1
|
Dervas E, Michalopoulou E, Hepojoki J, Thiele T, Baggio F, Hetzel U, Kipar A. Haemolymphatic tissues of captive boa constrictor (Boa constrictor): morphological features in healthy individuals and with Boid Inclusion Body Disease. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024:105302. [PMID: 39694348 DOI: 10.1016/j.dci.2024.105302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Knowledge on the structure and composition of the haematopoietic tissue (HT) is essential to understand the basic immune functions of the immune system in any species. For reptiles, it is extremely limited, hence we undertook an in-depth in situ investigation of the HT (bone marrow, thymus, spleen, lymphatic tissue of the alimentary tract) in the common boa (Boa constrictor). We also assessed age- and disease-related changes, with a special focus on Boid Inclusion Body Disease , a highly relevant reptarenavirus-associated disease in boid snakes. The HT was subjected to gross, histological and ultrastructural examination, including special stains to highlight collagen and reticulin fibers and iron, immunohistochemistry, in situ hybridization and morphometric analyses. In general, the HT was dominated by T cells and lacked a clear structural organization, such as follicle formation. BIBD was associated with significantly higher cellularity and a granulomatous response in the spleen, and the presence of virus-infected haematopoietic cells in the bone marrow, suggesting the latter as a persistent source of viremia.
Collapse
Affiliation(s)
- E Dervas
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland
| | - E Michalopoulou
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland
| | - J Hepojoki
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland; University of Helsinki, Faculty of Medicine, Medicum, Department of Virology, Helsinki, Finland
| | - T Thiele
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland.
| | - F Baggio
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland
| | - U Hetzel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland
| | - A Kipar
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland
| |
Collapse
|
2
|
Wu F, Deng Y, Yao X, Li J. Ruminant livestock TR V(D)J genes and CDR3 repertoire. Vet Immunol Immunopathol 2024; 277:110829. [PMID: 39316948 DOI: 10.1016/j.vetimm.2024.110829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Ruminant livestock exhibit certain immune characteristics that make them valuable models for studying T cell receptor diversity and immune responses. This resistance is attributed to their well-developed immune system, comprising both innate and adaptive components. In this review, we delve into the intricate workings of the immune system of ruminant livestock, focusing on innate immunity and adaptive immunity. Specifically, we discuss the TR V(D)J genes (including TRB, TRG, and TRA/D chain) and the characteristics of the complementary determining region 3 (CDR3) repertoire in bovine and ovine species, shedding light on the diversity and functionality of the T-cell receptor(TCR) repertoire in these species. Understanding the distinct features of these germline genes and CDR3 repertoires is essential for unraveling the complexities of immune responses in ruminant livestock. Lastly, we outline future prospects in this field, emphasizing the importance of further research to enhance our understanding of ruminant livestock immunity and its potential applications in disease management, vaccine development, and breeding strategies.
Collapse
Affiliation(s)
- Fengli Wu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China; Department of Laboratory, The Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yunlan Deng
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Jun Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
3
|
Ulloa PE, Jilberto F, Lam N, Rincón G, Valenzuela L, Cordova-Alarcón V, Hernández AJ, Dantagnan P, Ravanal MC, Elgueta S, Araneda C. Identification of Single-Nucleotide Polymorphisms in Differentially Expressed Genes Favoring Soybean Meal Tolerance in Higher-Growth Zebrafish (Danio rerio). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:754-765. [PMID: 38958822 DOI: 10.1007/s10126-024-10343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Genetic variability within the same fish species could confer soybean meal (SBM) tolerance in some individuals, thus favoring growth. This study investigates the single-nucleotide polymorphisms (SNPs) in differentially expressed genes (DEGs) favoring SBM tolerance in higher-growth zebrafish (Danio rerio). In a previous work, nineteen families of zebrafish were fed a fish meal diet (100FM control diet) or SBM-based diets supplemented with saponin (50SBM + 2SPN-experimental diet), from juvenile to adult stages. Individuals were selected from families with a genotype-by-environment interaction higher (170 ± 18 mg) or lower (76 ± 10 mg) weight gain on 50SBM + 2SPN in relation to 100FM. Intestinal transcriptomic analysis using RNA-seq revealed six hundred and sixty-five differentially expressed genes in higher-growth fish fed 50SBM + 2SPN diet. In this work, using these results, 47 SNPs in DEGs were selected. These SNPs were genotyped by Sequenom in 340 zebrafish that were fed with a 50SBM + 2SPN diet or with 100FM diet. Marker-trait analysis revealed 4 SNPs associated with growth in 3 immunity-related genes (aif1l, arid3c, and cst14b.2) in response to the 50SBM + 2SPN diet (p-value < 0.05). Two SNPs belonging to aif1l y arid3c produce a positive (+19 mg) and negative (-26 mg) effect on fish growth, respectively. These SNPs can be used as markers to improve the early selection of tolerant fish to SBM diet or other plant-based diets. These genes can be used as biomarkers to identify SNPs in commercial fish, thus contributing to the aquaculture sustainability.
Collapse
Affiliation(s)
- Pilar E Ulloa
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Universidad de Las Américas, Avenida Manuel Montt 948, Santiago, 7500975, Chile.
| | - Felipe Jilberto
- Food Quality Research Center, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
- Laboratorio de Genética y Biotecnología en Acuicultura, Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
| | - Natalia Lam
- Food Quality Research Center, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
- Laboratorio de Genética y Biotecnología en Acuicultura, Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
| | | | - Luis Valenzuela
- INRIA Chile, Avenida Apoquindo 2827, piso 12, Santiago, 7550312, Chile
| | - Valentina Cordova-Alarcón
- Food Quality Research Center, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
- Laboratorio de Genética y Biotecnología en Acuicultura, Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
| | - Adrián J Hernández
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, 4780000, Chile
| | - Patricio Dantagnan
- Núcleo de Investigación en Producción Alimentaria, Departamento de Ciencias Agropecuarias y Acuícolas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, 4780000, Chile
| | - Maria Cristina Ravanal
- Instituto de Ciencia y Tecnología de los Alimentos (ICYTAL), Facultad de Ciencias Agrarias y Alimentarias, Universidad Austral de Chile, Isla Teja, Avda. Julio Sarrazín s/n, Valdivia, 5090000, Chile
| | - Sebastian Elgueta
- Facultad de Ciencias Para El Cuidado de La Salud, Universidad San Sebastian, Sede Los Leones, Santiago, Chile
| | - Cristian Araneda
- Food Quality Research Center, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
- Laboratorio de Genética y Biotecnología en Acuicultura, Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Avenida Santa Rosa 11315, Santiago, 8820808, Chile
| |
Collapse
|
4
|
Islam SMM, Siddik MAB, Sørensen M, Brinchmann MF, Thompson KD, Francis DS, Vatsos IN. Insect meal in aquafeeds: A sustainable path to enhanced mucosal immunity in fish. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109625. [PMID: 38740231 DOI: 10.1016/j.fsi.2024.109625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
The mucosal surfaces of fish, including their intestines, gills, and skin, are constantly exposed to various environmental threats, such as water quality fluctuations, pollutants, and pathogens. However, various cells and microbiota closely associated with these surfaces work in tandem to create a functional protective barrier against these conditions. Recent research has shown that incorporating specific feed ingredients into fish diets can significantly boost their mucosal and general immune response. Among the various ingredients being investigated, insect meal has emerged as one of the most promising options, owing to its high protein content and immunomodulatory properties. By positively influencing the structure and function of mucosal surfaces, insect meal (IM) has the potential to enhance the overall immune status of fish. This review provides a comprehensive overview of the potential benefits of incorporating IM into aquafeed as a feed ingredient for augmenting the mucosal immune response of fish.
Collapse
Affiliation(s)
- S M Majharul Islam
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | - Muhammad A B Siddik
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | | | - Kim D Thompson
- Aquaculture Research Group, Moredun Research Institute, Edinburgh, UK
| | - David S Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Ioannis N Vatsos
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway.
| |
Collapse
|
5
|
Ding Y, Zhang Y, Shen Y, Zhang Y, Li Z, Shi Y, Cui Z, Chen X. Aggregation and proliferation of B cells and T cells in MALTs upon Cryptocaryon irritans infection in large yellow croaker Larimichthys crocea. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109535. [PMID: 38582231 DOI: 10.1016/j.fsi.2024.109535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Mucosal immunity in mucosa-associated lymphoid tissues (MALTs) plays crucial roles in resisting infection by pathogens, including parasites, bacteria and viruses. However, the mucosal immune response in the MALTs of large yellow croaker (Larimichthys crocea) upon parasitic infection remains largely unknown. In this study, we investigated the role of B cells and T cells in the MALTs of large yellow croaker following Cryptocaryon irritans infection. Upon C. irritans infection, the total IgM and IgT antibody levels were significantly increased in the skin mucus and gill mucus. Notably, parasite-specific IgM antibody level was increased in the serum, skin and gill mucus following parasitic infection, while the level of parasite-specific IgT antibody was exclusively increased in MALTs. Moreover, parasitic infection induced both local and systemic aggregation and proliferation of IgM+ B cells, suggesting that the increased levels of IgM in mucus may be derived from both systemic and mucosal immune tissues. In addition, we observed significant aggregation and proliferation of T cells in the gill, head kidney and spleen, suggesting that T cells may also be involved in the systemic and mucosal immune responses upon parasitic infection. Overall, our findings provided further insights into the role of immunoglobulins against pathogenic infection, and the simultaneous aggregation and proliferation of both B cells and T cells at mucosal surfaces suggested potential interactions between these two major lymphocyte populations during parasitic infection.
Collapse
Affiliation(s)
- Yangyang Ding
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yameng Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yibo Shen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yihan Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhangqi Li
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuan Shi
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhengwei Cui
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, College of Marine Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China; Fuzhou Institute of Oceanography, Fuzhou, 350108, China.
| |
Collapse
|
6
|
Maritan E, Quagliariello A, Frago E, Patarnello T, Martino ME. The role of animal hosts in shaping gut microbiome variation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230071. [PMID: 38497257 PMCID: PMC10945410 DOI: 10.1098/rstb.2023.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 03/19/2024] Open
Abstract
Millions of years of co-evolution between animals and their associated microbial communities have shaped and diversified the nature of their relationship. Studies continue to reveal new layers of complexity in host-microbe interactions, the fate of which depends on a variety of different factors, ranging from neutral processes and environmental factors to local dynamics. Research is increasingly integrating ecosystem-based approaches, metagenomics and mathematical modelling to disentangle the individual contribution of ecological factors to microbiome evolution. Within this framework, host factors are known to be among the dominant drivers of microbiome composition in different animal species. However, the extent to which they shape microbiome assembly and evolution remains unclear. In this review, we summarize our understanding of how host factors drive microbial communities and how these dynamics are conserved and vary across taxa. We conclude by outlining key avenues for research and highlight the need for implementation of and key modifications to existing theory to fully capture the dynamics of host-associated microbiomes. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Elisa Maritan
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Andrea Quagliariello
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Enric Frago
- CIRAD, UMR CBGP, INRAE, Institut Agro, IRD, Université Montpellier, 34398 Montpellier, France
| | - Tomaso Patarnello
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| | - Maria Elena Martino
- Department of Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy
| |
Collapse
|
7
|
Miccoli A, Pianese V, Bidoli C, Fausto AM, Scapigliati G, Picchietti S. Transcriptome profiling of microdissected cortex and medulla unravels functional regionalization in the European sea bass Dicentrarchus labrax thymus. FISH & SHELLFISH IMMUNOLOGY 2024; 145:109319. [PMID: 38145782 DOI: 10.1016/j.fsi.2023.109319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
The thymus is a sophisticated primary lymphoid organ in jawed vertebrates, but knowledge on teleost thymus remains scarce. In this study, for the first time in the European sea bass, laser capture microdissection was leveraged to collect two thymic regions based on histological features, namely the cortex and the medulla. The two regions were then processed by RNAseq and in-depth functional transcriptome analyses with the aim of revealing differential gene expression patterns and gene sets enrichments, ultimately unraveling unique microenvironments imperative for the development of functional T cells. The sea bass cortex emerged as a hub of T cell commitment, somatic recombination, chromatin remodeling, cell cycle regulation, and presentation of self antigens from autophagy-, proteasome- or proteases-processed proteins. The cortex therefore accommodated extensive thymocyte proliferation and differentiation up to the checkpoint of positive selection. The medulla instead appeared as the center stage in autoimmune regulation by negative selection and deletion of autoreactive T cells, central tolerance mechanisms and extracellular matrix organization. Region-specific canonical markers of T and non-T lineage cells as well as signals for migration to/from, and trafficking within, the thymus were identified, shedding light on the highly coordinated and exquisitely complex bi-directional interactions among thymocytes and stromal components. Markers ascribable to thymic nurse cells and poorly characterized post-aire mTEC populations were found in the cortex and medulla, respectively. An in-depth data mining also exposed previously un-annotated genomic resources with differential signatures. Overall, our findings contribute to a broader understanding of the relationship between regional organization and function in the European sea bass thymus, and provide essential insights into the molecular mechanisms underlying T-cell mediated adaptive immune responses in teleosts.
Collapse
Affiliation(s)
- A Miccoli
- National Research Council, Institute for Marine Biological Resources and Biotechnology (IRBIM), 60125, Ancona, Italy
| | - V Pianese
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - C Bidoli
- Dept. of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - A M Fausto
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - G Scapigliati
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy
| | - S Picchietti
- Dept. for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Largo Dell'Università Snc, 01100, Viterbo, Italy.
| |
Collapse
|
8
|
Davies K, McLaren J. Destabilisation of T cell-dependent humoral immunity in sepsis. Clin Sci (Lond) 2024; 138:65-85. [PMID: 38197178 PMCID: PMC10781648 DOI: 10.1042/cs20230517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
Sepsis is a heterogeneous condition defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. For some, sepsis presents as a predominantly suppressive disorder, whilst others experience a pro-inflammatory condition which can culminate in a 'cytokine storm'. Frequently, patients experience signs of concurrent hyper-inflammation and immunosuppression, underpinning the difficulty in directing effective treatment. Although intensive care unit mortality rates have improved in recent years, one-third of discharged patients die within the following year. Half of post-sepsis deaths are due to exacerbation of pre-existing conditions, whilst half are due to complications arising from a deteriorated immune system. It has been suggested that the intense and dysregulated response to infection may induce irreversible metabolic reprogramming in immune cells. As a critical arm of immune protection in vertebrates, alterations to the adaptive immune system can have devastating repercussions. Indeed, a marked depletion of lymphocytes is observed in sepsis, correlating with increased rates of mortality. Such sepsis-induced lymphopenia has profound consequences on how T cells respond to infection but equally on the humoral immune response that is both elicited by B cells and supported by distinct CD4+ T follicular helper (TFH) cell subsets. The immunosuppressive state is further exacerbated by functional impairments to the remaining lymphocyte population, including the presence of cells expressing dysfunctional or exhausted phenotypes. This review will specifically focus on how sepsis destabilises the adaptive immune system, with a closer examination on how B cells and CD4+ TFH cells are affected by sepsis and the corresponding impact on humoral immunity.
Collapse
Affiliation(s)
- Kate Davies
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, U.K
| | - James E. McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, U.K
| |
Collapse
|
9
|
Mahapatra S, Ganguly B, Pani S, Saha A, Samanta M. A comprehensive review on the dynamic role of toll-like receptors (TLRs) in frontier aquaculture research and as a promising avenue for fish disease management. Int J Biol Macromol 2023; 253:126541. [PMID: 37648127 DOI: 10.1016/j.ijbiomac.2023.126541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/01/2023]
Abstract
Toll-like receptors (TLRs) represent a conserved group of germline-encoded pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) and play a crucial role in inducing the broadly acting innate immune response against pathogens. In recent years, the detection of 21 different TLR types in various fish species has sparked interest in exploring the potential of TLRs as targets for boosting immunity and disease resistance in fish. This comprehensive review offers the latest insights into the diverse facets of fish TLRs, highlighting their history, classification, architectural insights through 3D modelling, ligands recognition, signalling pathways, crosstalk, and expression patterns at various developmental stages. It provides an exhaustive account of the distinct TLRs induced during the invasion of specific pathogens in various fish species and delves into the disparities between fish TLRs and their mammalian counterparts, highlighting the specific contribution of TLRs to the immune response in fish. Although various facets of TLRs in some fish, shellfish, and molluscs have been described, the role of TLRs in several other aquatic organisms still remained as potential gaps. Overall, this article outlines frontier aquaculture research in advancing the knowledge of fish immune systems for the proper management of piscine maladies.
Collapse
Affiliation(s)
- Smruti Mahapatra
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Bristy Ganguly
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Saswati Pani
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Ashis Saha
- Reproductive Biology and Endocrinology Laboratory, Fish Nutrition and Physiology Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India
| | - Mrinal Samanta
- Immunology Laboratory, Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture (ICAR-CIFA), Kausalyaganga, Bhubaneswar 751002, Odisha, India.
| |
Collapse
|
10
|
Shibasaki Y, Afanasyev S, Fernández-Montero A, Ding Y, Watanabe S, Takizawa F, Lamas J, Fontenla-Iglesias F, Leiro JM, Krasnov A, Boudinot P, Sunyer JO. Cold-blooded vertebrates evolved organized germinal center-like structures. Sci Immunol 2023; 8:eadf1627. [PMID: 37910630 PMCID: PMC11152321 DOI: 10.1126/sciimmunol.adf1627] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/31/2023] [Indexed: 11/03/2023]
Abstract
Germinal centers (GCs) or analogous secondary lymphoid microstructures (SLMs) are thought to have evolved in endothermic species. However, living representatives of their ectothermic ancestors can mount potent secondary antibody responses upon infection or immunization, despite the apparent lack of SLMs in these cold-blooded vertebrates. How and where adaptive immune responses are induced in ectothermic species in the absence of GCs or analogous SLMs remain poorly understood. Here, we infected a teleost fish (trout) with the parasite Ichthyophthirius multifiliis (Ich) and identified the formation of large aggregates of highly proliferating IgM+ B cells and CD4+ T cells, contiguous to splenic melanomacrophage centers (MMCs). Most of these MMC-associated lymphoid aggregates (M-LAs) contained numerous antigen (Ag)-specific B cells. Analysis of the IgM heavy chain CDR3 repertoire of microdissected splenic M-LAs and non-M-LA areas revealed that the most frequent B cell clones induced after Ich infection were highly shared only within the M-LAs of infected animals. These M-LAs represented highly polyclonal SLMs in which Ag-specific B cell clonal expansion occurred. M-LA-associated B cells expressed high levels of activation-induced cytidine deaminase and underwent significant apoptosis, and somatic hypermutation of Igμ genes occurred prevalently in these cells. Our findings demonstrate that ectotherms evolved organized SLMs with GC-like roles. Moreover, our results also point to primordially conserved mechanisms by which M-LAs and mammalian polyclonal GCs develop and function.
Collapse
Affiliation(s)
- Yasuhiro Shibasaki
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | - Sergei Afanasyev
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Laboratory of Neurophysiology and Behavioral Pathology, Torez 44, Saint-Petersburg 194223, Russia
| | - Alvaro Fernández-Montero
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yang Ding
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shota Watanabe
- College of Bioresource Sciences, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | - Fumio Takizawa
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Faculty of Marine Science and Technology, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | - Jesús Lamas
- Department of Functional Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, Santiago de Compostela E-15782, Spain
| | - Francisco Fontenla-Iglesias
- Department of Functional Biology, Campus Vida, University of Santiago de Compostela, Santiago de Compostela E-15782, Spain
| | - José Manuel Leiro
- Laboratory of Parasitology, Department of Microbiology and Parasitology, Institute of Research on Chemical and Biological Analysis, Campus Vida, University of Santiago de Compostela, Santiago de Compostela E-15782, Spain
| | | | - Pierre Boudinot
- Universite Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas 78350, France
| | - J. Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Gutknecht MF, Holodick NE, Rothstein TL. B cell extracellular vesicles contain monomeric IgM that binds antigen and enters target cells. iScience 2023; 26:107526. [PMID: 37636058 PMCID: PMC10448175 DOI: 10.1016/j.isci.2023.107526] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/18/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
The production and release of small phospholipid membrane vesicles, or extracellular vesicles (EVs), is a trait of most prokaryotic and eukaryotic cells. EVs display heterogeneity in content, size, biogenesis, activity, and function. B cells uniquely express immunoglobulin and produce EVs; however, the relationship between these entities has not been clarified. Here, we used several methodologies to isolate large (11,000 × g) and small (110,000 × g) EVs and evaluate their IgM content, characteristics and activity. We found that B cells from multiple cell lines and primary B cells produce EVs that display monomeric IgM on the surface and contain encapsulated monomeric IgM, which is independent of secreted pentameric IgM. Our data indicate EV IgM can bind antigen specifically, and EV IgM can be incorporated intracellularly into secondary cells. These results suggest immunological activities different from secreted pentameric IgM that may constitute a separate and distinct antibody distribution system.
Collapse
Affiliation(s)
- Michael F. Gutknecht
- Department of Investigative Medicine and Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Nichol E. Holodick
- Department of Investigative Medicine and Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Thomas L. Rothstein
- Department of Investigative Medicine and Center for Immunobiology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| |
Collapse
|
12
|
Struble EB, Rawson JMO, Stantchev T, Scott D, Shapiro MA. Uses and Challenges of Antiviral Polyclonal and Monoclonal Antibody Therapies. Pharmaceutics 2023; 15:pharmaceutics15051538. [PMID: 37242780 DOI: 10.3390/pharmaceutics15051538] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Viral diseases represent a major public health concerns and ever-present risks for developing into future pandemics. Antiviral antibody therapeutics, either alone or in combination with other therapies, emerged as valuable preventative and treatment options, including during global emergencies. Here we will discuss polyclonal and monoclonal antiviral antibody therapies, focusing on the unique biochemical and physiological properties that make them well-suited as therapeutic agents. We will describe the methods of antibody characterization and potency assessment throughout development, highlighting similarities and differences between polyclonal and monoclonal products as appropriate. In addition, we will consider the benefits and challenges of antiviral antibodies when used in combination with other antibodies or other types of antiviral therapeutics. Lastly, we will discuss novel approaches to the characterization and development of antiviral antibodies and identify areas that would benefit from additional research.
Collapse
Affiliation(s)
- Evi B Struble
- Division of Plasma Derivatives, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jonathan M O Rawson
- Division of Antivirals, Office of Infectious Diseases, Office of New Drugs, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Tzanko Stantchev
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Dorothy Scott
- Division of Plasma Derivatives, Office of Plasma Protein Therapeutics CMC, Office of Therapeutic Products, Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Marjorie A Shapiro
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
13
|
Liu G, Zhu C, Gao X, Zheng Y, Zhu X, Jiang H, Wei W, Jiang Q, Zhang X. Single-cell transcriptome analysis reveals a cellular immune response in freshwater dark sleeper ( Odontobutis potamophila) after infection with Aeromonas veronii. Front Physiol 2023; 14:1201914. [PMID: 37275236 PMCID: PMC10233152 DOI: 10.3389/fphys.2023.1201914] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
The bacterium Aeromonas veronii is a co-pathogenic species that can negatively impact the health of both humans and aquatic animals. In this study, we used single-cell transcriptome analysis (scRNA-seq) to investigate the effects of infection with A. veronii on head kidney cells and the regulation of gene expression in the dark sleeper (Odontobutis potamophila). scRNA-seq was used to assess the effects of infection with A. veronii in O. potamophila B cells, endothelial cells, macrophages, and granulocytes, and differential enrichment analysis of gene expression in B cells and granulocytes was performed. The analyses revealed a significant increase in neutrophils and decrease in eosinophils in granulocytes infected with A. veronii. Activation of neutrophils enhanced ribosome biogenesis by up-regulating the expression of RPS12 and RPL12 to fight against invading pathogens. Crucial pro-inflammatory mediators IL1B, IGHV1-4, and the major histocompatibility class II genes MHC2A and MHC2DAB, which are involved in virulence processes, were upregulated, suggesting that A. veronii activates an immune response that presents antigens and activates immunoglobulin receptors in B cells. These cellular immune responses triggered by infection with A. veronii enriched the available scRNA-seq data for teleosts, and these results are important for understanding the evolution of cellular immune defense and functional differentiation of head kidney cells.
Collapse
Affiliation(s)
- Guoxing Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing, China
| | - Chenxi Zhu
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - You Zheng
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing, China
| | - Xinhai Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hucheng Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing, China
| | - Wanhong Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qichen Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, China
- Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
14
|
Knoedler L, Knoedler S, Panayi AC, Lee CAA, Sadigh S, Huelsboemer L, Stoegner VA, Schroeter A, Kern B, Mookerjee V, Lian CG, Tullius SG, Murphy GF, Pomahac B, Kauke-Navarro M. Cellular activation pathways and interaction networks in vascularized composite allotransplantation. Front Immunol 2023; 14:1179355. [PMID: 37266446 PMCID: PMC10230044 DOI: 10.3389/fimmu.2023.1179355] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Vascularized composite allotransplantation (VCA) is an evolving field of reconstructive surgery that has revolutionized the treatment of patients with devastating injuries, including those with limb losses or facial disfigurement. The transplanted units are typically comprised of different tissue types, including skin, mucosa, blood and lymphatic vasculature, muscle, and bone. It is widely accepted that the antigenicity of some VCA components, such as skin, is particularly potent in eliciting a strong recipient rejection response following transplantation. The fine line between tolerance and rejection of the graft is orchestrated by different cell types, including both donor and recipient-derived lymphocytes, macrophages, and other immune and donor-derived tissue cells (e.g., endothelium). Here, we delineate the role of different cell and tissue types during VCA rejection. Rejection of VCA grafts and the necessity of life-long multidrug immunosuppression remains one of the major challenges in this field. This review sheds light on recent developments in decoding the cellular signature of graft rejection in VCA and how these may, ultimately, influence the clinical management of VCA patients by way of novel therapies that target specific cellular processes.
Collapse
Affiliation(s)
- Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Adriana C. Panayi
- Department of Surgery, Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Catherine A. A. Lee
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Sam Sadigh
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Lioba Huelsboemer
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Viola A. Stoegner
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
| | - Andreas Schroeter
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Burn Center, Hannover Medical School, Hannover, Germany
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Barbara Kern
- Department of Plastic Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Vikram Mookerjee
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Christine G. Lian
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - George F. Murphy
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, United States
| | - Bohdan Pomahac
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Martin Kauke-Navarro
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
15
|
Jiang S, Feng R, Tian Z, Zhou J, Zhang W. Metabolic dialogs between B cells and the tumor microenvironment: Implications for anticancer immunity. Cancer Lett 2023; 556:216076. [PMID: 36724837 DOI: 10.1016/j.canlet.2023.216076] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 01/30/2023]
Abstract
Immunometabolism, a branch of biology describing the link between immunity and metabolism, is an emerging topic in cancer immunology. It is currently well accepted that B cells and tertiary lymph structures formed by them are associated with favorable outcomes when patients undergo cancer immunotherapy. Understanding the determinants of B-cell fate and function in cancer patients is necessary for improving cancer immunotherapy. Accumulating evidence points to the tumor microenvironment being a critical metabolic hurdle to an efficient antitumor B-cell response. At the same time, several B-cell-derived metabolites have recently been reported to inhibit anticancer immunity. In this literature review, key B-cell immunometabolism studies and the metabolic life of B cells were summarized. Then, we discussed the intrinsic metabolic pathways of B cells themselves and how the tumor microenvironment and B cells in tumors metabolically influence each other. Finally, we pointed out key questions to provide some inspiration for further study of the role of B-cell immunometabolism in the antitumor immune response.
Collapse
Affiliation(s)
- Su Jiang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ranran Feng
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ziying Tian
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jieyu Zhou
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
16
|
Ding Y, Fern Ndez-Montero A, Mani A, Casadei E, Shibasaki Y, Takizawa F, Miyazawa R, Salinas I, Sunyer JO. Secretory IgM (sIgM) is an ancient master regulator of microbiota homeostasis and metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.530119. [PMID: 36909635 PMCID: PMC10002622 DOI: 10.1101/2023.02.26.530119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
UNLABELLED The co-evolution between secretory immunoglobulins (sIgs) and microbiota began with the emergence of IgM over half a billion years ago. Yet, IgM function in vertebrates is mostly associated with systemic immunity against pathogens. sIgA and sIgT are the only sIgs known to be required in the control of microbiota homeostasis in warm- and cold-blooded vertebrates respectively. Recent studies have shown that sIgM coats a large proportion of the gut microbiota of humans and teleost fish, thus suggesting an ancient and conserved relationship between sIgM and microbiota early in vertebrate evolution. To test this hypothesis, we temporarily and selectively depleted IgM from rainbow trout, an old bony fish species. IgM depletion resulted in a drastic reduction in microbiota IgM coating levels and losses in gutassociated bacteria. These were accompanied by bacterial translocation, severe gut tissue damage, inflammation and dysbiosis predictive of metabolic shifts. Furthermore, depletion of IgM resulted in body weight loss and lethality in an experimental colitis model. Recovery of sIgM to physiological levels restores tissue barrier integrity, while microbiome homeostasis and their predictive metabolic capabilities are not fully restituted. Our findings uncover a previously unrecognized role of sIgM as an ancient master regulator of microbiota homeostasis and metabolism and challenge the current paradigm that sIgA and sIgT are the key vertebrate sIgs regulating microbiome homeostasis. ONE-SENTENCE SUMMARY IgM, the most ancient and conserved immunoglobulin in jawed vertebrates, is required for successful symbiosis with the gut microbiota.
Collapse
|
17
|
Tandel N, Negi S, Dalai SK, Tyagi RK. Role of natural killer and B cell interaction in inducing pathogen specific immune responses. Int Rev Immunol 2023:1-19. [PMID: 36731424 DOI: 10.1080/08830185.2023.2172406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The innate lymphoid cell (ILC) system comprising of the circulating and tissue-resident cells is known to clear infectious pathogens, establish immune homeostasis as well as confer antitumor immunity. Human natural killer cells (hNKs) and other ILCs carry out mopping of the infectious pathogens and perform cytolytic activity regulated by the non-adaptive immune system. The NK cells generate immunological memory and rapid recall response tightly regulated by the adaptive immunity. The interaction of NK and B cell, and its role to induce the pathogen specific immunity is not fully understood. Hence, present article sheds light on the interaction between NK and B cells and resulting immune responses in the infectious diseases. The immune responses elicited by the NK-B cell interaction is of particular importance for developing therapeutic vaccines against the infectious pathogens. Further, experimental evidences suggest the immune-response driven by NK cell population elicits the host-specific antibodies and memory B cells. Also, recently developed humanized immune system (HIS) mice and their importance in to understanding the NK-B cell interaction and resulting pathogen specific immunity has been discussed.
Collapse
Affiliation(s)
- Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad, India
| | - Sushmita Negi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Nano-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Sarat K Dalai
- Institute of Science, Nirma University, Ahmedabad, India
| | - Rajeev K Tyagi
- Division of Cell Biology and Immunology, Biomedical Parasitology and Nano-immunology Lab, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| |
Collapse
|
18
|
Chloroquine treatment influences immunological memory through the PD-1/PD-L1 pathway during the initiation of Plasmodium chabaudi infection. Int Immunopharmacol 2022; 113:109403. [DOI: 10.1016/j.intimp.2022.109403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/13/2022] [Accepted: 10/28/2022] [Indexed: 11/10/2022]
|
19
|
Mu Q, Dong Z, Kong W, Wang X, Yu J, Ji W, Su J, Xu Z. Response of immunoglobulin M in gut mucosal immunity of common carp ( Cyprinus carpio) infected with Aeromonas hydrophila. Front Immunol 2022; 13:1037517. [PMID: 36466906 PMCID: PMC9713697 DOI: 10.3389/fimmu.2022.1037517] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/03/2022] [Indexed: 12/01/2023] Open
Abstract
Immunoglobulin (Ig) M is an important immune effector that protects organisms from a wide variety of pathogens. However, little is known about the immune response of gut mucosal IgM during bacterial invasion. Here, we generated polyclonal antibodies against common carp IgM and developed a model of carp infection with Aeromonas hydrophila via intraperitoneal injection. Our findings indicated that both innate and adaptive immune responses were effectively elicited after A. hydrophila infection. Upon bacterial infection, IgM+ B cells were strongly induced in the gut and head kidney, and bacteria-specific IgM responses were detected in high levels both in the gut mucus and serum. Moreover, our results suggested that IgM responses may vary in different infection strategies. Overall, our findings revealed that the infected common carp exhibited high resistance to this representative enteropathogenic bacterium upon reinfection, suggesting that IgM plays a key role in the defense mechanisms of the gut against bacterial invasion. Significantly, the second injection of A. hydrophila induces strong local mucosal immunity in the gut, which is essential for protection against intestinal pathogens, providing reasonable insights for vaccine preparation.
Collapse
Affiliation(s)
- Qingjiang Mu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhaoran Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weiguang Kong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xinyou Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jiaqian Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Wei Ji
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
20
|
Miebach L, Berner J, Bekeschus S. In ovo model in cancer research and tumor immunology. Front Immunol 2022; 13:1006064. [PMID: 36248802 PMCID: PMC9556724 DOI: 10.3389/fimmu.2022.1006064] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Considering cancer not only as malignant cells on their own but as a complex disease in which tumor cells interact and communicate with their microenvironment has motivated the establishment of clinically relevant 3D models in past years. Technological advances gave rise to novel bioengineered models, improved organoid systems, and microfabrication approaches, increasing scientific importance in preclinical research. Notwithstanding, mammalian in vivo models remain closest to mimic the patient’s situation but are limited by cost, time, and ethical constraints. Herein, the in ovo model bridges the gap as an advanced model for basic and translational cancer research without the need for ethical approval. With the avian embryo being a naturally immunodeficient host, tumor cells and primary tissues can be engrafted on the vascularized chorioallantoic membrane (CAM) with high efficiencies regardless of species-specific restrictions. The extraembryonic membranes are connected to the embryo through a continuous circulatory system, readily accessible for manipulation or longitudinal monitoring of tumor growth, metastasis, angiogenesis, and matrix remodeling. However, its applicability in immunoncological research is largely underexplored. Dual engrafting of malignant and immune cells could provide a platform to study tumor-immune cell interactions in a complex, heterogenic and dynamic microenvironment with high reproducibility. With some caveats to keep in mind, versatile methods for in and ex ovo monitoring of cellular and molecular dynamics already established in ovo are applicable alike. In this view, the present review aims to emphasize and discuss opportunities and limitations of the chicken embryo model for pre-clinical research in cancer and cancer immunology.
Collapse
Affiliation(s)
- Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of General, Thoracic, Vascular, and Visceral Surgery, Greifswald University Medical Center, Greifswald, Germany
| | - Julia Berner
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of General, Thoracic, Vascular, and Visceral Surgery, Greifswald University Medical Center, Greifswald, Germany
- Department of Oral and Maxillofacial Surgery, Plastic Surgery, Greifswald University Medical Center, Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of General, Thoracic, Vascular, and Visceral Surgery, Greifswald University Medical Center, Greifswald, Germany
- *Correspondence: Sander Bekeschus,
| |
Collapse
|
21
|
Cao JF, Ding LG, Wang QC, Han GK, Qin DC, Cheng GF, Dong ZR, Mu QJ, Kong WG, Liu X, Yu YY, Xu Z. Conserved Role of mTORC1 Signaling in B Cell Immunity in Teleost Fish. THE JOURNAL OF IMMUNOLOGY 2022; 209:1095-1107. [DOI: 10.4049/jimmunol.2200280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/19/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Mammalian studies have demonstrated that B cell immune responses are regulated by mechanistic target of rapamycin complex 1 (mTORC1) signaling. Teleost fish represent the oldest living bony vertebrates that contain bona fide B cells. So far, whether the regulatory mechanism of mTORC1 signaling in B cells occurred in teleost fish is still unknown. In this study, we developed a fish model by using rapamycin (RAPA) treatment to inhibit mTORC1 signaling and demonstrated the role of mTORC1 signaling in teleost B cells. In support, we found inhibition of mTORC1 signaling by RAPA decreased the phagocytic capacity, proliferation, and Ig production of B cells. Critically, Flavobacterium columnare induced specific IgM binding in serum, and these titers were significantly inhibited by RAPA treatment, thus decreasing Ab-mediated agglutination of F. columnare and significantly increasing the susceptibility of fish upon F. columnare reinfection. Collectively, our findings elucidated that the mTORC1 pathway is evolutionarily conserved in regulating B cell responses, thus providing a new point for understanding the B cells functions in teleost fish.
Collapse
Affiliation(s)
- Jia-feng Cao
- *Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Li-guo Ding
- *Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Qing-chao Wang
- *Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Guang-kun Han
- *Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Da-cheng Qin
- *Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Gao-feng Cheng
- *Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhao-ran Dong
- *Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Qing-jiang Mu
- *Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Wei-guang Kong
- *Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xia Liu
- *Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-yao Yu
- *Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zhen Xu
- †State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; and
- ‡Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
22
|
Han Q, Mo Z, Lai X, Guo W, Hu Y, Chen H, He Z, Dan X, Li Y. Mucosal immunoglobulin response in Epinephelus coioides after Cryptocaryon irritans infection. FISH & SHELLFISH IMMUNOLOGY 2022; 128:436-446. [PMID: 35985626 DOI: 10.1016/j.fsi.2022.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/23/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The teleost mucosal immune system consists mainly of the skin, gills and gut, which play crucial roles in local immune responses against invading organisms. Immunoglobulins are essential molecules in adaptive immunity that perform crucial biological functions. In our study, a mucosal immunity model was constructed in Epinephelus coioides groupers after Cryptocaryon irritans infection, according to previous experience. Total IgM and IgT in the groupers increased in the serum and mucus in the immune group, whereas only pathogen-specific IgM were detected existence. More critically, pathogen-specific IgM was detected in the head kidney, gill and skin supernatants, thus suggesting that the systematic immune and mucosal immune system secreted immunoglobulins. Furthermore, an early response in the skin was observed, on the basis of the detection of pathogen-specific IgM in the skin supernatant. In conclusion, this research characterized the grouper IgM and IgT in mucosal immune responses to pathogens in the gills and skin, thus providing a theoretical basis for future studies on vaccines against C. irritans.
Collapse
Affiliation(s)
- Qing Han
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, China
| | - Zequan Mo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xueli Lai
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenjie Guo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yingtong Hu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hongping Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhichang He
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xueming Dan
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yanwei Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
23
|
Bermea K, Bhalodia A, Huff A, Rousseau S, Adamo L. The Role of B Cells in Cardiomyopathy and Heart Failure. Curr Cardiol Rep 2022; 24:935-946. [PMID: 35689723 PMCID: PMC9422953 DOI: 10.1007/s11886-022-01722-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE OF REVIEW To summarize the current knowledge on the role that B lymphocytes play in heart failure. RECENT FINDINGS Several studies from murine models have shown that B cells modulate cardiac adaptation to injury and ultimately affect the degree of cardiac dysfunction after acute ischemic damage. In addition, a B cell-modulating small molecule was recently shown to have beneficial effects in humans with heart failure with preserved ejection fraction. B lymphocytes are specialized immune cells present in all jawed vertebrates. They are characteristically known for their ability to produce antibodies, but they have other functions and are important players in virtually all forms of immune responses. A growing body of evidence indicates that B cells are intimately connected with the heart and that B cell dysregulation might play a role in the pathogenesis and progression of both heart failure with reduced ejection fraction and heart failure with preserved ejection fraction. B cells are therefore gathering attention as potential targets for the development of novel immunomodulatory-based treatments for heart failure.
Collapse
Affiliation(s)
- Kevin Bermea
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Aashik Bhalodia
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Angelo Huff
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sylvie Rousseau
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Luigi Adamo
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
24
|
An Update on the Evolutionary History of Bregs. Genes (Basel) 2022; 13:genes13050890. [PMID: 35627275 PMCID: PMC9141580 DOI: 10.3390/genes13050890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/07/2022] [Accepted: 05/12/2022] [Indexed: 12/22/2022] Open
Abstract
The relationship between the evolutionary history and the differentiation of Bregs is still not clear. Bregs were demonstrated to possess a regulatory effect on B cells. Various subsets of Bregs have been identified including T2-MZP, MZ, B10, IL10-producing plasma cells, IL10 producing plasmablasts, immature IL10 producing B cells, TIM1, and Br1. It is known that B cells have evolved during fish emergence. However, the origin of Bregs is still not known. Three main models have been previously proposed to describe the origin of Bregs, the first known as single–single (SS) suggests that each type of Bregs subpopulation has emerged from a single pre-Breg type. The second model (single–multi) (SM) assumes that a single Bregs gave rise to multiple types of Bregs that in turn differentiated to other Breg subpopulations. In the third model (multi–multi) (MM), it is hypothesized that Bregs arise from the nearest B cell phenotype. The link between the differentiation of cells and the evolution of novel types of cells is known to follow one of three evolutionary patterns (i.e., homology, convergence, or concerted evolution). Another aspect that controls differentiation and evolution processes is the principle of optimization of energy, which suggests that an organism will always use the choice that requires less energy expenditure for survival. In this review, we investigate the evolution of Breg subsets. We studied the feasibility of Breg origination models based on evolution and energy constraints. In conclusion, our review indicates that Bregs are likely to have evolved under a combination of SM–MM models. This combination ensured successful survival in harsh conditions by following the least costly differentiation pathway, as well as adapting to changing environmental conditions.
Collapse
|
25
|
Wang J, Wu CS, Hu YZ, Yang L, Zhang XJ, Zhang YA. Plasmablasts induced by chitosan oligosaccharide secrete natural IgM to enhance the humoral immunity in grass carp. Carbohydr Polym 2022; 281:119073. [DOI: 10.1016/j.carbpol.2021.119073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 12/27/2021] [Indexed: 02/07/2023]
|
26
|
Chan JTH, Kadri S, Köllner B, Rebl A, Korytář T. RNA-Seq of Single Fish Cells - Seeking Out the Leukocytes Mediating Immunity in Teleost Fishes. Front Immunol 2022; 13:798712. [PMID: 35140719 PMCID: PMC8818700 DOI: 10.3389/fimmu.2022.798712] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/03/2022] [Indexed: 01/01/2023] Open
Abstract
The immune system is a complex and sophisticated biological system, spanning multiple levels of complexity, from the molecular level to that of tissue. Our current understanding of its function and complexity, of the heterogeneity of leukocytes, is a result of decades of concentrated efforts to delineate cellular markers using conventional methods of antibody screening and antigen identification. In mammalian models, this led to in-depth understanding of individual leukocyte subsets, their phenotypes, and their roles in health and disease. The field was further propelled forward by the development of single-cell (sc) RNA-seq technologies, offering an even broader and more integrated view of how cells work together to generate a particular response. Consequently, the adoption of scRNA-seq revealed the unexpected plasticity and heterogeneity of leukocyte populations and shifted several long-standing paradigms of immunology. This review article highlights the unprecedented opportunities offered by scRNA-seq technology to unveil the individual contributions of leukocyte subsets and their crosstalk in generating the overall immune responses in bony fishes. Single-cell transcriptomics allow identifying unseen relationships, and formulating novel hypotheses tailored for teleost species, without the need to rely on the limited number of fish-specific antibodies and pre-selected markers. Several recent studies on single-cell transcriptomes of fish have already identified previously unnoticed expression signatures and provided astonishing insights into the diversity of teleost leukocytes and the evolution of vertebrate immunity. Without a doubt, scRNA-seq in tandem with bioinformatics tools and state-of-the-art methods, will facilitate studying the teleost immune system by not only defining key markers, but also teaching us about lymphoid tissue organization, development/differentiation, cell-cell interactions, antigen receptor repertoires, states of health and disease, all across time and space in fishes. These advances will invite more researchers to develop the tools necessary to explore the immunology of fishes, which remain non-conventional animal models from which we have much to learn.
Collapse
Affiliation(s)
- Justin T. H. Chan
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Safwen Kadri
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Regenerative Biology and Medicine, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Bernd Köllner
- Institute of Immunology, Friedrich Loeffler Institute, Federal Research Institute for Animal Health, Greifswald, Germany
| | - Alexander Rebl
- Institute of Genome Biology, Research Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Tomáš Korytář
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
- Faculty of Fisheries and Protection of Waters, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
27
|
Bedekar MK, Kole S. Fundamentals of Fish Vaccination. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2411:147-173. [PMID: 34816404 DOI: 10.1007/978-1-0716-1888-2_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fish health management has become a critical component of disease control and is invaluable for improved harvests and sustainable aquaculture. Vaccination is generally accepted as the most effective prophylactic measure for fish disease prevention, on environmental, social, and economic grounds. Although the historical approach for developing fish vaccines was based on the principle of Louis Pasteur's "isolate, inactivate and inject," but their weak immunogenicity and low efficacies in many cases, have shifted the focus of fish vaccine development from traditional to next-generation technologies. However, before any fish vaccine can be successfully commercialized, several hurdles need to be overcome regarding the production cost, immunogenicity, effectiveness, mode of administration, environmental safety, and associated regulatory concerns. In this context, the chapter summarises the basic aspects of fish vaccination such as type of vaccine, modalities of vaccine delivery, the immunological basis of fish immunization as well as different challenges associated with the development process and future opportunities.
Collapse
Affiliation(s)
- Megha Kadam Bedekar
- Department of Aquatic Animal Health, ICAR- Central Institute of Fisheries Education, Mumbai, India.
| | - Sajal Kole
- Department of Aquatic Animal Health, ICAR- Central Institute of Fisheries Education, Mumbai, India.,Department of Aqualife Medicine, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
28
|
Wu L, Li L, Gao A, Ye J, Li J. Antimicrobial roles of phagocytosis in teleost fish: Phagocytic B cells vs professional phagocytes. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2021.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Understanding human immunity in idiopathic recurrent pregnancy loss. Eur J Obstet Gynecol Reprod Biol 2021; 270:17-29. [PMID: 35007974 DOI: 10.1016/j.ejogrb.2021.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 12/12/2021] [Accepted: 12/21/2021] [Indexed: 01/03/2023]
Abstract
Miscarriage, defined as the loss of a pregnancy before a viable gestation, affects 1 in 6 couples. Recurrent pregnancy loss (RPL), defined as two or more miscarriages, affects up to 1.9% of couples. The physical, psychological, and financial impact of miscarriage can be substantial. However, despite its multifactorial etiology, for up to 50% of couples a reason behind this condition cannot be identified, termed 'idiopathic RPL'. Much recent research has strived to understand this, with immune dysregulation being a source of particular interest. In this short review we summarize the current evidence on the complex role of the immune system both pre- and early post-conception in RPL. A key question is whether systemic peripheral blood markers, in particular natural killer cell and T cells, may be utilized to accurately predict and/ or diagnose those pregnancies at high risk of loss. Given the invasive nature of endometrial testing, identification of reliable peripheral immune biomarkers is particularly appealing. Clinical trials using potent immunomodulatory agents, including intravenous immunoglobulin, donor leukocyte immunization, and tumor necrosis factor (TNF)-α inhibitors, have been undertaken with the primary objective of preventing miscarriage in women with RPL. Standardisation of both diagnostic and prognostic immune cell testing assays is required to permit accurate identification of those women who may benefit from immunomodulation. Prompt clarification is required to meet the increasing expectation from couples and clinicians, as without these advancements women are at risk of exposure to potent immune-therapies and subsequent studies are at risk of failure, generating further controversy regarding the role of immune dysregulation in women with RPL. Through this review we highlight clear gaps in our current knowledge on immune activity in RPL.
Collapse
|
30
|
A unique NLRC4 receptor from echinoderms mediates Vibrio phagocytosis via rearrangement of the cytoskeleton and polymerization of F-actin. PLoS Pathog 2021; 17:e1010145. [PMID: 34898657 PMCID: PMC8699970 DOI: 10.1371/journal.ppat.1010145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/23/2021] [Accepted: 11/27/2021] [Indexed: 11/20/2022] Open
Abstract
Many members of the nucleotide-binding and oligomerization domain (NACHT)- and leucine-rich-repeat-containing protein (NLR) family play crucial roles in pathogen recognition and innate immune response regulation. In our previous work, a unique and Vibrio splendidus-inducible NLRC4 receptor comprising Ig and NACHT domains was identified from the sea cucumber Apostichopus japonicus, and this receptor lacked the CARD and LRR domains that are typical of common cytoplasmic NLRs. To better understand the functional role of AjNLRC4, we confirmed that AjNLRC4 was a bona fide membrane PRR with two transmembrane structures. AjNLRC4 was able to directly bind microbes and polysaccharides via its extracellular Ig domain and agglutinate a variety of microbes in a Ca2+-dependent manner. Knockdown of AjNLRC4 by RNA interference and blockade of AjNLRC4 by antibodies in coelomocytes both could significantly inhibit the phagocytic activity and elimination of V. splendidus. Conversely, overexpression of AjNLRC4 enhanced the phagocytic activity of V. splendidus, and this effect could be specifically blocked by treatment with the actin-mediated endocytosis inhibitor cytochalasin D but not other endocytosis inhibitors. Moreover, AjNLRC4-mediated phagocytic activity was dependent on the interaction between the intracellular domain of AjNLRC4 and the β-actin protein and further regulated the Arp2/3 complex to mediate the rearrangement of the cytoskeleton and the polymerization of F-actin. V. splendidus was found to be colocalized with lysosomes in coelomocytes, and the bacterial quantities were increased after injection of chloroquine, a lysosome inhibitor. Collectively, these results suggested that AjNLRC4 served as a novel membrane PRR in mediating coelomocyte phagocytosis and further clearing intracellular Vibrio through the AjNLRC4-β-actin-Arp2/3 complex-lysosome pathway. Vibrio splendidus is ubiquitously present in marine environments and in or on many aquaculture species and is considered to be an important opportunistic pathogen that has caused serious economic losses to the aquaculture industry worldwide. Phagocytosis is the first step of pathogen clearance and is triggered by specific interactions between host pattern recognition receptors (PRRs) and pathogen-associated molecular patterns (PAMPs) from invasive bacteria. However, the mechanism that underlies receptor-mediated V. splendidus phagocytosis is poorly understood. In this study, an atypical AjNLRC4 receptor without LRR and CARD domains was found to serve as the membrane receptor for V. splendidus, not the common cytoplasmic NLRs. The Ig domain of AjNLRC4 is replaced with a conventional LRR domain to bind V. splendidus, and the intracellular domain of AjNLRC4 specifically interacts with β-actin to mediate V. splendidus endocytosis in an actin-dependent manner. Endocytic V. splendidus is ultimately degraded in phagolysosomes. Our findings will contribute to the development of novel strategies for treating V. splendidus infection by modulating the actin-dependent endocytosis pathway.
Collapse
|
31
|
Garcia P, Wang Y, Viallet J, Macek Jilkova Z. The Chicken Embryo Model: A Novel and Relevant Model for Immune-Based Studies. Front Immunol 2021; 12:791081. [PMID: 34868080 PMCID: PMC8640176 DOI: 10.3389/fimmu.2021.791081] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of the immune system is associated with many pathologies, including cardiovascular diseases, diabetes, and cancer. To date, the most commonly used models in biomedical research are rodents, and despite the various advantages they offer, their use also raises numerous drawbacks. Recently, another in vivo model, the chicken embryo and its chorioallantoic membrane, has re-emerged for various applications. This model has many benefits compared to other classical models, as it is cost-effective, time-efficient, and easier to use. In this review, we explain how the chicken embryo can be used as a model for immune-based studies, as it gradually develops an embryonic immune system, yet which is functionally similar to humans'. We mainly aim to describe the avian immune system, highlighting the differences and similarities with the human immune system, including the repertoire of lymphoid tissues, immune cells, and other key features. We also describe the general in ovo immune ontogeny. In conclusion, we expect that this review will help future studies better tailor their use of the chicken embryo model for testing specific experimental hypotheses or performing preclinical testing.
Collapse
Affiliation(s)
- Paul Garcia
- Université Grenoble Alpes, Grenoble, France
- R&D Department, Inovotion, La Tronche, France
- Institute for Advanced Biosciences, Research Center Université Grenoble Alpes (UGA)/Inserm U 1209/CNRS 5309, La Tronche, France
| | - Yan Wang
- R&D Department, Inovotion, La Tronche, France
| | | | - Zuzana Macek Jilkova
- Université Grenoble Alpes, Grenoble, France
- Institute for Advanced Biosciences, Research Center Université Grenoble Alpes (UGA)/Inserm U 1209/CNRS 5309, La Tronche, France
- Service d’Hépato-Gastroentérologie, Pôle Digidune, Centre Hospitalo-Universitaire (USA) Grenoble Alpes, La Tronche, France
| |
Collapse
|
32
|
He C, Wang S, Zhou C, He M, Wang J, Ladds M, Lianoudaki D, Sedimbi SK, Lane DP, Westerberg LS, Li S, Karlsson MC. CD36 and LC3B initiated autophagy in B cells regulates the humoral immune response. Autophagy 2021; 17:3577-3591. [PMID: 33535890 PMCID: PMC8632284 DOI: 10.1080/15548627.2021.1885183] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/29/2021] [Indexed: 12/31/2022] Open
Abstract
Scavenger receptors are pattern recognition receptors that recognize both foreign and self-ligands, and initiate different mechanisms of cellular activation, often as co-receptors. The function of scavenger receptor CD36 in the immune system has mostly been studied in macrophages but it is also highly expressed by innate type B cells where its function is less explored. Here we report that CD36 is involved in macro-autophagy/autophagy in B cells, and in its absence, the humoral immune response is impaired. We found that CD36-deficient B cells exhibit a significantly reduced plasma cell formation, proliferation, mitochondrial mobilization and oxidative phosphorylation. These changes were accompanied by impaired initiation of autophagy, and we found that CD36 regulated autophagy and colocalized with autophagosome membrane protein MAP1LC3/LC3 (microtubule-associated protein 1 light chain 3). When we investigated T-cell-dependent immune responses, we found that mice with CD36 deficiency, specifically in B cells, exhibited attenuated germinal center responses, class switching, and antibody production as well as autophagosome formation. These findings establish a critical role for CD36 in B cell responses and may also contribute to our understanding of CD36-mediated autophagy in other cells as well as in B cell lymphomas that have been shown to express the receptor.Abbreviations: AICDA/AID: activation-induced cytidine deaminase; ATG5: autophagy related 5; ATP: adenosine triphosphate; BCR: B-cell receptor; CPG: unmethylated cytosine-guanosine; CQ: chloroquine; DC: dendritic cells; FOB: follicular B cells; GC: germinal center; Ig: immunoglobulin; LPS: lipopolysaccharide; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MFI: mean fluorescence intensity; MZB: marginal zone B cells; NP-CGG: 4-hydroxy-3-nitrophenylacetyl-chicken gamma globulin; OCR: oxygen consumption rate; oxLDL: oxidized low-density lipoprotein; PC: plasma cells; Rapa: rapamycin; SQSTM1/p62: sequestosome 1; SRBC: sheep red blood cells; Tfh: follicular helper T cells; TLR: toll-like receptor.
Collapse
Affiliation(s)
- Chenfei He
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Shan Wang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Chikai Zhou
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Minghui He
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jin Wang
- Department of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, P.R. China
| | - Marcus Ladds
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Danai Lianoudaki
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Saikiran K. Sedimbi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - David P. Lane
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lisa S. Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Shuijie Li
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mikael C.I. Karlsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Huang L, Qiao Y, Xu W, Gong L, He R, Qi W, Gao Q, Cai H, Grossart HP, Yan Q. Full-Length Transcriptome: A Reliable Alternative for Single-Cell RNA-Seq Analysis in the Spleen of Teleost Without Reference Genome. Front Immunol 2021; 12:737332. [PMID: 34646272 PMCID: PMC8502891 DOI: 10.3389/fimmu.2021.737332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Fish is considered as a supreme model for clarifying the evolution and regulatory mechanism of vertebrate immunity. However, the knowledge of distinct immune cell populations in fish is still limited, and further development of techniques advancing the identification of fish immune cell populations and their functions are required. Single cell RNA-seq (scRNA-seq) has provided a new approach for effective in-depth identification and characterization of cell subpopulations. Current approaches for scRNA-seq data analysis usually rely on comparison with a reference genome and hence are not suited for samples without any reference genome, which is currently very common in fish research. Here, we present an alternative, i.e. scRNA-seq data analysis with a full-length transcriptome as a reference, and evaluate this approach on samples from Epinephelus coioides-a teleost without any published genome. We show that it reconstructs well most of the present transcripts in the scRNA-seq data achieving a sensitivity equivalent to approaches relying on genome alignments of related species. Based on cell heterogeneity and known markers, we characterized four cell types: T cells, B cells, monocytes/macrophages (Mo/MΦ) and NCC (non-specific cytotoxic cells). Further analysis indicated the presence of two subsets of Mo/MΦ including M1 and M2 type, as well as four subsets in B cells, i.e. mature B cells, immature B cells, pre B cells and early-pre B cells. Our research will provide new clues for understanding biological characteristics, development and function of immune cell populations of teleost. Furthermore, our approach provides a reliable alternative for scRNA-seq data analysis in teleost for which no reference genome is currently available.
Collapse
Affiliation(s)
- Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Ying Qiao
- Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, China
| | - Wei Xu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Linfeng Gong
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Rongchao He
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Weilu Qi
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Qiancheng Gao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Hongyan Cai
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| | - Hans-Peter Grossart
- Department of Experimental Limnology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany.,Institute of Biochemistry and Biology, Postdam University, Potsdam, Germany
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, China
| |
Collapse
|
34
|
Abstract
B cells are traditionally known for their ability to produce antibodies in the context of adaptive immune responses. However, over the last decade B cells have been increasingly recognized as modulators of both adaptive and innate immune responses, as well as players in an important role in the pathogenesis of a variety of human diseases. Here, after briefly summarizing our current understanding of B cell biology, we present a systematic review of the literature from both animal models and human studies that highlight the important role that B lymphocytes play in cardiac and vascular disease. While many aspects of B cell biology in the vasculature and, to an even greater extent, in the heart remain unclear, B cells are emerging as key regulators of cardiovascular adaptation to injury.
Collapse
Affiliation(s)
- Luigi Adamo
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA; , ,
| | - Cibele Rocha-Resende
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA; , ,
| | - Douglas L Mann
- Center for Cardiovascular Research, Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA; , ,
| |
Collapse
|
35
|
Salinas I, Fernández-Montero Á, Ding Y, Sunyer JO. Mucosal immunoglobulins of teleost fish: A decade of advances. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104079. [PMID: 33785432 PMCID: PMC8177558 DOI: 10.1016/j.dci.2021.104079] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 05/03/2023]
Abstract
Immunoglobulins (Igs) are complex glycoproteins that play critical functions in innate and adaptive immunity of all jawed vertebrates. Given the unique characteristics of mucosal barriers, secretory Igs (sIgs) have specialized to maintain homeostasis and keep pathogens at bay at mucosal tissues from fish to mammals. In teleost fish, the three main IgH isotypes, IgM, IgD and IgT/Z can be found in different proportions at the mucosal secretions of the skin, gills, gut, nasal, buccal, and pharyngeal mucosae. Similar to the role of mammalian IgA, IgT plays a predominant role in fish mucosal immunity. Recent studies in IgT have illuminated the primordial role of sIgs in both microbiota homeostasis and pathogen control at mucosal sites. Ten years ago, IgT was discovered to be an immunoglobulin class specialized in mucosal immunity. Aiming at this 10-year anniversary, the goal of this review is to summarize the current status of the field of fish Igs since that discovery, while identifying knowledge gaps and future avenues that will move the field forward in both basic and applied science areas.
Collapse
Affiliation(s)
- Irene Salinas
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | - Álvaro Fernández-Montero
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yang Ding
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
36
|
Chong HY, Leow CY, Leow CH. Generation of soluble, disulfide-rich JEV NS1 protein recognizable by anti-NS1 antibodies through a simplified, in vitro refolding approach. Int J Biol Macromol 2021; 185:485-493. [PMID: 34174313 DOI: 10.1016/j.ijbiomac.2021.06.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/01/2022]
Abstract
Co-existence of Japanese Encephalitis virus (JEV) with highly homologous antigenic epitopes results in antibody-based serodiagnosis being inaccurate at detecting and distinguishing JEV from other flaviviruses. This often causes misdiagnosis and inefficient treatments of flavivirus infection. Generation of JEV NS1 protein remains a challenge as it is notably expressed in the form of inactive aggregates known as inclusion bodies using bacterial expression systems. This study evaluated two trxB and gor E. coli strains in producing soluble JEV NS1 via a cold-shock expression system. High yield of JEV NS1 inclusion bodies was produced using cold-shocked expression system. Subsequently, a simplified yet successful approach in generating soluble, active JEV NS1 protein through solubilization, purification and in vitro refolding of JEV NS1 protein from inclusion bodies was developed. A step-wise dialysis refolding approach was used to facilitate JEV NS1 refolding. The authenticity of the refolded JEV NS1 was confirmed by specific antibody binding on indirect ELISA commercial anti-NS1 antibodies which showed that the refolded JEV NS1 was highly immunoreactive. This presented approach is cost-effective, and negates the need for mammalian or insect cell expression systems in order to synthesize this JEV NS1 protein of important diagnostic and therapeutic relevance in Japanese Encephalitis disease.
Collapse
Affiliation(s)
- Hui Ying Chong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Glugor, Penang, Malaysia
| | - Chiuan Yee Leow
- School of Pharmaceutical Science, Universiti Sains Malaysia, Glugor, Penang, Malaysia
| | - Chiuan Herng Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Glugor, Penang, Malaysia.
| |
Collapse
|
37
|
Diversity of Rainbow Trout Blood B Cells Revealed by Single Cell RNA Sequencing. BIOLOGY 2021; 10:biology10060511. [PMID: 34207643 PMCID: PMC8227096 DOI: 10.3390/biology10060511] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 01/13/2023]
Abstract
Simple Summary Although evolutionarily jawed fish constitute the first group of animals in which a complete adaptive immune system based on immunoglobulins (Igs) is present, many structural immune differences between fish and mammals predict important functional and phenotypical differences between B cells in these two animal groups. However, to date, very few tools are available to study B cell heterogeneity and functionality in fish. Hence, thus far, antibodies targeting the different Igs have been almost exclusively applied as tools to investigate B cell functionality in fish. In the current study, we used the newly developed 10× Genomics single cell RNA sequencing technology and used it to analyze the transcriptional pattern of single B cells from peripheral blood. The results obtained provide us with a transcriptional profile at single cell level of what seem to correspond to different B cell subsets or B cells in different stages of maturation or differentiation. The information provided will not only help us understand the biology of teleost B cells, but also provides us with a repertoire of potential markers that could be used in the future to differentiate trout B cell subsets. Abstract Single-cell sequencing technologies capable of providing us with immune information from dozens to thousands of individual cells simultaneously have revolutionized the field of immunology these past years. However, to date, most of these novel technologies have not been broadly applied to non-model organisms such as teleost fish. In this study, we used the 10× Genomics single cell RNA sequencing technology and used it to analyze for the first time in teleost fish the transcriptional pattern of single B cells from peripheral blood. The analysis of the data obtained in rainbow trout revealed ten distinct cell clusters that seem to be associated with different subsets and/or maturation/differentiation stages of circulating B cells. The potential characteristics and functions of these different B cell subpopulations are discussed on the basis of their transcriptomic profile. The results obtained provide us with valuable information to understand the biology of teleost B cells and offer us a repertoire of potential markers that could be used in the future to differentiate trout B cell subsets.
Collapse
|
38
|
Mallott EK, Amato KR. Host specificity of the gut microbiome. Nat Rev Microbiol 2021; 19:639-653. [PMID: 34045709 DOI: 10.1038/s41579-021-00562-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 02/07/2023]
Abstract
Developing general principles of host-microorganism interactions necessitates a robust understanding of the eco-evolutionary processes that structure microbiota. Phylosymbiosis, or patterns of microbiome composition that can be predicted by host phylogeny, is a unique framework for interrogating these processes. Identifying the contexts in which phylosymbiosis does and does not occur facilitates an evaluation of the relative importance of different ecological processes in shaping the microbial community. In this Review, we summarize the prevalence of phylosymbiosis across the animal kingdom on the basis of the current literature and explore the microbial community assembly processes and related host traits that contribute to phylosymbiosis. We find that phylosymbiosis is less prevalent in taxonomically richer microbiomes and hypothesize that this pattern is a result of increased stochasticity in the assembly of complex microbial communities. We also note that despite hosting rich microbiomes, mammals commonly exhibit phylosymbiosis. We hypothesize that this pattern is a result of a unique combination of mammalian traits, including viviparous birth, lactation and the co-evolution of haemochorial placentas and the eutherian immune system, which compound to ensure deterministic microbial community assembly. Examining both the individual and the combined importance of these traits in driving phylosymbiosis provides a new framework for research in this area moving forward.
Collapse
Affiliation(s)
- Elizabeth K Mallott
- Department of Anthropology, Northwestern University, Evanston, IL, USA.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Katherine R Amato
- Department of Anthropology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
39
|
Kasztelan-Szczerbinska B, Adamczyk K, Surdacka A, Rolinski J, Michalak A, Bojarska-Junak A, Szczerbinski M, Cichoz-Lach H. Gender-related disparities in the frequencies of PD-1 and PD-L1 positive peripheral blood T and B lymphocytes in patients with alcohol-related liver disease: a single center pilot study. PeerJ 2021; 9:e10518. [PMID: 33552711 PMCID: PMC7825365 DOI: 10.7717/peerj.10518] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Background Exposure to excessive alcohol consumption dysregulates immune signaling. The programed cell death 1 (PD-1) receptor and its ligand PD-L1 play a critical role in the protection against immune-mediated tissue damage. The aim of our study was evaluation of the PD-1/PDL-1 expression on peripheral T and B lymphocytes, its correlation with markers of inflammation and the severity of liver dysfunction in the course of alcohol-related liver disease (ALD). Material and Methods Fifty-six inpatients with ALD (38 males, 18 females, aged 49.23 ± 10.66) were prospectively enrolled and assigned to subgroups based on their: (1) gender, (2) severity of liver dysfunction (Child-Pugh, MELD scores, mDF), (3) presence of ALD complications, and followed for 30 days. Twenty-five age- and gender-matched healthy volunteers served as the control group. Flow cytometric analysis of the PD-1/PD-L1 expression on peripheral lymphocyte subsets were performed. Results General frequencies of PD-1/PD-L1 positive T and B subsets did not differ between the ALD and control group. When patients were analyzed based on their gender, significantly higher frequencies of PD1/PD-L1 positive B cells in ALD females compared to controls were observed. ALD females presented with significantly higher frequencies of PD-1+ and PD-L1+ B cells, as well as PD-L1+ all T cell subsets in comparison with ALD males. The same gender pattern of the PD-1/PDL1 expression was found in the subgroups with mDF > 32 and MELD > 20. No correlations of PD-1+ and PD-L1+ lymphocyte percentages with mDF, CTP and MELD scores, nor with complications of ALD were observed. Significant correlations of PD-L1 positive B cell frequencies with conventional markers of inflammation were found. Conclusions Gender-related differences in the frequencies of PD-1/PD-L1 positive T and B cells were observed in patients with ALD. Upregulation of PD-1+/PD-L1+ lymphocytes paralleled both the severity of alcoholic hepatitis and liver dysfunction in ALD females.
Collapse
Affiliation(s)
| | - Katarzyna Adamczyk
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Poland, Lublin, Poland
| | - Agata Surdacka
- Department of Clinical Immunology, Medical University of Lublin, Poland, Lublin, Poland
| | - Jacek Rolinski
- Department of Clinical Immunology, Medical University of Lublin, Poland, Lublin, Poland
| | - Agata Michalak
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Poland, Lublin, Poland
| | | | - Mariusz Szczerbinski
- Department of Gastroenterology with Endoscopy Unit, Public, Academic Hospital No 4, Lublin, Poland
| | - Halina Cichoz-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Poland, Lublin, Poland
| |
Collapse
|
40
|
Daponte V, Tylzanowski P, Forlino A. Appendage Regeneration in Vertebrates: What Makes This Possible? Cells 2021; 10:cells10020242. [PMID: 33513779 PMCID: PMC7911911 DOI: 10.3390/cells10020242] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/26/2022] Open
Abstract
The ability to regenerate amputated or injured tissues and organs is a fascinating property shared by several invertebrates and, interestingly, some vertebrates. The mechanism of evolutionary loss of regeneration in mammals is not understood, yet from the biomedical and clinical point of view, it would be very beneficial to be able, at least partially, to restore that capability. The current availability of new experimental tools, facilitating the comparative study of models with high regenerative ability, provides a powerful instrument to unveil what is needed for a successful regeneration. The present review provides an updated overview of multiple aspects of appendage regeneration in three vertebrates: lizard, salamander, and zebrafish. The deep investigation of this process points to common mechanisms, including the relevance of Wnt/β-catenin and FGF signaling for the restoration of a functional appendage. We discuss the formation and cellular origin of the blastema and the identification of epigenetic and cellular changes and molecular pathways shared by vertebrates capable of regeneration. Understanding the similarities, being aware of the differences of the processes, during lizard, salamander, and zebrafish regeneration can provide a useful guide for supporting effective regenerative strategies in mammals.
Collapse
Affiliation(s)
- Valentina Daponte
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, via Taramelli 3/B, 27100 Pavia, Italy;
| | - Przemko Tylzanowski
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, University of Leuven, 3000 Leuven, Belgium;
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Antonella Forlino
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, via Taramelli 3/B, 27100 Pavia, Italy;
- Correspondence: ; Tel.: +39-0382-987235
| |
Collapse
|
41
|
Towards Improved Use of Vaccination in the Control of Infectious Bronchitis and Newcastle Disease in Poultry: Understanding the Immunological Mechanisms. Vaccines (Basel) 2021; 9:vaccines9010020. [PMID: 33406695 PMCID: PMC7823560 DOI: 10.3390/vaccines9010020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022] Open
Abstract
Infectious bronchitis (IB) and Newcastle disease (ND) are two important diseases of poultry and have remained a threat to the development of the poultry industry in many parts of the world. The immunology of avian has been well studied and numerous vaccines have been developed against the two viruses. Most of these vaccines are either inactivated vaccines or live attenuated vaccines. Inactivated vaccines induce weak cellular immune responses and require priming with live or other types of vaccines. Advanced technology has been used to produce several types of vaccines that can initiate prime immune responses. However, as a result of rapid genetic variations, the control of these two viral infections through vaccination has remained a challenge. Using various strategies such as combination of live attenuated and inactivated vaccines, development of IB/ND vaccines, use of DNA vaccines and transgenic plant vaccines, the problem is being surmounted. It is hoped that with increasing understanding of the immunological mechanisms in birds that are used in fighting these viruses, a more successful control of the diseases will be achieved. This will go a long way in contributing to global food security and the economic development of many developing countries, given the role of poultry in the attainment of these goals.
Collapse
|
42
|
Picchietti S, Miccoli A, Fausto AM. Gut immunity in European sea bass (Dicentrarchus labrax): a review. FISH & SHELLFISH IMMUNOLOGY 2021; 108:94-108. [PMID: 33285171 DOI: 10.1016/j.fsi.2020.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
In this review, we summarize and discuss the trends and supporting findings in scientific literature on the gut mucosa immune role in European sea bass (Dicentrarchus labrax L.). Overall, the purpose is to provide an updated overview of the gastrointestinal tract functional regionalization and defence barriers. A description of the available information regarding immune cells found in two immunologically-relevant intestinal compartments, namely epithelium and lamina propria, is provided. Attention has been also paid to mucosal immunoglobulins and to the latest research investigating gut microbiota and dietary manipulation impacts. Finally, we review oral vaccination strategies, as a safe method for sea bass vaccine delivery.
Collapse
Affiliation(s)
- S Picchietti
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.
| | - A Miccoli
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | - A M Fausto
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| |
Collapse
|
43
|
Ushine N, Kurata O, Tanaka Y, Sato T, Kurahashi Y, Hayama SI. The effects of migration on the immunity of Black-Headed Gulls (Chroicocephalus ridibundus: Laridae). J Vet Med Sci 2020; 82:1619-1626. [PMID: 32963148 PMCID: PMC7719892 DOI: 10.1292/jvms.20-0339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In order to elucidate the relationship between migration period and immunity related to susceptibility, we conducted research on Black-headed gulls
(Chroicocephalus ridibundus). We captured 260 gulls and collected their peripheral blood. Their leukocyte (WBC) count, percentages of
heterophils (Het) and lymphocytes (Lym), heterophil and lymphocyte ratio (H/L ratio), and CD4 and CD8α expression levels (CD4 and CD8α, respectively) were
quantitatively analyzed over three migration periods (Autumn migration, Wintering, Spring migration). In Adult gulls, WBC counts and CD4 levels significantly
increased. Moreover, the Het and H/L ratio decreased from the Autumn migration to Wintering. Conversely, only WBC counts and CD4 levels measurements
significantly decreased from Wintering to Spring migration (P<0.05). The tested parameters of the Tokyo-bay population show a greater
significant difference than the measurements of immunity of the Mikawa-bay population. This study suggests that the migratory period has a negative effect on an
aspect of the immune system. Including the period-difference in the immune systems in the local population, it is necessary to investigate the relationship
between the ecology of migratory birds and their immunity.
Collapse
Affiliation(s)
- Nana Ushine
- Laboratory of Wildlife Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - Osamu Kurata
- Laboratory of Aquatic Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - Yoshikazu Tanaka
- Laboratory of Veterinary Hygiene, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| | - Tatsuo Sato
- The Friends of the Gyotoku Bird Observatory NPO, 4-22-11 Fukuei, Ichikawa-shi, Chiba 272-0137, Japan
| | - Yoshihiro Kurahashi
- Japanese Bird Banding Association, 115 Konoyama, Abiko, Chiba 270-1145, Japan
| | - Shin-Ichi Hayama
- Laboratory of Wildlife Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 180-8602, Japan
| |
Collapse
|
44
|
Vasquez I, Cao T, Hossain A, Valderrama K, Gnanagobal H, Dang M, Leeuwis RHJ, Ness M, Campbell B, Gendron R, Kao K, Westcott J, Gamperl AK, Santander J. Aeromonas salmonicida infection kinetics and protective immune response to vaccination in sablefish (Anoplopoma fimbria). FISH & SHELLFISH IMMUNOLOGY 2020; 104:557-566. [PMID: 32592927 DOI: 10.1016/j.fsi.2020.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Effective vaccine programs against Aeromonas salmonicida have been identified as a high priority area for the sablefish (Anoplopoma fimbria) aquaculture. In this study, we established an A. salmonicida infection model in sablefish to evaluate the efficacy of commercial vaccines and an autogenous vaccine preparation. Groups of 40 fish were intraperitoneally (ip) injected with different doses of A. salmonicida J410 isolated from infected sablefish to calculate the median lethal dose (LD50). Samples of blood, head kidney, spleen, brain, and liver were also collected at different time points to determine the infection kinetics. The LD50 was estimated as ~3 × 105 CFU/dose. To evaluate the immune protection provided by an autogenous vaccine and two commercial vaccines in a common garden experimental design, 140 fish were PIT-tagged, vaccinated and distributed equally into 4 tanks (35 fish for each group, including a control group). Blood samples were taken every 2 weeks to evaluate IgM titers. At 10 weeks post-immunization, all groups were ip challenged with 100 times the calculated LD50 for A. salmonicida J410. A. salmonicida was detected after 5 days post-infection (dpi) in all collected tissues. At 30 days post-challenge the relative percentage survival (RPS) with respect to the control group was calculated for each vaccine. The RPS for the bacterin mix was 65.22%, for Forte Micro 4® vaccine was 56.52% and for Alpha Ject Micro 4® was 30.43%, and these RPS values were reflected by A. salmonicida tissue colonization levels at 10 days post-challenge. Total IgM titers peaked at 6-8 weeks post-immunization, where the autogenous vaccine group showed the highest IgM titers and these values were consistent with the RPS data. Also, we determined that the A. salmonicida A-layer binds to immunoglobulins F(ab)' in a non-specific fashion, interfering with immune assays and potentially vaccine efficacy. Our results indicate that vaccine design influences sablefish immunity and provide a guide for future sablefish vaccine programs.
Collapse
Affiliation(s)
- Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Katherinne Valderrama
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - My Dang
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Robine H J Leeuwis
- Fish Physiology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | | | - Robert Gendron
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Kenneth Kao
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jillian Westcott
- Fisheries and Marine Institute, Memorial University of Newfoundland, St. John's, NL, Canada
| | - A Kurt Gamperl
- Fish Physiology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
45
|
Bakke AF, Bjørgen H, Koppang EO, Frost P, Afanasyev S, Boysen P, Krasnov A, Lund H. IgM+ and IgT+ B Cell Traffic to the Heart during SAV Infection in Atlantic Salmon. Vaccines (Basel) 2020; 8:E493. [PMID: 32878234 PMCID: PMC7563723 DOI: 10.3390/vaccines8030493] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 02/02/2023] Open
Abstract
B cells of teleost fish differentiate in the head kidney, and spleen, and either remain in the lymphatic organs or move to the blood and peripheral tissues. There is limited knowledge about piscine B cell traffic to sites of vaccination and infection and their functional roles at these sites. In this work, we examined the traffic of B cells in Atlantic salmon challenged with salmonid alphavirus (SAV). In situ hybridization (RNAScope) showed increased numbers of immunoglobin (Ig)M+ and IgT+ B cells in the heart in response to SAV challenge, with IgM+ B cells being most abundant. An increase in IgT+ B cells was also evident, indicating a role of IgT+ B cells in nonmucosal tissues and systemic viral infections. After infection, B cells were mainly found in the stratum spongiosum of the cardiac ventricle, colocalizing with virus-infected myocardial-like cells. From sequencing the variable region of IgM in the main target organ (heart) and comparing it with a major lymphatic organ (the spleen), co-occurrence in antibody repertoires indicated a transfer of B cells from the spleen to the heart, as well as earlier recruitment of B cells to the heart in vaccinated fish compared to those that were unvaccinated. Transcriptome analyses performed at 21 days post-challenge suggested higher expression of multiple mediators of inflammation and lymphocyte-specific genes in unvaccinated compared to vaccinated fish, in parallel with a massive suppression of genes involved in heart contraction, metabolism, and development of tissue. The adaptive responses to SAV in vaccinated salmon appeared to alleviate the disease. Altogether, these results suggest that migration of B cells from lymphatic organs to sites of infection is an important part of the adaptive immune response of Atlantic salmon to SAV.
Collapse
Affiliation(s)
- Anne Flore Bakke
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ullevålsveien 72, 0454 Oslo, Norway; (A.F.B.); (H.B.); (E.O.K.); (P.B.); (H.L.)
| | - Håvard Bjørgen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ullevålsveien 72, 0454 Oslo, Norway; (A.F.B.); (H.B.); (E.O.K.); (P.B.); (H.L.)
| | - Erling Olaf Koppang
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ullevålsveien 72, 0454 Oslo, Norway; (A.F.B.); (H.B.); (E.O.K.); (P.B.); (H.L.)
| | - Petter Frost
- MSD Animal Health Innovation AD, Thormøhlens Gate 55, 5006 Bergen, Norway;
| | - Sergey Afanasyev
- I. M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Torez 44, Saint-Petersburg 194223, Russia;
| | - Preben Boysen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ullevålsveien 72, 0454 Oslo, Norway; (A.F.B.); (H.B.); (E.O.K.); (P.B.); (H.L.)
| | | | - Hege Lund
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ullevålsveien 72, 0454 Oslo, Norway; (A.F.B.); (H.B.); (E.O.K.); (P.B.); (H.L.)
| |
Collapse
|
46
|
Srivastava A, Mistri A, Mittal S, Mittal AK. Alterations in the epidermis of the carp, Labeo rohita (Cyprinidae: Cypriniformes), infected by the bacteria, Aeromonas hydrophila: A scanning electron microscopic, histopathological and immunohistochemical investigation. JOURNAL OF FISH DISEASES 2020; 43:941-953. [PMID: 32618004 DOI: 10.1111/jfd.13204] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
This study was carried out to comprehend the pathogenicity of the bacteria in the epidermis of Labeo rohita inoculated with Aeromonas hydrophila. Alterations in the histopathology of the epidermis were examined using scanning electron microscopy, light microscopy and the localization of iNOS and caspase 3 + ve cells by means of immunohistochemical methods. Skin samples obtained from infected fish at different intervals 2, 4, 6, 8 and 10 days showed significant changes in the cellular components of the epidermis. Epithelial cells often appeared hypertrophied with fragmented and loosely arranged microridges, and in the process of exfoliation. Mucous goblet cells increased significantly in density. Club cells showed degenerative changes, often with simultaneous confluence of adjacent cells and release of their contents. Increase in density of iNOS and caspase 3 + ve cells indicates inflammatory response and apoptosis. This study could provide valuable information on the pathogenesis of the disease, and disease outbreaks in farmed fish. Further, it could provide useful guidelines for fish farmers to take preventive measures for the control of the disease.
Collapse
Affiliation(s)
- Ayan Srivastava
- Skin Physiology Laboratory, Department of Zoology, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Arup Mistri
- Skin Physiology Laboratory, Department of Zoology, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Swati Mittal
- Skin Physiology Laboratory, Department of Zoology, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ajay Kumar Mittal
- Skin Physiology Laboratory, Department of Zoology, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
47
|
Marcos‐López M, Rodger HD. Amoebic gill disease and host response in Atlantic salmon (
Salmo salar
L.): A review. Parasite Immunol 2020; 42:e12766. [DOI: 10.1111/pim.12766] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/13/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022]
|
48
|
Mitochondrial function in immune cells in health and disease. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165845. [PMID: 32473386 DOI: 10.1016/j.bbadis.2020.165845] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023]
Abstract
One of the main functions of mitochondria is production of ATP for cellular energy needs, however, it becomes more recognized that mitochondria are involved in differentiation and activation processes of immune cells. Upon activation, immune cells have a high need for energy. Immune cells have different strategies to generate this energy. In pro-inflammatory cells, such as activated monocytes and activated T and B cells, the energy is generated by increasing glycolysis, while in regulatory cells, such as regulatory T cells or M2 macrophages, energy is generated by increasing mitochondrial function and beta-oxidation. Except for being important for energy supply during activation, mitochondria also induce immune responses. During an infection, they release mitochondrial danger associated molecules (DAMPs) that resemble structures of bacterial derived pathogen associated molecular patterns (PAMPs). Such mitochondrial DAMPS are for instance mitochondrial DNA with hypomethylated CpG motifs or a specific lipid that is only present in prokaryotic bacteria and mitochondria, i.e. cardiolipin. Via release of such DAMPs, mitochondria guide the immune response towards an inflammatory response against pathogens. This is an important mechanism in early detection of an infection and in stimulating and sustaining immune responses to fight infections. However, mitochondrial DAMPs may also have a negative impact. If mitochondrial DAMPs are released by damaged cells, without the presence of an infection, such as after a trauma, mitochondrial DAMPs may induce an undesired inflammatory response, resulting in tissue damage and organ dysfunction. Thus, immune cells have developed mechanisms to prevent such undesired immune activation by mitochondrial components. In the present narrative review, we will describe the current view of mitochondria in regulation of immune responses. We will also discuss the current knowledge on disturbed mitochondrial function in immune cells in various immunological diseases.
Collapse
|
49
|
Wu L, Qin Z, Liu H, Lin L, Ye J, Li J. Recent Advances on Phagocytic B Cells in Teleost Fish. Front Immunol 2020; 11:824. [PMID: 32536909 PMCID: PMC7267004 DOI: 10.3389/fimmu.2020.00824] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/14/2020] [Indexed: 12/23/2022] Open
Abstract
The momentous discovery of phagocytic activity in teleost B cells has caused a dramatic paradigm shift from the belief that phagocytosis is performed mainly by professional phagocytes derived from common myeloid progenitor cells, such as macrophages/monocytes, neutrophils, and dendritic cells. Recent advances on phagocytic B cells and their microbicidal ability in teleost fish position B cells at the crossroads, bridging innate with adaptive immunity. Most importantly, an increasing body of experimental evidence demonstrates that, in both teleosts and mammals, phagocytic B cells can recognize, take up, and destroy particulate antigens and then present those processed antigens to CD4+ T cells to elicit adaptive immune responses and that the phagocytosis is mediated by pattern recognition receptors and involves multiple cytokines. Thus, current findings collectively indicate that teleost phagocytic B cells, as well as their counterpart mammalian B1-B cells, can be considered one kind of professional phagocyte. The aim of this review is to summarize recent advances regarding teleost phagocytic B cells, with a particular focus on the recognizing receptors and modulating mechanisms of phagocytic B cells and the process of antigen presentation for T-cell activation. We also attempt to provide new insights into the adaptive evolution of the teleost fish phagocytic B cell on the basis of its innate and adaptive roles.
Collapse
Affiliation(s)
- Liting Wu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Zhendong Qin
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Haipeng Liu
- State Key Laboratory of Marine Environmental Science, State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Lin
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jun Li
- Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.,School of Science and Medicine, Lake Superior State University, Sault Ste. Marie, MI, United States
| |
Collapse
|
50
|
Characterization of Sialic Acid-Binding Immunoglobulin-Type Lectins in Fish Reveals Teleost-Specific Structures and Expression Patterns. Cells 2020; 9:cells9040836. [PMID: 32244286 PMCID: PMC7226832 DOI: 10.3390/cells9040836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/15/2022] Open
Abstract
The cellular glycocalyx of vertebrates is frequently decorated with sialic acid residues. These sialylated structures are recognized by sialic acid-binding immunoglobulin-type lectins (Siglecs) of immune cells, which modulate their responsiveness. Fifteen Siglecs are known to be expressed in humans, but only four Siglecs are regularly present in fish: Siglec1, CD22, myelin-associated glycoprotein (MAG), and Siglec15. While several studies have dealt with the physiological roles of these four Siglecs in mammals, little is known about Siglecs in fish. In the present manuscript, the expression landscapes of these Siglecs were determined in the two salmonid species Oncorhynchus mykiss and Coregonus maraena and in the percid fish Sander lucioperca. This gene-expression profiling revealed that the expression of MAG is not restricted to neuronal cells but is detectable in all analyzed blood cells, including erythrocytes. The teleostean MAG contains the inhibitory motif ITIM; therefore, an additional immunomodulatory function of MAG is likely to be present in fish. Besides MAG, Siglec1, CD22, and Siglec15 were also expressed in all analyzed blood cell populations. Interestingly, the expression profiles of genes encoding Siglecs and particular associated enzymes changed in a gene- and tissue-specific manner when Coregonus maraena was exposed to handling stress. Thus, the obtained data indicate once more that stress directly affects immune-associated processes.
Collapse
|