1
|
Tang W, Gui C, Zhang T. Expression, Purification, and Bioinformatic Prediction of Mycobacterium tuberculosis Rv0439c as a Potential NADP +-Retinol Dehydrogenase. Mol Biotechnol 2024; 66:3559-3572. [PMID: 37989944 DOI: 10.1007/s12033-023-00956-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
Although the genome of Mycobacterium tuberculosis (Mtb) H37Rv, the causative agent of tuberculosis, has been repeatedly annotated and updated, a range of proteins from this human pathogen have unknown functions. Mtb Rv0439c, a member of the short-chain dehydrogenase/reductases superfamily, has yet to be cloned and characterized, and its function remains unclear. In this work, we present for the first time the optimized expression and purification of this enzyme, as well as bioinformatic analysis to unveil its potential coenzyme and substrate. Optimized expression in Escherichia coli yielded soluble Rv0439c, while certain tag fusions resulted in insolubility. Sequence and docking analyses strongly suggested that Rv0439c has a clear preference for NADP+, with Arg53 being a key residue that confers coenzyme specificity. Furthermore, functional prediction using CLEAN and DEEPre servers suggested that this protein is a potential NADP+-retinol dehydrogenase (EC No. 1.1.1.300) in retinol metabolism, and this was supported by a BLASTp search and docking studies. Collectively, our findings provide a solid basis for future functional characterization and structural studies of Rv0439c, which will contribute to enhanced understanding of Mtb biology.
Collapse
Affiliation(s)
- Wanggang Tang
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China.
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Bengbu, 233030, Anhui, China.
| | - Chuanyue Gui
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China
- School of Public Health, Bengbu Medical College, Bengbu, 233030, Anhui, China
| | - Tingting Zhang
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China
- School of Public Health, Bengbu Medical College, Bengbu, 233030, Anhui, China
| |
Collapse
|
2
|
Wang Y, Chen H, Wang Y, Zhang H, Weng Q, Liu Y, Xu M. Seasonal changes in vitamin A metabolism-related factors in the oviduct of Chinese brown frog (Rana dybowskii). J Steroid Biochem Mol Biol 2024; 243:106583. [PMID: 38992392 DOI: 10.1016/j.jsbmb.2024.106583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
The oviduct of the Chinese brown frog (Rana dybowskii) expands during pre-brumation rather than the breeding period, exhibiting a special physiological feature. Vitamin A is essential for the proper growth and development of many organisms, including the reproductive system such as ovary and oviduct. Vitamin A is metabolized into retinoic acid, which is crucial for oviduct formation. This study examined the relationship between oviducal expansion and vitamin A metabolism. We observed a significant increase in the weight and diameter of the oviduct in Rana dybowskii during pre-brumation. Vitamin A and its active metabolite, retinoic acid, notably increased during pre-brumation. The mRNA levels of retinol binding protein 4 (rbp4) and its receptor stra6 gene, involved in vitamin A transport, were elevated during pre-brumation compared to the breeding period. In the vitamin A metabolic pathway, the mRNA expression level of retinoic acid synthase aldh1a2 decreased significantly during pre-brumation, while the mRNA levels of retinoic acid α receptor (rarα) and the retinoic acid catabolic enzyme cyp26a1 increased significantly during pre-brumation, but not during the breeding period. Immunohistochemical results showed that Rbp4, Stra6, Aldh1a2, Rarα, and Cyp26a1 were expressed in ampulla region of the oviduct. Western blot results indicated that Aldh1a2 expression was lower, while Rbp4, Stra6, RARα, and Cyp26a1 were higher during pre-brumation compared to the breeding period. Transcriptome analyses further identified differential genes in the oviduct and found enrichment of differential genes in the vitamin A metabolism pathway, providing evidences for our study. These results suggest that the vitamin A metabolic pathway is more active during pre-brumation compared to the breeding period, and retinoic acid may regulate pre-brumation oviductal expansion through Rarα-mediated autocrine/paracrine modulation.
Collapse
Affiliation(s)
- Yankun Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Haohan Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yawei Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Haolin Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qiang Weng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yuning Liu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| | - Meiyu Xu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
3
|
Czuba LC, Isoherranen N. LX-2 Stellate Cells Are a Model System for Investigating the Regulation of Hepatic Vitamin A Metabolism and Respond to Tumor Necrosis Factor α and Interleukin 1 β. Drug Metab Dispos 2024; 52:442-454. [PMID: 38485281 PMCID: PMC11023816 DOI: 10.1124/dmd.124.001679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/05/2024] [Indexed: 04/18/2024] Open
Abstract
Hepatic stellate cells (HSCs) are the major site of vitamin A (retinol) esterification and subsequent storage as retinyl esters within lipid droplets. However, retinyl esters become depleted in many pathophysiological states, including acute and chronic liver injuries. Recently, using a liver slice culture system as a model of acute liver injury and fibrogenesis, a time-dependent increase and decrease in the apparent formation of the bioactive retinoid all-trans-retinoic acid (atRA) and retinyl palmitate was measured, respectively. This coincided with temporal changes in the gene expression of retinoid-metabolizing enzymes and binding proteins, that preceded HSC activation. However, the underlying mechanisms that promote early changes in retinoid metabolism remain unresolved. We hypothesized that LX-2 cells could be applied to investigate differences in quiescent and activated HSC retinoid metabolism. We demonstrate that the hypermetabolic state of activated stellate cells relative to quiescent stellate cells may be attributed to induction of STRA6, RBP4, and CYP26A1, thereby reducing intracellular concentrations of atRA. We further hypothesized that paracrine and autocrine cytokine signaling regulates HSC vitamin A metabolism in both quiescent and activated cells. In quiescent cells, tumor necrosis factor α dose-dependently downregulated LRAT and CRBP1 mRNA, with EC50 values of 30-50 pg/mL. Likewise, interleukin-1β decreased LRAT and CRBP1 gene expression but with less potency. In activated stellate cells, multiple enzymes were downregulated, suggesting that the full effects of altered hepatic vitamin A metabolism in chronic conditions require both paracrine and autocrine signaling events. Further, this study suggests the potential for cell type-specific autocrine effects in hepatic retinoid signaling. SIGNIFICANCE STATEMENT: HSCs are the major site of vitamin A storage and important determinants of retinol metabolism during liver fibrogenesis. Here, two LX-2 culture methods were applied as models of hepatic retinoid metabolism to demonstrate the effects of activation status and dose-dependent cytokine exposure on the expression of genes involved in retinoid metabolism. This study suggests that compared to quiescent cells, activated HSCs are hypermetabolic and have reduced apparent formation of retinoic acid, which may alter downstream retinoic acid signaling.
Collapse
Affiliation(s)
- Lindsay C Czuba
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, Washington (L.C.C., N.I.) and Department of Pharmaceutical Sciences, University of Kentucky, College of Pharmacy, Lexington, Kentucky (L.C.C.)
| | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington School of Pharmacy, Seattle, Washington (L.C.C., N.I.) and Department of Pharmaceutical Sciences, University of Kentucky, College of Pharmacy, Lexington, Kentucky (L.C.C.)
| |
Collapse
|
4
|
Qian H, Kuang Y, Su J, Chen M, Chen X, Lv C, Chen W, Zhu W. Reductive Effect of Acitretin on Blood Glucose Levels in Chinese Patients With Psoriasis. Front Med (Lausanne) 2021; 8:764216. [PMID: 34977070 PMCID: PMC8716687 DOI: 10.3389/fmed.2021.764216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/12/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Psoriasis is a skin condition associated with increased risks of developing metabolic diseases, such as diabetes and hyperlipidaemia. Retinoid drugs, including acitretin, are commonly used to treat psoriasis due to its low cost and tolerable side effects. Objective: This study aimed to explore the influence of acitretin on patients' metabolism levels, especially lipid and glucose. Methods: In this retrospective study, a total of 685 psoriatic patients and 395 age/sex matched controls were enrolled. The demographic and biochemical indexes of each participant were recorded. Acitretin (30 mg/d) combined with the topical ointment calcipotriol was used to treat the psoriatic patients, and the glucose and lipid profiles of patients before and after acitretin treatment were analyzed. Results: The blood glucose levels of 685 psoriasis patients were significantly higher than that of the control group (P < 0.001), while the blood lipid levels showed no difference between psoriatic patients and the matched controls. Triglyceride and low-density lipoprotein levels were significantly increased in 247 patients (P < 0.05) after 8 weeks of treatment with acitretin. Interestingly, there was a remarkable downward trend in body mass index (BMI) and blood glucose levels (P < 0.05) after acitretin treatment. Additionally, expression of both GLUT1 and GLUT4 in HaCaT and HepG2 cells were significantly increased when treated with acitretin. Compared to acitretin-free cells, the uptake of 2-NBDG was significantly higher in HaCaT and HepG2 cells after incubation with 5000 ng/mL acitretin for 36 h. Conclusion: Acitretin plays a significant role of reducing the blood glucose level in psoriasis patients. The mechanism of lowering blood glucose may be through increasing glucose intake by cells, thereby reducing glucose levels in the peripheral blood.
Collapse
Affiliation(s)
- Hua Qian
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Dermatology, Soochow University Affiliated Children's Hospital, Suzhou, China
| | - Yehong Kuang
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Su
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Menglin Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chengzhi Lv
- Department of Dermatology, Dalian Dermatology Hospital, Dalian, China
| | - Wangqing Chen
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Wangqing Chen
| | - Wu Zhu
- Department of Dermatology, Hunan Engineering Research Center of Skin Health and Disease, Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Wu Zhu
| |
Collapse
|
5
|
Association between functional genetic variants in retinoid X receptor-α/γ and the risk of gestational diabetes mellitus in a southern Chinese population. Biosci Rep 2021; 41:229913. [PMID: 34633445 PMCID: PMC8529336 DOI: 10.1042/bsr20211338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/23/2021] [Accepted: 10/07/2021] [Indexed: 12/28/2022] Open
Abstract
To clarify the effect of retinoid X receptor-α/γ (RXR-α/γ) genes functional genetic variants (RXR-α rs4842194 G>A, RXR-γ rs100537 A>G and rs2134095 T>C) on the risk of gestational diabetes mellitus (GDM), a case–control study with 573 GDM patients and 740 pregnant women with normal glucose tolerance was performed in Guangxi area of China. An odds ratio (OR) with its corresponding 95% confidence interval (CI) was used to assess the strengths of the association between genetic variation and GDM. After adjustment of age and pre-BMI, the logistic regression analysis showed that the rs2134095 was significantly associated with GDM risk (CC vs. TT/TC: adjusted OR = 0.71, 95% CI = 0.56–0.90) in all subjects, and this result remained highly significant after Bonferroni’s correction for multiple testing (P=0.004). The stratified analysis showed that rs2134095 was significantly associated with the risk of GDM among age > 30 years (adjusted OR = 0.61, 95% CI = 0.39–0.97), BMI > 22 kg/m2 (adjusted OR = 0.46, 95% CI = 0.30–0.70), systolic blood pressure (SBP) > 120 mmHg (adjusted OR = 1.96, 95% CI = 1.14–3.36), glycosylated hemoglobin A1c (HbA1c) < 6.5% (adjusted OR = 1.41, 95% CI = 1.11–1.78), TG ≤ 1.7 mmol/l (adjusted OR = 2.57, 95% CI = 1.45–4.53), TC ≤ 5.18 mmol/l (adjusted OR = 1.58, 95% CI = 1.13–2.22), high-density lipoprotein cholesterol (HDL-c) ≤ 1.5 mmol/l (adjusted OR = 1.70, 95% CI = 1.16–2.49) and low-density lipoprotein cholesterol (LDL-c) > 3.12 mmol/l (adjusted OR = 1.47, 95% CI = 1.08–2.00) subjects, under the recessive genetic model. We also found that rs2134095 interacted with age (Pinteraction=0.039), pre-BMI (Pinteraction=0.040) and TG (Pinteraction=0.025) influencing individual’s genetic susceptibility to GDM. The rs2134095 T>C is significantly associated with the risk of GDM by effect of a single locus and/or complex joint gene–gene and gene–environment interactions. Larger sample-size and different population studies are required to confirm the findings.
Collapse
|
6
|
Chen G. The Interactions of Insulin and Vitamin A Signaling Systems for the Regulation of Hepatic Glucose and Lipid Metabolism. Cells 2021; 10:2160. [PMID: 34440929 PMCID: PMC8393264 DOI: 10.3390/cells10082160] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
The pandemics of obesity and type 2 diabetes have become a concern of public health. Nutrition plays a key role in these concerns. Insulin as an anabolic hormonal was discovered exactly 100 years ago due to its activity in controlling blood glucose level. Vitamin A (VA), a lipophilic micronutrient, has been shown to regulate glucose and fat metabolism. VA's physiological roles are mainly mediated by its metabolite, retinoic acid (RA), which activates retinoic acid receptors (RARs) and retinoid X receptors (RXRs), which are two transcription factors. The VA status and activations of RARs and RXRs by RA and synthetic agonists have shown to affect the glucose and lipid metabolism in animal models. Both insulin and RA signaling systems regulate the expression levels of genes involved in the regulation of hepatic glucose and lipid metabolism. Interactions of insulin and RA signaling systems have been observed. This review is aimed at summarizing the history of diabetes, insulin and VA signaling systems; the effects of VA status and activation of RARs and RXRs on metabolism and RAR and RXR phosphorylation; and possible interactions of insulin and RA in the regulation of hepatic genes for glucose and lipid metabolism. In addition, some future research perspectives for understanding of nutrient and hormone interactions are provided.
Collapse
Affiliation(s)
- Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| |
Collapse
|
7
|
Hwang I, Lee EJ, Park H, Moon D, Kim HS. Retinol from hepatic stellate cells via STRA6 induces lipogenesis on hepatocytes during fibrosis. Cell Biosci 2021; 11:3. [PMID: 33407858 PMCID: PMC7789180 DOI: 10.1186/s13578-020-00509-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/29/2020] [Indexed: 12/21/2022] Open
Abstract
Background Hepatic stellate cells (HSCs) are activated in response to liver injury with TIF1γ-suppression, leading to liver fibrosis. Here, we examined the mechanism how reduction of TIF1γ in HSCs induces damage on hepatocytes and liver fibrosis. Method Lrat:Cas9-ERT2:sgTif1γ mice were treated Tamoxifen (TMX) or wild-type mice were treated Thioacetamide (TAA). HSCs were isolated from mice liver and analyzed role of Tif1γ. HepG2 were treated retinol with/without siRNA for Stimulated by retinoic acid 6 (STRA6) or Retinoic acid receptor(RAR)-antagonist, and LX2 were treated siTIF1γ and/or siSTRA6. TAA treated mice were used for evaluation of siSTRA6 effect in liver fibrosis. Results When we blocked the Tif1γ in HSCs using Lrat:Cas9-ERT2:sgTif1γ mice, retinol is distributed into hepatocytes. Retinol influx was confirmed using HepG2, and the increased intracellular retinol led to the upregulation of lipogenesis-related-genes and triglyceride. This effect was inhibited by a RAR-antagonist or knock-down of STRA6. In the LX2, TIF1γ-suppression resulted in upregulation of STRA6 and retinol release, which was inhibited by STRA6 knock-down. The role of STRA6-mediated retinol transfer from HSCs to hepatocytes in liver fibrosis was demonstrated by in vivo experiments where blocking of STRA6 reduced fibrosis. Conclusions Retinol from HSCs via STRA6 in response to injury with TIF1γ-reduction is taken up by hepatocytes via STRA6, leading to fat-deposition and damage, and liver fibrosis. ![]()
Collapse
Affiliation(s)
- Injoo Hwang
- Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eun Ju Lee
- Biomedical Research Institute, Seoul National University Hospital, 101 DeaHak-ro, JongRo-gu, Seoul, 03080, Republic of Korea.
| | - Hyomin Park
- Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Dodam Moon
- Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyo-Soo Kim
- Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, and College of Medicine, Seoul National University, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, 101 DeaHak-ro, JongRo-gu, Seoul, 03080, Republic of Korea
| |
Collapse
|
8
|
Goff M, Chen G. Long-term treatment with insulin and retinoic acid increased glucose utilization in L6 muscle cells via glycogenesis. Biochem Cell Biol 2020; 98:683-697. [PMID: 33215509 DOI: 10.1139/bcb-2020-0131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The skeletal muscle regulates glucose homeostasis. Here, the effects of vitamin A metabolites including retinoic acid (RA) alone, and in combination with insulin, on glucose utilization were investigated in rat L6 muscle cells during the differentiation process. L6 cells were treated with differentiation medium containing retinol, retinal, RA, and (or) insulin. The glucose levels and pH values in the medium were measured every 2 days. The expression levels of insulin signaling and glycogen synthesis proteins, as well as glycogen content were determined. Retinal and RA reduced the glucose content and pH levels in the medium of the L6 cells. RA acted synergistically with insulin to reduce glucose and pH levels in the medium. The RA- and insulin-mediated reduction of glucose in the medium only occurred when glucose levels were at or above 15 mmol/L. Insulin-induced phosphorylation of Akt Thr308 was further enhanced by RA treatment through the activation of retinoic acid receptor. RA acted synergistically with insulin to phosphorylate glycogen synthase kinase 3β, and dephosphorylate glycogen synthase (GS), which was associated with increases in the protein and mRNA levels of GS. Increases in glycogen content were induced by insulin, and was further enhanced in the presence of RA. We conclude that activation of the RA signaling pathway enhanced insulin-induced glucose utilization in differentiating L6 cells through increases in glycogenesis.
Collapse
Affiliation(s)
- Matthew Goff
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
9
|
Dhuique-Mayer C, Gence L, Portet K, Tousch D, Poucheret P. Preventive action of retinoids in metabolic syndrome/type 2 diabetic rats fed with citrus functional food enriched in β-cryptoxanthin. Food Funct 2020; 11:9263-9271. [PMID: 33047760 DOI: 10.1039/d0fo02430a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Citrus fruits are known for their beneficial health effects associated with the prevention of metabolic syndrome/type 2 diabetes that is mainly attributed to flavonoids. Few investigations have reported the potential anti-diabetic effects of retinoids from the bioconversion of β-cryptoxanthin (bcx), a citrus carotenoid. Therefore, the present study explored the anti-diabetic effect of a citrus functional food, obtained by membrane eco-technology of a citrus clementina juice, especially enriched in bcx but also in flavonoids and pectin. We assessed the in vivo effect of citrus bcx absorption and its bioconversion into retinoids in metabolic syndrome/type 2 diabetic fructose rats. Fructose-fed rats were used as a prediabetic control, and a prediabetic group was treated with the citrus concentrate for 8 weeks. The citrus-based food treatment improved glucose tolerance, dyslipidemia and blood pressure, in prediabetic rats. Although these effects were in part due to the synergy between enriched phytonutrients (bcx, hesperidin, pectin) of the citrus matrix, the role of bcx and its bioconversion into retinoids were highlighted. We showed that prediabetic rats absorbed less bcx and the bioconversion was less efficient. Bcx from citrus-based food was able to restore vitamin A status in prediabetic rats suggesting that the absorption/bioconversion of bcx may have a key role in improvement of metabolic syndrome/type 2 diabetes.
Collapse
Affiliation(s)
- Claudie Dhuique-Mayer
- CIRAD, UMR Qualisud, F-34398 Montpellier, France. and Qualisud, Université Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de la Réunion, France
| | - Laura Gence
- CIRAD, UMR Qualisud, F-34398 Montpellier, France. and Qualisud, Université Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de la Réunion, France
| | - Karine Portet
- Qualisud, Université Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de la Réunion, France
| | - Didier Tousch
- Qualisud, Université Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de la Réunion, France
| | - Patrick Poucheret
- Qualisud, Université Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de la Réunion, France
| |
Collapse
|
10
|
Campos CF, Costa TC, Rodrigues RTS, Guimarães SEF, Moura FH, Silva W, Chizzotti ML, Paulino PVR, Benedeti PDB, Silva FF, Duarte MS. Proteomic analysis reveals changes in energy metabolism of skeletal muscle in beef cattle supplemented with vitamin A. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3536-3543. [PMID: 32240539 DOI: 10.1002/jsfa.10401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 03/25/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Vitamin A has been reported as a factor influencing marbling deposition in meat from animals. Although the mechanisms by which vitamin A regulates lipid metabolism in mature adipocytes are already well-established, information regarding molecular mechanisms underlying the effects of vitamin A on the regulation of intramuscular fat deposition in beef cattle still remains limited. The present study aimed to assess the molecular mechanisms involved in the intramuscular fat deposition in beef cattle supplemented with vitamin A during the fattening phase using a proteomic approach. RESULTS Vitamin A supplementation during the fattening phase decreased intramuscular fat deposition in beef cattle. Proteome and phospho-proteome analysis together with biological and networking analysis of the protein differentially abundant between treatments indicated that Vitamin A supplementation affects the overall energy metabolism of skeletal muscle, impairing lipid biosynthesis in skeletal muscle. CONCLUSION Vitamin A supplementation at fattening phase impairs intramuscular fat deposition in beef cattle likely by changing the energy metabolism of skeletal muscle. The interaction of retinoic acid and heat shock 70-kDa protein may play a pivotal role in intramuscular fat deposition as a consequence of vitamin A supplementation by impairing de novo fatty acid synthesis as a result of a possible decrease in insulin sensitivity in the skeletal muscle. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Carolina F Campos
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Thaís C Costa
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Rafael T S Rodrigues
- Department of Veterinary Science, Universidade Federal do vale do São Francisco, Petrolina, Brazil
| | | | - Felipe H Moura
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Walmir Silva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Mario L Chizzotti
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Pedro D B Benedeti
- Department of Animal Science, Universidade Estadual de Santa Catarina, Chapecó, Brazil
| | - Fabyano F Silva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Marcio S Duarte
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
11
|
Safari S, Amiri A, Badiei A. FRET probe for selective and sensitive detection of vitamin A by cadmium free quantum dots (ZnS). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 231:118062. [PMID: 32006912 DOI: 10.1016/j.saa.2020.118062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Vitamin A as a powerful antioxidant plays an important role in human body functions including bone remodeling regulation, healthy immune system and cell growth reproduction. An accurate determination of vitamin A is taken into consideration because of its importance for human health. In this paper, we reported a fluorescence resonance energy transfer (FRET) probe, MPS-capped ZnS QDs, for sensitive and selective detection of vitamin A. The colloidal MPS-capped ZnS QDs were prepared from Zinc acetate and sodium sulfide by employing 3-mercaptopropyltrimethoxysilane (MPS) molecules as the stabilizer or capping agent at the pH condition of 10. The synthesized MPS-capped ZnS QDs were characterized by means of FT-IR, UV-Vis, DLS, and TEM techniques. The sensing behavior of MPS-capped ZnS QDs for selective and sensitive detection of vitamin A, vitamin B2, vitamin B6, vitamin E, vitamin K, vitamin H, vitamin D3 and vitamin C was investigated using fluorescence spectroscopy. The detection mechanism involves photoinduced charge transfer from the surface of ZnS QDs to Vitamin resulting in the fluorescence quenching of ZnS QDs followed by nonradiative fluorescence resonance energy transfer. An excellent selectivity was observed for vitamin A versus other tested species. A linear relationship was observed between the fluorescence intensity of MPS-capped ZnS QDs and the concentration of vitamin A in the range of 3.33-36.66 μM with detection limit of 1.062 μM.
Collapse
Affiliation(s)
- Sara Safari
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran; School of Chemistry, Alborz Campus, University of Tehran, Alborz, Iran
| | - Ahmad Amiri
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
12
|
Czuba LC, Zhong G, Yabut KC, Isoherranen N. Analysis of vitamin A and retinoids in biological matrices. Methods Enzymol 2020; 637:309-340. [PMID: 32359651 DOI: 10.1016/bs.mie.2020.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vitamin A signaling pathways are predominantly driven by the cellular concentrations of all-trans-retinoic acid (atRA), as the main mechanism of retinoid signaling is via activation of retinoic acid receptors. atRA concentrations are in turn controlled by the storage of vitamin A and enzymatic processes that synthesize and clear atRA. This has resulted in the need for robust and highly specific analytical methods to accurately quantify retinoids in diverse biological matrices. Tissue-specific differences in both the quantity of retinoids and background matrix interferences can confound the quantification of retinoids, and the bioanalysis requires high performance instrumentation, such as liquid chromatography mass-spectrometry (LC-MS). Successful bioanalysis of retinoids is further complicated by the innate structural instability of retinoids and their relatively high lipophilicity. Further, in vitro experiments with retinoids require attention to experimental design and interpretation to account for the instability of retinoids due to isomerization and degradation, sequential metabolism to numerous structurally similar metabolites, and substrate depletion during experiments. In addition, in vitro biological activity is often confounded by residual presence of retinoids in common biological reagents such as cell culture media. This chapter identifies common biological and analytical complexities in retinoid bioanalysis in diverse biological matrices, and in the use of retinoids in cell culture and metabolic incubations. In addition, this chapter highlights best practices for the successful detection and quantification of the vitamin A metabolome in a wide range of biological matrices.
Collapse
Affiliation(s)
- Lindsay C Czuba
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States
| | - Guo Zhong
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States
| | - King C Yabut
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States.
| |
Collapse
|
13
|
Reddy MRG, Asha GV, Manchiryala SK, Putcha UK, Vajreswari A, Jeyakumar SM. High-Fat Diet Elevates Liver Docosahexaenoic Acid Possibly through Over-Expression of Very Long-Chain Fatty Acid Elongase 2 in C57BL/6J Mice. INT J VITAM NUTR RES 2019; 89:62-72. [PMID: 30957704 DOI: 10.1024/0300-9831/a000432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The liver is the main site of lipid metabolism and vitamin A storage. Dietary factors are known to affect liver function, thereby leading to metabolic abnormalities. Here, we assessed the impact of long-term feeding of a high-fat diet on hepatic vitamin A status and lipid metabolism. For this purpose, 14 male and 14 female 35-day-old mice (strain C57BL/6J) were each divided into 2 groups of 7 animals and fed either a stock diet or a high-fat (HF) diet for 26 weeks. In addition to increased body weight/weight gain, the HF diet induced hypertriglyceridemia in both (p < 0.01). However, liver triglyceride levels were comparable among groups, which could be partly explained by unaltered expression of various lipogenic pathway proteins such as sterol regulatory element binding protein 1 (SREBP1), fatty acid synthase (FAS), microsomal triglyceride transfer protein (MTTP), and glycerol 3-phosphate acyl transferase (GPAT). On the other hand, hepatic retinol stores increased significantly in both sexes, whereas males displayed elevated circulatory retinol levels. Notably, long-term feeding of a HF diet elevated n-3 polyunsaturated fatty acid (PUFA) and docosahexaenoic acid (DHA, C22:6) levels in the liver (p ≤ 0.001), which is in line with the over-expression of very long-chain fatty acid elongase 2 (ELOVL2) protein in both sexes of mice (p < 0.01). In conclusion, very long-term feeding of a HF diet increased hepatic retinol stores and induced hypertriglyceridemia. However, it had no effect on hepatic triglyceride accumulation, possibly due to increased DHA levels arising from the ELOVL2-mediated elongation pathway.
Collapse
Affiliation(s)
- Mooli Raja Gopal Reddy
- 1Lipid Biochemistry Division, National Institute of Nutrition, Jamai Osmania, Hyderabad, India
| | - Gundluri Venkata Asha
- 1Lipid Biochemistry Division, National Institute of Nutrition, Jamai Osmania, Hyderabad, India
| | | | - Uday Kumar Putcha
- 2Pathology Division, National Institute of Nutrition, Jamai Osmania, Hyderabad, India
| | | | - Shanmugam M Jeyakumar
- 1Lipid Biochemistry Division, National Institute of Nutrition, Jamai Osmania, Hyderabad, India
| |
Collapse
|
14
|
Erban T, Sopko B, Talacko P, Harant K, Kadlikova K, Halesova T, Riddellova K, Pekas A. Chronic exposure of bumblebees to neonicotinoid imidacloprid suppresses the entire mevalonate pathway and fatty acid synthesis. J Proteomics 2019; 196:69-80. [DOI: 10.1016/j.jprot.2018.12.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/07/2018] [Accepted: 12/20/2018] [Indexed: 11/16/2022]
|
15
|
Effect of high chronic intake of sucrose on liver metabolism in aging rats. Modulation by rutin and micronutrients. J Physiol Biochem 2018; 74:569-577. [DOI: 10.1007/s13105-018-0628-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/03/2018] [Indexed: 12/29/2022]
|
16
|
Toxic effects of phytol and retinol on human glioblastoma cells are associated with modulation of cholesterol and fatty acid biosynthetic pathways. J Neurooncol 2017; 136:435-443. [PMID: 29159775 DOI: 10.1007/s11060-017-2672-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/11/2017] [Indexed: 02/07/2023]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor. Genetic mutations may reprogram the metabolism of neoplastic cells. Particularly, alterations in cholesterol and fatty acid biosynthetic pathways may favor biomass synthesis and resistance to therapy. Therefore, compounds that interfere with those pathways, such as phytol (PHY) and retinol (RET), may be appropriate for cytotoxic approaches. We tested the effect of PHY or RET on the viability of human GBM cell lines (U87MG, A172 and T98G). Since the compounds showed a dose-dependent cytotoxic effect, additional analyses were performed with IC50 values. Transcriptome analyses of A172 cells treated with PHY IC50 or RET IC50 revealed down-regulated genes involved in cholesterol and/or fatty acid biosynthetic pathways. Thus, we investigated the expression of proteins required for cholesterol and/or fatty acid synthesis after treating all lineages with PHY IC50 or RET IC50 and comparing them with controls. Sterol regulatory element-binding protein 1 (SREBP-1) expression was reduced by PHY in U87 and T98G cells. However, fatty acid synthase (FAS) protein expression, which is regulated by SREBP-1, was down-regulated in all lineages after both treatments. Moreover, farnesyl-diphosphate farnesyltransferase (FDFT1) levels, a protein associated with cholesterol synthesis, were reduced in all lineages by PHY and in U87MG and A172 cells by RET. Our results suggest that SREBP-1, FAS and FDFT1 are potential target(s) for future in vivo approaches against GBM and support the use of inhibitors of their synthesis, including PHY and RET, for such approaches.
Collapse
|
17
|
Basu M, Khan MW, Chakrabarti P, Das C. Chromatin reader ZMYND8 is a key target of all trans retinoic acid-mediated inhibition of cancer cell proliferation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:450-459. [DOI: 10.1016/j.bbagrm.2017.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/16/2017] [Accepted: 02/11/2017] [Indexed: 01/10/2023]
|
18
|
Tanumihardjo SA, Russell RM, Stephensen CB, Gannon BM, Craft NE, Haskell MJ, Lietz G, Schulze K, Raiten DJ. Biomarkers of Nutrition for Development (BOND)-Vitamin A Review. J Nutr 2016; 146:1816S-48S. [PMID: 27511929 PMCID: PMC4997277 DOI: 10.3945/jn.115.229708] [Citation(s) in RCA: 284] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/01/2016] [Accepted: 06/29/2016] [Indexed: 12/15/2022] Open
Abstract
The Biomarkers of Nutrition for Development (BOND) project is designed to provide evidence-informed advice to anyone with an interest in the role of nutrition in health. The BOND program provides information with regard to selection, use, and interpretation of biomarkers of nutrient exposure, status, function, and effect, which will be especially useful for readers who want to assess nutrient status. To accomplish this objective, expert panels are recruited to evaluate the literature and to draft comprehensive reports on the current state of the art with regard to specific nutrient biology and available biomarkers for assessing nutritional status at the individual and population levels. Phase I of the BOND project includes the evaluation of biomarkers for 6 nutrients: iodine, folate, zinc, iron, vitamin A, and vitamin B-12. This review of vitamin A is the current article in this series. Although the vitamin was discovered >100 y ago, vitamin A status assessment is not trivial. Serum retinol concentrations are under homeostatic control due in part to vitamin A's use in the body for growth and cellular differentiation and because of its toxic properties at high concentrations. Furthermore, serum retinol concentrations are depressed during infection and inflammation because retinol-binding protein (RBP) is a negative acute-phase reactant, which makes status assessment challenging. Thus, this review describes the clinical and functional indicators related to eye health and biochemical biomarkers of vitamin A status (i.e., serum retinol, RBP, breast-milk retinol, dose-response tests, isotope dilution methodology, and serum retinyl esters). These biomarkers are then related to liver vitamin A concentrations, which are usually considered the gold standard for vitamin A status. With regard to biomarkers, future research questions and gaps in our current understanding as well as limitations of the methods are described.
Collapse
Affiliation(s)
- Sherry A Tanumihardjo
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | | | | | - Bryan M Gannon
- Interdepartmental Graduate Program in Nutritional Sciences, Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI
| | | | | | - Georg Lietz
- Newcastle University, Newcastle, United Kingdom
| | - Kerry Schulze
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD; and
| | - Daniel J Raiten
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| |
Collapse
|
19
|
Huang Y, Clements PR, Gibson RA. Robust measurement of vitamin A status in plasma and blood dried on paper. Prostaglandins Leukot Essent Fatty Acids 2015; 102-103:31-6. [PMID: 26489594 DOI: 10.1016/j.plefa.2015.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/31/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
Abstract
Vitamin A deficiency is the leading cause of preventable blindness in children and increases the risk of disease and death from severe infections. In addition, fat soluble vitamin A and associated retinoids directly regulate the expression of genes involved in fatty acid metabolism. Conventional methods for measuring vitamin A involve venipuncture, centrifugation and refrigeration all of which make measuring vitamin A in nutritional surveys expensive. We aimed to develop a simple and robust system for measurement of retinol (biomarker for vitamin A) using dried blood spot (DBS) samples. Low recoveries and inconsistent results reported by others were found to be due to poor extraction efficiency rather than retinol instability. Maintaining acid conditions during extraction resulted in recoveries >95% with <6.5% of coefficient of variation. Using isocratic high performance liquid chromatography, separation was achieved in <3.5 min. Detector response was linear (R(2)=0.9939) within a range of 0.05-2 μg/mL, with a limit of quantification of 0.05 μg/mL. Retinol in DBS was shown to be stable (>95%) at room temperature for up to 10 weeks. DBS values for retinol were highly correlated with venous blood samples from 24 healthy subjects (r=0.9724) and were consistent with results from a commercial laboratory. This simple and reliable method for the determination of vitamin A status should prove particularly valuable for population studies and large clinical trials.
Collapse
Affiliation(s)
- Yichao Huang
- FOODplus Research Centre, School of Agriculture, Food and Wine, the University of Adelaide, Adelaide, South Australia, Australia
| | - Peter Roy Clements
- FOODplus Research Centre, School of Agriculture, Food and Wine, the University of Adelaide, Adelaide, South Australia, Australia
| | - Robert Alan Gibson
- FOODplus Research Centre, School of Agriculture, Food and Wine, the University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
20
|
Zhang R, Wang Y, Li R, Chen G. Transcriptional Factors Mediating Retinoic Acid Signals in the Control of Energy Metabolism. Int J Mol Sci 2015; 16:14210-44. [PMID: 26110391 PMCID: PMC4490549 DOI: 10.3390/ijms160614210] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 02/07/2023] Open
Abstract
Retinoic acid (RA), an active metabolite of vitamin A (VA), is important for many physiological processes including energy metabolism. This is mainly achieved through RA-regulated gene expression in metabolically active cells. RA regulates gene expression mainly through the activation of two subfamilies in the nuclear receptor superfamily, retinoic acid receptors (RARs) and retinoid X receptors (RXRs). RAR/RXR heterodimers or RXR/RXR homodimers bind to RA response element in the promoters of RA target genes and regulate their expressions upon ligand binding. The development of metabolic diseases such as obesity and type 2 diabetes is often associated with profound changes in the expressions of genes involved in glucose and lipid metabolism in metabolically active cells. RA regulates some of these gene expressions. Recently, in vivo and in vitro studies have demonstrated that status and metabolism of VA regulate macronutrient metabolism. Some studies have shown that, in addition to RARs and RXRs, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter-transcription factor II, and peroxisome proliferator activated receptor β/δ may function as transcriptional factors mediating RA response. Herein, we summarize current progresses regarding the VA metabolism and the role of nuclear receptors in mediating RA signals, with an emphasis on their implication in energy metabolism.
Collapse
Affiliation(s)
- Rui Zhang
- State Food and Drug Administration Hubei Center for Medical Equipment Quality Supervision and Testing, 666 High-Tech Avenue, Wuhan 430000, China.
| | - Yueqiao Wang
- Department of Nutrition and Food Hygiene, Wuhan University, 185 East Lake Road, Wuhan 430071, China.
| | - Rui Li
- Department of Nutrition and Food Hygiene, Wuhan University, 185 East Lake Road, Wuhan 430071, China.
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, 1215 West Cumberland Avenue, Knoxville, TN 37996, USA.
| |
Collapse
|
21
|
Kim YM, Kim JH, Park SW, Kim HJ, Chang KC. Retinoic acid inhibits tissue factor and HMGB1 via modulation of AMPK activity in TNF-α activated endothelial cells and LPS-injected mice. Atherosclerosis 2015; 241:615-23. [PMID: 26116962 DOI: 10.1016/j.atherosclerosis.2015.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 05/15/2015] [Accepted: 06/16/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Retinoic acid (RA) is the active vitamin A derivative and has diverse immunomodulatory actions. We hypothesized that RA reduces prothrombotic mediators such as tissue factor (TF) in endothelial cells during inflammatory conditions via an AMPK-dependent pathway, which attenuates cardiovascular complications. RESULTS RA significantly increased AMPK and Akt phosphorylation in a time- and concentration-dependent manner in endothelial cells (EC). RA downregulated TF expression at the transcriptional and translational levels in TNF-α activated ECs, which was reversed by the silencing of AMPK and transfection of DN-AMPK. Interestingly, the PI3-kinase inhibitor LY294002 reversed the RA effect on TF expression. Increased AMPK phosphorylation by RA was inhibited by LY294002. However, increased Akt phosphorylation was not reduced by compound C, indicating that PI3K/Akt signaling modulates AMPK activity. In addition, RA reduced HMGB1 release in TNF-α activated ECs, which was reversed by both LY294001 and siAMPK. Importantly, administration of RA (1 mg/kg) significantly reduced blood TF activity, circulating HMGB1 and PAI-1 levels and expression of hepatic TF mRNA as well as fibrin deposition in LPS (5 mg/kg)-injected mice. CONCLUSIONS Taken together, the activation of PI3K/Akt by RA modulates AMPK activity in ECs and plays a crucial role in the inhibition of coagulatory factors such as TF, PAI-1, and HMGB1 in inflammatory conditions.
Collapse
Affiliation(s)
- Young Min Kim
- Department of Pharmacology, School of Medicine Gyeongsang National University, 660-751 Jinju, South Korea
| | - Jung Hwan Kim
- Department of Pharmacology, School of Medicine Gyeongsang National University, 660-751 Jinju, South Korea
| | - Sang Won Park
- Department of Pharmacology, School of Medicine Gyeongsang National University, 660-751 Jinju, South Korea
| | - Hye Jung Kim
- Department of Pharmacology, School of Medicine Gyeongsang National University, 660-751 Jinju, South Korea
| | - Ki Churl Chang
- Department of Pharmacology, School of Medicine Gyeongsang National University, 660-751 Jinju, South Korea.
| |
Collapse
|
22
|
Zhang M, Liu C, Hu MY, Zhang J, Xu P, Li F, Zhong ZY, Liu L, Liu XD. High-fat diet enhanced retinal dehydrogenase activity, but suppressed retinol dehydrogenase activity in liver of rats. J Pharmacol Sci 2015; 127:430-8. [PMID: 25953270 DOI: 10.1016/j.jphs.2015.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 02/28/2015] [Accepted: 03/02/2015] [Indexed: 01/26/2023] Open
Abstract
Evidence has shown that hyperlipidemia is associated with retinoid dyshomeostasis. In liver, retinol is mainly oxidized to retinal by retinol dehydrogenases (RDHs) and alcohol dehydrogenases (ADHs), further converted to retinoic acid by retinal dehydrogenases (RALDHs). The aim of this study was to investigate whether high-fat diet (HFD) induced hyperlipidemia affected activity and expression of hepatic ADHs/RDHs and RALDHs in rats. Results showed that retinol levels in liver, kidney and adipose tissue of HFD rats were significantly increased, while plasma retinol and hepatic retinal levels were markedly decreased. HFD rats exhibited significantly downregulated hepatic ADHs/RDHs activity and Adh1, Rdh10 and Dhrs9 expression. Oppositely, hepatic RALDHs activity and Raldh1 expression were upregulated in HFD rats. In HepG2 cells, treatment of HFD rat serum inhibited ADHs/RDHs activity and induced RALDHs activity. Among the tested abnormally altered components in HFD rat serum, cholesterol reduced ADHs/RDHs activity and RDH10 expression, while induced RALDHs activity and RALDH1 expression in HepG2 cells. Contrary to the effect of cholesterol, cholesterol-lowering agent pravastatin upregulated ADHs/RDHs activity and RDH10 expression, while suppressed RALDHs activity and RALDH1 expression. In conclusion, hyperlipidemia oppositely altered activity and expression of hepatic ADHs/RDHs and RALDHs, which is partially due to the elevated cholesterol levels.
Collapse
Affiliation(s)
- Mian Zhang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Can Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Meng-yue Hu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Ji Zhang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Ping Xu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Feng Li
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Ze-yu Zhong
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Li Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China
| | - Xiao-dong Liu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, #24 Tongjiaxiang, Nanjing 210009, PR China.
| |
Collapse
|
23
|
Obrochta KM, Krois CR, Campos B, Napoli JL. Insulin regulates retinol dehydrogenase expression and all-trans-retinoic acid biosynthesis through FoxO1. J Biol Chem 2015; 290:7259-68. [PMID: 25627686 DOI: 10.1074/jbc.m114.609313] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
All-trans-retinoic acid (atRA), an autacoid derived from retinol (vitamin A), regulates energy balance and reduces adiposity. We show that energy status regulates atRA biosynthesis at the rate-limiting step, catalyzed by retinol dehydrogenases (RDH). Six h after re-feeding, Rdh1 expression decreased 80-90% in liver and brown adipose tissue and Rdh10 expression was decreased 45-63% in liver, pancreas, and kidney, all relative to mice fasted 16 h. atRA in the liver was decreased 44% 3 h after reduced Rdh expression. Oral gavage with glucose or injection with insulin decreased Rdh1 and Rdh10 mRNA 50% or greater in mouse liver. Removing serum from the medium of the human hepatoma cell line HepG2 increased Rdh10 and Rdh16 (human Rdh1 ortholog) mRNA expression 2-3-fold by 4 h, by increasing transcription and stabilizing mRNA. Insulin decreased Rdh10 and Rdh16 mRNA in HepG2 cells incubated in serum-free medium by inhibiting transcription and destabilizing mRNA. Insulin action required PI3K and Akt, which suppress FoxO1. Serum removal increased atRA biosynthesis 4-fold from retinol in HepG2 cells, whereas dominant-negative FoxO1 prevented the increase. Thus, energy status via insulin and FoxO1 regulate Rdh expression and atRA biosynthesis. These results reveal mechanisms for regulating atRA biosynthesis and the opposing effects of atRA and insulin on gluconeogenesis, and also suggest an interaction between atRA and insulin signaling related diseases, such as type II diabetes and cancer.
Collapse
Affiliation(s)
- Kristin M Obrochta
- From the Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, California 94720
| | - Charles R Krois
- From the Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, California 94720
| | - Benito Campos
- From the Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, California 94720
| | - Joseph L Napoli
- From the Department of Nutritional Sciences and Toxicology, Graduate Program in Metabolic Biology, University of California, Berkeley, California 94720
| |
Collapse
|
24
|
Abstract
The question whether dietary habits and lifestyle have influence on the course of multiple sclerosis (MS) is still a matter of debate, and at present, MS therapy is not associated with any information on diet and lifestyle. Here we show that dietary factors and lifestyle may exacerbate or ameliorate MS symptoms by modulating the inflammatory status of the disease both in relapsing-remitting MS and in primary-progressive MS. This is achieved by controlling both the metabolic and inflammatory pathways in the human cell and the composition of commensal gut microbiota. What increases inflammation are hypercaloric Western-style diets, characterized by high salt, animal fat, red meat, sugar-sweetened drinks, fried food, low fiber, and lack of physical exercise. The persistence of this type of diet upregulates the metabolism of human cells toward biosynthetic pathways including those of proinflammatory molecules and also leads to a dysbiotic gut microbiota, alteration of intestinal immunity, and low-grade systemic inflammation. Conversely, exercise and low-calorie diets based on the assumption of vegetables, fruit, legumes, fish, prebiotics, and probiotics act on nuclear receptors and enzymes that upregulate oxidative metabolism, downregulate the synthesis of proinflammatory molecules, and restore or maintain a healthy symbiotic gut microbiota. Now that we know the molecular mechanisms by which dietary factors and exercise affect the inflammatory status in MS, we can expect that a nutritional intervention with anti-inflammatory food and dietary supplements can alleviate possible side effects of immune-modulatory drugs and the symptoms of chronic fatigue syndrome and thus favor patient wellness.
Collapse
Affiliation(s)
- Paolo Riccio
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Rocco Rossano
- Department of Sciences, University of Basilicata, Potenza, Italy
| |
Collapse
|
25
|
Energy intake, growth rate and body composition of young Labrador Retrievers and Miniature Schnauzers fed different dietary levels of vitamin A. Br J Nutr 2014; 111:2104-11. [PMID: 24666690 DOI: 10.1017/s0007114514000543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Research in rodents has shown that dietary vitamin A reduces body fat by enhancing fat mobilisation and energy utilisation; however, their effects in growing dogs remain unclear. In the present study, we evaluated the development of body weight and body composition and compared observed energy intake with predicted energy intake in forty-nine puppies from two breeds (twenty-four Labrador Retriever (LAB) and twenty-five Miniature Schnauzer (MS)). A total of four different diets with increasing vitamin A content between 5·24 and 104·80 μmol retinol (5000-100 000 IU vitamin A)/4184 kJ (1000 kcal) metabolisable energy were fed from the age of 8 weeks up to 52 (MS) and 78 weeks (LAB). The daily energy intake was recorded throughout the experimental period. The body condition score was evaluated weekly using a seven-category system, and food allowances were adjusted to maintain optimal body condition. Body composition was assessed at the age of 26 and 52 weeks for both breeds and at the age of 78 weeks for the LAB breed only using dual-energy X-ray absorptiometry. The growth curves of the dogs followed a breed-specific pattern. However, data on energy intake showed considerable variability between the two breeds as well as when compared with predicted energy intake. In conclusion, the data show that energy intakes of puppies particularly during early growth are highly variable; however, the growth pattern and body composition of the LAB and MS breeds are not affected by the intake of vitamin A at levels up to 104·80 μmol retinol (100 000 IU vitamin A)/4184 kJ (1000 kcal).
Collapse
|
26
|
Pan J, Guleria RS, Zhu S, Baker KM. Molecular Mechanisms of Retinoid Receptors in Diabetes-Induced Cardiac Remodeling. J Clin Med 2014; 3:566-94. [PMID: 26237391 PMCID: PMC4449696 DOI: 10.3390/jcm3020566] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/17/2014] [Accepted: 03/25/2014] [Indexed: 02/07/2023] Open
Abstract
Diabetic cardiomyopathy (DCM), a significant contributor to morbidity and mortality in diabetic patients, is characterized by ventricular dysfunction, in the absence of coronary atherosclerosis and hypertension. There is no specific therapeutic strategy to effectively treat patients with DCM, due to a lack of a mechanistic understanding of the disease process. Retinoic acid, the active metabolite of vitamin A, is involved in a wide range of biological processes, through binding and activation of nuclear receptors: retinoic acid receptors (RAR) and retinoid X receptors (RXR). RAR/RXR-mediated signaling has been implicated in the regulation of glucose and lipid metabolism. Recently, it has been reported that activation of RAR/RXR has an important role in preventing the development of diabetic cardiomyopathy, through improving cardiac insulin resistance, inhibition of intracellular oxidative stress, NF-κB-mediated inflammatory responses and the renin-angiotensin system. Moreover, downregulated RAR/RXR signaling has been demonstrated in diabetic myocardium, suggesting that impaired RAR/RXR signaling may be a trigger to accelerate diabetes-induced development of DCM. Understanding the molecular mechanisms of retinoid receptors in the regulation of cardiac metabolism and remodeling under diabetic conditions is important in providing the impetus for generating novel therapeutic approaches for the prevention and treatment of diabetes-induced cardiac complications and heart failure.
Collapse
Affiliation(s)
- Jing Pan
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A & M Health Science Center, Baylor Scott & White Health, Central Texas Veterans Health Care System, Temple, TX, 76504, USA.
| | - Rakeshwar S Guleria
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A & M Health Science Center, Baylor Scott & White Health, Central Texas Veterans Health Care System, Temple, TX, 76504, USA.
| | - Sen Zhu
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A & M Health Science Center, Baylor Scott & White Health, Central Texas Veterans Health Care System, Temple, TX, 76504, USA.
| | - Kenneth M Baker
- Division of Molecular Cardiology, Department of Medicine, College of Medicine, Texas A & M Health Science Center, Baylor Scott & White Health, Central Texas Veterans Health Care System, Temple, TX, 76504, USA.
| |
Collapse
|
27
|
Chen W, Chen G. The Roles of Vitamin A in the Regulation of Carbohydrate, Lipid, and Protein Metabolism. J Clin Med 2014; 3:453-79. [PMID: 26237385 PMCID: PMC4449691 DOI: 10.3390/jcm3020453] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/06/2014] [Accepted: 03/14/2014] [Indexed: 02/07/2023] Open
Abstract
Currently, two-thirds of American adults are overweight or obese. This high prevalence of overweight/obesity negatively affects the health of the population, as obese individuals tend to develop several chronic diseases, such as type 2 diabetes and cardiovascular diseases. Due to obesity's impact on health, medical costs, and longevity, the rise in the number of obese people has become a public health concern. Both genetic and environmental/dietary factors play a role in the development of metabolic diseases. Intuitively, it seems to be obvious to link over-nutrition to the development of obesity and other metabolic diseases. However, the underlying mechanisms are still unclear. Dietary nutrients not only provide energy derived from macronutrients, but also factors such as micronutrients with regulatory roles. How micronutrients, such as vitamin A (VA; retinol), regulate macronutrient homeostasis is still an ongoing research topic. As an essential micronutrient, VA plays a key role in the general health of an individual. This review summarizes recent research progress regarding VA's role in carbohydrate, lipid, and protein metabolism. Due to the large amount of information regarding VA functions, this review focusses on metabolism in metabolic active organs and tissues. Additionally, some perspectives for future studies will be provided.
Collapse
Affiliation(s)
- Wei Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA.
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA.
| |
Collapse
|
28
|
Howell M, Li R, Zhang R, Li Y, Chen W, Chen G. The expression of Apoc3 mRNA is regulated by HNF4α and COUP-TFII, but not acute retinoid treatments, in primary rat hepatocytes and hepatoma cells. Mol Cell Biochem 2014; 387:241-50. [PMID: 24234421 DOI: 10.1007/s11010-013-1889-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 11/05/2013] [Indexed: 02/07/2023]
Abstract
Vitamin A status regulates obesity development, hyperlipidemia, and hepatic lipogenic gene expression in Zucker fatty (ZF) rats. The development of hyperlipidemia in acne patients treated with retinoic acid (RA) has been attributed to the induction of apolipoprotein C-III expression. To understand the role of retinoids in the development of hyperlipidemia in ZF rats, the expression levels of several selected RA-responsive genes in the liver and isolated hepatocytes from Zucker lean (ZL) and ZF rats were compared using real-time PCR. The Rarb and Srebp-1c mRNA levels are higher in the liver and isolated hepatocytes from ZF than ZL rats. The Apoc3 mRNA level is only higher in the isolated hepatocytes from ZF than ZL rats. To determine whether dynamic RA production acutely regulates Apoc3 expression, its mRNA levels in response to retinoid treatments or adenovirus-mediated overexpression of hepatocyte nuclear factor 4 alpha (HNF4α) and chicken ovalbumin upstream-transcription factor II (COUP-TFII) were analyzed. Retinoid treatments for 2-6 h did not induce the expression of Apoc3 mRNA. The overexpression of HNF4α or COUP-TFII induced or inhibited Apoc3 expression, respectively. We conclude that short-term retinoid treatments could not induce Apoc3 mRNA expression, which is regulated by HNF4α and COUP-TFII in hepatocytes.
Collapse
|
29
|
Guan HP, Chen G. Factors affecting insulin-regulated hepatic gene expression. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:165-215. [PMID: 24373238 DOI: 10.1016/b978-0-12-800101-1.00006-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity has become a major concern of public health. A common feature of obesity and related metabolic disorders such as noninsulin-dependent diabetes mellitus is insulin resistance, wherein a given amount of insulin produces less than normal physiological responses. Insulin controls hepatic glucose and fatty acid metabolism, at least in part, via the regulation of gene expression. When the liver is insulin-sensitive, insulin can stimulate the expression of genes for fatty acid synthesis and suppress those for gluconeogenesis. When the liver becomes insulin-resistant, the insulin-mediated suppression of gluconeogenic gene expression is lost, whereas the induction of fatty acid synthetic gene expression remains intact. In the past two decades, the mechanisms of insulin-regulated hepatic gene expression have been studied extensively and many components of insulin signal transduction pathways have been identified. Factors that alter these pathways, and the insulin-regulated hepatic gene expression, have been revealed and the underlying mechanisms have been proposed. This chapter summarizes the recent progresses in our understanding of the effects of dietary factors, drugs, bioactive compounds, hormones, and cytokines on insulin-regulated hepatic gene expression. Given the large amount of information and progresses regarding the roles of insulin, this chapter focuses on findings in the liver and hepatocytes and not those described for other tissues and cells. Typical insulin-regulated hepatic genes, such as insulin-induced glucokinase and sterol regulatory element-binding protein-1c and insulin-suppressed cytosolic phosphoenolpyruvate carboxyl kinase and insulin-like growth factor-binding protein 1, are used as examples to discuss the mechanisms such as insulin regulatory element-mediated transcriptional regulation. We also propose the potential mechanisms by which these factors affect insulin-regulated hepatic gene expression and discuss potential future directions of the area of research.
Collapse
Affiliation(s)
- Hong-Ping Guan
- Department of Diabetes, Merck Research Laboratories, Kenilworth, New Jersey, USA
| | - Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
30
|
Kiss M, Czimmerer Z, Nagy L. The role of lipid-activated nuclear receptors in shaping macrophage and dendritic cell function: From physiology to pathology. J Allergy Clin Immunol 2013; 132:264-86. [PMID: 23905916 DOI: 10.1016/j.jaci.2013.05.044] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/16/2013] [Accepted: 05/30/2013] [Indexed: 02/06/2023]
Abstract
Nuclear receptors are ligand-activated transcription factors linking lipid signaling to the expression of the genome. There is increasing appreciation of the involvement of this receptor network in the metabolic programming of macrophages and dendritic cells (DCs), essential members of the innate immune system. In this review we focus on the role of retinoid X receptor, retinoic acid receptor, peroxisome proliferator-associated receptor γ, liver X receptor, and vitamin D receptor in shaping the immune and metabolic functions of macrophages and DCs. We also provide an overview of the contribution of macrophage- and DC-expressed nuclear receptors to various immunopathologic conditions, such as rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus, asthma, and some others. We suggest that systematic analyses of the roles of these receptors and their activating lipid ligands in immunopathologies combined with complementary and focused translational and clinical research will be crucial for the development of new therapies using the many molecules available to target nuclear receptors.
Collapse
Affiliation(s)
- Mate Kiss
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary
| | | | | |
Collapse
|
31
|
Chen G. Roles of Vitamin A Metabolism in the Development of Hepatic Insulin Resistance. ISRN HEPATOLOGY 2013; 2013:534972. [PMID: 27335827 PMCID: PMC4890907 DOI: 10.1155/2013/534972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/18/2013] [Indexed: 02/07/2023]
Abstract
The increase in the number of people with obesity- and noninsulin-dependent diabetes mellitus has become a major public health concern. Insulin resistance is a common feature closely associated with human obesity and diabetes. Insulin regulates metabolism, at least in part, via the control of the expression of the hepatic genes involved in glucose and fatty acid metabolism. Insulin resistance is always associated with profound changes of the expression of hepatic genes for glucose and lipid metabolism. As an essential micronutrient, vitamin A (VA) is needed in a variety of physiological functions. The active metablite of VA, retinoic acid (RA), regulates the expression of genes through the activation of transcription factors bound to the RA-responsive elements in the promoters of RA-targeted genes. Recently, retinoids have been proposed to play roles in glucose and lipid metabolism and energy homeostasis. This paper summarizes the recent progresses in our understanding of VA metabolism in the liver and of the potential transcription factors mediating RA responses. These transcription factors are the retinoic acid receptor, the retinoid X receptor, the hepatocyte nuclear factor 4α, the chicken ovalbumin upstream promoter-transcription factor II, and the peroxisome proliferator-activated receptor β/δ. This paper also summarizes the effects of VA status and RA treatments on the glucose and lipid metabolism in vivo and the effects of retinoid treatments on the expression of insulin-regulated genes involved in the glucose and fatty acid metabolism in the primary hepatocytes. I discuss the roles of RA production in the development of insulin resistance in hepatocytes and proposes a mechanism by which RA production may contribute to hepatic insulin resistance. Given the large amount of information and progresses regarding the physiological functions of VA, this paper mainly focuses on the findings in the liver and hepatocytes and only mentions the relative findings in other tissues and cells.
Collapse
Affiliation(s)
- Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| |
Collapse
|
32
|
Guo Y, Darshi M, Ma Y, Perkins GA, Shen Z, Haushalter KJ, Saito R, Chen A, Lee YS, Patel HH, Briggs SP, Ellisman MH, Olefsky JM, Taylor SS. Quantitative proteomic and functional analysis of liver mitochondria from high fat diet (HFD) diabetic mice. Mol Cell Proteomics 2013; 12:3744-58. [PMID: 24030101 DOI: 10.1074/mcp.m113.027441] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Insulin resistance plays a major role in the development of type 2 diabetes and obesity and affects a number of biological processes such as mitochondrial biogenesis. Though mitochondrial dysfunction has been linked to the development of insulin resistance and pathogenesis of type 2 diabetes, the precise mechanism linking the two is not well understood. We used high fat diet (HFD)-induced obesity dependent diabetes mouse models to gain insight into the potential pathways altered with metabolic disease, and carried out quantitative proteomic analysis of liver mitochondria. As previously reported, proteins involved in fatty acid oxidation, branched chain amino acid degradation, tricarboxylic acid cycle, and oxidative phosphorylation were uniformly up-regulated in the liver of HFD fed mice compared with that of normal diet. Further, our studies revealed that retinol metabolism is distinctly down-regulated and the mitochondrial structural proteins-components of mitochondrial inter-membrane space bridging (MIB) complex (Mitofilin, Sam50, and ChChd3), and Tim proteins-essential for protein import, are significantly up-regulated in HFD fed mice. Structural and functional studies on HFD and normal diet liver mitochondria revealed remodeling of HFD mitochondria to a more condensed form with increased respiratory capacity and higher ATP levels compared with normal diet mitochondria. Thus, it is likely that the structural remodeling is essential to accommodate the increased protein content in presence of HFD: the mechanism could be through the MIB complex promoting contact site and crista junction formation and in turn facilitating the lipid and protein uptake.
Collapse
|
33
|
Wang Q, Ma A, Bygbjerg IC, Han X, Liu Y, Zhao S, Cai J. Rationale and design of a randomized controlled trial of the effect of retinol and vitamin D supplementation on treatment in active pulmonary tuberculosis patients with diabetes. BMC Infect Dis 2013; 13:104. [PMID: 23442225 PMCID: PMC3599006 DOI: 10.1186/1471-2334-13-104] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/18/2013] [Indexed: 01/03/2023] Open
Abstract
Background The association between pulmonary tuberculosis (PTB) and diabetes mellitus (DM) has been previously attracted much attention. Diabetes alters immunity to tuberculosis, leading to more frequent treatment failure in TB patients with DM. Moreover, TB and DM often coincide with micronutrients deficiencies, such as retinol and vitamin D, which are especially important to immunity of the body and may influence pancreas β-cell function. However, the effects of retinol and vitamin D supplementation in active TB patients with diabetes on treatment outcomes, immune and nutrition state are still uncertain. We are conducting a randomized controlled trial of vitamin A and/or D in active PTB patients with DM in a network of 4 TB treatment clinics to determine whether the supplementation could improve the outcome in the patients. Methods/design This is a 2×2 factorial trial. We plan to enroll 400 active PTB patients with DM, and randomize them to VA (2000 IU daily retinol); VD (400 IU daily cholecalciferol); VAD (2000 IU daily retinol plus 400 IU cholecalciferol) or control (placebo) group. Our primary outcome measure is the efficacy of anti-tuberculosis treatment and ameliorating of glucose metabolism, and the secondary outcome measure being immune and nutrition status of the subjects. Of the first 37 subjects enrolled: 8 have been randomized to VA, 10 to VD, 9 to VAD and 10 to control. To date, the sample is 97.3% Han Chinese and 91.9% female. The average fasting plasma glucose level is 12.19 mmol/L. Discussion This paper describes the design and rationale of a randomized clinical trial comparing VA and/or VD supplementation to active pulmonary TB patients with DM. Our trial will allow rigorous evaluation of the efficacy of the supplementation to active TB and DM therapy for improving clinical outcomes and immunological condition. This detailed description of trial methodology can serve as a template for the development of future treatment scheme for active TB patient with DM. Trial registration ChiCTR-TRC-12002546
Collapse
Affiliation(s)
- Qiuzhen Wang
- The Institute of Human Nutrition, Medical College of Qingdao University, 38 Dengzhou Road, Qingdao 266021, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Zheng W, Xu H, Lam SH, Luo H, Karuturi RKM, Gong Z. Transcriptomic analyses of sexual dimorphism of the zebrafish liver and the effect of sex hormones. PLoS One 2013; 8:e53562. [PMID: 23349717 PMCID: PMC3547925 DOI: 10.1371/journal.pone.0053562] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 11/29/2012] [Indexed: 01/02/2023] Open
Abstract
The liver is one of the most sex-dimorphic organs in both oviparous and viviparous animals. In order to understand the molecular basis of the difference between male and female livers, high-throughput RNA-SAGE (serial analysis of gene expression) sequencing was performed for zebrafish livers of both sexes and their transcriptomes were compared. Both sexes had abundantly expressed genes involved in translation, coagulation and lipid metabolism, consistent with the general function of the liver. For sex-biased transcripts, from in addition to the high enrichment of vitellogenin transcripts in spawning female livers, which constituted nearly 80% of total mRNA, it is apparent that the female-biased genes were mostly involved in ribosome/translation, estrogen pathway, lipid transport, etc, while the male-biased genes were enriched for oxidation reduction, carbohydrate metabolism, coagulation, protein transport and localization, etc. Sexual dimorphism on xenobiotic metabolism and anti-oxidation was also noted and it is likely that retinol x receptor (RXR) and liver x receptor (LXR) play central roles in regulating the sexual differences of lipid and cholesterol metabolisms. Consistent with high ribosomal/translational activities in the female liver, female-biased genes were significantly regulated by two important transcription factors, Myc and Mycn. In contrast, Male livers showed activation of transcription factors Ppargc1b, Hnf4a, and Stat4, which regulate lipid and glucose metabolisms and various cellular activities. The transcriptomic responses to sex hormones, 17β-estradiol (E2) or 11-keto testosterone (KT11), were also investigated in both male and female livers and we found that female livers were relatively insensitive to sex hormone disturbance, while the male livers were readily affected. E2 feminized male liver by up-regulating female-biased transcripts and down-regulating male-biased transcripts. The information obtained in this study provides comprehensive insights into the sexual dimorphism of zebrafish liver transcriptome and will facilitate further development of the zebrafish as a human liver disease model.
Collapse
Affiliation(s)
- Weiling Zheng
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Hongyan Xu
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Siew Hong Lam
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Huaien Luo
- Computational and Systems Biology, Genome Institute of Singapore, Singapore, Singapore
| | | | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
35
|
Li Y, Zhang Y, Li R, Chen W, Howell M, Zhang R, Chen G. The hepatic Raldh1 expression is elevated in Zucker fatty rats and its over-expression introduced the retinal-induced Srebp-1c expression in INS-1 cells. PLoS One 2012; 7:e45210. [PMID: 23028851 PMCID: PMC3441598 DOI: 10.1371/journal.pone.0045210] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 08/14/2012] [Indexed: 02/07/2023] Open
Abstract
The roles of vitamin A (VA) in the development of metabolic diseases remain unanswered. We have reported that retinoids synergized with insulin to induce the expression of sterol-regulatory element-binding protein 1c gene (Srebp-1c) expression in primary rat hepatocytes. Additionally, the hepatic Srebp-1c expression is elevated in Zucker fatty (ZF) rats, and reduced in those fed a VA deficient diet. VA is metabolized to retinoic acid (RA) for regulating gene expression. We hypothesized that the expression of RA production enzymes contributes to the regulation of the hepatic Srebp-1c expression. Therefore, we analyzed their expression levels in Zucker lean (ZL) and ZF rats. The mRNA levels of retinaldehyde dehydrogenase family 1 gene (Raldh1) were found to be higher in the isolated and cultured primary hepatocytes from ZF rats than that from ZL rats. The RALDH1 protein level was elevated in the liver of ZF rats. Retinol and retinal dose- and time-dependently induced the expression of RA responsive Cyp26a1 gene in hepatocytes and hepatoma cells. INS-1 cells were identified as an ideal tool to study the effects of RA production on the regulation of gene expression because only RA, but not retinal, induced Srebp-1c mRNA expression in them. Recombinant adenovirus containing rat Raldh1 cDNA was made and used to infect INS-1 cells. The over-expression of RALDH1 introduced the retinal-mediated induction of Srebp-1c expression in INS-1 cells. We conclude that the expression levels of the enzymes for RA production may contribute to the regulation of RA responsive genes, and determine the responses of the cells to retinoid treatments. The elevated hepatic expression of Raldh1 in ZF rats may cause the excessive RA production from retinol, and in turn, result in higher Srebp-1c expression. This excessive RA production may be one of the factors contributing to the elevated lipogenesis in the liver of ZF rats.
Collapse
Affiliation(s)
- Yang Li
- Department of Nutrition, the University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Yan Zhang
- Department of Nutrition, the University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Rui Li
- Department of Nutrition, the University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Wei Chen
- Department of Nutrition, the University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Meredith Howell
- Department of Nutrition, the University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Rui Zhang
- Department of Nutrition, the University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
| | - Guoxun Chen
- Department of Nutrition, the University of Tennessee at Knoxville, Knoxville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|