1
|
Murphy MP, Zieger M, Henry M, Meleady P, Mueller C, McElvaney NG, Reeves EP. Citrullination, a novel posttranslational modification of elastin, is involved in COPD pathogenesis. Am J Physiol Lung Cell Mol Physiol 2024; 327:L600-L606. [PMID: 39137524 DOI: 10.1152/ajplung.00185.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
Elastin is an extracellular matrix protein (ECM) that supports elasticity of the lung, and in patients with chronic obstructive pulmonary disease (COPD) and emphysema, the structural changes that reduce the amount of elastic recoil, lead to loss of pulmonary function. We recently demonstrated that elastin is a target of peptidyl arginine deiminase (PAD) enzyme-induced citrullination, thereby leading to enhanced susceptibility of this ECM protein to proteolysis. This study aimed to investigate the impact of PAD activity in vivo and furthermore assessed whether pharmacological inhibition of PAD activity protects against pulmonary emphysema. Using a Serpina1a-e knockout mouse model, previously shown to develop inflammation-mediated emphysema, we validated the involvement of PADs in airway disease. In line with emphysema development, intratracheal administration of lipopolysaccharide in combination with PADs provoked significant airspace enlargement (P < 0.001) and diminished lung function, including loss of lung tissue elastance (P = 0.0217) and increases in lung volumes (P = 0.0463). Intraperitoneal treatment of mice with the PAD inhibitor, BB-Cl-amidine, prevented PAD/LPS-mediated lung function decline and emphysema and reduced levels of citrullinated airway elastin (P = 0.0199). These results provide evidence for the impact of PADs on lung function decline, indicating promising potential for the future development of PAD-based therapeutics for preserving lung function in patients with COPD.NEW & NOTEWORTHY This study provides evidence for the impact of peptidyl arginine deiminase (PAD) enzymes on lung function decline, indicating promising potential for the future development of PAD-based therapeutics for preserving lung function in patients with COPD.
Collapse
Affiliation(s)
- Mark P Murphy
- Department of Medicine, Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Marina Zieger
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States
- Department of Ophthalmology, Tufts Medical Center, Center for Translational Ocular Immunology, Boston, Massachusetts, United States
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Christian Mueller
- Genomic Medicine Unit, Sanofi, Waltham, Massachusetts, United States
| | - Noel G McElvaney
- Department of Medicine, Irish Centre for Genetic Lung Disease, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Emer P Reeves
- Department of Anaesthesia and Critical Care Medicine, Pulmonary Clinical Science, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
2
|
Xu J, Zeng Q, Li S, Su Q, Fan H. Inflammation mechanism and research progress of COPD. Front Immunol 2024; 15:1404615. [PMID: 39185405 PMCID: PMC11341368 DOI: 10.3389/fimmu.2024.1404615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common respiratory disease characterized by irreversible progressive airflow limitation, often manifested by persistent cough, sputum production and other respiratory symptoms that pose a serious threat to human health and affect the quality of life of patients. The disease is associated with chronic inflammation, which is associated with the onset and progression of COPD, but anti-inflammatory therapy is not first-line treatment. Inflammation has multiple manifestations and phenotypes, and this heterogeneity reveals different patterns of inflammation, making treatment difficult. This paper aims to explore the direction of more effective anti-inflammatory treatment by analyzing the nature of inflammation and the molecular mechanism of disease occurrence and development in COPD patients, and to provide new ideas for the treatment of COPD patients.
Collapse
Affiliation(s)
- Jiao Xu
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qingyue Zeng
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shuangqing Li
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qiaoli Su
- General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Fan
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Wu Y, Li E, Knight M, Adeniyi-Ipadeola G, Song LZ, Burns AR, Gazzinelli-Guimaraes AC, Fujiwara R, Bottazzi ME, Weatherhead JE. Transient Ascaris suum larval migration induces intractable chronic pulmonary disease and anemia in mice. PLoS Negl Trop Dis 2021; 15:e0010050. [PMID: 34914687 PMCID: PMC8717995 DOI: 10.1371/journal.pntd.0010050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/30/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Ascariasis is one of the most common infections in the world and associated with significant global morbidity. Ascaris larval migration through the host’s lungs is essential for larval development but leads to an exaggerated type-2 host immune response manifesting clinically as acute allergic airway disease. However, whether Ascaris larval migration can subsequently lead to chronic lung diseases remains unknown. Here, we demonstrate that a single episode of Ascaris larval migration through the host lungs induces a chronic pulmonary syndrome of type-2 inflammatory pathology and emphysema accompanied by pulmonary hemorrhage and chronic anemia in a mouse model. Our results reveal that a single episode of Ascaris larval migration through the host lungs leads to permanent lung damage with systemic effects. Remote episodes of ascariasis may drive non-communicable lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), and chronic anemia in parasite endemic regions. Ascariasis is the most common helminth infection and leads to significant global morbidity. Transient Ascaris larval migration through the host’s lungs is essential for larval development but leads to an exaggerated type-2 host immune response. Our work demonstrates that transient Ascaris spp. larval migration through the lungs has significant long-term consequences including changes in lung structure and function as well as vascular damage causing chronic lung disease and anemia. We propose that Ascaris spp. larval migration through the host lungs is a risk factor for the development of chronic lung disease and anemia in parasite-endemic regions globally.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Pediatrics, Pediatric Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Medicine, Pathology and Immunology, and the Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Evan Li
- Department of Medicine, Pathology and Immunology, and the Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Morgan Knight
- Department of Medicine, Pathology and Immunology, and the Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Grace Adeniyi-Ipadeola
- Department of Pediatrics, Pediatric Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
| | - Li-zhen Song
- Department of Medicine, Pathology and Immunology, and the Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Alan R. Burns
- College of Optometry, University of Houston, Houston, Texas, United States of America
| | | | - Ricardo Fujiwara
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Elena Bottazzi
- Department of Pediatrics, Pediatric Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Texas Children’s Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jill E. Weatherhead
- Department of Pediatrics, Pediatric Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- National School of Tropical Medicine, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Medicine, Infectious Diseases, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
4
|
Rodrigues SDO, da Cunha CMC, Soares GMV, Silva PL, Silva AR, Gonçalves-de-Albuquerque CF. Mechanisms, Pathophysiology and Currently Proposed Treatments of Chronic Obstructive Pulmonary Disease. Pharmaceuticals (Basel) 2021; 14:979. [PMID: 34681202 PMCID: PMC8539950 DOI: 10.3390/ph14100979] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/13/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the leading global causes of morbidity and mortality. A hallmark of COPD is progressive airflow obstruction primarily caused by cigarette smoke (CS). CS exposure causes an imbalance favoring pro- over antioxidants (oxidative stress), leading to transcription factor activation and increased expression of inflammatory mediators and proteases. Different cell types, including macrophages, epithelial cells, neutrophils, and T lymphocytes, contribute to COPD pathophysiology. Alteration in cell functions results in the generation of an oxidative and inflammatory microenvironment, which contributes to disease progression. Current treatments include inhaled corticosteroids and bronchodilator therapy. However, these therapies do not effectively halt disease progression. Due to the complexity of its pathophysiology, and the risk of exacerbating symptoms with existing therapies, other specific and effective treatment options are required. Therapies directly or indirectly targeting the oxidative imbalance may be promising alternatives. This review briefly discusses COPD pathophysiology, and provides an update on the development and clinical testing of novel COPD treatments.
Collapse
Affiliation(s)
- Sarah de Oliveira Rodrigues
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil
| | - Carolina Medina Coeli da Cunha
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
| | - Giovanna Martins Valladão Soares
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
| | - Pedro Leme Silva
- Laboratório de Investigação Pulmonar, Carlos Chagas Filho, Instituto de Biofísica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil
- Programa de Pós-Graduação em Biologia Molecular e Celular, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20210-010, Brazil
| |
Collapse
|
5
|
Gozzi-Silva SC, Teixeira FME, Duarte AJDS, Sato MN, Oliveira LDM. Immunomodulatory Role of Nutrients: How Can Pulmonary Dysfunctions Improve? Front Nutr 2021; 8:674258. [PMID: 34557509 PMCID: PMC8453008 DOI: 10.3389/fnut.2021.674258] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022] Open
Abstract
Nutrition is an important tool that can be used to modulate the immune response during infectious diseases. In addition, through diet, important substrates are acquired for the biosynthesis of regulatory molecules in the immune response, influencing the progression and treatment of chronic lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD). In this way, nutrition can promote lung health status. A range of nutrients, such as vitamins (A, C, D, and E), minerals (zinc, selenium, iron, and magnesium), flavonoids and fatty acids, play important roles in reducing the risk of pulmonary chronic diseases and viral infections. Through their antioxidant and anti-inflammatory effects, nutrients are associated with better lung function and a lower risk of complications since they can decrease the harmful effects from the immune system during the inflammatory response. In addition, bioactive compounds can even contribute to epigenetic changes, including histone deacetylase (HDAC) modifications that inhibit the transcription of proinflammatory cytokines, which can contribute to the maintenance of homeostasis in the context of infections and chronic inflammatory diseases. These nutrients also play an important role in activating immune responses against pathogens, which can help the immune system during infections. Here, we provide an updated overview of the roles played by dietary factors and how they can affect respiratory health. Therefore, we will show the anti-inflammatory role of flavonoids, fatty acids, vitamins and microbiota, important for the control of chronic inflammatory diseases and allergies, in addition to the antiviral role of vitamins, flavonoids, and minerals during pulmonary viral infections, addressing the mechanisms involved in each function. These mechanisms are interesting in the discussion of perspectives associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and its pulmonary complications since patients with severe disease have vitamins deficiency, especially vitamin D. In addition, researches with the use of flavonoids have been shown to decrease viral replication in vitro. This way, a full understanding of dietary influences can improve the lung health of patients.
Collapse
Affiliation(s)
- Sarah Cristina Gozzi-Silva
- Laboratório de Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo - FMUSP, São Paulo, Brazil.,Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Franciane Mouradian Emidio Teixeira
- Laboratório de Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo - FMUSP, São Paulo, Brazil.,Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Maria Notomi Sato
- Laboratório de Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo - FMUSP, São Paulo, Brazil
| | - Luana de Mendonça Oliveira
- Laboratório de Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo - FMUSP, São Paulo, Brazil.,Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Sun W, Luo Z, Jin J, Cao Z, Ma Y. The Neutrophil/Lymphocyte Ratio Could Predict Noninvasive Mechanical Ventilation Failure in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease: A Retrospective Observational Study. Int J Chron Obstruct Pulmon Dis 2021; 16:2267-2277. [PMID: 34385816 PMCID: PMC8353100 DOI: 10.2147/copd.s320529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose To determine the effectiveness of neutrophil/lymphocyte ratio (NLR), compared to traditional inflammatory markers, for predicting noninvasive mechanical ventilation (NIMV) failure in acute exacerbation of chronic obstructive pulmonary disease (AECOPD) patients. Patients and Methods We conducted this retrospective observational study including 212 AECOPD patients who required NIMV during hospitalization from January 2015 to December 2020 in the department of respiratory and critical care medicine of Beijing Chao-Yang Hospital (west campus). We reviewed the medical record to determine if NIMV succeeded or failed for each patient, and compared NLR with traditional markers (leukocyte, C-reactive protein [CRP] and procalcitonin [PCT]) between NIMV failure and NIMV success group. Receiver-operating characteristic (ROC) curve and multivariate logistic regression analysis were used to assess the accuracy of these markers for predicting NIMV failure. Results A total of 38 (17.9%) patients experienced NIMV failure. NLR was a more sensitive biomarker to predict NIMV failure (AUC, 0.858; 95% CI 0.785-0.931) than leukocyte counts (AUC, 0.723; 95% CI 0.623-0.823), CRP (AUC, 0.670; 95% CI 0.567-0.773) and PCT (AUC, 0.719; 95% CI 0.615-0.823). There was statistically positive correlation between NLR and leukocytes count (r=0.35, p<0.001), between NLR and CRP (r=0.258, p<0.001), between NLR and PCT (r=0.306, p<0.001). The cutoff value of NLR to predict NIMV failure was 8.9 with sensitivity 0.688, specificity 0.886 and diagnostic accuracy 0.868. NLR>8.9 (odds ratio, 10.783; 95% CI, 2.069-56.194; P=0.05) was an independent predictor of NIMV failure in the multivariate logistic regression model. Conclusion NLR may be an effective marker for predicting NIMV failure in AECOPD patients, and the patients with NLR>8.9 should be handled with caution since they are at higher risk of NIMV failure and require intubation. Further study with a larger sample size and with more data is necessary to confirm our study.
Collapse
Affiliation(s)
- Wei Sun
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zujin Luo
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jiawei Jin
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Zhixin Cao
- Department of Respiratory and Critical Care Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Yingmin Ma
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Burke H, Wilkinson TMA. Unravelling the mechanisms driving multimorbidity in COPD to develop holistic approaches to patient-centred care. Eur Respir Rev 2021; 30:30/160/210041. [PMID: 34415848 DOI: 10.1183/16000617.0041-2021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/06/2021] [Indexed: 01/04/2023] Open
Abstract
COPD is a major cause of morbidity and mortality worldwide. Multimorbidity is common in COPD patients and a key modifiable factor, which requires timely identification and targeted holistic management strategies to improve outcomes and reduce the burden of disease.We discuss the use of integrative approaches, such as cluster analysis and network-based theory, to understand the common and novel pathobiological mechanisms underlying COPD and comorbid disease, which are likely to be key to informing new management strategies.Furthermore, we discuss the current understanding of mechanistic drivers to multimorbidity in COPD, including hypotheses such as multimorbidity as a result of shared common exposure to noxious stimuli (e.g. tobacco smoke), or as a consequence of loss of function following the development of pulmonary disease. In addition, we explore the links to pulmonary disease processes such as systemic overspill of pulmonary inflammation, immune cell priming within the inflamed COPD lung and targeted messengers such as extracellular vesicles as a result of local damage as a cause for multimorbidity in COPD.Finally, we focus on current and new management strategies which may target these underlying mechanisms, with the aim of holistic, patient-centred treatment rather than single disease management.
Collapse
Affiliation(s)
- H Burke
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK .,University Hospitals Southampton NHS Foundation Trust, Southampton, UK
| | - T M A Wilkinson
- School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,University Hospitals Southampton NHS Foundation Trust, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| |
Collapse
|
8
|
Kao TI, Chen PJ, Wang YH, Tseng HH, Chang SH, Wu TS, Yang SH, Lee YT, Hwang TL. Bletinib ameliorates neutrophilic inflammation and lung injury by inhibiting Src family kinase phosphorylation and activity. Br J Pharmacol 2021; 178:4069-4084. [PMID: 34131920 PMCID: PMC8518616 DOI: 10.1111/bph.15597] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/07/2021] [Accepted: 04/29/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE Neutrophil overactivation is crucial in the pathogenesis of acute lung injury (ALI). Bletinib (3,3'-dihydroxy-2',6'-bis(p-hydroxybenzyl)-5-methoxybibenzyl), a natural bibenzyl, extracted from the Bletilla plant, exhibits anti-inflammatory, antibacterial, and antimitotic effects. In this study, we evaluated the therapeutic effects of bletinib in human neutrophilic inflammation and LPS-mediated ALI in mice. EXPERIMENTAL APPROACH In human neutrophils activated with the formyl peptide (fMLP), we assessed integrin expression, superoxide anion production, degranulation, neutrophil extracellular trap (NET) formation, and adhesion through flow cytometry, spectrophotometry, and immunofluorescence microscopy. Immunoblotting was used to measure phosphorylation of Src family kinases (SFKs) and downstream proteins. Finally, a LPS-induced ALI model in male BALB/c mice was used to investigate the potential therapeutic effects of bletinib treatment. KEY RESULTS In activated human neutrophils, bletinib reduced degranulation, respiratory burst, NET formation, adhesion, migration, and integrin expression; suppressed the enzymic activity of SFKs, including Src, Lyn, Fgr, and Hck; and inhibited the phosphorylation of SFKs as well as Vav and Bruton's tyrosine kinase (Btk). In mice with ALI, the pulmonary sections demonstrated considerable amelioration of prominent inflammatory changes, such as haemorrhage, pulmonary oedema, and neutrophil infiltration, after bletinib treatment. CONCLUSION AND IMPLICATIONS Bletinib regulates neutrophilic inflammation by inhibiting the SFK-Btk-Vav pathway. Bletinib ameliorates LPS-induced ALI in mice. Further biochemical optimisation of bletinib may be a promising strategy for the development of novel therapeutic agents for inflammatory diseases.
Collapse
Affiliation(s)
- Ting-I Kao
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Chinese Internal Medicine, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Po-Jen Chen
- Department of Cosmetic Science, Providence University, Taichung, Taiwan
| | - Yi-Hsuan Wang
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Hui Tseng
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shih-Hsin Chang
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Tian-Shung Wu
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | - Sien-Hung Yang
- Division of Chinese Internal Medicine, Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Yen-Tung Lee
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Cosmetic Science, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Chinese Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
9
|
The Antimicrobial Activity of Peripheral Blood Neutrophils Is Altered in Patients with Primary Ciliary Dyskinesia. Int J Mol Sci 2021; 22:ijms22126172. [PMID: 34201048 PMCID: PMC8230338 DOI: 10.3390/ijms22126172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 06/02/2021] [Indexed: 01/13/2023] Open
Abstract
The airways of patients with primary ciliary dyskinesia (PCD) contain persistently elevated neutrophil numbers and CXCL8 levels. Despite their abundance, neutrophils fail to clear the airways from bacterial infections. We investigated whether neutrophil functions are altered in patients with PCD. Neutrophils from patients and healthy controls (HC) were isolated from peripheral blood and exposed to various bacterial stimuli or cytokines. Neutrophils from patients with PCD were less responsive to low levels of fMLF in three different chemotaxis assays (p < 0.05), but expression of the fMLF receptors was unaltered. PCD neutrophils showed normal phagocytic function and expression of adhesion molecules. However, PCD neutrophils produced less reactive oxygen species upon stimulation with bacterial products or cytokines compared to HC neutrophils (p < 0.05). Finally, the capacity to release DNA, as observed during neutrophil extracellular trap formation, seemed to be reduced in patients with PCD compared to HC (p = 0.066). These results suggest that peripheral blood neutrophils from patients with PCD, in contrast to those of patients with cystic fibrosis or COPD, do not show features of over-activation, neither on baseline nor after stimulation. If these findings extend to lung-resident neutrophils, the reduced neutrophil activity could possibly contribute to the recurrent respiratory infections in patients with PCD.
Collapse
|
10
|
Aloe C, Wang H, Vlahos R, Irving L, Steinfort D, Bozinovski S. Emerging and multifaceted role of neutrophils in lung cancer. Transl Lung Cancer Res 2021; 10:2806-2818. [PMID: 34295679 PMCID: PMC8264329 DOI: 10.21037/tlcr-20-760] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/13/2021] [Indexed: 12/20/2022]
Abstract
It has long been recognized that cigarette smoking is a shared risk factor for lung cancer and the debilitating lung disease, chronic obstructive pulmonary disease (COPD). As the severity of COPD increases, so does the risk for developing lung cancer, independently of pack years smoked. Neutrophilic inflammation increases with COPD severity and anti-inflammatories such as non-steroidal anti-inflammatory drugs (NSAIDs) can modulate neutrophil function and cancer risk. This review discusses the biology of tumour associated neutrophils (TANs) in lung cancer, which increase in density with tumour progression, particularly in smokers with non-small cell lung cancer (NSCLC). It is now increasingly recognized that neutrophils are responsive to the tumour microenvironment (TME) and polarize into distinct phenotypes that operate in an anti- (N1) or pro-tumorigenic (N2) manner. Intriguingly, the emergence of the pro-tumorigenic N2 phenotype increases with tumour growth, to suggest that cancer cells and the surrounding stroma can re-educate neutrophils. The neutrophil itself is a potent source of reactive oxygen species (ROS), arginase, proteases and cytokines that paradoxically can exert a potent immunosuppressive effect on lymphocytes including cytotoxic T cells (CTLs). Indeed, the neutrophil to lymphocyte ratio (NLR) is a systemic biomarker that is elevated in lung cancer patients and prognostic for poor survival outcomes. Herein, we review the molecular mechanisms by which neutrophil derived mediators can suppress CTL function. Selective therapeutic strategies designed to suppress pathogenic neutrophils in NSCLC may cooperate with immune checkpoint inhibitors (ICI) to increase CTL killing of cancer cells in the TME.
Collapse
Affiliation(s)
- Christian Aloe
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Hao Wang
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Ross Vlahos
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Louis Irving
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Daniel Steinfort
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Steven Bozinovski
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| |
Collapse
|
11
|
Antunes MA, Lopes-Pacheco M, Rocco PRM. Oxidative Stress-Derived Mitochondrial Dysfunction in Chronic Obstructive Pulmonary Disease: A Concise Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6644002. [PMID: 37448755 PMCID: PMC10337713 DOI: 10.1155/2021/6644002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/27/2021] [Accepted: 02/26/2021] [Indexed: 08/02/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive and disabling disorder marked by airflow limitation and extensive destruction of lung parenchyma. Cigarette smoke is the major risk factor for COPD development and has been associated with increased oxidant burden on multiple cell types in the lungs. Elevated levels of reactive oxygen species (ROS) may significantly affect expression of biological molecules, signaling pathways, and function of antioxidant defenses. Although inflammatory cells, such as neutrophils and macrophages, contribute to the release of large quantities of ROS, mitochondrial dysfunction plays a critical role in ROS production due to oxidative phosphorylation. Although mitochondria are dynamic organelles, excess oxidative stress is able to alter mitochondrial function, morphology, and RNA and protein content. Indeed, mitochondria may change their shape by undergoing fusion (regulated by mitofusin 1, mitofusin 2, and optic atrophy 1 proteins) and fission (regulated by dynamin-related protein 1), which are essential processes to maintain a healthy and functional mitochondrial network. Cigarette smoke can induce mitochondrial hyperfusion, thus reducing mitochondrial quality control and cellular stress resistance. Furthermore, diminished levels of enzymes involved in the mitophagy process, such as Parkin (a ubiquitin ligase E3) and the PTEN-induced putative kinase 1 (PINK1), are commonly observed in COPD and correlate directly with faulty removal of dysfunctional mitochondria and consequent cell senescence in this disorder. In this review, we highlight the main mechanisms for the regulation of mitochondrial quality and how they are affected by oxidative stress during COPD development and progression.
Collapse
Affiliation(s)
- Mariana A. Antunes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Patricia R. M. Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
- Rio de Janeiro Innovation Network in Nanosystems for Health-NanoSAÚDE/FAPERJ, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
García-Valero J, Olloquequi J, Rodríguez E, Martín-Satué M, Texidó L, Ferrer J. Decreased Expression of EC-SOD and Fibulin-5 in Alveolar Walls of Lungs From COPD Patients. Arch Bronconeumol 2021; 58:S0300-2896(21)00016-8. [PMID: 33640211 DOI: 10.1016/j.arbres.2020.12.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 11/25/2022]
Abstract
INTRODUCTION The aim of this study is to analyze the expression of the main oxidant scavenger superoxide dismutase (EC-SOD), its main binding protein Fibulin-5 and several oxidative and nitrosative-derived products in the lung of COPD patients and controls. MATERIALS AND METHODS Lung tissue samples from 19 COPD patients and 20 control subjects were analyzed. The architecture of elastic fibres was assessed by light and electron microscope histochemical techniques, and levels of EC-SOD and fibulin-5 were analyzed by immunohistochemistry and RT-PCR. The impact of oxidative stress on the extracellular matrix was estimated by immunolocalization of 4-hydroxynonenal (4-HNE), malondialdehyde (MDA) and 3-nitrotyrosine (3-NYT) adducts. RESULTS Alveolar walls of COPD patients exhibited abnormal accumulations of collapsing elastic fibres, showing a pierced pattern in the amorphous component. The semiquantitative analysis revealed that COPD patients have a significantly reduced expression of both EC-SOD and fibulin-5 (0.59±0.64 and 0.62±0.61, respectively) in alveolar, bronchiolar and arteriolar walls compared to control subjects (1.39±0.63 and 1.55±0.52, respectively, p<0.05). No significant changes in mRNA levels of these proteins were observed between groups. Among the oxidation markers, malondialdehyde was the best in distinguishing COPD patients. CONCLUSIONS COPD patients show a reduced expression of EC-SOD and fibulin-5 in the lung interstitium. Paralleling the reduction of EC-SOD levels, the decrease of fibulin-5 expression in COPD lungs supports the hypothesis of an impaired pulmonary antioxidant response in COPD patients.
Collapse
Affiliation(s)
- José García-Valero
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Esther Rodríguez
- Department of Pneumology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona and CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain
| | - Mireia Martín-Satué
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Laura Texidó
- Department of Pathology and Experimental Therapeutics, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Jaume Ferrer
- Department of Pneumology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona and CIBER de Enfermedades Respiratorias (CIBERES), Barcelona, Spain.
| |
Collapse
|
13
|
Terrosu P. Relapse of chronic obstructive pulmonary disease and myocardial infarction: what is the connection? Eur Heart J Suppl 2020; 22:L151-L154. [PMID: 33239991 PMCID: PMC7673614 DOI: 10.1093/eurheartj/suaa156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Albeit largely underappreciated, chronic obstructive pulmonary disease (COPD) constitutes a major risk factor for cardiovascular diseases in general and for coronary disease in particular. The incidence of myocardial infarction, in fact increases rapidly, after relapse of COPD, with a peak event rate during the first week in the worst forms (those requiring hospitalization). Even though the precise mechanism is not completely defined, it is likely derived from two pathogenetic causes: (i) mismatch between myocardial demand and offer of O2 (not fully demonstrated and limited to few cases); (ii) acute coronary thrombosis, probably due to a systemic inflammatory reaction, brought upon by multiple interaction between the infective agent and the host immune system.
Collapse
|
14
|
Barnes PJ. Oxidative stress-based therapeutics in COPD. Redox Biol 2020; 33:101544. [PMID: 32336666 PMCID: PMC7251237 DOI: 10.1016/j.redox.2020.101544] [Citation(s) in RCA: 224] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress is a major driving mechanism in the pathogenesis of COPD. There is increased oxidative stress in the lungs of COPD patients due to exogenous oxidants in cigarette smoke and air pollution and due to endogenous generation of reactive oxygen species by inflammatory and structural cells in the lung. Mitochondrial oxidative stress may be particularly important in COPD. There is also a reduction in antioxidant defences, with inactivation of several antioxidant enzymes and the transcription factors Nrf2 and FOXO that regulate multiple antioxidant genes. Increased systemic oxidative stress may exacerbate comorbidities and contribute to skeletal muscle weakness. Oxidative stress amplifies chronic inflammation, stimulates fibrosis and emphysema, causes corticosteroid resistance, accelerates lung aging, causes DNA damage and stimulates formation of autoantibodies. This suggests that treating oxidative stress by antioxidants or enhancing endogenous antioxidants should be an effective strategy to treat the underlying pathogenetic mechanisms of COPD. Most clinical studies in COPD have been conducted using glutathione-generating antioxidants such as N-acetylcysteine, carbocysteine and erdosteine, which reduce exacerbations in COPD patients, but it is not certain whether this is due to their antioxidant or mucolytic properties. Dietary antioxidants have so far not shown to be clinically effective in COPD. There is a search for more effective antioxidants, which include superoxide dismutase mimetics, NADPH oxidase inhibitors, mitochondria-targeted antioxidants and Nrf2 activators.
Collapse
Affiliation(s)
- Peter J Barnes
- Airway Disease Section, National Heart & Lung Institute, Imperial College London, Dovehouse Street, SW3 6LY, London, UK.
| |
Collapse
|
15
|
Singla E, Dharwal V, Naura AS. Gallic acid protects against the COPD-linked lung inflammation and emphysema in mice. Inflamm Res 2020; 69:423-434. [PMID: 32144443 DOI: 10.1007/s00011-020-01333-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/03/2020] [Accepted: 02/26/2020] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE AND DESIGN Gallic acid (GA) a naturally occurring phenolic compound, known to possess antioxidant/anti-inflammatory activities. The aim of the present work was to investigate the beneficial effects of GA against COPD-linked lung inflammation/emphysema by utilizing elastase (ET) and cigarette smoke (CS)-induced mice model. MATERIALS Male BALB/c mice were treated with ET (1U/mouse) or exposed to CS (9 cigarettes/day for 4 days). GA administration was started 7 days (daily) prior to ET/CS exposure. Broncho-alveolar lavage was analyzed for inflammatory cells and pro-inflammatory cytokines. Lung homogenate was assessed for MPO activity/GSH/MDA/protein carbonyls. Further, Lung tissue was subjected to semi-quantitative RT-PCR, immunoblotting, and histological analysis. RESULTS GA suppressed the ET-induced neutrophil infiltration, elevated MPO activity and production of pro-inflammatory cytokines (IL-6/TNF-α/IL-1β) at 24 h. Reduced inflammation was accompanied with normalization of redox balance as reflected by ROS/GSH/MDA/protein carbonyl levels. Further, GA suppressed phosphorylation of p65NF-κB and IκBα along with down-regulation of IL-1β/TNF-α/KC/MIP-2/GCSF genes. Furthermore, GA offered protection against ET-induced airspace enlargement and ameliorated MMP-2/MMP-9. Finally, GA suppressed the CS-induced influx of neutrophils and macrophages and blunted gene expression of TNF-α/MIP-2/KC. CONCLUSION Overall, our data show that GA effectively modulates pulmonary inflammation and emphysema associated with COPD pathogenesis in mice.
Collapse
Affiliation(s)
- Esha Singla
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Vivek Dharwal
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India
| | - Amarjit S Naura
- Department of Biochemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
16
|
Liang X, Liu T, Zhang Z, Yu Z. Airway Inflammation Biomarker for Precise Management of Neutrophil-Predominant COPD. Methods Mol Biol 2020; 2204:181-191. [PMID: 32710325 DOI: 10.1007/978-1-0716-0904-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) course can be divided into stable stage and acute exacerbation. Deepen the understanding to the function and role of airway inflammatory cells in stable COPD is important for developing new therapies to restore airway dysfunction and preventing stable stage COPD progress to acute exacerbation COPD. Neutrophil is a feature of lower airways and lung inflammation in majority COPD patients at stable stage and increased neutrophils usually means COPD patients are in a more serious stage. Neutrophil-predominant COPD always accompanied by increased numbers of macrophages, lymphocytes, and dendritic cells. The composition proportion of different inflammatory cells are changed with disease severity. Recently, neutrophilic inflammation has been proved to be correlated with the disturbance of airway resident microbiota, which promote neutrophil influx and exacerbates inflammation. Consequently, understanding the details of increased neutrophils and dysbacteriosis in COPD is necessary for making precise management strategy against neutrophil-associated COPD.
Collapse
Affiliation(s)
- Xue Liang
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China.
- Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, People's Republic of China.
- State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, People's Republic of China.
| | - Ting Liu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Zhiming Zhang
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ziyu Yu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
17
|
Hikichi M, Mizumura K, Maruoka S, Gon Y. Pathogenesis of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke. J Thorac Dis 2019; 11:S2129-S2140. [PMID: 31737341 DOI: 10.21037/jtd.2019.10.43] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common respiratory disease that is characterized by functional and structural alterations primarily caused by long-term inhalation of harmful particles. Cigarette smoke (CS) induces airway inflammation in COPD, which is known to persist even after smoking cessation. This review discusses the basic pathogenesis of COPD, with particular focus on an endogenous protective mechanism against oxidative stress via Nrf2, altered immune response of the airway inflammatory cells, exaggerated cellular senescence of the lung structural cells, and cell death with expanded inflammation. Recently, CS-induced mitochondria autophagy is reported to initiate programmed necrosis (necroptosis). Necroptosis is a new concept of cell death which is driven by a defined molecular pathway along with exaggerated inflammation. This new cell death mechanism is of importance due to its ability to produce more inflammatory substances during the process of epithelial death, contributing to persistent airway inflammation that cannot be explained by apoptosis-derived cell death. Autophagy is an auto-cell component degradation system executed by lysosomes that controls protein and organelle degradation for successful homeostasis. As well as in the process of necroptosis, autophagy is also observed during cellular senescence. Aging of the lungs results in the acquisition of senescence-associated secretory phenotypes (SASP) that are known to secrete inflammatory cytokines, chemokines, growth factors, and matrix metalloproteinases resulting in chronic low-grade inflammation. In future research, we intend to highlight the genetic and epigenetic approaches that can facilitate the understanding of disease susceptibility. The goal of precision medicine is to establish more accurate diagnosis and treatment methods based on the patient-specific pathogenic characteristics. This review provides insights into CS-induced COPD pathogenesis, which contributes to a very complex disease. Investigating the mechanism of developing COPD, along with the availability of the particular inhibitors, will lead to new therapeutic approaches in COPD treatment.
Collapse
Affiliation(s)
- Mari Hikichi
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kenji Mizumura
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shuichiro Maruoka
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Yasuhiro Gon
- Division of Respiratory Medicine, Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Abstract
Introduction: Neutrophils are the most abundant inflammatory cells in the lungs of patients with chronic lung diseases, especially COPD, yet despite this, patients often experience repeated chest infections. Neutrophil function may be altered in disease, but the reasons are unclear. In chronic disease, sequential pro-inflammatory and pro-repair responses appear distorted. As understanding of neutrophil heterogeneity has expanded, it is suggested that different neutrophil phenotypes may impact on health and disease. Areas covered: In this review, the definition of cellular phenotype, the implication of neutrophil surface markers and functions in chronic lung disease and the complex influences of external, local and genetic factors on these changes are discussed. Literature was accessed up to the 19 July 2019 using: PubMed, US National Library of Medicine National Institutes of Health and the National Centre for Biotechnology Information. Expert opinion: As more is learned about neutrophils, the further we step from the classical view of neutrophils being unrefined killing machines to highly complex and finely tuned cells. Future therapeutics may aim to normalize neutrophil function, but to achieve this, knowledge of phenotypes in humans and how these relate to observed pathology and disease processes is required.
Collapse
Affiliation(s)
- Michael J Hughes
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Elizabeth Sapey
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| | - Robert Stockley
- Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| |
Collapse
|
19
|
Fang T, Wang M, Xiao H, Wei X. Mitochondrial dysfunction and chronic lung disease. Cell Biol Toxicol 2019; 35:493-502. [PMID: 31119467 DOI: 10.1007/s10565-019-09473-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/18/2019] [Indexed: 02/05/2023]
Abstract
The functions of body gradually decrease as the age increases, leading to a higher frequency of incidence of age-related diseases. Diseases associated with aging in the respiratory system include chronic obstructive pulmonary disease (COPD), IPF (idiopathic pulmonary fibrosis), asthma, lung cancer, and so on. The mitochondrial dysfunction is not only a sign of aging, but also is a disease trigger. This article aims to explain mitochondrial dysfunction as an aging marker, and its role in aging diseases of lung. We also discuss whether the mitochondria can be used as a target for the treatment of aging lung disease.
Collapse
Affiliation(s)
- Tingting Fang
- Lab of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China
| | - Manni Wang
- Lab of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China
| | - Hengyi Xiao
- Lab of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China.
| | - Xiawei Wei
- Lab of Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and National Collaborative Innovation Center, Chengdu, 610041, China.
| |
Collapse
|
20
|
Chen IL, Todd I, Fairclough LC. Immunological and pathological effects of electronic cigarettes. Basic Clin Pharmacol Toxicol 2019; 125:237-252. [PMID: 30861614 DOI: 10.1111/bcpt.13225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Abstract
Electronic cigarettes (E-cigarettes) are considered a preferable alternative to conventional cigarettes due to the lack of combustion and the absence of tobacco-specific toxicants. E-cigarettes have rapidly gained in popularity in recent years amongst both existing smokers and previous non-smokers. However, a growing literature demonstrates that E-cigarettes are not as safe as generally believed. Here, we discuss the immunological, and other, deleterious effects of E-cigarettes on a variety of cell types and host defence mechanisms in humans and in murine models. We review not only the effects of complete E-cigarette liquids, but also each of the main components-nicotine, humectants and flavourings. This MiniReview thus highlights the possible role of E-cigarettes in the pathogenesis of disease and raises awareness of the potential harm that E-cigarettes may cause.
Collapse
Affiliation(s)
- I-Ling Chen
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ian Todd
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
21
|
Linden D, Guo-Parke H, Coyle PV, Fairley D, McAuley DF, Taggart CC, Kidney J. Respiratory viral infection: a potential "missing link" in the pathogenesis of COPD. Eur Respir Rev 2019; 28:28/151/180063. [PMID: 30872396 DOI: 10.1183/16000617.0063-2018] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is currently the third most common cause of global mortality. Acute exacerbations of COPD frequently necessitate hospital admission to enable more intensive therapy, incurring significant healthcare costs. COPD exacerbations are also associated with accelerated lung function decline and increased risk of mortality. Until recently, bacterial pathogens were believed to be responsible for the majority of disease exacerbations. However, with the advent of culture-independent molecular diagnostic techniques it is now estimated that viruses are detected during half of all COPD exacerbations and are associated with poorer clinical outcomes. Human rhinovirus, respiratory syncytial virus and influenza are the most commonly detected viruses during exacerbation. The role of persistent viral infection (adenovirus) has also been postulated as a potential pathogenic mechanism in COPD. Viral pathogens may play an important role in driving COPD progression by acting as triggers for exacerbation and subsequent lung function decline whilst the role of chronic viral infection remains a plausible hypothesis that requires further evaluation. There are currently no effective antiviral strategies for patients with COPD. Herein, we focus on the current understanding of the cellular and molecular mechanisms of respiratory viral infection in COPD.
Collapse
Affiliation(s)
- Dermot Linden
- Airway Innate Immunity Research Group (AiiR), Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, UK
| | - Hong Guo-Parke
- Airway Innate Immunity Research Group (AiiR), Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, UK
| | - Peter V Coyle
- The Regional Virus Laboratory, Belfast Trust, Belfast, UK
| | - Derek Fairley
- The Regional Virus Laboratory, Belfast Trust, Belfast, UK
| | - Danny F McAuley
- Airway Innate Immunity Research Group (AiiR), Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, UK
| | - Clifford C Taggart
- Airway Innate Immunity Research Group (AiiR), Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queens University Belfast, Belfast, UK
| | - Joe Kidney
- Dept of Respiratory Medicine, Mater Hospital Belfast, Belfast, UK
| |
Collapse
|
22
|
How Glucocorticoids Affect the Neutrophil Life. Int J Mol Sci 2018; 19:ijms19124090. [PMID: 30563002 PMCID: PMC6321245 DOI: 10.3390/ijms19124090] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 02/07/2023] Open
Abstract
Glucocorticoids are hormones that regulate several functions in living organisms and synthetic glucocorticoids are the most powerful anti-inflammatory pharmacological tool that is currently available. Although glucocorticoids have an immunosuppressive effect on immune cells, they exert multiple and sometimes contradictory effects on neutrophils. From being extremely sensitive to the anti-inflammatory effects of glucocorticoids to resisting glucocorticoid-induced apoptosis, neutrophils are proving to be more complex than they were earlier thought to be. The aim of this review is to explain these complex pathways by which neutrophils respond to endogenous or to exogenous glucocorticoids, both under physiological and pathological conditions.
Collapse
|
23
|
Butler A, Walton GM, Sapey E. Neutrophilic Inflammation in the Pathogenesis of Chronic Obstructive Pulmonary Disease. COPD 2018; 15:392-404. [DOI: 10.1080/15412555.2018.1476475] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Aidan Butler
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Georgia May Walton
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Elizabeth Sapey
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
24
|
Dharwal V, Naura AS. PARP-1 inhibition ameliorates elastase induced lung inflammation and emphysema in mice. Biochem Pharmacol 2018; 150:24-34. [PMID: 29355504 DOI: 10.1016/j.bcp.2018.01.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/12/2018] [Indexed: 12/23/2022]
Abstract
COPD is associated with high morbidity and mortality and no effective treatment is available till date. We have previously reported that PARP-1 plays an important role in the establishment of airway inflammation associated with asthma and ALI. In the present work, we have evaluated the beneficial effects of PARP-1 inhibition on COPD pathogenesis utilizing elastase induced mouse model of the disease. Our data show that PARP-1 inhibition by olaparib significantly reduced the elastase-induced recruitment of inflammatory cells particularly neutrophils in the lungs of mice when administered at a dose of 5 mg/kg b.wt (i.p.). Reduction in the lung inflammation was associated with suppressed myeloperoxidase activity. Further, the drug restored the redox status in the lung tissues towards normal as reflected by the levels of ROS, GSH and MDA. Olaparib administration prior to elastase instillation blunted the phosphorylation of P65-NF-κB at Ser 536 without altering phosphorylation of its inhibitor IκBα in the lungs. Furthermore, olaparib down regulated the elastase-induced expression of NF-κB dependent pro-inflammatory cytokines (TNF-A, IL-6), chemokine (MIP-2) and growth factor (GCSF) severely both at the mRNA and protein levels. Additionally, PARP-1 heterozygosity suppressed the recruitment of inflammatory cells and production of TNF-A, IL-6, MIP-2 and GCSF in the BALF to the similar extent as exhibited by olaparib administration. Finally, PARP-1 inhibition by olaparib or gene deletion protected against elastase-induced emphysema markedly. Overall, our data strongly suggest that PARP-1 plays a critical role in elastase induced lung inflammation and emphysema, and thus may be a new drug target candidate in COPD.
Collapse
Affiliation(s)
- Vivek Dharwal
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Amarjit S Naura
- Department of Biochemistry, Panjab University, Chandigarh, India.
| |
Collapse
|
25
|
Paul T, Salazar-Degracia A, Peinado VI, Tura-Ceide O, Blanco I, Barreiro E, Barberà JA. Soluble guanylate cyclase stimulation reduces oxidative stress in experimental Chronic Obstructive Pulmonary Disease. PLoS One 2018; 13:e0190628. [PMID: 29304131 PMCID: PMC5755849 DOI: 10.1371/journal.pone.0190628] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 12/18/2017] [Indexed: 11/19/2022] Open
Abstract
Objective Soluble guanylate cyclase (sGC) is a key enzyme of the nitric oxide–cyclic guanosine 3′,5′-monophosphate (NO–cGMP) signaling pathway, and its pharmacological stimulation has been shown to prevent the development of emphysema and pulmonary vascular remodeling in animal models of chronic obstructive pulmonary disease (COPD). The aim of this study was to evaluate the effects of sGC stimulation on oxidative stress in the plasma of guinea pigs chronically exposed to cigarette smoke (CS). Methods and results Guinea pigs were exposed to CS or sham for three months, and received either the sGC stimulator BAY 41–2272 or vehicle. Body weight was measured weekly; and markers of oxidative stress in plasma, and airspace size and inflammatory cell infiltrate in lung tissue were analyzed at the end of the study. Compared to sham-exposed guinea pigs, CS-exposed animals gained less body weight and showed higher plasma levels of nitrated tyrosine residues (3-NT), 4-hydroxynonenal (4-HNE), and 8-hydroxydeoxyguanosine (8-OHdG). Treatment with the sGC stimulator led to a body weight gain in the CS-exposed guinea pigs similar to non-exposed and attenuated the increase in 3-NT and 4-HNE. Plasma levels of 3-NT correlated with the severity of inflammatory cell infiltrate in the lung. Conclusion Stimulation of sGC prevents oxidative stress induced by CS exposure and is associated with an attenuated inflammatory response in the lung.
Collapse
Affiliation(s)
- Tanja Paul
- Department of Pulmonary Medicine, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Anna Salazar-Degracia
- Pulmonology Department-Lung Cancer and Muscle Research group, IMIM-Hospital del Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
| | - Victor I. Peinado
- Department of Pulmonary Medicine, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
- * E-mail:
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Isabel Blanco
- Department of Pulmonary Medicine, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Esther Barreiro
- Pulmonology Department-Lung Cancer and Muscle Research group, IMIM-Hospital del Mar, Health and Experimental Sciences Department (CEXS), Universitat Pompeu Fabra (UPF), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| | - Joan A. Barberà
- Department of Pulmonary Medicine, Hospital Clínic, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Madrid, Spain
| |
Collapse
|
26
|
The Role of Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Lung Architecture Remodeling. Antioxidants (Basel) 2017; 6:antiox6040104. [PMID: 29257052 PMCID: PMC5745514 DOI: 10.3390/antiox6040104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/08/2017] [Accepted: 12/14/2017] [Indexed: 02/07/2023] Open
Abstract
Chronic lung disorders, such as pulmonary artery hypertension (PAH), chronic obstructive pulmonary disease (COPD), asthma and neonatal bronchopulmonary dysplasia (BPD), are characterized by airway and/or vascular remodeling. Despite differences in the pathology, reactive oxygen species (ROS) have been highlighted as a critical contributor to the initiation and development of airway and vascular remodeling. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox) appear to play a pivotal role in lung signaling, leading to marked changes in pulmonary airway and vascular cell phenotypes, including proliferation, hypertrophy and apoptosis. In this review, we summarized the current literature regarding the role of Nox in the airway and vascular remodeling.
Collapse
|
27
|
Tripathi PM, Kant S, Yadav RS, Kushwaha RAS, Prakash V, Rizvi SHM, Parveen A, Mahdi AA, Ahmad I. Expression of Toll-like Receptor 2 and 4 in Peripheral Blood Neutrophil Cells from Patients with Chronic Obstructive Pulmonary Disease. Oman Med J 2017; 32:477-485. [PMID: 29218124 DOI: 10.5001/omj.2017.92] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Objectives Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality around the world. Preliminary studies have evaluated the association between innate immunity including Toll-like receptors (TLRs) and airway samples of patients with COPD. The role of TLRs in peripheral blood neutrophils is poorly understood. Hence, this study aimed to investigate the role of TLR2 and TLR4 in peripheral blood neutrophils of COPD patients. Methods A total of 101 COPD cases and an equal number of healthy controls participated in this case-control study. Peripheral blood neutrophils were isolated from all participants and cultured for 24 hours through lipopolysaccharide (LPS) stimulation. The gene expressions of TLR2 and TLR4 were assessed by real-time polymerase chain reaction. The protein levels of interleukin (IL)-8 and matrix metalloproteinase (MMP)-9 were measured in neutrophils cell culture supernatants using enzyme-linked immunosorbent assay (ELISA). Results The levels of IL-8 and MMP-9 were significantly higher in patients with COPD compared to healthy controls. Similarly, the gene expression of TLR2 and TLR4 were increased in LPS stimulated peripheral blood neutrophils of patients with COPD. Smoke pack years was positively correlated with IL-8 levels and negatively correlated with forced expiratory volume in the first second % (r = -0.33; p = 0.023) and FEV1/forced vital capacity (FVC) (r = -0.27; p = 0.011). Conclusions The increased expression of TLR2 and TLR4 suggests its role in disease pathogenesis of COPD. Smoke pack years was negatively associated with spirometric parameters in COPD patients. This may help to predict the smokers without COPD who risk developing the condition in the future.
Collapse
Affiliation(s)
- Prashant Mani Tripathi
- Department of Respiratory Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Surya Kant
- Department of Respiratory Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Ravi Shanker Yadav
- Department of Respiratory Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Ram Awadh Singh Kushwaha
- Department of Respiratory Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Ved Prakash
- Department of Respiratory Medicine, King George's Medical University, Lucknow, Uttar Pradesh, India
| | | | - Arshiya Parveen
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Iqbal Ahmad
- Fibre Toxicology Division, CSIR Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| |
Collapse
|
28
|
Hobbins S, Chapple IL, Sapey E, Stockley RA. Is periodontitis a comorbidity of COPD or can associations be explained by shared risk factors/behaviors? Int J Chron Obstruct Pulmon Dis 2017; 12:1339-1349. [PMID: 28496317 PMCID: PMC5422335 DOI: 10.2147/copd.s127802] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
COPD is recognized as having a series of comorbidities potentially related to common inflammatory processes. Periodontitis is one of the most common human inflammatory diseases and has previously been associated with COPD in numerous observational studies. As periodontitis and COPD are both chronic, progressive conditions characterized by neutrophilic inflammation with subsequent proteolytic destruction of connective tissue, it has been proposed that they share common pathophysiological processes. The mechanisms proposed to link COPD and periodontitis include mechanical aspiration of oral contents into the respiratory tree, overspill of locally produced inflammatory mediators into the systemic circulation or oral or lung-derived bacteremia activating an acute-phase response and also reactive oxygen species (ROS) and cytokine release by systemic neutrophils at distant sites. Studies of systemic neutrophils in COPD and chronic periodontitis describe altered cellular functions that would predispose to inflammation and tissue destruction both in the lung and in the mouth, again potentially connecting these conditions. However, COPD and periodontitis also share risk factors such as age, chronic tobacco smoke exposure, and social deprivation that are not always considered in observational and interventional studies. Furthermore, studies reporting associations have often utilized differing definitions of both COPD and periodontitis. This article reviews the current available evidence supporting the hypothesis that COPD and inflammatory periodontal disease (periodontitis) could be pathologically associated, including a review of shared inflammatory mechanisms. It highlights the potential limitations of previous studies, in particular, the lack of uniformly applied case definitions for both COPD and periodontitis and poor recognition of shared risk factors. Understanding associations between these conditions may inform why patients with COPD suffer such a burden of comorbid illness and new therapeutic strategies for both the diseases. However, further research is needed to clarify factors that may be directly causal as opposed to confounding relationships.
Collapse
Affiliation(s)
| | | | - Elizabeth Sapey
- Institute of Inflammation and Aging.,Centre for Translational Inflammation Research, Institute of Inflammation and Aging, Queen Elizabeth Hospital
| | - Robert A Stockley
- University Hospital Birmingham NHS Foundation Trust, Edgbaston, Birmingham, UK
| |
Collapse
|
29
|
McGuinness AJA, Sapey E. Oxidative Stress in COPD: Sources, Markers, and Potential Mechanisms. J Clin Med 2017; 6:jcm6020021. [PMID: 28212273 PMCID: PMC5332925 DOI: 10.3390/jcm6020021] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/01/2017] [Accepted: 02/05/2017] [Indexed: 12/13/2022] Open
Abstract
Markers of oxidative stress are increased in chronic obstructive pulmonary disease (COPD) and reactive oxygen species (ROS) are able to alter biological molecules, signaling pathways and antioxidant molecule function, many of which have been implicated in the pathogenesis of COPD. However, the involvement of ROS in the development and progression of COPD is not proven. Here, we discuss the sources of ROS, and the defences that have evolved to protect against their harmful effects. We address the role that ROS may have in the development and progression of COPD, as well as current therapeutic attempts at limiting the damage they cause. Evidence has indicated that the function of several key cells appears altered in COPD patients, and expression levels of important oxidant and antioxidant molecules may be abnormal. Therapeutic trials attempting to restore equilibrium to these molecules have not impacted upon all facets of disease and whilst the theory behind ROS influence in COPD appears sound, current models testing relevant pathways to tissue damage are limited. The heterogeneity seen in COPD patients presents a challenge to our understanding, and further research is essential to identify potential targets and stratified COPD patient populations where ROS therapies may be maximally efficacious.
Collapse
Affiliation(s)
| | - Elizabeth Sapey
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
30
|
Human mesenchymal stromal cells exert HGF dependent cytoprotective effects in a human relevant pre-clinical model of COPD. Sci Rep 2016; 6:38207. [PMID: 27922052 PMCID: PMC5138599 DOI: 10.1038/srep38207] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
Bone-marrow derived mesenchymal stromal cells (MSCs) have potent immunomodulatory and tissue reparative properties, which may be beneficial in the treatment of inflammatory diseases such as COPD. This study examined the mechanisms by which human MSCs protect against elastase induced emphysema. Using a novel human relevant pre-clinical model of emphysema the efficacy of human MSC therapy and optimal cell dose were investigated. Protective effects were examined in the lung through histological examination. Further in vivo experiments examined the reparative abilities of MSCs after tissue damage was established and the role played by soluble factors secreted by MSCs. The mechanism of MSC action was determined in using shRNA gene knockdown. Human MSC therapy and MSC conditioned media exerted significant cytoprotective effects when administered early at the onset of the disease. These protective effects were due to significant anti-inflammatory, anti-fibrotic and anti-apoptotic mechanisms, mediated in part through MSC production of hepatocyte growth factor (HGF). When MSC administration was delayed, significant protection of the lung architecture was observed but this was less extensive. MSC cell therapy was more effective than MSC conditioned medium in this emphysema model.
Collapse
|
31
|
Walton GM, Stockley JA, Griffiths D, Sadhra CS, Purvis T, Sapey E. Repurposing Treatments to Enhance Innate Immunity. Can Statins Improve Neutrophil Functions and Clinical Outcomes in COPD? J Clin Med 2016; 5:jcm5100089. [PMID: 27727158 PMCID: PMC5086591 DOI: 10.3390/jcm5100089] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/17/2016] [Accepted: 09/20/2016] [Indexed: 01/08/2023] Open
Abstract
Drug classes used in the treatment of Chronic Obstructive Pulmonary Disease (COPD) have not changed for many years, and none to date have shown disease-modifying activity. Statins are used to help reduce cardiovascular risk, which is high in many patients with COPD. Their use has been associated with improvements in some respiratory manifestations of disease and reduction in all-cause mortality, with greatest reductions seen in patients with the highest inflammatory burden. The mechanism for these effects is poorly understood. Neutrophils are key effector cells in COPD, and correlate with disease severity and inflammation. Recent in vitro studies have shown neutrophil functions are dysregulated in COPD and this is thought to contribute both to the destruction of lung parenchyma and to the poor responses seen in infective exacerbations. In this article, we will discuss the potential utility of statins in COPD, with a particular emphasis on their immune-modulatory effects as well as presenting new data regarding the effects of statins on neutrophil function in vitro.
Collapse
Affiliation(s)
- Georgia M Walton
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK.
| | - James A Stockley
- Lung Function and Sleep, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TT, UK.
| | - Diane Griffiths
- Respiratory Research, Research and Development, University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2TT, UK.
| | - Charandeep S Sadhra
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Thomas Purvis
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Elizabeth Sapey
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
32
|
Jones AW, Robinson R, Mohamed P, Davison G, Izzat HJ, Lewis KE. Impaired Blood Neutrophil Function in the Frequent Exacerbator of Chronic Obstructive Pulmonary Disease: A Proof-of-Concept Study. Lung 2016; 194:881-887. [PMID: 27530251 PMCID: PMC5093205 DOI: 10.1007/s00408-016-9930-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/07/2016] [Indexed: 11/30/2022]
Abstract
PURPOSE The underlying biological mechanisms of the frequent exacerbator phenotype of COPD remain unclear. We compared systemic neutrophil function in COPD patients with or without frequent exacerbations. METHODS Whole blood from COPD frequent exacerbators (defined as ≥2 moderate-severe exacerbations in the previous 2 years) and non-exacerbators (no exacerbations in the preceding 2 years) was assayed for neutrophil function. Neutrophil function in healthy ex-smoking volunteers was also measured as a control (reference) group. RESULTS A total of 52 subjects were included in this study: 26 frequent exacerbators, 18 non-exacerbators and 8 healthy controls. COPD frequent exacerbators had blunted blood neutrophil fMLP-stimulated oxidative burst compared to both non-exacerbators (p < 0.01) and healthy controls (p < 0.001). There were no differences between COPD frequent exacerbators and non-exacerbators in blood neutrophil PMA-stimulated oxidative burst, but both COPD groups had reduced responses compared to healthy controls (p < 0.001). Bacterial-stimulated neutrophil degranulation was greater in frequent exacerbators than non-exacerbators (p < 0.05). CONCLUSION This study is the first to report aberrant receptor-mediated blood neutrophil function in the frequent exacerbator of COPD.
Collapse
Affiliation(s)
- Arwel Wyn Jones
- Lincoln Institute for Health, University of Lincoln, Brayford Pool, Lincoln, LN6 7TS, UK.
| | - Richard Robinson
- Department of Respiratory Medicine, Prince Philip Hospital, Hywel Dda University Health Board, Llanelli, SA14 8QF, UK
| | - Peer Mohamed
- Department of Respiratory Medicine, Prince Philip Hospital, Hywel Dda University Health Board, Llanelli, SA14 8QF, UK
| | - Glen Davison
- School of Sport and Exercise Sciences, University of Kent, Medway Campus, Chatham Maritime, ME4 4AG, UK
| | - Hassan Jaysen Izzat
- Department of Respiratory Medicine, Prince Philip Hospital, Hywel Dda University Health Board, Llanelli, SA14 8QF, UK
| | - Keir Edward Lewis
- Department of Respiratory Medicine, Prince Philip Hospital, Hywel Dda University Health Board, Llanelli, SA14 8QF, UK.,College of Medicine, Swansea University, Swansea, SA2 8PP, UK
| |
Collapse
|
33
|
Alteration of Neutrophil Reactive Oxygen Species Production by Extracts of Devil's Claw (Harpagophytum). OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3841803. [PMID: 27429708 PMCID: PMC4939354 DOI: 10.1155/2016/3841803] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/29/2016] [Indexed: 02/02/2023]
Abstract
Harpagophytum, Devil's Claw, is a genus of tuberiferous xerophytic plants native to southern Africa. Some of the taxa are appreciated for their medicinal effects and have been traditionally used to relieve symptoms of inflammation. The objectives of this pilot study were to investigate the antioxidant capacity and the content of total phenols, verbascoside, isoverbascoside, and selected iridoids, as well as to investigate the capacity of various Harpagophytum taxa in suppressing respiratory burst in terms of reactive oxygen species produced by human neutrophils challenged with phorbol myristate acetate (PMA), opsonised Staphylococcus aureus, and Fusobacterium nucleatum. Harpagophytum plants were classified into different taxa according to morphology, and DNA analysis was used to confirm the classification. A putative new variety of H. procumbens showed the highest degree of antioxidative capacity. Using PMA, three Harpagophytum taxa showed anti-inflammatory effects with regard to the PBS control. A putative hybrid between H. procumbens and H. zeyheri in contrast showed proinflammatory effect on the response of neutrophils to F. nucleatum in comparison with treatment with vehicle control. Harpagophytum taxa were biochemically very variable and the response in suppressing respiratory burst differed. Further studies with larger number of subjects are needed to corroborate anti-inflammatory effects of different taxa of Harpagophytum.
Collapse
|
34
|
Higham A, Rattray NJW, Dewhurst JA, Trivedi DK, Fowler SJ, Goodacre R, Singh D. Electronic cigarette exposure triggers neutrophil inflammatory responses. Respir Res 2016; 17:56. [PMID: 27184092 PMCID: PMC4869345 DOI: 10.1186/s12931-016-0368-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/27/2016] [Indexed: 01/02/2023] Open
Abstract
Background The use of electronic cigarettes (e-cigs) is increasing and there is widespread perception that e-cigs are safe. E-cigs contain harmful chemicals; more research is needed to evaluate the safety of e-cig use. Our aim was to investigate the effects of e-cigs on the inflammatory response of human neutrophils. Methods Neutrophils were exposed to e-cig vapour extract (ECVE) and the expression of CD11b and CD66b was measured by flow cytometry and MMP-9 and CXCL8 by ELISA. We also measured the activity of neutrophil elastase (NE) and MMP-9, along with the activation of inflammatory signalling pathways. Finally we analysed the biochemical composition of ECVE by ultra-high performance liquid chromatography mass spectrometry. Results ECVE caused an increase in the expression of CD11b and CD66b, and increased the release of MMP-9 and CXCL8. Furthermore, there was an increase in NE and MMP-9 activity and an increase in p38 MAPK activation. We also identified several harmful chemicals in ECVE, including known carcinogens. Conclusions ECVE causes a pro-inflammatory response from human neutrophils. This raises concerns over the safety of e-cig use. Electronic supplementary material The online version of this article (doi:10.1186/s12931-016-0368-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew Higham
- Manchester Academic Health and Science Centre, University Hospital of South Manchester Foundation Trust, Centre for Respiratory and Allergy Medicine, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK.
| | - Nicholas J W Rattray
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Jennifer A Dewhurst
- Manchester Academic Health and Science Centre, University Hospital of South Manchester Foundation Trust, Centre for Respiratory and Allergy Medicine, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK
| | - Drupad K Trivedi
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Stephen J Fowler
- Manchester Academic Health and Science Centre, University Hospital of South Manchester Foundation Trust, Centre for Respiratory and Allergy Medicine, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK
| | - Royston Goodacre
- Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester, UK
| | - Dave Singh
- Manchester Academic Health and Science Centre, University Hospital of South Manchester Foundation Trust, Centre for Respiratory and Allergy Medicine, Institute of Inflammation and Repair, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
35
|
Gupta V, Khan A, Higham A, Lemon J, Sriskantharajah S, Amour A, Hessel EM, Southworth T, Singh D. The effect of phosphatidylinositol-3 kinase inhibition on matrix metalloproteinase-9 and reactive oxygen species release from chronic obstructive pulmonary disease neutrophils. Int Immunopharmacol 2016; 35:155-162. [PMID: 27049289 DOI: 10.1016/j.intimp.2016.03.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 03/01/2016] [Accepted: 03/21/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic Obstructive Pulmonary Disease (COPD) is characterised by increased neutrophilic inflammation. A potential novel anti-inflammatory target in COPD is phosphatidylinositol-3 kinase (PI3 kinase), which targets neutrophil function. This study evaluated the effects of selective PI3Kδ inhibition on COPD blood and sputum neutrophils both in the stable state and during exacerbations. METHODS Blood and sputum neutrophils from stable and exacerbating COPD patients were cultured with the corticosteroid dexamethasone, a pan PI3 kinase inhibitor (ZSTK474), a δ selective PI3 kinase inhibitor (GSK045) and a p38 mitogen activated protein (MAP) kinase inhibitor (BIRB 796); matrix metalloproteinase (MMP)-9 and reactive oxygen species (ROS) release were analysed. RESULTS PI3Kδ inhibition significantly reduced MMP-9, intracellular ROS and extracellular ROS release from blood neutrophils (45.6%, 30.1% and 47.4% respectively; p<0.05) and intracellular ROS release from sputum neutrophils (16.6%; p<0.05) in stable patients. PI3Kδ selective inhibition significantly reduced stimulated MMP-9 (36.4%; p<0.05) and unstimulated and stimulated ROS release (12.6 and 26.7%; p<0.05) from blood neutrophils from exacerbating patients. The effects of the p38 MAP kinase inhibitor and dexamethasone in these experiments were generally lower than PI3Kδ inhibition. CONCLUSION PI3Kδ selective inhibition is a potential strategy for targeting glucocorticoid insensitive MMP-9 and ROS secretion from COPD neutrophils, both in the stable state and during exacerbations.
Collapse
Affiliation(s)
- V Gupta
- University of Manchester, Medicines Evaluation Unit, Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University Hospital of South Manchester, NHS Foundation Trust, Manchester M23 9LT, UK.
| | - A Khan
- University of Manchester, Medicines Evaluation Unit, Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University Hospital of South Manchester, NHS Foundation Trust, Manchester M23 9LT, UK
| | - A Higham
- University of Manchester, Medicines Evaluation Unit, Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University Hospital of South Manchester, NHS Foundation Trust, Manchester M23 9LT, UK
| | - J Lemon
- University of Manchester, Medicines Evaluation Unit, Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University Hospital of South Manchester, NHS Foundation Trust, Manchester M23 9LT, UK
| | - S Sriskantharajah
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, UK
| | - A Amour
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, UK
| | - E M Hessel
- Refractory Respiratory Inflammation Discovery Performance Unit, GlaxoSmithKline, Stevenage, UK
| | - T Southworth
- University of Manchester, Medicines Evaluation Unit, Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University Hospital of South Manchester, NHS Foundation Trust, Manchester M23 9LT, UK
| | - D Singh
- University of Manchester, Medicines Evaluation Unit, Centre for Respiratory Medicine and Allergy, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University Hospital of South Manchester, NHS Foundation Trust, Manchester M23 9LT, UK
| |
Collapse
|
36
|
Ramesh A, Varghese SS, Jayakumar N, Malaiappan S. Chronic obstructive pulmonary disease and periodontitis – unwinding their linking mechanisms. J Oral Biosci 2016. [DOI: 10.1016/j.job.2015.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Vaidyanathan A, Damodar KS. Increased metabolic activity of neutrophils in patients with chronic obstructive pulmonary disease. Lung India 2015; 32:589-92. [PMID: 26664165 PMCID: PMC4663862 DOI: 10.4103/0970-2113.168134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aims: To compare the metabolic activity of peripheral neutrophils in patients diagnosed with chronic obstructive pulmonary disease (COPD) with that of healthy, nonsmoking volunteers. Materials and Methods: Venous blood samples were taken from patients diagnosed with COPD as well as from healthy nonsmokers. Each sample was subjected to the nitro blue tetrazolium (NBT) test in which neutrophils exhibiting elevated metabolic activity were detected by light microscopy. The test was repeated after stimulation with Escherichia coli (E. coli) endotoxin with fresh samples. Neutrophils showing dye uptake were then counted in each case. Results: We found that the mean numbers of activated neutrophils without and with the addition of endotoxin were 19% and 23%, respectively, in the control group and 56% and 62%, respectively, in the test group. Two-sample t-test statistic revealed that there was a significant (P < 0.01) increase in neutrophilic metabolic activity in patients with COPD as compared to that in healthy volunteers. This significance remained even after stimulation using E. coli endotoxin. Conclusion: The results hint at a potentially relevant pathogenic mechanism in COPD related to the metabolic activity of neutrophils. By exhibiting enhanced metabolic activity, neutrophils in the COPD patients are more likely to be involved in damaging lung tissues.
Collapse
Affiliation(s)
- Ashwin Vaidyanathan
- Department of Physiology, Vydehi Institute of Medical Sciences and Research Center, Bangalore, Karnataka, India
| | - Komaladevi Sampath Damodar
- Department of Physiology, Vydehi Institute of Medical Sciences and Research Center, Bangalore, Karnataka, India
| |
Collapse
|
38
|
Andelid K, Andersson A, Yoshihara S, Åhrén C, Jirholt P, Ekberg-Jansson A, Lindén A. Systemic signs of neutrophil mobilization during clinically stable periods and during exacerbations in smokers with obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2015; 10:1253-63. [PMID: 26170654 PMCID: PMC4493974 DOI: 10.2147/copd.s77274] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND It is still unclear whether signs of neutrophil mobilization in the blood of patients with chronic obstructive pulmonary disease represent true systemic events and how these relate to bacterial colonization in the airways. In this study, we evaluated these issues during clinically stable periods and during exacerbations in smokers with obstructive pulmonary disease and chronic bronchitis (OPD-CB). METHODS Over a period of 60 weeks for each subject, blood samples were repeatedly collected from 60 smokers with OPD-CB during clinically stable periods, as well as during and after exacerbations. Myeloperoxidase (MPO) and neutrophil elastase (NE) protein and mRNA, growth of bacteria in sputum, and clinical parameters were analyzed. Ten asymptomatic smokers and ten never-smokers were included as controls. RESULTS We found that, during clinically stable periods, neutrophil and NE protein concentrations were increased in smokers with OPD-CB and in the asymptomatic smokers when compared with never-smokers. During exacerbations, neutrophil and MPO protein concentrations were further increased in smokers with OPD-CB, without a detectable increase in the corresponding mRNA during exacerbations. However, MPO and NE protein and mRNA displayed positive correlations. During exacerbations, only increased neutrophil concentrations were associated with growth of bacteria in sputum. Among patients with low transcutaneous oxygen saturation during exacerbations, PaO2 (partial oxygen pressure) correlated with concentrations of MPO and NE protein and neutrophils in a negative manner. CONCLUSION There are signs of systemic neutrophil mobilization during clinically stable periods and even more so during exacerbations in chronic obstructive pulmonary disease. In this condition, MPO and NE may share a cellular origin, but its location remains uncertain. Factors other than local bacteria, including hypoxemia, may be important for driving systemic signs of neutrophil mobilization.
Collapse
MESH Headings
- Bronchitis, Chronic/blood
- Bronchitis, Chronic/diagnosis
- Bronchitis, Chronic/immunology
- Bronchitis, Chronic/microbiology
- Bronchitis, Chronic/physiopathology
- Case-Control Studies
- Cross-Sectional Studies
- Disease Progression
- Female
- Humans
- Leukocyte Elastase/blood
- Leukocyte Elastase/genetics
- Longitudinal Studies
- Lung/immunology
- Lung/microbiology
- Lung/physiopathology
- Male
- Neutrophil Activation
- Neutrophils/immunology
- Neutrophils/metabolism
- Peroxidase/blood
- Prospective Studies
- Pulmonary Disease, Chronic Obstructive/blood
- Pulmonary Disease, Chronic Obstructive/diagnosis
- Pulmonary Disease, Chronic Obstructive/immunology
- Pulmonary Disease, Chronic Obstructive/microbiology
- Pulmonary Disease, Chronic Obstructive/physiopathology
- RNA, Messenger/blood
- Risk Factors
- Smoking/adverse effects
- Smoking/blood
- Smoking/immunology
- Sputum/microbiology
- Time Factors
Collapse
Affiliation(s)
- Kristina Andelid
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anders Andersson
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | | | - Christina Åhrén
- Department of Bacteriology, Institute of Laboratory Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Pernilla Jirholt
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Ann Ekberg-Jansson
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Anders Lindén
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
39
|
Lee H, Jung KH, Park S, Kil YS, Chung EY, Jang YP, Seo EK, Bae H. Inhibitory effects of Stemona tuberosa on lung inflammation in a subacute cigarette smoke-induced mouse model. Altern Ther Health Med 2014; 14:513. [PMID: 25528348 PMCID: PMC4364599 DOI: 10.1186/1472-6882-14-513] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 12/16/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Stemona tuberosa has long been used in Korean and Chinese medicine to ameliorate various lung diseases such as pneumonia and bronchitis. However, it has not yet been proven that Stemona tuberosa has positive effects on lung inflammation. METHODS Stemona tuberosa extract (ST) was orally administered to C57BL/6 mice 2 hr before exposure to CS for 2 weeks. Twenty-four hours after the last CS exposure, mice were sacrificed to investigate the changes in the expression of cytokines such as tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), chemokines such as keratinocyte-derived chemokine (KC) and inflammatory cells such as macrophages, neutrophils, and lymphocytes from bronchoalveolar lavage fluid (BALF). Furthermore, we compared the effect of ST on lung tissue morphology between the fresh air, CS exposure, and ST treatment groups. RESULTS ST significantly decreased the numbers of total cells, macrophages, neutrophils, and lymphocytes in the BALF of mice that were exposed to CS. Additionally, ST reduced the levels of cytokines (TNF-α, IL-6) and the tested chemokine (KC) in BALF, as measured by enzyme-linked immunosorbent assay (ELISA). We also estimated the mean alveolar airspace (MAA) via morphometric analysis of lung tissues stained with hematoxylin and eosin (H&E). We found that ST inhibited the alveolar airspace enlargement induced by CS exposure. Furthermore, we observed that the lung tissues of mice treated with ST showed ameliorated epithelial hyperplasia of the bronchioles compared with those of mice exposed only to CS. CONCLUSIONS These results indicate that Stemona tuberosa has significant effects on lung inflammation in a subacute CS-induced mouse model. According to these outcomes, Stemona tuberosa may represent a novel therapeutic herb for the treatment of lung diseases including COPD.
Collapse
|
40
|
Pulmonary vascular changes in asthma and COPD. Pulm Pharmacol Ther 2014; 29:144-55. [DOI: 10.1016/j.pupt.2014.09.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 12/11/2022]
|
41
|
Friedrichs B, Neumann U, Schüller J, Peck MJ. Cigarette-smoke-induced priming of neutrophils from smokers and non-smokers for increased oxidative burst response is mediated by TNF-α. Toxicol In Vitro 2014; 28:1249-58. [PMID: 24997298 DOI: 10.1016/j.tiv.2014.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/10/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
Abstract
In vitro treatment of human peripheral blood neutrophils from smokers and non-smokers with an aqueous cigarette smoke (CS) extract resulted in a concentration-dependent increase in surface expression of CD11b and CD66b and a corresponding decrease of CD62L, together with a concentration-dependent release of MMP-8, MMP-9, and lactoferrin, indicating considerable activation and degranulation. However, the burst response to N-formyl-methionyl-leucyl-phenylalanine (fMLP) was unchanged in CS-stimulated neutrophils from both smokers and non-smokers. When supernatants from CS-treated monocytic MonoMac-6 (MM6) cells were used for activation of neutrophils, concentration-dependent changes in surface marker expression, granule protein release, and the oxidative burst response to fMLP were observed, again with no major differences between smokers and non-smokers. CS-treated MM6 cells released significant amounts of IL-8 and TNF-α into the culture supernatant. However, antibody blocking experiments showed that only TNF-α mediated the increased burst response in neutrophils. These data show that, in the presence of secondary cells, CS is able to prime neutrophils for an increased burst response to fMLP which is mediated by TNF-α, released from the secondary cells in response to CS. Following stimulation with priming agents, peripheral blood neutrophils from healthy smokers show an equal burst response compared to those from non-smokers.
Collapse
Affiliation(s)
- Bärbel Friedrichs
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, D-51149 Cologne, Germany
| | - Ute Neumann
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, D-51149 Cologne, Germany
| | - Jutta Schüller
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, D-51149 Cologne, Germany
| | - Michael J Peck
- Philip Morris International R&D, Philip Morris Products S.A., CH-2000 Neuchâtel, Switzerland.
| |
Collapse
|
42
|
NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol 2014; 12:5-23. [PMID: 25263488 DOI: 10.1038/cmi.2014.89] [Citation(s) in RCA: 641] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 08/18/2014] [Accepted: 08/18/2014] [Indexed: 12/11/2022] Open
Abstract
Oxygen-derived free radicals, collectively termed reactive oxygen species (ROS), play important roles in immunity, cell growth, and cell signaling. In excess, however, ROS are lethal to cells, and the overproduction of these molecules leads to a myriad of devastating diseases. The key producers of ROS in many cells are the NOX family of NADPH oxidases, of which there are seven members, with various tissue distributions and activation mechanisms. NADPH oxidase is a multisubunit enzyme comprising membrane and cytosolic components, which actively communicate during the host responses to a wide variety of stimuli, including viral and bacterial infections. This enzymatic complex has been implicated in many functions ranging from host defense to cellular signaling and the regulation of gene expression. NOX deficiency might lead to immunosuppression, while the intracellular accumulation of ROS results in the inhibition of viral propagation and apoptosis. However, excess ROS production causes cellular stress, leading to various lethal diseases, including autoimmune diseases and cancer. During the later stages of injury, NOX promotes tissue repair through the induction of angiogenesis and cell proliferation. Therefore, a complete understanding of the function of NOX is important to direct the role of this enzyme towards host defense and tissue repair or increase resistance to stress in a timely and disease-specific manner.
Collapse
|
43
|
Ravi AK, Khurana S, Lemon J, Plumb J, Booth G, Healy L, Catley M, Vestbo J, Singh D. Increased levels of soluble interleukin-6 receptor and CCL3 in COPD sputum. Respir Res 2014; 15:103. [PMID: 25183374 PMCID: PMC4156958 DOI: 10.1186/s12931-014-0103-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/19/2014] [Indexed: 01/10/2023] Open
Abstract
Background COPD patients have increased numbers of macrophages and neutrophils in the lungs. Interleukin-6 (IL-6) trans-signaling via its soluble receptor sIL-6R, governs the influx of innate immune cells to inflammatory foci through regulation of the chemokine CCL3. We hypothesized that there would be enhanced levels of IL-6, sIL-6R and CCL3 in COPD sputum. Methods 59 COPD patients, 15 HNS and 15 S underwent sputum induction and processing with phosphate buffered saline to obtain supernatants for IL-6, sIL-6R and CCL3 analysis. Cytoslides were produced for differential cell counting and immunocytochemistry (COPD; n = 3) to determine cell type surface expression of the CCL3 receptors CCR5 and CCR1. Results COPD patients expressed higher levels (p < 0.05) of sIL-6R and CCL3 compared to controls (sIL-6R medians pg/ml: COPD 166.4 vs S 101.1 vs HNS 96.4; CCL3 medians pg/ml: COPD 117.9 vs S 0 vs HNS 2.7). COPD sIL-6R levels were significantly correlated with sputum neutrophil (r = 0.5, p < 0.0001) and macrophage (r = 0.3, p = 0.01) counts. Immunocytochemical analysis revealed that CCR5 and CCR1 were exclusively expressed on airway macrophages. Conclusion Enhanced airway generation of sIL-6R may promote IL-6 trans-signaling in COPD. Associated upregulation of CCL3 may facilitate the recruitment of macrophages into the airways by ligation of CCR1 and CCR5. Electronic supplementary material The online version of this article (doi:10.1186/s12931-014-0103-4) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
In vitro anti-inflammatory effects of diterpenoids and sesquiterpenoids from traditional Chinese medicine Siegesbeckia pubescens. Bioorg Med Chem Lett 2014; 24:3944-7. [DOI: 10.1016/j.bmcl.2014.06.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 11/23/2022]
|
45
|
Milara J, Lluch J, Almudever P, Freire J, Xiaozhong Q, Cortijo J. Roflumilast N-oxide reverses corticosteroid resistance in neutrophils from patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 2014; 134:314-22. [PMID: 24636089 DOI: 10.1016/j.jaci.2014.02.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 01/31/2014] [Accepted: 02/03/2014] [Indexed: 01/23/2023]
Abstract
BACKGROUND Glucocorticoid functions are markedly impaired in patients with chronic obstructive pulmonary disease (COPD). The phosphodiesterase 4 inhibitor roflumilast N-oxide (RNO) is the active metabolite of roflumilast approved as a treatment to reduce the risk of exacerbations in patients with severe COPD. OBJECTIVE We sought to characterize the differential effects of RNO versus corticosteroids and their potential additive/synergistic effect in neutrophils from patients with COPD, thus providing scientific rationale for the combination of roflumilast with corticosteroids in the clinic. METHODS Peripheral blood neutrophils were isolated from patients with COPD (n = 32), smokers (n = 7), and healthy nonsmokers (n = 25). Levels of IL-8, matrix metallopeptidase 9 (MMP-9), and biomarkers of glucocorticoid resistance were determined by using ELISA and RT-PCR. Neutrophils were incubated with dexamethasone (0.1 nmol/L to 1 μmol/L), RNO (0.1 nmol/L to 1 μmol/L), or the combination of 1 nmol/L RNO plus 10 nmol/L DEX and stimulated with LPS (1 μg/mL) or cigarette smoke extract 5%; levels of IL-8, MMP-9, and other biomarkers were measured at the end of the incubation period. RESULTS Peripheral neutrophils from patients with COPD showed a primed phenotype with an increased basal release of IL-8 and MMP-9 and expressed a corticosteroid resistance molecular profile characterized by an increase in phosphoinositide 3-kinase δ, macrophage migration inhibitory factor, and glucocorticoid receptor β expression and a decrease in HDAC activity and mitogen-activated protein kinase phosphatase 1 expression. RNO demonstrated robust anti-inflammatory effects on neutrophils from patients with COPD, reversing their resistance to corticosteroids. The combination of RNO and dexamethasone showed additive/synergistic effects, which were consistent with the reversal of corticosteroid-resistant molecular markers by RNO. CONCLUSION RNO reverses corticosteroid resistance and shows strong anti-inflammatory effects alone or in combination with corticosteroids on neutrophils from patients with COPD.
Collapse
Affiliation(s)
- Javier Milara
- Clinical Research Unit (UIC), University General Hospital Consortium, Valencia, Spain; Department of Biotechnology, Universidad Politécnica de Valencia, Valencia, Spain; Research Foundation of General Hospital of Valencia, Valencia, Spain.
| | - Javier Lluch
- Research Foundation of General Hospital of Valencia, Valencia, Spain; CIBERES, Health Institute Carlos III, Valencia, Spain
| | - Patricia Almudever
- Research Foundation of General Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | | | | | - Julio Cortijo
- Clinical Research Unit (UIC), University General Hospital Consortium, Valencia, Spain; Research Foundation of General Hospital of Valencia, Valencia, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain; CIBERES, Health Institute Carlos III, Valencia, Spain
| |
Collapse
|
46
|
Vaitkus M, Lavinskiene S, Barkauskiene D, Bieksiene K, Jeroch J, Sakalauskas R. Reactive oxygen species in peripheral blood and sputum neutrophils during bacterial and nonbacterial acute exacerbation of chronic obstructive pulmonary disease. Inflammation 2014; 36:1485-93. [PMID: 23872721 DOI: 10.1007/s10753-013-9690-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chronic airway inflammation can be mediated by an enhanced neutrophil oxidative burst. However, the role of bacteria in the pathogenesis of chronic obstructive pulmonary disease (COPD) exacerbations is highly controversial. The aim of this study was to evaluate the production of reactive oxygen species (ROS) in peripheral blood and sputum neutrophils during bacterial and nonbacterial acute exacerbations of COPD (AECOPD). A total of 40 patients with AECOPD, 10 healthy nonsmokers, and 10 "healthy" smokers were enrolled into the study. Peripheral blood and sputum samples were obtained during exacerbation and after recovery. Neutrophils were isolated by high-density gradient centrifugation and magnetic separation. ROS production by neutrophils was investigated after stimulation with phorbol-myristate-acetate and Staphylococcus aureus bacteria. ROS production by neutrophils was assessed as the mean fluorescent intensity using a flow cytometer. IL-8 levels in serum and induced sputum were determinant by ELISA. Spontaneous ROS production was significantly higher in neutrophils from the patients with bacterial AECOPD as compared with nonbacterial AECOPD and stable COPD (P <0.05). ROS production stimulated with PMA and with Staphylococcus aureus was significantly higher in neutrophils isolated from the patients with bacterial AECOPD as compared with nonbacterial and stable COPD (P <0.05). The serum and induced sputum IL-8 levels were significantly increased in the patients with bacterial AECOPD than nonbacterial AECOPD, stable COPS, and "healthy" smokers and nonsmokers (P <0.05) and higher in the induced sputum as the compared with serum in all studied groups (P <0.05). Enlarge CRP level was documented during AECOPD than in all other groups (P <0.05). A markedly increased ROS production in sputum neutrophils during bacterial AECOPD shows an inflammatory response reflecting enhanced local inflammation, which can be mediated by bacterial colonization.
Collapse
Affiliation(s)
- Mindaugas Vaitkus
- Department of Pulmonology and Immunology, Hospital of Lithuanian university of Health Sciences, Kaunas, Lithuania,
| | | | | | | | | | | |
Collapse
|
47
|
Barchuk W, Lambert J, Fuhr R, Jiang JZ, Bertelsen K, Fourie A, Liu X, Silkoff PE, Barnathan ES, Thurmond R. Effects of JNJ-40929837, a leukotriene A4 hydrolase inhibitor, in a bronchial allergen challenge model of asthma. Pulm Pharmacol Ther 2014; 29:15-23. [PMID: 25018015 DOI: 10.1016/j.pupt.2014.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/10/2014] [Accepted: 06/25/2014] [Indexed: 11/29/2022]
Abstract
UNLABELLED Leukotriene B4 (LTB4) is a chemotactic mediator implicated in the pathogenesis of asthma. JNJ-40929837 is an oral inhibitor of LTA4 hydrolase, which catalyzes LTB4 production. We evaluated the effects of JNJ-40929837 in a human bronchial allergen challenge (BAC) model. In this double-blind, 3-period crossover study, 22 patients with mild, atopic asthma were randomized to one of three treatments per period: 100 mg/day JNJ-40929837 for 6 days followed by 50 mg/day on day 7; 10 mg/day montelukast for 6 days; and matched placebo. The BAC was performed on day 6 of each treatment period. Primary outcome was BAC-induced late asthmatic response (LAR) measured by maximal percent reduction in forced expiratory volume (FEV1) in one second. Secondary outcomes included early asthmatic response (EAR) by maximal percent reduction in FEV1, EAR and LAR evaluated by area under the FEV1/time curve (AUC0-2, AUC3-10, respectively), change in baseline FEV1 after 5-day treatment, safety, and correlation of JNJ-40929837 to the divalent cation ionophore A23187-stimulated whole blood LTB4 levels and sputum basal LTB4 levels. No significant differences were observed in the primary or secondary FEV1 endpoints with JNJ-40929837 versus placebo. Compared with placebo (n = 17, LS mean = 27.7), there was no significant attenuation of the maximal percent reduction in the LAR FEV1 with JNJ-40929837 (n = 16, LS mean = 28.6, P = 0.63) but montelukast (n = 17, LS mean = 22.6, P = 0.01) significantly attenuated the LAR. JNJ-40929837 substantially inhibited LTB4 production in whole blood, decreased sputum LTB4 levels and was well-tolerated. The number of adverse events leading to study withdrawal was the same in JNJ-40929837 and placebo groups. In conclusion, JNJ-40929837 demonstrated target engagement in blood and sputum. No significant impact in response to allergen inhalation was observed with JNJ-40929837 versus placebo. REGISTRATION This study is registered at ClinicalTrials.gov: NCT01241422.
Collapse
Affiliation(s)
- W Barchuk
- Immunology, Janssen Research & Development, LLC, San Diego, CA, USA.
| | - J Lambert
- Early Phase Clinical Unit, PAREXEL International, Harrow, UK
| | - R Fuhr
- Early Phase Clinical Unit, PAREXEL International, Berlin, Germany
| | - J Z Jiang
- Biostatistics, Janssen Research & Development, LLC, San Diego, CA, USA
| | - K Bertelsen
- Clinical Pharmacology, Janssen Research & Development, LLC, Titusville, NJ, USA
| | - A Fourie
- Immunology, Janssen Research & Development, LLC, San Diego, CA, USA
| | - X Liu
- Immunology, Janssen Research & Development, LLC, San Diego, CA, USA
| | - P E Silkoff
- Immunology, Janssen Research & Development, LLC, Spring House, PA, USA
| | - E S Barnathan
- Immunology, Janssen Research & Development, LLC, Spring House, PA, USA
| | - R Thurmond
- Immunology, Janssen Research & Development, LLC, San Diego, CA, USA
| |
Collapse
|
48
|
Ives SJ, Harris RA, Witman MAH, Fjeldstad AS, Garten RS, McDaniel J, Wray DW, Richardson RS. Vascular dysfunction and chronic obstructive pulmonary disease: the role of redox balance. Hypertension 2013; 63:459-67. [PMID: 24324045 DOI: 10.1161/hypertensionaha.113.02255] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by low pulmonary function, inflammation, free radical production, vascular dysfunction, and subsequently a greater incidence of cardiovascular disease. By administering an acute oral antioxidant cocktail to patients with COPD (n=30) and controls (n=30), we sought to determine the role of redox balance in the vascular dysfunction of these patients. Using a double-blind, randomized, placebo-controlled, crossover design, patients with COPD and controls were ingested placebo or the antioxidant cocktail (vitamin C, vitamin E, α-lipoic acid) after which brachial artery flow-mediated dilation and carotid-radial pulse wave velocity were assessed using ultrasound Doppler. The patients exhibited lower baseline antioxidant levels (vitamin C and superoxide dismutase activity) and higher levels of oxidative stress (thiobarbituic acid reactive species) in comparison with controls. The patients also displayed lower basal flow-mediated dilation (P<0.05), which was significantly improved with antioxidant cocktail (3.1±0.5 versus 4.7±0.6%; P<0.05; placebo versus antioxidant cocktail), but not controls (6.7±0.6 versus 6.9±0.7%; P>0.05; placebo versus antioxidant cocktail). The antioxidant cocktail also improved pulse wave velocity in patients with COPD (14±1 versus 11±1 m·s(-1); P<0.05; placebo versus antioxidant cocktail) while not affecting controls (11±2 versus 10±1 m·s(-1); P>0.05; placebo versus antioxidant). Patients with COPD exhibit vascular dysfunction, likely mediated by an altered redox balance, which can be acutely mitigated by an oral antioxidant. Therefore, free radically mediated vascular dysfunction may be an important mechanism contributing to this population's greater risk and incidence of cardiovascular disease.
Collapse
Affiliation(s)
- Stephen J Ives
- VA Medical Center Bldg 2, Rm 1D25, 500 Foothill Dr, Salt Lake City, UT 84148.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Usher AKH, Stockley RA. The link between chronic periodontitis and COPD: a common role for the neutrophil? BMC Med 2013; 11:241. [PMID: 24229090 PMCID: PMC4225606 DOI: 10.1186/1741-7015-11-241] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 11/01/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The possible relationship between chronic inflammatory diseases and their co-morbidities has become an increasing focus of research. Both chronic periodontitis and chronic obstructive pulmonary disease are neutrophilic, inflammatory conditions characterized by the loss of local connective tissue. Evidence suggests an association and perhaps a causal link between the two diseases. However, the nature of any relationship between them is unclear, but if pathophysiologically established may have wide-reaching implications for targeted treatments to improve outcomes and prognosis. DISCUSSION There have been a number of epidemiological studies undertaken demonstrating an independent association between chronic periodontitis and chronic obstructive pulmonary disease. However, many of them have significant limitations, and drawing firm conclusions regarding causality may be premature. Although the pathology of both these diseases is complex and involves many cell types, such as CD8 positive cells and macrophages, both conditions are predominantly characterized by neutrophilic inflammation. Increasingly, there is evidence that the two conditions are underpinned by similar pathophysiological processes, especially centered on the functions of the neutrophil. These include a disturbance in protease/anti-protease and redox state balance. The association demonstrated by epidemiological studies, as well as emerging similarities in pathogenesis at the level of the neutrophil, suggest a basis for testing the effects of treatment for one condition upon the severity of the other. SUMMARY Although the evidence of an independent association between chronic periodontitis and chronic obstructive pulmonary disease grows stronger, there remains a lack of definitive studies designed to establish causality and treatment effects. There is a need for future research to be focused on answering these questions.
Collapse
Affiliation(s)
- Adam K H Usher
- Lung Investigation Unit, Queen Elizabeth Hospital, Mindelsohn Way, Edgbaston, Birmingham B15 2WB, UK.
| | | |
Collapse
|
50
|
Seiberling M, Kamtchoua T, Stryszak P, Ma X, Langdon RB, Khalilieh S. Humoral immunity and delayed-type hypersensitivity in healthy subjects treated for 30days with MK-7123, a selective CXCR2 antagonist. Int Immunopharmacol 2013; 17:178-83. [DOI: 10.1016/j.intimp.2013.05.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 05/02/2013] [Accepted: 05/30/2013] [Indexed: 12/21/2022]
|