1
|
Koziol-White C, Gebski E, Cao G, Panettieri RA. Precision cut lung slices: an integrated ex vivo model for studying lung physiology, pharmacology, disease pathogenesis and drug discovery. Respir Res 2024; 25:231. [PMID: 38824592 PMCID: PMC11144351 DOI: 10.1186/s12931-024-02855-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/18/2024] [Indexed: 06/03/2024] Open
Abstract
Precision Cut Lung Slices (PCLS) have emerged as a sophisticated and physiologically relevant ex vivo model for studying the intricacies of lung diseases, including fibrosis, injury, repair, and host defense mechanisms. This innovative methodology presents a unique opportunity to bridge the gap between traditional in vitro cell cultures and in vivo animal models, offering researchers a more accurate representation of the intricate microenvironment of the lung. PCLS require the precise sectioning of lung tissue to maintain its structural and functional integrity. These thin slices serve as invaluable tools for various research endeavors, particularly in the realm of airway diseases. By providing a controlled microenvironment, precision-cut lung slices empower researchers to dissect and comprehend the multifaceted interactions and responses within lung tissue, thereby advancing our understanding of pulmonary pathophysiology.
Collapse
Affiliation(s)
- Cynthia Koziol-White
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA.
| | - Eric Gebski
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA
| | - Gaoyaun Cao
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA
| | - Reynold A Panettieri
- Rutgers Institute for Translational Medicine and Science, The State University of NJ, 08901, Rutgers, New Brunswick, NJ, USA
| |
Collapse
|
2
|
Basil MC, Alysandratos KD, Kotton DN, Morrisey EE. Lung repair and regeneration: Advanced models and insights into human disease. Cell Stem Cell 2024; 31:439-454. [PMID: 38492572 PMCID: PMC11070171 DOI: 10.1016/j.stem.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
The respiratory system acts as both the primary site of gas exchange and an important sensor and barrier to the external environment. The increase in incidences of respiratory disease over the past decades has highlighted the importance of developing improved therapeutic approaches. This review will summarize recent research on the cellular complexity of the mammalian respiratory system with a focus on gas exchange and immunological defense functions of the lung. Different models of repair and regeneration will be discussed to help interpret human and animal data and spur the investigation of models and assays for future drug development.
Collapse
Affiliation(s)
- Maria C Basil
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn, Children's Hospital of Philadelphia (CHOP) Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| | - Edward E Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn, Children's Hospital of Philadelphia (CHOP) Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Ma JC, Wang ZN, Xi MF, Yin D, Jiang LF, Qi J. Experimental Study on the Effect of Caffeine Hydrogel on the Expression of TGF -β1, α-SMA and Collagen in Hypertrophic Scar of Rabbit Ears. J Burn Care Res 2024; 45:85-92. [PMID: 37526062 PMCID: PMC11023546 DOI: 10.1093/jbcr/irad115] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Indexed: 08/02/2023]
Abstract
This study evaluated the effects of topical use of caffeine hydrogel on hypertrophic scar in a rabbit ear wound model. Nine rabbits were randomly divided into three groups: control group, caffeine hydrogel group, and matrix group. Punched defects were established on each rabbit's ear which resulted in a hypertrophic scar. When the wound epithelialization and scar hyperplasia could be seen, control group did not do any treatment, while caffeine hydrogel group and matrix group were treated with caffeine hydrogel and hydrogel matrix, respectively. After 3 weeks of administration, the general morphological changes of scar were observed, and the scar tissue of rabbit ears was stained with HE and Masson. The relative expressions of TGF β-1, α-SMA, type I collagen, and type III collagen in scar tissue were detected by Western blot. In all three groups, findings showed that caffeine hydrogel can inhibit scar growth by reducing the expression of TGF β-1, reducing the proliferation of fibroblasts, improving collagen arrangement and reducing collagen deposition. The overall study shows efficacy and mechanism of caffeine. It concluded that caffeine could be an effective therapeutic agent for hypertrophicscars.
Collapse
Affiliation(s)
- Jiu-Cheng Ma
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong Jiangsu 226000, P.R. China
- Nantong University Medical School, Nantong Jiangsu 226000, P.R. China
| | - Zhao-Nan Wang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong Jiangsu 226000, P.R. China
- Nantong University Medical School, Nantong Jiangsu 226000, P.R. China
| | - Ming-Fan Xi
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong Jiangsu 226000, P.R. China
- Nantong University Medical School, Nantong Jiangsu 226000, P.R. China
| | - Dong Yin
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong Jiangsu 226000, P.R. China
- Nantong University Medical School, Nantong Jiangsu 226000, P.R. China
| | - Li-Fan Jiang
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong Jiangsu 226000, P.R. China
- Nantong University Medical School, Nantong Jiangsu 226000, P.R. China
| | - Jun Qi
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong Jiangsu 226000, P.R. China
| |
Collapse
|
4
|
Diwan R, Bhatt HN, Beaven E, Nurunnabi M. Emerging delivery approaches for targeted pulmonary fibrosis treatment. Adv Drug Deliv Rev 2024; 204:115147. [PMID: 38065244 PMCID: PMC10787600 DOI: 10.1016/j.addr.2023.115147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/02/2023] [Accepted: 11/29/2023] [Indexed: 01/01/2024]
Abstract
Pulmonary fibrosis (PF) is a progressive, and life-threatening interstitial lung disease which causes scarring in the lung parenchyma and thereby affects architecture and functioning of lung. It is an irreversible damage to lung functioning which is related to epithelial cell injury, immense accumulation of immune cells and inflammatory cytokines, and irregular recruitment of extracellular matrix. The inflammatory cytokines trigger the differentiation of fibroblasts into activated fibroblasts, also known as myofibroblasts, which further increase the production and deposition of collagen at the injury sites in the lung. Despite the significant morbidity and mortality associated with PF, there is no available treatment that efficiently and effectively treats the disease by reversing their underlying pathologies. In recent years, many therapeutic regimens, for instance, rho kinase inhibitors, Smad signaling pathway inhibitors, p38, BCL-xL/ BCL-2 and JNK pathway inhibitors, have been found to be potent and effective in treating PF, in preclinical stages. However, due to non-selectivity and non-specificity, the therapeutic molecules also result in toxicity mediated severe side effects. Hence, this review demonstrates recent advances on PF pathology, mechanism and targets related to PF, development of various drug delivery systems based on small molecules, RNAs, oligonucleotides, peptides, antibodies, exosomes, and stem cells for the treatment of PF and the progress of various therapeutic treatments in clinical trials to advance PF treatment.
Collapse
Affiliation(s)
- Rimpy Diwan
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Himanshu N Bhatt
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Elfa Beaven
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX 79968, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, United States; Department of Biomedical Engineering, College of Engineering, The University of Texas El Paso, El Paso, TX 79968, United States; The Border Biomedical Research Center, The University of Texas El Paso, El Paso, TX 79968, United States.
| |
Collapse
|
5
|
Song X, Kirtipal N, Lee S, Malý P, Bharadwaj S. Current therapeutic targets and multifaceted physiological impacts of caffeine. Phytother Res 2023; 37:5558-5598. [PMID: 37679309 DOI: 10.1002/ptr.8000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
Caffeine, which shares consubstantial structural similarity with purine adenosine, has been demonstrated as a nonselective adenosine receptor antagonist for eliciting most of the biological functions at physiologically relevant dosages. Accumulating evidence supports caffeine's beneficial effects against different disorders, such as total cardiovascular diseases and type 2 diabetes. Conversely, paradoxical effects are also linked to caffeine ingestion in humans including hypertension-hypotension and tachycardia-bradycardia. These observations suggest the association of caffeine action with its ingested concentration and/or concurrent interaction with preferential molecular targets to direct explicit events in the human body. Thus, a coherent analysis of the functional targets of caffeine, relevant to normal physiology, and disease pathophysiology, is required to understand the pharmacology of caffeine. This review provides a broad overview of the experimentally validated targets of caffeine, particularly those of therapeutic interest, and the impacts of caffeine on organ-specific physiology and pathophysiology. Overall, the available empirical and epidemiological evidence supports the dose-dependent functional activities of caffeine and advocates for further studies to get insights into the caffeine-induced changes under specific conditions, such as asthma, DNA repair, and cancer, in view of its therapeutic applications.
Collapse
Affiliation(s)
- Xinjie Song
- Zhejiang Provincial Key Lab for Chemical and Biological Processing Technology of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Nikhil Kirtipal
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Sunjae Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Petr Malý
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| | - Shiv Bharadwaj
- Laboratory of Ligand Engineering, Institute of Biotechnology of the Czech Academy of Sciences v.v.i, BIOCEV Research Center, Vestec, Czech Republic
| |
Collapse
|
6
|
Kaur H, Yerra VG, Batchu SN, Tran DT, Kabir MDG, Liu Y, Advani SL, Sedrak P, Geldenhuys L, Tennankore KK, Poyah P, Siddiqi FS, Advani A. Single cell G-protein coupled receptor profiling of activated kidney fibroblasts expressing transcription factor 21. Br J Pharmacol 2023; 180:2898-2915. [PMID: 37115600 DOI: 10.1111/bph.16101] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/27/2023] [Accepted: 04/23/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Activated fibroblasts deposit fibrotic matrix in chronic kidney disease (CKD) and G-protein coupled receptors (GPCRs) are the most druggable therapeutic targets. Here, we set out to establish a transcriptional profile that identifies activated kidney fibroblasts and the GPCRs that they express. EXPERIMENTAL APPROACH RNA sequencing and single cell qRT-PCR were performed on mouse kidneys after unilateral ureteral obstruction (UUO). Candidate expression was evaluated in mice with UUO or diabetes or injected with adriamycin or folic acid. Intervention studies were conducted in mice with diabetes or UUO. Correlative histology was performed in human kidney tissue. KEY RESULTS Transcription factor 21 (Tcf21)+ cells that expressed 2 or 3 of Postn, Acta2 and Pdgfra were highly enriched for fibrogenic genes and were defined as activated kidney fibroblasts. Tcf21+ α-smooth muscle actin (α-SMA)+ interstitial cells accumulated in kidneys of mice with UUO or diabetes or injected with adriamycin or folic acid, whereas renin-angiotensin system blockade attenuated increases in Tcf21 in diabetic mice. Fifty-six GPCRs were up-regulated in single Tcf21+ kidney fibroblasts, the most up-regulated being Adgra2 and S1pr3. Adenosine receptors, Adora2a/2b, were up-regulated in Tcf21+ fibroblasts and the adenosine receptor antagonist, caffeine decreased Tcf21 upregulation and kidney fibrosis in UUO mice. TCF21, ADGRA2, S1PR3 and ADORA2A/2B were each detectable in α-SMA+ interstitial cells in human kidney samples. CONCLUSION AND IMPLICATIONS Tcf21 is a marker of kidney fibroblasts that are enriched for fibrogenic genes in CKD. Further analysis of the GPCRs expressed by these cells may identify new targets for treating CKD. LINKED ARTICLES This article is part of a themed issue on Translational Advances in Fibrosis as a Therapeutic Target. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v180.22/issuetoc.
Collapse
Affiliation(s)
- Harmandeep Kaur
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Veera Ganesh Yerra
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Sri Nagarjun Batchu
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Duc Tin Tran
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - M D Golam Kabir
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Youan Liu
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Suzanne L Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Phelopater Sedrak
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Penelope Poyah
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ferhan S Siddiqi
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Cash E, Goodwin AT, Tatler AL. Adenosine receptor signalling as a driver of pulmonary fibrosis. Pharmacol Ther 2023; 249:108504. [PMID: 37482099 DOI: 10.1016/j.pharmthera.2023.108504] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/30/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Pulmonary fibrosis is a debilitating and life-limiting lung condition in which the damage- response mechanisms of mixed-population cells within the lungs go awry. The tissue microenvironment is drastically remodelled by aberrantly activated fibroblasts which deposit ECM components into the surrounding lung tissue, detrimentally affecting lung function and capacity for gas exchange. Growing evidence suggests a role for adenosine signalling in the pathology of tissue fibrosis in a variety of organs, including the lung, but the molecular pathways through which this occurs remain largely unknown. This review explores the role of adenosine in fibrosis and evaluates the contribution of the different adenosine receptors to fibrogenesis. Therapeutic targeting of the adenosine receptors is also considered, along with clinical observations pointing towards a role for adenosine in fibrosis. In addition, the interaction between adenosine signalling and other profibrotic signalling pathways, such as TGFβ1 signalling, is discussed.
Collapse
Affiliation(s)
- Emily Cash
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Amanda T Goodwin
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; NIHR Nottingham Biomedical Research Centre, Nottingham, UK
| | - Amanda L Tatler
- Centre for Respiratory Research, Translational Medical Sciences, School of Medicine, University of Nottingham, UK; NIHR Nottingham Biomedical Research Centre, Nottingham, UK.
| |
Collapse
|
8
|
Lam M, Lamanna E, Organ L, Donovan C, Bourke JE. Perspectives on precision cut lung slices-powerful tools for investigation of mechanisms and therapeutic targets in lung diseases. Front Pharmacol 2023; 14:1162889. [PMID: 37261291 PMCID: PMC10228656 DOI: 10.3389/fphar.2023.1162889] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/19/2023] [Indexed: 06/02/2023] Open
Abstract
Precision cut lung slices (PCLS) have emerged as powerful experimental tools for respiratory research. Pioneering studies using mouse PCLS to visualize intrapulmonary airway contractility have been extended to pulmonary arteries and for assessment of novel bronchodilators and vasodilators as therapeutics. Additional disease-relevant outcomes, including inflammatory, fibrotic, and regenerative responses, are now routinely measured in PCLS from multiple species, including humans. This review provides an overview of established and innovative uses of PCLS as an intermediary between cellular and organ-based studies and focuses on opportunities to increase their application to investigate mechanisms and therapeutic targets to oppose excessive airway contraction and fibrosis in lung diseases.
Collapse
Affiliation(s)
- Maggie Lam
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Emma Lamanna
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Institut Pasteur, Unit of Antibodies in Therapy and Pathology, INSERM UMR1222, Paris, France
| | - Louise Organ
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Chantal Donovan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jane E. Bourke
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
| |
Collapse
|
9
|
Keshavan S, Bannuscher A, Drasler B, Barosova H, Petri-Fink A, Rothen-Rutishauser B. Comparing species-different responses in pulmonary fibrosis research: Current understanding of in vitro lung cell models and nanomaterials. Eur J Pharm Sci 2023; 183:106387. [PMID: 36652970 DOI: 10.1016/j.ejps.2023.106387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/16/2022] [Accepted: 01/14/2023] [Indexed: 01/16/2023]
Abstract
Pulmonary fibrosis (PF) is a chronic, irreversible lung disease that is typically fatal and characterized by an abnormal fibrotic response. As a result, vast areas of the lungs are gradually affected, and gas exchange is impaired, making it one of the world's leading causes of death. This can be attributed to a lack of understanding of the onset and progression of the disease, as well as a poor understanding of the mechanism of adverse responses to various factors, such as exposure to allergens, nanomaterials, environmental pollutants, etc. So far, the most frequently used preclinical evaluation paradigm for PF is still animal testing. Nonetheless, there is an urgent need to understand the factors that induce PF and find novel therapeutic targets for PF in humans. In this regard, robust and realistic in vitro fibrosis models are required to understand the mechanism of adverse responses. Over the years, several in vitro and ex vivo models have been developed with the goal of mimicking the biological barriers of the lung as closely as possible. This review summarizes recent progress towards the development of experimental models suitable for predicting fibrotic responses, with an emphasis on cell culture methods, nanomaterials, and a comparison of results from studies using cells from various species.
Collapse
Affiliation(s)
- Sandeep Keshavan
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland
| | - Anne Bannuscher
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland
| | - Barbara Drasler
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland
| | - Hana Barosova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg CH-1700, Switzerland; Chemistry Department, University of Fribourg, Chemin du Musée 9, Fribourg 1700, Switzerland
| | | |
Collapse
|
10
|
Calthorpe RJ, Poulter C, Smyth AR, Sharkey D, Bhatt J, Jenkins G, Tatler AL. Complex roles of TGF-β signaling pathways in lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2023; 324:L285-L296. [PMID: 36625900 PMCID: PMC9988523 DOI: 10.1152/ajplung.00106.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
As survival of extremely preterm infants continues to improve, there is also an associated increase in bronchopulmonary dysplasia (BPD), one of the most significant complications of preterm birth. BPD development is multifactorial resulting from exposure to multiple antenatal and postnatal stressors. BPD has both short-term health implications and long-term sequelae including increased respiratory, cardiovascular, and neurological morbidity. Transforming growth factor β (TGF-β) is an important signaling pathway in lung development, organ injury, and fibrosis and is implicated in the development of BPD. This review provides a detailed account on the role of TGF-β in antenatal and postnatal lung development, the effect of known risk factors for BPD on the TGF-β signaling pathway, and how medications currently in use or under development, for the prevention or treatment of BPD, affect TGF-β signaling.
Collapse
Affiliation(s)
- Rebecca J Calthorpe
- Lifespan & Population Health, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Caroline Poulter
- Department of Pediatrics, Queens Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Alan R Smyth
- Lifespan & Population Health, School of Medicine, University of Nottingham, Nottingham, United Kingdom
- NIHR Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Don Sharkey
- Centre for Perinatal Research, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Jayesh Bhatt
- Department of Pediatrics, Queens Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Gisli Jenkins
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Amanda L Tatler
- NIHR Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
11
|
Hirbo JB, Pasutto F, Gamazon ER, Evans P, Pawar P, Berner D, Sealock J, Tao R, Straub PS, Konkashbaev AI, Breyer MA, Schlötzer-Schrehardt U, Reis A, Brantley MA, Khor CC, Joos KM, Cox NJ. Analysis of genetically determined gene expression suggests role of inflammatory processes in exfoliation syndrome. BMC Genomics 2023; 24:75. [PMID: 36797672 PMCID: PMC9936777 DOI: 10.1186/s12864-023-09179-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Exfoliation syndrome (XFS) is an age-related systemic disorder characterized by excessive production and progressive accumulation of abnormal extracellular material, with pathognomonic ocular manifestations. It is the most common cause of secondary glaucoma, resulting in widespread global blindness. The largest global meta-analysis of XFS in 123,457 multi-ethnic individuals from 24 countries identified seven loci with the strongest association signal in chr15q22-25 region near LOXL1. Expression analysis have so far correlated coding and a few non-coding variants in the region with LOXL1 expression levels, but functional effects of these variants is unclear. We hypothesize that analysis of the contribution of the genetically determined component of gene expression to XFS risk can provide a powerful method to elucidate potential roles of additional genes and clarify biology that underlie XFS. RESULTS Transcriptomic Wide Association Studies (TWAS) using PrediXcan models trained in 48 GTEx tissues leveraging on results from the multi-ethnic and European ancestry GWAS were performed. To eliminate the possibility of false-positive results due to Linkage Disequilibrium (LD) contamination, we i) performed PrediXcan analysis in reduced models removing variants in LD with LOXL1 missense variants associated with XFS, and variants in LOXL1 models in both multiethnic and European ancestry individuals, ii) conducted conditional analysis of the significant signals in European ancestry individuals, and iii) filtered signals based on correlated gene expression, LD and shared eQTLs, iv) conducted expression validation analysis in human iris tissues. We observed twenty-eight genes in chr15q22-25 region that showed statistically significant associations, which were whittled down to ten genes after statistical validations. In experimental analysis, mRNA transcript levels for ARID3B, CD276, LOXL1, NEO1, SCAMP2, and UBL7 were significantly decreased in iris tissues from XFS patients compared to control samples. TWAS genes for XFS were significantly enriched for genes associated with inflammatory conditions. We also observed a higher incidence of XFS comorbidity with inflammatory and connective tissue diseases. CONCLUSION Our results implicate a role for connective tissues and inflammation pathways in the etiology of XFS. Targeting the inflammatory pathway may be a potential therapeutic option to reduce progression in XFS.
Collapse
Affiliation(s)
- Jibril B Hirbo
- Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA.
- Vanderbilt Genetics Institute, Nashville, TN, 37232, USA.
| | - Francesca Pasutto
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, 91054, Erlangen, Germany
| | - Eric R Gamazon
- Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Vanderbilt Genetics Institute, Nashville, TN, 37232, USA
- Clare Hall and MRC Epidemiology Unit, University of Cambridge, Cambridge, CB2 0SL, UK
| | - Patrick Evans
- Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Priyanka Pawar
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Daniel Berner
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Julia Sealock
- Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Ran Tao
- Biostatistics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Peter S Straub
- Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Anuar I Konkashbaev
- Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Max A Breyer
- Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Ursula Schlötzer-Schrehardt
- Department of Ophthalmology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg FAU, 91054, Erlangen, Germany
| | - Milam A Brantley
- Clare Hall and MRC Epidemiology Unit, University of Cambridge, Cambridge, CB2 0SL, UK
| | - Chiea C Khor
- Genome Institute of Singapore, 60 Biopolis St, Singapore, 138672, Singapore
| | - Karen M Joos
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Nancy J Cox
- Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
- Vanderbilt Genetics Institute, Nashville, TN, 37232, USA
| |
Collapse
|
12
|
Talpan D, Salla S, Seidelmann N, Walter P, Fuest M. Antifibrotic Effects of Caffeine, Curcumin and Pirfenidone in Primary Human Keratocytes. Int J Mol Sci 2023; 24:ijms24021461. [PMID: 36674976 PMCID: PMC9862324 DOI: 10.3390/ijms24021461] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/14/2023] Open
Abstract
We evaluated the small molecules (AFM) caffeine, curcumin and pirfenidone to find non-toxic concentrations reducing the transformation of activated human corneal stromal keratocytes (aCSK) to scar-inducing myofibroblasts (MYO-SF). CSK were isolated from 16 human corneas unsuitable for transplantation and expanded for three passages in control medium (0.5% FBS). Then, aCSK were exposed to concentrations of caffeine of 0−500 μM, curcumin of 0−200 μM, pirfenidone of 0−2.2 nM and the profibrotic cytokine TGF-β1 (10 ng/mL) for 48 h. Alterations in viability and gene expression were evaluated by cell viability staining (FDA/PI), real-time polymerase chain reaction (RT-PCR) and immunocytochemistry. We found that all AFMs reduced cell counts at high concentrations. The highest concentrations with no toxic effect were 100 µM of caffeine, 20 µM of curcumin and 1.1 nM of pirfenidone. The addition of TGF-β1 to the control medium effectively transformed aCSK into myofibroblasts (MYO-SF), indicated by a 10-fold increase in α-smooth muscle actin (SMA) expression, a 39% decrease in lumican (LUM) expression and a 98% decrease in ALDH3A1 expression (p < 0.001). The concentrations of 100 µM of caffeine, 20/50 µM of curcumin and 1.1 nM of pirfenidone each significantly reduced SMA expression under TGF-β1 stimulation (p ≤ 0.024). LUM and ALDH3A1 expression remained low under TGF-β1 stimulation, independently of AFM supplementation. Immunocytochemistry showed that 100 µM of caffeine, 20 µM of curcumin and 1.1 nM of pirfenidone reduce the conversion rate of aCSK to SMA+ MYO-SF. In conclusion, in aCSK, 100 µM of caffeine, 20 µM of curcumin and 1.1 nM of pirfenidone significantly reduced SMA expression and MYO-SF conversion under TGF-β1 stimulation, with no influence on cell counts. However, the AFMs were unable to protect aCSK from characteristic marker loss.
Collapse
Affiliation(s)
- Delia Talpan
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
| | - Sabine Salla
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Cornea Bank Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Nina Seidelmann
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
| | - Peter Walter
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Cornea Bank Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Matthias Fuest
- Department of Ophthalmology, RWTH Aachen University, 52074 Aachen, Germany
- Cornea Bank Aachen, RWTH Aachen University, 52074 Aachen, Germany
- Correspondence:
| |
Collapse
|
13
|
Yuan Y, Yang Y, Lei X, Dong W. Caffeine and bronchopulmonary dysplasia: Clinical benefits and the mechanisms involved. Pediatr Pulmonol 2022; 57:1392-1400. [PMID: 35318830 DOI: 10.1002/ppul.25898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/05/2022] [Accepted: 03/16/2022] [Indexed: 11/06/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic respiratory disease that occurs during the neonatal period and is commonly associated with prematurity. This condition results in a severe economic burden on society and the families involved. Caffeine is used not only for the treatment of apnea in prematurity, but also for the prevention of BPD. There are multiple clinical benefits of caffeine treatment, including improved extubation success, a reduced duration of mechanical ventilation, improved lung function, and a reduction of patent ductus arteriosus requiring treatment. These clinical benefits of caffeine for the treatment of BPD are supported by both clinical trials and evidence from animal models. However, the mechanism by which caffeine protects against BPD remains unclear. Here, we review the clinical value of caffeine in the prevention of BPD and its potential mechanisms of action, including anti-inflammatory, antioxidant, antifibrotic, and antiapoptotic properties, the regulation of angiogenesis, and diuretic effects. Our aim is to provide a new theoretical basis for the clinical treatment of BPD.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Pediatrics, Division of Neonatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yang Yang
- Department of Pediatrics, Division of Neonatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaoping Lei
- Department of Pediatrics, Division of Neonatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenbin Dong
- Department of Pediatrics, Division of Neonatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Sichuan Clinical Research Center for Birth Defects, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
14
|
Hasan M, Paul NC, Paul SK, Saikat ASM, Akter H, Mandal M, Lee SS. Natural Product-Based Potential Therapeutic Interventions of Pulmonary Fibrosis. Molecules 2022; 27:1481. [PMID: 35268581 PMCID: PMC8911636 DOI: 10.3390/molecules27051481] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary fibrosis (PF) is a disease-refractive lung condition with an increased rate of mortality. The potential factors causing PF include viral infections, radiation exposure, and toxic airborne chemicals. Idiopathic PF (IPF) is related to pneumonia affecting the elderly and is characterized by recurring scar formation in the lungs. An impaired wound healing process, defined by the dysregulated aggregation of extracellular matrix components, triggers fibrotic scar formation in the lungs. The potential pathogenesis includes oxidative stress, altered cell signaling, inflammation, etc. Nintedanib and pirfenidone have been approved with a conditional endorsement for the management of IPF. In addition, natural product-based treatment strategies have shown promising results in treating PF. In this study, we reviewed the recently published literature and discussed the potential uses of natural products, classified into three types-isolated active compounds, crude extracts of plants, and traditional medicine, consisting of mixtures of different plant products-in treating PF. These natural products are promising in the treatment of PF via inhibiting inflammation, oxidative stress, and endothelial mesenchymal transition, as well as affecting TGF-β-mediated cell signaling, etc. Based on the current review, we have revealed the signaling mechanisms of PF pathogenesis and the potential opportunities offered by natural product-based medicine in treating PF.
Collapse
Affiliation(s)
- Mahbub Hasan
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (N.C.P.); (S.K.P.); (A.S.M.S.); (M.M.)
- Department of Oriental Biomedical Engineering, College of Health Sciences, Sangji University, Wonju 26339, Korea
| | - Nidhan Chandra Paul
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (N.C.P.); (S.K.P.); (A.S.M.S.); (M.M.)
| | - Shamrat Kumar Paul
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (N.C.P.); (S.K.P.); (A.S.M.S.); (M.M.)
| | - Abu Saim Mohammad Saikat
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (N.C.P.); (S.K.P.); (A.S.M.S.); (M.M.)
| | - Hafeza Akter
- Pharmacology and Toxicology Research Division, Health Medical Science Research Foundation, Dhaka 1207, Bangladesh;
| | - Manoj Mandal
- Department of Biochemistry and Molecular Biology, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka 8100, Bangladesh; (N.C.P.); (S.K.P.); (A.S.M.S.); (M.M.)
| | - Sang-Suk Lee
- Department of Oriental Biomedical Engineering, College of Health Sciences, Sangji University, Wonju 26339, Korea
| |
Collapse
|
15
|
Shen H, Zhang N, Liu Y, Yang X, He Y, Li Q, Shen X, Zhu Y, Yang Y. The Interaction Between Pulmonary Fibrosis and COVID-19 and the Application of Related Anti-Fibrotic Drugs. Front Pharmacol 2022; 12:805535. [PMID: 35069217 PMCID: PMC8766975 DOI: 10.3389/fphar.2021.805535] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is a highly contagious respiratory disease, which mainly affects the lungs. Critically ill patients are easily complicated by cytokine storms, acute respiratory distress syndrome (ARDS), and respiratory failure, which seriously threaten their lives. Pulmonary fibrosis (PF) is a common interstitial lung disease, and its pathogenesis may involve the participation of a variety of immune cells and inflammatory factors. Current studies have shown that patients with COVID-19 may be complicated by pulmonary fibrosis, and patients with pulmonary fibrosis may also be at higher risk of contracting COVID-19 than healthy people. Pulmonary fibrosis is an important risk factor leading to the aggravation of COVID-19 disease. COVID-19 complicated by cytokine storm and ARDS mechanism pathways are similar to the pathogenesis of pulmonary fibrosis. The potential interaction between pulmonary fibrosis and COVID-19 can cause acute exacerbation of the patient's condition, but the potential mechanism between the two has not been fully elucidated. Most of the drug treatment programs for COVID-19-related pulmonary fibrosis are currently formulated about the relevant guidelines for idiopathic pulmonary fibrosis (IPF), and there is no clear drug treatment program recommendation. This article aims to summarize the relevant mechanism pathways of COVID-19 and pulmonary fibrosis, explore the interrelationships and possible mechanisms, and discuss the value and risks of existing and potential COVID-19-related pulmonary fibrosis treatment drugs, to provide reference for anti-fibrosis treatment for patients.
Collapse
Affiliation(s)
- Hao Shen
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Nu Zhang
- Department of Pharmacy, People’s Hospital of Fushun County, Fushun, China
| | - Yuqing Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xuerong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuanyuan He
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qi Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyan Shen
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yulian Zhu
- Department of Pharmacy, Ziyang People’s Hospital, Ziyang, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
16
|
Preuß EB, Schubert S, Werlein C, Stark H, Braubach P, Höfer A, Plucinski EKJ, Shah HR, Geffers R, Sewald K, Braun A, Jonigk DD, Kühnel MP. The Challenge of Long-Term Cultivation of Human Precision-Cut Lung Slices. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 192:239-253. [PMID: 34767811 PMCID: PMC8891143 DOI: 10.1016/j.ajpath.2021.10.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/10/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022]
Abstract
Human precision-cut lung slices (PCLS) have proven to be an invaluable tool for numerous toxicologic, pharmacologic, and immunologic studies. Although a cultivation period of <1 week is sufficient for most studies, modeling of complex disease mechanisms and investigating effects of long-term exposure to certain substances require cultivation periods that are much longer. So far, data regarding tissue integrity of long-term cultivated PCLS are incomplete. More than 1500 human PCLS from 16 different donors were cultivated under standardized, serum-free conditions for up to 28 days and the viability, tissue integrity, and the transcriptome was assessed in great detail. Even though viability of PCLS was well preserved during long-term cultivation, a continuous loss of cells was observed. Although the bronchial epithelium was well preserved throughout cultivation, the alveolar integrity was preserved for about 2 weeks, and the vasculatory system experienced significant loss of integrity within the first week. Furthermore, ciliary beat in the small airways gradually decreased after 1 week. Interestingly, keratinizing squamous metaplasia of the alveolar epithelium with significantly increasing manifestation were found over time. Transcriptome analysis revealed a significantly increased immune response and significantly decreased metabolic activity within the first 24 hours after PCLS generation. Overall, this study provides a comprehensive overview of histomorphologic and pathologic changes during long-term cultivation of PCLS.
Collapse
Affiliation(s)
- Eike B Preuß
- Institute of Pathology, Lung Research Group, Hannover Medical School, Hannover, Germany.
| | - Stephanie Schubert
- Institute of Pathology, Lung Research Group, Hannover Medical School, Hannover, Germany
| | - Christopher Werlein
- Institute of Pathology, Lung Research Group, Hannover Medical School, Hannover, Germany
| | - Helge Stark
- Institute of Pathology, Lung Research Group, Hannover Medical School, Hannover, Germany
| | - Peter Braubach
- Institute of Pathology, Lung Research Group, Hannover Medical School, Hannover, Germany
| | - Anne Höfer
- Institute of Pathology, Lung Research Group, Hannover Medical School, Hannover, Germany
| | - Edith K J Plucinski
- Institute of Pathology, Lung Research Group, Hannover Medical School, Hannover, Germany
| | - Harshit R Shah
- Institute of Pathology, Lung Research Group, Hannover Medical School, Hannover, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Danny D Jonigk
- Institute of Pathology, Lung Research Group, Hannover Medical School, Hannover, Germany
| | - Mark P Kühnel
- Institute of Pathology, Lung Research Group, Hannover Medical School, Hannover, Germany
| |
Collapse
|
17
|
Supit T, Susilaningsih N, Prasetyo A. Effects of Caffeine Consumption on Autologous Full-Thickness Skin Graft Healing in an Animal Model. Indian J Plast Surg 2021; 54:314-320. [PMID: 34667517 PMCID: PMC8515418 DOI: 10.1055/s-0041-1734573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Background
There exists contradictory evidence that states both the beneficial and deleterious effects of caffeine on wound healing. The general population might unknowingly consume caffeine that negatively affects wound healing. The main objective of this study is to investigate the effect of daily caffeine consumption on wound healing, specifically full-thickness skin graft (FTSG).
Methods
Forty Sprague–Dawley rats were randomized into four groups of equal size: control-dose (CD), low-dose (LD), medium-dose (MD), and high-dose (HD) caffeine groups. After autologous FTSG, all subjects in the intervention group were given daily pure caffeine gavage. The FTSG was explanted 7 days posttransplant. The graft viability, secondary contraction, and adherence were evaluated macroscopically, while fibroblast and collagen deposition was analyzed microscopically with hematoxylin eosin stain.
Results
The least graft viability (72.8 ± 20.7%, clinical wound assessment scale [CWAS] 2.4), highest secondary contraction (11.4 ± 10.5%), and fibroblast count (331.8 ± 88.6 cells/5 high power fields) were observed in the MD group. More collagen synthesis was observed in subjects who consumed caffeine. The level of secondary contraction, fibroblast count as well as graft viability and collagen synthesis were positively correlated.
Conclusions
Daily consumption of caffeine impairs graft viability when given in medium dose and increases collagen synthesis, irrespective of dosage. This study was in experimental rats; the results are not directly translatable to humans.
Collapse
Affiliation(s)
- Tommy Supit
- Department of Surgery, Faculty of Medicine Diponegoro University, Dr. Kariadi General Hospital, Semarang, Jawa Tengah, Indonesia.,Department of Biomedical Science, Faculty of Medicine Diponegoro University, Semarang, Jawa Tengah, Indonesia
| | - Neni Susilaningsih
- Department of Biomedical Science, Faculty of Medicine Diponegoro University, Semarang, Jawa Tengah, Indonesia.,Department of Histology, Faculty of Medicine Diponegoro University, Semarang, Jawa Tengah, Indonesia
| | - Awal Prasetyo
- Department of Biomedical Science, Faculty of Medicine Diponegoro University, Semarang, Jawa Tengah, Indonesia.,Department of Anatomical Pathology, Faculty of Medicine Diponegoro University, Dr. Kariadi General Hospital, Semarang, Jawa Tengah, Indonesia
| | | |
Collapse
|
18
|
John AE, Joseph C, Jenkins G, Tatler AL. COVID-19 and pulmonary fibrosis: A potential role for lung epithelial cells and fibroblasts. Immunol Rev 2021; 302:228-240. [PMID: 34028807 PMCID: PMC8237078 DOI: 10.1111/imr.12977] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic rapidly spread around the world following the first reports in Wuhan City, China in late 2019. The disease, caused by the novel SARS-CoV-2 virus, is primarily a respiratory condition that can affect numerous other bodily systems including the cardiovascular and gastrointestinal systems. The disease ranges in severity from asymptomatic through to severe acute respiratory distress requiring intensive care treatment and mechanical ventilation, which can lead to respiratory failure and death. It has rapidly become evident that COVID-19 patients can develop features of interstitial pulmonary fibrosis, which in many cases persist for as long as we have thus far been able to follow the patients. Many questions remain about how such fibrotic changes occur within the lung of COVID-19 patients, whether the changes will persist long term or are capable of resolving, and whether post-COVID-19 pulmonary fibrosis has the potential to become progressive, as in other fibrotic lung diseases. This review brings together our existing knowledge on both COVID-19 and pulmonary fibrosis, with a particular focus on lung epithelial cells and fibroblasts, in order to discuss common pathways and processes that may be implicated as we try to answer these important questions in the months and years to come.
Collapse
Affiliation(s)
- Alison E. John
- Nottingham NIHR Respiratory Biomedical Research CentreUniversity of NottinghamNottinghamUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Chitra Joseph
- Nottingham NIHR Respiratory Biomedical Research CentreUniversity of NottinghamNottinghamUK
| | - Gisli Jenkins
- Nottingham NIHR Respiratory Biomedical Research CentreUniversity of NottinghamNottinghamUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Amanda L. Tatler
- Nottingham NIHR Respiratory Biomedical Research CentreUniversity of NottinghamNottinghamUK
| |
Collapse
|
19
|
Abstract
Myofibroblasts are critical to processes involved in normal wound healing and during pathological fibrosis. They transdifferentiate from fibroblasts, and in doing so become contractile and capable of secreting large amounts of extracellular matrix proteins. Transforming growth factor-beta (TGFβ) is a key cytokine involved in wound healing and fibrogenesis. TGFβ signaling has long been the subject of experimental therapeutic approaches to inhibit fibrosis in a variety of organ systems. Inhibition of TGFβ can reduce myofibroblast transdifferentiation, contractility, and matrix production. Importantly, TGFβ is released from cells and sequestered in the extracellular matrix in a latent form that requires activation for biological function. There have been multiple mechanisms of TGFβ activation described in a variety of cell types and in cell free systems; however, myofibroblasts have previously been shown to activate TGFβ via cell surface integrins, particularly αvβ5 integrins. This chapter will provide detailed protocols for accurately measuring activation of TGFβ by myofibroblasts in vitro. Levels of active TGFβ usually represent a small proportion of the total amount of latent TGFβ present in the matrix. Methods to measure active TGFβ therefore need to be sensitive and specific to detect the active cytokine only.
Collapse
Affiliation(s)
- Joanne Porte
- Division of Respiratory Medicine, NIHR Nottingham Respiratory Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Gisli Jenkins
- Division of Respiratory Medicine, NIHR Nottingham Respiratory Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Amanda L Tatler
- Division of Respiratory Medicine, NIHR Nottingham Respiratory Biomedical Research Centre, School of Medicine, University of Nottingham, Nottingham, UK.
| |
Collapse
|
20
|
Cheong JLY, Doyle LW. Childhood respiratory outcomes after neonatal caffeine therapy. Semin Fetal Neonatal Med 2020; 25:101158. [PMID: 33127315 DOI: 10.1016/j.siny.2020.101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Caffeine to prevent or treat apnea of prematurity in the newborn period is now standard of care for infants born very preterm. It has both short- and longer-term effects on respiratory health. In the short-term it reduces the duration of assisted ventilation and of oxygen therapy. It also reduces the rate of treatment for a patent ductus arteriosus, and of bronchopulmonary dysplasia. In the longer-term it improves expiratory airflow in childhood, and may have some benefits on respiratory health. Because it has not been used as a neonatal treatment for long enough, it is unknown if neonatal caffeine treatment has any effects on adult expiratory airflow, or on chronic obstructive pulmonary disease in later adult life.
Collapse
Affiliation(s)
- Jeanie L Y Cheong
- Level 7, Newborn Research, Royal Women's Hospital, 20 Flemington Road, Parkville, VIC 3052, Australia; Level 7, Dept of Obstetrics & Gynaecology, University of Melbourne, Royal Women's Hospital, 20 Flemington Road, Parkville, VIC 3052, Australia; Clinical Sciences, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia.
| | - Lex W Doyle
- Level 7, Dept of Obstetrics & Gynaecology, University of Melbourne, Royal Women's Hospital, 20 Flemington Road, Parkville, VIC 3052, Australia; Clinical Sciences, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC 3052, Australia.
| |
Collapse
|
21
|
Bahri S, Ali RB, Abdennabi R, Nahdi A, Mlika M, Jameleddine S. Industrial Elimination of Essential Oils from Rosmarinus Officinalis: In Support of the Synergic Antifibrotic Effect of Rosmarinic and Carnosic Acids in Bleomycin Model of Lung Fibrosis. Nutr Cancer 2020; 73:2376-2387. [PMID: 33059466 DOI: 10.1080/01635581.2020.1826991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by collagen deposition as a consequence of excessive lung fibroblasts and myofibroblasts proliferation. We aimed to investigate for the first time the effect of rosemary leaf extract rich with carnosic acid (CA) or rosmarinic acid (RA), after industrial elimination of essential oils, against bleomycin (BLM)-induced lung fibrosis in rats. Male Wistar rats were given a single dose of BLM (4 mg/kg, intratracheal), while CA rich extract, RA rich extract or the combination RA/CA rich extracts (10, 75 and 150 mg/kg, intraperitoneal) were administered 3 day later and continued for 4 weeks. We reveled by HPLC an important similar amount of phenolic compounds such as pyrogallol, vanillic, gallic and ellagic acids in both rosemary extracts. BLM induced lung fibrotic foci and disturbance in superoxide dismutase, catalase and malondialdehyde levels. At 10 mg/kg, both rosemary extracts administrated alone or in combination alleviated synergistically lung fibrosis and ameliorated oxidative changes induced by BLM. In conclusion, industrial elimination of essential oils from rosemary allowed us to obtain two extracts with potent antifibrotic activities due to the large amount of RA and CA that appear much higher and effective than wild rosemary extract.
Collapse
Affiliation(s)
- Sana Bahri
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Physiopathology, Food and Biomolecules (LR-17-ES-03), Technology Center of Sidi Thabet, University of Manouba, Tunis, Tunisia.,Laboratory of Quality Control, Herbes De Tunisie, Company AYACHI-Group, Siliana, Tunisia
| | - Ridha Ben Ali
- Laboratory of Experimental Medicine, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Raed Abdennabi
- Laboratory of Plant Biotechnology, Faculty of Science, University of Sfax, Sfax, Tunisia
| | - Afef Nahdi
- Research Unit n° 17/ES/13, Faculty of Medicine, University of Tunis El Manar, Tunis, Tunisia
| | - Mona Mlika
- Laboratory of Anatomy and Pathology, Abderhaman Mami Hospital, Ariana, Tunisia
| | - Saloua Jameleddine
- Laboratory of Physiology, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Physiopathology, Food and Biomolecules (LR-17-ES-03), Technology Center of Sidi Thabet, University of Manouba, Tunis, Tunisia
| |
Collapse
|
22
|
Chen JH, Feng DD, Chen YF, Yang CX, Juan CX, Cao Q, Chen X, Liu S, Zhou GP. Long non-coding RNA MALAT1 targeting STING transcription promotes bronchopulmonary dysplasia through regulation of CREB. J Cell Mol Med 2020; 24:10478-10492. [PMID: 32812343 PMCID: PMC7521324 DOI: 10.1111/jcmm.15661] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/22/2020] [Accepted: 07/02/2020] [Indexed: 12/22/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a severe complication of preterm infants characterized by increased alveolarization and inflammation. Premature exposure to hyperoxia is believed to be a key contributor to the pathogenesis of BPD. No effective preventive or therapeutic agents have been created. Stimulator of interferon gene (STING) is associated with inflammation and apoptosis in various lung diseases. Long non-coding RNA MALAT1 has been reported to be involved in BPD. However, how MALAT1 regulates STING expression remains unknown. In this study, we assessed that STING and MALAT1 were up-regulated in the lung tissue from BPD neonates, hyperoxia-based rat models and lung epithelial cell lines. Then, using the flow cytometry and cell proliferation assay, we found that down-regulating of STING or MALAT1 inhibited the apoptosis and promoted the proliferation of hyperoxia-treated cells. Subsequently, qRT-PCR, Western blotting and dual-luciferase reporter assays showed that suppressing MALAT1 decreased the expression and promoter activity of STING. Moreover, transcription factor CREB showed its regulatory role in the transcription of STING via a chromatin immunoprecipitation. In conclusion, MALAT1 interacts with CREB to regulate STING transcription in BPD neonates. STING, CREB and MALAT1 may be promising therapeutic targets in the prevention and treatment of BPD.
Collapse
Affiliation(s)
- Jia-He Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dan-Dan Feng
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yu-Fei Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cai-Xia Yang
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chen-Xia Juan
- Child Mental Health Research Center, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Qian Cao
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xi Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuang Liu
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
23
|
Chen S, Wu Q, Zhong D, Li C, Du L. Caffeine prevents hyperoxia-induced lung injury in neonatal mice through NLRP3 inflammasome and NF-κB pathway. Respir Res 2020; 21:140. [PMID: 32513156 PMCID: PMC7278162 DOI: 10.1186/s12931-020-01403-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 05/21/2020] [Indexed: 02/01/2023] Open
Abstract
Background Bronchopulmonary dysplasia (BPD) is a common chronic lung disease in premature infants and hyperoxia exposure is a major cause. In hyperoxic lung injury animal model, alveolar simplification and pro-inflammatory cells infiltration are the main pathophysiologic changes. Caffeine is a drug used to treat apnea in premature infants. Early use of caffeine can decrease the rate and the severity of BPD while the mechanisms are still unclear. The purpose of this study was to evaluate the effects of caffeine on inflammation and lung development in neonatal mice with hyperoxic lung injury and to explore the possible mechanism. Methods Following 14 d of 75% oxygen exposure in newborn mouse, the BPD model was established. Caffeine at a dose of 1 g/L was added in drinking water to nursing mouse. We measured the concentration of caffeine in serum and oxidative stress in lung by commercially available kits. Adenosine 2A receptor (A2AR) expression and lung inflammation were measured by Immunohistochemistry and western blotting. Apoptosis and surfactant protein-C (SFTPC) levels were measured by immunofluorescence. The inflammasome and NF-κB pathway proteins were assessed by western blotting. Results We found that the caffeine concentration in plasma at present dose significantly decreased the expression of A2AR protein in mice lung. Caffeine treatment significantly reduced oxidative stress, improved weight gain, promoted alveolar development, attenuated inflammatory infiltration and lung injury in hyperoxia-induced lung injury mice. Moreover, caffeine decreased the cell apoptosis in lung tissues, especially the Type II alveolar epithelial cell. The expression of NLRP3 inflammasome protein and NF-κB pathway were significantly inhibited by caffeine treatment. Conclusion Caffeine treatment can protect hyperoxia-induced mice lung from oxidative injury by inhibiting NLRP3 inflammasome and NF-κB pathway.
Collapse
Affiliation(s)
- Shangqin Chen
- Department of Pediatrics, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, Hangzhou, China.,Department of Neonatology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiuping Wu
- Department of Pediatrics, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, Hangzhou, China.,Department of Pediatric Pulmonology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dingjuan Zhong
- Molecular Center for Ophthalmic Optics, Hunan Provincial People's Hospital, Changsha, China.,Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Changchong Li
- Department of Pediatric Pulmonology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lizhong Du
- Department of Pediatrics, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang, Hangzhou, China. .,Department of Neonatology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No.3333 Binsheng Road, Hangzhou, 310052, Zhejiang, China.
| |
Collapse
|
24
|
Alsafadi HN, Uhl FE, Pineda RH, Bailey KE, Rojas M, Wagner DE, Königshoff M. Applications and Approaches for Three-Dimensional Precision-Cut Lung Slices. Disease Modeling and Drug Discovery. Am J Respir Cell Mol Biol 2020; 62:681-691. [PMID: 31991090 PMCID: PMC7401444 DOI: 10.1165/rcmb.2019-0276tr] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 01/28/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic lung diseases (CLDs), such as chronic obstructive pulmonary disease, interstitial lung disease, and lung cancer, are among the leading causes of morbidity globally and impose major health and financial burdens on patients and society. Effective treatments are scarce, and relevant human model systems to effectively study CLD pathomechanisms and thus discover and validate potential new targets and therapies are needed. Precision-cut lung slices (PCLS) from healthy and diseased human tissue represent one promising tool that can closely recapitulate the complexity of the lung's native environment, and recently, improved methodologies and accessibility to human tissue have led to an increased use of PCLS in CLD research. Here, we discuss approaches that use human PCLS to advance our understanding of CLD development, as well as drug discovery and validation for CLDs. PCLS enable investigators to study complex interactions among different cell types and the extracellular matrix in the native three-dimensional architecture of the lung. PCLS further allow for high-resolution (live) imaging of cellular functions in several dimensions. Importantly, PCLS can be derived from diseased lung tissue upon lung surgery or transplantation, thus allowing the study of CLDs in living human tissue. Moreover, CLDs can be modeled in PCLS derived from normal lung tissue to mimic the onset and progression of CLDs, complementing studies in end-stage diseased tissue. Altogether, PCLS are emerging as a remarkable tool to further bridge the gap between target identification and translation into clinical studies, and thus open novel avenues for future precision medicine approaches.
Collapse
Affiliation(s)
- Hani N. Alsafadi
- Lung Bioengineering and Regeneration, Department of Experimental Medical Science
- Wallenberg Center for Molecular Medicine
- Lund Stem Cell Center, Faculty of Medicine, and
- Helmholtz Zentrum Munich, Lung Repair and Regeneration, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Franziska E. Uhl
- Wallenberg Center for Molecular Medicine
- Vascular Biology, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Ricardo H. Pineda
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| | - Kolene E. Bailey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| | - Mauricio Rojas
- Division of Respiratory, Allergy and Critical Care Medicine, The Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Darcy E. Wagner
- Lung Bioengineering and Regeneration, Department of Experimental Medical Science
- Wallenberg Center for Molecular Medicine
- Lund Stem Cell Center, Faculty of Medicine, and
- Helmholtz Zentrum Munich, Lung Repair and Regeneration, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Melanie Königshoff
- Helmholtz Zentrum Munich, Lung Repair and Regeneration, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Denver, Aurora, Colorado; and
| |
Collapse
|
25
|
Nilnumkhum A, Kanlaya R, Yoodee S, Thongboonkerd V. Caffeine inhibits hypoxia-induced renal fibroblast activation by antioxidant mechanism. Cell Adh Migr 2020; 13:260-272. [PMID: 31271106 PMCID: PMC6650197 DOI: 10.1080/19336918.2019.1638691] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Caffeine has been demonstrated to possess anti-fibrotic activity against liver fibrosis. However, its role in renal fibrosis remained unclear. This study investigated the effects of caffeine on renal fibroblast activation induced by hypoxia (one of the inducers for renal fibrosis). BHK-21 fibroblasts were cultured under normoxia or hypoxia with or without caffeine treatment. Hypoxia increased levels of fibronectin, α-smooth muscle actin, actin stress fibers, intracellular reactive oxygen species (ROS), and oxidized proteins. However, caffeine successfully preserved all these activated fibroblast markers to their basal levels. Cellular catalase activity was dropped under hypoxic condition but could be reactivated by caffeine. Hif1a gene and stress-responsive Nrf2 signaling molecule were elevated/activated by hypoxia, but only Nrf2 could be partially recovered by caffeine. These data suggest that caffeine exhibits anti-fibrotic effect against hypoxia-induced renal fibroblast activation through its antioxidant property to eliminate intracellular ROS, at least in part, via downstream catalase and Nrf2 mechanisms.
Collapse
Affiliation(s)
- Angkhana Nilnumkhum
- a Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok , Thailand
| | - Rattiyaporn Kanlaya
- a Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok , Thailand
| | - Sunisa Yoodee
- a Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok , Thailand
| | - Visith Thongboonkerd
- a Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok , Thailand
| |
Collapse
|
26
|
Yanagihara T, Chong SG, Vierhout M, Hirota JA, Ask K, Kolb M. Current models of pulmonary fibrosis for future drug discovery efforts. Expert Opin Drug Discov 2020; 15:931-941. [PMID: 32396021 DOI: 10.1080/17460441.2020.1755252] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Pulmonary fibrosis includes several lung disorders characterized by progressive fibrosis, of which idiopathic pulmonary fibrosis (IPF) is a particularly severe form with a median survival time of 3-5 years after diagnosis. Although numerous compounds have shown efficacy in attenuating pulmonary fibrosis using animal models, only a few compounds have shown their beneficial effects for IPF in clinical trials. Thus, there is an emergent need to improve the preclinical development process to better identify, characterize and select clinically useful targets. AREAS COVERED In this review, the authors extensively describe current models of pulmonary fibrosis, including rodent models, ex vivo models, and in vitro models. EXPERT OPINION Based upon our current understanding, improving the identification and characterization of clinically relevant molecules or pathways responsible for progressive fibrotic diseases and use of the appropriate preclinical model system to test these will likely be required to improve the drug development pipeline for pulmonary fibrosis. Combination with appropriate preclinical models with ex vivo (precision-cut lung slices) or in vitro models would be beneficial for high-throughput drug discovery or validation of drug effects.
Collapse
Affiliation(s)
- Toyoshi Yanagihara
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University , Hamilton, ON, Canada.,Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University , Fukuoka, Japan
| | - Sy Giin Chong
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University , Hamilton, ON, Canada
| | - Megan Vierhout
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University , Hamilton, ON, Canada
| | - Jeremy A Hirota
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University , Hamilton, ON, Canada
| | - Kjetil Ask
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University , Hamilton, ON, Canada
| | - Martin Kolb
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University , Hamilton, ON, Canada
| |
Collapse
|
27
|
Cui WQ, Wang ST, Pan D, Chang B, Sang LX. Caffeine and its main targets of colorectal cancer. World J Gastrointest Oncol 2020; 12:149-172. [PMID: 32104547 PMCID: PMC7031145 DOI: 10.4251/wjgo.v12.i2.149] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 02/05/2023] Open
Abstract
Caffeine is a purine alkaloid and is widely consumed in coffee, soda, tea, chocolate and energy drinks. To date, a growing number of studies have indicated that caffeine is associated with many diseases including colorectal cancer. Caffeine exerts its biological activity through binding to adenosine receptors, inhibiting phosphodiesterases, sensitizing calcium channels, antagonizing gamma-aminobutyric acid receptors and stimulating adrenal hormones. Some studies have indicated that caffeine can interact with signaling pathways such as transforming growth factor β, phosphoinositide-3-kinase/AKT/mammalian target of rapamycin and mitogen-activated protein kinase pathways through which caffeine can play an important role in colorectal cancer pathogenesis, metastasis and prognosis. Moreover, caffeine can act as a general antioxidant that protects cells from oxidative stress and also as a regulatory factor of the cell cycle that modulates the DNA repair system. Additionally, as for intestinal homeostasis, through the interaction with receptors and cytokines, caffeine can modulate the immune system mediating its effects on T lymphocytes, B lymphocytes, natural killer cells and macrophages. Furthermore, caffeine can not only directly inhibit species in the gut microbiome, such as Escherichia coli and Candida albicans but also can indirectly exert inhibition by increasing the effects of other antimicrobial drugs. This review summarizes the association between colorectal cancer and caffeine that is being currently studied.
Collapse
Affiliation(s)
- Wen-Qi Cui
- Department of Neurology, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang 110004, Liaoning Province, China
- China Medical University 101K class 87, Shenyang 110001, Liaoning Province, China
| | - Shi-Tong Wang
- Department of Cardiovascular Ultrasound, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
- China Medical University 101K class 87, Shenyang 110001, Liaoning Province, China
| | - Dan Pan
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Bing Chang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Li-Xuan Sang
- Department of Geriatrics, First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
28
|
Oakley F, Gee LM, Sheerin NS, Borthwick LA. Implementation of pre-clinical methodologies to study fibrosis and test anti-fibrotic therapy. Curr Opin Pharmacol 2019; 49:95-101. [PMID: 31731225 PMCID: PMC6904905 DOI: 10.1016/j.coph.2019.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/23/2019] [Indexed: 12/14/2022]
Abstract
Diseases where fibrosis plays a major role accounts for enormous morbidity and mortality and yet we have very little in our therapeutic arsenal despite decades of research and clinical trials. Our understanding of fibrosis biology is primarily built on data generated in conventional mono-culture or co-culture systems and in vivo model systems. While these approaches have undoubtedly enhanced our understanding of basic mechanisms, they have repeatedly failed to translate to clinical benefit. Recently, there had been a push to generate more physiologically relevant platforms to study fibrosis and identify new therapeutic targets. Here we review the state-of-the-art regarding the development and application of 3D complex cultures, bio-printing and precision cut slices to study pulmonary, hepatic and renal fibrosis.
Collapse
Affiliation(s)
- Fiona Oakley
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Lucy M Gee
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Neil S Sheerin
- Renal Department, Freeman Hospital, Newcastle upon Tyne, UK; Applied Immunobiology and Transplantation Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Lee A Borthwick
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
29
|
Ram-Mohan S, Bai Y, Schaible N, Ehrlicher AJ, Cook DP, Suki B, Stoltz DA, Solway J, Ai X, Krishnan R. Tissue traction microscopy to quantify muscle contraction within precision-cut lung slices. Am J Physiol Lung Cell Mol Physiol 2019; 318:L323-L330. [PMID: 31774304 DOI: 10.1152/ajplung.00297.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In asthma, acute bronchospasm is driven by contractile forces of airway smooth muscle (ASM). These forces can be imaged in the cultured ASM cell or assessed in the muscle strip and the tracheal/bronchial ring, but in each case, the ASM is studied in isolation from the native airway milieu. Here, we introduce a novel platform called tissue traction microscopy (TTM) to measure ASM contractile force within porcine and human precision-cut lung slices (PCLS). Compared with the conventional measurements of lumen area changes in PCLS, TTM measurements of ASM force changes are 1) more sensitive to bronchoconstrictor stimuli, 2) less variable across airways, and 3) provide spatial information. Notably, within every human airway, TTM measurements revealed local regions of high ASM contraction that we call "stress hotspots". As an acute response to cyclic stretch, these hotspots promptly decreased but eventually recovered in magnitude, spatial location, and orientation, consistent with local ASM fluidization and resolidification. By enabling direct and precise measurements of ASM force, TTM should accelerate preclinical studies of airway reactivity.
Collapse
Affiliation(s)
- Sumati Ram-Mohan
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Yan Bai
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Niccole Schaible
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Allen J Ehrlicher
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada
| | - Daniel P Cook
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Bela Suki
- Biomedical Engineering Department, Boston University, Boston, Massachusetts
| | - David A Stoltz
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Julian Solway
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Xingbin Ai
- Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
30
|
Zhang T, Li X, Li Y, Wang H. Inhibition of TGF-β-Smad signaling attenuates hyperoxia-induced brain damage in newborn rats. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3772-3781. [PMID: 31933765 PMCID: PMC6949745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Transforming growth factor-beta (TGF-β) is ubiquitously expressed in various tissues and functions in pathologic processes, including hyperoxia. In the present study, we investigated the expression and functional role of TGF-β in brain tissue during hyperoxia-induced brain damage. Three days old neonatal rats were treated with hyperoxic conditions (80% O2) for 7 days, followed by TGF-β, Smad, and MAPK detection by western blotting and immunohistochemical staining. The functional role of TGF-β was assessed by treating hyperoxic neonatal rats with neutralizing antibody against TGF-β and caffeine, followed by histological and myelin basic protein (MBP) staining. Our results demonstrated upregulation of TGF-β and activation of the Smad/MAPK signaling pathway in brain tissue of neonatal rats under hyperoxic conditions. Injection of neutralizing antibody against TGF-β efficiently blocked TGF-β expression, accompanied by inactivation of the Smad/MAPK signaling pathway. Further evidence confirmed the attenuation of hyperoxia-induced brain damage by a neutralizing antibody against TGF-β in neonatal rats. Similar attenuation was also observed for caffeine. Collectively, our results indicate that TGF-β is a therapy target for hyperoxia-induced brain damage in neonates.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan UniversityChengdu, P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan UniversityChengdu, P. R. China
| | - Xiaowen Li
- Department of Pediatrics, West China Second University Hospital, Sichuan UniversityChengdu, P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan UniversityChengdu, P. R. China
| | - Yu Li
- Department of Ophthalmology, Fourth Affiliated Hospital of Sichuan University, Sichuan UniversityChengdu 610041, Sichuan, P. R. China
| | - Hua Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan UniversityChengdu, P. R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan UniversityChengdu, P. R. China
| |
Collapse
|
31
|
Liu G, Betts C, Cunoosamy DM, Åberg PM, Hornberg JJ, Sivars KB, Cohen TS. Use of precision cut lung slices as a translational model for the study of lung biology. Respir Res 2019; 20:162. [PMID: 31324219 PMCID: PMC6642541 DOI: 10.1186/s12931-019-1131-x] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/09/2019] [Indexed: 12/28/2022] Open
Abstract
Animal models remain invaluable for study of respiratory diseases, however, translation of data generated in genetically homogeneous animals housed in a clean and well-controlled environment does not necessarily provide insight to the human disease situation. In vitro human systems such as air liquid interface (ALI) cultures and organ-on-a-chip models have attempted to bridge the divide between animal models and human patients. However, although 3D in nature, these models struggle to recreate the architecture and complex cellularity of the airways and parenchyma, and therefore cannot mimic the complex cell-cell interactions in the lung. To address this issue, lung slices have emerged as a useful ex vivo tool for studying the respiratory responses to inflammatory stimuli, infection, and novel drug compounds. This review covers the practicality of precision cut lung slice (PCLS) generation and benefits of this ex vivo culture system in modeling human lung biology and disease pathogenesis.
Collapse
Affiliation(s)
- Guanghui Liu
- RIA Safety, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Catherine Betts
- Pathology, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Danen M Cunoosamy
- Bioscience, Respiratory Inflammation and Autoimmunity, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Present Address: Sanofi, Cambridge, MA, USA
| | - Per M Åberg
- RIA Safety, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jorrit J Hornberg
- RIA Safety, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kinga Balogh Sivars
- RIA Safety, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Taylor S Cohen
- Microbial Sciences, BioPharmaceuticals R&D, AstraZeneca, One Medimmune Way, Gaithersburg, MD, 20877, USA.
| |
Collapse
|
32
|
Philp CJ, Siebeke I, Clements D, Miller S, Habgood A, John AE, Navaratnam V, Hubbard RB, Jenkins G, Johnson SR. Extracellular Matrix Cross-Linking Enhances Fibroblast Growth and Protects against Matrix Proteolysis in Lung Fibrosis. Am J Respir Cell Mol Biol 2019; 58:594-603. [PMID: 29053339 DOI: 10.1165/rcmb.2016-0379oc] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by accumulation of extracellular matrix (ECM) proteins and fibroblast proliferation. ECM cross-linking enzymes have been implicated in fibrotic diseases, and we hypothesized that the ECM in IPF is abnormally cross-linked, which enhances fibroblast growth and resistance to normal ECM turnover. We used a combination of in vitro ECM preparations and in vivo assays to examine the expression of cross-linking enzymes and the effect of their inhibitors on fibroblast growth and ECM turnover. Lysyl oxidase-like 1 (LOXL1), LOXL2, LOXL3, and LOXL4 were expressed equally in control and IPF-derived fibroblasts. Transglutaminase 2 was more strongly expressed in IPF fibroblasts. LOXL2-, transglutaminase 2-, and transglutaminase-generated cross-links were strongly expressed in IPF lung tissue. Fibroblasts grown on IPF ECM had higher LOXL3 protein expression and transglutaminase activity than those grown on control ECM. IPF-derived ECM also enhanced fibroblast adhesion and proliferation compared with control ECM. Inhibition of lysyl oxidase and transglutaminase activity during ECM formation affected ECM structure as visualized by electron microscopy, and it reduced the enhanced fibroblast adhesion and proliferation of IPF ECM to control levels. Inhibition of transglutaminase, but not of lysyl oxidase, activity enhanced the turnover of ECM in vitro. In bleomycin-treated mice, during the postinflammatory fibrotic phase, inhibition of transglutaminases was associated with a reduction in whole-lung collagen. Our findings suggest that the ECM in IPF may enhance pathological cross-linking, which contributes to increased fibroblast growth and resistance to normal ECM turnover to drive lung fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vidya Navaratnam
- 2 Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Richard B Hubbard
- 2 Division of Epidemiology and Public Health, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | | | | |
Collapse
|
33
|
Effects of Caffeine Treatment on Hepatopulmonary Syndrome in Biliary Cirrhotic Rats. Int J Mol Sci 2019; 20:ijms20071566. [PMID: 30925782 PMCID: PMC6480428 DOI: 10.3390/ijms20071566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatopulmonary syndrome (HPS) is a lethal complication of cirrhosis characterized by hypoxia and overt intrapulmonary shunting. In this study, we investigated the effect of caffeine in rats with common bile duct ligation (CBDL)-induced liver cirrhosis and HPS. CBDL rats were randomly allocated to receive caffeine or vehicle for 14 days. On the 28th day after CBDL, mortality rate, hemodynamics, liver, and renal biochemistry parameters and arterial blood gas analysis were evaluated. Lung and liver were dissected for the evaluation of inflammation, angiogenesis and protein expressions. In another series with parallel groups, the intrapulmonary shunting was determined. Caffeine significantly reduced portal pressure (caffeine vs. control: 10.0 ± 3.7 vs. 17.0 ± 8.1 mmHg, p < 0.05) in CBDL rats. The mortality rate, mean arterial pressure, biochemistry data and hypoxia were similar between caffeine-treated and control groups. Caffeine alleviated liver fibrosis and intrahepatic angiogenesis but intrapulmonary inflammation and angiogenesis were not ameliorated. The hepatic VEGF/Rho-A protein expressions were down-regulated but the pulmonary inflammation- and angiogenesis-related protein expressions were not significantly altered by caffeine. Caffeine did not reduce the intrapulmonary shunting, either. Caffeine has been shown to significantly improve liver fibrosis, intrahepatic angiogenesis and portal hypertension in cirrhotic rats, however, it does not ameliorate HPS.
Collapse
|
34
|
Huang X, Li L, Ammar R, Zhang Y, Wang Y, Ravi K, Thompson J, Jarai G. Molecular characterization of a precision-cut rat lung slice model for the evaluation of antifibrotic drugs. Am J Physiol Lung Cell Mol Physiol 2019; 316:L348-L357. [DOI: 10.1152/ajplung.00339.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The translation of novel pulmonary fibrosis therapies from preclinical models into the clinic represents a major challenge demonstrated by the high attrition rate of compounds that showed efficacy in preclinical models but demonstrated no significant beneficial effects in clinical trials. A precision-cut lung tissue slice (PCLS) contains all major cell types of the lung and preserves the original cell-cell and cell-matrix contacts. It represents a promising ex vivo model to study pulmonary fibrosis. In this study, using RNA sequencing, we demonstrated that transforming growth factor-β1 (TGFβ1) induced robust fibrotic responses in the rat PCLS model, as it changed the expression of genes functionally related to extracellular matrix remodeling, cell adhesion, epithelial-to-mesenchymal transition, and various immune responses. Nintedanib, pirfenidone, and sorafenib each reversed a subset of genes modulated by TGFβ1, and of those genes we identified 229 whose expression was reversed by all three drugs. These genes define a molecular signature characterizing many aspects of pulmonary fibrosis pathology and its attenuation in the rat PCLS fibrosis model. A panel of 12 genes and three secreted biomarkers, including procollagen I, hyaluronic acid, and WNT1-inducible signaling pathway protein 1 were validated as efficacy end points for the evaluation of antifibrotic activity of experimental compounds. Finally, we showed that blockade of αV-integrins suppressed TGFβ1-induced fibrotic responses in the rat PCLS fibrosis model. Overall, our results suggest that the TGFβ1-induced rat PCLS fibrosis model may represent a valuable system for target validation and to determine the efficacy of experimental compounds.
Collapse
Affiliation(s)
- Xinqiang Huang
- Department of Cardiovascular and Fibrotic Diseases Drug Discovery, Bristol-Myers Squibb, Pennington, New Jersey
| | - Li Li
- Department of Cardiovascular and Fibrotic Diseases Drug Discovery, Bristol-Myers Squibb, Pennington, New Jersey
| | - Ron Ammar
- Department of Cardiovascular and Fibrotic Diseases Drug Discovery, Bristol-Myers Squibb, Pennington, New Jersey
| | - Yan Zhang
- Department of Cardiovascular and Fibrotic Diseases Drug Discovery, Bristol-Myers Squibb, Pennington, New Jersey
| | - Yihe Wang
- Department of Cardiovascular and Fibrotic Diseases Drug Discovery, Bristol-Myers Squibb, Pennington, New Jersey
| | - Kandasamy Ravi
- Department of Cardiovascular and Fibrotic Diseases Drug Discovery, Bristol-Myers Squibb, Pennington, New Jersey
| | - John Thompson
- Department of Cardiovascular and Fibrotic Diseases Drug Discovery, Bristol-Myers Squibb, Pennington, New Jersey
| | - Gabor Jarai
- Department of Cardiovascular and Fibrotic Diseases Drug Discovery, Bristol-Myers Squibb, Pennington, New Jersey
| |
Collapse
|
35
|
Lehmann M, Buhl L, Alsafadi HN, Klee S, Hermann S, Mutze K, Ota C, Lindner M, Behr J, Hilgendorff A, Wagner DE, Königshoff M. Differential effects of Nintedanib and Pirfenidone on lung alveolar epithelial cell function in ex vivo murine and human lung tissue cultures of pulmonary fibrosis. Respir Res 2018; 19:175. [PMID: 30219058 PMCID: PMC6138909 DOI: 10.1186/s12931-018-0876-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/29/2018] [Indexed: 01/31/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a fatal interstitial lung disease. Repetitive injury and reprogramming of the lung epithelium are thought to be critical drivers of disease progression, contributing to fibroblast activation, extracellular matrix remodeling, and subsequently loss of lung architecture and function. To date, Pirfenidone and Nintedanib are the only approved drugs known to decelerate disease progression, however, if and how these drugs affect lung epithelial cell function, remains largely unexplored. Methods We treated murine and human 3D ex vivo lung tissue cultures (3D-LTCs; generated from precision cut lung slices (PCLS)) as well as primary murine alveolar epithelial type II (pmATII) cells with Pirfenidone or Nintedanib. Murine 3D-LTCs or pmATII cells were derived from the bleomycin model of fibrosis. Early fibrotic changes were induced in human 3D-LTCs by a mixture of profibrotic factors. Epithelial and mesenchymal cell function was determined by qPCR, Western blotting, Immunofluorescent staining, and ELISA. Results Low μM concentrations of Nintedanib (1 μM) and mM concentrations of Pirfenidone (2.5 mM) reduced fibrotic gene expression including Collagen 1a1 and Fibronectin in murine and human 3D-LTCs as well as pmATII cells. Notably, Nintedanib stabilized expression of distal lung epithelial cell markers, especially Surfactant Protein C in pmATII cells as well as in murine and human 3D-LTCs. Conclusions Pirfenidone and Nintedanib exhibit distinct effects on murine and human epithelial cells, which might contribute to their anti-fibrotic action. Human 3D-LTCs represent a valuable tool to assess anti-fibrotic mechanisms of potential drugs for the treatment of IPF patients. Electronic supplementary material The online version of this article (10.1186/s12931-018-0876-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mareike Lehmann
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Lara Buhl
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Hani N Alsafadi
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Stephan Klee
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Sarah Hermann
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Kathrin Mutze
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Chiharu Ota
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Michael Lindner
- Center for Thoracic Surgery, Asklepios Biobank for Lung Diseases, Comprehensive Pneumology Center, Asklepios Clinic Munich-Gauting, Munich, Germany
| | - Jürgen Behr
- Center for Thoracic Surgery, Asklepios Biobank for Lung Diseases, Comprehensive Pneumology Center, Asklepios Clinic Munich-Gauting, Munich, Germany.,Medizinische Klinik und Poliklinik V, Klinikum der Ludwig Maximilians University, Munich, Germany
| | - Anne Hilgendorff
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Darcy E Wagner
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany.,Department of Experimental Medical Sciences, Lung Bioengineering and Regeneration, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Stem Cell Centre, Lund University, Lund, Sweden
| | - Melanie Königshoff
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München and University Hospital of the Ludwig Maximilians Universität, Member of the German Center for Lung Research (DZL), Munich, Germany. .,Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, AMC, Research 2, 9th Flr, 12700 East 19th Ave, Aurora, Denver, CO, 80045, USA.
| |
Collapse
|
36
|
Osman G, Rodriguez J, Chan SY, Chisholm J, Duncan G, Kim N, Tatler AL, Shakesheff KM, Hanes J, Suk JS, Dixon JE. PEGylated enhanced cell penetrating peptide nanoparticles for lung gene therapy. J Control Release 2018; 285:35-45. [PMID: 30004000 PMCID: PMC6573017 DOI: 10.1016/j.jconrel.2018.07.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 11/24/2022]
Abstract
The lung remains an attractive target for the gene therapy of monogenetic diseases such as cystic fibrosis (CF). Despite over 27 clinical trials, there are still very few gene therapy vectors that have shown any improvement in lung function; highlighting the need to develop formulations with improved gene transfer potency and the desirable physiochemical characteristics for efficacious therapy. Herein, we introduce a novel cell penetrating peptide (CPP)-based non-viral vector that utilises glycosaminoglycan (GAG)-binding enhanced transduction (GET) for highly efficient gene transfer. GET peptides couple directly with DNA through electrostatic interactions to form nanoparticles (NPs). In order to adapt the GET peptide for efficient in vivo delivery, we engineered PEGylated versions of the peptide and employed a strategy to form DNA NPs with different densities of PEG coatings. We were able to identify candidate formulations (PEGylation rates ≥40%) that shielded the positively charged surface of particles, maintained colloidal stability in bronchoalveolar lavage fluid (BALF) and retained gene transfer activity in human bronchial epithelial cell lines and precision cut lung slices (PCLS) in vitro. Using multiple particle tracking (MPT) technology, we demonstrated that PEG-GET complexes were able to navigate the mucus mesh and diffuse rapidly through patient CF sputum samples ex vivo. When tested in mouse lung models in vivo, PEGylated particles demonstrated superior biodistribution, improved safety profiles and efficient gene transfer of a reporter luciferase plasmid compared to non-PEGylated complexes. Furthermore, gene expression was significantly enhanced in comparison to polyethylenimine (PEI), a non-viral gene carrier that has been widely tested in pre-clinical settings. This work describes an innovative approach that combines novel GET peptides for enhanced transfection with a tuneable PEG coating for efficacious lung gene therapy.
Collapse
Affiliation(s)
- Gizem Osman
- Wolfson Centre for Stem Cells, Tissue Engineering, and Modelling (STEM), Centre of Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jason Rodriguez
- The Centre for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Sze Yan Chan
- Wolfson Centre for Stem Cells, Tissue Engineering, and Modelling (STEM), Centre of Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jane Chisholm
- The Centre for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gregg Duncan
- The Centre for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Namho Kim
- The Centre for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Amanda L Tatler
- Nottingham NIHR Biomedical Research Centre, Division of Respiratory Medicine, University of Nottingham, Nottingham University Hospitals NHS Trust, City Hospital, Nottingham NG5 1PB, UK
| | - Kevin M Shakesheff
- Wolfson Centre for Stem Cells, Tissue Engineering, and Modelling (STEM), Centre of Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Justin Hanes
- The Centre for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jung Soo Suk
- The Centre for Nanomedicine, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - James E Dixon
- Wolfson Centre for Stem Cells, Tissue Engineering, and Modelling (STEM), Centre of Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
37
|
Liu Y, Dong WB. [Preventive effect of caffeine on bronchopulmonary dysplasia in preterm infants]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:598-602. [PMID: 30022766 PMCID: PMC7389204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 06/05/2018] [Indexed: 11/12/2023]
Abstract
With the increase in the rescue success rate of critically ill preterm infants and extremely preterm infants, the incidence rate of bronchopulmonary dysplasia (BPD) is increasing year by year. BPD has a high mortality rate and high possibility of sequelae, which greatly affects the quality of life of preterm infants and brings a heavy burden to their families, and so the treatment of BPD is of vital importance. At present, no consensus has been reached on the treatment measures for BPD. However, recent studies have shown that early application of caffeine can prevent BPD. With reference to the latest studies on the effect of caffeine in the prevention of BPD, this article reviews the mechanism of action of caffeine in reducing pulmonary inflammation, improving morphological abnormalities of lung injury, reducing oxidative stress injury, and improving pulmonary function.
Collapse
MESH Headings
- Animals
- Bronchopulmonary Dysplasia/genetics
- Bronchopulmonary Dysplasia/metabolism
- Bronchopulmonary Dysplasia/physiopathology
- Bronchopulmonary Dysplasia/prevention & control
- Caffeine/administration & dosage
- Humans
- Infant, Premature/growth & development
- Infant, Premature/metabolism
- Infant, Premature, Diseases/genetics
- Infant, Premature, Diseases/metabolism
- Infant, Premature, Diseases/physiopathology
- Infant, Premature, Diseases/prevention & control
- Oxidative Stress/drug effects
Collapse
Affiliation(s)
- Yang Liu
- Department of Neonatology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | | |
Collapse
|
38
|
Liu Y, Dong WB. [Preventive effect of caffeine on bronchopulmonary dysplasia in preterm infants]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:598-602. [PMID: 30022766 PMCID: PMC7389204 DOI: 10.7499/j.issn.1008-8830.2018.07.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 06/05/2018] [Indexed: 06/08/2023]
Abstract
With the increase in the rescue success rate of critically ill preterm infants and extremely preterm infants, the incidence rate of bronchopulmonary dysplasia (BPD) is increasing year by year. BPD has a high mortality rate and high possibility of sequelae, which greatly affects the quality of life of preterm infants and brings a heavy burden to their families, and so the treatment of BPD is of vital importance. At present, no consensus has been reached on the treatment measures for BPD. However, recent studies have shown that early application of caffeine can prevent BPD. With reference to the latest studies on the effect of caffeine in the prevention of BPD, this article reviews the mechanism of action of caffeine in reducing pulmonary inflammation, improving morphological abnormalities of lung injury, reducing oxidative stress injury, and improving pulmonary function.
Collapse
MESH Headings
- Animals
- Bronchopulmonary Dysplasia/genetics
- Bronchopulmonary Dysplasia/metabolism
- Bronchopulmonary Dysplasia/physiopathology
- Bronchopulmonary Dysplasia/prevention & control
- Caffeine/administration & dosage
- Humans
- Infant, Premature/growth & development
- Infant, Premature/metabolism
- Infant, Premature, Diseases/genetics
- Infant, Premature, Diseases/metabolism
- Infant, Premature, Diseases/physiopathology
- Infant, Premature, Diseases/prevention & control
- Oxidative Stress/drug effects
Collapse
Affiliation(s)
- Yang Liu
- Department of Neonatology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | | |
Collapse
|
39
|
Beach KM, Hung LF, Arumugam B, Smith EL, Ostrin LA. Adenosine receptor distribution in Rhesus monkey ocular tissue. Exp Eye Res 2018; 174:40-50. [PMID: 29792846 DOI: 10.1016/j.exer.2018.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/26/2018] [Accepted: 05/20/2018] [Indexed: 02/06/2023]
Abstract
Adenosine receptor (ADOR) antagonists, such as 7-methylxanthine (7-MX), have been shown to slow myopia progression in humans and animal models. Adenosine receptors are found throughout the body, and regulate the release of neurotransmitters such as dopamine and glutamate. However, the role of adenosine in eye growth is unclear. Evidence suggests that 7-MX increases scleral collagen fibril diameter, hence preventing axial elongation. This study used immunohistochemistry (IHC) and reverse-transcription quantitative polymerase chain reaction (RT-qPCR) to examine the distribution of the four ADORs in the normal monkey eye to help elucidate potential mechanisms of action. Eyes were enucleated from six Rhesus monkeys. Anterior segments and eyecups were separated into components and flash-frozen for RNA extraction or fixed in 4% paraformaldehyde and processed for immunohistochemistry against ADORA1, ADORA2a, ADORA2b, and ADORA3. RNA was reverse-transcribed, and qPCR was performed using custom primers. Relative gene expression was calculated using the ΔΔCt method normalizing to liver expression, and statistical analysis was performed using Relative Expression Software Tool. ADORA1 immunostaining was highest in the iris sphincter muscle, trabecular meshwork, ciliary epithelium, and retinal nerve fiber layer. ADORA2a immunostaining was highest in the corneal epithelium, trabecular meshwork, ciliary epithelium, retinal nerve fiber layer, and scleral fibroblasts. ADORA2b immunostaining was highest in corneal basal epithelium, limbal stem cells, iris sphincter, ciliary muscle, ciliary epithelium, choroid, isolated retinal ganglion cells and scattered scleral fibroblasts. ADORA3 immunostaining was highest in the iris sphincter, ciliary muscle, ciliary epithelium, choroid, isolated retinal ganglion cells, and scleral fibroblasts. Compared to liver mRNA, ADORA1 mRNA was significantly higher in the brain, retina and choroid, and significantly lower in the iris/ciliary body. ADORA2a expression was higher in brain and retina, ADORA2b expression was higher in retina, and ADORA3 was higher in the choroid. In conclusion, immunohistochemistry and RT-qPCR indicated differential patterns of expression of the four adenosine receptors in the ocular tissues of the normal non-human primate. The presence of ADORs in scleral fibroblasts and the choroid may support mechanisms by which ADOR antagonists prevent myopia. The potential effects of ADOR inhibition on both anterior and posterior ocular structures warrant investigation.
Collapse
Affiliation(s)
- Krista M Beach
- University of Houston College of Optometry, 4901 Calhoun Rd, Houston, TX 77204, USA
| | - Li-Fang Hung
- University of Houston College of Optometry, 4901 Calhoun Rd, Houston, TX 77204, USA
| | - Baskar Arumugam
- University of Houston College of Optometry, 4901 Calhoun Rd, Houston, TX 77204, USA
| | - Earl L Smith
- University of Houston College of Optometry, 4901 Calhoun Rd, Houston, TX 77204, USA
| | - Lisa A Ostrin
- University of Houston College of Optometry, 4901 Calhoun Rd, Houston, TX 77204, USA.
| |
Collapse
|
40
|
Sundarakrishnan A, Chen Y, Black LD, Aldridge BB, Kaplan DL. Engineered cell and tissue models of pulmonary fibrosis. Adv Drug Deliv Rev 2018; 129:78-94. [PMID: 29269274 DOI: 10.1016/j.addr.2017.12.013] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/15/2017] [Accepted: 12/16/2017] [Indexed: 12/11/2022]
Abstract
Pulmonary fibrosis includes several lung disorders characterized by scar formation and Idiopathic Pulmonary Fibrosis (IPF) is a particularly severe form of pulmonary fibrosis of unknown etiology with a mean life expectancy of 3years' post-diagnosis. Treatments for IPF are limited to two FDA approved drugs, pirfenidone and nintedanib. Most lead candidate drugs that are identified in pre-clinical animal studies fail in human clinical trials. Thus, there is a need for advanced humanized in vitro models of the lung to improve candidate treatments prior to moving to human clinical trials. The development of 3D tissue models has created systems capable of emulating human lung structure, function, and cell and matrix interactions. The specific models accomplish these features and preliminary studies conducted using some of these systems have shown potential for in vitro anti-fibrotic drug testing. Further characterization and improvements will enable these tissue models to extend their utility for in vitro drug testing, to help identify signaling pathways and mechanisms for new drug targets, and potentially reduce animal models as standard pre-clinical models of study. In the current review, we contrast different in vitro models based on increasing dimensionality (2D, 2.5D and 3D), with added focus on contemporary 3D pulmonary models of fibrosis.
Collapse
Affiliation(s)
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Lauren D Black
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States; Department of Cell, Molecular & Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, United States
| | - Bree B Aldridge
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States; Department of Molecular Biology & Microbiology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, United States
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States.
| |
Collapse
|
41
|
Jenkins RG, Moore BB, Chambers RC, Eickelberg O, Königshoff M, Kolb M, Laurent GJ, Nanthakumar CB, Olman MA, Pardo A, Selman M, Sheppard D, Sime PJ, Tager AM, Tatler AL, Thannickal VJ, White ES. An Official American Thoracic Society Workshop Report: Use of Animal Models for the Preclinical Assessment of Potential Therapies for Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2017; 56:667-679. [PMID: 28459387 DOI: 10.1165/rcmb.2017-0096st] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Numerous compounds have shown efficacy in limiting development of pulmonary fibrosis using animal models, yet few of these compounds have replicated these beneficial effects in clinical trials. Given the challenges associated with performing clinical trials in patients with idiopathic pulmonary fibrosis (IPF), it is imperative that preclinical data packages be robust in their analyses and interpretations to have the best chance of selecting promising drug candidates to advance to clinical trials. The American Thoracic Society has convened a group of experts in lung fibrosis to discuss and formalize recommendations for preclinical assessment of antifibrotic compounds. The panel considered three major themes (choice of animal, practical considerations of fibrosis modeling, and fibrotic endpoints for evaluation). Recognizing the need for practical considerations, we have taken a pragmatic approach. The consensus view is that use of the murine intratracheal bleomycin model in animals of both genders, using hydroxyproline measurements for collagen accumulation along with histologic assessments, is the best-characterized animal model available for preclinical testing. Testing of antifibrotic compounds in this model is recommended to occur after the acute inflammatory phase has subsided (generally after Day 7). Robust analyses may also include confirmatory studies in human IPF specimens and validation of results in a second system using in vivo or in vitro approaches. The panel also strongly encourages the publication of negative results to inform the lung fibrosis community. These recommendations are for preclinical therapeutic evaluation only and are not intended to dissuade development of emerging technologies to better understand IPF pathogenesis.
Collapse
|
42
|
Fehrholz M, Glaser K, Speer CP, Seidenspinner S, Ottensmeier B, Kunzmann S. Caffeine modulates glucocorticoid-induced expression of CTGF in lung epithelial cells and fibroblasts. Respir Res 2017; 18:51. [PMID: 28330503 PMCID: PMC5363056 DOI: 10.1186/s12931-017-0535-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/10/2017] [Indexed: 12/19/2022] Open
Abstract
Background Although caffeine and glucocorticoids are frequently used to treat chronic lung disease in preterm neonates, potential interactions are largely unknown. While anti-inflammatory effects of glucocorticoids are well defined, their impact on airway remodeling is less characterized. Caffeine has been ascribed to positive effects on airway inflammation as well as remodeling. Connective tissue growth factor (CTGF, CCN2) plays a key role in airway remodeling and has been implicated in the pathogenesis of chronic lung diseases such as bronchopulmonary dysplasia (BPD) in preterm infants. The current study addressed the impact of glucocorticoids on the regulation of CTGF in the presence of caffeine using human lung epithelial and fibroblast cells. Methods The human airway epithelial cell line H441 and the fetal lung fibroblast strain IMR-90 were exposed to different glucocorticoids (dexamethasone, budesonide, betamethasone, prednisolone, hydrocortisone) and caffeine. mRNA and protein expression of CTGF, TGF-β1-3, and TNF-α were determined by means of quantitative real-time PCR and immunoblotting. H441 cells were additionally treated with cAMP, the adenylyl cyclase activator forskolin, and the selective phosphodiesterase (PDE)-4 inhibitor cilomilast to mimic caffeine-mediated PDE inhibition. Results Treatment with different glucocorticoids (1 μM) significantly increased CTGF mRNA levels in H441 (p < 0.0001) and IMR-90 cells (p < 0.01). Upon simultaneous exposure to caffeine (10 mM), both glucocorticoid-induced mRNA and protein expression were significantly reduced in IMR-90 cells (p < 0.0001). Of note, 24 h exposure to caffeine alone significantly suppressed basal expression of CTGF mRNA and protein in IMR-90 cells. Caffeine-induced reduction of CTGF mRNA expression seemed to be independent of cAMP levels, adenylyl cyclase activation, or PDE-4 inhibition. While dexamethasone or caffeine treatment did not affect TGF-β1 mRNA in H441 cells, increased expression of TGF-β2 and TGF-β3 mRNA was detected upon exposure to dexamethasone or dexamethasone and caffeine, respectively. Moreover, caffeine increased TNF-α mRNA in H441 cells (6.5 ± 2.2-fold, p < 0.05) which has been described as potent inhibitor of CTGF expression. Conclusions In addition to well-known anti-inflammatory features, glucocorticoids may have adverse effects on long-term remodeling by TGF-β1-independent induction of CTGF in lung cells. Simultaneous treatment with caffeine may attenuate glucocorticoid-induced expression of CTGF, thereby promoting restoration of lung homeostasis.
Collapse
Affiliation(s)
- Markus Fehrholz
- University Children's Hospital, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany.
| | - Kirsten Glaser
- University Children's Hospital, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany
| | - Christian P Speer
- University Children's Hospital, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany
| | - Silvia Seidenspinner
- University Children's Hospital, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany
| | - Barbara Ottensmeier
- University Children's Hospital, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany
| | - Steffen Kunzmann
- University Children's Hospital, University of Wuerzburg, Josef-Schneider-Str. 2, 97080, Wuerzburg, Germany.,Clinic of Neonatology, Buergerhospital Frankfurt am Main, Nibelungenallee 37-41, 60318, Frankfurt am Main, Germany
| |
Collapse
|
43
|
Alsafadi HN, Staab-Weijnitz CA, Lehmann M, Lindner M, Peschel B, Königshoff M, Wagner DE. An ex vivo model to induce early fibrosis-like changes in human precision-cut lung slices. Am J Physiol Lung Cell Mol Physiol 2017; 312:L896-L902. [PMID: 28314802 DOI: 10.1152/ajplung.00084.2017] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 01/13/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating chronic interstitial lung disease (ILD) characterized by lung tissue scarring and high morbidity. Lung epithelial injury, myofibroblast activation, and deranged repair are believed to be key processes involved in disease onset and progression, but the exact molecular mechanisms behind IPF remain unclear. Several drugs have been shown to slow disease progression, but treatments that halt or reverse IPF progression have not been identified. Ex vivo models of human lung have been proposed for drug discovery, one of which is precision-cut lung slices (PCLS). Although PCLS production from IPF explants is possible, IPF explants are rare and typically represent end-stage disease. Here we present a novel model of early fibrosis-like changes in human PCLS derived from patients without ILD/IPF using a combination of profibrotic growth factors and signaling molecules (transforming growth factor-β, tumor necrosis factor-α, platelet-derived growth factor-AB, and lysophosphatidic acid). Fibrotic-like changes of PCLS were qualitatively analyzed by histology and immunofluorescence and quantitatively by water-soluble tetrazolium-1, RT-qPCR, Western blot analysis, and ELISA. PCLS remained viable after 5 days of treatment, and fibrotic gene expression (FN1, SERPINE1, COL1A1, CTGF, MMP7, and ACTA2) increased as early as 24 h of treatment, with increases in protein levels at 48 h and increased deposition of extracellular matrix. Alveolar epithelium reprogramming was evident by decreases in surfactant protein C and loss of HOPX In summary, using human-derived PCLS, we established a novel ex vivo model that displays characteristics of early fibrosis and could be used to evaluate novel therapies and study early-stage IPF pathomechanisms.
Collapse
Affiliation(s)
- Hani N Alsafadi
- Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Claudia A Staab-Weijnitz
- Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Mareike Lehmann
- Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Michael Lindner
- Asklepios Fachkliniken München-Gauting Center of Thoracic Surgery, Gauting, Germany; and
| | - Britta Peschel
- Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany
| | - Melanie Königshoff
- Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany.,Division of Pulmonary Sciences and Critical Care Medicine Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Darcy E Wagner
- Helmholtz Zentrum Munich, Comprehensive Pneumology Center, Member of the German Center for Lung Research, Munich, Germany;
| |
Collapse
|
44
|
John AE, Porte J, Jenkins G, Tatler AL. Methods for the Assessment of Active Transforming Growth Factor-β in Cells and Tissues. Methods Mol Biol 2017; 1627:351-365. [PMID: 28836213 DOI: 10.1007/978-1-4939-7113-8_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The potent and pluripotent cytokine TGFβ has important roles in normal homeostasis and disease pathogenesis. Once released from cells, TGFβ exists in both latent and functionally active forms. Large amounts of latent TGFβ are secreted from cells and sequestered in extracellular matrix, only a small proportion of which is activated at any given time. Accurate assessment of TGFβ activity levels is an important measurement in biological research and requires methods distinct from measuring total levels of TGFβ expression as small changes in TGFβ activity levels could be masked by the large amounts of latent TGFβ available to be measured. In this chapter, we describe detailed experimental methods for assessing levels of active TGFβ in cells and tissues. This chapter includes methods for the assessment of TGFβ activity in cells in vitro, in ex vivo precision cut tissue, and in vivo.
Collapse
Affiliation(s)
- Alison E John
- Division of Respiratory Medicine, School of Medicine, Nottingham City Hospital, University of Nottingham, Nottingham, UK
| | - Joanne Porte
- Division of Respiratory Medicine, School of Medicine, Nottingham City Hospital, University of Nottingham, Nottingham, UK
| | - Gisli Jenkins
- Division of Respiratory Medicine, School of Medicine, Nottingham City Hospital, University of Nottingham, Nottingham, UK
| | - Amanda L Tatler
- Division of Respiratory Medicine, School of Medicine, Nottingham City Hospital, University of Nottingham, Nottingham, UK.
| |
Collapse
|
45
|
Selected Literature Watch. JOURNAL OF CAFFEINE RESEARCH 2016. [DOI: 10.1089/jcr.2016.29002.slw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
46
|
Influence of coffee and its components on breast cancer: A review. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2016. [DOI: 10.1016/s2222-1808(16)61140-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|