan Huang
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zailong Qin
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingsi Luo
- Genetic and Metabolic Central Laboratory, Guangxi Birth Defects Research and Prevention Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Clinical Research Center for Pediatric Diseases, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Guangxi Key Laboratory of Precision Medicine for Genetic Diseases, Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Guangxi Key Laboratory of Birth Defects Research and Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
4
|
Sener EF, Dana H, Tahtasakal R, Hamurcu Z, Taheri S, Delibasi N, Mehmetbeyoglu E, Sukranli ZY, Dal F, Tufan E, Oflamaz AO, Doganyigit Z, Ozkul Y, Rassoulzadegan M. Heterozygous Cc2d1a mice show sex-dependent changes in the Beclin-1/p62 ratio with impaired prefrontal cortex and hippocampal autophagy. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110764. [PMID: 37059290 DOI: 10.1016/j.pnpbp.2023.110764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/20/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Autism Spectrum Disorders (ASD) are a group of neurodevelopmental disorders characterized by repetitive behaviors, lack of social interaction and communication. CC2D1A is identified in patients as an autism risk gene. Recently, we suggested that heterozygous Cc2d1a mice exhibit impaired autophagy in the hippocampus. We now report the analysis of autophagy markers (Lc3, Beclin and p62) in different regions hippocampus, prefrontal cortex, hypothalamus and cerebellum, with an overall decrease in autophagy and changes in Beclin-1/p62 ratio in the hippocampus. We observed sex-dependent variations in transcripts and protein expression levels. Moreover, our analyses suggest that alterations in autophagy initiated in Cc2d1a heterozygous parents are variably transmitted to offspring, even when the offspring's genotype is wild type. Aberration in the autophagy mechanism may indirectly contribute to induce synapse alteration in the ASD brain.
Collapse
Affiliation(s)
- Elif Funda Sener
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center, Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey.
| | - Halime Dana
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center, Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey
| | - Reyhan Tahtasakal
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey
| | - Zuhal Hamurcu
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center, Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey
| | - Serpil Taheri
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center, Kayseri, Turkey
| | - Nesrin Delibasi
- Cappodoccia University, Cappadocia Vocational School Medical Laboratory Techniques Programme, Nevsehir, Turkey; Cardiff University, School of Medicine Department of Hematology, Division of Cancer and Genetics, Cardiff, UK.
| | - Ecmel Mehmetbeyoglu
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey.
| | - Zeynep Yilmaz Sukranli
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey
| | - Fatma Dal
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey
| | - Esra Tufan
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey
| | - Asli Okan Oflamaz
- Bozok University, Medical Faculty Department of Histology and Embryology, 66100 Yozgat, Turkey
| | - Zuleyha Doganyigit
- Bozok University, Medical Faculty Department of Histology and Embryology, 66100 Yozgat, Turkey
| | - Yusuf Ozkul
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Erciyes University, Medical Faculty Department of Medical Genetics, Kayseri, Turkey; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey.
| | - Minoo Rassoulzadegan
- Erciyes University, Medical Faculty Department of Medical Biology, 38039 Kayseri, Turkey; Université Cote d'Azur (UCA), INSERM-CNRS, IRCAN, 06107 Nice, France; Erciyes University, Genome and Stem Cell Center (GENKOK), 38039 Kayseri, Turkey.
| |
Collapse
|
5
|
Rasool IG, Zahoor MY, Ahmed I, Iqbal M, Shafqat S, Anjum AA, Shehzad W. Description of novel variants in consanguineous Pakistani families affected with intellectual disability. Genes Genomics 2023; 45:457-465. [PMID: 35150401 DOI: 10.1007/s13258-022-01219-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 01/16/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Intellectual disability (ID) is a neurodevelopmental condition, affecting 1-3% of the population. Genetic factors play a key role causing the limitation in intellectual functioning and adaptive behavior. The heterogeneity of ID makes it more difficult for genetic and clinical diagnosis. Mapping of variants through next generation DNA sequencing in consanguineous families would help to understand the molecular parthenogenesis of ID. OBJECTIVE The aim of this study was to describe the genetic variants of ID in consanguineous Pakistani families. METHODS We analyzed four unrelated consanguineous Pakistani families having an intellectual disability through whole exome sequencing (WES). Data was analyzed using different bioinformatics tools and software. RESULTS We mapped four novel variants in different ID genes. Each variant is found in different family, co-segregating with a recessive pattern of inheritance. The variants found are; c.1437delG:p.Asn480Thrfs*10, mapped in FKRP, c.2041 C>A:p.Leu681Met in HIRA, c.382 C>T:p.Arg128Cys in BDH1 and c.267+1G>A:p.? identified in TRAPPC6B. CONCLUSIONS These variants help in demonstration of status and molecular basis of intellectual disability in Pakistani population leading to provision of genetic counseling services and a contribution in disease variant database.
Collapse
Affiliation(s)
- Iqra Ghulam Rasool
- Molecular Biology and Biotechnology Section, Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Yasir Zahoor
- Molecular Biology and Biotechnology Section, Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan.
| | - Irfan Ahmed
- Molecular Biology and Biotechnology Section, Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Iqbal
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Shehla Shafqat
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Aftab Ahmad Anjum
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Wasim Shehzad
- Molecular Biology and Biotechnology Section, Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| |
Collapse
|
6
|
Sener EF, Dana H, Tahtasakal R, Hamurcu Z, Guler A, Tufan E, Doganyigit Z, Rassoulzadegan M. Partial changes in apoptotic pathways in hippocampus and hypothalamus of Cc2d1a heterozygous. Metab Brain Dis 2023; 38:531-541. [PMID: 36454503 DOI: 10.1007/s11011-022-01125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022]
Abstract
Alterations in the apoptosis pathway have been linked to changes in serotonin levels seen in autistic patients. Cc2d1a is a repressor of the HTR1A gene involved in the serotonin pathway. The hippocampus and hypothalamus of Cc2d1a ± mice were analyzed for the expression of apoptosis markers (caspase 3, 8 and 9). Gender differences were observed in the expression levels of the three caspases consistent with some altered activity in the open-field assay. The number of apoptotic cells was significantly increased. We concluded that apoptotic pathways are only partially affected in the pathogenesis of the Cc2d1a heterozygous mouse model. A) Apoptosis is suppressed because the cell does not receive a death signal, or the receptor cannot activate the caspase 8 pathway despite the death signal. B) Since Caspase 8 and Caspase 3 expression is downregulated in our mouse model, the mechanism of apoptosis is not activated.
Collapse
Affiliation(s)
- Elif Funda Sener
- Department of Medical Biology, Erciyes University Medical Faculty, 38039, Kayseri, Turkey.
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey.
| | - Halime Dana
- Department of Medical Biology, Erciyes University Medical Faculty, 38039, Kayseri, Turkey
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Reyhan Tahtasakal
- Department of Medical Biology, Erciyes University Medical Faculty, 38039, Kayseri, Turkey
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Zuhal Hamurcu
- Department of Medical Biology, Erciyes University Medical Faculty, 38039, Kayseri, Turkey
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Ahsen Guler
- Department of Medical Biology, Erciyes University Medical Faculty, 38039, Kayseri, Turkey
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Esra Tufan
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
| | - Zuleyha Doganyigit
- Department of Histology and Embryology, Bozok University Medical Faculty, 66100, Yozgat, Turkey
| | - Minoo Rassoulzadegan
- Erciyes University Genome and Stem Cell Center (GENKOK), Kayseri, Turkey
- INSERM-CNRS, IRCAN, Universite Cote d'Azur (UCA), 06107, Nice, France
| |
Collapse
|
7
|
Muacevic A, Adler JR, Verma R, Shah SD, Vattikuti B, Khan AZ, Shahzadi A, Abdi P, Anthony M, Farkouh CS, Farkouh M, Santiago N, Zepeda D, Nunez A. Non-syndromic Intellectual Disability: An Experimental In-Depth Exploration of Inheritance Pattern, Phenotypic Presentation, and Genomic Composition. Cureus 2023; 15:e34085. [PMID: 36843831 PMCID: PMC9946902 DOI: 10.7759/cureus.34085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 01/25/2023] Open
Abstract
Background Intellectual disability (ID), also termed mental retardation (MR), is a neurodevelopmental disorder characterized by an intelligence quotient (IQ) of 70 or below and a deficit in at least two behaviors associated with adaptive functioning. The condition is further classified into syndromic intellectual disability (S-ID) and non-syndromic intellectual disability (NS-ID). This study highlights the genes associated with NS-ID. Objectives A genetic study was performed on two Pakistani families to know the inheritance patterns, clinical phenotypes, and molecular genetics of affected individuals with NS-ID. Methodology Samples were collected from two families: families A and B. All affected individuals in both families were diagnosed by a neurologist. Written informed consent was taken from the affected individuals and guardians before collecting the data and sample. Family A belongs to the Swabi District of Pakistan having four affected individuals, out of whom three were male and one was female. Family B also belongs to the Swabi District of Pakistan having two affected individuals, out of whom one was male and one was female. A total of 10 candidate genes were selected and were further screened by microarray analysis. Results In family A, this analysis identified a region of 9.6 Mb on chromosome 17q11.2-q12 between the single nucleotide polymorphisms (SNPs) rs953527 and rs2680398. The region was genotyped using microsatellite markers to confirm the haplotypes in all family members. Based on the phenotype-genotype relationship, 10 possible candidate genes were selected out of more than 140 genes in this critical region of 9.6 Mb. In family B, homozygosity mapping through microarray identified four homozygous areas of affected individuals: two (27,324,822-59,122,062 and 96,423,252123,656,241) on chromosome 8, one (14,785,224-19,722,760) on chromosome 9, and one (126173647-126215644) on chromosome 11. Conclusion An autosomal recessive pattern was found in the pedigrees of both families A and B. Phenotypically affected individuals showed IQ levels below 70. Three genes, CDK5R1, OMG, and EV12A, were found on chromosome 17q11.2-q12 region of affected individuals in family A with high expression in the frontal cortex of the brain, hippocampus, and spinal cord, respectively. Other regions on chromosomes 8, 9, and 11 as evident from the affected individuals in family B can also contribute to the non-syndromic autosomal recessive intellectual disability (NS-ARID). Further research is needed to find the association of these genes with intelligence and other neuropsychiatric conditions.
Collapse
|
8
|
Huang LX, Lu XG, Liu JX, Xu L, Shang N, Guo L, OuYang YC. Case report and a brief review: Analysis and challenges of prenatal imaging phenotypes and genotypes in Joubert syndrome. Front Genet 2022; 13:1038274. [PMID: 36468023 PMCID: PMC9715754 DOI: 10.3389/fgene.2022.1038274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/31/2022] [Indexed: 08/28/2024] Open
Abstract
Prenatal imaging phenotypes and genotypes were analyzed in 13 cases prenatally diagnosed with Joubert syndrome (JS), all of which underwent magnetic resonance imaging (MRI), ultrasound, and genetic testing. Prenatal MRI diagnosed 10 cases as JS with a typical molar tooth sign (MTS), while prenatal ultrasound diagnosed or suspiciously diagnosed 11 cases as JS with typical or mild MTS in 10 cases. Mutations in JS-related genes and other prenatal JS imaging phenotypes were identified in 10 cases, including OFD1 in two cases [cerebellar vermis (CV) absence, posterior fossa dilation, ventriculomegaly, polydactyly, malformations of cortical development (MCD), and persistent left superior vena cava], TMEM67 in two cases (CV absence, polydactyly, hyperechoic kidneys or polycystic kidneys, posterior fossa dilation, and ventriculomegaly), CC2D2A in two cases (CV absence, polydactyly, MCD, agenesis of the corpus callosum, encephalocele and hydrocephalus, ventriculomegaly, and posterior fossa dilation), RPGRIP1L in one case (CV absence), TCTN3 in one case (CV absence, polydactyly, MCD, and posterior fossa dilation), CEP290 in one case (CV absence and polycystic kidney), and NPHP1 in one case (CV absence). The prenatal diagnosis of JS presents a number of challenges, including the variants of unknown significance, the lack of functional assessment in prenatal imaging, unclear phenotype-genotype relationships in prenatal evaluation, and the incorrect identification of the JS hallmark, the MTS, in prenatal imaging, especially on ultrasound. Although combined MRI, ultrasound, and exome sequencing could help improve the prenatal diagnosis of JS, there still exist significant challenges.
Collapse
Affiliation(s)
- Ling-Xi Huang
- Department of Ultrasound, Guangdong Women and Children Hospital, Guangzhou, China
| | - Xian-Gui Lu
- Department of Physical Examination, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jiao-Xiang Liu
- Department of Ultrasound, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ling Xu
- Department of Ultrasound, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ning Shang
- Department of Ultrasound, Guangdong Women and Children Hospital, Guangzhou, China
| | - Li Guo
- Department of Medical Genetic, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yan-Chun OuYang
- Department of Ultrasound, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
9
|
Belokopytova II, Kondaurova EM, Kulikova EA, Ilchibaeva TV, Naumenko VS, Popova NK. Effects of the Cc2d1a/Freud-1 Knockdown in the Hippocampus of BTBR Mice on the Autistic-Like Behavior, Expression of Serotonin 5-HT 1A and D2 Dopamine Receptors, and CREB and NF-kB Intracellular Signaling. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1206-1218. [PMID: 36273889 DOI: 10.1134/s0006297922100145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/29/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
The mechanisms of autism are of extreme interest due to the high prevalence of this disorder in the human population. In this regard, special attention is given to the transcription factor Freud-1 (encoded by the Cc2d1a gene), which regulates numerous intracellular signaling pathways and acts as a silencer for 5-HT1A serotonin and D2 dopamine receptors. Disruption of the Freud-1 functions leads to the development of various psychopathologies. In this study, we found an increase in the expression of the Cc2d1a/Freud-1 gene in the hippocampus of BTBR mice (model of autistic-like behavior) in comparison with C57Bl/6J mice and examined how restoration of the Cc2d1a/Freud-1 expression in the hippocampus of BTBR mice affects their behavior, expression of 5-HT1A serotonin and D2 dopamine receptors, and CREB and NF-κB intracellular signaling pathways in these animals. Five weeks after administration of the adeno-associated viral vector (AAV) carrying the pAAV_H1-2_shRNA-Freud-1_Syn_EGFP plasmid encoding a small hairpin RNA (shRNA) that suppressed expression of the Cc2d1a/Freud-1 gene, we observed an elevation in the anxiety levels, as well as the increase in the escape latency and path length to the platform in the Morris water maze test, which was probably associated with a strengthening of the active stress avoidance strategy. However, the Cc2d1a/Freud-1 knockdown did not affect the spatial memory and phosphorylation of the CREB transcription factor, although such effect was found in C57Bl/6J mice in our previous study. These results suggest the impairments in the CREB-dependent effector pathway in BTBR mice, which may play an important role in the development of the autistic-like phenotype. The knockdown of Cc2d1a/Freud-1 in the hippocampus of BTBR mice did not affect expression of the 5-HT1A serotonin and D2 dopamine receptors and key NF-κB signaling genes (Nfkb1 and Rela). Our data suggest that the transcription factor Freud-1 plays a significant role in the pathogenesis of anxiety and active stress avoidance in autism.
Collapse
Affiliation(s)
- Irina I Belokopytova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Elena M Kondaurova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Elizabeth A Kulikova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Tatiana V Ilchibaeva
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Vladimir S Naumenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Nina K Popova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
10
|
Baeumers M, Schulz K, Klein T. Using Drosophila melanogaster to Analyse the Human Paralogs of the ESCRT-III Core Component Shrub/CHMP4/Snf7 and Its Interactions with Members of the LGD/CC2D1 Family. Int J Mol Sci 2022; 23:7507. [PMID: 35886850 PMCID: PMC9320689 DOI: 10.3390/ijms23147507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
The evolutionary conserved ESCRT-III complex is a device for membrane remodelling in various cellular processes, such as the formation of intraluminal vesicles (ILVs), cytokinesis, and membrane repair. The common theme of all these processes is the abscission of membrane away from the cytosol. At its heart in Drosophila is Shrub, CHMP4 in humans, which dynamically polymerises into filaments through electrostatic interactions among the protomers. For the full activity, Shrub/CHMP4 requires physical interaction with members of the Lgd protein family. This interaction is mediated by the odd-numbered DM14 domains of Lgd, which bind to the negative interaction surface of Shrub. While only one Lgd and one Shrub exist in the genome of Drosophila, mammals have two Lgd orthologs, LGD1/CC2D1B and LGD2/CC2D1A, as well as three CHMP4s in their genomes, CHMP4A, CHMP4B, and CHMP4C. The rationale for the diversification of the ESCRT components is not understood. We here use Drosophila as a model system to analyse the activity of the human orthologs of Shrub and Lgd at an organismal level. This enabled us to use the plethora of available techniques available for Drosophila. We present evidence that CHMP4B is the true ortholog of Shrub, while CHMP4A and CHMP4C have diverging activities. Nevertheless, CHMP4A and CHMP4C can enhance the activity of CHMP4B, raising the possibility that they can form heteropolymers in vivo. Our structure-function analysis of the LGD1 and LGD2 indicates that the C2 domain of the LGD proteins has a specific function beyond protein stability and subcellular localisation. Moreover, our data specify that CHMP4B interacts more efficiently with LGD1 than with LGD2.
Collapse
Affiliation(s)
- Miriam Baeumers
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany;
| | - Katharina Schulz
- Institut für Angewandte Bewegungswissenschaften, Professur für Sportmedizin/-Biologie, Technische Universität Chemnitz, Thüringer Weg 11, 09126 Chemnitz, Germany;
| | - Thomas Klein
- Institute of Genetics, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany;
| |
Collapse
|
11
|
Acheta J, Hong J, Jeanette H, Brar S, Yalamanchili A, Feltri ML, Manzini MC, Belin S, Poitelon Y. Cc2d1b Contributes to the Regulation of Developmental Myelination in the Central Nervous System. Front Mol Neurosci 2022; 15:881571. [PMID: 35592111 PMCID: PMC9113218 DOI: 10.3389/fnmol.2022.881571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundNumerous studies have indicated that myelination is the result of the interplay between extracellular signals and an intricate network of transcription factors. Yet, the identification and characterization of the full repertoire of transcription factors that modulate myelination are still incomplete. CC2D1B is a member of the Lgd/CC2D1 family of proteins highly expressed in myelinating cells in the central and peripheral nervous systems. In addition, the absence of CC2D1B limits myelin formation in vitro. Here we propose to delineate the function of CC2D1B in myelinating cells during developmental myelination in vivo in the central and peripheral nervous systems.MethodsWe used a Cc2d1b constitutive knockout mouse model and then performed morphological analyses on semithin sections of sciatic nerves and electron micrographs of optic nerves. We also performed immunohistological studies on coronal brain sections. All analyses were performed at 30 days of age.ResultsIn the peripheral nervous system, animals ablated for Cc2d1b did not show any myelin thickness difference compared to control animals. In the central nervous system, immunohistological studies did not show any difference in the number of oligodendrocytes or the level of myelin proteins in the cortex, corpus callosum, and striatum. However, optic nerves showed a hypomyelination (0.844 ± 0.022) compared to control animals (0.832 ± 0.016) of large diameter myelinated fibers.ConclusionsWe found that CC2D1B plays a role in developmental myelination in the central nervous system. These results suggest that CC2D1B could contribute to gene regulation during oligodendrocytes myelination in optic nerves.
Collapse
Affiliation(s)
- Jenica Acheta
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Jiayue Hong
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Haley Jeanette
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Simrandeep Brar
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Anish Yalamanchili
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - M. Laura Feltri
- Departments of Biochemistry and Neurology, Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, United States
| | - M. Chiara Manzini
- Department of Neuroscience and Cell Biology, Rutgers-Robert Wood Johnson Medical School, Child Health Institute of New Jersey, New Brunswick, NJ, United States
| | - Sophie Belin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
- *Correspondence: Sophie Belin ; Yannick Poitelon
| | - Yannick Poitelon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
- *Correspondence: Sophie Belin ; Yannick Poitelon
| |
Collapse
|
12
|
Yang CY, Hung YC, Cheng KH, Ling P, Hsu KS. Loss of CC2D1A in Glutamatergic Neurons Results in Autistic-Like Features in Mice. Neurotherapeutics 2021; 18:2021-2039. [PMID: 34132974 PMCID: PMC8608959 DOI: 10.1007/s13311-021-01072-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2021] [Indexed: 02/04/2023] Open
Abstract
Biallelic loss-of-function mutations in Coiled-coil and C2 domain containing 1A (CC2D1A) cause autosomal recessive intellectual disability, sometimes comorbid with other neurodevelopmental disabilities, such as autism spectrum disorder (ASD) and seizures. We recently reported that conditional deletion of Cc2d1a in glutamatergic neurons of the postnatal mouse forebrain leads to impaired hippocampal synaptic plasticity and cognitive function. However, the pathogenic origin of the autistic features of CC2D1A deficiency remains elusive. Here, we confirmed that CC2D1A is highly expressed in the cortical zones during embryonic development. Taking advantage of Cre-LoxP-mediated gene deletion strategy, we generated a novel line of Cc2d1a conditional knockout (cKO) mice by crossing floxed Cc2d1a mice with Emx1-Cre mice, in which CC2D1A is ablated specifically in glutamatergic neurons throughout all embryonic and adult stages. We found that CC2D1A deletion leads to a trend toward decreased number of cortical progenitor cells at embryonic day 12.5 and alters the cortical thickness on postnatal day 10. In addition, male Cc2d1a cKO mice display autistic-like phenotypes including self-injurious repetitive grooming and aberrant social interactions. Loss of CC2D1A also results in decreased complexity of apical dendritic arbors of medial prefrontal cortex (mPFC) layer V pyramidal neurons and increased synaptic excitation/inhibition (E/I) ratio in the mPFC. Notably, chronic treatment with minocycline rescues behavioral and morphological abnormalities, as well as E/I changes, in male Cc2d1a cKO mice. Together, these findings indicate that male Cc2d1a cKO mice recapitulate autistic-like phenotypes of human disorder and suggest that minocycline has both structural and functional benefits in treating ASD.
Collapse
Affiliation(s)
- Cheng-Yi Yang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yu-Chieh Hung
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Kuan-Hsiang Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Pin Ling
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Kuei-Sen Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No. 1, University Rd., Tainan, 70101, Taiwan.
| |
Collapse
|
13
|
Tuncel G, Kaymakamzade B, Engindereli Y, Temel SG, Ergoren MC. A Homozygous Synonymous Variant Likely Cause of Severe Ciliopathy Phenotype. Genes (Basel) 2021; 12:genes12060945. [PMID: 34205586 PMCID: PMC8234327 DOI: 10.3390/genes12060945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/19/2022] Open
Abstract
Joubert syndrome (OMIM #213300) is a rare neurodevelopmental disease characterized by abnormal breathing patterns, intellectual impairment, ocular findings, renal cysts, and hepatic fibrosis. It is classified as a ciliopathy disease, where cilia function or structure in various organs are affected. Here, we report a 17-year-old male whose main clinical findings are oculomotor apraxia and truncal ataxia. Magnetic resonance imaging revealed the characteristic molar tooth sign of Joubert syndrome. He also has obsessive–compulsive disorder concomitantly, which is not a known feature of Joubert syndrome. Molecular genetic analysis revealed a homozygous c.2106G>A (p.(Thr702=)) variation in the Abelson helper integration 1 (AHI1) gene and another homozygous c.1739C>T (p.Thr580Ile) variation in the coiled-coil and C2 domain-containing protein 1A (CC2D1A) gene. Even though certain AHI1 variations were previously associated with Joubert syndrome (JS), c.2106G>A (p.(Thr702=)) was only reported in one patient in trans with another known pathogenic JS variant. The CC2D1A c.1739C>T (p.Thr580Ile) variation, on the other hand, has been reported to cause autosomal recessive nonsyndromic mental retardation, but there are conflicting interpretations about its pathogenicity. Overall, to our knowledge, this is the first patient representing a severe ciliopathy phenotype caused by a homozygous synonymous AHI1 variation. Further investigations should be performed to determine any involvement of the CC2D1A gene in ciliopathy phenotypes such as Joubert syndrome.
Collapse
Affiliation(s)
- Gulten Tuncel
- Rare Disease Research Group, DESAM Institue, Near East University, Nicosia 99138, Cyprus;
| | - Bahar Kaymakamzade
- Department of Neurology, Faculty of Medicine, Near East University, Nicosia 99138, Cyprus;
| | - Yeliz Engindereli
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Near East University, Nicosia 99138, Cyprus;
| | - Sehime G. Temel
- Department of Medical Genetics, Faculty of Medicine, Bursa Uludag University, Bursa 16059, Turkey;
- Department of Histology and Embryology, Faculty of Medicine, Bursa Uludag University, Bursa 16059, Turkey
- Department of Translational Medicine, Institute of Health Sciences, Bursa Uludag University, Bursa 16059, Turkey
| | - Mahmut Cerkez Ergoren
- Rare Disease Research Group, DESAM Institue, Near East University, Nicosia 99138, Cyprus;
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia 99138, Cyprus
- Correspondence:
| |
Collapse
|
14
|
Pond HL, Heller AT, Gural BM, McKissick OP, Wilkinson MK, Manzini MC. Digging behavior discrimination test to probe burrowing and exploratory digging in male and female mice. J Neurosci Res 2021; 99:2046-2058. [PMID: 34048600 DOI: 10.1002/jnr.24857] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/14/2021] [Accepted: 05/03/2021] [Indexed: 02/03/2023]
Abstract
Digging behavior is often used to test motor function and repetitive behaviors in mice. Different digging paradigms have been developed for behaviors related to anxiety and compulsion in mouse lines generated to recapitulate genetic mutations leading to psychiatric and neurological disorders. However, the interpretation of these tests has been confounded by the difficulty of determining the motivation behind digging in mice. Digging is a naturalistic mouse behavior that can be focused toward different goals, that is foraging for food, burrowing for shelter, burying objects, or even for recreation as has been shown for dogs, ferrets, and human children. However, the interpretation of results from current testing protocols assumes the motivation behind the behavior often concluding that increased digging is a repetitive or compulsive behavior. We asked whether providing a choice between different types of digging activities would increase sensitivity to assess digging motivation. Here, we present a test to distinguish between burrowing and exploratory digging in mice. We found that mice prefer burrowing when the option is available. When food restriction was used to promote a switch from burrowing to exploration, males readily switched from burrowing to digging outside, while females did not. In addition, when we tested a model of intellectual disability and autism spectrum disorder that had shown inconsistent results in the marble burying test, the Cc2d1a conditional knockout mouse, we found greatly reduced burrowing only in males. Our findings indicate that digging is a nuanced motivated behavior and suggest that male and female rodents may perform it differently.
Collapse
Affiliation(s)
- Heather L Pond
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Abigail T Heller
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Child Health Institute of New Jersey, New Brunswick, NJ, USA
| | - Brian M Gural
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Child Health Institute of New Jersey, New Brunswick, NJ, USA
| | - Olivia P McKissick
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Molly K Wilkinson
- Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - M Chiara Manzini
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Child Health Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
15
|
Rasool IG, Zahoor MY, Iqbal M, Anjum AA, Ashraf F, Abbas HQ, Baig HMA, Mahmood T, Shehzad W. Whole exome sequencing revealed novel variants in consanguineous Pakistani families with intellectual disability. Genes Genomics 2021; 43:503-512. [PMID: 33710595 DOI: 10.1007/s13258-021-01070-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/19/2021] [Indexed: 01/19/2023]
Abstract
BACKGROUND Intellectual disability (ID) is a heterogeneous disorder affecting 1-3% of the population. Elucidation of monogenic variants for ID is a current challenge. These variants can be better demonstrated in consanguineous affected families. OBJECTIVE The study was designed to find the genetic variants of ID in consanguineous families. METHODS We analyzed five unrelated consanguineous Pakistani families affected with ID using whole exome sequencing (WES). Data was analyzed using different bioinformatics tools and software. RESULTS We mapped four variants including three novels in four different ID known genes. Each variant is found in a different family, co-segregating with a recessive pattern of inheritance. The novel variants found are; c. 2_4del (p.?) mapped in ROS1 and c. 718G>A (p.Gly240Arg) in GRM1. Another novel causative variant, c.2673del (p.Gly892Aspfs*17) identified in COL18A1 in a recessive form, a gene reported for Knobloch syndrome that manifests ID along with typical retinal abnormalities, and this phenotype was confirmed on reverse phenotyping. A mutation c.2134C>T (p.Arg712*) in TRAPPC9 has been found first time in the homozygous recessive form in our enrolled three affected siblings while it was previously reported in compound heterozygous form in a Caucasian descent. While fifth family remained unsolved. CONCLUSION These mutations in four different genes with a recessive inheritance would be a contribution to the disease variant database of this devastating disorder.
Collapse
Affiliation(s)
- Iqra Ghulam Rasool
- Molecular Biology and Forensic Laboratory, Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Yasir Zahoor
- Molecular Biology and Forensic Laboratory, Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan.
| | - Muhammad Iqbal
- Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Aftab Ahmad Anjum
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Fatima Ashraf
- Molecular Biology and Forensic Laboratory, Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Hafiz Qamar Abbas
- Molecular Biology and Forensic Laboratory, Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | | | - Tariq Mahmood
- Department of Statistics and Computer Science, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Wasim Shehzad
- Molecular Biology and Forensic Laboratory, Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| |
Collapse
|
16
|
Krämer J, Beer M, Bode H, Winter B. Two Novel Compound Heterozygous Mutations in the TRAPPC9 Gene Reveal a Connection of Non-syndromic Intellectual Disability and Autism Spectrum Disorder. Front Genet 2021; 11:972. [PMID: 33719327 PMCID: PMC7947907 DOI: 10.3389/fgene.2020.00972] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/31/2020] [Indexed: 12/28/2022] Open
Abstract
Introduction Autism spectrum disorder (ASD) is characterized by deficits in communication, social interaction, and repetitive behavior. Up to 70% of ASD cases are linked with intellectual disability (ID). The major genetic causes for ASD and ID are largely unknown, however, a shared genetic etiology between ASD and ID must be assumed. The trafficking protein particle complex subunit 9 (TRAPPC9) is highly expressed in postmitotic neurons of the cerebral cortex, playing a key role in development. Among 43 reported cases with mutations in TRAPPC9, all (100%) showed ID and developmental delay. Among the cases including information about ASD, 26% were affected (19 cases with information, among them 5 with ASD). Nevertheless, in some cases not classified as ASD, descriptions of autistic features like hand-flapping movements were present. Clinical Findings The affected individual presented with delay of speech development. Physical development was normal. Besides lateral slope of the eye-lid axis no facial abnormalities were evident. The individual was diagnosed with ID and ASD by structured testing. Cerebral MRI revealed associated abnormalities. Genetical Findings The chromosome set was 46,XY without structural changes. Array-CGH showed a normal molecular karyotype (arr(1-22)x2,(X,Y)x1). PCR for the FMR1 gene showed 41 ± 1 CGG repeats, and therefore no evidence of fragile X syndrome. A panel diagnostic for syndromal ID (CASK, EP300, HIVEP2, KIF1A, TRAPPC9) revealed two structural changes in TRAPPC9 in the compound heterozygosity. The mutations c.1678C > T (p.Arg560Cys) and c.3370C > T (p.Pro1124Ser) are classified as missense mutations and are both not described in the literature. Conclusion We report two new missense mutations in the TRAPPC9 gene in one individual with ID and ASD. The TRAPPC9 gene should be part of the diagnostic assessment in ID. ASD must be considered as a feature of TRAPPC9-associated ID. It might have been neglected in the literature and should result in specific testing for ASD in affected individuals.
Collapse
Affiliation(s)
- Johannes Krämer
- Division of Pediatric Neurology and Inborn Errors of Metabolism, Children's Hospital, Ulm University, Ulm, Germany
| | - Meinrad Beer
- Department of Radiology, Ulm University, Ulm, Germany
| | - Harald Bode
- Division of Pediatric Neurology and Inborn Errors of Metabolism, Children's Hospital, Ulm University, Ulm, Germany
| | - Benedikt Winter
- Division of Pediatric Neurology and Inborn Errors of Metabolism, Children's Hospital, Ulm University, Ulm, Germany
| |
Collapse
|
17
|
Sener EF, Onal MG, Dal F, Nalbantoglu U, Ozkul Y, Canatan H, Oztop DB. Novel alterations of CC2D1A as a candidate gene in a Turkish sample of patients with autism spectrum disorder. Int J Neurosci 2020; 132:1072-1079. [PMID: 33287601 DOI: 10.1080/00207454.2020.1860968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder with large genetic background, but identification of pathogenic variants has proceeded slowly because hundreds of loci are involved in this complex disorder. CC2D1A gene firstly associated with the intellectual disability (ID) in a family with a large deletion. We aimed to contribute to the literature by sequencing this gene and by this way we report novel CC2D1A variations in patients with ASD. METHODS Forty families who have a child with a diagnosis of ASD were enrolled to the study. DNA samples were obtained from each family member. Bidirectional CC2D1A gene sequencing was performed with CEQ Cycle Sequencing Kit, and the products were analyzed on the Beckman CEQ 8000. All of the genetic analysis was conducted in Erciyes University Genome and Stem Cell Center (GENKOK). RESULTS According to the sequencing results, we defined new alterations in this gene with two SNPs in exon 15 and 19 (rs747172992 and rs1364074600) in our patients. We found a pathogenic variant in one patient. This variant was located in the acceptor region. Six of the variants were missense mutations. Additionally, six different benign variants were detected in 30 patients; however, they were not associated with ASD. Two patients carried multiple rare variants. CONCLUSION In vitro and in vivo functional analysis with this gene will help to understand its contribution to ASD pathogenesis. Future studies may help to elucidate the underlying biological mechanisms of these variants leading to the autism phenotype.
Collapse
Affiliation(s)
- Elif Funda Sener
- Medical Faculty Department of Medical Biology, Erciyes University, Kayseri, Turkey.,Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Muge Gulcihan Onal
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.,Erciyes University Halil Bayraktar Vocational School of Health College, Kayseri, Turkey
| | - Fatma Dal
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Ufuk Nalbantoglu
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.,Faculty of Engineering, Department of Computer Engineering, Erciyes University, Kayseri, Turkey
| | - Yusuf Ozkul
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.,Medical Faculty Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| | - Halit Canatan
- Medical Faculty Department of Medical Biology, Erciyes University, Kayseri, Turkey
| | - Didem Behice Oztop
- Faculty of Medicine, Department of Child Psychiatry, Ankara University, Ankara, Turkey
| |
Collapse
|
18
|
Ma ACH, Mak CCY, Yeung KS, Pei SLC, Ying D, Yu MHC, Hasan KMM, Chen X, Chow PC, Cheung YF, Chung BHY. Monoallelic Mutations in CC2D1A Suggest a Novel Role in Human Heterotaxy and Ciliary Dysfunction. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2020; 13:e003000. [PMID: 33196317 PMCID: PMC7748040 DOI: 10.1161/circgen.120.003000] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Human heterotaxy is a group of congenital disorders characterized by misplacement of one or more organs according to the left-right axis. The genetic causes of human heterotaxy are highly heterogeneous. METHODS We performed exome sequencing in a cohort of 26 probands with heterotaxy followed by gene burden analysis for the enrichment of novel rare damaging mutations. Transcription activator-like effector nuclease was used to generate somatic loss-of-function mutants in a zebrafish model. Ciliary defects were examined by whole-mount immunostaining of acetylated α-tubulin. RESULTS We identified a significant enrichment of novel rare damaging mutations in the CC2D1A gene. Seven occurrences of CC2D1A mutations were found to affect 4 highly conserved amino acid residues of the protein. Functional analyses in the transcription activator-like effector nuclease-mediated zebrafish knockout models were performed, and heterotaxy phenotypes of the cardiovascular and gastrointestinal systems in both somatic and germline mutants were observed. Defective cilia were demonstrated by whole-mount immunostaining of acetylated α-tubulin. These abnormalities were rescued by wild-type cc2d1a mRNA but not cc2d1a mutant mRNA, strongly suggesting a loss-of-function mechanism. On the other hand, overexpression of cc2d1a orthologous mutations cc2d1a P559L and cc2d1a G808V (orthologous to human CC2D1A P532L and CC2D1A G781V) did not affect embryonic development. CONCLUSIONS Using a zebrafish model, we were able to establish a novel association of CC2D1A with heterotaxy and ciliary dysfunction in the F2 generation via a loss-of-function mechanism. Future mechanistic studies are needed for a better understanding of the role of CC2D1A in left-right patterning and ciliary dysfunction.
Collapse
Affiliation(s)
- Alvin Chun Hang Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrate Region, China (A.C.H., K.M.M.H.)
| | - Christopher Chun Yu Mak
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Kong Kong, Hong Kong Special Administrate Region, China (C.C.Y.M., K.S.Y., S.L.C.P., D.Y., M.H.C.Y., P.C.C., Y.F.C., B.H.Y.C.)
| | - Kit San Yeung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Kong Kong, Hong Kong Special Administrate Region, China (C.C.Y.M., K.S.Y., S.L.C.P., D.Y., M.H.C.Y., P.C.C., Y.F.C., B.H.Y.C.)
| | - Steven Lim Cho Pei
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Kong Kong, Hong Kong Special Administrate Region, China (C.C.Y.M., K.S.Y., S.L.C.P., D.Y., M.H.C.Y., P.C.C., Y.F.C., B.H.Y.C.)
| | - Dingge Ying
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Kong Kong, Hong Kong Special Administrate Region, China (C.C.Y.M., K.S.Y., S.L.C.P., D.Y., M.H.C.Y., P.C.C., Y.F.C., B.H.Y.C.)
| | - Mullin Ho Chung Yu
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Kong Kong, Hong Kong Special Administrate Region, China (C.C.Y.M., K.S.Y., S.L.C.P., D.Y., M.H.C.Y., P.C.C., Y.F.C., B.H.Y.C.)
| | - Kazi Md Mahmudul Hasan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong Special Administrate Region, China (A.C.H., K.M.M.H.)
| | - Xiangke Chen
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China (X.C.)
| | - Pak Cheong Chow
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Kong Kong, Hong Kong Special Administrate Region, China (C.C.Y.M., K.S.Y., S.L.C.P., D.Y., M.H.C.Y., P.C.C., Y.F.C., B.H.Y.C.)
| | - Yiu Fai Cheung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Kong Kong, Hong Kong Special Administrate Region, China (C.C.Y.M., K.S.Y., S.L.C.P., D.Y., M.H.C.Y., P.C.C., Y.F.C., B.H.Y.C.)
| | - Brian Hon Yin Chung
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Kong Kong, Hong Kong Special Administrate Region, China (C.C.Y.M., K.S.Y., S.L.C.P., D.Y., M.H.C.Y., P.C.C., Y.F.C., B.H.Y.C.)
| |
Collapse
|
19
|
Unravelling of Hidden Secrets: The Tumour Suppressor Lethal (2) Giant Discs (Lgd)/CC2D1, Notch Signalling and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1287:31-46. [PMID: 33034024 DOI: 10.1007/978-3-030-55031-8_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The endosomal pathway plays a pivotal role upon signal transduction in the Notch pathway. Recent work on lethal (2) giant discs (lgd) points to an additional critical role in avoiding uncontrolled ligand-independent signalling during trafficking of the Notch receptor through the endosomal pathway to the lysosome for degradation. In this chapter, we will outline the journey of Notch through the endosomal system and present an overview of the current knowledge about Lgd and its mammalian orthologs Lgd1/CC2D1b and Lgd2/CC2D1a. We will then discuss how Notch is activated in the absence of lgd function in Drosophila and ask whether there is evidence that a similar ligand-independent activation of the Notch pathway can also happen in mammals if the orthologs are inactivated.
Collapse
|
20
|
Exome sequencing revealed a novel homozygous METTL23 gene mutation leading to familial mild intellectual disability with dysmorphic features. Eur J Med Genet 2020; 63:103951. [PMID: 32439618 DOI: 10.1016/j.ejmg.2020.103951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/06/2020] [Accepted: 05/09/2020] [Indexed: 11/21/2022]
Abstract
BACKGROUND Genetic factors represent a considerable part of the etiologies of intellectual disability; however, the identification of causal genetic anomaly has long been complicated by the great clinical and genetic heterogeneity of this type of disease. With advances in next-generation sequencing technologies and functional studies, the identification of genes involved in intellectual development has led to more accurate diagnostics and better understanding of the underlying biological pathways. CASE REPORT We report on the case of two Moroccan siblings presenting mild intellectual disability with minimal dysmorphic features in which whole exome sequencing analysis revealed homozygous mutation in the METTL23 gene. Mutations in this gene have been reported to cause autosomal recessive mild intellectual disability but the association with dysmorphic features remains controversial. CONCLUSION Hereby, we highlight the similarity of the dysmorphic traits and the characteristic facial features in patients with METTL23-related intellectual disability, suggesting the consideration of a distinct clinical entity associating mild intellectual deficiency with specific facial dysmorphy for an efficient diagnosis orientation and a better phenotype-genotype correlation in intellectual disability disorders.
Collapse
|
21
|
Ilyas M, Mir A, Efthymiou S, Houlden H. The genetics of intellectual disability: advancing technology and gene editing. F1000Res 2020; 9. [PMID: 31984132 PMCID: PMC6966773 DOI: 10.12688/f1000research.16315.1] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/10/2020] [Indexed: 12/22/2022] Open
Abstract
Intellectual disability (ID) is a neurodevelopmental condition affecting 1–3% of the world’s population. Genetic factors play a key role causing the congenital limitations in intellectual functioning and adaptive behavior. The heterogeneity of ID makes it more challenging for genetic and clinical diagnosis, but the advent of large-scale genome sequencing projects in a trio approach has proven very effective. However, many variants are still difficult to interpret. A combined approach of next-generation sequencing and functional, electrophysiological, and bioinformatics analysis has identified new ways to understand the causes of ID and help to interpret novel ID-causing genes. This approach offers new targets for ID therapy and increases the efficiency of ID diagnosis. The most recent functional advancements and new gene editing techniques involving the use of CRISPR–Cas9 allow for targeted editing of DNA in
in vitro and more effective mammalian and human tissue-derived disease models. The expansion of genomic analysis of ID patients in diverse and ancient populations can reveal rare novel disease-causing genes.
Collapse
Affiliation(s)
- Muhammad Ilyas
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan.,Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Asif Mir
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, 44000, Pakistan
| | - Stephanie Efthymiou
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
22
|
Mossa A, Manzini MC. Molecular causes of sex-specific deficits in rodent models of neurodevelopmental disorders. J Neurosci Res 2019; 99:37-56. [PMID: 31872500 PMCID: PMC7754327 DOI: 10.1002/jnr.24577] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/02/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022]
Abstract
Neurodevelopmental disorders (NDDs) such as intellectual disability and autism spectrum disorder consistently show a male bias in prevalence, but it remains unclear why males and females are affected with different frequency. While many behavioral studies of transgenic NDD models have focused only on males, the requirement by the National Institutes of Health to consider sex as a biological variable has promoted the comparison of male and female performance in wild-type and mutant animals. Here, we review examples of rodent models of NDDs in which sex-specific deficits were identified in molecular, physiological, and/or behavioral responses, showing sex differences in susceptibility to disruption of genes mutated in NDDs. Haploinsufficiency in genes involved in mechanisms such as synaptic function (GABRB3 and NRXN1), chromatin remodeling (CHD8, EMHT1, and ADNP), and intracellular signaling (CC2D1A and ERK1) lead to more severe behavioral outcomes in males. However, in the absence of behavioral deficits, females can still present with cellular and electrophysiological changes that could be due to compensatory mechanisms or differential allocation of molecular and cellular functions in the two sexes. By contrasting these findings with mouse models where females are more severely affected (MTHFR and AMBRA1), we propose a framework to approach the study of sex-specific deficits possibly leading to sex bias in NDDs.
Collapse
Affiliation(s)
- Adele Mossa
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - M Chiara Manzini
- Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.,Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
23
|
Dana H, Bayramov KK, Delibaşı N, Tahtasakal R, Bayramov R, Hamurcu Z, Sener EF. Disregulation of Autophagy in the Transgenerational Cc2d1a Mouse Model of Autism. Neuromolecular Med 2019; 22:239-249. [PMID: 31721010 DOI: 10.1007/s12017-019-08579-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 10/25/2019] [Indexed: 01/29/2023]
Abstract
Autism spectrum disorder (ASD) is a heterogeneously childhood neurodevelopmental disorder, believed to be under development of various genetic and environmental factors. Autophagy and related pathways have also been implicated in the etiology of ASD. We aimed to investigate autophagic markers by generating the transgenerational inheritance of ASD-like behaviors in the Cc2d1a animal model of ASD. Cc2d1a (+/-) mouse model of ASD was built in two different groups by following three generations. After behavior test, bilateral hippocampus was sliced. Western Blot assay and quantitative real-time polymerase chain reaction (QRT-PCR) were used for measurement of LC3 and Beclin-1 as key regulators of autophagy. All of the animal and laboratory studies were conducted in the Erciyes University Genome and Stem Cell Center (GENKOK). Significant LC3 and Beclin-1 mRNA expression levels were observed in mouse hippocampus between groups and generations. Western blot confirmed the changes of the proteins in the hippocampus. LC3 expressions were increased for females and decreased for males compared to the control group. Beclin-1 expression levels were found to be significantly decreased in males and females compared to controls. This study could help explain a new pathway of autophagy in ASD mouse models. Future animal studies need to investigate sex differences in mouse modeling autism-relevant genes like CC2D1A. We anticipate our results to be a starting point for more comprehensive autophagy studies in this mouse model of ASD.
Collapse
Affiliation(s)
- Halime Dana
- Department of Medical Biology, Medical Faculty, Erciyes University, 38039, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, 38039, Kayseri, Turkey
| | | | - Nesrin Delibaşı
- Department of Medical Biology, Medical Faculty, Erciyes University, 38039, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, 38039, Kayseri, Turkey
| | - Reyhan Tahtasakal
- Department of Medical Biology, Medical Faculty, Erciyes University, 38039, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, 38039, Kayseri, Turkey
| | - Ruslan Bayramov
- Department of Medical Genetics, Haseki Education Research Hospital, Istanbul, Turkey
| | - Zuhal Hamurcu
- Department of Medical Biology, Medical Faculty, Erciyes University, 38039, Kayseri, Turkey
- Genome and Stem Cell Center (GENKOK), Erciyes University, 38039, Kayseri, Turkey
| | - Elif Funda Sener
- Department of Medical Biology, Medical Faculty, Erciyes University, 38039, Kayseri, Turkey.
- Genome and Stem Cell Center (GENKOK), Erciyes University, 38039, Kayseri, Turkey.
| |
Collapse
|
24
|
Kumar S, Oien DB, Khurana A, Cliby W, Hartmann L, Chien J, Shridhar V. Coiled-Coil and C2 Domain-Containing Protein 1A (CC2D1A) Promotes Chemotherapy Resistance in Ovarian Cancer. Front Oncol 2019; 9:986. [PMID: 31632917 PMCID: PMC6779793 DOI: 10.3389/fonc.2019.00986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
Recurrence within 6 months of the last round of chemotherapy is clinically defined as platinum-resistant ovarian cancer. Gene expression associated with early recurrence may provide insights into platinum resistant recurrence. Prior studies identified a 14-gene model that accurately predicted early or late recurrence in 86% of patients. One of the genes identified was CC2D1A (encoding coiled-coil and C2 domain containing 1A), which showed higher expression in tumors from patients with early recurrence. Here, we show that CC2D1A protein expression was higher in cisplatin-resistant ovarian cancer cell lines compared to cisplatin-sensitive cell lines. In addition, immunohistochemical analysis of patient tumors on a tissue microarray (n = 146) showed that high levels of CC2D1A were associated with a significantly worse overall and progression-free survival (p = 0.0002 and p = 0.006, respectively). To understand the contribution of CC2D1A in chemoresistance, we generated shRNA-mediated knockdown of CC2D1A in SKOV3ip and PEO4 cell lines. Cell death and clonogenic assays of these isogenic clonal lines clearly showed that downregulation of CC2D1A resulted in increased sensitivity to cisplatin and paclitaxel in ovarian cancer cells. Moreover, nude mice bearing SKOV3ip xenografts with stably downregulated CC2D1A were more sensitive to chemotherapy as evidenced by a significantly longer survival time compared to xenografts derived from cells stably transduced with non-targeting shRNA. These results suggest CC2D1A promotes chemotherapy resistance in ovarian cancer.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, United States
| | - Derek B Oien
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ashwani Khurana
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| | - William Cliby
- Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN, United States
| | - Lynn Hartmann
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, United States
| | - Jeremy Chien
- Department of Biochemistry and Molecular Medicine, University of California Davis Health, Sacramento, CA, United States
| | - Viji Shridhar
- Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
25
|
Bellucco FT, de Mello CB, Meloni VA, Melaragno MI. Malan syndrome in a patient with 19p13.2p13.12 deletion encompassing NFIX and CACNA1A genes: Case report and review of the literature. Mol Genet Genomic Med 2019; 7:e997. [PMID: 31574590 PMCID: PMC6900369 DOI: 10.1002/mgg3.997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/16/2019] [Indexed: 11/16/2022] Open
Abstract
Background Malan syndrome is a recently introduced overgrowth disorder described in a limited number of individuals. Haploinsufficiency and also point mutations of NFIX gene have been proposed as its leading causative mechanism, however, due to the limited number of cases and different deletion sizes, genotype/phenotype correlations are still limited. Methods Here, we report the first Brazilian case of Malan syndrome caused by a 990 kb deletion in 19p13.2p13.12, focusing on clinical and behavioral aspects of the syndrome. Results The patient presented with macrocephaly, facial dysmorphisms, hypotonia, developmental delay, moderate thoracolumbar scoliosis, and seizures. The intellectual and behavioral assessments showed severe cognitive, language, and adaptive functions impairments. The 19p deleted region of our patient encompasses NFIX, CACNA1A, which seems to be related to a higher frequency of seizures among individuals with microdeletions in 19p13.2, and 15 other coding genes, including CC2D1A and NACC1, both known to be involved in neurobiological process and pathways. Conclusion Deletions involving NFIX gene should be considered in patients with overgrowth during childhood, macrocephaly, developmental delay, and seizures, as well as severe intellectual disability.
Collapse
Affiliation(s)
- Fernanda T Bellucco
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Claudia B de Mello
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Vera A Meloni
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria Isabel Melaragno
- Department of Morphology and Genetics, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Kim MJ, Min Y, Shim JH, Chun E, Lee KY. CRBN Is a Negative Regulator of Bactericidal Activity and Autophagy Activation Through Inhibiting the Ubiquitination of ECSIT and BECN1. Front Immunol 2019; 10:2203. [PMID: 31620128 PMCID: PMC6759600 DOI: 10.3389/fimmu.2019.02203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/30/2019] [Indexed: 12/31/2022] Open
Abstract
Cereblon (CRBN) as a multifunctional protein has been extensively studied. Here, we show that CRBN is a negative regulator of bactericidal activity and autophagy activation. Mitochondrial localization of CRBN was significantly increased in response to Toll-like receptor 4 (TLR4) stimulation. CRBN interrupted the association of evolutionarily conserved signaling intermediate in Toll pathways (ECSIT)-TNF-receptor associated factor 6 (TRAF6) complex, thereby inhibiting the ubiquitination of ECSIT, which plays a pivotal role for the production of mitochondrial reactive oxygen species (mROS). Subsequently, mROS levels were markedly elevated in CRBN-knockdown (CRBNKD) THP-1 cells, and that led to resistance against S. typhimurium infection, indicating CRBN is a negative regulator of bactericidal activity through the regulation of mROS. Additionally, CRBN inhibited TRAF6-induced ubiquitination of BECN1 (Beclin 1), and that induced autophagy activation in CRBNKD THP-1, CRBN-knockout (CRBNKO) H1299, and CRBNKO MCF7 cancer cells in response to TLR4 stimulation. Notably, we found that the ability of cancer migration and invasion was significantly enhanced in CRBNKO H1299 and CRBNKO MCF7 cancer cells, as compared with those of control cancer cells. Collectively, these results suggest that CRBN is a negative regulator of bactericidal activity and autophagy activation through inhibiting the TRAF6-induced ubiquitination of ECSIT and BECN1, respectively.
Collapse
Affiliation(s)
- Mi-Jeong Kim
- Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Yoon Min
- Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Jae-Hyuck Shim
- Division of Rheumatology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Eunyoung Chun
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, United States.,Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Ki-Young Lee
- Department of Molecular Cell Biology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, South Korea.,Department of Health Sciences and Technology, Samsung Medical Center, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
27
|
Sophie B, Jacob H, Jordan VJS, Yungki P, Laura FM, Yannick P. YAP and TAZ Regulate Cc2d1b and Purβ in Schwann Cells. Front Mol Neurosci 2019; 12:177. [PMID: 31379499 PMCID: PMC6650784 DOI: 10.3389/fnmol.2019.00177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/04/2019] [Indexed: 12/31/2022] Open
Abstract
Schwann cells (SCs) are exquisitely sensitive to the elasticity of their environment and their differentiation and capacity to myelinate depend on the transduction of mechanical stimuli by YAP and TAZ. YAP/TAZ, in concert with other transcription factors, regulate several pathways including lipid and sterol biosynthesis as well as extracellular matrix receptor expressions such as integrins and G-proteins. Yet, the characterization of the signaling downstream YAP/TAZ in SCs is incomplete. Myelin sheath production by SC coincides with rapid up-regulation of numerous transcription factors. Here, we show that ablation of YAP/TAZ alters the expression of transcription regulators known to regulate SC myelin gene transcription and differentiation. Furthermore, we link YAP/TAZ to two DNA binding proteins, Cc2d1b and Purβ, which have no described roles in myelinating glial cells. We demonstrate that silencing of either Cc2d1b or Purβ limits the formation of myelin segments. These data provide a deeper insight into the myelin gene transcriptional network and the role of YAP/TAZ in myelinating glial cells.
Collapse
Affiliation(s)
- Belin Sophie
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Herron Jacob
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - VerPlank J S Jordan
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
| | - Park Yungki
- Department of Biochemistry, Hunter James Kelly Research Institute, University at Buffalo, Buffalo, NY, United States
| | - Feltri M Laura
- Department of Biochemistry, Hunter James Kelly Research Institute, University at Buffalo, Buffalo, NY, United States.,Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Poitelon Yannick
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| |
Collapse
|
28
|
Hu H, Kahrizi K, Musante L, Fattahi Z, Herwig R, Hosseini M, Oppitz C, Abedini SS, Suckow V, Larti F, Beheshtian M, Lipkowitz B, Akhtarkhavari T, Mehvari S, Otto S, Mohseni M, Arzhangi S, Jamali P, Mojahedi F, Taghdiri M, Papari E, Soltani Banavandi MJ, Akbari S, Tonekaboni SH, Dehghani H, Ebrahimpour MR, Bader I, Davarnia B, Cohen M, Khodaei H, Albrecht B, Azimi S, Zirn B, Bastami M, Wieczorek D, Bahrami G, Keleman K, Vahid LN, Tzschach A, Gärtner J, Gillessen-Kaesbach G, Varaghchi JR, Timmermann B, Pourfatemi F, Jankhah A, Chen W, Nikuei P, Kalscheuer VM, Oladnabi M, Wienker TF, Ropers HH, Najmabadi H. Genetics of intellectual disability in consanguineous families. Mol Psychiatry 2019; 24:1027-1039. [PMID: 29302074 DOI: 10.1038/s41380-017-0012-2] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 10/19/2017] [Accepted: 10/30/2017] [Indexed: 01/17/2023]
Abstract
Autosomal recessive (AR) gene defects are the leading genetic cause of intellectual disability (ID) in countries with frequent parental consanguinity, which account for about 1/7th of the world population. Yet, compared to autosomal dominant de novo mutations, which are the predominant cause of ID in Western countries, the identification of AR-ID genes has lagged behind. Here, we report on whole exome and whole genome sequencing in 404 consanguineous predominantly Iranian families with two or more affected offspring. In 219 of these, we found likely causative variants, involving 77 known and 77 novel AR-ID (candidate) genes, 21 X-linked genes, as well as 9 genes previously implicated in diseases other than ID. This study, the largest of its kind published to date, illustrates that high-throughput DNA sequencing in consanguineous families is a superior strategy for elucidating the thousands of hitherto unknown gene defects underlying AR-ID, and it sheds light on their prevalence.
Collapse
Affiliation(s)
- Hao Hu
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany.,Guangzhou Women and Children's Medical Center, 510623, Guangzhou, China
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Luciana Musante
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Zohreh Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Ralf Herwig
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Masoumeh Hosseini
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Cornelia Oppitz
- IMP-Research Institute of Molecular Pathology, 1030, Vienna, Austria
| | - Seyedeh Sedigheh Abedini
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Vanessa Suckow
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Farzaneh Larti
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | | | - Tara Akhtarkhavari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Sepideh Mehvari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Sabine Otto
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Marzieh Mohseni
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Payman Jamali
- Shahrood Genetic Counseling Center, Welfare Office, Semnan, 36156, Iran
| | - Faezeh Mojahedi
- Mashhad Medical Genetic Counseling Center, Mashhad, 91767, Iran
| | - Maryam Taghdiri
- Shiraz Genetic Counseling Center, Welfare Office, Shiraz, Iran
| | - Elaheh Papari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | | | - Saeide Akbari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Seyed Hassan Tonekaboni
- Pediatric Neurology Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, 15468, Iran
| | - Hossein Dehghani
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Mohammad Reza Ebrahimpour
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Ingrid Bader
- Kinderzentrum München, Technische Universität München, 81377, München, Germany
| | - Behzad Davarnia
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Monika Cohen
- Children's Center Munich, 81377, Munich, Germany
| | - Hossein Khodaei
- Meybod Genetics Research Center, Welfare Organization, Yazd, 89651, Iran
| | - Beate Albrecht
- Institute of Human Genetics, University Hospital Essen, 45122, Essen, Germany
| | - Sarah Azimi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Birgit Zirn
- Genetikum Counseling Center, 70173, Stuttgart, Germany
| | - Milad Bastami
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Dagmar Wieczorek
- Institute of Human Genetics and Anthropology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Gholamreza Bahrami
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Krystyna Keleman
- IMP-Research Institute of Molecular Pathology, 1030, Vienna, Austria.,Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, 20147, USA
| | - Leila Nouri Vahid
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Andreas Tzschach
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany.,Institute of Clinical Genetics, Technische Universität Dresden, Dresden, Germany
| | - Jutta Gärtner
- University Medical Center, Georg August University Göttingen, 37075, Göttingen, Germany
| | | | | | - Bernd Timmermann
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | | | - Aria Jankhah
- Shiraz Genetic Counseling Center, Shiraz, 71346, Iran
| | - Wei Chen
- Berlin Institute for Medical Systems Biology, Max Delbrueck Center for Molecular Medicine, 13125, Berlin, Germany
| | - Pooneh Nikuei
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Morteza Oladnabi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran
| | - Thomas F Wienker
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany
| | - Hans-Hilger Ropers
- Max-Planck-Institute for Molecular Genetics, 14195, Berlin, Germany. .,Institute of Human Genetics, University Medicine, Mainz, Germany.
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 19857, Iran. .,Kariminejad - Najmabadi Pathology & Genetics Centre, Tehran, 14667-13713, Iran.
| |
Collapse
|
29
|
Zamarbide M, Mossa A, Muñoz-Llancao P, Wilkinson MK, Pond HL, Oaks AW, Manzini MC. Male-Specific cAMP Signaling in the Hippocampus Controls Spatial Memory Deficits in a Mouse Model of Autism and Intellectual Disability. Biol Psychiatry 2019; 85:760-768. [PMID: 30732858 PMCID: PMC6474812 DOI: 10.1016/j.biopsych.2018.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND The prevalence of neurodevelopmental disorders is biased toward male individuals, with male-to-female ratios of 2:1 in intellectual disability and 4:1 in autism spectrum disorder. However, the molecular mechanisms of such bias remain unknown. While characterizing a mouse model for loss of the signaling scaffold coiled-coil and C2 domain-containing protein 1A (CC2D1A), which is mutated in intellectual disability and autism spectrum disorder, we identified biochemical and behavioral differences between male and female mice, and explored whether CC2D1A controls male-specific intracellular signaling. METHODS CC2D1A is known to regulate phosphodiesterase 4D (PDE4D), which regulates cyclic adenosine monophosphate (cAMP) signaling. We tested for activation of PDE4D and downstream signaling molecules in the hippocampus of Cc2d1a-deficient mice. We then performed behavioral studies in female mice to analyze learning and memory, and then targeted PDE4D activation with a PDE4D inhibitor to define how changes in cAMP levels affect behavior in male and female mice. RESULTS We found that in Cc2d1a-deficient male mice PDE4D is hyperactive, leading to a reduction in cAMP response element binding protein signaling, but this molecular deficit is not present in female mice. Cc2d1a-deficient male mice show a deficit in spatial memory, which is not present in Cc2d1a-deficient female mice. Restoring PDE4D activity using an inhibitor rescues cognitive deficits in male mice but has no effect on female mice. CONCLUSIONS Our findings show that CC2D1A regulates cAMP intracellular signaling in a male-specific manner in the hippocampus, leading to male-specific cognitive deficits. We propose that male-specific signaling mechanisms are involved in establishing sex bias in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marta Zamarbide
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Adele Mossa
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Pablo Muñoz-Llancao
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Molly K Wilkinson
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Heather L Pond
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Adam W Oaks
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - M Chiara Manzini
- Institute for Neuroscience and Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC.
| |
Collapse
|
30
|
Conditional Deletion of CC2D1A Reduces Hippocampal Synaptic Plasticity and Impairs Cognitive Function through Rac1 Hyperactivation. J Neurosci 2019; 39:4959-4975. [PMID: 30992372 DOI: 10.1523/jneurosci.2395-18.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 04/11/2019] [Accepted: 04/14/2019] [Indexed: 11/21/2022] Open
Abstract
Coiled-coil and C2 domain containing 1A (CC2D1A) is an evolutionarily conserved protein, originally identified as a nuclear factor-κB activator through a large-scale screen of human genes. Mutations in the human Cc2d1a gene result in autosomal recessive nonsyndromic intellectual disability. It remains unclear, however, how Cc2d1a mutation leads to alterations in brain function. Here, we have taken advantage of Cre/loxP recombinase-based strategy to conditionally delete Cc2d1a exclusively from excitatory neurons of male mouse forebrain to examine its role in hippocampal synaptic plasticity and cognitive function. We confirmed the expression of CC2D1A protein and mRNA in the mouse hippocampus. Double immunofluorescence staining showed that CC2D1A is expressed in both excitatory and inhibitory neurons of the adult hippocampus. Conditional deletion of Cc2d1a (cKO) from excitatory neurons leads to impaired performance in object location memory test and altered anxiety-like behavior. Consistently, cKO mice displayed a deficit in the maintenance of LTP in the CA1 region of hippocampal slices. Cc2d1a deletion also resulted in decreased complexity of apical and basal dendritic arbors of CA1 pyramidal neurons. An enhanced basal Rac1 activity was observed following Cc2d1a deletion, and this enhancement was mediated by reduced SUMO-specific protease 1 (SENP1) and SENP3 expression, thus increasing the amount of Rac1 SUMOylation. Furthermore, partial blockade of Rac1 activity rescued impairments in LTP and object location memory performance in cKO mice. Together, our results implicate Rac1 hyperactivity in synaptic plasticity and cognitive deficits observed in Cc2d1a cKO mice and reveal a novel role for CC2D1A in regulating hippocampal synaptic function.SIGNIFICANCE STATEMENT CC2D1A is abundantly expressed in the brain, but there is little known about its physiological function. Taking advantage of Cc2d1a cKO mice, the present study highlights the importance of CC2D1A in the maintenance of LTP at Schaffer collateral-CA1 synapses and the formation of hippocampus-dependent long-term object location memory. Our findings establish a critical link between elevated Rac1 activity, structural and synaptic plasticity alterations, and cognitive impairment caused by Cc2d1a deletion. Moreover, partial blockade of Rac1 activity rescues synaptic plasticity and memory deficits in Cc2d1a cKO mice. Such insights may have implications for the utility of Rac1 inhibitors in the treatment of intellectual disability caused by Cc2d1a mutations in human patients.
Collapse
|
31
|
Mir YR, Kuchay RAH. Advances in identification of genes involved in autosomal recessive intellectual disability: a brief review. J Med Genet 2019; 56:567-573. [PMID: 30842223 DOI: 10.1136/jmedgenet-2018-105821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/01/2019] [Accepted: 02/11/2019] [Indexed: 12/28/2022]
Abstract
Intellectual disability (ID) is a clinically and genetically heterogeneous disorder, affecting 1%-3% of the general population. The number of ID-causing genes is high. Many X-linked genes have been implicated in ID. Autosomal dominant genes have recently been the focus of several large-scale studies. The total number of autosomal recessive ID (ARID) genes is estimated to be very high, and most are still unknown. Although research into the genetic causes of ID has recently gained momentum, identification of pathogenic mutations that cause ARID has lagged behind, predominantly due to non-availability of sizeable families. A commonly used approach to identify genetic loci for recessive disorders in consanguineous families is autozygosity mapping and whole-exome sequencing. Combination of these two approaches has recently led to identification of many genes involved in ID. These genes have diverse function and control various biological processes. In this review, we will present an update regarding genes that have been recently implicated in ID with focus on ARID.
Collapse
Affiliation(s)
- Yaser Rafiq Mir
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India
| | - Raja Amir Hassan Kuchay
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India
| |
Collapse
|
32
|
Identification of candidate gene FAM183A and novel pathogenic variants in known genes: High genetic heterogeneity for autosomal recessive intellectual disability. PLoS One 2018; 13:e0208324. [PMID: 30500859 PMCID: PMC6267965 DOI: 10.1371/journal.pone.0208324] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 11/15/2018] [Indexed: 11/19/2022] Open
Abstract
The etiology of intellectual disability (ID) is heterogeneous including a variety of genetic and environmental causes. Historically, most research has not focused on autosomal recessive ID (ARID), which is a significant cause of ID, particularly in areas where parental consanguinity is common. Identification of genetic causes allows for precision diagnosis and improved genetic counseling. We performed whole exome sequencing to 21 Turkish families, seven multiplex and 14 simplex, with nonsyndromic ID. Based on the presence of multiple affected siblings born to unaffected parents and/or shared ancestry, we consider all families as ARID. We revealed the underlying causative variants in seven families in MCPH1 (c.427dupA, p.T143Nfs*5), WDR62 (c.3406C>T, p.R1136*), ASPM (c.5219_5225delGAGGATA, p.R1740Tfs*7), RARS (c.1588A>G, p.T530A), CC2D1A (c.811delG, p.A271Pfs*30), TUSC3 (c.793C>T, p.Q265*) and ZNF335 (c.808C>T, p.R270C and c.3715C>A, p.Q1239K) previously linked with ARID. Besides ARID genes, in one family, affected male siblings were hemizygous for PQBP1 (c.459_462delAGAG, p.R153Sfs*41) and in one family the proband was female and heterozygous for X-chromosomal SLC9A6 (c.1631+1G>A) variant. Each of these variants, except for those in MCPH1 and PQBP1, have not been previously published. Additionally in one family, two affected children were homozygous for the c.377G>A (p.W126*) variant in the FAM183A, a gene not previously associated with ARID. No causative variants were found in the remaining 11 families. A wide variety of variants explain half of families with ARID. FAM183A is a promising novel candidate gene for ARID.
Collapse
|
33
|
Sacher M, Shahrzad N, Kamel H, Milev MP. TRAPPopathies: An emerging set of disorders linked to variations in the genes encoding transport protein particle (TRAPP)-associated proteins. Traffic 2018; 20:5-26. [PMID: 30152084 DOI: 10.1111/tra.12615] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/23/2018] [Accepted: 08/26/2018] [Indexed: 02/06/2023]
Abstract
The movement of proteins between cellular compartments requires the orchestrated actions of many factors including Rab family GTPases, Soluble NSF Attachment protein REceptors (SNAREs) and so-called tethering factors. One such tethering factor is called TRAnsport Protein Particle (TRAPP), and in humans, TRAPP proteins are distributed into two related complexes called TRAPP II and III. Although thought to act as a single unit within the complex, in the past few years it has become evident that some TRAPP proteins function independently of the complex. Consistent with this, variations in the genes encoding these proteins result in a spectrum of human diseases with diverse, but partially overlapping, phenotypes. This contrasts with other tethering factors such as COG, where variations in the genes that encode its subunits all result in an identical phenotype. In this review, we present an up-to-date summary of all the known disease-related variations of genes encoding TRAPP-associated proteins and the disorders linked to these variations which we now call TRAPPopathies.
Collapse
Affiliation(s)
- Michael Sacher
- Department of Biology, Concordia University, Montreal, Quebec, Canada.,Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Nassim Shahrzad
- Department of Medicine, University of California, San Francisco, California
| | - Hiba Kamel
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| | - Miroslav P Milev
- Department of Biology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
34
|
Berto S, Nowick K. Species-Specific Changes in a Primate Transcription Factor Network Provide Insights into the Molecular Evolution of the Primate Prefrontal Cortex. Genome Biol Evol 2018; 10:2023-2036. [PMID: 30059966 PMCID: PMC6105097 DOI: 10.1093/gbe/evy149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2018] [Indexed: 02/07/2023] Open
Abstract
The human prefrontal cortex (PFC) differs from that of other primates with respect to size, histology, and functional abilities. Here, we analyzed genome-wide expression data of humans, chimpanzees, and rhesus macaques to discover evolutionary changes in transcription factor (TF) networks that may underlie these phenotypic differences. We determined the co-expression networks of all TFs with species-specific expression including their potential target genes and interaction partners in the PFC of all three species. Integrating these networks allowed us inferring an ancestral network for all three species. This ancestral network as well as the networks for each species is enriched for genes involved in forebrain development, axonogenesis, and synaptic transmission. Our analysis allows us to directly compare the networks of each species to determine which links have been gained or lost during evolution. Interestingly, we detected that most links were gained on the human lineage, indicating increase TF cooperativity in humans. By comparing network changes between different tissues, we discovered that in brain tissues, but not in the other tissues, the human networks always had the highest connectivity. To pinpoint molecular changes underlying species-specific phenotypes, we analyzed the sub-networks of TFs derived only from genes with species-specific expression changes in the PFC. These sub-networks differed significantly in structure and function between the human and chimpanzee. For example, the human-specific sub-network is enriched for TFs implicated in cognitive disorders and for genes involved in synaptic plasticity and cognitive functions. Our results suggest evolutionary changes in TF networks that might have shaped morphological and functional differences between primate brains, in particular in the human PFC.
Collapse
Affiliation(s)
- Stefano Berto
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX.,Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, Germany
| | - Katja Nowick
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, Germany.,Faculty for Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Germany
| |
Collapse
|
35
|
Oaks AW, Zamarbide M, Tambunan DE, Santini E, Di Costanzo S, Pond HL, Johnson MW, Lin J, Gonzalez DM, Boehler JF, Wu GK, Klann E, Walsh CA, Manzini MC. Cc2d1a Loss of Function Disrupts Functional and Morphological Development in Forebrain Neurons Leading to Cognitive and Social Deficits. Cereb Cortex 2018; 27:1670-1685. [PMID: 26826102 DOI: 10.1093/cercor/bhw009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Loss-of-function (LOF) mutations in CC2D1A cause a spectrum of neurodevelopmental disorders, including intellectual disability, autism spectrum disorder, and seizures, identifying a critical role for this gene in cognitive and social development. CC2D1A regulates intracellular signaling processes that are critical for neuronal function, but previous attempts to model the human LOF phenotypes have been prevented by perinatal lethality in Cc2d1a-deficient mice. To overcome this challenge, we generated a floxed Cc2d1a allele for conditional removal of Cc2d1a in the brain using Cre recombinase. While removal of Cc2d1a in neuronal progenitors using Cre expressed from the Nestin promoter still causes death at birth, conditional postnatal removal of Cc2d1a in the forebrain via calcium/calmodulin-dependent protein kinase II-alpha (CamKIIa) promoter-driven Cre generates animals that are viable and fertile with grossly normal anatomy. Analysis of neuronal morphology identified abnormal cortical dendrite organization and a reduction in dendritic spine density. These animals display deficits in neuronal plasticity and in spatial learning and memory that are accompanied by reduced sociability, hyperactivity, anxiety, and excessive grooming. Cc2d1a conditional knockout mice therefore recapitulate features of both cognitive and social impairment caused by human CC2D1A mutation, and represent a model that could provide much needed insights into the developmental mechanisms underlying nonsyndromic neurodevelopmental disorders.
Collapse
Affiliation(s)
- Adam W Oaks
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Marta Zamarbide
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Dimira E Tambunan
- Division of Genetics and Genomics and the Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Emanuela Santini
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Stefania Di Costanzo
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Heather L Pond
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Mark W Johnson
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Jeff Lin
- Department of Psychology, The George Washington University, Washington, DC 20052, USA
| | - Dilenny M Gonzalez
- Division of Genetics and Genomics and the Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Jessica F Boehler
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Guangying K Wu
- Department of Psychology, The George Washington University, Washington, DC 20052, USA
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY 10003, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics and the Manton Center for Orphan Disease Research, Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, USA.,Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - M Chiara Manzini
- Department of Pharmacology and Physiology and Integrative Systems Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| |
Collapse
|
36
|
McMillan BJ, Tibbe C, Drabek AA, Seegar TCM, Blacklow SC, Klein T. Structural Basis for Regulation of ESCRT-III Complexes by Lgd. Cell Rep 2018; 19:1750-1757. [PMID: 28564595 DOI: 10.1016/j.celrep.2017.05.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 11/17/2022] Open
Abstract
The ESCRT-III complex induces outward membrane budding and fission through homotypic polymerization of its core component Shrub/CHMP4B. Shrub activity is regulated by its direct interaction with a protein called Lgd in flies, or CC2D1A or B in humans. Here, we report the structural basis for this interaction and propose a mechanism for regulation of polymer assembly. The isolated third DM14 repeat of Lgd binds Shrub, and an Lgd fragment containing only this DM14 repeat and its C-terminal C2 domain is sufficient for in vivo function. The DM14 domain forms a helical hairpin with a conserved, positively charged tip, that, in the structure of a DM14 domain-Shrub complex, occupies a negatively charged surface of Shrub that is otherwise used for homopolymerization. Lgd mutations at this interface disrupt its function in flies, confirming functional importance. Together, these data argue that Lgd regulates ESCRT activity by controlling access to the Shrub self-assembly surface.
Collapse
Affiliation(s)
- Brian J McMillan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Christine Tibbe
- Institute of Genetics, Heinrich-Heine-University, Dusseldorf 40225, Germany
| | - Andrew A Drabek
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Tom C M Seegar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen C Blacklow
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Dana Farber Cancer Institute, Department of Cancer Biology, Boston, MA 02215, USA.
| | - Thomas Klein
- Institute of Genetics, Heinrich-Heine-University, Dusseldorf 40225, Germany.
| |
Collapse
|
37
|
Zamarbide M, Oaks AW, Pond HL, Adelman JS, Manzini MC. Loss of the Intellectual Disability and Autism Gene Cc2d1a and Its Homolog Cc2d1b Differentially Affect Spatial Memory, Anxiety, and Hyperactivity. Front Genet 2018; 9:65. [PMID: 29552027 PMCID: PMC5840150 DOI: 10.3389/fgene.2018.00065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/15/2018] [Indexed: 11/13/2022] Open
Abstract
Hundreds of genes are mutated in non-syndromic intellectual disability (ID) and autism spectrum disorder (ASD), with each gene often involved in only a handful of cases. Such heterogeneity can be daunting, but rare recessive loss of function (LOF) mutations can be a good starting point to provide insight into the mechanisms of neurodevelopmental disease. Biallelic LOF mutations in the signaling scaffold CC2D1A cause a rare form of autosomal recessive ID, sometimes associated with ASD and seizures. In parallel, we recently reported that Cc2d1a-deficient mice present with cognitive and social deficits, hyperactivity and anxiety. In Drosophila, loss of the only ortholog of Cc2d1a, lgd, is embryonically lethal, while in vertebrates, Cc2d1a has a homolog Cc2d1b which appears to be compensating, indicating that Cc2d1a and Cc2d1b have a redundant function in humans and mice. Here, we generate an allelic series of Cc2d1a and Cc2d1b LOF to determine the relative role of these genes during behavioral development. We generated Cc2d1b knockout (KO), Cc2d1a/1b double heterozygous and double KO mice, then performed behavioral studies to analyze learning and memory, social interactions, anxiety, and hyperactivity. We found that Cc2d1a and Cc2d1b have partially overlapping roles. Overall, loss of Cc2d1b is less severe than loss of Cc2d1a, only leading to cognitive deficits, while Cc2d1a/1b double heterozygous animals are similar to Cc2d1a-deficient mice. These results will help us better understand the deficits in individuals with CC2D1A mutations, suggesting that recessive CC2D1B mutations and trans-heterozygous CC2D1A and CC2D1B mutations could also contribute to the genetics of ID.
Collapse
Affiliation(s)
- Marta Zamarbide
- GW Institute for Neurosciences, Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Adam W. Oaks
- GW Institute for Neurosciences, Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Heather L. Pond
- GW Institute for Neurosciences, Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Julia S. Adelman
- GW Institute for Neurosciences, Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - M. Chiara Manzini
- GW Institute for Neurosciences, Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
- Autism and Neurodevelopmental Disorders Institute, The George Washington University, Washington, DC, United States
| |
Collapse
|
38
|
Abbasi AA, Blaesius K, Hu H, Latif Z, Picker-Minh S, Khan MN, Farooq S, Khan MA, Kaindl AM. Identification of a novel homozygous TRAPPC9 gene mutation causing non-syndromic intellectual disability, speech disorder, and secondary microcephaly. Am J Med Genet B Neuropsychiatr Genet 2017; 174:839-845. [PMID: 29031008 DOI: 10.1002/ajmg.b.32602] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/24/2017] [Accepted: 09/11/2017] [Indexed: 11/11/2022]
Abstract
TRAPPC9 gene mutations have been linked recently to autosomal recessive mental retardation 13 (MRT13; MIM#613192) with only eight families reported world-wide. We assessed patients from two consanguineous pedigrees of Pakistani descent with non-syndromic intellectual disability and postnatal microcephaly through whole exome sequencing (WES) and cosegregation analysis. Here we report six further patients from two pedigrees with homozygous TRAPPC9 gene mutations, the novel nonsense mutation c.2065G>T (p.E689*) and the previously identified nonsense mutation c.1423C>T (p.R475*). We provide an overview of previously reported clinical features and highlight common symptoms and variability of MRT13. Common findings are intellectual disability and absent speech, and frequently microcephaly, motor delay and pathological findings on MRI including diminished cerebral white matter volume are present. Mutations in TRAPPC9 should be considered in non-syndromic autosomal recessive intellectual disability with severe speech disorder.
Collapse
Affiliation(s)
- Ansar A Abbasi
- Department of Zoology, Mirpur University of Science and Technology (MUST), Mirpur, Pakistan
| | - Kathrin Blaesius
- Charité - Universitätsmedizin Berlin, Institute of Neuroanatomy and Cell Biology, Berlin, Germany.,Berlin Insitute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10178, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Department of Pediatric Neurology, Berlin, Germany
| | - Hao Hu
- Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Zahid Latif
- Department of Zoology, University of Azad Jammu and Kashmir Muzaffarabad, Muzaffarabad, Pakistan
| | - Sylvie Picker-Minh
- Charité - Universitätsmedizin Berlin, Institute of Neuroanatomy and Cell Biology, Berlin, Germany.,Berlin Insitute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10178, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Department of Pediatric Neurology, Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Muhammad N Khan
- Department of Zoology, University of Azad Jammu and Kashmir Muzaffarabad, Muzaffarabad, Pakistan
| | - Sundas Farooq
- Department of Zoology, Mirpur University of Science and Technology (MUST), Mirpur, Pakistan
| | - Muzammil A Khan
- Gomal Centre of Biochemistry and Biotechnology (GCBB), Gomal University, Dera Ismail Khan, Pakistan
| | - Angela M Kaindl
- Charité - Universitätsmedizin Berlin, Institute of Neuroanatomy and Cell Biology, Berlin, Germany.,Berlin Insitute of Health (BIH), Anna-Louisa-Karsch Strasse 2, 10178, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Department of Pediatric Neurology, Berlin, Germany.,Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
39
|
Abrogated Freud-1/Cc2d1a Repression of 5-HT1A Autoreceptors Induces Fluoxetine-Resistant Anxiety/Depression-Like Behavior. J Neurosci 2017; 37:11967-11978. [PMID: 29101244 DOI: 10.1523/jneurosci.1668-17.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/29/2017] [Accepted: 10/10/2017] [Indexed: 11/21/2022] Open
Abstract
Freud-1/Cc2d1a represses the gene transcription of serotonin-1A (5-HT1A) autoreceptors, which negatively regulate 5-HT tone. To test the role of Freud-1 in vivo, we generated mice with adulthood conditional knock-out of Freud-1 in 5-HT neurons (cF1ko). In cF1ko mice, 5-HT1A autoreceptor protein, binding and hypothermia response were increased, with reduced 5-HT content and neuronal activity in the dorsal raphe. The cF1ko mice displayed increased anxiety- and depression-like behavior that was resistant to chronic antidepressant (fluoxetine) treatment. Using conditional Freud-1/5-HT1A double knock-out (cF1/1A dko) to disrupt both Freud-1 and 5-HT1A genes in 5-HT neurons, no increase in anxiety- or depression-like behavior was seen upon knock-out of Freud-1 on the 5-HT1A autoreceptor-negative background; rather, a reduction in depression-like behavior emerged. These studies implicate transcriptional dysregulation of 5-HT1A autoreceptors by the repressor Freud-1 in anxiety and depression and provide a clinically relevant genetic model of antidepressant resistance. Targeting specific transcription factors, such as Freud-1, to restore transcriptional balance may augment response to antidepressant treatment.SIGNIFICANCE STATEMENT Altered regulation of the 5-HT1A autoreceptor has been implicated in human anxiety, major depression, suicide, and resistance to antidepressants. This study uniquely identifies a single transcription factor, Freud-1, as crucial for 5-HT1A autoreceptor expression in vivo Disruption of Freud-1 in serotonin neurons in mice links upregulation of 5-HT1A autoreceptors to anxiety/depression-like behavior and provides a new model of antidepressant resistance. Treatment strategies to reestablish transcriptional regulation of 5-HT1A autoreceptors could provide a more robust and sustained antidepressant response.
Collapse
|
40
|
Sadoul R, Laporte MH, Chassefeyre R, Chi KI, Goldberg Y, Chatellard C, Hemming FJ, Fraboulet S. The role of ESCRT during development and functioning of the nervous system. Semin Cell Dev Biol 2017; 74:40-49. [PMID: 28811263 DOI: 10.1016/j.semcdb.2017.08.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/21/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022]
Abstract
The endosomal sorting complex required for transport (ESCRT) is made of subcomplexes (ESCRT 0-III), crucial to membrane remodelling at endosomes, nuclear envelope and cell surface. ESCRT-III shapes membranes and in most cases cooperates with the ATPase VPS4 to mediate fission of membrane necks from the inside. The first ESCRT complexes mainly serve to catalyse the formation of ESCRT-III but can be bypassed by accessory proteins like the Alg-2 interacting protein-X (ALIX). In the nervous system, ALIX/ESCRT controls the survival of embryonic neural progenitors and later on the outgrowth and pruning of axons and dendrites, all necessary steps to establish a functional brain. In the adult brain, ESCRTs allow the endosomal turn over of synaptic vesicle proteins while stable ESCRT complexes might serve as scaffolds for the postsynaptic parts. The necessity of ESCRT for the harmonious function of the brain has its pathological counterpart, the mutations in CHMP2B of ESCRT-III giving rise to several neurodegenerative diseases.
Collapse
Affiliation(s)
- Rémy Sadoul
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France; Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France.
| | - Marine H Laporte
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France; Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Romain Chassefeyre
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France; Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Kwang Il Chi
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France; Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Yves Goldberg
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France; Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Christine Chatellard
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France; Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Fiona J Hemming
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France; Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| | - Sandrine Fraboulet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1216, F-38042 Grenoble, France; Université Grenoble Alpes, Institut des Neurosciences, F-38042 Grenoble, France
| |
Collapse
|
41
|
Khan MA, Khan S, Windpassinger C, Badar M, Nawaz Z, Mohammad RM. The Molecular Genetics of Autosomal Recessive Nonsyndromic Intellectual Disability: a Mutational Continuum and Future Recommendations. Ann Hum Genet 2017; 80:342-368. [PMID: 27870114 DOI: 10.1111/ahg.12176] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/03/2016] [Indexed: 12/19/2022]
Abstract
Intellectual disability (ID) is a clinical manifestation of the central nervous system without any major dysmorphologies of the brain. Biologically it affects learning capabilities, memory, and cognitive functioning. The basic defining features of ID are characterized by IQ<70, age of onset before 18 years, and impairment of at least two of the adaptive skills. Clinically it is classified in a syndromic (with additional abnormalities) and a nonsyndromic form (with only cognitive impairment). The study of nonsyndromic intellectual disability (NSID) can best explain the pathophysiology of cognition, intelligence and memory. Genetic analysis in autosomal recessive nonsyndrmic ID (ARNSID) has mapped 51 disease loci, 34 of which have revealed their defective genes. These genes play diverse physiological roles in various molecular processes, including methylation, proteolysis, glycosylation, signal transduction, transcription regulation, lipid metabolism, ion homeostasis, tRNA modification, ubiquitination and neuromorphogenesis. High-density SNP array and whole exome sequencing has increased the pace of gene discoveries and many new mutations are being published every month. The lack of uniform criteria has assigned multiple identifiers (or accession numbers) to the same MRT locus (e.g. MRT7 and MRT22). Here in this review we describe the molecular genetics of ARNSID, prioritize the candidate genes in uncharacterized loci, and propose a new nomenclature to reorganize the mutation data that will avoid the confusion of assigning duplicate accession numbers to the same ID locus and to make the data manageable in the future as well.
Collapse
Affiliation(s)
- Muzammil Ahmad Khan
- Genomic Core Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar.,Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I.Khan, 29050 KPK, Pakistan
| | - Saadullah Khan
- Genomic Core Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar.,Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, KPK, Pakistan
| | | | - Muhammad Badar
- Gomal Centre of Biochemistry and Biotechnology, Gomal University, D.I.Khan, 29050 KPK, Pakistan
| | - Zafar Nawaz
- Genomic Core Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Ramzi M Mohammad
- Genomic Core Facility, Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| |
Collapse
|
42
|
Uezu A, Kanak DJ, Bradshaw TWA, Soderblom EJ, Catavero CM, Burette AC, Weinberg RJ, Soderling SH. Identification of an elaborate complex mediating postsynaptic inhibition. Science 2017; 353:1123-9. [PMID: 27609886 DOI: 10.1126/science.aag0821] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/25/2016] [Indexed: 12/13/2022]
Abstract
Inhibitory synapses dampen neuronal activity through postsynaptic hyperpolarization. The composition of the inhibitory postsynapse and the mechanistic basis of its regulation, however, remain poorly understood. We used an in vivo chemico-genetic proximity-labeling approach to discover inhibitory postsynaptic proteins. Quantitative mass spectrometry not only recapitulated known inhibitory postsynaptic proteins but also revealed a large network of new proteins, many of which are either implicated in neurodevelopmental disorders or are of unknown function. Clustered regularly interspaced short palindromic repeats (CRISPR) depletion of one of these previously uncharacterized proteins, InSyn1, led to decreased postsynaptic inhibitory sites, reduced the frequency of miniature inhibitory currents, and increased excitability in the hippocampus. Our findings uncover a rich and functionally diverse assemblage of previously unknown proteins that regulate postsynaptic inhibition and might contribute to developmental brain disorders.
Collapse
Affiliation(s)
- Akiyoshi Uezu
- The Department of Cell Biology, Duke University Medical School, Durham, NC 27703, USA
| | - Daniel J Kanak
- The Department of Cell Biology, Duke University Medical School, Durham, NC 27703, USA
| | - Tyler W A Bradshaw
- The Department of Cell Biology, Duke University Medical School, Durham, NC 27703, USA
| | - Erik J Soderblom
- The Department of Cell Biology, Duke University Medical School, Durham, NC 27703, USA. Duke Proteomics and Metabolomics Shared Resource and Duke Center for Genomic and Computational Biology, Duke University Medical School, Durham, NC 27703, USA
| | - Christina M Catavero
- The Department of Cell Biology, Duke University Medical School, Durham, NC 27703, USA
| | - Alain C Burette
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA. Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Richard J Weinberg
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA. Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Scott H Soderling
- The Department of Cell Biology, Duke University Medical School, Durham, NC 27703, USA. The Department of Neurobiology, Duke University Medical School, Durham, NC 27703, USA.
| |
Collapse
|
43
|
Exome sequencing of Pakistani consanguineous families identifies 30 novel candidate genes for recessive intellectual disability. Mol Psychiatry 2017; 22:1604-1614. [PMID: 27457812 PMCID: PMC5658665 DOI: 10.1038/mp.2016.109] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 05/18/2016] [Accepted: 06/01/2016] [Indexed: 12/13/2022]
Abstract
Intellectual disability (ID) is a clinically and genetically heterogeneous disorder, affecting 1-3% of the general population. Although research into the genetic causes of ID has recently gained momentum, identification of pathogenic mutations that cause autosomal recessive ID (ARID) has lagged behind, predominantly due to non-availability of sizeable families. Here we present the results of exome sequencing in 121 large consanguineous Pakistani ID families. In 60 families, we identified homozygous or compound heterozygous DNA variants in a single gene, 30 affecting reported ID genes and 30 affecting novel candidate ID genes. Potential pathogenicity of these alleles was supported by co-segregation with the phenotype, low frequency in control populations and the application of stringent bioinformatics analyses. In another eight families segregation of multiple pathogenic variants was observed, affecting 19 genes that were either known or are novel candidates for ID. Transcriptome profiles of normal human brain tissues showed that the novel candidate ID genes formed a network significantly enriched for transcriptional co-expression (P<0.0001) in the frontal cortex during fetal development and in the temporal-parietal and sub-cortex during infancy through adulthood. In addition, proteins encoded by 12 novel ID genes directly interact with previously reported ID proteins in six known pathways essential for cognitive function (P<0.0001). These results suggest that disruptions of temporal parietal and sub-cortical neurogenesis during infancy are critical to the pathophysiology of ID. These findings further expand the existing repertoire of genes involved in ARID, and provide new insights into the molecular mechanisms and the transcriptome map of ID.
Collapse
|
44
|
Souslova T, Mirédin K, Millar AM, Albert PR. Recruitment by the Repressor Freud-1 of Histone Deacetylase-Brg1 Chromatin Remodeling Complexes to Strengthen HTR1A Gene Repression. Mol Neurobiol 2016; 54:8263-8277. [PMID: 27914010 DOI: 10.1007/s12035-016-0306-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/16/2016] [Indexed: 12/12/2022]
Abstract
Five-prime repressor element under dual repression binding protein-1 (Freud-1)/CC2D1A is genetically linked to intellectual disability and implicated in neuronal development. Freud-1 represses the serotonin-1A (5-HT1A) receptor gene HTR1A by histone deacetylase (HDAC)-dependent or HDAC-independent mechanisms in 5-HT1A-negative (e.g., HEK-293) or 5-HT1A-expressing cells (SK-N-SH), respectively. To identify the underlying mechanisms, Freud-1-associated proteins were affinity-purified from HEK-293 nuclear extracts and members of the Brg1/SMARCCA chromatin remodeling and Sin3A-HDAC corepressor complexes were identified. Pull-down assays using recombinant proteins showed that Freud-1 interacts directly with the Brg1 carboxyl-terminal domain; interaction with Brg1 required the carboxyl-terminal of Freud-1. Freud-1 complexes in HEK-293 and SK-N-SH cells differed, with low levels of BAF170/SMARCC2 and BAF57/SMARCE1 in HEK-293 cells and low-undetectable BAF155/SMARCC1, Sin3A, and HDAC1/2 in SK-N-SH cells. Similarly, by quantitative chromatin immunoprecipitation, Brg1-BAF170/57 and Sin3A-HDAC complexes were observed at the HTR1A promoter in HEK-293 cells, whereas in SK-N-SH cells, Sin3A-HDAC proteins were not detected. Quantifying 5-HT1A receptor mRNA levels in cells treated with siRNA to Freud-1, Brg1, or both RNAs addressed the functional role of the Freud-1-Brg1 complex. In HEK-293 cells, 5-HT1A receptor mRNA levels were increased only when both Freud-1 and Brg1 were depleted, but in SK-N-SH cells, depletion of either protein upregulated 5-HT1A receptor RNA. Thus, recruitment by Freud-1 of Brg1, BAF155, and Sin3A-HDAC complexes appears to strengthen repression of the HTR1A gene to prevent its expression inappropriate cell types, while recruitment of the Brg1-BAF170/57 complex is permissive to 5-HT1A receptor expression. Alterations in Freud-1-Brg1 interactions in mutants associated with intellectual disability could impair gene repression leading to altered neuronal development.
Collapse
Affiliation(s)
- Tatiana Souslova
- Ottawa Hospital Research Institute (Neuroscience) and UOttawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Kim Mirédin
- Ottawa Hospital Research Institute (Neuroscience) and UOttawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Anne M Millar
- Ottawa Hospital Research Institute (Neuroscience) and UOttawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Paul R Albert
- Ottawa Hospital Research Institute (Neuroscience) and UOttawa Brain and Mind Research Institute, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
45
|
Zhang G, Scarborough H, Kim J, Rozhok AI, Chen YA, Zhang X, Song L, Bai Y, Fang B, Liu RZ, Koomen J, Tan AC, Degregori J, Haura EB. Coupling an EML4-ALK-centric interactome with RNA interference identifies sensitizers to ALK inhibitors. Sci Signal 2016; 9:rs12. [PMID: 27811184 DOI: 10.1126/scisignal.aaf5011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Patients with lung cancers harboring anaplastic lymphoma kinase (ALK) gene fusions benefit from treatment with ALK inhibitors, but acquired resistance inevitably arises. A better understanding of proximal ALK signaling mechanisms may identify sensitizers to ALK inhibitors that disrupt the balance between prosurvival and proapoptotic effector signals. Using affinity purification coupled with mass spectrometry in an ALK fusion lung cancer cell line (H3122), we generated an ALK signaling network and investigated signaling activity using tyrosine phosphoproteomics. We identified a network of 464 proteins composed of subnetworks with differential response to ALK inhibitors. A small hairpin RNA screen targeting 407 proteins in this network revealed 64 and 9 proteins that when knocked down sensitized cells to crizotinib and alectinib, respectively. Among these, knocking down fibroblast growth factor receptor substrate 2 (FRS2) or coiled-coil and C2 domain-containing protein 1A (CC2D1A), both scaffolding proteins, sensitized multiple ALK fusion cell lines to the ALK inhibitors crizotinib and alectinib. Collectively, our data set provides a resource that enhances our understanding of signaling and drug resistance networks consequent to ALK fusions and identifies potential targets to improve the efficacy of ALK inhibitors in patients.
Collapse
Affiliation(s)
- Guolin Zhang
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Hannah Scarborough
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jihye Kim
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Andrii I Rozhok
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Yian Ann Chen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Xiaohui Zhang
- Department of Hematopathology and Laboratory Medicine, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Lanxi Song
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Yun Bai
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Bin Fang
- Proteomics Core Facility, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Richard Z Liu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - John Koomen
- Department of Molecular Oncology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Aik Choon Tan
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - James Degregori
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
46
|
Min Y, Wi SM, Kang JA, Yang T, Park CS, Park SG, Chung S, Shim JH, Chun E, Lee KY. Cereblon negatively regulates TLR4 signaling through the attenuation of ubiquitination of TRAF6. Cell Death Dis 2016; 7:e2313. [PMID: 27468689 PMCID: PMC4973362 DOI: 10.1038/cddis.2016.226] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 06/28/2016] [Accepted: 07/01/2016] [Indexed: 11/25/2022]
Abstract
Cereblon (CRBN) is a substrate receptor protein for the CRL4A E3 ubiquitin ligase complex. In this study, we report on a new regulatory role of CRBN in TLR4 signaling. CRBN overexpression leads to suppression of NF-κB activation and production of pro-inflammatory cytokines including IL-6 and IL-1β in response to TLR4 stimulation. Biochemical studies revealed interactions between CRBN and TAK1, and TRAF6 proteins. The interaction between CRBN and TAK1 did not affect the association of the TAB1 and TAB2 proteins, which have pivotal roles in the activation of TAK1, whereas the CRBN-TRAF6 interaction critically affected ubiquitination of TRAF6 and TAB2. Binding mapping results revealed that CRBN interacts with the Zinc finger domain of TRAF6, which contains the ubiquitination site of TRAF6, leading to attenuation of ubiquitination of TRAF6 and TAB2. Functional studies revealed that CRBN-knockdown THP-1 cells show enhanced NF-κB activation and p65- or p50-DNA binding activities, leading to up-regulation of NF-κB-dependent gene expression and increased pro-inflammatory cytokine levels in response to TLR4 stimulation. Furthermore, Crbn−/− mice exhibit decreased survival in response to LPS challenge, accompanied with marked enhancement of pro-inflammatory cytokines, such as TNF-α and IL-6. Taken together, our data demonstrate that CRBN negatively regulates TLR4 signaling via attenuation of TRAF6 and TAB2 ubiquitination.
Collapse
Affiliation(s)
- Yoon Min
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 300, Cheoncheon-dong, Jangan-Gu, Suwon 440-746, Gyeonggi-Do, Republic of Korea
| | - Sae Mi Wi
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 300, Cheoncheon-dong, Jangan-Gu, Suwon 440-746, Gyeonggi-Do, Republic of Korea
| | - Jung-Ah Kang
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Taewoo Yang
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Chul-Seung Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Sung-Gyoo Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 500-712, Republic of Korea
| | - Sungkwon Chung
- Department of Physiology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Jae-Hyuck Shim
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Eunyoung Chun
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | - Ki-Young Lee
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, 300, Cheoncheon-dong, Jangan-Gu, Suwon 440-746, Gyeonggi-Do, Republic of Korea
| |
Collapse
|
47
|
Gonçalves SA, Outeiro TF. Traffic jams and the complex role of α-Synuclein aggregation in Parkinson disease. Small GTPases 2016; 8:78-84. [PMID: 27314512 DOI: 10.1080/21541248.2016.1199191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A common pathological event among various neurodegenerative disorders (NDs) is the misfolding and aggregation of different proteins in the brain. This is thought to potentiate aberrant protein-protein interactions that culminate in the disruption of several biological processes and, ultimately, in neuronal cell loss. Although protein aggregates are a common hallmark in several disorders, the molecular pathways leading to their generation remain unclear. The misfolding and aggregation of α-Synuclein (aSyn) is the pathological hallmark of Parkinson disease (PD), the second most common age related ND. It has been postulated that oligomeric species of aSyn, rather than more mature aggregated forms of the protein, are the causative agents of cytotoxicity. In recent years, we have been investigating the molecular mechanisms underlying the initial steps of aSyn accumulation in living cells. Using an unbiased genome-wide lentiviral RNAi screen we identified trafficking and kinase genes as modulators of aSyn oligomerization, aggregation, and toxicity. Among those, Rab8b, Rab11a, Rab13 and Slp5 were found to promote the clearance of aSyn inclusions and reduce aSyn toxicity. Moreover, we found that endocytic recycling and secretion of aSyn was enhanced upon expression of Rab11a or Rab13 in cells accumulating aSyn inclusions. Altogether, our findings suggest specific trafficking steps may prove beneficial as targets for therapeutic intervention in synucleinopathies, and should be further investigated in other models.
Collapse
Affiliation(s)
- Susana A Gonçalves
- a CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas , Universidade NOVA de Lisboa , Lisboa , Portugal
| | - Tiago Fleming Outeiro
- a CEDOC, Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas , Universidade NOVA de Lisboa , Lisboa , Portugal.,b Department of Neurodegeneration and Restorative Research , University Medical Center Göttingen , Göttingen , Germany.,c Max Planck Institute for Experimental Medicine , Göttingen , Germany
| |
Collapse
|
48
|
Sener EF, Cıkılı Uytun M, Korkmaz Bayramov K, Zararsiz G, Oztop DB, Canatan H, Ozkul Y. The roles of CC2D1A and HTR1A gene expressions in autism spectrum disorders. Metab Brain Dis 2016; 31:613-9. [PMID: 26782176 DOI: 10.1007/s11011-016-9795-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
Abstract
Classical autism belongs to a group of heterogeneous disorders known as autism spectrum disorders (ASD). Autism is defined as a neurodevelopmental disorder, characterized by repetitive stereotypic behaviors or restricted interests, social withdrawal, and communication deficits. Numerous susceptibility genes and chromosomal abnormalities have been reported in association with autism but the etiology of this disorder is unknown in many cases. CC2D1A gene has been linked to mental retardation (MR) in a family with a large deletion before. Intellectual disability (ID) is a common feature of autistic cases. Therefore we aimed to investigate the expressions of CC2D1A and HTR1A genes with the diagnosis of autism in Turkey. Forty-four autistic patients (35 boys, 9 girls) and 27 controls were enrolled and obtained whole blood samples to isolate RNA samples from each participant. CC2D1A and HTR1A gene expressions were assessed by quantitative Real-Time PCR (qRT-PCR) in Genome and Stem Cell Center, Erciyes University. Both expressions of CC2D1A and HTR1A genes studied on ASD cases and controls were significantly different (p < 0.001). The expression of HTR1A was undetectable in the ASD samples. Comparison of ID and CC2D1A gene expression was also found statistically significant (p = 0.028). CC2D1A gene expression may be used as a candidate gene for ASD cases with ID. Further studies are needed to investigate the potential roles of these CC2D1A and HTR1A genes in their related pathways in ASD.
Collapse
Affiliation(s)
- Elif Funda Sener
- Department of Medical Biology, Erciyes University Medical School, 38039, Kayseri, Turkey.
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey.
| | - Merve Cıkılı Uytun
- Department of Child Psychiatry, Education and Research Hospital, Kayseri, Turkey
| | - Keziban Korkmaz Bayramov
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Department of Medical Genetics, Erciyes University Medical School, 38039, Kayseri, Turkey
| | - Gokmen Zararsiz
- Department of Biostatistics, Erciyes University Medical School, 38039, Kayseri, Turkey
| | - Didem Behice Oztop
- Department of Child Psychiatry, Surp Pirgic Armenian Hospital, Istanbul, Turkey
| | - Halit Canatan
- Department of Medical Biology, Erciyes University Medical School, 38039, Kayseri, Turkey
| | - Yusuf Ozkul
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
- Department of Medical Genetics, Erciyes University Medical School, 38039, Kayseri, Turkey
| |
Collapse
|
49
|
Drusenheimer N, Migdal B, Jäckel S, Tveriakhina L, Scheider K, Schulz K, Gröper J, Köhrer K, Klein T. The Mammalian Orthologs of Drosophila Lgd, CC2D1A and CC2D1B, Function in the Endocytic Pathway, but Their Individual Loss of Function Does Not Affect Notch Signalling. PLoS Genet 2015; 11:e1005749. [PMID: 26720614 PMCID: PMC4697852 DOI: 10.1371/journal.pgen.1005749] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/24/2015] [Indexed: 12/14/2022] Open
Abstract
CC2D1A and CC2D1B belong to the evolutionary conserved Lgd protein family with members in all multi-cellular animals. Several functions such as centrosomal cleavage, involvement in signalling pathways, immune response and synapse maturation have been described for CC2D1A. Moreover, the Drosophila melanogaster ortholog Lgd was shown to be involved in the endosomal trafficking of the Notch receptor and other transmembrane receptors and physically interacts with the ESCRT-III component Shrub/CHMP4. To determine if this function is conserved in mammals we generated and characterized Cc2d1a and Cc2d1b conditional knockout mice. While Cc2d1b deficient mice displayed no obvious phenotype, we found that Cc2d1a deficient mice as well as conditional mutants that lack CC2D1A only in the nervous system die shortly after birth due to respiratory distress. This finding confirms the suspicion that the breathing defect is caused by the central nervous system. However, an involvement in centrosomal function could not be confirmed in Cc2d1a deficient MEF cells. To analyse an influence on Notch signalling, we generated intestine specific Cc2d1a mutant mice. These mice did not display any alterations in goblet cell number, proliferating cell number or expression of the Notch reporter Hes1-emGFP, suggesting that CC2D1A is not required for Notch signalling. However, our EM analysis revealed that the average size of endosomes of Cc2d1a mutant cells, but not Cc2d1b mutant cells, is increased, indicating a defect in endosomal morphogenesis. We could show that CC2D1A and its interaction partner CHMP4B are localised on endosomes in MEF cells, when the activity of the endosomal protein VPS4 is reduced. This indicates that CC2D1A cycles between the cytosol and the endosomal membrane. Additionally, in rescue experiments in D. melanogaster, CC2D1A and CC2D1B were able to functionally replace Lgd. Altogether our data suggest a functional conservation of the Lgd protein family in the ESCRT-III mediated process in metazoans. The proteins of the Lgd/CC2D1 family are conserved in all multicellular animals. The Drosophila melanogaster ortholog Lgd is involved in the regulation of signalling receptor degradation via the endosomal pathway. Loss of lgd function causes ectopic ligand-independent activation of the Notch signalling pathway due to a defect in the endosomal pathway. For the mammalian proteins no endosomal function has been defined so far. Here, we asked whether the function of Lgd is conserved in mammals with the focus on the question whether its orthologs are also involved in the endosomal pathway and regulation of Notch pathway activity. Therefore, we generated and characterised Cc2d1a and Cc2d1b conditional knockout mice. We found that the loss of Cc2d1b does not lead to an obvious phenotype, while the known lethality of Cc2d1a deficient newborns is nervous system dependent. In experiments with MEFs isolated from knockout animals we provide evidence that both CC2D1 proteins are involved in the function of the ESCRT-III complex in a similar manner as Lgd in D. melanogaster. Moreover, we found that the loss of one CC2D1 protein is not sufficient to cause ectopic activation of Notch signalling.
Collapse
Affiliation(s)
- Nadja Drusenheimer
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- * E-mail: (ND); (TK)
| | - Bernhard Migdal
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Sandra Jäckel
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Lena Tveriakhina
- Institut für Molekularbiologie OE5250, Medizinische Hochschule Hannover, Hannover, Germany
| | - Kristina Scheider
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Katharina Schulz
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jieny Gröper
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Genomics and Transcriptomics Laboratory (GTL), Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Thomas Klein
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
- * E-mail: (ND); (TK)
| |
Collapse
|
50
|
Gamsiz ED, Sciarra LN, Maguire AM, Pescosolido MF, van Dyck LI, Morrow EM. Discovery of Rare Mutations in Autism: Elucidating Neurodevelopmental Mechanisms. Neurotherapeutics 2015; 12:553-71. [PMID: 26105128 PMCID: PMC4489950 DOI: 10.1007/s13311-015-0363-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a group of highly genetic neurodevelopmental disorders characterized by language, social, cognitive, and behavioral abnormalities. ASD is a complex disorder with a heterogeneous etiology. The genetic architecture of autism is such that a variety of different rare mutations have been discovered, including rare monogenic conditions that involve autistic symptoms. Also, de novo copy number variants and single nucleotide variants contribute to disease susceptibility. Finally, autosomal recessive loci are contributing to our understanding of inherited factors. We will review the progress that the field has made in the discovery of these rare genetic variants in autism. We argue that mutation discovery of this sort offers an important opportunity to identify neurodevelopmental mechanisms in disease. The hope is that these mechanisms will show some degree of convergence that may be amenable to treatment intervention.
Collapse
Affiliation(s)
- Ece D. Gamsiz
- />Department of Molecular Biology, Cell Biology and Biochemistry (MCB), and Institute for Brain Science, Brown University, Providence, RI USA
- />Developmental Disorders Genetics Research Program, Emma Pendleton Bradley Hospital and Department of Psychiatry and Human Behavior, Brown University Medical School, Providence, RI USA
| | - Laura N. Sciarra
- />Department of Molecular Biology, Cell Biology and Biochemistry (MCB), and Institute for Brain Science, Brown University, Providence, RI USA
- />Neuroscience Graduate Program (NSGP), Brown University, Providence, RI USA
| | - Abbie M. Maguire
- />Department of Molecular Biology, Cell Biology and Biochemistry (MCB), and Institute for Brain Science, Brown University, Providence, RI USA
- />Molecular Biology, Cell Biology and Biochemistry (MCB) Graduate Training Program, Brown University, Providence, RI USA
| | - Matthew F. Pescosolido
- />Department of Molecular Biology, Cell Biology and Biochemistry (MCB), and Institute for Brain Science, Brown University, Providence, RI USA
- />Neuroscience Graduate Program (NSGP), Brown University, Providence, RI USA
| | - Laura I. van Dyck
- />Department of Molecular Biology, Cell Biology and Biochemistry (MCB), and Institute for Brain Science, Brown University, Providence, RI USA
| | - Eric M. Morrow
- />Department of Molecular Biology, Cell Biology and Biochemistry (MCB), and Institute for Brain Science, Brown University, Providence, RI USA
- />Developmental Disorders Genetics Research Program, Emma Pendleton Bradley Hospital and Department of Psychiatry and Human Behavior, Brown University Medical School, Providence, RI USA
| |
Collapse
|