1
|
Li Y, Yang T, Jiang B. Neutrophil and neutrophil extracellular trap involvement in neutrophilic asthma: A review. Medicine (Baltimore) 2024; 103:e39342. [PMID: 39183388 PMCID: PMC11346896 DOI: 10.1097/md.0000000000039342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/21/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
Asthma is a highly prevalent chronic inflammatory disease characterized by variable airflow obstruction and airway hyperresponsiveness. Neutrophilic asthma (NA) is classified as "type 2 low" asthma, defined as 65% or more neutrophils in the total cell count. There is no clear consensus on the pathogenesis of NA, and the accumulation of neutrophils and release of neutrophil extracellular traps (NETs) may be responsible for its development. A NET is a large extracellular meshwork comprising cell membrane and granule proteins. It is a powerful antimicrobial defence system that traps, neutralizes, and kills bacteria, fungi, viruses, and parasites and prevents the spread of microorganisms. However, dysregulation of NETs may lead to chronic airway inflammation, is associated with worsening of asthma, and has been the subject of major research advances in chronic lung diseases in recent years. NA is insensitive to steroids, and there is a need to find effective biomarkers as targets for the treatment of NA to replace steroids. This review analyses the mechanisms of action between asthmatic neutrophil recruitment and NET formation and their impact on NA development. It also discusses their possible therapeutic significance in NA, summarizing the advances made in NA agents and providing strategies for the treatment of NA, provide a theoretical basis for the development of new therapeutic drugs, thereby improving the level of diagnosis and treatment, and promoting the research progress in the field of asthma.
Collapse
Affiliation(s)
- Yuemu Li
- Institutes of Integrative Medicine, Heilongjiang Provincial Hospital of Traditional Chinese Medicine, Heilongjiang, China
| | - Tianyi Yang
- Institutes of Integrative Medicine, Heilongjiang Provincial Hospital of Traditional Chinese Medicine, Heilongjiang, China
| | - Baihua Jiang
- Institutes of Integrative Medicine, Heilongjiang Provincial Hospital of Traditional Chinese Medicine, Heilongjiang, China
| |
Collapse
|
2
|
Tagé BSS, Gonzatti MB, Vieira RP, Keller AC, Bortoluci KR, Aimbire F. Three Main SCFAs Mitigate Lung Inflammation and Tissue Remodeling Nlrp3-Dependent in Murine HDM-Induced Neutrophilic Asthma. Inflammation 2024; 47:1386-1402. [PMID: 38329636 DOI: 10.1007/s10753-024-01983-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
Neutrophilic asthma is generally defined by poorly controlled symptoms and high levels of neutrophils in the lungs. Short-chain fatty acids (SCFAs) are proposed as nonpharmacological therapy for allergic asthma, but their impact on the neutrophilic asthma lacks evidence. SCFAs regulate immune cell responses and impact the inflammasome NLRP3, a potential pharmacological target for neutrophilic asthma. Here, we explored the capacity of SCFAs to mitigate murine-induced neutrophilic asthma and the contribution of NLRP3 to this asthma. The objective of this study is to analyze whether SCFAs can attenuate lung inflammation and tissue remodeling in murine neutrophilic asthma and NLRP3 contribution to this endotype. Wild-type (WT) C57BL6 mice orotracheally received 10 μg of HDM (house dust mite) in 80 μL of saline on days 0, 6-10. To explore SCFAs, each HDM group received 200 mM acetate, propionate, or butyrate. To explore NLRP3, Nlrp3 KO mice received the same protocol of HDM. On the 14th day, after euthanasia, bronchoalveolar lavage fluid (BALF) and lungs were collected to evaluate cellularity, inflammatory cytokines, and tissue remodeling. HDM group had increased BALF neutrophil influx, TNF-α, IFN-γ, IL-17A, collagen deposition, and mucus secretion compared to control. SCFAs distinctively attenuate lung inflammation. Only features of tissue remodeling were Nlrp3-dependent such as collagen deposition, mucus secretion, active TGF-β cytokine, and IMs CD206+. SCFAs greatly decreased inflammatory cytokines and tissue remodeling. Only tissue remodeling was dependent on NLRP3. It reveals the potential of SCFAs to act as an additional therapy to mitigate neutrophilic asthma and the NLRP3 contribution to asthma.
Collapse
Affiliation(s)
- Barbara S S Tagé
- Department of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, 12247-014, Brazil.
| | - Michelangelo B Gonzatti
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, SP, 05468-901, Brazil
| | - Rodolfo P Vieira
- Postgraduate Program in Human Movement and Rehabilitation and in Pharmaceutical Sciences, Evangelical University of Goiás (UniEvangélica), Anápolis, GO, 75083-515, Brazil
- Postgraduate Program in Bioengineering, University Brasil, São Paulo, SP, 08230-030, Brazil
- Postgraduate Program in Sciences of Human Movement and Rehabilitation, Federal University of São Paulo (UNIFESP), Santos, SP, 11010-150, Brazil
| | - Alexandre C Keller
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, SP, 05468-901, Brazil
| | - Karina R Bortoluci
- Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo, SP, 04023-062, Brazil
| | - Flávio Aimbire
- Department of Science and Technology, Federal University of São Paulo (UNIFESP), São José dos Campos, SP, 12247-014, Brazil
| |
Collapse
|
3
|
Pilkington AW, Buragamadagu B, Johnston RA. Weighted Breaths: Exploring Biologic and Non-Biologic Therapies for Co-Existing Asthma and Obesity. Curr Allergy Asthma Rep 2024; 24:381-393. [PMID: 38878250 PMCID: PMC11233394 DOI: 10.1007/s11882-024-01153-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE OF REVIEW To discuss the effectiveness of biologics, some of which comprise the newest class of asthma controller medications, and non-biologics in the treatment of asthma co-existing with obesity. RECENT FINDINGS Our review of recent preliminary and published data from clinical trials revealed that obese asthmatics respond favorably to dupilumab, mepolizumab, omalizumab, and tezepelumab, which are biologics currently indicated as add-on maintenance therapy for severe asthma. Furthermore, clinical trials are ongoing to assess the efficacy of non-biologics in the treatment of obese asthma, including a glucagon-like peptide-1 receptor agonist, a Janus kinase inhibitor, and probiotics. Although many biologics presently indicated as add-on maintenance therapy for severe asthma exhibit efficacy in obese asthmatics, other phenotypes of asthma co-existing with obesity may be refractory to these medications. Thus, to improve quality of life and asthma control, it is imperative to identify therapeutic options for all existing phenotypes of obese asthma.
Collapse
Affiliation(s)
- Albert W Pilkington
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, United States Department of Health and Human Services, 1000 Frederick Lane, Morgantown, WV, 26508-5402, USA
| | - Bhanusowmya Buragamadagu
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Richard A Johnston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, United States Department of Health and Human Services, 1000 Frederick Lane, Morgantown, WV, 26508-5402, USA.
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA.
- Department of Physiology, Pharmacology, and Toxicology, School of Medicine, West Virginia University, Morgantown, WV, USA.
| |
Collapse
|
4
|
Akenroye A, Nopsopon T, Hacker JJ, Laidlaw TM. Ratio of plasma IL-13/TNF- ∝ and CXCL10/CCL17 predicts mepolizumab and omalizumab response in asthma better than eosinophil count or immunoglobulin E level. Sci Rep 2024; 14:10404. [PMID: 38710930 PMCID: PMC11074109 DOI: 10.1038/s41598-024-60864-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/29/2024] [Indexed: 05/08/2024] Open
Abstract
To date, most studies to identify biomarkers associated with response to the anti-interleukin 5 agent, mepolizumab, and to the anti-immunoglobulin E agent, omalizumab have focused on clinically available biomarkers, such as the peripheral blood eosinophil counts (BEC) and total immunoglobulin E (IgE). However, these biomarkers often have low predictive accuracy, with many patients with eosinophilic or allergic asthma failing to demonstrate clinical response to mepolizumab or omalizumab respectively. In this study, we evaluated the association of baseline pre-biologic plasma levels of 26 cytokines and chemokines, including T-helper 1 (Th1)-, Th2-, Th17-related cytokines, and their ratios with subsequent clinical response to mepolizumab or omalizumab. We defined clinical response as a reduction in the baseline annual exacerbation rate by half or more over the one-year period following initiation of the biologic. Baseline levels of plasma IL-13 were differentially elevated in responders versus non-responders to mepolizumab and plasma CXCL10 levels were differentially elevated in responders to omalizumab. The ratio of IL-13/TNF-α had the best sensitivity and specificity in predicting response to mepolizumab and CXCL10/CCL17 to omalizumab, and these performed better as predictive biomarkers of response than BEC and IgE. Cytokines and chemokines associated with airway eosinophilia, allergic inflammation, or Th2 inflammation, such as IL-13 and CXCL10, may be better predictors of clinical response to mepolizumab and omalizumab, than IL-5 or IgE, the targets of mepolizumab and omalizumab.
Collapse
Affiliation(s)
- Ayobami Akenroye
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA.
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Tanawin Nopsopon
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Jonathan J Hacker
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| | - Tanya M Laidlaw
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Road, Boston, MA, 02115, USA
| |
Collapse
|
5
|
Zhu WX, Xi Y, Li F, Jiao WE, Li ZJ, Chen SM, Kong YG, Xu Y, Deng YQ, Zuo JJ, Tao ZZ. Calpeptin may reverse glucocorticoid-resistance of allergic rhinitis associated with cigarette smoke exposure by down-regulating interferon regulatory factor 1. Heliyon 2023; 9:e17316. [PMID: 37449098 PMCID: PMC10336445 DOI: 10.1016/j.heliyon.2023.e17316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/03/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Cigarette smoke exposure is an important factor in chronic inflammation in patients with allergic rhinitis (AR); however, the relationship between cigarette smoke and AR-related glucocorticoid resistance requires further study. In mice, calpeptin significantly reduces inflammation of the lower respiratory tract caused by cigarette smoke, but whether it can treat glucocorticoid-resistant AR caused by cigarette smoke requires further research. In this study, we confirmed that cigarette smoke exposure can aggravate the Th2 inflammatory response in AR leading to glucocorticoid resistance. The underlying mechanism may be related to decreased expression of DNA methyltransferase 3a (Dnmt3a), and increased expression of interferon regulatory factor 1 (IRF1). In addition, we found that calpeptin can inhibit the expression of IRF1 and thus treat AR-associated glucocorticoid resistance in rats exposed to cigarette smoke. These data suggest that calpeptin may downregulate IRF1 and therefore treat glucocorticoid resistance in AR-associated with cigarette smoke exposure.
Collapse
Affiliation(s)
- Wen-Xuan Zhu
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Yang Xi
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Fen Li
- Institute of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Wo-Er Jiao
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Zi-Jing Li
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Shi-Ming Chen
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
- Institute of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Yong-Gang Kong
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Yu Xu
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
- Institute of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Yu-Qin Deng
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Jing-Jing Zuo
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Ze-Zhang Tao
- Department of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
- Institute of Otolaryngology, Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, PR China
- Department of Rhinology and Allergy, Renmin Hospital of Wuhan University, Wuhan, PR China
| |
Collapse
|
6
|
Theofani E, Tsitsopoulou A, Morianos I, Semitekolou M. Severe Asthmatic Responses: The Impact of TSLP. Int J Mol Sci 2023; 24:ijms24087581. [PMID: 37108740 PMCID: PMC10142872 DOI: 10.3390/ijms24087581] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Asthma is a chronic inflammatory disease that affects the lower respiratory system and includes several categories of patients with varying features or phenotypes. Patients with severe asthma (SA) represent a group of asthmatics that are poorly responsive to medium-to-high doses of inhaled corticosteroids and additional controllers, thus leading in some cases to life-threatening disease exacerbations. To elaborate on SA heterogeneity, the concept of asthma endotypes has been developed, with the latter being characterized as T2-high or low, depending on the type of inflammation implicated in disease pathogenesis. As SA patients exhibit curtailed responses to standard-of-care treatment, biologic therapies are prescribed as adjunctive treatments. To date, several biologics that target specific downstream effector molecules involved in disease pathophysiology have displayed superior efficacy only in patients with T2-high, eosinophilic inflammation, suggesting that upstream mediators of the inflammatory cascade could constitute an attractive therapeutic approach for difficult-to-treat asthma. One such appealing therapeutic target is thymic stromal lymphopoietin (TSLP), an epithelial-derived cytokine with critical functions in allergic diseases, including asthma. Numerous studies in both humans and mice have provided major insights pertinent to the role of TSLP in the initiation and propagation of asthmatic responses. Undoubtedly, the magnitude of TSLP in asthma pathogenesis is highlighted by the fact that the FDA recently approved tezepelumab (Tezspire), a human monoclonal antibody that targets TSLP, for SA treatment. Nevertheless, further research focusing on the biology and mode of function of TSLP in SA will considerably advance disease management.
Collapse
Affiliation(s)
- Efthymia Theofani
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Aikaterini Tsitsopoulou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ioannis Morianos
- Host Defense and Fungal Pathogenesis Lab, School of Medicine, University of Crete, 71110 Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71300 Heraklion, Greece
| | - Maria Semitekolou
- Laboratory of Immune Regulation and Tolerance, School of Medicine, University of Crete, 71110 Heraklion, Greece
| |
Collapse
|
7
|
Kowalczyk T, Sitarek P, Śliwiński T, Hatziantoniou S, Soulintzi N, Pawliczak R, Wieczfinska J. New Data on Anti-Inflammatory and Wound Healing Potential of Transgenic Senna obtusifolia Hairy Roots: In Vitro Studies. Int J Mol Sci 2023; 24:ijms24065906. [PMID: 36982980 PMCID: PMC10056933 DOI: 10.3390/ijms24065906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Asthma is an inflammatory disease whose etiology remains unclear. Its characteristics encompass a wide range of clinical symptoms, inflammatory processes, and reactions to standard therapies. Plants produce a range of constitutive products and secondary metabolites that may have therapeutic abilities. The aim of this study was to determine the effects of Senna obtusifolia transgenic hairy root extracts on virus-induced airway remodeling conditions. Three cell lines were incubated with extracts from transformed (SOA4) and transgenic (SOPSS2, with overexpression of the gene encoding squalene synthase 1) hairy roots of Senna obtusifolia in cell lines undergoing human rhinovirus-16 (HRV-16) infection. The effects of the extracts on the inflammatory process were determined based on the expression of inflammatory cytokines (IL-8, TNF-α, IL-1α and IFN-γ) and total thiol content. The transgenic Senna obtusifolia root extract reduced virus-induced expression of TNF, IL-8 and IL-1 in WI-38 and NHBE cells. The SOPSS2 extract reduced IL-1 expression only in lung epithelial cells. Both tested extracts significantly increased the concentration of thiol groups in epithelial lung cells. In addition, the SOPPS2 hairy root extract yielded a positive result in the scratch test. SOA4 and SOPPS2 Senna obtusifolia hairy root extracts demonstrated anti-inflammatory effects or wound healing activity. The SOPSS2 extract had stronger biological properties, which may result from a higher content of bioactive secondary metabolites.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Tomasz Śliwiński
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Sophia Hatziantoniou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Nikolitsa Soulintzi
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece
| | - Rafal Pawliczak
- Department of Immunopathology, Medical University of Lodz, Zeligowskiego 7/9, Bldg 2, Rm 177, 90-752 Lodz, Poland
| | - Joanna Wieczfinska
- Department of Immunopathology, Medical University of Lodz, Zeligowskiego 7/9, Bldg 2, Rm 177, 90-752 Lodz, Poland
| |
Collapse
|
8
|
Kozlik-Siwiec P, Buregwa-Czuma S, Zawlik I, Dziedzina S, Myszka A, Zuk-Kuwik J, Siwiec-Kozlik A, Zarychta J, Okon K, Zareba L, Soja J, Jakiela B, Kepski M, Bazan JG, Bazan-Socha S. Co-Expression Analysis of Airway Epithelial Transcriptome in Asthma Patients with Eosinophilic vs. Non-Eosinophilic Airway Infiltration. Int J Mol Sci 2023; 24:3789. [PMID: 36835202 PMCID: PMC9959255 DOI: 10.3390/ijms24043789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Asthma heterogeneity complicates the search for targeted treatment against airway inflammation and remodeling. We sought to investigate relations between eosinophilic inflammation, a phenotypic feature frequent in severe asthma, bronchial epithelial transcriptome, and functional and structural measures of airway remodeling. We compared epithelial gene expression, spirometry, airway cross-sectional geometry (computed tomography), reticular basement membrane thickness (histology), and blood and bronchoalveolar lavage (BAL) cytokines of n = 40 moderate to severe eosinophilic (EA) and non-eosinophilic asthma (NEA) patients distinguished by BAL eosinophilia. EA patients showed a similar extent of airway remodeling as NEA but had an increased expression of genes involved in the immune response and inflammation (e.g., KIR3DS1), reactive oxygen species generation (GYS2, ATPIF1), cell activation and proliferation (ANK3), cargo transporting (RAB4B, CPLX2), and tissue remodeling (FBLN1, SOX14, GSN), and a lower expression of genes involved in epithelial integrity (e.g., GJB1) and histone acetylation (SIN3A). Genes co-expressed in EA were involved in antiviral responses (e.g., ATP1B1), cell migration (EPS8L1, STOML3), cell adhesion (RAPH1), epithelial-mesenchymal transition (ASB3), and airway hyperreactivity and remodeling (FBN3, RECK), and several were linked to asthma in genome- (e.g., MRPL14, ASB3) or epigenome-wide association studies (CLC, GPI, SSCRB4, STRN4). Signaling pathways inferred from the co-expression pattern were associated with airway remodeling (e.g., TGF-β/Smad2/3, E2F/Rb, and Wnt/β-catenin).
Collapse
Affiliation(s)
- Pawel Kozlik-Siwiec
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland
- Haematology Clinical Department, University Hospital, 31-501 Krakow, Poland
| | - Sylwia Buregwa-Czuma
- College of Natural Sciences, Institute of Computer Science, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Izabela Zawlik
- Centre for Innovative Research in Medical and Natural Sciences, Institute of Medical Sciences, Medical College, University of Rzeszow, Kopisto 2a, 35-959 Rzeszow, Poland
| | - Sylwia Dziedzina
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland
| | - Aleksander Myszka
- Institute of Medical Sciences, Medical College, University of Rzeszow, Kopisto 2a, 35-959 Rzeszow, Poland
| | - Joanna Zuk-Kuwik
- Haematology Clinical Department, University Hospital, 31-501 Krakow, Poland
- Haematology Department, Jagiellonian University Medical College, 31-501 Krakow, Poland
| | | | - Jacek Zarychta
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland
- Pulmonary Hospital, 34-736 Zakopane, Poland
| | - Krzysztof Okon
- Department of Pathology, Jagiellonian University Medical College, 33-332 Krakow, Poland
| | - Lech Zareba
- College of Natural Sciences, Institute of Computer Science, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Jerzy Soja
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland
| | - Bogdan Jakiela
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland
| | - Michał Kepski
- College of Natural Sciences, Institute of Computer Science, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Jan G. Bazan
- College of Natural Sciences, Institute of Computer Science, University of Rzeszow, Pigonia 1, 35-310 Rzeszow, Poland
| | - Stanislawa Bazan-Socha
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland
| |
Collapse
|
9
|
Fernandes AMS, da Silva ES, Silveira EF, Belitardo EMMDA, Santiago LF, Silva RC, Dos Santos Alves V, Carneiro DM, Ferreira F, Jacquet A, Pacheco LGC, Alcantara-Neves NM, Pinheiro CS. Recombinant T-cell epitope conjugation: A new approach for Dermatophagoides hypoallergen design. Clin Exp Allergy 2023; 53:198-209. [PMID: 36176209 DOI: 10.1111/cea.14238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND Allergen-specific immunotherapy (AIT) is the only clinical approach that can potentially cure some allergic diseases by inducing immunological tolerance. Dermatophagoides pteronyssinus is considered as the most important source of mite allergens worldwide, with high sensitization rates for the major allergens Der p 1, Der p 2 and Der p 23. The aim of this work is to generate a hypoallergenic hybrid molecule containing T-cell epitopes from these three major allergens. METHODS The hybrid protein termed Der p 2231 containing T-cell epitopes was purified by affinity chromatography. The human IgE reactivity was verified by comparing those with the parental allergens. The hybrid was also characterized immunologically through an in vivo mice model. RESULTS The hybrid rDer p 2231 stimulated in peripheral blood mononuclear cells (PBMCs) isolated from allergic patients with higher levels of IL- 2, IL-10, IL-15 and IFN-γ, as well as lower levels of IL-4, IL-5, IL-13, TNF-α and GM-CSF. The use of hybrid molecules as a therapeutic model in D. pteronyssinus allergic mice led to the reduction of IgE production and lower eosinophilic peroxidase activity in the airways. We found increased levels of IgG antibodies that blocked the IgE binding to the parental allergens in the serum of allergic patients. Furthermore, the stimulation of splenocytes from mice treated with rDer p 2231 induced higher levels of IL-10 and IFN-γ and decreased the secretion of IL-4 and IL-5, when compared with parental allergens and D. pteronyssinus extract. CONCLUSIONS rDer p 2231 has the potential to be used in AIT in patients co-sensitized with D. pteronyssinus major allergens, once it was able to reduce IgE production, inducing allergen-specific blocking antibodies, restoring and balancing Th1/Th2 immune responses, and inducing regulatory T-cells.
Collapse
Affiliation(s)
- Antônio Márcio Santana Fernandes
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Programas de Pós-Graduação em Biotecnologia da Universidade Federal da Bahia, Salvador, Brazil
| | - Eduardo Santos da Silva
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Elisânia Fontes Silveira
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | | | - Leonardo Freire Santiago
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Raphael Chagas Silva
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Vitor Dos Santos Alves
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Deise Malta Carneiro
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil
| | - Fatima Ferreira
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Alain Jacquet
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Luis Gustavo Carvalho Pacheco
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Programas de Pós-Graduação em Biotecnologia da Universidade Federal da Bahia, Salvador, Brazil
| | - Neuza Maria Alcantara-Neves
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Programas de Pós-Graduação em Biotecnologia da Universidade Federal da Bahia, Salvador, Brazil
| | - Carina Silva Pinheiro
- Laboratório de Alergia e Acarologia, Departamento de Ciências da Biointeração, Instituto de Ciências da Saúde, Universidade Federal da Bahia, Salvador, Brazil.,Programas de Pós-Graduação em Biotecnologia da Universidade Federal da Bahia, Salvador, Brazil
| |
Collapse
|
10
|
Drake LY, Koloko Ngassie ML, Roos BB, Teske JJ, Prakash YS. Asthmatic lung fibroblasts promote type 2 immune responses via endoplasmic reticulum stress response dependent thymic stromal lymphopoietin secretion. Front Physiol 2023; 14:1064822. [PMID: 36760534 PMCID: PMC9907026 DOI: 10.3389/fphys.2023.1064822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Lung fibroblasts contribute to asthma pathology partly through modulation of the immune environment in the airway. Tumor necrosis factor-α (TNFα) expression is upregulated in asthmatic lungs. How asthmatic lung fibroblasts respond to TNFα stimulation and subsequently regulate immune responses is not well understood. Endoplasmic reticulum (ER) stress and unfolded protein responses (UPR) play important roles in asthma, but their functional roles are still under investigation. In this study, we investigated TNFα-induced cytokine production in primary lung fibroblasts from asthmatic vs. non-asthmatic human subjects, and downstream effects on type 2 immune responses. TNFα significantly upregulated IL-6, IL-8, C-C motif chemokine ligand 5 (CCL5), and thymic stromal lymphopoietin (TSLP) mRNA expression and protein secretion by lung fibroblasts. Asthmatic lung fibroblasts secreted higher levels of TSLP which promoted IL-33-induced IL-5 and IL-13 production by peripheral blood mononuclear cells. TNFα exposure enhanced expression of ER stress/UPR pathways in both asthmatic and non-asthmatic lung fibroblasts, especially inositol-requiring protein 1α in asthmatics. ER stress/UPR inhibitors decreased IL-6, CCL5, and TSLP protein secretion by asthmatic lung fibroblasts. Our data suggest that TNFα and lung fibroblasts form an important axis in asthmatic lungs to promote asthmatic inflammation that can be attenuated by inhibiting ER stress/UPR pathway.
Collapse
Affiliation(s)
- Li Y. Drake
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States,*Correspondence: Li Y. Drake,
| | - Maunick Lefin Koloko Ngassie
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands,Groningen Research Institute for Asthma and COPD, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Benjamin B. Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jacob J. Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Y. S. Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
11
|
Lv X, Gao Z, Tang W, Qin J, Wang W, Liu J, Li M, Teng F, Yi L, Dong J, Wei Y. Trends of therapy in the treatment of asthma. Ther Adv Respir Dis 2023; 17:17534666231155748. [PMID: 36942731 PMCID: PMC10031615 DOI: 10.1177/17534666231155748] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND To better understand the development of therapy for asthma, grasp the core paradigm associated with the transformation of cognition of asthma treatment and asthma, explore potential and effective therapies for asthma, discover new biomarkers and mechanisms related to asthma treatment, find novel targets for anti-asthma drugs, and predict the future trends of asthma therapy, we used a bibliometric analysis to research articles related to the therapies for asthma published from 1983 to 2022. METHODS A comprehensive search was conducted to analyze the articles associated with therapy for asthma with the help of the Web of Science Core Collection (WOSCC) database from January 1, 1983 to August 14, 2022. The CiteSpace 6.1.R2 software and VOS viewer 6.1.8 software were utilized to analyze the overall structure of the network, network clusters, links between clusters, key nodes, and pathways. RESULTS A total of 3902 publications related to therapies on asthma were published in 3211 academic journals by a total of 14,655 authors in 3476 organizations from 87 countries or regions from 1983 to 2022. The United States published the most articles (n = 1143), followed by England (n = 574) and China (n = 405). However, the centrality of China was 0.4, higher than the United States (centrality = 0.16) and Singapore (centrality = 0.11). Akdis Cezmi published the most papers. Journal of Allergy and Clinical Immunology published the most studies on therapies for asthma. Asthma was the most frequent keyword (n = 594). The betweenness centrality value of keywords that were greater than 0.1 included airway inflammation (centrality = 0.22), double blind (centrality = 0.18), asthma (centrality = 0.17), inflammation (centrality = 0.12), and inhaled corticosteroid (centrality = 0.11). CONCLUSIONS The results from this biometric review provide insight into the development of therapy for asthma, the paradigm of recognition of this field, the approach of discovering new targets, exploration and combination of new mechanisms, and the frontier trend of this field in future.
Collapse
Affiliation(s)
- Xiaodi Lv
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhen Gao
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wenqian Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jiaqi Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Mihui Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Suzukawa M, Ohta K, Fukutomi Y, Hashimoto H, Endo T, Abe M, Kamide Y, Yoshida M, Kikuchi Y, Kita T, Chibana K, Tanimoto Y, Hyodo K, Takata S, Inui T, Yasui M, Harada Y, Sato T, Sakakibara Y, Minakata Y, Inoue Y, Tamaki S, Shinohara T, Takami K, Tsubakihara M, Oki M, Wakamatsu K, Horiba M, Ideura G, Hidaka K, Saito AM, Kobayashi N, Taniguchi M. Classifications of moderate to severe asthma phenotypes in Japan and analysis of serum biomarkers: A Nationwide Cohort Study in Japan (NHOM Asthma Study). Allergol Int 2023; 72:63-74. [PMID: 35791991 DOI: 10.1016/j.alit.2022.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Asthma is a heterogeneous disease, and phenotyping can facilitate understanding of disease pathogenesis and direct appropriate asthma treatment. This nationwide cohort study aimed to phenotype asthma patients in Japan and identify potential biomarkers to classify the phenotypes. METHODS Adult asthma patients (n = 1925) from 27 national hospitals in Japan were enrolled and divided into Global Initiative for Asthma (GINA) steps 4 or 5 (GINA 4, 5) and GINA Steps 1, 2, or 3 (GINA 1-3) for therapy. Clinical data and questionnaires were collected. Biomarker levels among GINA 4, 5 patients were measured. Ward's minimum variance hierarchical clustering method and tree analysis were performed for phenotyping. Analysis of variance, the Kruskal-Wallis, and chi-square tests were used to compare cluster differences. RESULTS The following five clusters were identified: 1) late-onset, old, less-atopic; 2) late-onset, old, eosinophilic, low FEV1; 3) early-onset, long-duration, atopic, poorly controlled; 4) early-onset, young, female-dominant, atopic; and 5) female-dominant, T1/T2-mixed, most severe. Age of onset, disease duration, blood eosinophils and neutrophils, asthma control questionnaire Sum 6, number of controllers, FEV1, body mass index (BMI), and hypertension were the phenotype-classifying variables determined by tree analysis that assigned 79.5% to the appropriate cluster. Among the cytokines measured, IL-1RA, YKL40/CHI3L1, IP-10/CXCL10, RANTES/CCL5, and TIMP-1 were useful biomarkers for classifying GINA 4, 5 phenotypes. CONCLUSIONS Five distinct phenotypes were identified for moderate to severe asthma and may be classified using clinical and molecular variables (Registered in UMIN-CTR; UMIN000027776.).
Collapse
Affiliation(s)
- Maho Suzukawa
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan.
| | - Ken Ohta
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan; Japan Anti-Tuberculosis Association, JATA Fukujuji Hospital, Tokyo, Japan.
| | - Yuma Fukutomi
- Clinical Research Center, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan
| | - Hiroya Hashimoto
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan; Core Laboratory, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takeo Endo
- National Hospital Organization Mito Medical Center, Ibaraki, Japan
| | - Masahiro Abe
- National Hospital Organization Ehime Medical Center, Ehime, Japan
| | - Yosuke Kamide
- Clinical Research Center, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan
| | - Makoto Yoshida
- National Hospital Organization Fukuoka National Hospital, Fukuoka, Japan
| | | | - Toshiyuki Kita
- National Hospital Organization Kanazawa Medical Center, Ishikawa, Japan
| | - Kenji Chibana
- National Hospital Organization Okinawa National Hospital, Okinawa, Japan
| | - Yasushi Tanimoto
- National Hospital Organization Minami-Okayama Medical Center, Okayama, Japan
| | - Kentaro Hyodo
- National Hospital Organization Ibarakihigashi National Hospital, Ibaraki, Japan
| | - Shohei Takata
- National Hospital Organization Fukuokahigashi Medical Center, Fukuoka, Japan
| | - Toshiya Inui
- National Hospital Organization Disaster Medical Center, Tokyo, Japan
| | - Masahide Yasui
- National Hospital Organization Nanao National Hospital, Ishikawa, Japan
| | - Yoshinori Harada
- Department of Rheumatology & Allergology, National Hospital Organization Osaka Minami Medical Center, Osaka, Japan
| | - Toshio Sato
- National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Yumi Sakakibara
- Federation of National Public Service Personnel Mutual Aid Associations Hiratsuka Kyosai Hospital, Kanagawa, Japan
| | | | - Yoshikazu Inoue
- National Hospital Organization Kinki-Chuo Chest Medical Center, Osaka, Japan
| | - Shinji Tamaki
- National Hospital Organization Nara Medical Center, Nara, Japan
| | - Tsutomu Shinohara
- National Hospital Organization Kochi National Hospital, Kochi, Japan
| | - Kazutaka Takami
- Kanto Central Hospital of the Mutual Aid Association of Public School Teachers, Tokyo, Japan
| | | | - Masahide Oki
- Department of Respiratory Medicine, National Hospital Organization Nagoya Medical Center, Aichi, Japan
| | - Kentaro Wakamatsu
- National Hospital Organization Omuta National Hospital, Fukuoka, Japan
| | - Masahide Horiba
- Division of Respiratory Medicine, National Hospital Organization Higashisaitama National Hospital, Saitama, Japan
| | - Gen Ideura
- National Hospital Organization Shinshu Ueda Medical Center, Nagano, Japan
| | - Koko Hidaka
- National Hospital Organization Kokura Medical Center, Fukuoka, Japan
| | - Akiko M Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Nobuyuki Kobayashi
- Clinical Research Center, National Hospital Organization Tokyo National Hospital, Tokyo, Japan; Fureai Machida Hospital, Tokyo, Japan
| | - Masami Taniguchi
- Clinical Research Center, National Hospital Organization Sagamihara National Hospital, Kanagawa, Japan; Shonan Kamakura General Hospital, Kanagawa, Japan
| |
Collapse
|
13
|
Bryant N, Muehling LM. T-cell responses in asthma exacerbations. Ann Allergy Asthma Immunol 2022; 129:709-718. [PMID: 35918022 PMCID: PMC9987567 DOI: 10.1016/j.anai.2022.07.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Asthma is a chronic lung disease comprising multiple endotypes and characterized by periodic exacerbations. A diverse array of T cells has been found to contribute to all endotypes of asthma in pathogenic and regulatory roles. Here, we review the contributions of CD4+, CD8+, and unconventional T cells in allergic and nonallergic asthma. DATA SOURCES Review of published literature pertaining to conventional and unconventional T-cell types in asthma. STUDY SELECTIONS Recent peer-reviewed articles pertaining to T cells in asthma, with additional peer-reviewed studies for context. RESULTS Much research in asthma has focused on the roles of CD4+ TH cells. Roles for TH2 cells in promoting allergic asthma pathogenesis have been well-described, and the recent description of pathogenic TH2A cells provides additional insight into these responses. Other TH types, notably TH1 and TH17, have been linked to neutrophilic and steroid-resistant asthma phenotypes. Beyond CD4+ T cells, CD8+ Tc2 cells are also strongly associated with allergic asthma. An emerging area for study is unconventional T-cell types, including γδT, invariant natural killer T, and mucosal-associated invariant T cells. Although data in asthma remain limited for these cells, their ability to bridge innate and adaptive responses likely makes them key players in asthma. A number of asthma therapies target T-cell responses, and, although data are limited, they seem to modulate T-cell populations. CONCLUSION Given the diversity and heterogeneity of asthma and T-cell responses, there remain many rich avenues for research to better understand the pathogenesis of asthma. Despite the breadth of T cells in asthma, approved therapeutics remain limited to TH2 networks.
Collapse
Affiliation(s)
- Naomi Bryant
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Lyndsey M Muehling
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
14
|
Neutrophils and Asthma. Diagnostics (Basel) 2022; 12:diagnostics12051175. [PMID: 35626330 PMCID: PMC9140072 DOI: 10.3390/diagnostics12051175] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/04/2023] Open
Abstract
Although eosinophilic inflammation is characteristic of asthma pathogenesis, neutrophilic inflammation is also marked, and eosinophils and neutrophils can coexist in some cases. Based on the proportion of sputum cell differentiation, asthma is classified into eosinophilic asthma, neutrophilic asthma, neutrophilic and eosinophilic asthma, and paucigranulocytic asthma. Classification by bronchoalveolar lavage is also performed. Eosinophilic asthma accounts for most severe asthma cases, but neutrophilic asthma or a mixture of the two types can also present a severe phenotype. Biomarkers for the diagnosis of neutrophilic asthma include sputum neutrophils, blood neutrophils, chitinase-3-like protein, and hydrogen sulfide in sputum and serum. Thymic stromal lymphoprotein (TSLP)/T-helper 17 pathways, bacterial colonization/microbiome, neutrophil extracellular traps, and activation of nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 pathways are involved in the pathophysiology of neutrophilic asthma and coexistence of obesity, gastroesophageal reflux disease, and habitual cigarette smoking have been associated with its pathogenesis. Thus, targeting neutrophilic asthma is important. Smoking cessation, neutrophil-targeting treatments, and biologics have been tested as treatments for severe asthma, but most clinical studies have not focused on neutrophilic asthma. Phosphodiesterase inhibitors, anti-TSLP antibodies, azithromycin, and anti-cholinergic agents are promising drugs for neutrophilic asthma. However, clinical research targeting neutrophilic inflammation is required to elucidate the optimal treatment.
Collapse
|
15
|
Niessen NM, Fricker M, McDonald VM, Gibson PG. T2-low: what do we know?: Past, present, and future of biologic therapies in noneosinophilic asthma. Ann Allergy Asthma Immunol 2022; 129:150-159. [PMID: 35487388 DOI: 10.1016/j.anai.2022.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/30/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023]
Abstract
T2-low asthma is an often severe asthma subtype with limited treatment options and biologic therapeutics are lacking. Several monoclonal antibodies (mAbs) targeting non-T2 cytokines were previously reported to be ineffective in asthma. These trials often investigated heterogeneous asthma populations and negative outcomes could be related to unsuitable study cohorts. More tailored approaches in selecting participants based on specific biomarkers have been beneficial in treating severe T2-high asthma. Similarly, mAbs previously deemed ineffective bear the potential to be useful when administered to the correct target population. Here, we review individual clinical trials conducted between 2005 and 2021 and assess the suitability of the selected cohorts, whether study end points were met, and whether outcome measures were appropriate to investigate the effectiveness of the respective drug. We discuss potential target groups within the T2-low asthma population and suggest biomarkers that may predict a treatment response. Furthermore, we assess whether biomarker-guided approaches or subgroup analyses were associated with more positive study outcomes. The mAbs directed against alarmins intervene early in the inflammatory cascade and are the first mAbs found to have efficacy in T2-low asthma. Several randomized controlled trials performed predefined subgroup analyses that included T2-low asthma. Subgroup analyses were associated with positive outcomes and were able to reveal a stronger response in at least 1 subgroup. A better understanding of T2-low subgroups and specific biomarkers is necessary to identify the most responsive target population for a given mAb.
Collapse
Affiliation(s)
- Natalie M Niessen
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia; School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia; Asthma and Breathing Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia.
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia; School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia; Asthma and Breathing Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Vanessa M McDonald
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia; School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia; Asthma and Breathing Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia; School of Nursing and Midwifery, The University of Newcastle, Newcastle, NSW, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Peter G Gibson
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia; School of Medicine and Public Health, The University of Newcastle, Newcastle, NSW, Australia; Asthma and Breathing Research Centre, Hunter Medical Research Institute, Newcastle, NSW, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| |
Collapse
|
16
|
Which Therapy for Non-Type(T)2/T2-Low Asthma. J Pers Med 2021; 12:jpm12010010. [PMID: 35055325 PMCID: PMC8779705 DOI: 10.3390/jpm12010010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 12/17/2022] Open
Abstract
Currently, the asthmatic population is divided into Type 2-high and non-Type 2/Type 2-low asthmatics, with 50% of patients belonging to one of the two groups. Differently from T2-high, T2-low asthma has not been clearly defined yet, and the T2-low patients are identified on the basis of the absence or non-predominant expression of T2-high biomarkers. The information about the molecular mechanisms underpinning T2-low asthma is scarce, but researchers have recognized as T2-low endotypes type 1 and type 3 immune response, and remodeling events occurring without inflammatory processes. In addition, the lack of agreed biomarkers reprents a challenge for the research of an effective therapy. The first-choice medication is represented by inhaled corticosteroids despite a low efficacy is reported for/in T2-low patients. However, macrolides and long-acting anti-muscarinic drugs have been recognized as efficacious. In recent years, clinical trials targeting biomarkers playing key roles in T3 and T1 immune pathways, alarmins, and molecules involved in neutrophil recruitment have provided conflicting results probably misleading (or biased) in patients' selection. However, further studies are warranted to achieve a precise characterization of T2-low asthma with the aim of defining a tailored therapy for each single asthmatic patient.
Collapse
|
17
|
Harding JN, Gross M, Patel V, Potter S, Cormier SA. Association between particulate matter containing EPFRs and neutrophilic asthma through AhR and Th17. Respir Res 2021; 22:275. [PMID: 34702270 PMCID: PMC8549224 DOI: 10.1186/s12931-021-01867-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 10/14/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Epidemiological data associate high levels of combustion-derived particulate matter (PM) with deleterious respiratory outcomes, but the mechanism underlying those outcomes remains elusive. It has been acknowledged by the World Health Organization that PM exposure contributes to more than 4.2 million all-cause mortalities worldwide each year. Current literature demonstrates that PM exacerbates respiratory diseases, impairs lung function, results in chronic respiratory illnesses, and is associated with increased mortality. The proposed mechanisms revolve around oxidative stress and inflammation promoting pulmonary physiological remodeling. However, our previous data found that PM is capable of inducing T helper cell 17 (Th17) immune responses via aryl hydrocarbon receptor (Ahr) activation, which was associated with neutrophilic invasion characteristic of steroid insensitive asthma. METHODS In the present study, we utilized a combination of microarray and single cell RNA sequencing data to analyze the immunological landscape in mouse lungs following acute exposure to combustion derived particulate matter. RESULTS We present data that suggest epithelial cells produce specific cytokines in the aryl hydrocarbon receptor (Ahr) pathway that inform dendritic cells to initiate the production of pathogenic T helper (eTh17) cells. Using single-cell RNA sequencing analysis, we observed that upon exposure epithelial cells acquire a transcriptomic profile indicative of increased Il-17 signaling, Ahr activation, Egfr signaling, and T cell receptor and co-stimulatory signaling pathways. Epithelial cells further showed, Ahr activation is brought on by Ahr/ARNT nuclear translocation and activation of tyrosine kinase c-src, Egfr, and subsequently Erk1/2 pathways. CONCLUSIONS Collectively, our data corroborates that PM initiates an eTh17 specific inflammatory response causing neutrophilic asthma through pathways in epithelial, dendritic, and T cells that promote eTh17 differentiation during initial PM exposure.
Collapse
Affiliation(s)
- Jeffrey N Harding
- Department of Biological Sciences, Louisiana State University and Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA
| | - Maureen Gross
- Department of Biological Sciences, Louisiana State University and Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA
| | - Vivek Patel
- Department of Biological Sciences, Louisiana State University and Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA
| | - Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Stephania A Cormier
- Department of Biological Sciences, Louisiana State University and Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
18
|
Niessen NM, Gibson PG, Simpson JL, Scott HA, Baines KJ, Fricker M. Airway monocyte modulation relates to tumour necrosis factor dysregulation in neutrophilic asthma. ERJ Open Res 2021; 7:00131-2021. [PMID: 34291112 PMCID: PMC8287135 DOI: 10.1183/23120541.00131-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/03/2021] [Indexed: 11/05/2022] Open
Abstract
Background Dysregulation of tumour necrosis factor-α (TNF-α) signalling is implicated in neutrophilic asthma. TNF-α signalling involves membrane-bound and soluble ligand (TNF-α) and receptors (TNFRs); however, little is known about how these proteins are altered in asthma. We hypothesised that intercompartment-, immune cell- and/or asthma inflammatory phenotype-dependent regulation could relate to TNF dysregulation in neutrophilic asthma. Methods Measurements were made in 45 adults with asthma (36 non-neutrophilic, 9 neutrophilic) and 8 non-asthma controls. Soluble TNF-α, TNF receptor 1 (TNFR1) and TNFR2 were quantified in plasma and sputum supernatant by ELISA, and membrane-bound TNF-α/TNFR1/TNFR2 measured on eosinophils, neutrophils, monocytes, and macrophages in blood and sputum by flow cytometry. Marker expression was compared between inflammatory phenotypes and compartments, and relationship of membrane-bound and soluble TNF markers and immune cell numbers tested by correlation. Results Soluble sputum TNFR1 and TNFR2 were increased in neutrophilic versus non-neutrophilic asthma (p=0.010 and p=0.029). Membrane-bound TNF-α expression was upregulated on sputum versus blood monocytes, while TNFR1 and TNFR2 levels were reduced on airway versus blood monocytes and neutrophils. Soluble TNFR1 and TNFR2 in sputum significantly correlated with the number of airway monocytes (p=0.016, r=0.358 and p=0.029, r=0.327). Conclusion Our results imply that increased sputum soluble TNF receptor levels observed in neutrophilic asthma relate to the increased recruitment of monocytes and neutrophils into the airways and their subsequent receptor shedding. Monocytes also increase TNF-α ligand expression in the airways. These results suggest an important contribution of airway monocytes to the altered inflammatory milieu in neutrophilic asthma.
Collapse
Affiliation(s)
- Natalie M Niessen
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia.,National Health and Medical Research Council Centre of Excellence in Severe Asthma, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Peter G Gibson
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia.,National Health and Medical Research Council Centre of Excellence in Severe Asthma, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,Dept of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, NSW, Australia
| | - Jodie L Simpson
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Hayley A Scott
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Katherine J Baines
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Michael Fricker
- Priority Research Centre for Healthy Lungs, The University of Newcastle, Newcastle, NSW, Australia.,National Health and Medical Research Council Centre of Excellence in Severe Asthma, Newcastle, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| |
Collapse
|
19
|
Proboszcz M, Goryca K, Nejman-Gryz P, Przybyłowski T, Górska K, Krenke R, Paplińska-Goryca M. Phenotypic Variations of Mild-to-Moderate Obstructive Pulmonary Diseases According to Airway Inflammation and Clinical Features. J Inflamm Res 2021; 14:2793-2806. [PMID: 34234506 PMCID: PMC8254142 DOI: 10.2147/jir.s309844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/20/2021] [Indexed: 11/24/2022] Open
Abstract
Purpose Asthma and chronic obstructive pulmonary disease (COPD) are complex and heterogeneous inflammatory diseases. We sought to investigate distinct disease profiles based on clinical, cellular and molecular data from patients with mild-to-moderate obstructive pulmonary diseases. Patients and Methods Patients with mild-to-moderate allergic asthma (n=30) and COPD (n=30) were prospectively recruited. Clinical characteristics and induced sputum were collected. In total, 35 mediators were assessed in induced sputum. Logistic regression analysis was conducted to identify the optimal factors that were able to discriminate between asthma and COPD. Further, the data were explored using hierarchical clustering in order to discover and compare clusters of combined samples of asthma and COPD patients. Clinical parameters, cellular composition, and sputum mediators of asthma and COPD were assessed between and within obtained clusters. Results We found five clinical and biochemical variables, namely IL-6, IL-8, CCL4, FEV1/VC ratio pre-bronchodilator (%), and sputum neutrophils (%) that differentiated asthma and COPD and were suitable for discrimination purposes. A combination of those variables yielded high sensitivity and specificity in the differentiation between asthma and COPD, although only FEV1/VC ratio pre-bronchodilator (%) proven significant in the combined model. In cluster analysis, two main clusters were identified: cluster 1, asthma predominant with evidence of eosinophilic airway inflammation and low level of Th1 and Th2 cytokines; and cluster 2, COPD predominant with elevated levels of Th1 and Th2 mediators. Conclusion The inflammatory profile of sputum samples from patients with stable mild-to-moderate asthma and COPD is not disease specific, varies within the disease and might be similar between these diseases. This study highlights the need for phenotyping the mild-to-moderate stages according to their clinical and molecular features.
Collapse
Affiliation(s)
- Małgorzata Proboszcz
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Goryca
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Patrycja Nejman-Gryz
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Tadeusz Przybyłowski
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Górska
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Rafał Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Paplińska-Goryca
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
20
|
Chen L, Collado K, Rastogi D. Contribution of systemic and airway immune responses to pediatric obesity-related asthma. Paediatr Respir Rev 2021; 37:3-9. [PMID: 32253127 PMCID: PMC8477371 DOI: 10.1016/j.prrv.2020.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 02/26/2020] [Indexed: 12/23/2022]
Abstract
Childhood obesity contributes to many diseases, including asthma. Although the precise mechanism by which obesity causes asthma is not known, there is literature to suggest that innate and adaptive systemic and airway immune responses in obese children with asthma differ from those in normal-weight children with asthma. Both non-allergic or non-T2 phenotype with systemic T helper (Th)1 polarization and allergic Th cell responses have been reported in childhood obesity-related asthma. There is preliminary evidence to suggest that genetic and epigenetic mechanisms contribute to these immune responses. Initial investigations into the biology of non-T2 immune responses have identified upregulation of genes in the CDC42 pathway. CDC42 is a RhoGTPase that plays a key role in Th cell physiology, including preferential naïve Th cell differentiation to Th1 cells, as well as cytokine production and exocytosis. These novel pathways are promising findings to direct targeted therapy development for obesity-related asthma to address the disease burden.
Collapse
Affiliation(s)
- Laura Chen
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
| | - Kayla Collado
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
| | - Deepa Rastogi
- Department of Pediatrics, George Washington University, School of Medicine and Health Sciences, United States.
| |
Collapse
|
21
|
Crisford H, Sapey E, Rogers GB, Taylor S, Nagakumar P, Lokwani R, Simpson JL. Neutrophils in asthma: the good, the bad and the bacteria. Thorax 2021; 76:thoraxjnl-2020-215986. [PMID: 33632765 PMCID: PMC8311087 DOI: 10.1136/thoraxjnl-2020-215986] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/30/2022]
Abstract
Airway inflammation plays a key role in asthma pathogenesis but is heterogeneous in nature. There has been significant scientific discovery with regard to type 2-driven, eosinophil-dominated asthma, with effective therapies ranging from inhaled corticosteroids to novel biologics. However, studies suggest that approximately 1 in 5 adults with asthma have an increased proportion of neutrophils in their airways. These patients tend to be older, have potentially pathogenic airway bacteria and do not respond well to classical therapies. Currently, there are no specific therapeutic options for these patients, such as neutrophil-targeting biologics.Neutrophils comprise 70% of the total circulatory white cells and play a critical defence role during inflammatory and infective challenges. This makes them a problematic target for therapeutics. Furthermore, neutrophil functions change with age, with reduced microbial killing, increased reactive oxygen species release and reduced production of extracellular traps with advancing age. Therefore, different therapeutic strategies may be required for different age groups of patients.The pathogenesis of neutrophil-dominated airway inflammation in adults with asthma may reflect a counterproductive response to the defective neutrophil microbial killing seen with age, resulting in bystander damage to host airway cells and subsequent mucus hypersecretion and airway remodelling. However, in children with asthma, neutrophils are less associated with adverse features of disease, and it is possible that in children, neutrophils are less pathogenic.In this review, we explore the mechanisms of neutrophil recruitment, changes in cellular function across the life course and the implications this may have for asthma management now and in the future. We also describe the prevalence of neutrophilic asthma globally, with a focus on First Nations people of Australia, New Zealand and North America.
Collapse
Affiliation(s)
- Helena Crisford
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Elizabeth Sapey
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Geraint B Rogers
- SAHMRI Microbiome Research Laboratory, Flinders University College of Medicine and Public Health, Adelaide, South Australia, Australia
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Steven Taylor
- SAHMRI Microbiome Research Laboratory, Flinders University College of Medicine and Public Health, Adelaide, South Australia, Australia
- Microbiome and Host Health, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Prasad Nagakumar
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Respiratory Medicine, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Ravi Lokwani
- Faculty of Health and Medicine, Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Jodie L Simpson
- Faculty of Health and Medicine, Priority Research Centre for Healthy Lungs, The University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
22
|
Chen M, Chen Z, Huang D, Sun C, Xie J, Chen T, Zhao X, Huang Y, Li D, Wu B, Wu D. Myricetin inhibits TNF-α-induced inflammation in A549 cells via the SIRT1/NF-κB pathway. Pulm Pharmacol Ther 2021; 65:102000. [PMID: 33601000 DOI: 10.1016/j.pupt.2021.102000] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although myricetin exerts anti-inflammation, anti-cancer, and anti-oxidation effects, the relationship between myricetin and tumor necrosis factor alpha (TNF-α) -stimulated inflammation in A549 cells remains unclear. This study sought to assess whether myricetin has an anti-inflammatory effect on TNF-α-induced A549 cells and clarify the potential mechanisms. METHODS Cell viability was examined with a Cell Counting Kit-8, and cytokine levels were determined by enzyme-linked immunosorbent assay and reverse transcription-quantitative PCR. Potential mechanisms were further explored by western blotting, immunofluorescence, and SIRT1 activity assays. RESULTS In A549 cells, TNF-α stimulation upregulated the production of interleukin-6 (IL-6) and interleukin-8 (IL-8). Moreover, TNF-α activated the nuclear factor-κB (NF-κB) pathway, as confirmed by IκB-α degradation, and phosphorylation and nuclear migration of NF-κB p65. However, pretreatment with myricetin significantly attenuated the observed responses triggered by TNF-α. Mechanistically, myricetin strongly increased the deacetylase activity through decreasing phosphorylation, but not expression, of sirtuin-1 (SIRT1) in TNF-α-stimulated A549 cells. Myricetin-mediated SIRT1 activation was further evidenced by the decreased acetylation of NF-κB p65 and p53. Subsequently, all of these concurrent changes were reversed by the addition of salermide (SIRT1 inhibitor), illustrating the critical role of SIRT1 in mediation of anti-inflammatory processes by myricetin. CONCLUSIONS Myricetin, an enhancer of SIRT1, inhibited TNF-α-induced NF-κB activation in A549 cells, therefore, reducing their inflammatory response. Our findings provide insight for novel therapies for inflammation-related diseases, such as asthma and chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Min Chen
- Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Ziyu Chen
- Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Dan Huang
- Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Chaoqun Sun
- Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jinye Xie
- Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Tingting Chen
- Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xuanna Zhao
- Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yujie Huang
- Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Dongming Li
- Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Bin Wu
- Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Dong Wu
- Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
23
|
Wilson SJ, Ward JA, Pickett HM, Baldi S, Sousa AR, Sterk PJ, Chung KF, Djukanovic R, Dahlen B, Billing B, Shaw D, Krug N, Sandstrӧm T, Brightling C, Howarth PH. Airway Elastin is increased in severe asthma and relates to proximal wall area: histological and computed tomography findings from the U-BIOPRED severe asthma study. Clin Exp Allergy 2021; 51:296-304. [PMID: 33342006 DOI: 10.1111/cea.13813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Airway remodelling, which may include goblet cell hyperplasia / hypertrophy, changes in epithelial integrity, accumulation of extracellular matrix components, smooth muscle hypertrophy and thickening of the lamina reticularis, is a feature of severe asthma and contributes to the clinical phenotype. OBJECTIVE Within the U-BIOPRED severe asthma study, we have assessed histological elements of airway remodelling and their relationship to computed tomography (CT) measures of proximal airway dimensions. METHODS Bronchial biopsies were collected from two severe asthma groups, one non-smoker (SAn, n = 28) and one current/ex-smoker (SAs/ex, n = 13), and a mild-moderate asthma group (MMA, n = 28) classified and treated according to GINA guidelines, plus a healthy control group (HC, n = 33). Movat's pentachrome technique was used to identify mucin, elastin and total collagen in these biopsies. The number of goblet cells (mucin+) was counted as a percentage of the total number of epithelial cells and the percentage mucin epithelial area measured. The percentage area of elastic fibres and total collagen within the submucosa was also measured, and the morphology of the elastic fibres classified. Participants in the asthma groups also had a CT scan to assess large airway morphometry. RESULTS The submucosal tissue elastin percentage was higher in both severe asthma groups (16.1% SAn, 18.9% SAs/ex) compared with the HC (9.7%) but did not differ between asthma groups. There was a positive relationship between elastin and airway wall area measured by CT (n = 18-20, rho=0.544, p = 0.024), which also related to an increase in elastic fibres with a thickened lamellar morphological appearance. Mucin epithelial area and total collagen were not different between the four groups. Due to small numbers of suitable CT scans, it was not feasible to compare airway morphometry between the asthma groups. CONCLUSION These findings identify a link between extent of elastin deposition and airway wall thickening in severe asthma.
Collapse
Affiliation(s)
- Susan J Wilson
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jonathan A Ward
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Helen M Pickett
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Simonetta Baldi
- Department of Respiratory Science, University of Leicester, Leicester, UK
| | - Ana R Sousa
- Respiratory Therapy Unit, GlaxoSmithKline, Stevenage, UK
| | - Peter J Sterk
- Department of Respiratory Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Kian Fan Chung
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | - Barbro Dahlen
- Department of Respiratory Medicine and Allergy, The Centre for Allergy Research, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Bo Billing
- Department of Respiratory Medicine and Allergy, The Centre for Allergy Research, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Dominick Shaw
- Nottingham Respiratory Research, University of Nottingham, Nottingham, UK
| | - Norbert Krug
- Fraunhofer Institute of Toxicology & Experimental Medicine, Hannover, Germany
| | - Thomas Sandstrӧm
- Department of Respiratory Medicine, Umea University, Stockholm, Sweden
| | | | - Peter H Howarth
- Faculty of Medicine, University of Southampton, Southampton, UK
| | | |
Collapse
|
24
|
Darling NJ, Arthur JSC, Cohen P. Salt-inducible kinases are required for the IL-33-dependent secretion of cytokines and chemokines in mast cells. J Biol Chem 2021; 296:100428. [PMID: 33600797 PMCID: PMC7988334 DOI: 10.1016/j.jbc.2021.100428] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/28/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
Cytokines and chemokines are important regulators of airway hyper-responsiveness, immune cell infiltration, and inflammation and are produced when mast cells are stimulated with interleukin-33 (IL-33). Here, we establish that the salt-inducible kinases (SIKs) are required for the IL-33-stimulated transcription of il13, gm-csf and tnf and hence the production of these cytokines. The IL-33-stimulated secretion of IL-13, granulocyte-macrophage colony stimulating factor, and tumor necrosis factor was strongly reduced in fetal liver-derived mast cells from mice expressing a kinase-inactive mutant of SIK3 and abolished in cells expressing kinase-inactive mutants of SIK2 and SIK3. The IL-33-dependent secretion of these cytokines and several chemokines was also abolished in SIK2/3 double knock-out bone marrow-derived mast cells (BMMC), reduced in SIK3 KO cells but little affected in BMMC expressing kinase-inactive mutants of SIK1 and SIK2 or lacking SIK2 expression. In SIK2 knock-out BMMC, the expression of SIK3 was greatly increased. Our studies identify essential roles for SIK2 and SIK3 in producing inflammatory mediators that trigger airway inflammation. The effects of SIKs were independent of IκB kinase β, IκB kinase β-mediated NF-κB-dependent gene transcription, and activation of the mitogen-activated protein kinase family members p38α and c-jun N-terminal kinases. Our results suggest that dual inhibitors of SIK2 and SIK3 may have therapeutic potential for the treatment of mast cell-driven diseases.
Collapse
Affiliation(s)
- Nicola J Darling
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Angus, UK
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, University of Dundee, Dundee, Angus, UK
| | - Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Angus, UK.
| |
Collapse
|
25
|
Checa J, Aran JM. Airway Redox Homeostasis and Inflammation Gone Awry: From Molecular Pathogenesis to Emerging Therapeutics in Respiratory Pathology. Int J Mol Sci 2020; 21:E9317. [PMID: 33297418 PMCID: PMC7731288 DOI: 10.3390/ijms21239317] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/05/2020] [Indexed: 02/06/2023] Open
Abstract
As aerobic organisms, we are continuously and throughout our lifetime subjected to an oxidizing atmosphere and, most often, to environmental threats. The lung is the internal organ most highly exposed to this milieu. Therefore, it has evolved to confront both oxidative stress induced by reactive oxygen species (ROS) and a variety of pollutants, pathogens, and allergens that promote inflammation and can harm the airways to different degrees. Indeed, an excess of ROS, generated intrinsically or from external sources, can imprint direct damage to key structural cell components (nucleic acids, sugars, lipids, and proteins) and indirectly perturb ROS-mediated signaling in lung epithelia, impairing its homeostasis. These early events complemented with efficient recognition of pathogen- or damage-associated recognition patterns by the airway resident cells alert the immune system, which mounts an inflammatory response to remove the hazards, including collateral dead cells and cellular debris, in an attempt to return to homeostatic conditions. Thus, any major or chronic dysregulation of the redox balance, the air-liquid interface, or defects in epithelial proteins impairing mucociliary clearance or other defense systems may lead to airway damage. Here, we review our understanding of the key role of oxidative stress and inflammation in respiratory pathology, and extensively report current and future trends in antioxidant and anti-inflammatory treatments focusing on the following major acute and chronic lung diseases: acute lung injury/respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, pulmonary fibrosis, and cystic fibrosis.
Collapse
Affiliation(s)
| | - Josep M. Aran
- Immune-Inflammatory Processes and Gene Therapeutics Group, IDIBELL, L’Hospitalet de Llobregat, 08908 Barcelona, Spain;
| |
Collapse
|
26
|
Abstract
Asthma patients are classified by phenotype and endotype. Although symptoms in most asthma patients are well controlled by glucocorticoid treatment, certain populations of severe eosinophilic asthma patients in T-helper 2 (Th2)/type 2 asthma and neutrophilic asthma patients in non-Th2/type 2 asthma show insensitivity to inhaled or oral glucocorticoid therapy. In some cases of severe eosinophilic asthma, eosinophils remain in the lungs despite glucocorticoid therapy. It was reported that interleukin (IL)-33-induced activation of type 2 innate lymphoid cells (ILC2) was resistant to glucocorticoid treatment in certain allergic conditions. Regarding neutrophilic airway inflammation in steroid-resistant asthma, IL-17 derived from Th17 cells and IL-8 and tumor necrosis factor-α derived mainly from macrophages were reported to be involved in the pathogenesis. Recently, "NETosis," a specific cell death of neutrophils, has been reported to be involved in asthmatic airway inflammation. When NETosis is induced in asthma, aggravation of inflammation and delay of tissue repair could occur, suggesting that NETosis may be associated with the development of steroid-resistant asthma. This article reviews the pathogenesis of steroid-resistant asthma by focusing mainly on neutrophils.
Collapse
Affiliation(s)
- Takeshi Nabe
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| |
Collapse
|
27
|
De Volder J, Vereecke L, Joos G, Maes T. Targeting neutrophils in asthma: A therapeutic opportunity? Biochem Pharmacol 2020; 182:114292. [PMID: 33080186 DOI: 10.1016/j.bcp.2020.114292] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023]
Abstract
Suppression of airway inflammation with inhaled corticosteroids has been the key therapeutic approach for asthma for many years. Identification of inflammatory phenotypes in asthma has moreover led to important breakthroughs, e.g. with specific targeting of the IL-5 pathway as add-on treatment in difficult-to-treat eosinophilic asthma. However, the impact of interfering with the neutrophilic component in asthma is less documented and understood. This review provides an overview of established and recent insights with regard to the role of neutrophils in asthma, focusing on research in humans. We will describe the main drivers of neutrophilic responses in asthma, the heterogeneity in neutrophils and how they could contribute to asthma pathogenesis. Moreover we will describe findings from clinical trials, in which neutrophilic inflammation was targeted. It is clear that neutrophils are important actors in asthma development and play a role in exacerbations. However, more research is required to fully understand how modulation of neutrophil activity could lead to a significant benefit in asthma patients with airway neutrophilia.
Collapse
Affiliation(s)
- Joyceline De Volder
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Lars Vereecke
- VIB Inflammation Research Center, Ghent, Belgium; Ghent Gut Inflammation Group (GGIG), Ghent University, Belgium; Department of Rheumatology, Ghent University Hospital, Belgium
| | - Guy Joos
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Tania Maes
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
28
|
Abstract
This article will discuss in detail the pathophysiology of asthma from the point of view of lung mechanics. In particular, we will explain how asthma is more than just airflow limitation resulting from airway narrowing but in fact involves multiple consequences of airway narrowing, including ventilation heterogeneity, airway closure, and airway hyperresponsiveness. In addition, the relationship between the airway and surrounding lung parenchyma is thought to be critically important in asthma, especially as related to the response to deep inspiration. Furthermore, dynamic changes in lung mechanics over time may yield important information about asthma stability, as well as potentially provide a window into future disease control. All of these features of mechanical properties of the lung in asthma will be explained by providing evidence from multiple investigative methods, including not only traditional pulmonary function testing but also more sophisticated techniques such as forced oscillation, multiple breath nitrogen washout, and different imaging modalities. Throughout the article, we will link the lung mechanical features of asthma to clinical manifestations of asthma symptoms, severity, and control. © 2020 American Physiological Society. Compr Physiol 10:975-1007, 2020.
Collapse
Affiliation(s)
- David A Kaminsky
- University of Vermont Larner College of Medicine, Burlington, Vermont, USA
| | - David G Chapman
- University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW This review summarizes recent progress in our understanding how environmental adjuvants promote the development of asthma. RECENT FINDINGS Asthma is a heterogeneous set of lung pathologies with overlapping features. Human studies and animal models suggest that exposure to different environmental adjuvants activate distinct immune pathways, which in turn give rise to distinct forms, or endotypes, of allergic asthma. Depending on their concentrations, inhaled TLR ligands can activate either type 2 inflammation, or Th17 differentiation, along with regulatory responses that function to attenuate inflammation. By contrast, a different category of environmental adjuvants, proteases, activate distinct immune pathways and prime predominantly type 2 immune responses. Asthma is not a single disease, but rather a group of pathologies with overlapping features. Different endotypes of asthma likely arise from perturbations of distinct immunologic pathways during allergic sensitization.
Collapse
Affiliation(s)
- Donald N Cook
- Immunogenetics Group, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Dr., Research Triangle Park, Durham, NC, 27709, USA.
| |
Collapse
|
30
|
Rehman T, Thornell IM, Pezzulo AA, Thurman AL, Romano Ibarra GS, Karp PH, Tan P, Duffey ME, Welsh MJ. TNFα and IL-17 alkalinize airway surface liquid through CFTR and pendrin. Am J Physiol Cell Physiol 2020; 319:C331-C344. [PMID: 32432926 PMCID: PMC7500220 DOI: 10.1152/ajpcell.00112.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The pH of airway surface liquid (ASL) is a key factor that determines respiratory host defense; ASL acidification impairs and alkalinization enhances key defense mechanisms. Under healthy conditions, airway epithelia secrete base ([Formula: see text]) and acid (H+) to control ASL pH (pHASL). Neutrophil-predominant inflammation is a hallmark of several airway diseases, and TNFα and IL-17 are key drivers. However, how these cytokines perturb pHASL regulation is uncertain. In primary cultures of differentiated human airway epithelia, TNFα decreased and IL-17 did not change pHASL. However, the combination (TNFα+IL-17) markedly increased pHASL by increasing [Formula: see text] secretion. TNFα+IL-17 increased expression and function of two apical [Formula: see text] transporters, CFTR anion channels and pendrin Cl-/[Formula: see text] exchangers. Both were required for maximal alkalinization. TNFα+IL-17 induced pendrin expression primarily in secretory cells where it was coexpressed with CFTR. Interestingly, significant pendrin expression was not detected in CFTR-rich ionocytes. These results indicate that TNFα+IL-17 stimulate [Formula: see text] secretion via CFTR and pendrin to alkalinize ASL, which may represent an important defense mechanism in inflamed airways.
Collapse
Affiliation(s)
- Tayyab Rehman
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Ian M Thornell
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Alejandro A Pezzulo
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Andrew L Thurman
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Guillermo S Romano Ibarra
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Philip H Karp
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Ping Tan
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Michael E Duffey
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Michael J Welsh
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Howard Hughes Medical Institute, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa.,Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
31
|
Bronchial Asthma: Current Trends in Treatment. ACTA MEDICA MARTINIANA 2020. [DOI: 10.2478/acm-2020-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Asthma is a heterogenous disease which pathophysiology is still poorly understood. Asthma was traditionally divided into allergic (extrinsic) and non-allergic (intrinsic) types, while patients with allergic type responded better to corticosteroids. Since 2013 the definition of asthma has changed. Recently, better insight into clinical consi -derations and underlying inflammatory phenotypes has been gained. Defining these phenotypes has already led to more specific clinical trials and, therefore, to more personalized and successfully targeted therapy. For future, much more effort is put in identifying new phenotype-specific biomarkers which could be helpful in stratification of heterogeneous patients with asthma.
Collapse
|
32
|
Rastogi D. Pediatric obesity-related asthma: A prototype of pediatric severe non-T2 asthma. Pediatr Pulmonol 2020; 55:809-817. [PMID: 31912992 PMCID: PMC7694442 DOI: 10.1002/ppul.24600] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/28/2019] [Indexed: 12/31/2022]
Abstract
Childhood obesity contributes to many diseases, including asthma. There is literature to suggest that asthma developing as a consequence of obesity has a nonallergic or non-T2 phenotype. In this review, obesity-related asthma is utilized as a prototype of non-T2 asthma in children to discuss several nonallergic mechanisms that underlie childhood asthma. Obesity-related asthma is associated with systemic T helper (Th)1 polarization occurring with monocyte activation. These immune responses are mediated by insulin resistance and dyslipidemia, metabolic abnormalities associated with obesity, that are themselves associated with pulmonary function deficits in obese asthmatics. As in other multifactorial diseases, there is both a genetic and an environmental contribution to pediatric obesity-related asthma. In addition to genetic susceptibility, differential DNA methylation is associated with non-T2 immune responses in pediatric obesity-related asthma. Initial investigations into the biology of non-T2 immune responses have identified the upregulation of genes in the CDC42 pathway. CDC42 is a RhoGTPase that plays a key role in Th cell physiology, including preferential naïve Th cell differentiation to Th1 cells, and cytokine production and exocytosis. Although these novel pathways are promising findings to direct targeted therapy development for obesity-related asthma to address the disease burden, there is evidence to suggest that dietary interventions, including diet modification, rather than caloric restriction alone, decrease disease burden. Adoption of a diet rich in micronutrients, including carotenoids and 25-OH cholecalciferol, a vitamin D metabolite, may be beneficial since these are positively correlated with pulmonary function indices, while being protective against metabolic abnormalities associated with the obese asthma phenotype.
Collapse
Affiliation(s)
- Deepa Rastogi
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
33
|
Ouyang S, Liu C, Xiao J, Chen X, Lui AC, Li X. Targeting IL-17A/glucocorticoid synergy to CSF3 expression in neutrophilic airway diseases. JCI Insight 2020; 5:132836. [PMID: 32051346 DOI: 10.1172/jci.insight.132836] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/08/2020] [Indexed: 12/15/2022] Open
Abstract
IL-17A plays a critical role in the pathogenesis of steroid-resistant neutrophilic airway inflammation, which is a hallmark of severe asthma and chronic obstructive pulmonary disease (COPD). Through RNA sequencing analysis of transcriptomes of human airway smooth muscle cells treated with IL-17A, dexamethasone (DEX, a synthetic glucocorticoid drug), alone or in combination, we identified a group of genes that are synergistically induced by IL-17A and DEX, including the neutrophil-promoting cytokine CSF3. In type-17 (Th17/IL-17Ahi) preclinical models of neutrophilic severe asthma (acute and chronic) and COPD, although DEX treatment was able to reduce the expression of neutrophil-mobilizing CXCL1 and CXCL2 in lung tissue, CSF3 expression was upregulated by DEX treatment. We found that DEX treatment alone failed to alleviate neutrophilic airway inflammation and pathology, and even exacerbated the disease phenotype when CSF3 was highly induced. Disruption of the IL-17A/DEX synergy by IL-17A inhibition with anti-IL-17A mAb or cyanidin-3-glucoside (C3G, a small-molecule IL-17A blocker) or depletion of CSF3 effectively rendered DEX sensitivity in type-17 preclinical models of neutrophilic airway diseases. Our study elucidates what we believe is a novel mechanism of steroid resistance in type-17 neutrophilic airway inflammation and offers an effective steroid-sparing therapeutic strategy (combined low-dose DEX and C3G) for treating neutrophilic airway diseases.
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Recent advances in both murine models and clinical research of neutrophilic asthma are improving our understanding on the etiology and pathophysiology of this enigmatic endotype of asthma. We here aim at providing an overview of our current and latest insights on the pathophysiology and treatment of neutrophilic asthma. RECENT FINDINGS Activation of the NLRP3 inflammasome pathway with increased IL-1β has been demonstrated in various studies involving patients with asthma. It has been suggested that type 3 innate lymphoid cells are implicated in the inflammatory cascade leading to neutrophilic inflammation. The role of neutrophil extracellular traps is only at the start of being understood and might be an attractive novel therapeutic target. A diverse panel of nonallergic stimuli, such as cigarette smoke, intensive exercise, cold air or saturated fatty acids, have been linked with neutrophilic airway inflammation. Azithromycin treatment could reduce asthma exacerbations and quality of life in patients with persistent asthma. SUMMARY Research of the last few years has accelerated our insights in mechanisms underlying neutrophilic asthma. This is in stark contrast with the lack of efficacy of different therapies targeting neutrophil chemotaxis and/or signalling cascade, such as IL-17A or CXCR2. Macrolide therapy might be a useful add-on therapy for patients with persistent asthma.
Collapse
|
35
|
Hurrell BP, Galle-Treger L, Jahani PS, Howard E, Helou DG, Banie H, Soroosh P, Akbari O. TNFR2 Signaling Enhances ILC2 Survival, Function, and Induction of Airway Hyperreactivity. Cell Rep 2019; 29:4509-4524.e5. [PMID: 31875557 PMCID: PMC6940205 DOI: 10.1016/j.celrep.2019.11.102] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/07/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) can initiate pathologic inflammation in allergic asthma by secreting copious amounts of type 2 cytokines, promoting lung eosinophilia and airway hyperreactivity (AHR), a cardinal feature of asthma. We discovered that the TNF/TNFR2 axis is a central immune checkpoint in murine and human ILC2s. ILC2s selectively express TNFR2, and blocking the TNF/TNFR2 axis inhibits survival and cytokine production and reduces ILC2-dependent AHR. The mechanism of action of TNFR2 in ILC2s is through the non-canonical NF-κB pathway as an NF-κB-inducing kinase (NIK) inhibitor blocks the costimulatory effect of TNF-α. Similarly, human ILC2s selectively express TNFR2, and using hILC2s, we show that TNFR2 engagement promotes AHR through a NIK-dependent pathway in alymphoid murine recipients. These findings highlight the role of the TNF/TNFR2 axis in pulmonary ILC2s, suggesting that targeting TNFR2 or relevant signaling is a different strategy for treating patients with ILC2-dependent asthma.
Collapse
Affiliation(s)
- Benjamin P Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lauriane Galle-Treger
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pedram Shafiei Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Emily Howard
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Doumet Georges Helou
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Homayon Banie
- Janssen Research and Development, San Diego, CA, USA
| | | | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
36
|
Aberumand B, Ellis AK. Asthma and the Biologics Revolution, Part 2: Failures and the Future Potential. CURRENT TREATMENT OPTIONS IN ALLERGY 2019. [DOI: 10.1007/s40521-019-00233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Hadjigol S, Netto KG, Maltby S, Tay HL, Nguyen TH, Hansbro NG, Eyers F, Hansbro PM, Yang M, Foster PS. Lipopolysaccharide induces steroid-resistant exacerbations in a mouse model of allergic airway disease collectively through IL-13 and pulmonary macrophage activation. Clin Exp Allergy 2019; 50:82-94. [PMID: 31579973 DOI: 10.1111/cea.13505] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/26/2019] [Accepted: 09/15/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Acute exacerbations of asthma represent a major burden of disease and are often caused by respiratory infections. Viral infections are recognized as significant triggers of exacerbations; however, less is understood about the how microbial bioproducts such as the endotoxin (lipopolysaccharide (LPS)) trigger episodes. Indeed, increased levels of LPS have been linked to asthma onset, severity and steroid resistance. OBJECTIVE The goal of this study was to identify mechanisms underlying bacterial-induced exacerbations by employing LPS as a surrogate for infection. METHODS We developed a mouse model of LPS-induced exacerbation on the background of pre-existing type-2 allergic airway disease (AAD). RESULTS LPS-induced exacerbation was characterized by steroid-resistant airway hyperresponsiveness (AHR) and an exaggerated inflammatory response distinguished by increased numbers of infiltrating neutrophils/macrophages and elevated production of lung inflammatory cytokines, including TNFα, IFNγ, IL-27 and MCP-1. Expression of the type-2 associated inflammatory factors such as IL-5 and IL-13 were elevated in AAD but not altered by LPS exposure. Furthermore, AHR and airway inflammation were no longer suppressed by corticosteroid (dexamethasone) treatment after LPS exposure. Depletion of pulmonary macrophages by administration of 2-chloroadenosine into the lungs suppressed AHR and reduced IL-13, TNFα and IFNγ expression. Blocking IL-13 function, through either IL-13-deficiency or administration of specific blocking antibodies, also suppressed AHR and airway inflammation. CONCLUSIONS & CLINICAL RELEVANCE We present evidence that IL-13 and innate immune pathways (in particular pulmonary macrophages) contribute to LPS-induced exacerbation of pre-existing AAD and provide insight into the complex molecular processes potentially underlying microbial-induced exacerbations.
Collapse
Affiliation(s)
- Sara Hadjigol
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - Keilah G Netto
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - Steven Maltby
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - Hock L Tay
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - Thi H Nguyen
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - Fiona Eyers
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW, Australia.,Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ming Yang
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Department of Microbiology and Immunology, School of Biomedical Sciences & Pharmacy, Faculty of Health and Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
38
|
Theofani E, Semitekolou M, Morianos I, Samitas K, Xanthou G. Targeting NLRP3 Inflammasome Activation in Severe Asthma. J Clin Med 2019; 8:jcm8101615. [PMID: 31590215 PMCID: PMC6833007 DOI: 10.3390/jcm8101615] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022] Open
Abstract
Severe asthma (SA) is a chronic lung disease characterized by recurring symptoms of reversible airflow obstruction, airway hyper-responsiveness (AHR), and inflammation that is resistant to currently employed treatments. The nucleotide-binding oligomerization domain-like Receptor Family Pyrin Domain Containing 3 (NLRP3) inflammasome is an intracellular sensor that detects microbial motifs and endogenous danger signals and represents a key component of innate immune responses in the airways. Assembly of the NLRP3 inflammasome leads to caspase 1-dependent release of the pro-inflammatory cytokines IL-1β and IL-18 as well as pyroptosis. Accumulating evidence proposes that NLRP3 activation is critically involved in asthma pathogenesis. In fact, although NLRP3 facilitates the clearance of pathogens in the airways, persistent NLRP3 activation by inhaled irritants and/or innocuous environmental allergens can lead to overt pulmonary inflammation and exacerbation of asthma manifestations. Notably, administration of NLRP3 inhibitors in asthma models restrains AHR and pulmonary inflammation. Here, we provide an overview of the pathophysiology of SA, present molecular mechanisms underlying aberrant inflammatory responses in the airways, summarize recent studies pertinent to the biology and functions of NLRP3, and discuss the role of NLRP3 in the pathogenesis of asthma. Finally, we contemplate the potential of targeting NLRP3 as a novel therapeutic approach for the management of SA.
Collapse
Affiliation(s)
- Efthymia Theofani
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Maria Semitekolou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Ioannis Morianos
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Konstantinos Samitas
- 7th Respiratory Clinic and Asthma Center, 'Sotiria' Athens Chest Hospital, 11527 Athens, Greece
| | - Georgina Xanthou
- Cellular Immunology Laboratory, Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece.
| |
Collapse
|
39
|
Diamant Z, Vijverberg S, Alving K, Bakirtas A, Bjermer L, Custovic A, Dahlen S, Gaga M, Gerth van Wijk R, Del Giacco S, Hamelmann E, Heaney LG, Heffler E, Kalayci Ö, Kostikas K, Lutter R, Olin A, Sergejeva S, Simpson A, Sterk PJ, Tufvesson E, Agache I, Seys SF. Toward clinically applicable biomarkers for asthma: An EAACI position paper. Allergy 2019; 74:1835-1851. [PMID: 30953574 DOI: 10.1111/all.13806] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 12/13/2022]
Abstract
Inflammation, structural, and functional abnormalities within the airways are key features of asthma. Although these processes are well documented, their expression varies across the heterogeneous spectrum of asthma. Type 2 inflammatory responses are characterized by increased levels of eosinophils, FeNO, and type 2 cytokines in blood and/or airways. Presently, type 2 asthma is the best-defined endotype, typically found in patients with allergic asthma, but surprisingly also in nonallergic patients with (severe) asthma. The etiology of asthma with non-type 2 inflammation is less clear. During the past decade, targeted therapies, including biologicals and small molecules, have been increasingly integrated into treatment strategies of severe asthma. These treatments block specific inflammatory pathways or single mediators. Single or composite biomarkers help to identify patients who will benefit from these treatments. So far, only a few inflammatory biomarkers have been validated for clinical application. The European Academy of Allergy & Clinical Immunology Task Force on Biomarkers in Asthma was initiated to review different biomarker sampling methods and to investigate clinical applicability of new and existing inflammatory biomarkers (point-of-care) to support diagnosis, targeted treatment, and monitoring of severe asthma. Subsequently, we discuss existing and novel targeted therapies for asthma as well as applicable biomarkers.
Collapse
Affiliation(s)
- Zuzana Diamant
- Department of Respiratory Medicine and Allergology Institute for Clinical Science Skane University Hospital Lund Sweden
- Department of Clinical Pharmacy and Pharmacology UMCG and QPS‐NL Groningen The Netherlands
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
| | - Susanne Vijverberg
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Kjell Alving
- Department of Women's and Children's Health Uppsala University Uppsala Sweden
| | - Arzu Bakirtas
- Department of Pediatrics Division of Pediatric Allergy and Asthma Gazi University School of Medicine Ankara Turkey
| | - Leif Bjermer
- Department of Clinical Pharmacy and Pharmacology UMCG and QPS‐NL Groningen The Netherlands
| | - Adnan Custovic
- Section of Paediatrics Department of Medicine Imperial College London London UK
| | - Sven‐Erik Dahlen
- Experimental Asthma and Allergy Research Institute of Environmental Medicine Karolinska Institutet Stockholm Sweden
| | - Mina Gaga
- 7th Respiratory Medicine Department and Asthma Centre Athens Chest Hospital Athens Greece
| | - Roy Gerth van Wijk
- Section of Allergology Department of Internal Medicine Erasmus Medical Center Rotterdam the Netherlands
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health University of Cagliari Cagliari Italy
| | - Eckard Hamelmann
- Children's Center Protestant Hospital Bethel Bielefeld Germany
- Allergy Center Ruhr University Bochum Bochum Germany
| | - Liam G. Heaney
- Centre for Experimental Medicine, School of MedicineDentistry and Biomedical Sciences, Queen's University Belfast Belfast UK
| | - Enrico Heffler
- Department of Biomedical Sciences Humanitas University Milan Italy
- Personalized Medicine, Asthma and Allergy Humanitas Research Hospital Milan Italy
| | - Ömer Kalayci
- Division of Pediatric Allergy Faculty of Medicine Hacettepe University Ankara Turkey
| | - Konstantinos Kostikas
- Respiratory Medicine Department University of Ioannina Medical School Ioannina Greece
| | - Rene Lutter
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Anna‐Carin Olin
- Section of Occupational and Environmental Medicine Sahlgrenska Academy University of Gothenburg Gothenburg Sweden
| | | | - Angela Simpson
- Division of Infection, Immunity and Respiratory Medicine Faculty of Biology, Medicine and Health Manchester Academic Health Sciences Centre University of Manchester and University Hospital of South Manchester NHS Foundation Trust Manchester UK
| | - Peter J. Sterk
- Department of Respiratory Medicine Amsterdam UMC University of Amsterdam Amsterdam The Netherlands
| | - Ellen Tufvesson
- Department of Clinical Pharmacy and Pharmacology UMCG and QPS‐NL Groningen The Netherlands
| | - Ioana Agache
- Department of Allergy and Clinical Immunology Faculty of Medicine Transylvania University Brasov Brasov Romania
| | - Sven F. Seys
- Allergy and Clinical Immunology Research Group Department of Microbiology, Immunology and Transplantation KU Leuven Leuven Belgium
| |
Collapse
|
40
|
Zainab R, Akram M, Daniyal M, Riaz M. Awareness and Current Therapeutics of Asthma. Dose Response 2019; 17:1559325819870900. [PMID: 31523203 PMCID: PMC6728691 DOI: 10.1177/1559325819870900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/11/2019] [Accepted: 06/18/2019] [Indexed: 01/21/2023] Open
Abstract
Introduction: Asthma is a serious allergic disorder of the respiratory system. It affects
about 300 million people worldwide. This has a great burden on medical
treatment. Several medicines are available, but they have many serious side
effects. Therefore, there is a need to search for a new therapeutic agent
with no or minimal side effects while most economical for patients. In folk
medicine, antiasthmatics herbal medicine has been used and showed potential
therapeutic antiasthmatic efficacy due to the presence of potential
bioactive compounds. Methods: Different databases were searched (ie, Embase, PubMed, CBM, AMED, and
CINAHL). We have reviewed the published data of the last 20 years. We used
MeSH terms “asthma” herbal treatment of asthma, allopathic treatment of
asthma, and treatment strategies for asthma. The traditional medicine was
compared with modern medicine and the same pharmacotherapies alone or with
placebo. The methodology was evaluated by using the GRADE summary of Finding
tables and Cochrane Risk of Bias Tool. Results: There have been some clear-cut indications toward the recognition of further
molecular and cellular mechanisms of asthma. Most of them recommend a
further target for treatment. The novel procedures, biologics, and
pharmaceuticals are evaluated. Both allopathic and herbal treatments of
asthma are effective. Due to none or lesser side effects, herbal medicines
are safer than conventional medicine. Conclusion: The preliminary documentation of the plants discussed in the review show the
presence of several secondary metabolites that are responsible for the
management of asthma and its relevant complications. Further research
studies are needed to identify the bioactive compounds from these plants
that have potential efficacy to cure asthma, and clinically based studies
are needed to search for a complete cure for this disease.
Collapse
Affiliation(s)
- Rida Zainab
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Daniyal
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Muhammad Riaz
- Department of Allied Health Sciences, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
41
|
Zhang H, Ji J, Liu Q, Xu S. MUC1 downregulation promotes TNF-α-induced necroptosis in human bronchial epithelial cells via regulation of the RIPK1/RIPK3 pathway. J Cell Physiol 2019; 234:15080-15088. [PMID: 30666647 PMCID: PMC6590293 DOI: 10.1002/jcp.28148] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 01/02/2019] [Indexed: 01/24/2023]
Abstract
MUC1 (mucin 1), a membrane-tethered mucin glycoprotein, is highly expressed on the surface of respiratory epithelial cells and plays a key role in anti-inflammatory and antiapoptotic responses against infections. However, little is known about the link between MUC1 and necroptosis in asthma. This study aimed to investigate the effects of MUC1 on TNF-α-induced necroptosis in human bronchial epithelial (16HBE) cells and the underlying molecular mechanism. Negative control and MUC1-siRNA cells were treated with TNF-α in the presence or absence of necrostatin-1 (Nec-1). Necroptosis was investigated using flow cytometry analyses, and the protein expression levels of MUC1, receptor-interacting protein kinase-1 (RIPK1), RIPK3, and phosphorylated RIPK1 were detected by western blot analysis. In addition, the interactions between RIPK and MUC1 were analyzed by coimmunoprecipitation. The results demonstrated that TNF-α could induce necroptosis of 16HBE cells, and MUC1 expression was increased upon treatment with TNF-α. The coimmunoprecipitation outcomes showed that MUC1 interacted with RIPK1 but not with RIPK3 in 16HBE cells, and the interaction was augmented by TNF-α. Furthermore, MUC1 downregulation obviously increased the TNF-α-induced necroptosis of 16HBE cells and enhanced the expression of p-RIPK1-Ser166 and RIPK3, whereas these phenomena were partially attenuated by Nec-1. These results may provide a new insight into the mechanism of severe asthma-related necroptosis and lay a foundation for the future development of new anti-inflammatory drugs for asthma.
Collapse
Affiliation(s)
- Huojun Zhang
- Department of Respiratory and Critical Care MedicineKey Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyHubeiChina
| | - Jiani Ji
- Department of Respiratory and Critical Care MedicineKey Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyHubeiChina
| | - Qian Liu
- Department of Respiratory and Critical Care MedicineKey Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyHubeiChina
| | - Shuyun Xu
- Department of Respiratory and Critical Care MedicineKey Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyHubeiChina
| |
Collapse
|
42
|
Targeting cytokines to treat asthma and chronic obstructive pulmonary disease. Nat Rev Immunol 2019; 18:454-466. [PMID: 29626211 DOI: 10.1038/s41577-018-0006-6] [Citation(s) in RCA: 260] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cytokines play a key role in orchestrating and perpetuating the chronic airway inflammation in asthma and chronic obstructive pulmonary disease (COPD), making them attractive targets for treating these disorders. Asthma and some cases of COPD are mainly driven by type 2 immune responses, which comprise increased airway eosinophils, T helper 2 (TH2) cells and group 2 innate lymphoid cells (ILC2s) and the secretion of IL-4, IL-5 and IL-13. Clinical trials of antibodies that block these interleukins have shown reduced acute exacerbations and oral corticosteroid use and improvements in lung function and symptoms in selected patients. More recent approaches that block upstream cytokines, such as thymic stromal lymphopoietin (TSLP), show promise in improving patient outcome. Importantly, the clinical trials in cytokine blockade have highlighted the crucial importance of patient selection for the successful use of these expensive therapies and the need for biomarkers to better predict drug responses.
Collapse
|
43
|
Ghebre MA, Pang PH, Desai D, Hargadon B, Newby C, Woods J, Rapley L, Cohen SE, Herath A, Gaillard EA, May RD, Brightling CE. Severe exacerbations in moderate-to-severe asthmatics are associated with increased pro-inflammatory and type 1 mediators in sputum and serum. BMC Pulm Med 2019; 19:144. [PMID: 31395050 PMCID: PMC6688375 DOI: 10.1186/s12890-019-0906-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/26/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Asthma is a heterogeneous disease and understanding this heterogeneity will enable the realisation of precision medicine. We sought to compare the sputum and serum inflammatory profiles in moderate-to-severe asthma during stable disease and exacerbation events. METHODS We recruited 102 adults and 34 children with asthma. The adults were assessed at baseline, 3, 6, and 12-month follow-up visits. Thirty-seven subjects were assessed at onset of severe exacerbation. Forty sputum mediators and 43 serum mediators were measured. Receiver-operator characteristic (ROC) curves were constructed to identify mediators that distinguish between stable disease and exacerbation events. The strongest discriminating sputum mediators in the adults were validated in the children. RESULTS The mediators that were significantly increased at exacerbations versus stable disease and by ≥1.5-fold were sputum IL-1β, IL-6, IL-6R, IL-18, CXCL9, CXCL10, CCL5, TNFα, TNF-R1, TNF-R2, and CHTR and serum CXCL11. No mediators decreased ≥1.5-fold at exacerbation. The strongest discriminators of an exacerbation in adults (ROC area under the curve [AUC]) were sputum TNF-R2 0.69 (95% CI: 0.60 to 0.78) and IL-6R 0.68 (95% CI: 0.58 to 0.78). Sputum TNF-R2 and IL-6R were also discriminatory in children (ROC AUC 0.85 [95% CI: 0.71 to 0.99] and 0.80 [0.64 to 0.96] respectively). CONCLUSIONS Severe asthma exacerbations are associated with increased pro-inflammatory and Type 1 (T1) immune mediators. In adults, sputum TNF-R2 and IL-6R were the strongest discriminators of an exacerbation, which were verified in children.
Collapse
Affiliation(s)
- Michael A Ghebre
- Institute for Lung Health NIHR Leicester Biomedical Research Centre Department of Respiratory Sciences, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, LE3 9QP, UK
| | - Pee Hwee Pang
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Dhananjay Desai
- Institute for Lung Health NIHR Leicester Biomedical Research Centre Department of Respiratory Sciences, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, LE3 9QP, UK
| | - Beverley Hargadon
- Institute for Lung Health NIHR Leicester Biomedical Research Centre Department of Respiratory Sciences, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, LE3 9QP, UK
| | - Chris Newby
- Institute for Lung Health NIHR Leicester Biomedical Research Centre Department of Respiratory Sciences, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, LE3 9QP, UK
| | - Joanne Woods
- MedImmune Ltd, Milstein Building, Granta Park, Cambridge, CB21 6GH, UK
| | - Laura Rapley
- MedImmune Ltd, Milstein Building, Granta Park, Cambridge, CB21 6GH, UK
| | - Suzanne E Cohen
- MedImmune Ltd, Milstein Building, Granta Park, Cambridge, CB21 6GH, UK
| | - Athula Herath
- MedImmune Ltd, Milstein Building, Granta Park, Cambridge, CB21 6GH, UK
| | - Erol A Gaillard
- Institute for Lung Health NIHR Leicester Biomedical Research Centre Department of Respiratory Sciences, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, LE3 9QP, UK
| | - Richard D May
- MedImmune Ltd, Milstein Building, Granta Park, Cambridge, CB21 6GH, UK.,Present address: Camallergy, Cambridge Biomedical Campus, Cambridge, UK
| | - Chris E Brightling
- Institute for Lung Health NIHR Leicester Biomedical Research Centre Department of Respiratory Sciences, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, LE3 9QP, UK.
| |
Collapse
|
44
|
Lan Y, Wang Y, Liu Y. CCR5 silencing reduces inflammatory response, inhibits viability, and promotes apoptosis of synovial cells in rat models of rheumatoid arthritis through the MAPK signaling pathway. J Cell Physiol 2019; 234:18748-18762. [DOI: 10.1002/jcp.28514] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 02/05/2023]
Affiliation(s)
- You‐Yu Lan
- Department of Rheumatology and Immunology West China Hospital, Sichuan University Chengdu China
- Department of Rheumatology and Immunology, The Affiliated Hospital of Southwest Medical University Luzhou China
| | - You‐Qiang Wang
- Department of Laboratory Medicine The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University Luzhou China
| | - Yi Liu
- Department of Rheumatology and Immunology West China Hospital, Sichuan University Chengdu China
| |
Collapse
|
45
|
Maehara T, Nakamura T, Maeda S, Aritake K, Nakamura M, Murata T. Epithelial cell-derived prostaglandin D 2 inhibits chronic allergic lung inflammation in mice. FASEB J 2019; 33:8202-8210. [PMID: 31018708 DOI: 10.1096/fj.201802817r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The precise role of prostaglandin D (PGD)2 in allergic lung inflammation remains controversial. Here, we aimed to clarify the role of PGD2 in chronic allergic lung inflammation using hematopoietic PGD synthase (H-PGDS)-deficient mice. Repeated intranasal administration of ovalbumin (OVA) resulted in eosinophilic infiltration and mucin production in the lungs of wild type (WT) mice, leading to respiratory dysfunction. H-PGDS deficiency exacerbated these effects, which were accompanied by increased mRNA expression of TNF-α and eosinophil chemoattractants. The bronchial epithelium expressed both H-PGDS and TNF-α in the inflamed WT lung, and H-PGDS deficiency increased TNF-α expression further. In cultured bronchial tissue of WT mice, treatment with LPS elevated mRNA expression of TNF-α and eosinophil chemoattractants. H-PGDS deficiency promoted the expression of these factors, which was inhibited by treatment with PGD2 receptor, D prostanoid (DP) receptor agonist, or PGD2 metabolite 15-deoxy-Δ12,14-PGJ2 (15d-PGJ2). Treatment with TNF-α receptor antibody inhibited eosinophil chemoattractant expression. In vivo, administration of DP agonist or 15d-PGJ2 inhibited OVA-induced allergic lung inflammation. Bronchial epithelial cell-derived PGD2 attenuated lung eosinophilic infiltration with chronic allergic inflammation; these phenomena are at least partly attributed to the inhibition of TNF-α production via DP activation or 15-deoxy-Δ12,14-PGJ2 signaling.-Maehara, T., Nakamura, T., Maeda, S., Aritake, K., Nakamura, M., Murata, T. Epithelial cell-derived prostaglandin D2 inhibits chronic allergic lung inflammation in mice.
Collapse
Affiliation(s)
- Toko Maehara
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Department of Pathobiochemistry, Osaka University of Pharmaceutical Sciences, Osaka, Japan
| | - Tatsuro Nakamura
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shingo Maeda
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kosuke Aritake
- Laboratory of Chemical Pharmacology, Daiichi University of Pharmacy, Fukuoka, Japan
| | - Masataka Nakamura
- Human Gene Sciences Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahisa Murata
- Department of Animal Radiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
46
|
Wu CT, Lin FH, Lee YT, Ku MS, Lue KH. Effect of Lactobacillus rhamnosus GG immunopathologic changes in chronic mouse asthma model. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 52:911-919. [PMID: 30952512 DOI: 10.1016/j.jmii.2019.03.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/28/2019] [Accepted: 03/18/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Asthma is a heterogeneous inflammatory disorder of the airway. A Th2 response usually contributes to high levels of allergen-specific IgE and eosinophilic airway inflammation. Several findings have demonstrated that neutrophils, not eosinophils, are the major inflammatory cells in chronic asthma patients with steroid-resistance. Lactobacillus rhammosus GG (LGG) exhibits anti-inflammatory properties on OVA-induced acute airway inflammation. OBJECTIVE We hypothesized that orally administrated LGG should reduce airway remodeling in chronic experimental models. METHODS Female Balb/c mice were sensitized with OVA. LGG was used to investigate whether oral administrations of LGG inhibited OVA-induced airway inflammation in a chronic asthma model and the different intervention times between LGG pre-treatment and post-treatment groups. BALF was analyzed with Liu's stain and ELISA assay. Lung histopathology was assayed with HE, IHC and Masson's trichrome staining. Lung tissues were assayed with PCR (T-bet, GATA3, RORrt and Foxp3). Many cytokines were detected in the serum and BALF. RESULTS LGG significantly decreased the number of infiltrating inflammatory cells. We also found that the oral LGG group suppressed not only Th2 cytokine, but also IL-17, TNF-α and HMGB1 in the BALF levels. However, GATA3 and RORrt decreased significantly in the RNA level in the LGG groups, but the T-bet and Foxp3 increased in the RNA level. CONCLUSIONS LGG not only had anti-inflammatory effects on OVA-induced airway inflammation, but also improved airway remodeling and collagen expression in the chronic asthma mouse model. Moreover, LGG might be an additional or supplementary therapy for allergic airway diseases.
Collapse
Affiliation(s)
- Chia-Ta Wu
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Chien-Kuo N. Road, Taichung, Taiwan 402; Department of Emergency Medicine, Changhua Christian Hospital, Changhua, Taiwan.
| | - Fei-Hung Lin
- Department of Emergency Medicine, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu-Tzu Lee
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Chien-Kuo N. Road, Taichung, Taiwan 402
| | - Min-Sho Ku
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Ko-Haung Lue
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec. 1, Chien-Kuo N. Road, Taichung, Taiwan 402; School of Medicine, Chung Shan Medical University, Taichung, Taiwan; Department of Pediatrics, Chung Shan Medical University Hospital, Taichung, Taiwan; College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
47
|
Mucin 1 downregulation impairs the anti-necroptotic effects of glucocorticoids in human bronchial epithelial cells. Life Sci 2019; 221:168-177. [PMID: 30738043 DOI: 10.1016/j.lfs.2019.02.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/27/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
Abstract
AIMS To investigate whether mucin 1 (MUC1) downregulation reduced the sensitivity of tumor necrosis factor-alpha (TNF-α)-induced bronchial epithelial cells to glucocorticoid-mediated necroptosis and explore the underlying mechanisms. MAIN METHODS The human lung bronchial epithelial cell line (16HBE) was transfected with small interfering RNA (siRNA) against MUC1 and then stimulated by TNF-α, where some cells were pretreated with dexamethasone. Flow cytometry was performed to analyze necroptosis in 16HBE cells, and western blot analysis was used to detect protein expression levels of MUC1, glucocorticoid receptor (GR)α, GRβ, NF-κB p65, phospho-p65 (p-p65), and histone deacetylase-2 (HDAC2). Additionally, nuclear translocation of MUC1 and GRα was assessed by immunofluorescence. KEY FINDINGS We observed that MUC1 downregulation by siRNA significantly augmented TNF-α-induced necroptosis in 16HBE cells, and that dexamethasone showed impaired anti-necroptotic effects of MUC1 downregulation. Furthermore, we found that GRα nuclear translocation was inhibited in 16HBE cells with MUC1 downregulation, and that dexamethasone-mediated inhibition of p65 phosphorylation was lower in cells transfected with MUC1-siRNA compared to those transfected with negative control siRNA. SIGNIFICANCE Impaired GRα nuclear translocation and inhibited p-p65 expression might contribute to glucocorticoid resistance caused by MUC1 deficiency in TNF-α-induced necroptosis in 16HBE cells, and should be considered as a potential target for the development of novel therapeutics for asthma.
Collapse
|
48
|
Koziol-White CJ, Panettieri RA. Modulation of Bronchomotor Tone Pathways in Airway Smooth Muscle Function and Bronchomotor Tone in Asthma. Clin Chest Med 2018; 40:51-57. [PMID: 30691716 DOI: 10.1016/j.ccm.2018.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Airway smooth muscle is the primary cell mediating bronchomotor tone. The milieu created in the asthmatic lung modulates airway smooth muscle contractility and relaxation. Experimental findings suggest intrinsic abnormalities in airway smooth muscle derived from patients with asthma in comparison with airway smooth muscle from those without asthma. These changes to excitation-contraction pathways may underlie airway hyperresponsiveness and increased airway resistance associated with asthma.
Collapse
Affiliation(s)
- Cynthia J Koziol-White
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers Institute for Translational Medicine and Science, Rutgers University, State University of New Jersey, 89 French Street, Suite 4268, New Brunswick, NJ 08901, USA.
| | - Reynold A Panettieri
- Department of Medicine, Rutgers Institute for Translational Medicine and Science, Rutgers University, State University of New Jersey, 89 French Street, Room 4210, New Brunswick, NJ 08901, USA
| |
Collapse
|
49
|
Zhao C, Jiang J, Wang Y, Wu Y. Retracted
: Overexpression of microRNA‐590‐3p promotes the proliferation of and inhibits the apoptosis of myocardial cells through inhibition of the NF‐κB signaling pathway by binding to RIPK1. J Cell Biochem 2018; 120:3559-3573. [DOI: 10.1002/jcb.27633] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/14/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Can Zhao
- Department of Cardiology Beijing Friendship Hospital Capital Medical University Beijing China
| | - Jing Jiang
- Department of Cardiology Chinese People's Liberation Army 401st Hospital Qingdao China
| | - Yong‐Liang Wang
- Department of Cardiology Beijing Friendship Hospital Capital Medical University Beijing China
| | - Yong‐Quan Wu
- Department of Cardiology Beijing Anzhen Hospital Capital Medical University Beijing China
| |
Collapse
|
50
|
MicroRNA-146a is induced by inflammatory stimuli in airway epithelial cells and augments the anti-inflammatory effects of glucocorticoids. PLoS One 2018; 13:e0205434. [PMID: 30300399 PMCID: PMC6177187 DOI: 10.1371/journal.pone.0205434] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/25/2018] [Indexed: 01/13/2023] Open
Abstract
Background MicroRNAs (miRNAs) are emerging as central regulators of inflammation, but their role in asthma and airway epithelial cells is not well studied. Glucocorticoids are the cornerstone of therapy in asthma and other inflammatory disease, yet their mechanisms of action are not completely elucidated, and it is not clear whether miRNAs modulate their effects. Objective We aimed to identify miRNAs that regulate cytokine and chemokine expression in airway epithelial cells and whether these miRNAs are subject to the effects of glucocorticoids. Methods and results MicroRNAomic analyses of immortalized, normal human bronchial epithelial cells identified 7 miRNAs that were altered by inflammatory cytokine treatment and 22 that were regulated by glucocorticoids (n = 3 for each treatment condition). MiR-146a emerged as a central candidate, whose expression was induced by TNF-α and repressed by glucocorticoids. Its role as a candidate in asthmatic inflammation was supported by expression profiling in human asthmatics, which showed that plasma miR-146a expression was elevated in asthma and associated with measures related to worse asthma outcomes, including elevated blood eosinophil counts, higher asthma control questionnaire scores, and need for higher doses of inhaled glucocorticoids. However, transfection of miR-146a in A549 cells treated with TNF-α +/- glucocorticoids produced an anti-inflammatory effect and increased efficacy of glucocorticoids. Conclusions We propose a model whereby miR-146a is induced by inflammatory conditions as a feedback mechanism to limit inflammation. Exogenous administration of miR-146a augmented the effects of glucocorticoids and could be a novel therapeutic strategy to enhance efficacy of these medications.
Collapse
|