1
|
Compton SLE, Heymsfield SB, Brown JC. Nutritional Mechanisms of Cancer Cachexia. Annu Rev Nutr 2024; 44:77-98. [PMID: 39207878 DOI: 10.1146/annurev-nutr-062122-015646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Cancer cachexia is a complex systemic wasting syndrome. Nutritional mechanisms that span energy intake, nutrient metabolism, body composition, and energy balance may be impacted by, and may contribute to, the development of cachexia. To date, clinical management of cachexia remains elusive. Leaning on discoveries and novel methodologies from other fields of research may bolster new breakthroughs that improve nutritional management and clinical outcomes. Characteristics that compare and contrast cachexia and obesity may reveal opportunities for cachexia research to adopt methodology from the well-established field of obesity research. This review outlines the known nutritional mechanisms and gaps in the knowledge surrounding cancer cachexia. In parallel, we present how obesity may be a different side of the same coin and how obesity research has tackled similar research questions. We present insights into how cachexia research may utilize nutritional methodology to expand our understanding of cachexia to improve definitions and clinical care in future directions for the field.
Collapse
Affiliation(s)
- Stephanie L E Compton
- Cancer Energetics Unit, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA;
| | - Steven B Heymsfield
- Metabolism and Body Composition Unit, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Justin C Brown
- Cancer Energetics Unit, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA;
| |
Collapse
|
2
|
Hesketh SJ. Advancing cancer cachexia diagnosis with -omics technology and exercise as molecular medicine. SPORTS MEDICINE AND HEALTH SCIENCE 2024; 6:1-15. [PMID: 38463663 PMCID: PMC10918365 DOI: 10.1016/j.smhs.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/15/2024] [Accepted: 01/20/2024] [Indexed: 03/12/2024] Open
Abstract
Muscle atrophy exacerbates disease outcomes and increases mortality, whereas the preservation of skeletal muscle mass and function play pivotal roles in ensuring long-term health and overall quality-of-life. Muscle atrophy represents a significant clinical challenge, involving the continued loss of muscle mass and strength, which frequently accompany the development of numerous types of cancer. Cancer cachexia is a highly prevalent multifactorial syndrome, and although cachexia is one of the main causes of cancer-related deaths, there are still no approved management strategies for the disease. The etiology of this condition is based on the upregulation of systemic inflammation factors and catabolic stimuli, resulting in the inhibition of protein synthesis and enhancement of protein degradation. Numerous necessary cellular processes are disrupted by cachectic pathology, which mediate intracellular signalling pathways resulting in the net loss of muscle and organelles. However, the exact underpinning molecular mechanisms of how these changes are orchestrated are incompletely understood. Much work is still required, but structured exercise has the capacity to counteract numerous detrimental effects linked to cancer cachexia. Primarily through the stimulation of muscle protein synthesis, enhancement of mitochondrial function, and the release of myokines. As a result, muscle mass and strength increase, leading to improved mobility, and quality-of-life. This review summarises existing knowledge of the complex molecular networks that regulate cancer cachexia and exercise, highlighting the molecular interplay between the two for potential therapeutic intervention. Finally, the utility of mass spectrometry-based proteomics is considered as a way of establishing early diagnostic biomarkers of cachectic patients.
Collapse
|
3
|
Avancini A, Borsati A, Belluomini L, Giannarelli D, Nocini R, Insolda J, Sposito M, Schena F, Milella M, Pilotto S. Effect of exercise across the head and neck cancer continuum: a systematic review of randomized controlled trials. Support Care Cancer 2023; 31:670. [PMID: 37924500 PMCID: PMC10625510 DOI: 10.1007/s00520-023-08126-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023]
Abstract
PURPOSE This study aims to systematically explore the impact of physical exercise as supportive therapy for head and neck cancer. METHODS A systematic search on PubMed/MEDLINE, Cochrane, and SPORTDiscus was conducted. Randomized controlled trials exploring the effects of a physical exercise intervention in comparison with usual care on outcomes in patients with head and neck cancer were selected. The RoB 2 tool was used to determine the study quality. The extracted data are reported as qualitative synthesis. RESULTS Among the 527 records examined, nine studies were included. No trials investigating exercise as prehabilitation were found, whereas eight studies involving 452 patients with head and neck cancer were conducted during anticancer treatment. Most trials did not report improvements in body mass index or body composition, while 2/4 and 3/5 investigations found a significant increase in muscle strength and cardiorespiratory fitness, respectively. Regarding the patients' reported outcomes, 4 out of 7 studies observed enhancements in some domains of quality of life, and two trials out of 3 detected an amelioration in fatigue following the exercise intervention. Analyzing the exercise programs, it seems that combining aerobic and resistance training could be more beneficial compared to a single type of full-body exercise in counteracting physical decline and controlling symptoms in the anticancer therapy phase. One trial has investigated the effect of resistance exercise on patients who had terminated the anticancer treatments, reporting significant improvements in lean mass, muscle strength, and quality of life. CONCLUSION Exercise may be a promising approach in patients with head and neck cancer. Future studies are needed to consolidate these results.
Collapse
Affiliation(s)
- Alice Avancini
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Anita Borsati
- Department of Medicine, Verona University Hospital Trust, Verona, Italy
| | - Lorenzo Belluomini
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Diana Giannarelli
- Bio-statistical Unit, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Riccardo Nocini
- Section of Ears, Nose and Throat (ENT), Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, Verona, Italy
| | - Jessica Insolda
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Marco Sposito
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Federico Schena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michele Milella
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy
| | - Sara Pilotto
- Section of Innovation Biomedicine - Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona, Verona, Italy.
| |
Collapse
|
4
|
Axiak‐Bechtel SM, Leach SB, Newton‐Northup JR, Milner RJ, Fox‐Alvarez SA, Fagman LI, Young KA, Tate DJ, Wright ZM, Chretin JD, Allen JW, Yoshimoto SK, Selting KA, Flesner BK, White CR, Mills T, Aherne M, Bergman PJ, Qi L, Gruber KA, Callahan MF. Safety of TCMCB07, a melanocortin-4 antagonist peptide, in dogs with naturally occurring cachexia. J Vet Intern Med 2023; 37:2344-2355. [PMID: 37897303 PMCID: PMC10658582 DOI: 10.1111/jvim.16915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/13/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND The melanocortin 4 antagonist TCMCB07 is safe and effective in reversing cachexia caused by sepsis or cancer in rodents. The safety and pharmacokinetics of TCMCB07 are demonstrated in healthy beagle dogs. HYPOTHESIS/OBJECTIVES The objectives of this study were to investigate the safety, peak plasma concentrations, and potential for efficacy of TCMCB07 in pet dogs with naturally occurring cachexia over a 4-week time period. ANIMALS Fourteen dogs with cachexia of any underlying cause, except cancer of the oral cavity or gastrointestinal tract, were eligible for enrollment with informed client consent. METHODS This study was a prospective, 1-armed open-label trial. Physical examination, complete blood count, chemistry panel, and owner-assessed quality of life surveys were checked at weeks 1, 2, and 4. Due to potential for bradycardia and hypotension, Holter monitoring and blood pressure evaluations were scheduled at pre-enrollment and week 4. RESULTS Fourteen dogs completed the trial. Significant changes detected included increased mean body weight (18.6-19.5 kg, P < .02), increased body condition score (median Tufts 5-point thin dog scale score P < .004 and WSAVA muscle condition score P < .02) and increased mean blood urea nitrogen (21.79-30.43 mg dL-1 , P < .004). On quality of life surveys, pet owners perceived their dog appeared to be panting less (P < .002) and that the general health improved (P < .03). Four dogs had a change in coat pigmentation. The peak plasma concentration of TCMCB07 in cachectic dogs was similar to that in healthy beagle dogs. CONCLUSIONS AND CLINICAL IMPORTANCE TCMCB07 was safe and has potential efficacy in pet dogs with cachexia.
Collapse
Affiliation(s)
| | - Stacey B. Leach
- Department of Veterinary Medicine and SurgeryUniversity of MissouriColumbiaMissouriUSA
| | | | - Rowan J. Milner
- Department of Small Animal Clinical SciencesUniversity of FloridaGainesvilleFloridaUSA
| | - Stacey A. Fox‐Alvarez
- Department of Small Animal Clinical SciencesUniversity of FloridaGainesvilleFloridaUSA
| | - Lana I. Fagman
- Department of Small Animal Clinical SciencesUniversity of FloridaGainesvilleFloridaUSA
| | - Kaylee A. Young
- Department of Small Animal Clinical SciencesUniversity of FloridaGainesvilleFloridaUSA
| | - Deborah J. Tate
- Department of Veterinary Medicine and SurgeryUniversity of MissouriColumbiaMissouriUSA
| | | | - John D. Chretin
- VCA West Los AngelesLos AngelesCaliforniaUSA
- Present address:
VCA Veterinary Specialists of the ValleyWoodland HillsCaliforniaUSA
| | | | - Sean K. Yoshimoto
- VCA West Los AngelesLos AngelesCaliforniaUSA
- Present address:
VCA Animal Specialty and Emergency CenterLos AngelesCaliforniaUSA
| | - Kimberly A. Selting
- Department of Veterinary Medicine and SurgeryUniversity of MissouriColumbiaMissouriUSA
- Present address:
Department of Veterinary Clinical Medicine, College of Veterinary MedicineUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Brian K. Flesner
- Department of Veterinary Medicine and SurgeryUniversity of MissouriColumbiaMissouriUSA
- Present address:
Department of Clinical Sciences and Advanced Medicine, School of Veterinary MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Carrie R. White
- VCA Family and Oahu Veterinary Specialty CenterPearl CityHawaiiUSA
| | - Tracy Mills
- VCA Clinical StudiesLos AngelesCaliforniaUSA
| | - Michael Aherne
- Department of Small Animal Clinical SciencesUniversity of FloridaGainesvilleFloridaUSA
| | | | - LeAnn Qi
- TCI Peptide TherapeuticsColumbiaMissouriUSA
| | - Kenneth A. Gruber
- TCI Peptide TherapeuticsColumbiaMissouriUSA
- Department of Medical Pharmacology & Physiology and the Dalton Cardiovascular Research CenterUniversity of MissouriColumbiaMissouriUSA
| | - Michael F. Callahan
- Department of Medical Pharmacology & Physiology and the Dalton Cardiovascular Research CenterUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
5
|
Toohey K, Chapman M, Rushby AM, Urban K, Ingham G, Singh B. The effects of physical exercise in the palliative care phase for people with advanced cancer: a systematic review with meta-analysis. J Cancer Surviv 2023; 17:399-415. [PMID: 35040076 DOI: 10.1007/s11764-021-01153-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE The purpose of this systematic review with meta-analysis was to evaluate the safety, feasibility and effectiveness of exercise in the palliative care phase for people with advanced cancer. METHODS Electronic databases were searched for exercise randomised controlled trials involving individuals with incurable cancer that were published prior to April 14, 2021. Meta-analyses were performed to evaluate the effects of exercise on health outcomes. Subgroup effects for exercise mode, supervision, intervention duration and cancer diagnosis were assessed. RESULTS Twenty-two trials involving interventions ranging between 2 weeks and 6 months were included. Interventions comprised of aerobic (n = 3), resistance (n = 4), mixed-mode (n = 14) and other exercise (n = 1) modalities. Cancer types consisted of lung (n = 6), breast (n = 3), prostate (n = 2), multiple myeloma (n = 1) and mixed cancer types (n = 10). Meta-analysis of 20 RCTs involving 1840 participants showed no difference in the risk of a grade 2-4 adverse event between exercise and usual care (n = 110 adverse events (exercise: n = 66 events; usual care: n = 44 events), RD = - 0.01 (91% CI = - 0.01, 0.02); p = 0.24). Overall median recruitment, retention and adherence rates were 56%, 80% and 69%, respectively. Meta-analysis of health outcomes showed effects in favour of exercise for quality of life, fatigue, aerobic fitness and lower-body strength (SMD range = 0.27-0.48, all p < 0.05). CONCLUSIONS Participants who engaged in exercise experienced an increase in quality of life, fitness and strength and a decrease in fatigue. IMPLICATIONS FOR CANCER SURVIVORS Physical activity programs were found to be safe and feasible for people with advanced cancer in the palliative care phase.
Collapse
Affiliation(s)
- Kellie Toohey
- Faculty of HealthCanberra Specialist Medical CentreACT, University of Canberra, Level C Office 3, Bruce, 2617, Australia.
- Exercise and Survivorship (PACES) Research Group, University of Canberra, ActivityBruce ACT, Cancer, Australia.
| | - Michael Chapman
- Palliative Care, Canberra Hospital, ACT Health Services, Canberra ACT, Australia
- ANU Medical School, Australian National University, Canberra, Australia
| | - Anne-Marie Rushby
- Faculty of HealthCanberra Specialist Medical CentreACT, University of Canberra, Level C Office 3, Bruce, 2617, Australia
- University of South Australia, Adelaide, SA, Australia
- Australian Institute of Health and Welfare, Canberra, Australia
| | - Kat Urban
- Palliative Care, Lismore Base Hospital, Lismore, NSW, Australia
| | - Gemma Ingham
- Palliative Care, Prince of Wales Hospital, Randwick, NSW, Australia
| | | |
Collapse
|
6
|
Gomes MFP, de Moura EDOC, Cardoso NM, da Silva GA, Dos Santos ACC, de Souza FS, Estadella D, Lambertucci RH, Lago JHG, Medeiros A. Supplementation with okra combined or not with exercise training is able to protect the heart of animals with metabolic syndrome. Sci Rep 2023; 13:1468. [PMID: 36702820 PMCID: PMC9879946 DOI: 10.1038/s41598-023-28072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 01/12/2023] [Indexed: 01/27/2023] Open
Abstract
The metabolic syndrome (MetS) is a clinical manifestation strongly associated with cardiovascular disease, the main cause of death worldwide. In view of this scenario, many therapeutic proposals have appeared in order to optimize the treatment of individuals with MetS, including the practice of exercise training (ET) and the consumption of okra (O). The aim of the present study was to evaluate the effect of O consumption and/or ET in animals with MetS. In all, 32 male Zucker rats (fa/fa) at 10 weeks old were randomly distributed into four groups of 8 animals each: MetS, MetS+O, MetS+ET and MetS+ET+O, and 8 lean Zucker rats (fa/ +) comprised the control group. Okra was administered by orogastric gavage 2x/day (morning and night, 100 mg/kg), 5 days/week, for 6 weeks. The ET was performed on a treadmill 1x/day (afternoon), 5 days/week, 60 min/day, in an intensity of 70% of maximal capacity, for the same days of O treatment. It was found that, O consumption alone was able to promote improved insulin sensitivity (MetS 93.93 ± 8.54 mg/dL vs. MetS+O 69.95 ± 18.7 mg/dL, p ≤ 0.05, d = 1.65, CI = 50.32 -89.58, triglyceride reduction (MetS 492.9 ± 97.8 mg/dL vs. MetS+O 334.9 ± 98.0 mg/dL, p ≤ 0.05, d = 1.61, CI = 193.2-398.7). In addition, it promoted a reduction in systolic blood pressure (MetS 149.0 ± 9.3 mmHg vs. MetS+O 132.0 ± 11.4 mmHg, p ≤ 0.05, d = 1.63, CI = 120-140), prevented an increase in cardiac collagen (MetS 12.60 ± 2.08% vs. MetS+O 7.52 ± 0.77%, p ≤ 0.05, d = 3.24, CI = 6.56-8.49). When associated with ET, the results were similar. Thus, we conclude that O consumption combined or not with aerobic ET can have a protective effect on the cardiac tissue of rats with MetS.
Collapse
Affiliation(s)
- Moisés Felipe Pereira Gomes
- Department of Bioscience, Universidade Federal de São Paulo (UNIFESP), R. Silva Jardim, 136 - Vila Matias, Santos, SP, 11015-020, Brazil.
- Center for Applied Social Sciences and Health, Universidade Católica de Santos (Unisantos), Av. Conselheiro Nébias, 300, Vila Matias, Santos, SP, 11015-002, Brazil.
| | | | - Naiara Magalhães Cardoso
- Department of Bioscience, Universidade Federal de São Paulo (UNIFESP), R. Silva Jardim, 136 - Vila Matias, Santos, SP, 11015-020, Brazil
| | - Graziele Aparecida da Silva
- Department of Bioscience, Universidade Federal de São Paulo (UNIFESP), R. Silva Jardim, 136 - Vila Matias, Santos, SP, 11015-020, Brazil
| | - Ana Carolina Cardoso Dos Santos
- Department of Bioscience, Universidade Federal de São Paulo (UNIFESP), R. Silva Jardim, 136 - Vila Matias, Santos, SP, 11015-020, Brazil
| | - Fernanda Samantha de Souza
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Universidade Federal de São Paulo (UNIFESP), Rua Prof. Artur Riedel, n° 275, Eldorado, Diadema, SP, 09972-270, Brazil
| | - Débora Estadella
- Department of Bioscience, Universidade Federal de São Paulo (UNIFESP), R. Silva Jardim, 136 - Vila Matias, Santos, SP, 11015-020, Brazil
| | - Rafael Herling Lambertucci
- Department of Bioscience, Universidade Federal de São Paulo (UNIFESP), R. Silva Jardim, 136 - Vila Matias, Santos, SP, 11015-020, Brazil
| | - João Henrique Ghilardi Lago
- Center of Natural and Human Sciences, Universidade Federal Do ABC, Av. Dos Estados, 500, Bangú, Santo André, SP, 09210-580, Brazil
| | - Alessandra Medeiros
- Department of Bioscience, Universidade Federal de São Paulo (UNIFESP), R. Silva Jardim, 136 - Vila Matias, Santos, SP, 11015-020, Brazil
| |
Collapse
|
7
|
[Malnutrition management of hospitalized patients with diabetes/hyperglycemia and cancer cachexia]. NUTR HOSP 2022; 39:40-46. [PMID: 36546331 DOI: 10.20960/nh.04510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction Diabetes is a frequent comorbidity in cancer patients, since they share common risk factors. In cancer, the concurrence of cachexia represents a poor prognostic factor, which is aggravated by poor nutritional status. Clinically, cancer cachexia manifests as a significant reduction in body weight, accompanied by changes in body composition and alterations in the balance of the biological system, and causes progressive dysfunction. This article describes the results of the expert consensus and the responses of the panelists on the nutritional management in routine clinical practice of patients with diabetes/hyperglycemia hospitalized (non-critically ill) with cancer cachexia.
Collapse
|
8
|
Exercise Counteracts the Deleterious Effects of Cancer Cachexia. Cancers (Basel) 2022; 14:cancers14102512. [PMID: 35626116 PMCID: PMC9139714 DOI: 10.3390/cancers14102512] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary This review provides an overview of the effects of exercise training on the major mechanisms related to cancer cachexia (CC). The review also discusses how cancer comorbidities can influence the ability of patients/animals with cancer to perform exercise training and what precautions should be taken when they exercise. The contribution of other factors, such as exercise modality and biological sex, to exercise effectiveness in ameliorating CC are also elaborated in the final sections. We provide meticulous evidence for how advantageous exercise training can be in patients/animals with CC at molecular and cellular levels. Finally, we emphasise what factors should be considered to optimise and personalise an exercise training program in CC. Abstract Cancer cachexia (CC) is a multifactorial syndrome characterised by unintentional loss of body weight and muscle mass in patients with cancer. The major hallmarks associated with CC development and progression include imbalanced protein turnover, inflammatory signalling, mitochondrial dysfunction and satellite cell dysregulation. So far, there is no effective treatment to counteract muscle wasting in patients with CC. Exercise training has been proposed as a potential therapeutic approach for CC. This review provides an overview of the effects of exercise training in CC-related mechanisms as well as how factors such as cancer comorbidities, exercise modality and biological sex can influence exercise effectiveness in CC. Evidence in mice and humans suggests exercise training combats all of the hallmarks of CC. Several exercise modalities induce beneficial adaptations in patients/animals with CC, but concurrent resistance and endurance training is considered the optimal type of exercise. In the case of cancer patients presenting comorbidities, exercise training should be performed only under specific guidelines and precautions to avoid adverse effects. Observational comparison of studies in CC using different biological sex shows exercise-induced adaptations are similar between male and female patients/animals with cancer, but further studies are needed to confirm this.
Collapse
|
9
|
Bland KA, Krishnasamy M, Parr EB, Mulder S, Martin P, van Loon LJC, Cormie P, Michael N, Zopf EM. “I want to get myself as fit as I can and not die just yet” – Perceptions of exercise in people with advanced cancer and cachexia: a qualitative study. BMC Palliat Care 2022; 21:75. [PMID: 35578224 PMCID: PMC9110215 DOI: 10.1186/s12904-022-00948-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/15/2022] [Indexed: 11/10/2022] Open
Abstract
Cachexia is a prevalent muscle wasting syndrome among people with advanced cancer that profoundly impacts patient quality of life (QoL) and physical function. Exercise can improve QoL, physical function, and overall health in people with cancer and may be an important addition to treatment approaches for cancer cachexia. Greater understanding of patients’ perception of exercise can help elucidate the feasibility of implementing exercise interventions for cancer cachexia and facilitate the design of patient-centered interventions. We aimed to describe the perception of exercise in patients with advanced cancer and cachexia, and capture exercise motivators, barriers, and preferences, to inform the feasibility of exercise interventions. Individual interviews (n = 20) with patients with locally advanced or metastatic cancer with cachexia were conducted and analyzed using reflexive thematic analysis. Main themes from interviews were: 1) Life is disrupted by cancer and cachexia; 2) Exercise offers hope; 3) Exercise barriers are multifaceted; and 4) Exercise access and support are important. Participants reported that their cancer and cachexia had intensely altered their lives, including ability to exercise. Exercise was perceived as important and participants described a hope for exercise to improve their health and wellbeing. Yet, several complex exercise barriers, such as burdensome cancer symptoms and the overwhelming impact of the COVID-19 pandemic, hindered exercise participation and prevented participants from fully realizing the perceived benefits of exercise. Factors believed to improve exercise engagement and overcome exercise barriers included increased exercise support (e.g., professional supervision) and accessibility (e.g., convenient locations). Patient-reported exercise barriers and preferences can inform the design of exercise interventions, particularly within future research studies aiming to establish exercise feasibility and efficacy in people with advanced cancer and cachexia.
Collapse
|
10
|
Hegde M, Daimary UD, Girisa S, Kumar A, Kunnumakkara AB. Tumor cell anabolism and host tissue catabolism-energetic inefficiency during cancer cachexia. Exp Biol Med (Maywood) 2022; 247:713-733. [PMID: 35521962 DOI: 10.1177/15353702221087962] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cancer-associated cachexia (CC) is a pathological condition characterized by sarcopenia, adipose tissue depletion, and progressive weight loss. CC is driven by multiple factors such as anorexia, excessive catabolism, elevated energy expenditure by growing tumor mass, and inflammatory mediators released by cancer cells and surrounding tissues. In addition, endocrine system, systemic metabolism, and central nervous system (CNS) perturbations in combination with cachexia mediators elicit exponential elevation in catabolism and reduced anabolism in skeletal muscle, adipose tissue, and cardiac muscle. At the molecular level, mechanisms of CC include inflammation, reduced protein synthesis, and lipogenesis, elevated proteolysis and lipolysis along with aggravated toxicity and complications of chemotherapy. Furthermore, CC is remarkably associated with intolerance to anti-neoplastic therapy, poor prognosis, and increased mortality with no established standard therapy. In this context, we discuss the spatio-temporal changes occurring in the various stages of CC and highlight the imbalance of host metabolism. We provide how multiple factors such as proteasomal pathways, inflammatory mediators, lipid and protein catabolism, glucocorticoids, and in-depth mechanisms of interplay between inflammatory molecules and CNS can trigger and amplify the cachectic processes. Finally, we highlight current diagnostic approaches and promising therapeutic interventions for CC.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| | - Uzini Devi Daimary
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India.,DBT-AIST International Center for Translational and Environmental Research, Indian Institute of Technology-Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
11
|
Martins GMDS, França AKTDC, Viola PCDAF, de Carvalho CA, Marques KDS, dos Santos AM, Batalha MA, Alves JDDA, Ribeiro CCC. Intake of ultra-processed foods is associated with inflammatory markers in Brazilian adolescents. Public Health Nutr 2022; 25:591-599. [PMID: 34726140 PMCID: PMC9991817 DOI: 10.1017/s1368980021004523] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/06/2021] [Accepted: 10/30/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To evaluate the association of the consumption of foods of the ultra-processed group (UPF) with inflammatory markers in the adolescent population in Northeastern Brazil. DESIGN A cross-sectional population-based study. Food consumption was evaluated using two 24-h dietary recalls using the NOVA classification for food processing levels. The following inflammatory markers were evaluated: adiponectin, IL-6, IL-8, C-reactive protein (CRP) and TNF-α. Multivariate linear regression was used to investigate the association between the percentage of UPF energy contribution and inflammatory markers. SETTING São Luís, Maranhão, Brazil. PARTICIPANTS The sample consisted of 391 male and female adolescents, aged from 17 to 18 years. RESULTS The average daily energy consumption by adolescents was 8032·9 kJ/d, of which 26·1 % originated from UPF. The upper tertile (T3) of UPF consumption presented higher intake of simple carbohydrates, lipids, saturated fat, and Na and lower protein intake. Individuals in T3 presented higher serum leptin and CRP levels (P < 0·05). Adolescents with UPF energy consumption ≥30·0 % (tertile 3 of UPF) had a 79 % (exp (0·58) = 1·79) increase in IL-8 levels when compared with adolescents in tertile 1 of UPF (P = 0·013). CONCLUSIONS The association between the consumption of UPF, poor quality diet and pro-inflammatory markers have important harmful effects that can be observed as early as in adolescence.
Collapse
Affiliation(s)
- Glauciane Márcia dos Santos Martins
- Federal University of Maranhão, Rua Barão de Itapary, University Hospital of the Federal University of Maranhão – HUUFMA, São Luís, MA, Brazil
| | - Ana Karina Teixeira da Cunha França
- Federal University of Maranhão, Postgraduate Program in Collective Health, Rua Barão de Itapary, 155, Centro, São Luís, MA65.020-070, Brazil
| | | | - Carolina Abreu de Carvalho
- Federal University of Maranhão, Postgraduate Program in Collective Health, Rua Barão de Itapary, 155, Centro, São Luís, MA65.020-070, Brazil
| | - Karla Danielle Silva Marques
- Federal University of Maranhão, Postgraduate Program in Collective Health, Rua Barão de Itapary, 155, Centro, São Luís, MA65.020-070, Brazil
| | - Alcione Miranda dos Santos
- Federal University of Maranhão, Postgraduate Program in Collective Health, Rua Barão de Itapary, 155, Centro, São Luís, MA65.020-070, Brazil
| | | | | | - Cecilia Claudia Costa Ribeiro
- Federal University of Maranhão, Postgraduate Program in Collective Health, Rua Barão de Itapary, 155, Centro, São Luís, MA65.020-070, Brazil
| |
Collapse
|
12
|
Niels T, Tomanek A, Freitag N, Schumann M. Can Exercise Counteract Cancer Cachexia? A Systematic Literature Review and Meta-Analysis. Integr Cancer Ther 2021; 19:1534735420940414. [PMID: 32954861 PMCID: PMC7503012 DOI: 10.1177/1534735420940414] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: Cancer-cachexia is associated with chronic inflammation, impaired muscle metabolism and body mass loss, all of which are classical targets of physical exercise. Objectives: This systematic review and meta-analysis aimed to determine the effects of exercise on body and muscle mass in cachectic cancer hosts. Data Sources: PubMed/Medline, EMBASE, CINHAL, ISI Web of Science, and Cochrane Library were searched until July 2019. Study Selection: Trials had to be randomized controlled trials or controlled trials including cancer patients or animal models with cachexia-inducing tumors. Only sole exercise interventions over at least 7 days performed in a controlled environment were included. Data Extraction: Risk of bias was assessed and a random-effects model was used to pool effect sizes by standardized mean differences (SMD). Results: All eligible 20 studies were performed in rodents. Studies prescribed aerobic (n = 15), strength (n = 3) or combined training (n = 2). No statistical differences were observed for body mass and muscle weight of the gastrocnemius, soleus, and tibialis muscles between the exercise and control conditions (SMD = ‒0.05, 95%CI-0.64-0.55, P = 0.87). Exercise duration prior to tumor inoculation was a statistical moderator for changes in body mass under tumor presence (P = 0.04). Limitations: No human trials were identified. A large study heterogeneity was present, probably due to different exercise modalities and outcome reporting. Conclusion: Exercise does not seem to affect cancer-cachexia in rodents. However, the linear regression revealed that exercise duration prior to tumor inoculation led to reduced cachexia-severity, possibly strengthening the rationale for the use of exercise in cancer patients at cachexia risk.
Collapse
Affiliation(s)
- Timo Niels
- University Hospital of Cologne, Cologne, Germany
| | | | - Nils Freitag
- German Sport University Cologne, Cologne, Germany
| | | |
Collapse
|
13
|
Avancini A, Trestini I, Tregnago D, Lanza M, Menis J, Belluomini L, Milella M, Pilotto S. A multimodal approach to cancer-related cachexia: from theory to practice. Expert Rev Anticancer Ther 2021; 21:819-826. [PMID: 33971783 DOI: 10.1080/14737140.2021.1927720] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Cachexia represents a relevant issue in oncological care, which is still lacking effective therapies. Although the incidence of cancer cachexia varies across cancer types, it is responsible for approximately a quarter of cancer-related deaths. The pathophysiology of this syndrome is multifactorial, including weight loss, muscle atrophy and impairment of the pro-/anti-inflammatory balance.Areas covered: Diagnostic criteria and optimal endpoints for cachexia-dedicated trials are still debated, slowing the identification of interventions counteracting cachexia sequaele. The multifaceted features of this syndrome support the rationale for personalized therapy. A multimodal approach is likely to offer the best option to address key cachexia-related issues. Pharmacologic agents, physical exercise, nutritional and psycho-social interventions may have a synergistic effect, and improve quality of life.Expert opinion: A personalized multimodal intervention could be the best strategy to effectively manage cancer cachexia. To offer such a comprehensive approach, a specialized staff, including health professionals with different expertise, is necessary. Each specialist plays a specific role inside the multimodal intervention, with the aim of delivering the best cancer care and access to the most effective therapeutic options for each patient.
Collapse
Affiliation(s)
- Alice Avancini
- Medical Oncology, Department of Medicine, University of Verona Hospital Trust, Verona, Italy
| | - Ilaria Trestini
- Medical Oncology, Department of Medicine, University of Verona Hospital Trust, Verona, Italy
| | - Daniela Tregnago
- Medical Oncology, Department of Medicine, University of Verona Hospital Trust, Verona, Italy
| | - Massimo Lanza
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Jessica Menis
- Medical Oncology, Department of Medicine, University of Verona Hospital Trust, Verona, Italy
| | - Lorenzo Belluomini
- Medical Oncology, Department of Medicine, University of Verona Hospital Trust, Verona, Italy
| | - Michele Milella
- Medical Oncology, Department of Medicine, University of Verona Hospital Trust, Verona, Italy
| | - Sara Pilotto
- Medical Oncology, Department of Medicine, University of Verona Hospital Trust, Verona, Italy
| |
Collapse
|
14
|
Takeda T, Sasaki T, Suzumori C, Mie T, Furukawa T, Yamada Y, Kasuga A, Matsuyama M, Ozaka M, Sasahira N. The impact of cachexia and sarcopenia in elderly pancreatic cancer patients receiving palliative chemotherapy. Int J Clin Oncol 2021; 26:1293-1303. [PMID: 33791917 DOI: 10.1007/s10147-021-01912-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/24/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Elderly pancreatic cancer (PC) patients are often considered vulnerable to treatment and standard treatment strategy for this subpopulation is uncertain. Cachexia and sarcopenia are reported to be associated with reduced physical performance, reduced anti-tumor response, increased chemotherapy toxicity, and poor prognosis in several malignancies. The aim of this study was to evaluate the impact of cachexia and sarcopenia on the clinical course of elderly PC patients receiving chemotherapy. METHODS We retrospectively investigated consecutive elderly metastatic PC patients (≥ 75 years) treated with chemotherapy at our institution between January 2015 and April 2020. Skeletal muscle index was calculated at the third lumbar vertebra using pretreatment computed tomography. We evaluated time to treatment failure (TTF), progression-free survival (PFS), overall survival (OS), early treatment discontinuation, relative dose intensity (RDI), and severe adverse events (AEs). RESULTS Among 80 patients included (gemcitabine plus nab-paclitaxel [GnP] 52; gemcitabine 21; S1 6; modified FOLFIRINOX 1), cachexia and sarcopenia were present in 48 (60%) and 61 (76%) patients, respectively. Cachexia was associated with older age, worse performance status, higher level of neutrophil to lymphocyte ratio, worse nutritional status, and shorter TTF and PFS. Furthermore, it was also associated with early treatment discontinuation, reduced RDI of nab-paclitaxel, and increased incidence of grade 4 neutropenia in patients receiving GnP. On the other hand, sarcopenia had less impact on the clinical course of elderly PC patients. CONCLUSIONS In our experience, cachexia was considered an effective tool in the management of elderly PC patients receiving palliative chemotherapy.
Collapse
Affiliation(s)
- Tsuyoshi Takeda
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto, Tokyo, 135-8550, Japan
| | - Takashi Sasaki
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto, Tokyo, 135-8550, Japan.
| | - Chisaki Suzumori
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto, Tokyo, 135-8550, Japan
| | - Takafumi Mie
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto, Tokyo, 135-8550, Japan
| | - Takaaki Furukawa
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto, Tokyo, 135-8550, Japan
| | - Yuto Yamada
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto, Tokyo, 135-8550, Japan
| | - Akiyoshi Kasuga
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto, Tokyo, 135-8550, Japan
| | - Masato Matsuyama
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto, Tokyo, 135-8550, Japan
| | - Masato Ozaka
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto, Tokyo, 135-8550, Japan
| | - Naoki Sasahira
- Department of Hepato-Biliary-Pancreatic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31, Ariake, Koto, Tokyo, 135-8550, Japan
| |
Collapse
|
15
|
Endurance Exercise Mitigates Immunometabolic Adipose Tissue Disturbances in Cancer and Obesity. Int J Mol Sci 2020; 21:ijms21249745. [PMID: 33371214 PMCID: PMC7767095 DOI: 10.3390/ijms21249745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue is considered an endocrine organ whose complex biology can be explained by the diversity of cell types that compose this tissue. The immune cells found in the stromal portion of adipose tissue play an important role on the modulation of inflammation by adipocytokines secretion. The interactions between metabolic active tissues and immune cells, called immunometabolism, is an important field for discovering new pathways and approaches to treat immunometabolic diseases, such as obesity and cancer. Moreover, physical exercise is widely known as a tool for prevention and adjuvant treatment on metabolic diseases. More specifically, aerobic exercise training is able to increase the energy expenditure, reduce the nutrition overload and modify the profile of adipocytokines and myokines with paracrine and endocrine effects. Therefore, our aim in this review was to cover the effects of aerobic exercise training on the immunometabolism of adipose tissue in obesity and cancer, focusing on the exercise-related modification on adipose tissue or immune cells isolated as well as their interaction.
Collapse
|
16
|
Wochner R, Clauss D, Nattenmüller J, Tjaden C, Bruckner T, Kauczor HU, Hackert T, Wiskemann J, Steindorf K. Impact of progressive resistance training on CT quantified muscle and adipose tissue compartments in pancreatic cancer patients. PLoS One 2020; 15:e0242785. [PMID: 33253318 PMCID: PMC7703876 DOI: 10.1371/journal.pone.0242785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 11/06/2020] [Indexed: 01/06/2023] Open
Abstract
Objectives Loss of body weight is often seen in pancreatic cancer and also predicts poor prognosis. Thus, maintaining muscle mass is an essential treatment goal. The primary aim was to investigate whether progressive resistance training impacts muscle and adipose tissue compartments. Furthermore, the effect of body composition on overall survival (OS) was investigated. Methods In the randomized SUPPORT-study, 65 patients were assigned to 6-month resistance training (2x/week) or a usual care control group. As secondary endpoint, muscle strength of the upper and lower extremities was assessed before and after the intervention period. Routine CT scans were assessed on lumbar L3/4 level for quantification of total-fat-area, visceral-fat-area, subcutaneous-fat-area, intramuscular-fat-area, visceral-to-subcutaneous fat ratio (VFR), muscle-area (MA), muscle-density and skeletal-muscle-index (SMI). OS data were retrieved. Results Of 65 patients, 53 had suitable CT scans at baseline and 28 completed the intervention period with suitable CT scans. There were no significant effects observed of resistance training on body composition (p>0.05; effect sizes ω2p <0.02). Significant moderate to high correlations were found between MA and muscle strength parameters (r = 0.57–0.85; p<0.001). High VFR at baseline was a predictor of poor OS (VFR≥1.3 vs. <1.3; median OS 14.6 vs. 45.3 months; p = 0.012). Loss of muscle mass was also a predictor of poor OS (loss vs. gain of SMI; median OS 24.6 vs. 50.8 months; p = 0.049). Conclusion There is anabolic potential in patients with resectable pancreatic cancer. A progressive resistance training may help patients to maintain their muscle mass and avoid muscle depletion. CT-quantified muscle mass at the level of L3/4 showed a good correlation to muscle strength. Therefore, maintaining muscle mass and muscle strength through structured resistance training could help patients to maintain their physical functioning. A high VFR at baseline and a high loss of muscle mass are predictors of poor OS. Registered on ClinicalTrials.gov (NCT01977066).
Collapse
Affiliation(s)
- Raoul Wochner
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Dorothea Clauss
- Division of Physical Activity, Prevention and Cancer, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany
- Division of Medical Oncology, National Center for Tumor Diseases and Heidelberg University Hospital, Heidelberg, Germany
| | - Johanna Nattenmüller
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christine Tjaden
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Bruckner
- Institute for Medical Biometry and Computer Science, Heidelberg University Hospital, Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Joachim Wiskemann
- Division of Medical Oncology, National Center for Tumor Diseases and Heidelberg University Hospital, Heidelberg, Germany
| | - Karen Steindorf
- Division of Physical Activity, Prevention and Cancer, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
17
|
Lim S, Brown JL, Washington TA, Greene NP. Development and progression of cancer cachexia: Perspectives from bench to bedside. SPORTS MEDICINE AND HEALTH SCIENCE 2020; 2:177-185. [PMID: 34447946 PMCID: PMC8386816 DOI: 10.1016/j.smhs.2020.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer cachexia (CC) is a devastating syndrome characterized by weight loss, reduced fat mass and muscle mass that affects approximately 80% of cancer patients and is responsible for 22%-30% of cancer-associated deaths. Understanding underlying mechanisms for the development of CC are crucial to advance therapies to treat CC and improve cancer outcomes. CC is a multi-organ syndrome that results in extensive skeletal muscle and adipose tissue wasting; however, CC can impair other organs such as the liver, heart, brain, and bone as well. A considerable amount of CC research focuses on changes that occur within the muscle, but cancer-related impairments in other organ systems are understudied. Furthermore, metabolic changes in organ systems other than muscle may contribute to CC. Therefore, the purpose of this review is to address degenerative mechanisms which occur during CC from a whole-body perspective. Outlining the information known about metabolic changes that occur in response to cancer is necessary to develop and enhance therapies to treat CC. As much of the current evidences in CC are from pre-clinical models we should note the majority of the data reviewed here are from preclinical models.
Collapse
Affiliation(s)
- Seongkyun Lim
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, 155 Stadium Dr, Fayetteville, AR, USA
| | - Jacob L. Brown
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, 825 NE 13th St, Oklahoma City, OK, USA
| | - Tyrone A. Washington
- Exercise Muscle Biology Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, 155 Stadium Dr, Fayetteville, AR, USA
| | - Nicholas P. Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Human Health Performance and Recreation, University of Arkansas, 155 Stadium Dr, Fayetteville, AR, USA
| |
Collapse
|
18
|
Aquila G, Re Cecconi AD, Brault JJ, Corli O, Piccirillo R. Nutraceuticals and Exercise against Muscle Wasting during Cancer Cachexia. Cells 2020; 9:E2536. [PMID: 33255345 PMCID: PMC7760926 DOI: 10.3390/cells9122536] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cachexia (CC) is a debilitating multifactorial syndrome, involving progressive deterioration and functional impairment of skeletal muscles. It affects about 80% of patients with advanced cancer and causes premature death. No causal therapy is available against CC. In the last few decades, our understanding of the mechanisms contributing to muscle wasting during cancer has markedly increased. Both inflammation and oxidative stress (OS) alter anabolic and catabolic signaling pathways mostly culminating with muscle depletion. Several preclinical studies have emphasized the beneficial roles of several classes of nutraceuticals and modes of physical exercise, but their efficacy in CC patients remains scant. The route of nutraceutical administration is critical to increase its bioavailability and achieve the desired anti-cachexia effects. Accumulating evidence suggests that a single therapy may not be enough, and a bimodal intervention (nutraceuticals plus exercise) may be a more effective treatment for CC. This review focuses on the current state of the field on the role of inflammation and OS in the pathogenesis of muscle atrophy during CC, and how nutraceuticals and physical activity may act synergistically to limit muscle wasting and dysfunction.
Collapse
Affiliation(s)
- Giorgio Aquila
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Andrea David Re Cecconi
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Jeffrey J. Brault
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Oscar Corli
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
- Oncology Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy
| | - Rosanna Piccirillo
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| |
Collapse
|
19
|
Avancini A, Trestini I, Tregnago D, Cavallo A, Bragato M, Bonaiuto C, Lanza M, Milella M, Pilotto S. Multidisciplinary lifestyle intervention to manage pancreatic cancer-related cachexia: a case report. Future Sci OA 2020; 7:FSO659. [PMID: 33437520 PMCID: PMC7787172 DOI: 10.2144/fsoa-2020-0165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/27/2020] [Indexed: 01/06/2023] Open
Abstract
Pancreatic cancer remains an aggressive disease, with a poor prognosis and a high risk of incurring into cachexia. Supportive care, such as exercise, nutritional and psychological support, may be effective in reducing functional loss, psychological distress and improving nutritional status. We report the effect of 12 weeks of multimodal lifestyle intervention in a 55-year-old female, diagnosed with unresectable body/tail pancreatic cancer and metastasis in the liver, bone, lymph node and lung, to counteract cachexia. The multimodal program resulted safe and feasible. Over 12 weeks, considerable improvements were found in body weight, health-related physical fitness, nutritional status, distress scores, anxiety and depression levels. These findings highlight the potential role of integrated supportive interventions to manage metastatic cancer and cancer-induced cachexia.
Collapse
Affiliation(s)
- Alice Avancini
- Department of Medicine, Biomedical, Clinical & Experimental Sciences, University of Verona Hospital Trust, Verona 37134, Italy
| | - Ilaria Trestini
- Department of Medicine, Medical Oncology, University of Verona Hospital Trust, Verona 37134, Italy
| | - Daniela Tregnago
- Department of Medicine, Medical Oncology, University of Verona Hospital Trust, Verona 37134, Italy
| | - Alessandro Cavallo
- Department of Neurosciences, Biomedicine & Movement Sciences, University of Verona, Verona 37134, Italy
| | - Marco Bragato
- Department of Neurosciences, Biomedicine & Movement Sciences, University of Verona, Verona 37134, Italy
| | - Clelia Bonaiuto
- Department of Medicine, Medical Oncology, University of Verona Hospital Trust, Verona 37134, Italy
| | - Massimo Lanza
- Department of Neurosciences, Biomedicine & Movement Sciences, University of Verona, Verona 37134, Italy
| | - Michele Milella
- Department of Medicine, Medical Oncology, University of Verona Hospital Trust, Verona 37134, Italy
| | - Sara Pilotto
- Department of Medicine, Medical Oncology, University of Verona Hospital Trust, Verona 37134, Italy
| |
Collapse
|
20
|
Ni J, Zhang L. Cancer Cachexia: Definition, Staging, and Emerging Treatments. Cancer Manag Res 2020; 12:5597-5605. [PMID: 32753972 PMCID: PMC7358070 DOI: 10.2147/cmar.s261585] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/26/2020] [Indexed: 12/26/2022] Open
Abstract
Cachexia is a multifactorial disease characterized by weight loss via skeletal muscle and adipose tissue loss, an imbalance in metabolic regulation, and reduced food intake. It is caused by factors of catabolism produced by tumors in the systemic circulation as well as physiological factors such as the imbalanced inflammatory activation, proteolysis, autophagy, and lipolysis that may occur with gastric, pancreatic, esophageal, lung cancer, liver, and bowel cancer. Cancer cachexia not only negatively affects the quality of life of patients with cancer but also reduces the effectiveness of anti-cancer chemotherapy and increases its toxicity, leading to increased cancer-related mortality and expenditure of medical resources. Currently, there are no effective medical interventions to completely reverse cachexia and no approved drugs. Adequate nutritional support is the main method of cachexia treatment, while drugs that target the inhibition of catabolism, cell damage, and excessive activation of inflammation are under study. This article reviews recent advances in the diagnosis, staging, and evaluation of cancer cachexia.
Collapse
Affiliation(s)
- Jun Ni
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Li Zhang
- Department of Pulmonary and Critical Care Medicine, Peking Union Medical Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, People's Republic of China
| |
Collapse
|
21
|
Sumi K, Ashida K, Nakazato K. Repeated stretch-shortening contraction of the triceps surae attenuates muscle atrophy and liver dysfunction in a rat model of inflammation. Exp Physiol 2020; 105:1111-1123. [PMID: 32394614 DOI: 10.1113/ep088622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022]
Abstract
NEW FINDINGS What is the central question of this study? Is stretch-shortening contraction effective to attenuate skeletal muscle atrophy and hepatic dysfunction in a rat model of peptidoglycan-polysaccharide (PG-PS)-induced inflammation (PG-PS rat)? What are the main findings and their importance? Stretch-shortening contraction attenuates skeletal muscle atrophy in the trained leg and increases circulating interleukin-10 in PG-PS rats. Stretch-shortening contraction also ameliorates liver dysfunction in PG-PS rats, possibly via increased blood interleukin-10. These findings are important because they suggest that stretch-shortening contraction is effective to maintain liver function in addition to exercised skeletal muscle mass. ABSTRACT Stretch-shortening contraction (SSC) is an effective modality to improve skeletal muscle mass. However, the beneficial effects of SSC in the presence of chronic inflammation remain unclear. Here, we imposed five SSC sessions unilaterally on the triceps surae in young female Lewis rats. Rats were injected with vehicle or peptidoglycan-polysaccharide (PG-PS) to induce long-lasting inflammation. The PG-PS reduced gastrocnemius muscle mass in both legs, but that of the SSC-trained leg was significantly greater than that of the contralateral leg. Circulating pro-inflammatory cytokines, such as IL-1β, were significantly increased by PG-PS injection, even if carrying out SSC. The circulating anti-inflammatory cytokine IL-10 increased with SSC in both healthy and inflammatory conditions. Stretch-shortening contraction also prevented increases in serum aspartate aminotransferase activity and plasma free phenylalanine concentration induced by PG-PS, in comparison to the control resistance exercise consisting of isometric contractions. Moreover, aspartate aminotransferase and phenylalanine concentrations demonstrated a significant and negative correlation with IL-10/IL-1β values (r = -0.61, P = 0.017, and r = -0.66, P = 0.008, respectively). These results suggest that SSC training is effective to reduce both muscle atrophy and the hepatic dysfunction induced by PG-PS, mediated, at least in part, through an increase in circulating IL-10.
Collapse
Affiliation(s)
- Koichiro Sumi
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, Hachiouji, Tokyo, Japan
| | - Kinya Ashida
- Food Microbiology and Function Research Laboratories, R&D Division, Meiji Co., Ltd, Hachiouji, Tokyo, Japan
| | - Koichi Nakazato
- Department of Exercise Physiology, Nippon Sports Science University, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
22
|
Kesting S, Weeber P, Schönfelder M, Renz BW, Wackerhage H, von Luettichau I. Exercise as a Potential Intervention to Modulate Cancer Outcomes in Children and Adults? Front Oncol 2020; 10:196. [PMID: 32154183 PMCID: PMC7047207 DOI: 10.3389/fonc.2020.00196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/05/2020] [Indexed: 12/21/2022] Open
Abstract
Exercise is recommended for the healthy population as it increases fitness and prevents diseases. Moreover, exercise is also applied as an adjunct therapy for patients with various chronic diseases including cancer. Childhood cancer is a rare, heterogeneous disease that differs from adult cancer. Improved therapeutic strategies have increased childhood cancer survival rates to above 80% in developed countries. Although this is higher than the average adult cancer survival rate of about 50%, therapy results often in substantial long-term side effects in childhood cancer survivors. Exercise in adult cancer patients has many beneficial effects and may slow down tumor progression and improve survival in some cancer types, suggesting that exercise may influence cancer cell behavior. In contrast to adults, there is not much data on general effects of exercise in children. Whilst it seems possible that exercise might delay cancer progression or improve survival in children as well, there is no reliable data yet to support this hypothesis. Depending on the type of cancer, animal studies of adult cancer types show that the exercise-induced increase of the catecholamines epinephrine and norepinephrine, have suppressive as well as promoting effects on cancer cells. The diverse effects of exercise in adult cancer patients require investigating whether these results can be achieved in children with cancer.
Collapse
Affiliation(s)
- Sabine Kesting
- Kinderklinik München Schwabing, Department of Pediatrics and Children's Cancer Research Center, TUM School of Medicine, Technical University of Munich, Munich, Germany.,Chair of Preventive Pediatrics, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Peter Weeber
- Exercise Biology, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Martin Schönfelder
- Exercise Biology, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Bernhard W Renz
- Department of General, Visceral, and Transplantation Surgery, Hospital of the University Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Henning Wackerhage
- Exercise Biology, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Irene von Luettichau
- Kinderklinik München Schwabing, Department of Pediatrics and Children's Cancer Research Center, TUM School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
23
|
Gholamian S, Attarzadeh Hosseini SR, Rashidlamir A, Aghaalinejad H. The effects of interval aerobic training on mesenchymal biomarker gene expression, the rate of tumor volume, and cachexia in mice with breast cancer. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:244-250. [PMID: 32405368 PMCID: PMC7211355 DOI: 10.22038/ijbms.2019.39535.9375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/03/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVES It seems that regular exercise can have inhibitory effects on the progression of breast cancer. This study, therefore, aimed to investigate the influences of interval aerobic training on mesenchymal biomarker gene expression, muscle cachexia, and tumor volume changes in mice with breast cancer. MATERIALS AND METHODS Thirty-two female Balb/c mice were allocated to four groups: Exercise Tumor Exercise, Rest Tumor Rest (Control), Rest Tumor Exercise, and Exercise Tumor Rest. Interval aerobic training was done 6 weeks before and 4 weeks after tumor induction. Weight test and inverted screen test were carried out as muscle function tests. Data were analyzed using one-way ANOVA and HSD post hoc. RESULTS The results showed a significant decrease in gene expressions of Twist, Vimentin, and TGF-β in Exercise Tumor Exercise group in comparison with the Control group (P<0.05). Remarkable reduction of the rate of tumor volume was also observed in two training groups (Rest Tumor Exercise, Exercise Tumor Exercise) compared with the control group. According to function tests' results, muscle functions were diminished due to cancer, but interval aerobic training can keep muscles in a normally-functioning state in cancer (P<0.05). CONCLUSION Considering final results, a period of interval aerobic training can be used not only as a prevention method, but also help cancer treatment and impede cachexia by tumor volume reduction, decrease mesenchymal biomarker gene expression, and increase muscle strength functions.
Collapse
Affiliation(s)
- Samira Gholamian
- Department of Exercise Physiology (Biochemistry and Metabolism), Faculty of Sports Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Amir Rashidlamir
- Department of Exercise Physiology, Faculty of Sports Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamid Aghaalinejad
- Department of Sports Sciences, Faculty of Humanities, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
24
|
Avancini A, Sartori G, Gkountakos A, Casali M, Trestini I, Tregnago D, Bria E, Jones LW, Milella M, Lanza M, Pilotto S. Physical Activity and Exercise in Lung Cancer Care: Will Promises Be Fulfilled? Oncologist 2019; 25:e555-e569. [PMID: 32162811 PMCID: PMC7066706 DOI: 10.1634/theoncologist.2019-0463] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/21/2019] [Indexed: 12/25/2022] Open
Abstract
Lung cancer remains the leading cause of cancer‐related death worldwide. Affected patients frequently experience debilitating disease‐related symptoms, including dyspnea, cough, fatigue, anxiety, depression, insomnia, and pain, despite the progresses achieved in term of treatment efficacy. Physical activity and exercise are nonpharmacological interventions that have been shown to improve fatigue, quality of life, cardiorespiratory fitness, pulmonary function, muscle mass and strength, and psychological status in patients with lung cancer. Moreover, physical fitness levels, especially cardiorespiratory endurance and muscular strength, are demonstrated to be independent predictors of survival. Nevertheless, patients with lung cancer frequently present insufficient levels of physical activity and exercise, and these may contribute to quality of life impairment, reduction in functional capacity with skeletal muscle atrophy or weakness, and worsening of symptoms, particularly dyspnea. The molecular bases underlying the potential impact of exercise on the fitness and treatment outcome of patients with lung cancer are still elusive. Counteracting specific cancer cells’ acquired capabilities (hallmarks of cancer), together with preventing treatment‐induced adverse events, represent main candidate mechanisms. To date, the potential impact of physical activity and exercise in lung cancer remains to be fully appreciated, and no specific exercise guidelines for patients with lung cancer are available. In this article, we perform an in‐depth review of the evidence supporting physical activity and exercise in lung cancer and suggest that integrating this kind of intervention within the framework of a global, multidimensional approach, taking into account also nutritional and psychological aspects, might be the most effective strategy. Implications for Practice Although growing evidence supports the safety and efficacy of exercise in lung cancer, both after surgery and during and after medical treatments, most patients are insufficiently active or sedentary. Engaging in exercise programs is particularly arduous for patients with lung cancer, mainly because of a series of physical and psychosocial disease‐related barriers (including the smoking stigma). A continuous collaboration among oncologists and cancer exercise specialists is urgently needed in order to develop tailored programs based on patients’ needs, preferences, and physical and psychological status. In this regard, benefit of exercise appears to be potentially enhanced when administered as a multidimensional, comprehensive approach to patients’ well‐being. The potential effect of physical activity in lung cancer is not fully understood, and no specific exercise guidelines for lung cancer patients are available. This article reviews the evidence supporting physical activity and exercise in lung cancer and suggests that this type of intervention, along with considerations for the nutritional and psychological aspects of such an intervention, might be the most effective strategy.
Collapse
Affiliation(s)
- Alice Avancini
- Section of Clinical and Experimental Biomedical Science, Department of Medicine, University of VeronaItaly
| | - Giulia Sartori
- Section of Medical Oncology, Department of Medicine, University of VeronaItaly
- Azienda Ospedaliera Universitaria IntegrataVeronaItaly
| | - Anastasios Gkountakos
- Department of Diagnostics and Public Health, University and Hospital Trust of VeronaVeronaItaly
| | - Miriam Casali
- Section of Medical Oncology, Department of Medicine, University of VeronaItaly
- Azienda Ospedaliera Universitaria IntegrataVeronaItaly
| | - Ilaria Trestini
- Section of Medical Oncology, Department of Medicine, University of VeronaItaly
- Azienda Ospedaliera Universitaria IntegrataVeronaItaly
| | - Daniela Tregnago
- Section of Medical Oncology, Department of Medicine, University of VeronaItaly
- Azienda Ospedaliera Universitaria IntegrataVeronaItaly
| | - Emilio Bria
- Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)RomeItaly
- Università Cattolica Del Sacro CuoreRomeItaly
| | - Lee W. Jones
- Department of Medicine, Memorial Sloan Kettering Cancer CenterNew YorkNew YorkUSA
- Weill Cornell Medical CollegeNew YorkNew YorkUSA
| | - Michele Milella
- Section of Medical Oncology, Department of Medicine, University of VeronaItaly
- Azienda Ospedaliera Universitaria IntegrataVeronaItaly
| | - Massimo Lanza
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of VeronaItaly
| | - Sara Pilotto
- Section of Medical Oncology, Department of Medicine, University of VeronaItaly
- Azienda Ospedaliera Universitaria IntegrataVeronaItaly
| |
Collapse
|
25
|
Antoun S, Raynard B. Muscle protein anabolism in advanced cancer patients: response to protein and amino acids support, and to physical activity. Ann Oncol 2019; 29 Suppl 2:ii10-ii17. [PMID: 29506227 DOI: 10.1093/annonc/mdx809] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the field of oncology, it is well recognized that a decrease in mass, density, strength, or function of skeletal muscle is associated to increased treatment toxicities and postoperative complications, as well as poor progression-free survival and overall survival. The ability of amino acids to stimulate protein synthesis in cancer patients is reduced. Considering nutritional intervention, this anabolic resistance could be in a part counteracted by increasing protein or by giving specific amino acids. In particular, Leucine might counteract this anabolic resistance not only by increasing substrate availability, but also by directly modulating the anabolic signal pathway. Few studies showed the possibility of increasing muscle protein synthesis by specific nutriments and/or by increasing amino acids or protein administration. In addition, whereas many studies provide evidence of a benefit of adapted physical activity in advanced cancer patients, it is difficult to specify the most appropriate type of exercise, and the optimum rhythm and intensity. Moreover, the benefits of physical activities and of protein support seem greater when it is started at the precachexia stage rather than at the cachexia stage, and their benefits are limited or nonexistent at the stage of refractory cachexia. Future approaches should integrate the combination of several complementary treatments in order to prevent (or improve) cachexia and/or sarcopenia in cancer patients.
Collapse
Affiliation(s)
- S Antoun
- Département Ambulatoire, Gustave-Roussy, Université Paris-Saclay, Villejuif, France
| | - B Raynard
- Département Interdisciplinaire de Soins de Support, Gustave Roussy, Université Paris-Saclay, Chevilly-Larue, France
| |
Collapse
|
26
|
Dev R, Bruera E, Dalal S. Insulin resistance and body composition in cancer patients. Ann Oncol 2019; 29 Suppl 2:ii18-ii26. [PMID: 29506229 DOI: 10.1093/annonc/mdx815] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer cachexia, weight loss with altered body composition, is a multifactorial syndrome propagated by symptoms that impair caloric intake, tumor byproducts, chronic inflammation, altered metabolism, and hormonal abnormalities. Cachexia is associated with reduced performance status, decreased tolerance to chemotherapy, and increased mortality in cancer patients. Insulin resistance as a consequence of tumor byproducts, chronic inflammation, and endocrine dysfunction has been associated with weight loss in cancer patients. Insulin resistance in cancer patients is characterized by increased hepatic glucose production and gluconeogenesis, and unlike type 2 diabetes, normal fasting glucose with high, normal or low levels of insulin. Cancer cachexia results in altered body composition with the loss of lean muscle mass with or without the loss of adipose tissue. Alteration in visceral adiposity, accumulation of intramuscular adipose tissue, and secretion of adipocytokines from adipose cells may play a role in promoting the metabolic derangements associated with cachexia including a proinflammatory environment and insulin resistance. Increased production of ghrelin, testosterone deficiency, and low vitamin D levels may also contribute to altered metabolism of glucose. Cancer cachexia cannot be easily reversed by standard nutritional interventions and identifying and treating cachexia at the earliest stage of development is advocated. Experts advocate for multimodal therapy to address symptoms that impact caloric intake, reduce chronic inflammation, and treat metabolic and endocrine derangements, which propagate the loss of weight. Treatment of insulin resistance may be a critical component of multimodal therapy for cancer cachexia and more research is needed.
Collapse
Affiliation(s)
- R Dev
- Department of Symptom Control & Palliative Medicine, University of Texas MD Anderson Cancer Center, Houston, USA
| | - E Bruera
- Department of Symptom Control & Palliative Medicine, University of Texas MD Anderson Cancer Center, Houston, USA
| | - S Dalal
- Department of Symptom Control & Palliative Medicine, University of Texas MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
27
|
Exercise training counteracts urothelial carcinoma-induced alterations in skeletal muscle mitochondria phospholipidome in an animal model. Sci Rep 2019; 9:13423. [PMID: 31530825 PMCID: PMC6748971 DOI: 10.1038/s41598-019-49010-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/07/2019] [Indexed: 12/12/2022] Open
Abstract
Cancer associated body wasting is the cause of physical disability, reduced tolerance to anticancer therapy and reduced survival of cancer patients and, similarly to cancer, its incidence is increasing. There is no cure for this clinical condition, and the pathophysiological process involved is largely unknown. Exercise training appears as the gold standard non-pharmacological therapy for the management of this wasting syndrome. Herein we used a lipidomics approach based on liquid chromatography coupled with high-resolution mass spectrometry (LC-HR-MS) to study the effect of exercise in the modulation of phospholipids profile of mitochondria isolated from gastrocnemius muscle of a pre-clinical model of urothelial carcinoma-related body wasting (BBN induced), submitted to 13 weeks of treadmill exercise after diagnosis. Multivariate analysis showed a close relationship between the BBN exercise group and both control groups (control sedentary and control exercise), while the BBN sedentary group was significantly separated from the control groups and the BBN exercise group. Univariate statistical analysis revealed differences mainly in phosphatidylserine (PS) and cardiolipin (CL), although some differences were also observed in phosphatidylinositol (PI, LPI) and phosphatidylcholine (PC) phospholipids. PS with shorter fatty acyl chains were up-regulated in the BBN sedentary group, while the other species of PS with longer FA and a higher degree of unsaturation were down-regulated, but the BBN exercise group was mostly similar to control groups. Remarkably, exercise training prevented these alterations and had a positive impact on the ability of mitochondria to produce ATP, restoring the healthy phospholipid profile. The remodelling of mitochondria phospholipid profile in rats with urothelial carcinoma allowed confirming the importance of the lipid metabolism in mitochondria dysfunction in cancer-induced skeletal muscle remodelling. The regulation of phospholipid biosynthetic pathways observed in the BBN exercise group supported the current perspective that exercise is an adequate therapeutic approach for the management of cancer-related muscle remodeling.
Collapse
|
28
|
Batatinha HAP, Diniz TA, de Souza Teixeira AA, Krüger K, Rosa-Neto JC. Regulation of autophagy as a therapy for immunosenescence-driven cancer and neurodegenerative diseases: The role of exercise. J Cell Physiol 2019; 234:14883-14895. [PMID: 30756377 DOI: 10.1002/jcp.28318] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/26/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Aging is one of the risk factors for the development of low-grade inflammation morbidities, such as several types of cancer and neurodegenerative diseases, due to changes in the metabolism, hormonal secretion, and immunosenescence. The senescence of the immune system leads to improper control of infections and tissue damage increasing age-related diseases. One of the mechanisms that maintain cellular homeostasis is autophagy, a cell-survival mechanism, and it has been proposed as one of the most powerful antiaging therapies. Regular exercise can reestablish autophagy, probably through AMP-activated protein kinase activation, and help in reducing the age-related senescence diseases. Therefore, in this study, we discuss the effects of exercise training in immunosenescence and autophagy, preventing the two main age-related disease, cancer and neurodegeneration.
Collapse
Affiliation(s)
| | - Tiego Aparecido Diniz
- Department of Cell and Developmental Biology, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Karsten Krüger
- Department Exercise and Health, Institute of Sports Science, Leibniz University Hannover, Hannover, Germany
| | - Jose Cesar Rosa-Neto
- Department of Cell and Developmental Biology, University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
de Castro GS, Simoes E, Lima JDCC, Ortiz-Silva M, Festuccia WT, Tokeshi F, Alcântara PS, Otoch JP, Coletti D, Seelaender M. Human Cachexia Induces Changes in Mitochondria, Autophagy and Apoptosis in the Skeletal Muscle. Cancers (Basel) 2019; 11:E1264. [PMID: 31466311 PMCID: PMC6770124 DOI: 10.3390/cancers11091264] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 02/06/2023] Open
Abstract
Cachexia is a wasting syndrome characterized by the continuous loss of skeletal muscle mass due to imbalance between protein synthesis and degradation, which is related with poor prognosis and compromised quality of life. Dysfunctional mitochondria are associated with lower muscle strength and muscle atrophy in cancer patients, yet poorly described in human cachexia. We herein investigated mitochondrial morphology, autophagy and apoptosis in the skeletal muscle of patients with gastrointestinal cancer-associated cachexia (CC), as compared with a weight-stable cancer group (WSC). CC showed prominent weight loss and increased circulating levels of serum C-reactive protein, lower body mass index and decreased circulating hemoglobin, when compared to WSC. Electron microscopy analysis revealed an increase in intermyofibrillar mitochondrial area in CC, as compared to WSC. Relative gene expression of Fission 1, a protein related to mitochondrial fission, was increased in CC, as compared to WSC. LC3 II, autophagy-related (ATG) 5 and 7 essential proteins for autophagosome formation, presented higher content in the cachectic group. Protein levels of phosphorylated p53 (Ser46), activated caspase 8 (Asp384) and 9 (Asp315) were also increased in the skeletal muscle of CC. Overall, our results demonstrate that human cancer-associated cachexia leads to exacerbated muscle-stress response that may culminate in muscle loss, which is in part due to disruption of mitochondrial morphology, dysfunctional autophagy and increased apoptosis. To the best of our knowledge, this is the first report showing quantitative morphological alterations in skeletal muscle mitochondria in cachectic patients.
Collapse
Affiliation(s)
- Gabriela S de Castro
- Cancer Metabolism Research Group, Department of Cell and Tissue Biology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil.
| | - Estefania Simoes
- Cancer Metabolism Research Group, Department of Cell and Tissue Biology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Joanna D C C Lima
- Cancer Metabolism Research Group, Department of Cell and Tissue Biology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Milene Ortiz-Silva
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - William T Festuccia
- Department of Physiology & Biophysics, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
| | - Flávio Tokeshi
- Department of Clinical Surgery, Faculty of Medicine, University of São Paulo, 01246-903 São Paulo, Brazil
| | - Paulo S Alcântara
- Department of Clinical Surgery, Faculty of Medicine, University of São Paulo, 01246-903 São Paulo, Brazil
| | - José P Otoch
- Department of Clinical Surgery, Faculty of Medicine, University of São Paulo, 01246-903 São Paulo, Brazil
| | - Dario Coletti
- Department of Biological Adaptation and Aging, B2A (CNRS UMR 8256-INSERM ERL U1164-UPMC P6), Sorbonne University, 75005 Paris, France
| | - Marilia Seelaender
- Cancer Metabolism Research Group, Department of Cell and Tissue Biology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, Brazil
- Department of Clinical Surgery, Faculty of Medicine, University of São Paulo, 01246-903 São Paulo, Brazil
| |
Collapse
|
30
|
Moreira VM, Almeida D, da Silva Franco CC, Gomes RM, Palma-Rigo K, Prates KV, Tófolo LP, Malta A, Francisco FA, Pavanello A, Previate C, da Silva Silveira S, Ribeiro TA, Martins IP, de Moraes AMP, Matiusso CCI, Saavedra LPJ, de Barros Machado KG, Fabbri Corá T, Gongora A, Cardozo LE, da Silva PHO, Venci R, Vieira E, de Oliveira JC, Miranda RA, de Souza HM, Miksza D, da Costa Lima LD, de Castro-Prado MAA, Rinaldi W, de Freitas Mathias PC. Moderate exercise training since adolescence reduces Walker 256 tumour growth in adult rats. J Physiol 2019; 597:3905-3925. [PMID: 31210356 DOI: 10.1113/jp277645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
KEY POINTS Cancer growth, cell proliferation and cachexia index can be attenuated by the beneficial programming effect of moderate exercise training, especially if it begins in adolescence. Walker 256 tumour-bearing rats who started exercise training during adolescence did not revert the basal low glycaemia and insulinaemia observed before tumour cell inoculation. The moderate exercise training improved glucose tolerance and peripheral insulin sensitivity only in rats exercised early in adolescence. The chronic effects of our exercise protocol are be beneficial to prevent cancer cachexia and hold clear potential as a nonpharmacological therapy of insulin sensitization. ABSTRACT We tested the hypothesis that moderate exercise training, performed early, starting during adolescence or later in life during adulthood, can inhibit tumour cell growth as a result of changes in biometric and metabolic markers. Male rats that were 30 and 70 days old performed a treadmill running protocol over 8 weeks for 3 days week-1 , 44 min day-1 and at 55-65% V ̇ O 2 max . After the end of training, a batch of rats was inoculated with Walker 256 carcinoma cells. At 15 days after carcinoma cell inoculation, the tumour was weighed and certain metabolic parameters were evaluated. The data demonstrated that physical performance was better in rats that started exercise training during adolescence according to the final workload and V ̇ O 2 max . Early or later moderate exercise training decreased the cachexia index, cell proliferation and tumour growth; however, the effects were more pronounced in rats that exercised during adolescence. Low glycaemia, insulinaemia and tissue insulin sensitivity was not reverted in Walker 256 tumour-bearing rats who trained during adolescence. Cancer growth can be attenuated by the beneficial programming effect of moderate exercise training, especially if it begins during adolescence. In addition, improvement in glucose-insulin homeostasis might be involved in this process.
Collapse
Affiliation(s)
- Veridiana Mota Moreira
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil.,Department of Physical Education, State University of Maringá, Maringá, PR, Brazil
| | - Douglas Almeida
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | | | | | - Kesia Palma-Rigo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Kelly Valério Prates
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Laize Peron Tófolo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil.,Department of Physical Education, State University of Maringá, Maringá, PR, Brazil
| | - Ananda Malta
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Flávio Andrade Francisco
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Audrei Pavanello
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Carina Previate
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Sandra da Silva Silveira
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Tatiane Aparecida Ribeiro
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Isabela Peixoto Martins
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Ana Maria Praxedes de Moraes
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Camila Cristina Ianoni Matiusso
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Lucas Paulo Jacinto Saavedra
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Katia Gama de Barros Machado
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Thauany Fabbri Corá
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Adriane Gongora
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Lucas Eduardo Cardozo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil.,Department of Physical Education, State University of Maringá, Maringá, PR, Brazil
| | - Paulo Henrique Olivieri da Silva
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil.,Department of Physical Education, State University of Maringá, Maringá, PR, Brazil
| | - Renan Venci
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Elaine Vieira
- Post-Graduate Program of Physical Education, Catholic University of Brasília, Águas Claras, DF, Brazil
| | | | - Rosiane Aparecida Miranda
- Laboratory of Molecular Endocrinology, Carlos Chagas Filho Biophysis Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Daniele Miksza
- Department of Physiology, State University of Londrina, Londrina, PR, Brazil
| | - Luiz Delmar da Costa Lima
- Superior School of Physical Education and Physical Therapy of Goiás State, State University of Goiás, Goiânia, GO, Brazil
| | - Marialba Avezum Alves de Castro-Prado
- Laboratory of Microorganisms Genetics and Mutagenesis, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| | - Wilson Rinaldi
- Department of Physical Education, State University of Maringá, Maringá, PR, Brazil
| | - Paulo Cezar de Freitas Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, PR, Brazil
| |
Collapse
|
31
|
Baccam A, Benoni-Sviercovich A, Rocchi M, Moresi V, Seelaender M, Li Z, Adamo S, Xue Z, Coletti D. The Mechanical Stimulation of Myotubes Counteracts the Effects of Tumor-Derived Factors Through the Modulation of the Activin/Follistatin Ratio. Front Physiol 2019; 10:401. [PMID: 31068826 PMCID: PMC6491697 DOI: 10.3389/fphys.2019.00401] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/22/2019] [Indexed: 11/28/2022] Open
Abstract
Activin negatively affects muscle fibers and progenitor cells in aging (sarcopenia) and in chronic diseases characterized by severe muscle wasting (cachexia). High circulating activin levels predict poor survival in cancer patients. However, the relative impact of activin in mediating muscle atrophy and hampered homeostasis is still unknown. To directly assess the involvement of activin, and its physiological inhibitor follistatin, in cancer-induced muscle atrophy, we cultured C2C12 myotubes in the absence or in the presence of a mechanical stretching stimulus and in the absence or presence of C26 tumor-derived factors (CM), so as to mimic the mechanical stimulation of exercise and cancer cachexia, respectively. We found that CM induces activin release by myotubes, further exacerbating the negative effects of tumor-derived factors. In addition, mechanical stimulation is sufficient to counteract the adverse tumor-induced effects on muscle cells, in association with an increased follistatin/activin ratio in the cell culture medium, indicating that myotubes actively release follistatin upon stretching. Recombinant follistatin counteracts tumor effects on myotubes exclusively by rescuing fusion index, suggesting that it is only partially responsible for the stretch-mediated rescue. Therefore, besides activin, other tumor-derived factors may play a significant role in mediating muscle atrophy. In addition to increasing follistatin secretion mechanical stimulation induces additional beneficial responses in myotubes. We propose that in animal models of cancer cachexia and in cancer patients purely mechanical stimuli play an important role in mediating the rescue of the muscle homeostasis reported upon exercise.
Collapse
Affiliation(s)
- Alexandra Baccam
- Biology of Adaptation and Aging (B2A), Sorbonne Université, UMR8256 - INSERM ERL U1164, Paris, France.,Section of Histology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy
| | - Alexandra Benoni-Sviercovich
- Biology of Adaptation and Aging (B2A), Sorbonne Université, UMR8256 - INSERM ERL U1164, Paris, France.,Section of Histology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy
| | - Marco Rocchi
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
| | - Viviana Moresi
- Section of Histology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy
| | - Marilia Seelaender
- Institute of Biomedical Sciences, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil
| | - Zhenlin Li
- Section of Histology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Sergio Adamo
- Biology of Adaptation and Aging (B2A), Sorbonne Université, UMR8256 - INSERM ERL U1164, Paris, France.,Interuniversity Institute of Myology, Rome, Italy
| | - Zhigang Xue
- Section of Histology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Dario Coletti
- Biology of Adaptation and Aging (B2A), Sorbonne Université, UMR8256 - INSERM ERL U1164, Paris, France.,Section of Histology, Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy.,Interuniversity Institute of Myology, Rome, Italy
| |
Collapse
|
32
|
Moreira VM, da Silva Franco CC, Prates KV, Gomes RM, de Moraes AMP, Ribeiro TA, Martins IP, Previate C, Pavanello A, Matiusso CCI, Almeida DL, Francisco FA, Malta A, Tófolo LP, da Silva Silveira S, Saavedra LPJ, Machado K, da Silva PHO, Fabrício GS, Palma-Rigo K, de Souza HM, de Fátima Silva F, Biazi GR, Pereira TS, Vieira E, Miranda RA, de Oliveira JC, da Costa Lima LD, Rinaldi W, Ravanelli MI, de Freitas Mathias PC. Aerobic Exercise Training Attenuates Tumor Growth and Reduces Insulin Secretion in Walker 256 Tumor-Bearing Rats. Front Physiol 2018; 9:465. [PMID: 29867528 PMCID: PMC5953341 DOI: 10.3389/fphys.2018.00465] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 04/13/2018] [Indexed: 12/19/2022] Open
Abstract
Aerobic exercise training can improve insulin sensitivity in many tissues; however, the relationship among exercise, insulin, and cancer cell growth is unclear. We tested the hypothesis that aerobic exercise training begun during adolescence can attenuate Walker 256 tumor growth in adult rats and alter insulin secretion. Thirty-day-old male Wistar rats engaged in treadmill running for 8 weeks, 3 days/week, 44 min/day, at 55-65% VO2max until they were 90 days old (TC, Trained Control). An equivalently aged group was kept inactive during the same period (SC, Sedentary Control). Then, half the animals of the SC and TC groups were reserved as the control condition and the other half were inoculated with Walker 256 cancer cells, yielding two additional groups (Sedentary Walker and Trained Walker). Zero mortalities were observed in tumor-bearing rats. Body weight (BW), food intake, plasma glucose, insulin levels, and peripheral insulin sensitivity were analyzed before and after tumor cell inoculation. We also evaluated tumor growth, metastasis and cachexia. Isolated pancreatic islets secretory activity was analyzed. In addition, we evaluated mechanic sensibility. Our results showed improved physical performance according to the final workload and VO2max and reduced BW in trained rats at the end of the running protocol. Chronic adaptation to the aerobic exercise training decreased tumor weight, cachexia and metastasis and were associated with low glucose and insulin levels and high insulin sensitivity before and after tumor cell inoculation. Aerobic exercise started at young age also reduced pancreatic islet insulin content and insulin secretion in response to a glucose stimulus, without impairing islet morphology in trained rats. Walker 256 tumor-bearing sedentary rats also presented reduced pancreatic islet insulin content, without changing insulin secretion through isolated pancreatic islets. The mechanical sensitivity test indicated that aerobic exercise training did not cause injury or trigger inflammatory processes prior to tumor cell inoculation. Taken together, the current study suggests that aerobic exercise training applied during adolescence may mitigate tumor growth and related disorders in Walker 256 tumor-bearing adult rats. Improved insulin sensibility, lower glucose and insulin levels and/or reduced insulin secretion stimulated by glucose may be implicated in this tumor attenuation.
Collapse
Affiliation(s)
- Veridiana Mota Moreira
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
- Department of Physical Education, State University of Maringá, Maringá, Brazil
- Department of Physical Education, Ingá University Center, UNINGÁ, Maringá, Brazil
| | | | - Kelly Valério Prates
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Rodrigo Mello Gomes
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
- Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Ana Maria Praxedes de Moraes
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Tatiane Aparecida Ribeiro
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Isabela Peixoto Martins
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Carina Previate
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Audrei Pavanello
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Camila Cristina Ianoni Matiusso
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Douglas Lopes Almeida
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Flávio Andrade Francisco
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Ananda Malta
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Laize Peron Tófolo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
- Department of Physical Education, State University of Maringá, Maringá, Brazil
- Department of Physical Education, Biomedical Sciences Faculty of Cacoal, Cacoal, Brazil
| | - Sandra da Silva Silveira
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Lucas Paulo Jacinto Saavedra
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Katia Machado
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Paulo Henrique Olivieri da Silva
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
- Department of Physical Education, State University of Maringá, Maringá, Brazil
| | - Gabriel S. Fabrício
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Kesia Palma-Rigo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | | | | | | | - Taís Susane Pereira
- Laboratory of Microorganisms Genetics and Mutagenesis, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Elaine Vieira
- Post-Graduate Program of Physical Education, Catholic University of Brasília, Águas Claras, Brazil
| | - Rosiane Aparecida Miranda
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcântara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Luiz Delmar da Costa Lima
- Superior School of Physical Education and Physical Therapy of Goiás State, State University of Goiás, Goiânia, Brazil
| | - Wilson Rinaldi
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
- Department of Physical Education, State University of Maringá, Maringá, Brazil
| | | | - Paulo Cezar de Freitas Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| |
Collapse
|
33
|
Coletti D. Chemotherapy-induced muscle wasting: an update. Eur J Transl Myol 2018; 28:7587. [PMID: 29991991 PMCID: PMC6036312 DOI: 10.4081/ejtm.2018.7587] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 02/08/2023] Open
Abstract
The majority of cancers are associated to cachexia, a severe form of weight loss mostly accounted for by skeletal muscle wasting. Cancer patients are often treated with chemotherapy, whose side effects are at times neglected or underestimated. Paradoxically, chemotherapy itself can induce muscle wasting with severe, cancer-independent effects on muscle homeostasis. Since muscle wasting is a primary marker of poor prognosis for cancer patients and negatively affects their quality of life, the systemic consequences of chemotherapy in this context must be fully characterized and taken into account. Ten years ago a precursor study in an animal cancer model was published in the European Journal of Translation Myology (back then, Basic and Applied Myology), highlighting that the side effects of chemotherapy include muscle wasting, possibly mediated by NF-κB activation. This paper, entitled «Chemotherapy-induced muscle wasting: association with NF-κB and cancer cachexia», is now being reprinted for the inaugural issue of the «Ejtm Seminal Paper Series». In this short review we discuss those results in the light of the most recent advances in the study of chemotherapy-induced muscle wasting.
Collapse
Affiliation(s)
- Dario Coletti
- (1) Biology of Adaptation and Aging, Sorbonne Université, Paris, France; (2) Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Italy
| |
Collapse
|
34
|
Ferioli M, Zauli G, Martelli AM, Vitale M, McCubrey JA, Ultimo S, Capitani S, Neri LM. Impact of physical exercise in cancer survivors during and after antineoplastic treatments. Oncotarget 2018; 9:14005-14034. [PMID: 29568412 PMCID: PMC5862633 DOI: 10.18632/oncotarget.24456] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 01/23/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer patients experience symptoms and adverse effects of treatments that may last even after the end of treatments. Exercise is a safe, non-pharmacological and cost-effective therapy that can provide several health benefits in cancer patient and survivors, reducing cancer symptoms and cancer treatment side effects. The purpose of this review is to describe how the physical exercise is capable to reduce cancer symptoms and cancer treatment side effects. We realized a pragmatic classification of symptoms, dividing them into physical, psychological and psycho-physical aspects. For each symptom we discuss causes, therapies, we analyse the effects of physical exercise and we summarize the most effective type of exercise to reduce the symptoms. This review also points out what are the difficulties that patients and survivors face during the practice of physical activity and provides some solutions to overcome these barriers. Related to each specific cancer, it emerges that type, frequency and intensity of physical exercise could be prescribed and supervised as a therapeutic program, like it occurs for the type, dose and duration of a drug treatment.
Collapse
Affiliation(s)
- Martina Ferioli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- CoreLab, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Simona Ultimo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Silvano Capitani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
35
|
Short-term l-arginine supplementation attenuates elevation of interleukin 6 level after resistance exercise in overweight men. Clin Nutr ESPEN 2018; 22:43-47. [PMID: 29415833 DOI: 10.1016/j.clnesp.2017.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 06/05/2017] [Accepted: 09/05/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIM l-Arginine (l-arg) supplementation and resistance exercise can induce changes in inflammatory and anti-inflammatory cytokines; however, it has not been investigated in obese hypertensive men. This study examines the effects of short-term l-arg supplementation and acute resistance exercise (AREX) on cytokine levels in obese hypertensive men. METHODS Eight obese hypertensive men aged 46 ± 6 yrs. with an average body weight of 92.56 ± 9.9 kg and a BMI of 31.68 ± 2.18 kg/m2 participated in a randomized, double-blinded, crossover study. The patients were distributed into exercise groups based on the type of supplementation (6 g/day of placebo or l-arg for 7 days). Supplementation periods were separated by a seven-day washout period. The AREX regimen consisted of eight exercises with an exercise intensity of 60% of 1 repetition maximum. The interleukins IL-1ra, IL-6, and IL-10 and the IL-6/IL10 ratio were determined at rest, immediately after exercise and 1 h after exercise sessions. RESULTS IL-1ra levels exhibited a significant difference both immediately and 1 h after exercise when the l-arg and placebo groups were compared (P < 0.05). IL-6 levels increased significantly after exercise in the placebo group compared with the l-arg group (P < 0.05). The placebo group showed a decrease in the IL-10 levels 1 h after exercise compared with resting levels (P < 0.05). The IL-6/IL-10 ratio showed a statistically significant increase in the placebo group after exercise compared to the l-arg group (P < 0.05). CONCLUSIONS LARG supplementation attenuates the cytokine increase after AREX, in particular peak IL-6 levels decrease and exercise induced decreases in IL-10 levels are attenuated.
Collapse
|
36
|
Zhang Y, Pan X, Sun Y, Geng YJ, Yu XY, Li Y. The Molecular Mechanisms and Prevention Principles of Muscle Atrophy in Aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:347-368. [PMID: 30390260 DOI: 10.1007/978-981-13-1435-3_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Muscle atrophy in aging is characterized by progressive loss of muscle mass and function. Muscle mass is determined by the balance of synthesis and degradation of protein, which are regulated by several signaling pathways such as ubiquitin-proteasome system, autophagy-lysosome systems, oxidative stress, proinflammatory cytokines, hormones, and so on. Sufficient nutrition can enhance protein synthesis, while exercise can improve the quality of life in the elderly. This chapter will discuss the epidemiology, pathogenesis, as well as the current treatment for aging-induced muscular atrophy.
Collapse
Affiliation(s)
- Yu Zhang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Xiangbin Pan
- Department of Cardiac Surgery, Fuwai Hospital, Beijing, People's Republic of China
| | - Yi Sun
- Fuwai Yunnan Cardiovascular Hospital, Kunming, Yunnan, People's Republic of China
| | | | - Xi-Yong Yu
- Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yangxin Li
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
37
|
Mostarda C, Castro-Filha J, Reis AD, Sevílio M, Dias CJ, Silva-Filho AC, Garcia JBS, do Desterro Nascimento M, Coelho-Junior HJ, Rodrigues B. Short-term combined exercise training improves cardiorespiratory fitness and autonomic modulation in cancer patients receiving adjuvant therapy. J Exerc Rehabil 2017; 13:599-607. [PMID: 29114536 PMCID: PMC5667608 DOI: 10.12965/jer.1735048.524] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 10/16/2017] [Indexed: 01/15/2023] Open
Abstract
The present study aimed to investigate the impact of a short-term exercise training (ET) on the cardiorespiratory fitness and autonomic modulation of women with breast cancer who were receiving adjuvant radiotherapy, chemotherapy or hormonotherapy. Eighteen women previously diagnosed with breast cancer receiving adjuvant radiotherapy, chemotherapy or hormone therapy were randomly allocated into breast cancer nonexercise (BC) and exercise groups (BC+Ex). Moreover, nine healthy physically inactive volunteers were recruited to compose the noncancer control group (CG). The BC+Ex group was underwent to a combined ET program, which was based on resistance, aerobic and flexibility exercises. ET was performed 3 times a week, on nonconsecutive days, for 4 weeks at the hospital room under the professional supervision. In turn, BC and CG remained without be engaged in physical exercise programs. Volunteers were evaluated regarding their cardiorespiratory fitness and autonomic modulation (i.e., time, frequency domains, and nonlinear [symbolic analysis]) before and after the end of the ET program. A priori, data indicate that women patients with breast cancer showed impaired exercise tolerance, as well as autonomic dysfunction in comparison with age-matched healthy control subjects. However, a 1-month combined ET program could reverse such impairments, so that after the intervention, BC+Ex and CG showing similar results in the cardiorespiratory test and heart rate variability analysis. In conclusion, data of the current study indicate that 1 month of ET is able to reverse impaired cardiorespiratory fitness and autonomic modulation in women with breast cancer receiving adjuvant therapy.
Collapse
Affiliation(s)
- Cristiano Mostarda
- Physical Education Department, Universidade Federal do Maranhão (UFMA), São Luis, Brazil.,Laboratory of Cardiovascular Adaptations to Exercise (LACORE), São Luis, Brazil
| | - Jurema Castro-Filha
- Physical Education Department, Universidade Federal do Maranhão (UFMA), São Luis, Brazil
| | - Andréa Dias Reis
- Physical Education Department, Universidade Federal do Maranhão (UFMA), São Luis, Brazil
| | - Mário Sevílio
- Physical Education Department, Universidade Federal do Maranhão (UFMA), São Luis, Brazil
| | - Carlos José Dias
- Physical Education Department, Universidade Federal do Maranhão (UFMA), São Luis, Brazil.,Laboratory of Cardiovascular Adaptations to Exercise (LACORE), São Luis, Brazil
| | - Antonio Carlos Silva-Filho
- Physical Education Department, Universidade Federal do Maranhão (UFMA), São Luis, Brazil.,Laboratory of Cardiovascular Adaptations to Exercise (LACORE), São Luis, Brazil
| | | | | | | | - Bruno Rodrigues
- Faculty of Physical Education, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
38
|
Wilms B, Schmid SM, Luley K, Wiskemann J, Lehnert H. [Prevention and treatment of cachexia : Exercise and nutritional therapy]. Internist (Berl) 2017; 57:971-977. [PMID: 27631528 DOI: 10.1007/s00108-016-0130-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Cachexia is a multifactorial and complex syndrome characterized by progressive functional impairment and ongoing loss in quality of life, which lead to a deterioration of the prognosis for affected patients. The prevalence of cachexia can be very high and is up to 80 % in patients with malignant tumors. OBJECTIVE The aim of the study was to assess the relevance of exercise and nutrition in the prevention and therapy of cachexia. METHODS An evaluation of the current literature on exercise and nutritional therapy in patients with cachexia or with advanced stage diseases where a high prevalence of cachexia is probable, was carried out. RESULTS There is a lack of scientific evidence for the benefits of exercise in cachexia. A major problem of relevant studies was that cachexia was frequently not defined according to valid criteria; however, data indicate a benefit of exercise training in patients with advanced diseases associated with a high prevalence of cachexia. A solely nutritional intervention and dietary counselling seem to be of minimal benefit. The administration of omega 3 fatty acids is controversially discussed. CONCLUSION Although there is a lack of data on the effects of exercise and nutritional therapy in cachexia, there is evidence for the benefits. The present data indicate the necessity for the use of a multimodal treatment including exercise, nutritional and pharmacological therapy in cachexia. There is a great necessity for prospective studies.
Collapse
Affiliation(s)
- B Wilms
- Medizinische Klinik I, Universitätsklinikum Schleswig-Holstein, Ratzeburger Allee 160, 23538, Lübeck, Deutschland
| | - S M Schmid
- Medizinische Klinik I, Universitätsklinikum Schleswig-Holstein, Ratzeburger Allee 160, 23538, Lübeck, Deutschland.
| | - K Luley
- Medizinische Klinik I, Universitätsklinikum Schleswig-Holstein, Ratzeburger Allee 160, 23538, Lübeck, Deutschland
| | - J Wiskemann
- Medizinische Onkologie, Nationales Centrum für Tumorerkrankungen, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - H Lehnert
- Medizinische Klinik I, Universitätsklinikum Schleswig-Holstein, Ratzeburger Allee 160, 23538, Lübeck, Deutschland
| |
Collapse
|
39
|
Ferreira R, Nogueira-Ferreira R, Vitorino R, Santos LL, Moreira-Gonçalves D. The impact of exercise training on adipose tissue remodelling in cancer cachexia. Porto Biomed J 2017; 2:333-339. [PMID: 32258790 DOI: 10.1016/j.pbj.2017.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 02/22/2017] [Indexed: 01/10/2023] Open
Abstract
Cachexia affects the majority of patients with advanced cancer and no effective treatment is currently available to address this paraneoplastic syndrome. It is characterized by a reduction in body weight due to the loss of white adipose tissue (WAT) and skeletal muscle. The loss of WAT seems to occur at an earlier time point than skeletal muscle proteolysis, with recent evidence suggesting that the browning of WAT may be a major contributor to this process. Several factors seem to modulate WAT browning including pro-inflammatory cytokines; however, the underlying molecular pathways are poorly characterized. Exercise training is currently recommended for the clinical management of low-grade inflammatory conditions as cancer cachexia. While it seems to counterbalance the impairment of skeletal muscle function and attenuate the loss of muscle mass, little is known regarding its effects in adipose tissue. The browning of WAT is one of the mechanisms through which exercise improves body composition in overweight/obese individuals. While this effect is obviously advantageous in this clinical setting, it remains to be clarified if exercise training could protect or exacerbate the cachexia-related catabolic phenotype occurring in adipose tissue of cancer patients. Herein, we overview the molecular players involved in adipose tissue remodelling in cancer cachexia and in exercise training and hypothesize on the mechanisms modulated by the synergetic effect of these conditions. A better understanding of how physical activity regulates body composition will certainly help in the development of successful multimodal therapeutic strategies for the clinical management of cancer cachexia.
Collapse
Affiliation(s)
- Rita Ferreira
- QOPNA, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
| | - Rita Nogueira-Ferreira
- QOPNA, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal.,Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Rui Vitorino
- Departamento de Cirurgia e Fisiologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,iBiMED, Departamento de Ciências Médicas, Universidade de Aveiro, Aveiro, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group - Research Center, IPO-Porto, Porto, Portugal.,Health School of University of Fernando Pessoa, Porto, Portugal.,Department of Surgical Oncology, IPO-Porto, Porto, Portugal
| | - Daniel Moreira-Gonçalves
- QOPNA, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal.,CIAFEL, Faculdade de Desporto, Universidade do Porto, Porto, Portugal
| |
Collapse
|
40
|
Padrão AI, Figueira ACC, Faustino-Rocha AI, Gama A, Loureiro MM, Neuparth MJ, Moreira-Gonçalves D, Vitorino R, Amado F, Santos LL, Oliveira PA, Duarte JA, Ferreira R. Long-term exercise training prevents mammary tumorigenesis-induced muscle wasting in rats through the regulation of TWEAK signalling. Acta Physiol (Oxf) 2017; 219:803-813. [PMID: 27228549 DOI: 10.1111/apha.12721] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 01/27/2016] [Accepted: 05/24/2016] [Indexed: 12/27/2022]
Abstract
AIM Exercise training has been suggested as a non-pharmacological approach to prevent skeletal muscle wasting and improve muscle function in cancer cachexia. However, little is known about the molecular mechanisms underlying such beneficial effect. In this study, we aimed to, firstly, examine the contribution of TWEAK signalling to cancer-induced skeletal muscle wasting and, secondly, evaluate whether long-term exercise alters TWEAK signalling and prevents muscle wasting. METHODS Female Sprague-Dawley rats were randomly assigned to control and exercise groups. Fifteen animals from each group were exposed to N-Methyl-N-nitrosourea carcinogen. Animals in exercise groups were submitted to moderate treadmill exercise for 35 weeks. After the experimental period, animals were killed and gastrocnemius muscles were harvested for morphological and biochemical analysis. RESULTS We verified that exercise training prevented tumour-induced TWEAK/NF-κB signalling in skeletal muscle with a beneficial impact in fibre cross-sectional area and metabolism. Indeed, 35 weeks of exercise training promoted the upregulation of PGC-1α and oxidative phosphorylation complexes. This exercise-induced muscle remodelling in tumour-bearing animals was associated with less malignant mammary lesions. CONCLUSION Data support the benefits of an active lifestyle for the prevention of muscle wasting secondary to breast cancer, highlighting TWEAK/NF- κB signalling as a potential therapeutic target for the preservation of muscle mass.
Collapse
Affiliation(s)
- A. I. Padrão
- QOPNA; Department of Chemistry; University of Aveiro; Aveiro Portugal
- CIAFEL; Faculty of Sport; University of Porto; Porto Portugal
| | | | - A. I. Faustino-Rocha
- CITAB; Department of Veterinary Sciences; University of Trás-os-Montes e Alto Douro; Vila Real Portugal
| | - A. Gama
- CITAB; Department of Veterinary Sciences; University of Trás-os-Montes e Alto Douro; Vila Real Portugal
| | - M. M. Loureiro
- QOPNA; Department of Chemistry; University of Aveiro; Aveiro Portugal
| | - M. J. Neuparth
- CIAFEL; Faculty of Sport; University of Porto; Porto Portugal
| | - D. Moreira-Gonçalves
- CIAFEL; Faculty of Sport; University of Porto; Porto Portugal
- Department of Physiology and Cardiothoracic Surgery; Faculty of Medicine; University of Porto; Porto Portugal
| | - R. Vitorino
- QOPNA; Department of Chemistry; University of Aveiro; Aveiro Portugal
- Department of Medical Sciences and Institute for Biomedicine - iBiMED; University of Aveiro; Aveiro Portugal
| | - F. Amado
- QOPNA; Department of Chemistry; University of Aveiro; Aveiro Portugal
| | - L. L. Santos
- Experimental Pathology and Therapeutics Group; Portuguese Institute of Oncology; Porto Portugal
| | - P. A. Oliveira
- CITAB; Department of Veterinary Sciences; University of Trás-os-Montes e Alto Douro; Vila Real Portugal
| | - J. A. Duarte
- CIAFEL; Faculty of Sport; University of Porto; Porto Portugal
| | - R. Ferreira
- QOPNA; Department of Chemistry; University of Aveiro; Aveiro Portugal
| |
Collapse
|
41
|
Rossi FE, Gerosa-Neto J, Diniz TA, Freitas IF, Lira FS, Cholewa JM. Moderate rest intervals are superior to short intervals for improving PAI-1 following exhaustive exercise in recreational weightlifters. J Exerc Rehabil 2016; 12:559-566. [PMID: 28119878 PMCID: PMC5227318 DOI: 10.12965/jer.1632788.394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/10/2016] [Indexed: 11/22/2022] Open
Abstract
This study investigated the influence of short and moderate recovery intervals on lipid profiles and plasminogen activator inhibitor-1 (PAI-1) following exhaustive strength exercise in recreational weightlifters. Seven subjects performed two conditions in a randomized order: short, 90% of one maximum repetition (1RM) and 30-sec rest allowed between sets; moderate, 90% of 1RM and 90-sec rest allowed between sets. Total cholesterol (Chol), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), triacylglycerol (TAG), Chol/HDL-c ratio and PAI-1 concentrations were assessed at baseline, immediately postexercise, and 15- and 30-min postexercise (post-15 and post-30). The LDL-c concentrations decreased and HDL-c concentrations increased in both conditions but without significant differences (LDL-c: 30 sec: pre, 82.0±19.5 mg/dL, immediately, 73.9±16.4 mg/dL, 90 sec: pre, 75.9±30.8 mg/dL, immediately, 66.2±35.5 mg/dL, P=0.423; HDL-c: 30 sec: pre, 53.5±9.2 mg/dL, immediately, 61.4±11.4 mg/dL; 90 sec: pre, 55.8±11.1 mg/dL, immediately, 84.9±27.8, mg/dL; P=0.146). On the other hand, PAI-1 had a tendency to decrease only in the 90-sec condition (pre, 7,754.9±2,927.7 pg/mL; immediately, 5,313.1±4,637.4 pg/mL; P=0.085). There was a positive correlation between PAI-1 and Chol (30 sec: r=0.83, 90 sec: r=0.91; P<0.05), PAI-1 and fat-free mass in both conditions (30 sec post-15: r=0.79, post-30: r=081, P<0.05; 90 sec immediately: r=0.77, post-15: r=0.81; P<0.05), and PAI-1 and TAG only in 30 sec (r=0.87, P<0.05). Short and moderate intervals of recovery improve lipid profiles after heavy strength exercise but only 90 sec induced greater improved in PAI-1 concentration in recreational weightlifters.
Collapse
Affiliation(s)
- Fabrício Eduardo Rossi
- Exercise and Immunometabolism Research Group, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Jose Gerosa-Neto
- Exercise and Immunometabolism Research Group, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Tiego Aparecido Diniz
- Department of Cell and Developmental Biology - Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ismael F Freitas
- Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Fabio Santos Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, Universidade Estadual Paulista (UNESP), Presidente Prudente, Brazil
| | - Jason Michael Cholewa
- Department of Kinesiology, Recreation, and Sport Studies, Coastal Carolina University, Conway, SC, USA
| |
Collapse
|
42
|
Diniz TA, Inoue DS, Rossi FE, Panissa VLG, Monteiro PA, Lira FS. Order effects of high-intensity intermittent and strength exercise on lipoprotein profile. SPORT SCIENCES FOR HEALTH 2016. [DOI: 10.1007/s11332-016-0295-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Rossi FE, Diniz TA, Fortaleza ACS, Neves LM, Picolo MR, Monteiro PA, Buonani C, Lira FS, Freitas IF. Concurrent Training Promoted Sustained Anti-atherogenic Benefits in the Fasting Plasma Triacylglycerolemia of Postmenopausal Women at 1-Year Follow-up. J Strength Cond Res 2016; 32:3564-3573. [PMID: 27893473 DOI: 10.1519/jsc.0000000000001732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Rossi, FE, Diniz, TA, Fortaleza, ACS, Neves, LM, Picolo, MR, Monteiro, PA, Buonani, C, Lira, FS, and Freitas, IF Jr. Concurrent training promoted sustained anti-atherogenic benefits in the fasting plasma triacylglycerolemia of postmenopausal women at 1-year follow-up. J Strength Cond Res 32(12): 3573-3582, 2018-The aim of this study was to compare the effects of aerobic and concurrent training (aerobic plus strength training) on the lipid profiles of normotriacylglycerolemic and hypertriacylglycerolemic postmenopausal women and to verify whether the benefits of aerobic and concurrent training were sustained after 1 year. Total cholesterol, high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol, triacylglycerol (TAG), and glucose were assessed in 46 normotriacylglycerolemic (TAG < 150 mg·dl) postmenopausal women divided into 3 groups: aerobic training, concurrent training (CT), and a control group. For CT group, hypertriacylglycerolemic postmenopausal women were recruited (TAG ≥ 150 mg·dl, n = 14). Total daily caloric consumption and free-living physical activity were evaluated by dietary questionnaires and accelerometer, respectively, and fat mass by DXA. In 16 weeks, CT was effective in increasing HDL-c (normotriacylglycerolemic: pre = 57.1 ± 17.3 mg·dl × post = 64.3 ± 16.1 mg·dl p = 0.020 and hypertriacylglycerolemic: pre = 44.7 ± 9.6 mg·dl × post = 50.3 ± 15.3 mg·dl; p = 0.012) and reducing the atherogenic index in normotriacylglycerolemic (pre = 3.6 ± 0.9 mg·dl × post = 3.0 ± 0.6 mg·dl; p = 0.003) and hypertriacylglycerolemic (pre = 5.2 ± 1.1 mg·dl × post = 4.7 ± 1.2 mg·dl; p = 0.018) postmenopausal women. In addition, the effects were sustained at the 1-year follow-up only among the hypertriacylglycerolemic postmenopausal women. The anti-atherogenic status in normotriacylglycerolemic and hypertriacylglycerolemic postmenopausal women was changed by CT but without significant differences between groups. Furthermore, these benefits are sustained at the 1-year follow-up among the hypertriacylglycerolemic subjects.
Collapse
Affiliation(s)
- Fabrício E Rossi
- Department of Physical Education, Institute of Bioscience, University Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Tiego A Diniz
- Department of Physical Education, Institute of Bioscience, University Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Ana C S Fortaleza
- Department of Physical Education, Institute of Bioscience, University Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Lucas M Neves
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | | | - Paula A Monteiro
- Department of Physical Education, Institute of Bioscience, University Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Camila Buonani
- Physical Education, University Estadual Paulista, Presidente Prudente, São Paulo, Brazil
| | - Fábio S Lira
- Exercise and Immunometabolism Research Group, Department of Physical Education, University Estadual Paulista (UNESP), Presidente Prudente, São Paulo, Brazil
| | - Ismael F Freitas
- Physical Education, University Estadual Paulista, Presidente Prudente, São Paulo, Brazil
| |
Collapse
|
44
|
Cayres SU, Agostinete RR, de Moura Mello Antunes B, Lira FS, Fernandes RA. Impact of physical exercise/activity on vascular structure and inflammation in pediatric populations: A literature review. J SPEC PEDIATR NURS 2016; 21:99-108. [PMID: 27250102 DOI: 10.1111/jspn.12149] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/07/2016] [Accepted: 04/25/2016] [Indexed: 02/02/2023]
Abstract
PURPOSE To describe the effects of physical exercise/activity on the vascular architecture of children and adolescents, as well as to identify the effects of inflammation and sedentary behaviors on this relationship. METHODS Potentially relevant articles were identified in the databases MEDLINE and PubMed covering the period from 2000 to 2015. No language restrictions were applied. RESULTS Thirteen articles were found that included obese boys and girls in their samples (aged 9-19). Six interventional studies assessed inflammation and in five of these, physical exercise decreased inflammation. In 10 studies, vascular architecture was affected by physical exercise/activity. CONCLUSIONS The impact of physical exercise on vascular architecture and inflammation seems relevant, but has been mainly investigated in obese groups. PRACTICAL IMPLICATIONS Health professionals should act together in organized interventions in schools, targeting the promotion of higher physical activity levels in children and adolescents.
Collapse
Affiliation(s)
- Suziane Ungari Cayres
- Suziane Ungari Cayres, MSc, is PhD Student in Post-Graduate Program in Movement Sciences, São Paulo State University, Rio Claro, São Paulo, Brazil
| | - Ricardo Ribeiro Agostinete
- Ricardo Ribeiro Agostinete is Master's Degree Student in the Post-Graduate Program in Physiotherapy, São Paulo State University, Presidente Prudente, São Paulo, Brazil
| | - Barbara de Moura Mello Antunes
- Barbara de Moura Mello Antunes, MSc, is PhD Student in the Post-Graduate Program in Movement Sciences, São Paulo State University, Rio Claro, São Paulo, Brazil
| | - Fabio Santos Lira
- Fabio Santos de Lira, PhD, is Assistant Professor, Exercise and Immunometabolism Research Group, Department of Physical Education, São Paulo State University, UNESP, Presidente Prudente, São Paulo, Brazil
| | - Rômulo Araújo Fernandes
- Romulo Araújo Fernandes, PhD, is Assistant Professor, Laboratory of Investigation in Exercise, Department of Physical Education, Sao Paulo State University, São Paulo, Brazil
| |
Collapse
|
45
|
Yennurajalingam S, Tayjasanant S, Balachandran D, Padhye NS, Williams JL, Liu DD, Frisbee-Hume S, Bruera E. Association between Daytime Activity, Fatigue, Sleep, Anxiety, Depression, and Symptom Burden in Advanced Cancer Patients: A Preliminary Report. J Palliat Med 2016; 19:849-56. [PMID: 27148765 DOI: 10.1089/jpm.2015.0276] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND There is limited research in advanced cancer patients (ACP) regarding association between objectively measured daytime activity and sleep (as measured by actigraphy), patient characteristics, and cancer symptoms (fatigue, sleep, anxiety, depression, cachexia, and symptom distress scores [SDSs]). OBJECTIVES Our aim of the study was to determine the association between mean daytime activity (MDTA) and the following items: fatigue (FACIT-F), SDSs (Edmonton Symptom Assessment Scale [ESAS]), sleep quality (Pittsburg Sleep Quality Index [PSQI]), objective sleep variables (OSV) (sleep onset, sleep efficacy, wake after sleep onset, total sleep time), anxiety and depression (Hospital Anxiety and Depression Scale [HADS]), body composition scores, and overall survival (OS). We also examined the association between sleep [PSQI and OSV scores] and FACIT-F, HADS, and ESAS. METHODS Secondary analysis of a recent clinical trial of cancer-related fatigue in advanced cancer (NCT00424099). Association between MDTA and OSV (measured by actigraphy) during the first week of the study and patient characteristics, symptoms (FACIT-F, ESAS, HADS, and PSQI), and OS were analyzed. RESULTS Seventy-nine eligible patients were evaluable. The median age was 57 years. Median MDTA was 248.43 counts/minute. Multivariate analysis shows that low MDTA was significantly associated with age, gender, Functional Assessment of Cancer Therapy (FACT)-Functional Well-Being (FWB), ESAS dyspnea, HADS-anxiety, and total sleep time. MDTA was not associated with FACIT-F (p = 0.997) and OS (p = 0.18). Sleep quality (PSQI) was significantly associated with FACIT-F, HADS, ESAS anxiety, and depression, but none of these variables was associated with OSV. CONCLUSION In ACP, lower MDTA was significantly associated with age, gender, FACT-FWB, ESAS dyspnea, HADS-anxiety, and total sleep time. Both sleep quality and cancer-related fatigue scores were strongly associated with depression and anxiety. More research is needed.
Collapse
Affiliation(s)
- Sriram Yennurajalingam
- 1 Department of Palliative Care and Rehabilitation Medicine, Unit 1414, The University of Texas MD Anderson Cancer Center , Houston, Texas
| | - Supakarn Tayjasanant
- 1 Department of Palliative Care and Rehabilitation Medicine, Unit 1414, The University of Texas MD Anderson Cancer Center , Houston, Texas.,2 Siriraj Palliative Care Center, Faculty of Medicine Siriraj Hospital, Mahidol University , Bangkok, Thailand
| | - Dave Balachandran
- 4 Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center , Houston, Texas
| | - Nikhil S Padhye
- 5 Research Center for Nursing Research, University of Texas Health School of Nursing, Houston, Texas
| | - Janet L Williams
- 1 Department of Palliative Care and Rehabilitation Medicine, Unit 1414, The University of Texas MD Anderson Cancer Center , Houston, Texas
| | - Diane D Liu
- 3 Department of Biostatistics, The University of Texas MD Anderson Cancer Center , Houston, Texas
| | - Susan Frisbee-Hume
- 1 Department of Palliative Care and Rehabilitation Medicine, Unit 1414, The University of Texas MD Anderson Cancer Center , Houston, Texas
| | - Eduardo Bruera
- 1 Department of Palliative Care and Rehabilitation Medicine, Unit 1414, The University of Texas MD Anderson Cancer Center , Houston, Texas
| |
Collapse
|
46
|
Xia Z, Cholewa J, Zhao Y, Yang YQ, Shang HY, Guimarães-Ferreira L, Naimo MA, Su QS, Zanchi NE. Hypertrophy-Promoting Effects of Leucine Supplementation and Moderate Intensity Aerobic Exercise in Pre-Senescent Mice. Nutrients 2016; 8:nu8050246. [PMID: 27144582 PMCID: PMC4882659 DOI: 10.3390/nu8050246] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 01/01/2023] Open
Abstract
Several studies have indicated a positive influence of leucine supplementation and aerobic training on the aging skeletal muscle signaling pathways that control muscle protein balance and muscle remodeling. However, the effect of a combined intervention requires further clarification. Thirteen month old CD-1® mice were subjected to moderate aerobic exercise (45 min swimming per day with 3% body weight workload) and fed a chow diet with 5% leucine or 3.4% alanine for 8 weeks. Serum and plasma were prepared for glucose, urea nitrogen, insulin and amino acid profile analysis. The white gastrocnemius muscles were used for determination of muscle size and signaling proteins involved in protein synthesis and degradation. The results show that both 8 weeks of leucine supplementation and aerobic training elevated the activity of mTOR (mammalian target of rapamycin) and its downstream target p70S6K and 4E-BP1, inhibited the ubiquitin-proteasome system, and increased fiber cross-sectional area (CSA) in white gastrocnemius muscle. Moreover, leucine supplementation in combination with exercise demonstrated more significant effects, such as greater CSA, protein content and altered phosphorylation (suggestive of increased activity) of protein synthesis signaling proteins, in addition to lower expression of proteins involved in protein degradation compared to leucine or exercise alone. The current study shows moderate aerobic training combined with 5% leucine supplementation has the potential to increase muscle size in fast-twitch skeletal muscle during aging, potentially through increased protein synthesis and decreased protein breakdown.
Collapse
Affiliation(s)
- Zhi Xia
- Exercise Physiology and Biochemistry Laboratory, College of Physical Education, Jinggangshan University, Ji'an 343009, China.
- Exercise Intervention and Health Promotion Hubei Province Synergy Innovation Center, Wuhan Sports University, Wuhan 430079, China.
| | - Jason Cholewa
- Department of Kinesiology, Coastal Carolina University, Conway, SC 29528-6054, USA.
| | - Yan Zhao
- Exercise Physiology and Biochemistry Laboratory, College of Physical Education, Jinggangshan University, Ji'an 343009, China.
| | - Yue-Qin Yang
- Exercise Intervention and Health Promotion Hubei Province Synergy Innovation Center, Wuhan Sports University, Wuhan 430079, China.
| | - Hua-Yu Shang
- Exercise Physiology Laboratory, Department of Exercise Physiology, Beijing Sport University, Beijing 100084, China.
| | - Lucas Guimarães-Ferreira
- Muscle Physiology and Human Performance Research Group, Center of Physical Education and Sports, Federal University of Espirito Santo, Vitória/ES 29075-810, Brazil.
| | - Marshall Alan Naimo
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV 26506-9227, USA.
| | - Quan-Sheng Su
- Department of Sports Medicine, Chengdu Sport University, Chengdu 610041, China.
| | - Nelo Eidy Zanchi
- Department of Physical Education, Federal University of Maranhão (UFMA), São Luís-MA 65020-070, Brazil.
- Laboratory of Cellular and Molecular Biology of Skeletal Muscle (LABCEMME), São Luís-MA 65020-070, Brazil.
| |
Collapse
|
47
|
|
48
|
Fu JB, Lee J, Tran KB, Siangco CM, Ng AH, Smith DW, Bruera E. Symptom Burden and Functional Gains in a Cancer Rehabilitation Unit. INTERNATIONAL JOURNAL OF THERAPY AND REHABILITATION 2015; 22:517-523. [PMID: 26929772 DOI: 10.12968/ijtr.2015.22.11.517] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND/AIMS To determine if there is a relationship between patient symptoms and functional improvement on inpatient rehabilitation. METHODS Retrospective review of medical records at an American tertiary referral-based cancer center of all patients admitted to an inpatient rehabilitation unit between 3/1/2013-5/20/2013. Main outcome measures included the Edmonton Symptom and Assessment Scale (ESAS) and Functional Independence Measure (FIM). FINDINGS The medical records for 71 unique cancer rehabilitation inpatients were analyzed. Statistical analysis of total admission ESAS on total FIM change found no significant relationships. The symptom burden of the patients was mild. Patients demonstrated statistically significant improvements in function and symptoms during inpatient rehabilitation. The mean change in total FIM and total ESAS were an increase of 19.20 and decrease of 7.41 respectively. Statistically significant changes occurred in fatigue, sleep, pain, and anxiety. CONCLUSION Both symptom and functional scores improved significantly during inpatient rehabilitation. However, no significant relationships were found between symptoms at admission and improvement in FIM.
Collapse
Affiliation(s)
- Jack B Fu
- Department of Palliative Care and Rehabilitation Medicine, University of Texas MD Anderson Cancer Center
| | - Jay Lee
- Department of Educational Psychology, University of Houston
| | - Kenny B Tran
- Department of Palliative Care and Rehabilitation Medicine, University of Texas MD Anderson Cancer Center
| | - Christian M Siangco
- Department of Palliative Care and Rehabilitation Medicine, University of Texas MD Anderson Cancer Center
| | - Amy H Ng
- Department of Palliative Care and Rehabilitation Medicine, University of Texas MD Anderson Cancer Center
| | - Dennis W Smith
- Department of Educational Psychology, University of Houston
| | - Eduardo Bruera
- Department of Palliative Care and Rehabilitation Medicine, University of Texas MD Anderson Cancer Center
| |
Collapse
|
49
|
Experimental cancer cachexia: Evolving strategies for getting closer to the human scenario. Semin Cell Dev Biol 2015; 54:20-7. [PMID: 26343953 DOI: 10.1016/j.semcdb.2015.09.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 01/22/2023]
Abstract
Cancer cachexia is a frequent syndrome that dramatically affects patient quality of life, anti-cancer treatment effectiveness, and overall survival. To date, no effective treatment is available and most of the studies are performed in experimental models in order to uncover the underlying mechanisms and to design prospective therapeutic strategies. This review summarizes the most relevant information regarding the use of animal models for studying cancer cachexia. Technical limitations and degree of recapitulation of the features of human cachexia are highlighted, in order to help investigators choose the most suitable model according to study-specific endpoints.
Collapse
|
50
|
Vitorino R, Moreira-Gonçalves D, Ferreira R. Mitochondrial plasticity in cancer-related muscle wasting: potential approaches for its management. Curr Opin Clin Nutr Metab Care 2015; 18:226-33. [PMID: 25783794 DOI: 10.1097/mco.0000000000000161] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Cancer cachexia represents a critical problem in clinical oncology due to its negative impact on patients' quality of life, therapeutic tolerance and survival. This paraneoplasic condition is characterized by significant weight loss mainly from skeletal muscle wasting. Understanding the molecular mechanisms underlying cancer cachexia is urgent in order to develop and apply efficient therapeutic strategies. RECENT FINDINGS Mitochondrial dysfunction is an early event in cancer-induced muscle wasting. Decreased ability for ATP synthesis, impaired mitochondrial biogenesis, increased oxidative stress, impairment of protein quality control systems, increased susceptibility to mitophagy and to apoptosis were all shown to mediate contractile dysfunction and wasting in cancer cachexia. Anti-inflammatory therapies as well as exercise training seem to counteract muscle mass loss in part by improving mitochondrial functionality. SUMMARY Given its central role in muscle wasting, mitochondrial plasticity should be viewed as a key therapeutic target for the preservation of muscle mass in cancer cachexia. Few studies have addressed the mitochondrial events modulated by cancer cachexia and contradictory data were reported. Scarcer studies have focused on the mitochondrial adaptation to anticancer cachexia strategies.
Collapse
Affiliation(s)
- Rui Vitorino
- aQOPNA, Department of Chemistry bInstitute for Research in Biomedicine - iBiMED, Health Sciences Program, University of Aveiro, Aveiro cCIAFEL, Faculty of Sports dDepartment of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | | |
Collapse
|