1
|
Wang MY, Zhou Y, Li WL, Zhu LQ, Liu D. Friend or foe: Lactate in neurodegenerative diseases. Ageing Res Rev 2024; 101:102452. [PMID: 39127445 DOI: 10.1016/j.arr.2024.102452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Lactate, a byproduct of glycolysis, was considered as a metabolic waste until identified by studies on the Warburg effect. Increasing evidence elucidates that lactate functions as energy fuel, signaling molecule, and donor for protein lactylation. Altered lactate utilization is a common metabolic feature of the onset and progression of neurodegenerative diseases, such as Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease and Huntington's disease. This review offers an overview of lactate metabolism from the perspective of production, transportation and clearance, and the role of lactate in neurodegenerative progression, as well as a summary of protein lactylation and the signaling function of lactate in neurodegenerative diseases. Besides, this review delves into the dual roles of changed lactate metabolism during neurodegeneration and explores prospective therapeutic methods targeting lactate. We propose that elucidating the correlation between lactate and neurodegeneration is pivotal for exploring innovative therapeutic interventions for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ming-Yu Wang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Zhou
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wen-Lian Li
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| | - Dan Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
2
|
Davies-Jenkins CW, Workman CI, Hupfeld KE, Zöllner HJ, Leoutsakos JM, Kraut MA, Barker PB, Smith GS, Oeltzschner G. Multimodal investigation of neuropathology and neurometabolites in mild cognitive impairment and late-life depression with 11C-PiB beta-amyloid PET and 7T magnetic resonance spectroscopy. Neurobiol Aging 2024; 142:27-40. [PMID: 39111221 DOI: 10.1016/j.neurobiolaging.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 09/02/2024]
Abstract
Positron emission tomography (PET) and magnetic resonance spectroscopy (1H-MRS) are complementary techniques that can be applied to study how proteinopathy and neurometabolism relate to cognitive deficits in preclinical stages of Alzheimer's disease (AD)-mild cognitive impairment (MCI) and late-life depression (LLD). We acquired beta-amyloid (Aβ) PET and 7 T 1H-MRS measures of GABA, glutamate, glutathione, N-acetylaspartate, N-acetylaspartylglutamate, myo-inositol, choline, and lactate in the anterior and posterior cingulate cortices (ACC, PCC) in 13 MCI and 9 LLD patients, and 13 controls. We used linear regression to examine associations between metabolites, Aβ, and cognitive scores, and whether metabolites and Aβ explained cognitive scores better than Aβ alone. In the ACC, higher Aβ was associated with lower GABA in controls but not MCI or LLD patients, but results depended upon MRS data quality control criteria. Greater variance in California Verbal Learning Test scores was better explained by a model that combined ACC glutamate and Aβ deposition than by models that only included one of these variables. These findings identify preliminary associations between Aβ, neurometabolites, and cognition.
Collapse
Affiliation(s)
- Christopher W Davies-Jenkins
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Clifford I Workman
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathleen E Hupfeld
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Helge J Zöllner
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Jeannie-Marie Leoutsakos
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Michael A Kraut
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter B Barker
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Gwenn S Smith
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Division of Nuclear Medicine and Molecular Imaging, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Georg Oeltzschner
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
3
|
Yang X, Chen YH, Liu L, Gu Z, You Y, Hao JR, Sun N, Gao C. Regulation of glycolysis-derived L-lactate production in astrocytes rescues the memory deficits and Aβ burden in early Alzheimer's disease models. Pharmacol Res 2024; 208:107357. [PMID: 39159732 DOI: 10.1016/j.phrs.2024.107357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/17/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Aberrant energy metabolism in the brain is a common pathological feature in the preclinical Alzheimer's Disease (AD). Recent studies have reported the early elevations of glycolysis-involved enzymes in AD brain and cerebrospinal fluid according to a large-scale proteomic analysis. It's well-known that astrocytes exhibit strong glycolytic metabolic ability and play a key role in the regulation of brain homeostasis. However, its relationship with glycolytic changes and cognitive deficits in early AD patients is unclear. Here, we investigated the mechanisms by which astrocyte glycolysis is involved in early AD and its potential as a therapeutic target. Our results suggest that Aβ-activated microglia can induce glycolytic-enhanced astrocytes in vitro, and that these processes are dependent on the activation of the AKT-mTOR-HIF-1α pathway. In early AD models, the increase in L-lactate produced by enhanced glycolysis of astrocytes leads to spatial cognitive impairment by disrupting synaptic plasticity and accelerating Aβ aggregation. Furthermore, we find rapamycin, the mTOR inhibitor, can rescue the impaired spatial memory and Aβ burden by inhibiting the glycolysis-derived L-lactate in the early AD models. In conclusion, we highlight that astrocytic glycolysis plays a critical role in the early onset of AD and that the modulation of glycolysis-derived L-lactate by rapamycin provides a new strategy for the treatment of AD.
Collapse
Affiliation(s)
- Xiu Yang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yuan-Hao Chen
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Le Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Zheng Gu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yue You
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jing-Ru Hao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Nan Sun
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Can Gao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
4
|
Hagihara H, Miyakawa T. Decreased Brain pH Correlated With Progression of Alzheimer Disease Neuropathology: A Systematic Review and Meta-Analyses of Postmortem Studies. Int J Neuropsychopharmacol 2024; 27:pyae047. [PMID: 39422361 PMCID: PMC11511658 DOI: 10.1093/ijnp/pyae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Altered brain energy metabolism is implicated in Alzheimer disease (AD). Limited and conflicting studies on brain pH changes, indicative of metabolic alterations associated with neural activity, warrant a comprehensive investigation into their relevance in this neurodegenerative condition. Furthermore, the relationship between these pH changes and established AD neuropathological evaluations, such as Braak staging, remains unexplored. METHODS We conducted quantitative meta-analyses on postmortem brain and cerebrospinal fluid pH in patients with AD and non-AD controls using publicly available demographic data. We collected raw pH data from studies in the NCBI GEO, PubMed, and Google Scholar databases. RESULTS Our analysis of 20 datasets (723 patient samples and 524 control samples) using a random-effects model showed a significant decrease in brain and cerebrospinal fluid pH in patients compared with controls (Hedges' g = -0.57, P < .0001). This decrease remained significant after considering postmortem interval, age at death, and sex. Notably, pH levels were negatively correlated with Braak stage, indicated by the random-effects model of correlation coefficients from 15 datasets (292 patient samples and 159 control samples) (adjusted r = -0.26, P < .0001). Furthermore, brain pH enhanced the discriminative power of the APOEε4 allele, the most prevalent risk gene for AD, in distinguishing patients from controls in a meta-analysis of 4 combined datasets (95 patient samples and 87 control samples). CONCLUSIONS The significant decrease in brain pH in AD underlines its potential role in disease progression and diagnosis. This decrease, potentially reflecting neural hyperexcitation, could enhance our understanding of neurodegenerative pathology and aid in developing diagnostic strategies.
Collapse
Affiliation(s)
- Hideo Hagihara
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Japan
| |
Collapse
|
5
|
Guo S, Zhu W, Bian Y, Li Z, Zheng H, Li W, Yang Y, Ji X, Zhang B. Developing diagnostic biomarkers for Alzheimer's disease based on histone lactylation-related gene. Heliyon 2024; 10:e37807. [PMID: 39315143 PMCID: PMC11417585 DOI: 10.1016/j.heliyon.2024.e37807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Background Research underscores the significant influence of histone lactylation pathways in the progression of Alzheimer's disease (AD), though the molecular mechanisms associated with histone lactylation-related genes (HLRGs) in AD are still insufficiently investigated. Methods This study employed datasets GSE85426 and GSE97760 to identify candidate genes by intersecting weighted gene co-expression network analysis (WGCNA) module genes with AD-control differentially expressed genes (DEGs). Subsequently, machine learning refined key genes, validated by receiver operating characteristic (ROC) curve performance. Gene-set enrichment analysis (GSEA) explored the molecular mechanisms of these diagnostic markers. Concurrently, the association between the diagnostic genes and both differential immune cells and immune responses was examined. Furthermore, a ceRNA and gene-drug network was developed. Finally, the expression of the selected genes was validated using brain tissues from AD model mice. Results This study identified five genes (ARID5B, NSMCE4A, SESN1, THADA, and XPA) with significant diagnostic utility, primarily enriched in olfactory transduction and N-glycan biosynthesis pathways. Correlation analysis demonstrated a strong positive association between all diagnostic genes and naive B cells. The ceRNA regulatory network comprised 7 miRNAs, 2 mRNAs, and 25 lncRNAs. Additionally, 33 drugs targeting the diagnostic genes were predicted. Following expression validation through training and validation sets, three genes (ARID5B, SESN1, XPA) were ultimately confirmed as biomarkers for this study. RT-qPCR and Western blot analyses revealed upregulated expression of ARID5B, SESN1, and XPA in the cerebral tissue of AD model mice. Conclusion Three histone lactylation-linked genes (ARID5B, SESN1, XPA) were identified as potential AD biomarkers, indicating a strong association with disease progression.
Collapse
Affiliation(s)
- Shaobo Guo
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Geriatric, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Wenhui Zhu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Geriatric, Nanjing, China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Yuting Bian
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Geriatric, Nanjing, China
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Zhikai Li
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Geriatric, Nanjing, China
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Heng Zheng
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Geriatric, Nanjing, China
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
- Zhenjiang Hospital of Chinese Traditional And Western Medicine, Zhenjiang, China
| | - Wenlong Li
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Geriatric, Nanjing, China
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
- Liyang Hospital of Chinese Medicine, Liyang, China
| | - Yi Yang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Geriatric, Nanjing, China
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Xuzheng Ji
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Geriatric, Nanjing, China
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Biao Zhang
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Department of Geriatric, Nanjing, China
- Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
6
|
Lian B, Zhang J, Yin X, Wang J, Li L, Ju Q, Wang Y, Jiang Y, Liu X, Chen Y, Tang X, Sun C. SIRT1 improves lactate homeostasis in the brain to alleviate parkinsonism via deacetylation and inhibition of PKM2. Cell Rep Med 2024; 5:101684. [PMID: 39128469 PMCID: PMC11384727 DOI: 10.1016/j.xcrm.2024.101684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/15/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
Sirtuin 1 (SIRT1) is a histone deacetylase and plays diverse functions in various physiological events, from development to lifespan regulation. Here, in Parkinson's disease (PD) model mice, we demonstrated that SIRT1 ameliorates parkinsonism, while SIRT1 knockdown further aggravates PD phenotypes. Mechanistically, SIRT1 interacts with and deacetylates pyruvate kinase M2 (PKM2) at K135 and K206, thus leading to reduced PKM2 enzyme activity and lactate production, which eventually results in decreased glial activation in the brain. Administration of lactate in the brain recapitulates PD-like phenotypes. Furthermore, increased expression of PKM2 worsens PD symptoms, and, on the contrary, inhibition of PKM2 by shikonin or PKM2-IN-1 alleviates parkinsonism in mice. Collectively, our data indicate that excessive lactate in the brain might be involved in the progression of PD. By improving lactate homeostasis, SIRT1, together with PKM2, are likely drug targets for developing agents for the treatment of neurodegeneration in PD.
Collapse
Affiliation(s)
- Bolin Lian
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China; School of Life Sciences, Nantong University, 9 Seyuan Road, Nantong, Jiangsu 226019, China
| | - Jing Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Xiang Yin
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Jiayan Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Li Li
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Qianqian Ju
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Yuejun Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Yuhui Jiang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Xiaoyu Liu
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China
| | - Yu Chen
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong 226001, China.
| | - Xin Tang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China.
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong, Jiangsu 226001, China.
| |
Collapse
|
7
|
Liu S, Zhou S. Lactate: A New Target for Brain Disorders. Neuroscience 2024; 552:100-111. [PMID: 38936457 DOI: 10.1016/j.neuroscience.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
Lactate in the brain is produced endogenously and exogenously. The primary functional cells that produce lactate in the brain are astrocytes. Astrocytes release lactate to act on neurons, thereby affecting neuronal function, through a process known as the astrocyte-neuron shuttle. Lactate affects microglial function as well and inhibits microglia-mediated neuroinflammation. Lactate also provides energy, acts as a signaling molecule, and promotes neurogenesis. This article summarizes the role of lactate in cells, animals, and humans. Lactate is a protective molecule against stress in healthy organisms and in the early stages of brain disorders. Thus, lactate may be a potential therapeutic target for brain disorders. Further research on the role of lactate in microglia may have great prospects. This article provides a new perspective and research direction for the study of lacate in brain disorders.
Collapse
Affiliation(s)
- Shunfeng Liu
- College of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China; Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Shouhong Zhou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China; Basic Medical College, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
8
|
Späte E, Zhou B, Sun T, Kusch K, Asadollahi E, Siems SB, Depp C, Werner HB, Saher G, Hirrlinger J, Möbius W, Nave KA, Goebbels S. Downregulated expression of lactate dehydrogenase in adult oligodendrocytes and its implication for the transfer of glycolysis products to axons. Glia 2024; 72:1374-1391. [PMID: 38587131 DOI: 10.1002/glia.24533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/09/2024]
Abstract
Oligodendrocytes and astrocytes are metabolically coupled to neuronal compartments. Pyruvate and lactate can shuttle between glial cells and axons via monocarboxylate transporters. However, lactate can only be synthesized or used in metabolic reactions with the help of lactate dehydrogenase (LDH), a tetramer of LDHA and LDHB subunits in varying compositions. Here we show that mice with a cell type-specific disruption of both Ldha and Ldhb genes in oligodendrocytes lack a pathological phenotype that would be indicative of oligodendroglial dysfunctions or lack of axonal metabolic support. Indeed, when combining immunohistochemical, electron microscopical, and in situ hybridization analyses in adult mice, we found that the vast majority of mature oligodendrocytes lack detectable expression of LDH. Even in neurodegenerative disease models and in mice under metabolic stress LDH was not increased. In contrast, at early development and in the remyelinating brain, LDHA was readily detectable in immature oligodendrocytes. Interestingly, by immunoelectron microscopy LDHA was particularly enriched at gap junctions formed between adjacent astrocytes and at junctions between astrocytes and oligodendrocytes. Our data suggest that oligodendrocytes metabolize lactate during development and remyelination. In contrast, for metabolic support of axons mature oligodendrocytes may export their own glycolysis products as pyruvate rather than lactate. Lacking LDH, these oligodendrocytes can also "funnel" lactate through their "myelinic" channels between gap junction-coupled astrocytes and axons without metabolizing it. We suggest a working model, in which the unequal cellular distribution of LDH in white matter tracts facilitates a rapid and efficient transport of glycolysis products among glial and axonal compartments.
Collapse
Affiliation(s)
- Erik Späte
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Baoyu Zhou
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ting Sun
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Laboratory of Molecular Neurobiology, Department of Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Ebrahim Asadollahi
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sophie B Siems
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Constanze Depp
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Johannes Hirrlinger
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
9
|
Hirata K, Matsuoka K, Tagai K, Endo H, Tatebe H, Ono M, Kokubo N, Kataoka Y, Oyama A, Shinotoh H, Takahata K, Obata T, Dehghani M, Near J, Kawamura K, Zhang MR, Shimada H, Shimizu H, Kakita A, Yokota T, Tokuda T, Higuchi M, Takado Y. In Vivo Assessment of Astrocyte Reactivity in Patients with Progressive Supranuclear Palsy. Ann Neurol 2024; 96:247-261. [PMID: 38771066 DOI: 10.1002/ana.26962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/12/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024]
Abstract
OBJECTIVE Although astrocytic pathology is a pathological hallmark of progressive supranuclear palsy (PSP), its pathophysiological role remains unclear. This study aimed to assess astrocyte reactivity in vivo in patients with PSP. Furthermore, we investigated alterations in brain lactate levels and their relationship with astrocyte reactivity. METHODS We included 30 patients with PSP-Richardson syndrome and 30 healthy controls; in patients, tau deposition was confirmed through 18F-florzolotau positron emission tomography. Myo-inositol, an astroglial marker, and lactate were quantified in the anterior cingulate cortex through magnetic resonance spectroscopy. We measured plasma biomarkers, including glial fibrillary acidic protein as another astrocytic marker. The anterior cingulate cortex was histologically assessed in postmortem samples of another 3 patients with PSP with comparable disease durations. RESULTS The levels of myo-inositol and plasma glial fibrillary acidic protein were significantly higher in patients than those in healthy controls (p < 0.05); these increases were significantly associated with PSP rating scale and cognitive function scores (p < 0.05). The lactate level was high in patients, and correlated significantly with high myo-inositol levels. Histological analysis of the anterior cingulate cortex in patients revealed reactive astrocytes, despite mild tau deposition, and no marked synaptic loss. INTERPRETATION We discovered high levels of astrocyte biomarkers in patients with PSP, suggesting astrocyte reactivity. The association between myo-inositol and lactate levels suggests a link between reactive astrocytes and brain energy metabolism changes. Our results indicate that astrocyte reactivity in the anterior cingulate cortex precedes pronounced tau pathology and neurodegenerative processes in that region, and affects brain function in PSP. ANN NEUROL 2024;96:247-261.
Collapse
Affiliation(s)
- Kosei Hirata
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiwamu Matsuoka
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kenji Tagai
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hironobu Endo
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Harutsugu Tatebe
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Maiko Ono
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Naomi Kokubo
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuko Kataoka
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Asaka Oyama
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hitoshi Shinotoh
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Neurology Clinic Chiba, Chiba, Japan
| | - Keisuke Takahata
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takayuki Obata
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | | | - Jamie Near
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Kazunori Kawamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hitoshi Shimada
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Center for integrated human brain science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroshi Shimizu
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiko Tokuda
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Makoto Higuchi
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuhei Takado
- Advanced Neuroimaging Center, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
10
|
Hagihara H, Shoji H, Hattori S, Sala G, Takamiya Y, Tanaka M, Ihara M, Shibutani M, Hatada I, Hori K, Hoshino M, Nakao A, Mori Y, Okabe S, Matsushita M, Urbach A, Katayama Y, Matsumoto A, Nakayama KI, Katori S, Sato T, Iwasato T, Nakamura H, Goshima Y, Raveau M, Tatsukawa T, Yamakawa K, Takahashi N, Kasai H, Inazawa J, Nobuhisa I, Kagawa T, Taga T, Darwish M, Nishizono H, Takao K, Sapkota K, Nakazawa K, Takagi T, Fujisawa H, Sugimura Y, Yamanishi K, Rajagopal L, Hannah ND, Meltzer HY, Yamamoto T, Wakatsuki S, Araki T, Tabuchi K, Numakawa T, Kunugi H, Huang FL, Hayata-Takano A, Hashimoto H, Tamada K, Takumi T, Kasahara T, Kato T, Graef IA, Crabtree GR, Asaoka N, Hatakama H, Kaneko S, Kohno T, Hattori M, Hoshiba Y, Miyake R, Obi-Nagata K, Hayashi-Takagi A, Becker LJ, Yalcin I, Hagino Y, Kotajima-Murakami H, Moriya Y, Ikeda K, Kim H, Kaang BK, Otabi H, Yoshida Y, Toyoda A, Komiyama NH, Grant SGN, Ida-Eto M, Narita M, Matsumoto KI, Okuda-Ashitaka E, Ohmori I, Shimada T, Yamagata K, Ageta H, Tsuchida K, Inokuchi K, Sassa T, Kihara A, Fukasawa M, Usuda N, Katano T, Tanaka T, Yoshihara Y, Igarashi M, Hayashi T, Ishikawa K, Yamamoto S, Nishimura N, Nakada K, Hirotsune S, Egawa K, Higashisaka K, Tsutsumi Y, Nishihara S, Sugo N, Yagi T, Ueno N, Yamamoto T, Kubo Y, Ohashi R, Shiina N, Shimizu K, Higo-Yamamoto S, Oishi K, Mori H, Furuse T, Tamura M, Shirakawa H, Sato DX, Inoue YU, Inoue T, Komine Y, Yamamori T, Sakimura K, Miyakawa T. Large-scale animal model study uncovers altered brain pH and lactate levels as a transdiagnostic endophenotype of neuropsychiatric disorders involving cognitive impairment. eLife 2024; 12:RP89376. [PMID: 38529532 PMCID: PMC10965225 DOI: 10.7554/elife.89376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Increased levels of lactate, an end-product of glycolysis, have been proposed as a potential surrogate marker for metabolic changes during neuronal excitation. These changes in lactate levels can result in decreased brain pH, which has been implicated in patients with various neuropsychiatric disorders. We previously demonstrated that such alterations are commonly observed in five mouse models of schizophrenia, bipolar disorder, and autism, suggesting a shared endophenotype among these disorders rather than mere artifacts due to medications or agonal state. However, there is still limited research on this phenomenon in animal models, leaving its generality across other disease animal models uncertain. Moreover, the association between changes in brain lactate levels and specific behavioral abnormalities remains unclear. To address these gaps, the International Brain pH Project Consortium investigated brain pH and lactate levels in 109 strains/conditions of 2294 animals with genetic and other experimental manipulations relevant to neuropsychiatric disorders. Systematic analysis revealed that decreased brain pH and increased lactate levels were common features observed in multiple models of depression, epilepsy, Alzheimer's disease, and some additional schizophrenia models. While certain autism models also exhibited decreased pH and increased lactate levels, others showed the opposite pattern, potentially reflecting subpopulations within the autism spectrum. Furthermore, utilizing large-scale behavioral test battery, a multivariate cross-validated prediction analysis demonstrated that poor working memory performance was predominantly associated with increased brain lactate levels. Importantly, this association was confirmed in an independent cohort of animal models. Collectively, these findings suggest that altered brain pH and lactate levels, which could be attributed to dysregulated excitation/inhibition balance, may serve as transdiagnostic endophenotypes of debilitating neuropsychiatric disorders characterized by cognitive impairment, irrespective of their beneficial or detrimental nature.
Collapse
Affiliation(s)
- Hideo Hagihara
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Satoko Hattori
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Giovanni Sala
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Yoshihiro Takamiya
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Mika Tanaka
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular CenterSuitaJapan
| | - Mihiro Shibutani
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| | - Kei Hori
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and PsychiatryKodairaJapan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and PsychiatryKodairaJapan
| | - Akito Nakao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto UniversityKyotoJapan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto UniversityKyotoJapan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of TokyoTokyoJapan
| | - Masayuki Matsushita
- Department of Molecular Cellular Physiology, Graduate School of Medicine, University of the RyukyusNishiharaJapan
| | - Anja Urbach
- Department of Neurology, Jena University HospitalJenaGermany
| | - Yuta Katayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Akinobu Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu UniversityFukuokaJapan
| | - Shota Katori
- Laboratory of Mammalian Neural Circuits, National Institute of GeneticsMishimaJapan
| | - Takuya Sato
- Laboratory of Mammalian Neural Circuits, National Institute of GeneticsMishimaJapan
| | - Takuji Iwasato
- Laboratory of Mammalian Neural Circuits, National Institute of GeneticsMishimaJapan
| | - Haruko Nakamura
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of MedicineYokohamaJapan
| | - Yoshio Goshima
- Department of Molecular Pharmacology and Neurobiology, Yokohama City University Graduate School of MedicineYokohamaJapan
| | - Matthieu Raveau
- Laboratory for Neurogenetics, RIKEN Center for Brain ScienceWakoJapan
| | - Tetsuya Tatsukawa
- Laboratory for Neurogenetics, RIKEN Center for Brain ScienceWakoJapan
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Center for Brain ScienceWakoJapan
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Sciences, Nagoya City University Graduate School of Medical SciencesNagoyaJapan
| | - Noriko Takahashi
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of TokyoTokyoJapan
- Department of Physiology, Kitasato University School of MedicineSagamiharaJapan
| | - Haruo Kasai
- Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of TokyoTokyoJapan
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of TokyoTokyoJapan
| | - Johji Inazawa
- Research Core, Tokyo Medical and Dental UniversityTokyoJapan
| | - Ikuo Nobuhisa
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental UniversityTokyoJapan
| | - Tetsushi Kagawa
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental UniversityTokyoJapan
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental UniversityTokyoJapan
| | - Mohamed Darwish
- Department of Biochemistry, Faculty of Pharmacy, Cairo UniversityCairoEgypt
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of ToyamaToyamaJapan
| | | | - Keizo Takao
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of ToyamaToyamaJapan
- Department of Behavioral Physiology, Faculty of Medicine, University of ToyamaToyamaJapan
| | - Kiran Sapkota
- Department of Neuroscience, Southern ResearchBirminghamUnited States
| | | | - Tsuyoshi Takagi
- Institute for Developmental Research, Aichi Developmental Disability CenterKasugaiJapan
| | - Haruki Fujisawa
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health UniversityToyoakeJapan
| | - Yoshihisa Sugimura
- Department of Endocrinology, Diabetes and Metabolism, School of Medicine, Fujita Health UniversityToyoakeJapan
| | - Kyosuke Yamanishi
- Department of Neuropsychiatry, Hyogo Medical University School of MedicineNishinomiyaJapan
| | - Lakshmi Rajagopal
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Nanette Deneen Hannah
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Herbert Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of MedicineChicagoUnited States
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa UniversityKita-gunJapan
| | - Shuji Wakatsuki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Toshiyuki Araki
- Department of Peripheral Nervous System Research, National Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Katsuhiko Tabuchi
- Department of Molecular & Cellular Physiology, Shinshu University School of MedicineMatsumotoJapan
| | - Tadahiro Numakawa
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and PsychiatryKodairaJapan
| | - Hiroshi Kunugi
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and PsychiatryKodairaJapan
- Department of Psychiatry, Teikyo University School of MedicineTokyoJapan
| | - Freesia L Huang
- Program of Developmental Neurobiology, National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUnited States
| | - Atsuko Hayata-Takano
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuitaJapan
- Department of Pharmacology, Graduate School of Dentistry, Osaka UniversitySuitaJapan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of FukuiSuitaJapan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuitaJapan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of FukuiSuitaJapan
- Division of Bioscience, Institute for Datability Science, Osaka UniversitySuitaJapan
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka UniversitySuitaJapan
- Department of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka UniversitySuitaJapan
| | - Kota Tamada
- RIKEN Brain Science InstituteWakoJapan
- Department of Physiology and Cell Biology, Kobe University School of MedicineKobeJapan
| | - Toru Takumi
- RIKEN Brain Science InstituteWakoJapan
- Department of Physiology and Cell Biology, Kobe University School of MedicineKobeJapan
| | - Takaoki Kasahara
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain ScienceWakoJapan
- Institute of Biology and Environmental Sciences, Carl von Ossietzky University of OldenburgOldenburgGermany
| | - Tadafumi Kato
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain ScienceWakoJapan
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of MedicineTokyoJapan
| | - Isabella A Graef
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Gerald R Crabtree
- Department of Pathology, Stanford University School of MedicineStanfordUnited States
| | - Nozomi Asaoka
- Department of Pharmacology, Kyoto Prefectural University of MedicineKyotoJapan
| | - Hikari Hatakama
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto UniversityKyotoJapan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto UniversityKyotoJapan
| | - Takao Kohno
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City UniversityNagoyaJapan
| | - Mitsuharu Hattori
- Department of Biomedical Science, Graduate School of Pharmaceutical Sciences, Nagoya City UniversityNagoyaJapan
| | - Yoshio Hoshiba
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
| | - Ryuhei Miyake
- Laboratory for Multi-scale Biological Psychiatry, RIKEN Center for Brain ScienceWakoJapan
| | - Kisho Obi-Nagata
- Laboratory for Multi-scale Biological Psychiatry, RIKEN Center for Brain ScienceWakoJapan
| | - Akiko Hayashi-Takagi
- Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma UniversityMaebashiJapan
- Laboratory for Multi-scale Biological Psychiatry, RIKEN Center for Brain ScienceWakoJapan
| | - Léa J Becker
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de StrasbourgStrasbourgFrance
| | - Ipek Yalcin
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de StrasbourgStrasbourgFrance
| | - Yoko Hagino
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | | | - Yuki Moriya
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Hyopil Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National UniversitySeoulRepublic of Korea
- Department of Biomedical Engineering, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National UniversitySeoulRepublic of Korea
- Center for Cognition and Sociality, Institute for Basic Science (IBS)DaejeonRepublic of Korea
| | - Hikari Otabi
- College of Agriculture, Ibaraki UniversityAmiJapan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and TechnologyFuchuJapan
| | - Yuta Yoshida
- College of Agriculture, Ibaraki UniversityAmiJapan
| | - Atsushi Toyoda
- College of Agriculture, Ibaraki UniversityAmiJapan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and TechnologyFuchuJapan
- Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM)IbarakiJapan
| | - Noboru H Komiyama
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Seth GN Grant
- Genes to Cognition Program, Centre for Clinical Brain Sciences, University of EdinburghEdinburghUnited Kingdom
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of EdinburghEdinburghUnited Kingdom
| | - Michiru Ida-Eto
- Department of Developmental and Regenerative Medicine, Mie University, Graduate School of MedicineTsuJapan
| | - Masaaki Narita
- Department of Developmental and Regenerative Medicine, Mie University, Graduate School of MedicineTsuJapan
| | - Ken-ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane UniversityIzumoJapan
| | | | - Iori Ohmori
- Department of Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Tadayuki Shimada
- Child Brain Project, Tokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Kanato Yamagata
- Child Brain Project, Tokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Hiroshi Ageta
- Division for Therapies Against Intractable Diseases, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Kunihiro Tsuchida
- Division for Therapies Against Intractable Diseases, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| | - Kaoru Inokuchi
- Research Center for Idling Brain Science, University of ToyamaToyamaJapan
- Department of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyamaJapan
- Core Research for Evolutionary Science and Technology (CREST), Japan Science and Technology Agency (JST), University of ToyamaToyamaJapan
| | - Takayuki Sassa
- Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Akio Kihara
- Faculty of Pharmaceutical Sciences, Hokkaido UniversitySapporoJapan
| | - Motoaki Fukasawa
- Department of Anatomy II, Fujita Health University School of MedicineToyoakeJapan
| | - Nobuteru Usuda
- Department of Anatomy II, Fujita Health University School of MedicineToyoakeJapan
| | - Tayo Katano
- Department of Medical Chemistry, Kansai Medical UniversityHirakataJapan
| | - Teruyuki Tanaka
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of TokyoTokyoJapan
| | - Yoshihiro Yoshihara
- Laboratory for Systems Molecular Ethology, RIKEN Center for Brain ScienceWakoJapan
| | - Michihiro Igarashi
- Department of Neurochemistry and Molecular Cell Biology, School of Medicine, and Graduate School of Medical and Dental Sciences, Niigata UniversityNiigataJapan
- Transdiciplinary Research Program, Niigata UniversityNiigataJapan
| | - Takashi Hayashi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Kaori Ishikawa
- Institute of Life and Environmental Sciences, University of TsukubaTsukubaJapan
- Graduate School of Science and Technology, University of TsukubaTsukubaJapan
| | - Satoshi Yamamoto
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company, LtdFujisawaJapan
| | - Naoya Nishimura
- Integrated Technology Research Laboratories, Pharmaceutical Research Division, Takeda Pharmaceutical Company, LtdFujisawaJapan
| | - Kazuto Nakada
- Institute of Life and Environmental Sciences, University of TsukubaTsukubaJapan
- Graduate School of Science and Technology, University of TsukubaTsukubaJapan
| | - Shinji Hirotsune
- Department of Genetic Disease Research, Osaka City University Graduate School of MedicineOsakaJapan
| | - Kiyoshi Egawa
- Department of Pediatrics, Hokkaido University Graduate School of MedicineSapporoJapan
| | - Kazuma Higashisaka
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuitaJapan
| | - Yasuo Tsutsumi
- Laboratory of Toxicology and Safety Science, Graduate School of Pharmaceutical Sciences, Osaka UniversitySuitaJapan
| | - Shoko Nishihara
- Glycan & Life Systems Integration Center (GaLSIC), Soka UniversityTokyoJapan
| | - Noriyuki Sugo
- Graduate School of Frontier Biosciences, Osaka UniversitySuitaJapan
| | - Takeshi Yagi
- Graduate School of Frontier Biosciences, Osaka UniversitySuitaJapan
| | - Naoto Ueno
- Laboratory of Morphogenesis, National Institute for Basic BiologyOkazakiJapan
| | - Tomomi Yamamoto
- Division of Biophysics and Neurobiology, National Institute for Physiological SciencesOkazakiJapan
| | - Yoshihiro Kubo
- Division of Biophysics and Neurobiology, National Institute for Physiological SciencesOkazakiJapan
| | - Rie Ohashi
- Laboratory of Neuronal Cell Biology, National Institute for Basic BiologyOkazakiJapan
- Department of Basic Biology, SOKENDAI (Graduate University for Advanced Studies)OkazakiJapan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural SciencesOkazakiJapan
| | - Nobuyuki Shiina
- Laboratory of Neuronal Cell Biology, National Institute for Basic BiologyOkazakiJapan
- Department of Basic Biology, SOKENDAI (Graduate University for Advanced Studies)OkazakiJapan
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural SciencesOkazakiJapan
| | - Kimiko Shimizu
- Department of Biological Sciences, School of Science, The University of TokyoTokyoJapan
| | - Sayaka Higo-Yamamoto
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Katsutaka Oishi
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of ScienceNodaJapan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of TokyoKashiwaJapan
- School of Integrative and Global Majors (SIGMA), University of TsukubaTsukubaJapan
| | - Hisashi Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyamaJapan
| | - Tamio Furuse
- Mouse Phenotype Analysis Division, Japan Mouse Clinic, RIKEN BioResource Research Center (BRC)TsukubaJapan
| | - Masaru Tamura
- Mouse Phenotype Analysis Division, Japan Mouse Clinic, RIKEN BioResource Research Center (BRC)TsukubaJapan
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto UniversityKyotoJapan
| | - Daiki X Sato
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
- Graduate School of Life Sciences, Tohoku UniversitySendaiJapan
| | - Yukiko U Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and PsychiatryKodairaJapan
| | - Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and PsychiatryKodairaJapan
| | - Yuriko Komine
- Young Researcher Support Group, Research Enhancement Strategy Office, National Institute for Basic Biology, National Institute of Natural SciencesOkazakiJapan
- Division of Brain Biology, National Institute for Basic BiologyOkazakiJapan
| | - Tetsuo Yamamori
- Division of Brain Biology, National Institute for Basic BiologyOkazakiJapan
- Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Center for Brain ScienceWakoJapan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata UniversityNiigataJapan
- Department of Animal Model Development, Brain Research Institute, Niigata UniversityNiigataJapan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health UniversityToyoakeJapan
| |
Collapse
|
11
|
Nohesara S, Abdolmaleky HM, Thiagalingam S. Potential for New Therapeutic Approaches by Targeting Lactate and pH Mediated Epigenetic Dysregulation in Major Mental Diseases. Biomedicines 2024; 12:457. [PMID: 38398057 PMCID: PMC10887322 DOI: 10.3390/biomedicines12020457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Multiple lines of evidence have shown that lactate-mediated pH alterations in the brains of patients with neuropsychiatric diseases such as schizophrenia (SCZ), Alzheimer's disease (AD) and autism may be attributed to mitochondrial dysfunction and changes in energy metabolism. While neuronal activity is associated with reduction in brain pH, astrocytes are responsible for rebalancing the pH to maintain the equilibrium. As lactate level is the main determinant of brain pH, neuronal activities are impacted by pH changes due to the binding of protons (H+) to various types of proteins, altering their structure and function in the neuronal and non-neuronal cells of the brain. Lactate and pH could affect diverse types of epigenetic modifications, including histone lactylation, which is linked to histone acetylation and DNA methylation. In this review, we discuss the importance of pH homeostasis in normal brain function, the role of lactate as an essential epigenetic regulatory molecule and its contributions to brain pH abnormalities in neuropsychiatric diseases, and shed light on lactate-based and pH-modulating therapies in neuropsychiatric diseases by targeting epigenetic modifications. In conclusion, we attempt to highlight the potentials and challenges of translating lactate-pH-modulating therapies to clinics for the treatment of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
12
|
Zhang X, Zheng H, Ni Z, Shen Y, Wang D, Li W, Zhao L, Li C, Gao H. Fibroblast growth factor 21 alleviates diabetes-induced cognitive decline. Cereb Cortex 2024; 34:bhad502. [PMID: 38220573 PMCID: PMC10839844 DOI: 10.1093/cercor/bhad502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024] Open
Abstract
Diabetes mellitus (DM) causes damage to the central nervous system, resulting in cognitive impairment. Fibroblast growth factor 21 (FGF21) exhibits the potential to alleviate neurodegeneration. However, the therapeutic effect of intracerebroventricular (i.c.v) FGF21 infusion on diabetes-induced cognitive decline (DICD) and its potential mechanisms remain unclear. In this study, the impact of FGF21 on DICD was explored, and 1H nuclear magnetic resonance (NMR)-based metabolomics plus 13C NMR spectroscopy in combine with intravenous [1-13C]-glucose infusion were used to investigate the underlying metabolic mechanism. Results revealed that i.c.v FGF21 infusion effectively improved learning and memory performance of DICD mice; neuron loss and apoptosis in hippocampus and cortex were significantly blocked, suggesting a potential neuroprotective role of FGF21 in DICD. Metabolomics results revealed that FGF21 modulated DICD metabolic alterations related to glucose and neurotransmitter metabolism, which are characterized by distinct recovered enrichment of [3-13C]-lactate, [3-13C]-aspartate, [4-13C]-glutamine, [3-13C]-glutamine, [4-13C]-glutamate, and [4-13C]- γ-aminobutyric acid (GABA) from [1-13C]-glucose. Moreover, diabetes-induced neuron injury and metabolic dysfunctions might be mediated by PI3K/AKT/GSK-3β signaling pathway inactivation in the hippocampus and cortex, which were activated by i.c.v injection of FGF21. These findings indicate that i.c.v FGF21 infusion exerts its neuroprotective effect on DICD by remodeling cerebral glucose and neurotransmitter metabolism by activating the PI3K/AKT/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Xi Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Hong Zheng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhitao Ni
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuyin Shen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Die Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenqing Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Liangcai Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Chen Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Hongchang Gao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
13
|
Bian X, Wang Q, Wang Y, Lou S. The function of previously unappreciated exerkines secreted by muscle in regulation of neurodegenerative diseases. Front Mol Neurosci 2024; 16:1305208. [PMID: 38249295 PMCID: PMC10796786 DOI: 10.3389/fnmol.2023.1305208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
The initiation and progression of neurodegenerative diseases (NDs), distinguished by compromised nervous system integrity, profoundly disrupt the quality of life of patients, concurrently exerting a considerable strain on both the economy and the social healthcare infrastructure. Exercise has demonstrated its potential as both an effective preventive intervention and a rehabilitation approach among the emerging therapeutics targeting NDs. As the largest secretory organ, skeletal muscle possesses the capacity to secrete myokines, and these myokines can partially improve the prognosis of NDs by mediating the muscle-brain axis. Besides the well-studied exerkines, which are secreted by skeletal muscle during exercise that pivotally exert their beneficial function, the physiological function of novel exerkines, e.g., apelin, kynurenic acid (KYNA), and lactate have been underappreciated previously. Herein, this review discusses the roles of these novel exerkines and their mechanisms in regulating the progression and improvement of NDs, especially the significance of their functions in improving NDs' prognoses through exercise. Furthermore, several myokines with potential implications in ameliorating ND progression are proposed as the future direction for investigation. Elucidation of the function of exerkines secreted by skeletal muscle in the regulation of NDs advances the understanding of its pathogenesis and facilitates the development of therapeutics that intervene in these processes to cure NDs.
Collapse
Affiliation(s)
- Xuepeng Bian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Qian Wang
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Yibing Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Shujie Lou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
14
|
de Geus MB, Leslie SN, Lam T, Wang W, Roux-Dalvai F, Droit A, Kivisakk P, Nairn AC, Arnold SE, Carlyle BC. Mass spectrometry in cerebrospinal fluid uncovers association of glycolysis biomarkers with Alzheimer's disease in a large clinical sample. Sci Rep 2023; 13:22406. [PMID: 38104170 PMCID: PMC10725469 DOI: 10.1038/s41598-023-49440-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023] Open
Abstract
Alzheimer's disease (AD) is a complex and heterogeneous neurodegenerative disorder with contributions from multiple pathophysiological pathways. One of the long-recognized and important features of AD is disrupted cerebral glucose metabolism, but the underlying molecular basis remains unclear. In this study, unbiased mass spectrometry was used to survey CSF from a large clinical cohort, comparing patients who are either cognitively unimpaired (CU; n = 68), suffering from mild-cognitive impairment or dementia from AD (MCI-AD, n = 95; DEM-AD, n = 72), or other causes (MCI-other, n = 77; DEM-other, n = 23), or Normal Pressure Hydrocephalus (NPH, n = 57). The results revealed changes related to altered glucose metabolism. In particular, two glycolytic enzymes, pyruvate kinase (PKM) and aldolase A (ALDOA), were found to be upregulated in CSF from patients with AD compared to those with other neurological conditions. Increases in full-length PKM and ALDOA levels in CSF were confirmed with immunoblotting. Levels of these enzymes furthermore correlated negatively with CSF glucose in matching CSF samples. PKM levels were also found to be increased in AD in publicly available brain-tissue data. These results indicate that ALDOA and PKM may act as technically-robust potential biomarkers of glucose metabolism dysregulation in AD.
Collapse
Affiliation(s)
- Matthijs B de Geus
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Leiden University Medical Center, Leiden, The Netherlands
| | - Shannon N Leslie
- Yale Department of Psychiatry, New Haven, CT, USA
- Janssen Pharmaceuticals, San Diego, CA, USA
| | - TuKiet Lam
- W.M. Keck Biotechnology Resource Laboratory, Yale School of Medicine, New Haven, CT, USA
| | - Weiwei Wang
- W.M. Keck Biotechnology Resource Laboratory, Yale School of Medicine, New Haven, CT, USA
| | | | - Arnaud Droit
- CHU de Québec - Université Laval, Quebec City, Canada
| | - Pia Kivisakk
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Steven E Arnold
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Becky C Carlyle
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA.
- Department of Physiology Anatomy and Genetics, Oxford University, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, Oxford, UK.
| |
Collapse
|
15
|
Fernandes M, Spanetta M, Placidi F, Izzi F, Negri F, Nuccetelli M, Bernardini S, Mercuri NB, Liguori C. A preliminary study investigating the clinical potential of measuring cerebrospinal-fluid lactate levels in patients with narcolepsy type 1 and 2. Physiol Behav 2023; 272:114371. [PMID: 37802459 DOI: 10.1016/j.physbeh.2023.114371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
STUDY OBJECTIVES Besides the quantification of orexin-A/hypocretin-1 cerebrospinal fluid (CSF) levels in narcolepsy for diagnostic purposes, several other CSF biomarkers have been evaluated, although with controversial results. Since CSF lactate concentrations fluctuate according to the sleep-wake cycle with higher levels during wakefulness and lower levels during sleep, as documented in animal model studies, the present study aimed at quantifying the CSF lactate levels in patients with narcolepsy type 1 (NT1) and 2 (NT2), which are two sleep disorders featured by excessive daytime sleepiness (EDS). METHODS Patients with NT1 and NT2 were enrolled in this study and compared to a control group of similar age and sex. All the subjects included in the study underwent a polysomnographic study followed by lumbar puncture for the quantification of CSF lactate levels at awakening. RESULTS 23 NT1 (43.5 % male; 36.43 ± 11.89 years) and 15 NT2 patients (46.7 % male; 37.8 ± 14.1 years) were compared to 17 controls (58.8 % male; 32.3 ± 8.4 years). CSF lactate concentrations were reduced in patients with NT1 and NT2 compared to controls but no differences were found between the two groups of patients. ROC curves analysis showed that CSF lactate ≤1.3 mmol/l had a sensitivity of 96.49 and a specificity of 82.35 % for discriminating patients with narcolepsy from controls. CONCLUSIONS The present study showed a decrease in CSF lactate levels in patients with narcolepsy. Notably, the reduction of lactate levels was present in both NT1 and NT2 patients, independently of CSF orexin levels. Narcolepsy patients present EDS with daytime napping and REM-related episodes, possibly substantiating the CSF lactate levels reduction related to the impaired daytime wakefulness which was demonstrated in animal studies. Moreover, CSF lactate levels present a good sensitivity and adequate specificity for differentiating narcolepsy from controls. Further studies are needed to understand the role of CSF lactate and its usefulness for monitoring daytime vigilance in patients with narcolepsy.
Collapse
Affiliation(s)
- Mariana Fernandes
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Matteo Spanetta
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Fabio Placidi
- Department of Systems Medicine, University of Rome Tor Vergata, Italy; Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, Italy
| | - Francesca Izzi
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, Italy
| | - Francesco Negri
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, Italy
| | - Marzia Nuccetelli
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Sergio Bernardini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome Tor Vergata, Italy; Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome Tor Vergata, Italy; Sleep Medicine Centre, Neurology Unit, University Hospital of Rome Tor Vergata, Italy.
| |
Collapse
|
16
|
Jaberi S, Fahnestock M. Mechanisms of the Beneficial Effects of Exercise on Brain-Derived Neurotrophic Factor Expression in Alzheimer's Disease. Biomolecules 2023; 13:1577. [PMID: 38002258 PMCID: PMC10669442 DOI: 10.3390/biom13111577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/26/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a key molecule in promoting neurogenesis, dendritic and synaptic health, neuronal survival, plasticity, and excitability, all of which are disrupted in neurological and cognitive disorders such as Alzheimer's disease (AD). Extracellular aggregates of amyloid-β (Aβ) in the form of plaques and intracellular aggregates of hyperphosphorylated tau protein have been identified as major pathological insults in the AD brain, along with immune dysfunction, oxidative stress, and other toxic stressors. Although aggregated Aβ and tau lead to decreased brain BDNF expression, early losses in BDNF prior to plaque and tangle formation may be due to other insults such as oxidative stress and contribute to early synaptic dysfunction. Physical exercise, on the other hand, protects synaptic and neuronal structure and function, with increased BDNF as a major mediator of exercise-induced enhancements in cognitive function. Here, we review recent literature on the mechanisms behind exercise-induced BDNF upregulation and its effects on improving learning and memory and on Alzheimer's disease pathology. Exercise releases into the circulation a host of hormones and factors from a variety of peripheral tissues. Mechanisms of BDNF induction discussed here are osteocalcin, FNDC5/irisin, and lactate. The fundamental mechanisms of how exercise impacts BDNF and cognition are not yet fully understood but are a prerequisite to developing new biomarkers and therapies to delay or prevent cognitive decline.
Collapse
Affiliation(s)
- Sama Jaberi
- Graduate Program in Neuroscience, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
17
|
Yang J, Yuan S, Jian Y, Lei Y, Hu Z, Yang Q, Yan X, Zheng L, Li J, Liu W. Aerobic exercise regulates GPR81 signal pathway and mediates complement- microglia axis homeostasis on synaptic protection in the early stage of Alzheimer's disease. Life Sci 2023; 331:122042. [PMID: 37634815 DOI: 10.1016/j.lfs.2023.122042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/07/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
AIMS Memory impairment is a major clinical manifestation in Alzheimer's disease (AD) patients, while regular exercise may prevent and delay degenerative changes in memory functions, and our aim is to explore the influence and molecular mechanisms of aerobic exercise on the early stages of Alzheimer's disease. MAIN METHODS 3-month-old male APP/PS1 transgenic AD mice and C57BL/6J wild-type mice were randomly divided into four groups: wild-type and APP/PS1 mice with sedentary (WT-SED, AD-SED), and running (WT-RUN, AD-RUN) for 12-weeks. The spatial learning and memory function, RNA-sequencing, spine density, synaptic associated protein, mRNA and protein expression involved in G protein-coupled receptor 81 (GPR81) signaling pathway, and complement factors in brain were measured. KEY FINDINGS Aerobic exercise improved spatial learning and memory in APP/PS1 mice, potentially attributed to increased dendritic spine density. Subsequently, potential underlying mechanisms were identified through RNA sequencing: regular aerobic exercise could activate the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) cAMP/PKA signaling pathway and upregulate synaptic function-related proteins to promote synaptic growth, possibly by modulating GPR81. Notably, regular aerobic exercise inhibited microglial activation, reversed the microglial phenotype, reduced the production of initiation factor C1q and central factor C3 in the complement cascade in the brain, prevented the colocalization of microglia and PSD-95, and thus prevented synaptic loss. SIGNIFICANCE Physical exercise could play a critical role in improving cognitive function in AD by promoting synaptic growth and preventing synaptic loss, which may be related to the regulation of the GPR81/cAMP/PKA signaling pathway and inhibition of complement-mediated microglial phagocytosis of synapses.
Collapse
Affiliation(s)
- Jialun Yang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Shunling Yuan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Ye Jian
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Yong Lei
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Zelin Hu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Qiming Yang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Xinjun Yan
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Lan Zheng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China
| | - Jianghua Li
- College of Physical Education, Jiangxi Normal University, Nanchang 330022, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha 410012, China; Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
18
|
Hirata K, Matsuoka K, Tagai K, Endo H, Tatebe H, Ono M, Kokubo N, Oyama A, Shinotoh H, Takahata K, Obata T, Dehghani M, Near J, Kawamura K, Zhang MR, Shimada H, Yokota T, Tokuda T, Higuchi M, Takado Y. Altered Brain Energy Metabolism Related to Astrocytes in Alzheimer's Disease. Ann Neurol 2023. [PMID: 37703428 DOI: 10.1002/ana.26797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/16/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023]
Abstract
OBJECTIVE Increasing evidence suggests that reactive astrocytes are associated with Alzheimer's disease (AD). However, its underlying pathogenesis remains unknown. Given the role of astrocytes in energy metabolism, reactive astrocytes may contribute to altered brain energy metabolism. Astrocytes are primarily considered glycolytic cells, suggesting a preference for lactate production. This study aimed to examine alterations in astrocytic activities and their association with brain lactate levels in AD. METHODS The study included 30 AD and 30 cognitively unimpaired participants. For AD participants, amyloid and tau depositions were confirmed by positron emission tomography using [11 C]PiB and [18 F]florzolotau, respectively. Myo-inositol, an astroglial marker, and lactate in the posterior cingulate cortex were quantified by magnetic resonance spectroscopy. These magnetic resonance spectroscopy metabolites were compared with plasma biomarkers, including glial fibrillary acidic protein as another astrocytic marker, and amyloid and tau positron emission tomography. RESULTS Myo-inositol and lactate levels were higher in AD patients than in cognitively unimpaired participants (p < 0.05). Myo-inositol levels correlated with lactate levels (r = 0.272, p = 0.047). Myo-inositol and lactate levels were positively associated with the Clinical Dementia Rating sum-of-boxes scores (p < 0.05). Significant correlations were noted between myo-inositol levels and plasma glial fibrillary acidic protein, tau phosphorylated at threonine 181 levels, and amyloid and tau positron emission tomography accumulation in the posterior cingulate cortex (p < 0.05). INTERPRETATION We found high myo-inositol levels accompanied by increased lactate levels in the posterior cingulate cortex in AD patients, indicating a link between reactive astrocytes and altered brain energy metabolism. Myo-inositol and plasma glial fibrillary acidic protein may reflect similar astrocytic changes as biomarkers of AD. ANN NEUROL 2023.
Collapse
Affiliation(s)
- Kosei Hirata
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiwamu Matsuoka
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Kenji Tagai
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hironobu Endo
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Harutsugu Tatebe
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Maiko Ono
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Naomi Kokubo
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Asaka Oyama
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hitoshi Shinotoh
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Neurology Clinic Chiba, Chiba, Japan
| | - Keisuke Takahata
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takayuki Obata
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | | | - Jamie Near
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Kazunori Kawamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hitoshi Shimada
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Center for Integrated Human Brain Science, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiko Tokuda
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Yuhei Takado
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
19
|
Aquilani R, Cotta Ramusino M, Maestri R, Iadarola P, Boselli M, Perini G, Boschi F, Dossena M, Bellini A, Buonocore D, Doria E, Costa A, Verri M. Several dementia subtypes and mild cognitive impairment share brain reduction of neurotransmitter precursor amino acids, impaired energy metabolism, and lipid hyperoxidation. Front Aging Neurosci 2023; 15:1237469. [PMID: 37655338 PMCID: PMC10466813 DOI: 10.3389/fnagi.2023.1237469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
Objective Dementias and mild cognitive impairment (MCI) are associated with variously combined changes in the neurotransmitter system and signaling, from neurotransmitter synthesis to synaptic binding. The study tested the hypothesis that different dementia subtypes and MCI may share similar reductions of brain availability in amino acid precursors (AAPs) of neurotransmitter synthesis and concomitant similar impairment in energy production and increase of oxidative stress, i.e., two important metabolic alterations that impact neurotransmission. Materials and methods Sixty-five demented patients (Alzheimer's disease, AD, n = 44; frontotemporal disease, FTD, n = 13; vascular disease, VaD, n = 8), 10 subjects with MCI and 15 control subjects (CTRL) were recruited for this study. Cerebrospinal fluid (CSF) and plasma levels of AAPs, energy substrates (lactate, pyruvate), and an oxidative stress marker (malondialdehyde, MDA) were measured in all participants. Results Demented patients and subjects with MCI were similar for age, anthropometric parameters, biohumoral variables, insulin resistance (HOMA index model), and CSF neuropathology markers. Compared to age-matched CTRL, both demented patients and MCI subjects showed low CSF AAP tyrosine (precursor of dopamine and catecholamines), tryptophan (precursor of serotonin), methionine (precursor of acetylcholine) limited to AD and FTD, and phenylalanine (an essential amino acid largely used for protein synthesis) (p = 0.03 to <0.0001). No significant differences were found among dementia subtypes or between each dementia subtype and MCI subjects. In addition, demented patients and MCI subjects, compared to CTRL, had similar increases in CSF and plasma levels of pyruvate (CSF: p = 0.023 to <0.0001; plasma: p < 0.002 to <0.0001) and MDA (CSF: p < 0.035 to 0.002; plasma: p < 0.0001). Only in AD patients was the CSF level of lactate higher than in CTRL (p = 0.003). Lactate/pyruvate ratios were lower in all experimental groups than in CTRL. Conclusion AD, FTD, and VaD dementia patients and MCI subjects may share similar deficits in AAPs, partly in energy substrates, and similar increases in oxidative stress. These metabolic alterations may be due to AAP overconsumption following high brain protein turnover (leading to phenylalanine reductions), altered mitochondrial structure and function, and an excess of free radical production. All these metabolic alterations may have a negative impact on synaptic plasticity and activity.
Collapse
Affiliation(s)
- Roberto Aquilani
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Matteo Cotta Ramusino
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementia, IRCCS C. Mondino Foundation, Pavia, Italy
- Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberto Maestri
- Department of Biomedical Engineering of the Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, Montescano, Italy
| | - Paolo Iadarola
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Mirella Boselli
- Neurorehabilitation Unit of the Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, Montescano, Italy
| | - Giulia Perini
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementia, IRCCS C. Mondino Foundation, Pavia, Italy
- Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Federica Boschi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Maurizia Dossena
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Anna Bellini
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Daniela Buonocore
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Enrico Doria
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Alfredo Costa
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementia, IRCCS C. Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Manuela Verri
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| |
Collapse
|
20
|
Rojas-Valverde D, Bonilla DA, Gómez-Miranda LM, Calleja-Núñez JJ, Arias N, Martínez-Guardado I. Examining the Interaction between Exercise, Gut Microbiota, and Neurodegeneration: Future Research Directions. Biomedicines 2023; 11:2267. [PMID: 37626763 PMCID: PMC10452292 DOI: 10.3390/biomedicines11082267] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Physical activity has been demonstrated to have a significant impact on gut microbial diversity and function. Emerging research has revealed certain aspects of the complex interactions between the gut, exercise, microbiota, and neurodegenerative diseases, suggesting that changes in gut microbial diversity and metabolic function may have an impact on the onset and progression of neurological conditions. This study aimed to review the current literature from several databases until 1 June 2023 (PubMed/MEDLINE, Web of Science, and Google Scholar) on the interplay between the gut, physical exercise, microbiota, and neurodegeneration. We summarized the roles of exercise and gut microbiota on neurodegeneration and identified the ways in which these are all connected. The gut-brain axis is a complex and multifaceted network that has gained considerable attention in recent years. Research indicates that gut microbiota plays vital roles in metabolic shifts during physiological or pathophysiological conditions in neurodegenerative diseases; therefore, they are closely related to maintaining overall health and well-being. Similarly, exercise has shown positive effects on brain health and cognitive function, which may reduce/delay the onset of severe neurological disorders. Exercise has been associated with various neurochemical changes, including alterations in cortisol levels, increased production of endorphins, endocannabinoids like anandamide, as well as higher levels of serotonin and dopamine. These changes have been linked to mood improvements, enhanced sleep quality, better motor control, and cognitive enhancements resulting from exercise-induced effects. However, further clinical research is necessary to evaluate changes in bacteria taxa along with age- and sex-based differences.
Collapse
Affiliation(s)
- Daniel Rojas-Valverde
- Nucleus of Studies for High Performance and Health (CIDISAD-NARS), School of Human Movement Sciences and Quality of Life (CIEMHCAVI), National University, Heredia 86-3000, Costa Rica
- Sports Injury Clinic (Rehab & Readapt), School of Human Movement Sciences and Quality of Life (CIEMHCAVI), National University, Heredia 86-3000, Costa Rica
| | - Diego A. Bonilla
- Research Division, Dynamical Business & Science Society—DBSS International SAS, Bogotá 110311, Colombia;
- Research Group in Biochemistry and Molecular Biology, Faculty of Sciences and Education, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- Sport Genomics Research Group, Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Luis M. Gómez-Miranda
- Sports Faculty, Autonomous University of Baja California, Tijuana 22615, Mexico; (L.M.G.-M.); (J.J.C.-N.)
| | - Juan J. Calleja-Núñez
- Sports Faculty, Autonomous University of Baja California, Tijuana 22615, Mexico; (L.M.G.-M.); (J.J.C.-N.)
| | - Natalia Arias
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain;
| | - Ismael Martínez-Guardado
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, C/del Hostal, 28248 Madrid, Spain;
| |
Collapse
|
21
|
Fernandes M, Chiaravalloti A, Nuccetelli M, Placidi F, Izzi F, Camedda R, Bernardini S, Sancesario G, Schillaci O, Mercuri NB, Liguori C. Sleep Dysregulation Is Associated with 18F-FDG PET and Cerebrospinal Fluid Biomarkers in Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:845-854. [PMID: 37662614 PMCID: PMC10473116 DOI: 10.3233/adr-220111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/11/2023] [Indexed: 09/05/2023] Open
Abstract
Background Sleep impairment has been commonly reported in Alzheimer's disease (AD) patients. The association between sleep dysregulation and AD biomarkers has been separately explored in mild cognitive impairment (MCI) and AD patients. Objective The present study investigated cerebrospinal-fluid (CSF) and 18F-fluoro-deoxy-glucose positron emission tomography (18F-FDG-PET) biomarkers in MCI and AD patients in order to explore their association with sleep parameters measured with polysomnography (PSG). Methods MCI and AD patients underwent PSG, 18F-FDG-PET, and CSF analysis for detecting and correlating these biomarkers with sleep architecture. Results Thirty-five patients were included in the study (9 MCI and 26 AD patients). 18F-FDG uptake in left Brodmann area 31 (owing to the posterior cingulate cortex) correlated negatively with REM sleep latency (p = 0.013) and positively with REM sleep (p = 0.033). 18F-FDG uptake in the hippocampus was negatively associated with sleep onset latency (p = 0.041). Higher CSF orexin levels were associated with higher sleep onset latency (p = 0.042), Non-REM stage 1 of sleep (p = 0.031), wake after sleep onset (p = 0.028), and lower sleep efficiency (p = 0.045). CSF levels of Aβ42 correlated negatively with the wake bouts index (p = 0.002). CSF total-tau and phosphorylated tau levels correlated positively with total sleep time (p = 0.045) and time in bed (p = 0.031), respectively. Conclusion Sleep impairment, namely sleep fragmentation, REM sleep dysregulation, and difficulty in initiating sleep correlates with AD biomarkers, suggesting an effect of sleep on the pathological processes in different AD stages. Targeting sleep for counteracting the AD pathological processes represents a timely need for clinicians and researchers.
Collapse
Affiliation(s)
- Mariana Fernandes
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Agostino Chiaravalloti
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Marzia Nuccetelli
- Department of Clinical Biochemistry and Molecular Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Fabio Placidi
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| | - Francesca Izzi
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| | - Riccardo Camedda
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Sergio Bernardini
- Department of Clinical Biochemistry and Molecular Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Giuseppe Sancesario
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Sleep Medicine Centre, Neurology Unit, University Hospital of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
22
|
Bednarik P, Goranovic D, Svatkova A, Niess F, Hingerl L, Strasser B, Deelchand DK, Spurny-Dworak B, Krssak M, Trattnig S, Hangel G, Scherer T, Lanzenberger R, Bogner W. 1H magnetic resonance spectroscopic imaging of deuterated glucose and of neurotransmitter metabolism at 7 T in the human brain. Nat Biomed Eng 2023; 7:1001-1013. [PMID: 37106154 PMCID: PMC10861140 DOI: 10.1038/s41551-023-01035-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/30/2023] [Indexed: 04/29/2023]
Abstract
Impaired glucose metabolism in the brain has been linked to several neurological disorders. Positron emission tomography and carbon-13 magnetic resonance spectroscopic imaging (MRSI) can be used to quantify the metabolism of glucose, but these methods involve exposure to radiation, cannot quantify downstream metabolism, or have poor spatial resolution. Deuterium MRSI (2H-MRSI) is a non-invasive and safe alternative for the quantification of the metabolism of 2H-labelled substrates such as glucose and their downstream metabolic products, yet it can only measure a limited number of deuterated compounds and requires specialized hardware. Here we show that proton MRSI (1H-MRSI) at 7 T has higher sensitivity, chemical specificity and spatiotemporal resolution than 2H-MRSI. We used 1H-MRSI in five volunteers to differentiate glutamate, glutamine, γ-aminobutyric acid and glucose deuterated at specific molecular positions, and to simultaneously map deuterated and non-deuterated metabolites. 1H-MRSI, which is amenable to clinically available magnetic-resonance hardware, may facilitate the study of glucose metabolism in the brain and its potential roles in neurological disorders.
Collapse
Affiliation(s)
- Petr Bednarik
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.
- Department of Radiology, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.
| | - Dario Goranovic
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Alena Svatkova
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Radiology, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Fabian Niess
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Lukas Hingerl
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Bernhard Strasser
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Dinesh K Deelchand
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Benjamin Spurny-Dworak
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Martin Krssak
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Gilbert Hangel
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Scherer
- Department of Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Bogner
- High-Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
23
|
Xu L, Liu R, Qin Y, Wang T. Brain metabolism in Alzheimer's disease: biological mechanisms of exercise. Transl Neurodegener 2023; 12:33. [PMID: 37365651 DOI: 10.1186/s40035-023-00364-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
Alzheimer's disease (AD) is a major subtype of neurodegenerative dementia caused by long-term interactions and accumulation of multiple adverse factors, accompanied by dysregulation of numerous intracellular signaling and molecular pathways in the brain. At the cellular and molecular levels, the neuronal cellular milieu of the AD brain exhibits metabolic abnormalities, compromised bioenergetics, impaired lipid metabolism, and reduced overall metabolic capacity, which lead to abnormal neural network activity and impaired neuroplasticity, thus accelerating the formation of extracellular senile plaques and intracellular neurofibrillary tangles. The current absence of effective pharmacological therapies for AD points to the urgent need to investigate the benefits of non-pharmacological approaches such as physical exercise. Despite the evidence that regular physical activity can improve metabolic dysfunction in the AD state, inhibit different pathophysiological molecular pathways associated with AD, influence the pathological process of AD, and exert a protective effect, there is no clear consensus on the specific biological and molecular mechanisms underlying the advantages of physical exercise. Here, we review how physical exercise improves crucial molecular pathways and biological processes associated with metabolic disorders in AD, including glucose metabolism, lipid metabolism, Aβ metabolism and transport, iron metabolism and tau pathology. How metabolic states influence brain health is also presented. A better knowledge on the neurophysiological mechanisms by which exercise improves AD metabolism can contribute to the development of novel drugs and improvement of non-pharmacological interventions.
Collapse
Affiliation(s)
- Longfei Xu
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China
| | - Ran Liu
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China
| | - Yingkai Qin
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China.
| | - Tianhui Wang
- Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin, 300050, China.
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China.
| |
Collapse
|
24
|
Latina V, Atlante A, Malerba F, La Regina F, Balzamino BO, Micera A, Pignataro A, Stigliano E, Cavallaro S, Calissano P, Amadoro G. The Cleavage-Specific Tau 12A12mAb Exerts an Anti-Amyloidogenic Action by Modulating the Endocytic and Bioenergetic Pathways in Alzheimer's Disease Mouse Model. Int J Mol Sci 2023; 24:ijms24119683. [PMID: 37298634 DOI: 10.3390/ijms24119683] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Beyond deficits in hippocampal-dependent episodic memory, Alzheimer's Disease (AD) features sensory impairment in visual cognition consistent with extensive neuropathology in the retina. 12A12 is a monoclonal cleavage specific antibody (mAb) that in vivo selectively neutralizes the AD-relevant, harmful N-terminal 20-22 kDa tau fragment(s) (i.e., NH2htau) without affecting the full-length normal protein. When systemically injected into the Tg2576 mouse model overexpressing a mutant form of Amyloid Precursor Protein (APP), APPK670/671L linked to early onset familial AD, this conformation-specific tau mAb successfully reduces the NH2htau accumulating both in their brain and retina and, thus, markedly alleviates the phenotype-associated signs. By means of a combined biochemical and metabolic experimental approach, we report that 12A12mAb downregulates the steady state expression levels of APP and Beta-Secretase 1 (BACE-1) and, thus, limits the Amyloid beta (Aβ) production both in the hippocampus and retina from this AD animal model. The local, antibody-mediated anti-amyloidogenic action is paralleled in vivo by coordinated modulation of the endocytic (BIN1, RIN3) and bioenergetic (glycolysis and L-Lactate) pathways. These findings indicate for the first time that similar molecular and metabolic retino-cerebral pathways are modulated in a coordinated fashion in response to 12A12mAb treatment to tackle the neurosensorial Aβ accumulation in AD neurodegeneration.
Collapse
Affiliation(s)
- Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| | - Francesca Malerba
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Federico La Regina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Bijorn Omar Balzamino
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo 6, 00184 Rome, Italy
| | - Alessandra Micera
- Research Laboratories in Ophthalmology, IRCCS-Fondazione Bietti, Via Santo Stefano Rotondo 6, 00184 Rome, Italy
| | - Annabella Pignataro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Egidio Stigliano
- Area of Pathology, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Istituto di Anatomia Patologica, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Pietro Calissano
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
| |
Collapse
|
25
|
Liu FC, Cheng ML, Lo CJ, Hsu WC, Lin G, Lin HT. Exploring the aging process of cognitively healthy adults by analyzing cerebrospinal fluid metabolomics using liquid chromatography-tandem mass spectrometry. BMC Geriatr 2023; 23:217. [PMID: 37020298 PMCID: PMC10077689 DOI: 10.1186/s12877-023-03939-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND During biological aging, significant metabolic dysregulation in the central nervous system may lead to cognitive decline and neurodegeneration. However, the metabolomics of the aging process in cerebrospinal fluid (CSF) has not been thoroughly explored. METHODS In this cohort study of CSF metabolomics using liquid chromatography-mass spectrometry (LC-MS), fasting CSF samples collected from 92 cognitively unimpaired adults aged 20-87 years without obesity or diabetes were analyzed. RESULTS We identified 37 metabolites in these CSF samples with significant positive correlations with aging, including cysteine, pantothenic acid, 5-hydroxyindoleacetic acid (5-HIAA), aspartic acid, and glutamate; and two metabolites with negative correlations, asparagine and glycerophosphocholine. The combined alterations of asparagine, cysteine, glycerophosphocholine, pantothenic acid, sucrose, and 5-HIAA showed a superior correlation with aging (AUC = 0.982). These age-correlated changes in CSF metabolites might reflect blood-brain barrier breakdown, neuroinflammation, and mitochondrial dysfunction in the aging brain. We also found sex differences in CSF metabolites with higher levels of taurine and 5-HIAA in women using propensity-matched comparison. CONCLUSIONS Our LC-MS metabolomics of the aging process in a Taiwanese population revealed several significantly altered CSF metabolites during aging and between the sexes. These metabolic alterations in CSF might provide clues for healthy brain aging and deserve further exploration.
Collapse
Affiliation(s)
- Fu-Chao Liu
- Department of Anesthesiology, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan, 333, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan, 333, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chi-Jen Lo
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan, 333, Taiwan
| | - Wen-Chuin Hsu
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Gigin Lin
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Imaging and Intervention, Imaging Core Lab, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Huan-Tang Lin
- Department of Anesthesiology, Chang Gung Memorial Hospital, 5 Fu-Shin Street, Kwei-Shan, Taoyuan, 333, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
| |
Collapse
|
26
|
Stacpoole PW, McCall CE. The pyruvate dehydrogenase complex: Life's essential, vulnerable and druggable energy homeostat. Mitochondrion 2023; 70:59-102. [PMID: 36863425 DOI: 10.1016/j.mito.2023.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 03/04/2023]
Abstract
Found in all organisms, pyruvate dehydrogenase complexes (PDC) are the keystones of prokaryotic and eukaryotic energy metabolism. In eukaryotic organisms these multi-component megacomplexes provide a crucial mechanistic link between cytoplasmic glycolysis and the mitochondrial tricarboxylic acid (TCA) cycle. As a consequence, PDCs also influence the metabolism of branched chain amino acids, lipids and, ultimately, oxidative phosphorylation (OXPHOS). PDC activity is an essential determinant of the metabolic and bioenergetic flexibility of metazoan organisms in adapting to changes in development, nutrient availability and various stresses that challenge maintenance of homeostasis. This canonical role of the PDC has been extensively probed over the past decades by multidisciplinary investigations into its causal association with diverse physiological and pathological conditions, the latter making the PDC an increasingly viable therapeutic target. Here we review the biology of the remarkable PDC and its emerging importance in the pathobiology and treatment of diverse congenital and acquired disorders of metabolic integration.
Collapse
Affiliation(s)
- Peter W Stacpoole
- Department of Medicine (Division of Endocrinology, Metabolism and Diabetes), and Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, FL, United States.
| | - Charles E McCall
- Department of Internal Medicine and Translational Sciences, and Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
27
|
He DL, Fan YG, Wang ZY. Energy Crisis Links to Autophagy and Ferroptosis in Alzheimer's Disease: Current Evidence and Future Avenues. Curr Neuropharmacol 2023; 21:67-86. [PMID: 35980072 PMCID: PMC10193753 DOI: 10.2174/1570159x20666220817140737] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/14/2022] [Accepted: 08/11/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases worldwide. The occult nature of the onset and the uncertainty of the etiology largely impede the development of therapeutic strategies for AD. Previous studies revealed that the disorder of energy metabolism in the brains of AD patients appears far earlier than the typical pathological features of AD, suggesting a tight association between energy crisis and the onset of AD. Energy crisis in the brain is known to be induced by the reductions in glucose uptake and utilization, which may be ascribed to the diminished expressions of cerebral glucose transporters (GLUTs), insulin resistance, mitochondrial dysfunctions, and lactate dysmetabolism. Notably, the energy sensors such as peroxisome proliferators-activated receptor (PPAR), transcription factor EB (TFEB), and AMP-activated protein kinase (AMPK) were shown to be the critical regulators of autophagy, which play important roles in regulating beta-amyloid (Aβ) metabolism, tau phosphorylation, neuroinflammation, iron dynamics, as well as ferroptosis. In this study, we summarized the current knowledge on the molecular mechanisms involved in the energy dysmetabolism of AD and discussed the interplays existing between energy crisis, autophagy, and ferroptosis. In addition, we highlighted the potential network in which autophagy may serve as a bridge between energy crisis and ferroptosis in the progression of AD. A deeper understanding of the relationship between energy dysmetabolism and AD may provide new insight into developing strategies for treating AD; meanwhile, the energy crisis in the progression of AD should gain more attention.
Collapse
Affiliation(s)
- Da-Long He
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China
- Key Laboratory of Medical Cell Biology of Ministry of Education, Health Sciences Institute of China Medical University, Shenyang, 110122, China
| | - Yong-Gang Fan
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China
- Key Laboratory of Medical Cell Biology of Ministry of Education, Health Sciences Institute of China Medical University, Shenyang, 110122, China
| | - Zhan-You Wang
- Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, 110122, China
- Key Laboratory of Medical Cell Biology of Ministry of Education, Health Sciences Institute of China Medical University, Shenyang, 110122, China
| |
Collapse
|
28
|
Zebhauser PT, Berthele A, Goldhardt O, Diehl-Schmid J, Priller J, Ortner M, Grimmer T. Cerebrospinal fluid lactate levels along the Alzheimer’s disease continuum and associations with blood-brain barrier integrity, age, cognition, and biomarkers. Alzheimers Res Ther 2022; 14:61. [PMID: 35473756 PMCID: PMC9044672 DOI: 10.1186/s13195-022-01004-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/08/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Cerebrospinal fluid (CSF) lactate levels have been suggested to be associated with disease severity and progression in several neurological diseases as an indicator of impaired energy metabolism, neuronal death, or microglial activation. Few studies have examined CSF lactate levels in dementia due to Alzheimer’s disease (AD) and found higher values in AD patients compared to healthy controls (HC). However, these studies were mostly small in size, the inclusion criteria were not always well defined, and the diagnostic value and pathophysiological significance of CSF lactate in AD remain unclear.
Methods
We examined CSF lactate levels and potentially associated factors in a large (n=312), biologically and clinically well-defined sample of patients with AD at the stage of mild cognitive impairment (MCI-AD) and dementia (ADD), HC, and patients with frontotemporal lobar degeneration (FTLD).
Results
Contrary to previous studies, patients with ADD and HC did not differ in CSF lactate levels. However, we found higher values for patients with MCI-AD compared to those with ADD and to HC in univariate analysis, as well as for MCI-AD compared to ADD when controlling for age and blood-brain barrier integrity. CSF lactate levels were associated with age and blood-brain barrier integrity but not with clinical severity or CSF biomarkers of AD.
Conclusions
CSF lactate does not indicate biological or clinical disease severity in AD, nor does it differentiate between patients with AD and HC or patients with FTLD. However, higher CSF lactate levels were found in earlier stages of AD, which might be interpreted in the context of inflammatory processes.
Collapse
|
29
|
Wu Z, Qian S, Zhao L, Zhang Z, Song C, Chen L, Gao H, Zhu W. Metabolomics-based study of the potential interventional effects of Xiao-Xu-Ming Decoction on cerebral ischemia/reperfusion rats. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115379. [PMID: 35595221 DOI: 10.1016/j.jep.2022.115379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xiao-Xu-Ming Decoction (XXMD) is a classical Chinese medicinal compound for the treatment of ischemic stroke, which has good efficacy in clinical studies and also plays a neuroprotective role in pharmacological studies. AIM OF THE STUDY The purpose of this study is to investigate the potential and integral interventional effects of XXMD on cerebral ischemia/reperfusion rat model. MATERIALS AND METHODS In this study, 1H NMR metabolomics was used, combined with neurological functional assessments, cerebral infarct area measurements, and pathological staining including Nissl staining, immunofluorescence staining of NeuN and TUNEL, and immunohistochemical staining of MCT2, to analyze the metabolic effects of XXMD in the treatment of an ischemia/reperfusion rat model. RESULTS It's observed that XXMD treatment could improve the neurological deficit scores and reduce the cerebral infarct areas on cerebral ischemia/reperfusion rat model. The pathological staining results performed that XXMD treatment could improve the decrease of Nissl bodies and the expression of NeuN and MCT2, reduce the high expression of TUNEL. In 1H NMR study, it revealed that the metabolic patterns among three experimental groups were different, the level of lactate, acetate, NAA, glutamate, and GABA were improved to varying degrees in different brain area. CONCLUSION Our findings indicated that XXMD has positive effect on neuroprotection and improvement of metabolism targeting cerebral ischemic injury in rats, which showed great potential for ischemic stroke.
Collapse
Affiliation(s)
- Ziqian Wu
- Department of Neurology, Wenzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Wenzhou, China
| | - Shiyan Qian
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liangcai Zhao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, China
| | - Zaiheng Zhang
- The Third School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengcheng Song
- Department of Neurology, Wenzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Wenzhou, China
| | - Ling Chen
- Department of Neurology, Wenzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Wenzhou, China
| | - Hongchang Gao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, China.
| | - Wenzong Zhu
- Department of Neurology, Wenzhou Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Wenzhou, China.
| |
Collapse
|
30
|
Effects of Combining Biofactors on Bioenergetic Parameters, Aβ Levels and Survival in Alzheimer Model Organisms. Int J Mol Sci 2022; 23:ijms23158670. [PMID: 35955803 PMCID: PMC9368976 DOI: 10.3390/ijms23158670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 12/05/2022] Open
Abstract
Increased amyloid beta (Aβ) levels and mitochondrial dysfunction (MD) in the human brain characterize Alzheimer disease (AD). Folic acid, magnesium and vitamin B6 are essential micro-nutrients that may provide neuroprotection. Bioenergetic parameters and amyloid precursor protein (APP) processing products were investigated in vitro in human neuroblastoma SH-SY5Y-APP695 cells, expressing neuronal APP, and in vivo, in the invertebrate Caenorhabditis elegans (CL2006 & GMC101) expressing muscular APP. Model organisms were incubated with either folic acid and magnesium-orotate (ID63) or folic acid, magnesium-orotate and vitamin B6 (ID64) in different concentrations. ID63 and ID64 reduced Aβ, soluble alpha APP (sAPPα), and lactate levels in SH-SY5Y-APP695 cells. The latter might be explained by enhanced expression of lactate dehydrogenase (LDHA). Micronutrient combinations had no effects on mitochondrial parameters in SH-SY5Y-APP695 cells. ID64 showed a significant life-prolonging effect in C. elegans CL2006. Incubation of GMC101 with ID63 significantly lowered Aβ aggregation. Both combinations significantly reduced paralysis and thus improved the phenotype in GMC101. Thus, the combinations of the tested biofactors are effective in pre-clinical models of AD by interfering with Aβ related pathways and glycolysis.
Collapse
|
31
|
Wang Q, Duan L, Li X, Wang Y, Guo W, Guan F, Ma S. Glucose Metabolism, Neural Cell Senescence and Alzheimer’s Disease. Int J Mol Sci 2022; 23:ijms23084351. [PMID: 35457168 PMCID: PMC9030802 DOI: 10.3390/ijms23084351] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/05/2022] [Accepted: 04/12/2022] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD), an elderly neurodegenerative disorder with a high incidence and progressive memory decline, is one of the most expensive, lethal, and burdening diseases. To date, the pathogenesis of AD has not been fully illustrated. Emerging studies have revealed that cellular senescence and abnormal glucose metabolism in the brain are the early hallmarks of AD. Moreover, cellular senescence and glucose metabolism disturbance in the brain of AD patients may precede amyloid-β deposition or Tau protein phosphorylation. Thus, metabolic reprogramming targeting senescent microglia and astrocytes may be a novel strategy for AD intervention and treatment. Here, we recapitulate the relationships between neural cell senescence and abnormal glucose metabolism (e.g., insulin signaling, glucose and lactate metabolism) in AD. We then discuss the potential perspective of metabolic reprogramming towards an AD intervention, providing a theoretical basis for the further exploration of the pathogenesis of and therapeutic approach toward AD.
Collapse
Affiliation(s)
- Qianqian Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.W.); (L.D.); (X.L.); (Y.W.); (W.G.)
| | - Linyan Duan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.W.); (L.D.); (X.L.); (Y.W.); (W.G.)
| | - Xingfan Li
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.W.); (L.D.); (X.L.); (Y.W.); (W.G.)
| | - Yifu Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.W.); (L.D.); (X.L.); (Y.W.); (W.G.)
| | - Wenna Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.W.); (L.D.); (X.L.); (Y.W.); (W.G.)
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.W.); (L.D.); (X.L.); (Y.W.); (W.G.)
- Institute of Neuroscience, Zhengzhou University, Zhengzhou 450052, China
- NHC Key Laboratory of Birth Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou 450002, China
- Correspondence: (F.G.); (S.M.)
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; (Q.W.); (L.D.); (X.L.); (Y.W.); (W.G.)
- Institute of Neuroscience, Zhengzhou University, Zhengzhou 450052, China
- NHC Key Laboratory of Birth Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou 450002, China
- Correspondence: (F.G.); (S.M.)
| |
Collapse
|
32
|
Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer's disease. Cell Metab 2022; 34:634-648.e6. [PMID: 35303422 DOI: 10.1016/j.cmet.2022.02.013] [Citation(s) in RCA: 207] [Impact Index Per Article: 103.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/16/2021] [Accepted: 02/23/2022] [Indexed: 12/15/2022]
Abstract
The pro-inflammatory activation of microglia is a hallmark of Alzheimer's disease (AD), and this process involves a switch from oxidative phosphorylation (OXPHOS) toward glycolysis. Here, we show how a positive feedback loop in microglia drives AD pathogenesis, and we demonstrate that inhibiting this cycle in microglia can ameliorate Aβ burden and cognitive deficits in an AD mouse model (5XFAD). After first detecting elevated histone lactylation in brain samples from both 5XFAD mice and individuals with AD, we observed that H4K12la levels are elevated in Aβ plaque-adjacent microglia. This lactate-dependent histone modification is enriched at the promoters of glycolytic genes and activates transcription, thereby increasing glycolytic activity. Ultimately, the glycolysis/H4K12la/PKM2 positive feedback loop exacerbates microglial dysfunction in AD. Pharmacologic inhibition of PKM2 attenuated microglial activation, and microglia-specific ablation of Pkm2 improved spatial learning and memory in AD mice. Thus, our study illustrates that disruption of the positive feedback loop may be a potential therapeutic approach for the treatment of AD.
Collapse
|
33
|
Recent behavioral findings of pathophysiological involvement of lactate in the central nervous system. Biochim Biophys Acta Gen Subj 2022; 1866:130137. [DOI: 10.1016/j.bbagen.2022.130137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/19/2022]
|
34
|
Chen X, Zhang Y, Wang H, Liu L, Li W, Xie P. The regulatory effects of lactic acid on neuropsychiatric disorders. DISCOVER MENTAL HEALTH 2022; 2:8. [PMID: 37861858 PMCID: PMC10501010 DOI: 10.1007/s44192-022-00011-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/04/2022] [Indexed: 10/21/2023]
Abstract
Lactic acid is produced mainly in astrocytes in the brain and serves as a substance that supplies energy to neurons. In recent years, numerous studies identified the potential effects of lactic acid on the central nervous system and demonstrated its role in regulating brain function as an energy metabolism substrate or cellular signaling molecule. Both deficiency and accumulation of lactic acid cause neurological dysfunction, which further lead to the development of neuropsychiatric disorders, such as Major depressive disorder, Schizophrenia, Alzheimer's disease, and Multiple sclerosis. Although an association between lactic acid and neuropsychiatric disorders was reported in previous research, the underlying pathogenic mechanisms remain unclear. Therefore, an in-depth understanding of the molecular mechanisms by which lactic acid regulates brain function is of significance for the early diagnosis and prevention of neuropsychiatric disorders. In this review, we summarize evidence that is focused on the potential mechanisms of lactic acid as a signaling molecule involved in the pathogenesis of neuropsychiatric disorders and propose a new mechanism by which lactic acid regulates brain function and disease through the microbiota-gut-brain axis to offer new insight into the prevention and treatment of neuropsychiatric diseases.
Collapse
Affiliation(s)
- Xueyi Chen
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yangdong Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- College of Stomatology and Affiliated Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Lanxiang Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Wenwen Li
- Department of Pathology, Faculty of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
35
|
Stefani A, Pierantozzi M, Cardarelli S, Stefani L, Cerroni R, Conti M, Garasto E, Mercuri NB, Marini C, Sucapane P. Neurotrophins as Therapeutic Agents for Parkinson’s Disease; New Chances From Focused Ultrasound? Front Neurosci 2022; 16:846681. [PMID: 35401084 PMCID: PMC8990810 DOI: 10.3389/fnins.2022.846681] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/31/2022] [Indexed: 01/02/2023] Open
Abstract
Magnetic Resonance–guided Focused Ultrasound (MRgFUS) represents an effective micro-lesioning approach to target pharmaco-resistant tremor, mostly in patients afflicted by essential tremor (ET) and/or Parkinson’s disease (PD). So far, experimental protocols are verifying the clinical extension to other facets of the movement disorder galaxy (i.e., internal pallidus for disabling dyskinesias). Aside from those neurosurgical options, one of the most intriguing opportunities of this technique relies on its capability to remedy the impermeability of blood–brain barrier (BBB). Temporary BBB opening through low-intensity focused ultrasound turned out to be safe and feasible in patients with PD, Alzheimer’s disease, and amyotrophic lateral sclerosis. As a mere consequence of the procedures, some groups described even reversible but significant mild cognitive amelioration, up to hippocampal neurogenesis partially associated to the increased of endogenous brain-derived neurotrophic factor (BDNF). A further development elevates MRgFUS to the status of therapeutic tool for drug delivery of putative neurorestorative therapies. Since 2012, FUS-assisted intravenous administration of BDNF or neurturin allowed hippocampal or striatal delivery. Experimental studies emphasized synergistic modalities. In a rodent model for Huntington’s disease, engineered liposomes can carry glial cell line–derived neurotrophic factor (GDNF) plasmid DNA (GDNFp) to form a GDNFp-liposome (GDNFp-LPs) complex through pulsed FUS exposures with microbubbles; in a subacute MPTP-PD model, the combination of intravenous administration of neurotrophic factors (either through protein or gene delivery) plus FUS did curb nigrostriatal degeneration. Here, we explore these arguments, focusing on the current, translational application of neurotrophins in neurodegenerative diseases.
Collapse
Affiliation(s)
- Alessandro Stefani
- Department of System Medicine, Parkinson Center, University Tor Vergata, Rome, Italy
- *Correspondence: Alessandro Stefani,
| | | | - Silvia Cardarelli
- Department of System Medicine, Parkinson Center, University Tor Vergata, Rome, Italy
| | - Lucrezia Stefani
- Department of System Medicine, Parkinson Center, University Tor Vergata, Rome, Italy
| | - Rocco Cerroni
- Department of System Medicine, Parkinson Center, University Tor Vergata, Rome, Italy
| | - Matteo Conti
- Department of System Medicine, UOC Neurology, University Tor Vergata, Rome, Italy
| | - Elena Garasto
- Department of System Medicine, UOC Neurology, University Tor Vergata, Rome, Italy
| | - Nicola B. Mercuri
- Department of System Medicine, UOC Neurology, University Tor Vergata, Rome, Italy
| | - Carmine Marini
- UOC Neurology and Stroke Unit, University of L’Aquila, L’Aquila, Italy
| | | |
Collapse
|
36
|
Song X, Zhu Z, Qian X, Liu X, Chen S, Tang H. Multi-Omics Characterization of Type 2 Diabetes Mellitus-Induced Cognitive Impairment in the db/db Mouse Model. Molecules 2022; 27:1904. [PMID: 35335269 PMCID: PMC8951264 DOI: 10.3390/molecules27061904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder frequently accompanied by cognitive impairment. Contributing factors such as modern lifestyle, genetic predisposition, and gene environmental interactions have been postulated, but the pathogenesis remains unclear. In this study, we attempt to investigate the potential mechanisms and interventions underlying T2DM-induced cognitive deficits from the brain-gut axis perspective. A combined analysis of the brain transcriptome, plasma metabolome, and gut microbiota in db/db mice with cognitive decline was conducted. Transcriptome analysis identified 222 upregulated gene sets and 85 downregulated gene sets, mainly related to mitochondrial respiratory, glycolytic, and inflammation. In metabolomic analysis, a total of 75 significantly altered metabolites were identified, correlated with disturbances of glucose, lipid, bile acid, and steroid metabolism under disease state. Gut microbiota analysis suggested that the species abundance and diversity of db/db mice were significantly increased, with 23 significantly altered genus detected. Using the multi-omics integration, significant correlations among key genes (n = 33), metabolites (n = 41), and bacterial genera (n = 21) were identified. Our findings suggest that disturbed circulation and brain energy metabolism, especially mitochondrial-related disturbances, may contribute to cognitive impairment in db/db mice. This study provides novel insights into the functional interactions among the brain, circulating metabolites, and gut microbiota.
Collapse
Affiliation(s)
- Xiaoxuan Song
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.S.); (Z.Z.); (X.Q.)
| | - Zeyu Zhu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.S.); (Z.Z.); (X.Q.)
| | - Xiaohang Qian
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.S.); (Z.Z.); (X.Q.)
| | - Xiaoli Liu
- Department of Neurology, Shanghai Fengxian District Central Hospital, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital South Campus, Shanghai 201400, China;
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.S.); (Z.Z.); (X.Q.)
| | - Huidong Tang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (X.S.); (Z.Z.); (X.Q.)
- Department of Neurology, Shanghai Guangci Memorial Hospital, Shanghai 200025, China
| |
Collapse
|
37
|
Murray ER, Kemp M, Nguyen TT. The Microbiota-Gut-Brain Axis in Alzheimer's Disease: A Review of Taxonomic Alterations and Potential Avenues for Interventions. Arch Clin Neuropsychol 2022; 37:595-607. [PMID: 35202456 PMCID: PMC9035085 DOI: 10.1093/arclin/acac008] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2022] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE The gut microbiome is a complex community of microorganisms that inhabit the gastrointestinal tract. The microbiota-gut-brain axis encompasses a bidirectional communication system that allows the gut to influence the brain via neural, endocrine, immune, and metabolic signaling. Differences in the gut microbiome have been associated with psychiatric and neurological disorders, including Alzheimer's Disease (ad). Understanding these ad-associated alterations may offer novel insight into the pathology and treatment of ad. METHOD We conducted a narrative review of clinical studies investigating the gut microbiome in ad, organizing the results by phyla to understand the biological contributions of the gut microbial community to ad pathology and clinical features. We also reviewed randomized clinical trials of interventions targeting the microbiome to ameliorate ad symptoms and biomarkers. RESULTS Alpha diversity is reduced in patients with ad. Within Firmicutes, taxa that produce beneficial metabolites are reduced in ad, including Clostridiaceae, Lachnospiraceae, Ruminococcus, and Eubacterium. Within Bacteroidetes, findings were mixed, with studies showing either reduced or increased abundance of Bacteroides in mild cognitive impairment or ad patients. Proteobacteria that produce toxins tend to be increased in ad patients, including Escherichia/Shigella. A Mediterranean-ketogenic dietary intervention significantly increased beneficial short-chain fatty acids and taxa that were inversely correlated with changes in ad pathological markers. Probiotic supplementation with Lactobacillus spp. and Bifidobacterium spp. improved cognitive function and reduced inflammatory and metabolic markers in patients with ad. CONCLUSIONS The gut microbiome may provide insight into ad pathology and be a novel target for intervention. Potential therapeutics include probiotics and dietary intervention.
Collapse
Affiliation(s)
- Emily R Murray
- Division of Biological Sciences, University of California at San Diego, La Jolla, CA, USA,Department of Psychiatry, University of California at San Diego, La Jolla, CA, USA
| | - Mylon Kemp
- Department of Psychiatry, University of California at San Diego, La Jolla, CA, USA
| | - Tanya T Nguyen
- Corresponding author at: Associate Professor of Psychiatry, University of California at San Diego, 9500 Gilman Drive #0664, La Jolla, CA 92093, USA. Tel.: +(858)-246-5347; fax: +(858)-543-5475.E-mail address: (T.T. Nguyen)
| |
Collapse
|
38
|
Hascup ER, Sime LN, Peck MR, Hascup KN. Amyloid-β 42 stimulated hippocampal lactate release is coupled to glutamate uptake. Sci Rep 2022; 12:2775. [PMID: 35177691 PMCID: PMC8854608 DOI: 10.1038/s41598-022-06637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/03/2022] [Indexed: 12/05/2022] Open
Abstract
Since brain glucose hypometabolism is a feature of Alzheimer’s disease (AD) progression, lactate utilization as an energy source may become critical to maintaining central bioenergetics. We have previously shown that soluble amyloid-β (Aβ)42 stimulates glutamate release through the α7 nicotinic acetylcholine receptor (α7nAChR) and hippocampal glutamate levels are elevated in the APP/PS1 mouse model of AD. Accordingly, we hypothesized that increased glutamate clearance contributes to elevated extracellular lactate levels through activation of the astrocyte neuron lactate shuttle (ANLS). We utilized an enzyme-based microelectrode array (MEA) selective for measuring basal and phasic extracellular hippocampal lactate in male and female C57BL/6J mice. Although basal lactate was similar, transient lactate release varied across hippocampal subregions with the CA1 > CA3 > dentate for both sexes. Local application of Aβ42 stimulated lactate release throughout the hippocampus of male mice, but was localized to the CA1 of female mice. Coapplication with a nonselective glutamate or lactate transport inhibitor blocked these responses. Expression levels of SLC16A1, lactate dehydrogenase (LDH) A, and B were elevated in female mice which may indicate compensatory mechanisms to upregulate lactate production, transport, and utilization. Enhancement of the ANLS by Aβ42-stimulated glutamate release during AD progression may contribute to bioenergetic dysfunction in AD.
Collapse
Affiliation(s)
- Erin R Hascup
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neurosciences Institute, Southern Illinois University School of Medicine, P.O. Box 19628, Springfield, IL, 62794-9628, USA.,Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Lindsey N Sime
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neurosciences Institute, Southern Illinois University School of Medicine, P.O. Box 19628, Springfield, IL, 62794-9628, USA
| | - Mackenzie R Peck
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neurosciences Institute, Southern Illinois University School of Medicine, P.O. Box 19628, Springfield, IL, 62794-9628, USA
| | - Kevin N Hascup
- Department of Neurology, Dale and Deborah Smith Center for Alzheimer's Research and Treatment, Neurosciences Institute, Southern Illinois University School of Medicine, P.O. Box 19628, Springfield, IL, 62794-9628, USA. .,Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA. .,Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA.
| |
Collapse
|
39
|
Glazachev OS, Kryzhanovskaya SY, Zapara MA, Dudnik EN, Samartseva VG, Susta D. Safety and Efficacy of Intermittent Hypoxia Conditioning as a New Rehabilitation/ Secondary Prevention Strategy for Patients with Cardiovascular Diseases: A Systematic Review and Meta-analysis. Curr Cardiol Rev 2021; 17:e051121193317. [PMID: 33992064 PMCID: PMC8950503 DOI: 10.2174/1573403x17666210514005235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Once used by mountaineers to facilitate rapid adaptations to altitude and by athletes to improve their aerobic capacity, exposure to hypoxia has been proven to affect various physiological, clinically relevant parameters. A form of conditioning known as Intermittent Hypoxia Conditioning (IHC) consists of repeated exposures to intermittent hypoxia, combined with normoxia and hyperoxia, which has been shown to have potential as a treatment to improve cardio- metabolic risks profile in cardiac patients but results across studies are inconsistent. This systematic review and meta-analysis aimed to evaluate the clinical effectiveness of IHC. METHODS Four electronic databases (PubMed, Scopus, Web of Science, and Cochrane Central Register of Controlled Trials) were searched (from inception to December 2019) to retrieve all studies focused on IHC in elderly patients with cardiovascular disease. A meta-analysis of functional, efficacy and safety outcomes in cardiac patients was completed to compare IHC to sham treatments. RESULTS Fourteen studies with 320 patients in the Interval Hypoxia-normoxia Group (IHNG) or Interval Hypoxia-hyperoxia training Group (IHHG) and 111 patients in the control group were included in our meta-analysis. IHNT and IHHT were associated with significant reduction in heart rate, SBP, and DBP at rest after treatment [MD= -5.35 beat/min, 95% CI (-9.19 to -1.50), p=0.006], [MD= -13.72 mmHg, 95% CI (-18.31 to -9.132), p<0.001], and [MD= -7.882 mmHg, 95% CI (-13.163 to -2.601), p=0.003], respectively. There were no significant complications or serious adverse events related to IHNT/IHHT. CONCLUSION The current evidence suggested that the use of the IHNT/IHHT program in elderly patients with CVDs can be safe and effective in terms of heart rate and elevated blood pressure. However, currently, there is no supporting evidence that IHNT/IHHT can significantly improve hematological parameters or lipid profile. Exercise tolerance increased at the end of the course of hypoxic conditioning within IHC group, but did not differ from controls. Further research is needed.
Collapse
Affiliation(s)
- Oleg S. Glazachev
- Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; ,Address correspondence to this author at the Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Tel: +7 9161155729; E-mail:
| | - Svetlana Yu Kryzhanovskaya
- Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia;
| | - Maxim A. Zapara
- Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia;
| | - Elena N. Dudnik
- Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia;
| | - Vlada G. Samartseva
- Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia;
| | - Davide Susta
- School of Health and Human Performance, Dublin City University, Dublin, Ireland
| |
Collapse
|
40
|
Quintero ME, Pontes JGDM, Tasic L. Metabolomics in degenerative brain diseases. Brain Res 2021; 1773:147704. [PMID: 34744014 DOI: 10.1016/j.brainres.2021.147704] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 12/23/2022]
Abstract
Among the most studied diseases that affect the central nervous system are Parkinson's, Alzheimer's, and Huntington's diseases, but the lack of effective biomarkers, accurate diagnosis, and precise treatment for each of them is currently an issue. Due to the contribution of biomarkers in supporting diagnosis, many recent efforts have focused on their identification and validation at the beginning or during the progression of the mental illness. Metabolome reveals the metabolic processes that result from protein activities under the guided gene expression and environmental factors, either in healthy or pathological conditions. In this context, metabolomics has proven to be a valuable approach. Currently, magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) are the most commonly used bioanalytical techniques for metabolomics. MS-assisted profiling is considered the most versatile technique, and the NMR is the most reproductive. However, each one of them has its drawbacks. In this review, we summarized several alterations in metabolites that have been reported for these three classic brain diseases using MS and NMR-based research, which might suggest some possible biomarkers to support the diagnosis and/or new targets for their treatment.
Collapse
Affiliation(s)
- Melissa Escobar Quintero
- Laboratory of Chemical Biology, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - João Guilherme de Moraes Pontes
- Laboratory of Chemical Biology, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ljubica Tasic
- Laboratory of Chemical Biology, Department of Organic Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
41
|
Liguori C, Stefani A, Fernandes M, Cerroni R, Mercuri NB, Pierantozzi M. Biomarkers of Cerebral Glucose Metabolism and Neurodegeneration in Parkinson's Disease: A Cerebrospinal Fluid-Based Study. JOURNAL OF PARKINSON'S DISEASE 2021; 12:537-544. [PMID: 34864690 DOI: 10.3233/jpd-212936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Several biomarkers have been evaluated in Parkinson's disease (PD); cerebrospinal fluid (CSF) levels of lactate may reflect cerebral metabolism function and CSF amyloid-β42 (Aβ42), total tau (t-tau) and phosphorylated tau (p-tau) concentrations may detect an underlying neurodegenerative process. OBJECTIVE CSF levels of lactate, Aβ42, t-tau, and p-tau were measured in patients with mild to moderate PD. CSF levels of dopamine (DA) and its metabolite 3,4-Dihydroxyphenylacetic acid (DOPAC) were also assessed, exploring their relations with the other CSF biomarkers. METHODS 101 drug-naive PD patients and 60 controls were included. Participants underwent clinical assessments and CSF biomarker analysis. Patients were divided into subgroups according to their Hoehn & Yahr stage (PD-1, PD-2, PD-3). RESULTS PD patients showed higher lactate levels (M = 1.91; p = 0.03) and lower Aβ42 (M = 595; p < 0.001) and DA levels (M = 0.32; p = 0.04) than controls (Mlactate = 1.72; MAβ42 = 837; MDA = 0.50), while no significant differences were found in t-tau, p-tau and DOPAC concentrations. Considering the subgroup analysis, PD-3 group had higher lactate (M = 2.12) and t-tau levels (M = 333) than both PD-1 (Mlactate = 1.75, p = 0.006; Mt - tau = 176, p = 0.008) and PD-2 groups (Mlactate = 1.91, p = 0.01; Mt - tau = 176, p = 0.03), as well as the controls (Mlactate = 1.72, p = 0.04; Mt - tau = 205, p = 0.04). PD-2 group showed higher lactate levels than PD-1 group (p = 0.04) and controls (p = 0.03). Finally, CSF lactate levels negatively correlated with DA (r = -0.42) and positively with t-tau CSF levels (r = 0.33). CONCLUSION This CSF-based study shows that lactate levels in PD correlated with both clinical disease progression and neurodegeneration biomarkers, such as tau proteins and DA. Further studies should explore the clinical potential of measuring CSF biomarkers for better understanding the role of brain energy metabolism in PD, for research and therapeutic options.
Collapse
Affiliation(s)
- Claudio Liguori
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Italy.,Sleep Medicine Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Italy.,UOSD Parkinson's Disease Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - Alessandro Stefani
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Italy.,UOSD Parkinson's Disease Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - Mariana Fernandes
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - Rocco Cerroni
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Italy.,UOSD Parkinson's Disease Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - Nicola Biagio Mercuri
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Mariangela Pierantozzi
- Neurology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Italy.,UOSD Parkinson's Disease Centre, Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| |
Collapse
|
42
|
Chen W, Sun X, Zhan L, Zhou W, Bi T. Conditional Knockout of Pdha1 in Mouse Hippocampus Impairs Cognitive Function: The Possible Involvement of Lactate. Front Neurosci 2021; 15:767560. [PMID: 34720870 PMCID: PMC8552971 DOI: 10.3389/fnins.2021.767560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
Background and Purpose: Neurodegenerative diseases are associated with metabolic disturbances. Pyruvate dehydrogenase E1 component subunit alpha (PDHA1) is an essential component in the process of glucose metabolism, and its deficiency exists in various diseases such as Alzheimer’s disease (AD), epilepsy, Leigh’s syndrome, and diabetes-associated cognitive decline. However, the exact role of PDHA1 deficiency in neurodegenerative diseases remains to be elucidated. In this study, we explored the effect of PDHA1 deficiency on cognitive function and its molecular mechanism. Methods: A hippocampus-specific Pdha1 knockout (Pdha1–/–) mouse model was established, and behavioral tests were used to evaluate the cognitive function of mice. Transmission electron microscopy (TEM) was performed to observe the morphological changes of the hippocampus. The lactate level in the hippocampus was measured. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to explore the possible mechanism of the effect of PDHA1 on cognition. Results:Pdha1 knockout damaged the spatial memory of mice and led to the ultrastructural disorder of hippocampal neurons. Lactate accumulation and abnormal lactate transport occurred in Pdha1–/– mice, and the cyclic AMP-protein kinase A-cAMP response element-binding protein (cAMP/PKA/CREB) pathway was inhibited. Conclusion: Lactate accumulation caused by PDHA1 deficiency in the hippocampus may impair cognitive function by inhibiting the cAMP/PKA/CREB pathway.
Collapse
Affiliation(s)
- Wanxin Chen
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoxia Sun
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Libin Zhan
- Centre for Innovative Engineering Technology in Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Wen Zhou
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingting Bi
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
43
|
Ibarra R, Radanovic M, Pais MV, Talib LL, Forlenza OV. AD-Related CSF Biomarkers Across Distinct Levels of Cognitive Impairment: Correlations With Global Cognitive State. J Geriatr Psychiatry Neurol 2021; 34:659-667. [PMID: 32757819 DOI: 10.1177/0891988720944237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIM Associations between cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD) with the severity of cognitive impairment are unclear. We examined the correlations between CSF biomarkers and cognitive performance in the AD continuum. METHODS We studied 143 elderly patients: cognitively unimpaired (n = 51), mild cognitive impairment (MCI) amnestic (n = 55) and nonamnestic (n = 20), and mild AD (n = 17) assessed with the Cambridge Cognitive Test (CAMCOG). We correlated total CAMCOG and its subdomains with CSF Aβ42, T-tau, p-tau levels, and Aβ42/p-tau. RESULTS In the total sample, T-tau and Aβ42/p-tau correlated with the total CAMCOG (P < .01); all biomarkers correlated with memory (P < .001); T-tau correlated with language (P < .01). CONCLUSION Memory and T-tau levels may be the most suitable parameters to reflect cognitive/CSF biomarker correlations. At present, such correlations are of little use in routine clinical practice.
Collapse
Affiliation(s)
- Romel Ibarra
- Laboratorio de Neurociencias (LIM-27), Faculdade de Medicina, Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Brazil
| | - Marcia Radanovic
- Laboratorio de Neurociencias (LIM-27), Faculdade de Medicina, Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Brazil
| | - Marcos V Pais
- Laboratorio de Neurociencias (LIM-27), Faculdade de Medicina, Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Brazil
| | - Leda L Talib
- Laboratorio de Neurociencias (LIM-27), Faculdade de Medicina, Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Brazil
| | - Orestes V Forlenza
- Laboratorio de Neurociencias (LIM-27), Faculdade de Medicina, Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Brazil
| |
Collapse
|
44
|
Haller HL, Sander F, Popp D, Rapp M, Hartmann B, Demircan M, Nischwitz SP, Kamolz LP. Oxygen, pH, Lactate, and Metabolism-How Old Knowledge and New Insights Might Be Combined for New Wound Treatment. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57111190. [PMID: 34833408 PMCID: PMC8617754 DOI: 10.3390/medicina57111190] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022]
Abstract
Over time, we have come to recognize a very complex network of physiological changes enabling wound healing. An immunological process enables the body to distinguish damaged cells and begin a cleaning mechanism by separating damaged proteins and cells with matrix metalloproteinases, a complement reaction, and free radicals. A wide variety of cell functions help to rebuild new tissue, dependent on energy provision and oxygen supply. Like in an optimized “bio-reactor,” disturbance can lead to prolonged healing. One of the earliest investigated local factors is the pH of wounds, studied in close relation to the local perfusion, oxygen tension, and lactate concentration. Granulation tissue with the wrong pH can hinder fibroblast and keratinocyte division and proliferation, as well as skin graft takes. Methods for influencing the pH have been tested, such as occlusion and acidification by the topical application of acidic media. In most trials, this has not changed the wound’s pH to an acidic one, but it has reduced the strong alkalinity of deeper or chronic wounds. Energy provision is essential for all repair processes. New insights into the metabolism of cells have changed the definition of lactate from a waste product to an indispensable energy provider in normoxic and hypoxic conditions. Neovascularization depends on oxygen provision and lactate, signaling hypoxic conditions even under normoxic conditions. An appropriate pH is necessary for successful skin grafting; hypoxia can change the pH of wounds. This review describes the close interconnections between the local lactate levels, metabolism, healing mechanisms, and pH. Furthermore, it analyzes and evaluates the different possible ways to support metabolism, such as lactate enhancement and pH adjustment. The aim of wound treatment must be the optimization of all these components. Therefore, the role of lactate and its influence on wound healing in acute and chronic wounds will be assessed.
Collapse
Affiliation(s)
| | - Frank Sander
- Burn Center, Plastic Surgery of Trauma Hospital Berlin, Warener Strasse 7, 12683 Berlin, Germany; (F.S.); (B.H.)
| | - Daniel Popp
- Department of Surgery, Division of Plastic, Aesthetic and Reconstructive Surgery, Medical University Graz, Auenbruggerplatz 29, 8036 Graz, Austria; (D.P.); (S.P.N.); (L.P.K.)
| | - Matthias Rapp
- Clinic for Orthopedics, Trauma Surgery and Sports Traumatology, Burn Center, Marienhospital Stuttgart, Böheimstraße 37, 70199 Stuttgart, Germany;
| | - Bernd Hartmann
- Burn Center, Plastic Surgery of Trauma Hospital Berlin, Warener Strasse 7, 12683 Berlin, Germany; (F.S.); (B.H.)
| | - Mehmet Demircan
- Pediatric Intensive Burn Care Unit, Department of Pediatric Surgery, Faculty of Medicine, İnönü University, 44315 Malatya, Turkey;
| | - Sebastian Philipp Nischwitz
- Department of Surgery, Division of Plastic, Aesthetic and Reconstructive Surgery, Medical University Graz, Auenbruggerplatz 29, 8036 Graz, Austria; (D.P.); (S.P.N.); (L.P.K.)
- COREMED—Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgsellschaft mbH, 8036 Graz, Austria
| | - Lars Peter Kamolz
- Department of Surgery, Division of Plastic, Aesthetic and Reconstructive Surgery, Medical University Graz, Auenbruggerplatz 29, 8036 Graz, Austria; (D.P.); (S.P.N.); (L.P.K.)
- COREMED—Cooperative Centre for Regenerative Medicine, JOANNEUM RESEARCH Forschungsgsellschaft mbH, 8036 Graz, Austria
| |
Collapse
|
45
|
Abstract
Purpose Diabetic retinopathy (DR), a common microvascular complication of diabetes, is the leading cause of acquired blindness in the working-age population. Individuals with diabetes still develop DR despite appropriate glycemic and blood pressure control, highlighting the pressing need to identify useful biomarkers for risk stratification. The purpose of this review is to systematically summarize potential metabolic biomarkers and pathways of DR, which could facilitate developing an understanding of the disease mechanisms, as well as new therapeutic measures. Methods We searched PubMed and Web of Science for relevant metabolomics studies on humans published before September 30, 2020. Information regarding authors, title, publication date, study subjects, analytical platforms, methods of statistical analysis, biological samples, directions of change of potential metabolic biomarkers, and predictive values of metabolic biomarker panels was extracted, and the quality of the studies was assessed. Pathway analysis, including enrichment analysis and topology analysis, was derived from integrating differential metabolites using MetaboAnalyst 3.0, based on the Kyoto Encyclopedia of Genes and Genomes and Human Metabolome Database. Results We found nine studies focused on the identification of potential biomarkers. Repeatedly identified metabolites including l-glutamine, l-lactic acid, pyruvic acid, acetic acid, l-glutamic acid, d-glucose, l-alanine, l-threonine, citrulline, l-lysine, and succinic acid were found to be potential biomarkers of DR. It was observed that l-glutamine and citrulline changed in all biological samples. Dysregulation of metabolic pathways involved amino acid and energy metabolism. Conclusions This review summarizes potential biomarkers and metabolic pathways, providing insights into new pathogenic pathways for this microvascular complication of diabetes.
Collapse
Affiliation(s)
- Xiao-Wen Hou
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Ying Wang
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Chen-Wei Pan
- School of Public Health, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
46
|
Coppedè F. One-carbon epigenetics and redox biology of neurodegeneration. Free Radic Biol Med 2021; 170:19-33. [PMID: 33307166 DOI: 10.1016/j.freeradbiomed.2020.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
One-carbon metabolism provides the methyl groups for both DNA and histone tail methylation reactions, two of the main epigenetic processes that tightly regulate the chromatin structure and gene expression levels. Several enzymes involved in one-carbon metabolism, as well as several epigenetic enzymes, are regulated by intracellular metabolites and redox cofactors, but their expression levels are in turn regulated by epigenetic modifications, in such a way that metabolism and gene expression reciprocally regulate each other to maintain homeostasis and regulate cell growth, survival, differentiation and response to environmental stimuli. Increasing evidence highlights the contribution of impaired one-carbon metabolism and epigenetic modifications in neurodegeneration. This article provides an overview of DNA and histone tail methylation changes in major neurodegenerative disorders, namely Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis, discussing the contribution of oxidative stress and impaired one-carbon and redox metabolism to their onset and progression.
Collapse
Affiliation(s)
- Fabio Coppedè
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| |
Collapse
|
47
|
Almendros I, Basoglu ÖK, Conde SV, Liguori C, Saaresranta T. Metabolic dysfunction in OSA: Is there something new under the sun? J Sleep Res 2021; 31:e13418. [PMID: 34152053 DOI: 10.1111/jsr.13418] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/06/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
The growing number of patients with obstructive sleep apnea is challenging healthcare systems worldwide. Obstructive sleep apnea is characterized by chronic intermittent hypoxaemia, episodes of apnea and hypopnea, and fragmented sleep. Cardiovascular and metabolic diseases are common in obstructive sleep apnea, also in lean patients. Further, comorbidity burden is not unambiguously linked to the severity of obstructive sleep apnea. There is a growing body of evidence revealing diverse functions beyond the conventional tasks of different organs such as carotid body and gut microbiota. Chronic intermittent hypoxia and sleep loss due to sleep fragmentation are associated with insulin resistance. Indeed, carotid body is a multi-sensor organ not sensoring only hypoxia and hypercapnia but also acting as a metabolic sensor. The emerging evidence shows that obstructive sleep apnea and particularly chronic intermittent hypoxia is associated with non-alcoholic fatty liver disease. Gut dysbiosis seems to be an important factor in the pathophysiology of obstructive sleep apnea and its consequences. The impact of sleep fragmentation and intermittent hypoxia on the development of metabolic syndrome may be mediated via altered gut microbiota. Circadian misalignment seems to have an impact on the cardiometabolic risk in obstructive sleep apnea. Dysfunction of cerebral metabolism is also related to hypoxia and sleep fragmentation. Therefore, obstructive sleep apnea may alter cerebral metabolism and predispose to neurocognitive impairment. Moreover, recent data show that obstructive sleep apnea independently predicts impaired lipid levels. This mini-review will provide novel insights into the mechanisms of metabolic dysfunction in obstructive sleep apnea combining recent evidence from basic, translational and clinical research, and discuss the impact of positive airway pressure treatment on metabolic disorders.
Collapse
Affiliation(s)
- Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Özen K Basoglu
- Department of Pulmonary Diseases, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Silvia V Conde
- Faculdade de Ciências Médicas, CEDOC, NOVA Medical School, Lisboa, Portugal
| | - Claudio Liguori
- Sleep Medicine Centre, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Tarja Saaresranta
- Division of Medicine, Department of Pulmonary Diseases, Turku University Hospital, Turku, Finland.,Sleep Research Centre, Department of Pulmonary Diseases and Clinical Allergology, University of Turku, Turku, Finland
| |
Collapse
|
48
|
Bonomi CG, De Lucia V, Mascolo AP, Assogna M, Motta C, Scaricamazza E, Sallustio F, Mercuri NB, Koch G, Martorana A. Brain energy metabolism and neurodegeneration: hints from CSF lactate levels in dementias. Neurobiol Aging 2021; 105:333-339. [PMID: 34171631 DOI: 10.1016/j.neurobiolaging.2021.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/03/2021] [Accepted: 05/20/2021] [Indexed: 01/13/2023]
Abstract
Mitochondrial dysfunction is pivotal in the development of neurodegenerative dementias, causing cellular death alongside disease-specific pathogenic cascades. Holding cerebrospinal fluid (CSF) lactates as an indirect measure of brain metabolic activity, we first compared CSF lactate levels from patients with Alzheimer's disease (AD)-stratified according to the ATN system and epsilon genotype-frontotemporal dementia (FTD) and dementia with Lewy body (DLB) to findings from healthy controls. With respect to controls, we detected lower CSF lactates in patients with AD and FTD but comparable levels in patients with DLB. Second, a correlation analysis between CSF lactates and biomarkers of neurodegeneration identified an inverse correlation between lactates and levels of t-tau and p-tau only in the Alzheimer's continuum. The reduction of CSF lactate correlates to the advent of tauopathy and cellular death in AD, implying that Aβ pathology alone is not sufficient to induce neuronal metabolic impairment. The metabolic impairment in FTD patients has a similar explanation, as it is likely due to fast neuronal degeneration in the disease. The absence of CSF lactate reduction in patients with DLB may be related to the prevalent subcortical localization of the pathology.
Collapse
Affiliation(s)
| | - Vincenzo De Lucia
- Memory Clinic, Policlinico Tor Vergata, University of Rome, Rome, Italy
| | | | - Martina Assogna
- Memory Clinic, Policlinico Tor Vergata, University of Rome, Rome, Italy; Non Invasive Brain Stimulation Unit, IRCCS Santa Lucia, Rome, Italy
| | - Caterina Motta
- Memory Clinic, Policlinico Tor Vergata, University of Rome, Rome, Italy; Non Invasive Brain Stimulation Unit, IRCCS Santa Lucia, Rome, Italy
| | | | | | | | - Giacomo Koch
- Non Invasive Brain Stimulation Unit, IRCCS Santa Lucia, Rome, Italy; Human Physiology Unit, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
49
|
Zimnitskaya OV, Mozheyko EY, Petrova MM. Biomarkers of vascular cognitive impairment. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2021. [DOI: 10.15829/1728-8800-2021-2677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
There is currently no approved list of vascular cognitive impairment biomarkers. The main problem for the practitioner in identifying cognitive impairment in patients is the differential diagnosis of Alzheimer's disease, vascular cognitive impairment, and other diseases, which are much less common. Vascular cognitive impairment includes post-stroke dementia, cognitive dysfunction in cardio-and cerebrovascular diseases. Without etiology identification, it is impossible to prescribe adequate treatment. Another challenge is identifying cognitive impairment before dementia develops. This literature review is devoted to the search and critical analysis of candidates for biomarkers of vascular cognitive impairment and the establishment of markers of moderate cognitive dysfunction. The papers were searched for in the Web of Science and PubMed databases. A list of cerebrospinal fluid, plasma, serum and genetic biomarkers was made, allowing for differential diagnosis between vascular impairment and Alzheimer's disease. The markers of moderate cognitive dysfunction, which make it possible to identify cognitive impairment at the pre-dementia stage, were also identified.
Collapse
Affiliation(s)
| | | | - M. M. Petrova
- V.F. Voino-Yasenetsky Krasnoyarsk State Medical University
| |
Collapse
|
50
|
Decker Y, Németh E, Schomburg R, Chemla A, Fülöp L, Menger MD, Liu Y, Fassbender K. Decreased pH in the aging brain and Alzheimer's disease. Neurobiol Aging 2021; 101:40-49. [PMID: 33578193 DOI: 10.1016/j.neurobiolaging.2020.12.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/02/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
Using publicly available data sets, we compared pH in the human brain and the cerebrospinal fluid (CSF) of postmortem control and Alzheimer's disease cases. We further investigated the effects of long-term acidosis in vivo in the APP-PS1 mouse model of Alzheimer's disease. We finally examined in vitro whether low pH exposure could modulate the release of proinflammatory cytokines and the uptake of amyloid beta by microglia. In the human brain, pH decreased with aging. Similarly, we observed a reduction of pH in the brain of C57BL/6 mice with age. In addition, independent database analyses revealed that postmortem brain and CSF pH is further reduced in Alzheimer's disease cases compared with controls. Moreover, in vivo experiments showed that low pH CSF infusion increased amyloid beta plaque load in APP-PS1 mice. We further observed that mild acidosis reduced the amyloid beta 42-induced release of tumor necrosis factor-alpha by microglia and their capacity to uptake this peptide. Brain acidosis is associated with aging and might affect pathophysiological processes such as amyloid beta aggregation or inflammation in Alzheimer's disease.
Collapse
Affiliation(s)
- Yann Decker
- Department of Neurology, University of the Saarland, Homburg/Saar, Germany; German Institute for Dementia Prevention (DIDP), University of the Saarland, Homburg/Saar, Germany.
| | - Eszter Németh
- Department of Neurology, University of the Saarland, Homburg/Saar, Germany; German Institute for Dementia Prevention (DIDP), University of the Saarland, Homburg/Saar, Germany
| | - Robert Schomburg
- Rehaklinik Zihlschlacht, Neurologisches Rehabilitationszentrum, Zihlschlacht, Switzerland
| | - Axel Chemla
- Department of Neurology, University of the Saarland, Homburg/Saar, Germany; German Institute for Dementia Prevention (DIDP), University of the Saarland, Homburg/Saar, Germany
| | - Lívia Fülöp
- Department of Medical Chemistry, University of Szeged, Szeged, Hungary
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Yang Liu
- Department of Neurology, University of the Saarland, Homburg/Saar, Germany; German Institute for Dementia Prevention (DIDP), University of the Saarland, Homburg/Saar, Germany
| | - Klaus Fassbender
- Department of Neurology, University of the Saarland, Homburg/Saar, Germany; German Institute for Dementia Prevention (DIDP), University of the Saarland, Homburg/Saar, Germany.
| |
Collapse
|