1
|
Fu MM, Cao F, Qiu CW, Liu C, Tong T, Feng X, Cai S, Chen ZH, Wu F. Xyloglucan endotransglucosylase-hydrolase 1 is a negative regulator of drought tolerance in barley via modulating lignin biosynthesis and stomatal closure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109171. [PMID: 39369646 DOI: 10.1016/j.plaphy.2024.109171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/08/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
The projected increase in drought severity and duration worldwide poses a significant threat to crop growth and sustainable food production. Xyloglucan endotransglucosylase/hydrolases (XTHs) family is essential in cell wall modification through the construction and restructuring of xyloglucan cross-links, but their role in drought tolerance and stomatal regulation is still illusive. We cloned and functionally characterized HvXTH1 using genetic, physiological, biochemical, transcriptomic and metabolomic approaches in barley. Evolutionary bioinformatics showed that orthologues of XTH1 was originated from Streptophyte algae (e.g. some species in the Zygnematales) the closest clade to land plants based on OneKP database. HvXTH1 is highly expressed in leaves and HvXTH1 is localized to the plasma membrane. Under drought conditions, silencing HvXTH1 in drought-tolerant Tibetan wild barley XZ5 induced a significant reduction in water loss rate and increase in biomass, however overexpressing HvXTH1 exhibited drought sensitivity with significantly less drought-responsive stomata, lower lignin content and a thicker cell wall. Transcriptome profile of the wild type Golden Promise and HvXTH1-OX demonstrated that drought-induced differentially expressed genes in leaves are related to cell wall biosynthesis, abscisic acid and stomatal signaling, and stress response. Furthermore, overexpressing HvXTH1 suppressed both genes and metabolites in the phenylpropanoid pathway for lignin biosynthesis, leading to drought sensitivity of HvXTH1-OX. We provide new insight by deciphering the function of a novel protein HvXTH1 for drought tolerance in cell wall modification, stomatal regulation, and phenylpropanoid pathway for lignin biosynthesis in barley. The function of HvXTH1 in drought response will be beneficial to develop crop varieties adapted to drought.
Collapse
Affiliation(s)
- Man-Man Fu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
| | - Fangbin Cao
- College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
| | - Cheng-Wei Qiu
- College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Chen Liu
- College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
| | - Tao Tong
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Xue Feng
- College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
| | - Shengguan Cai
- College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia.
| | - Feibo Wu
- College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Swaminathan S, Grover CE, Mugisha AS, Sichterman LE, Lee Y, Yang P, Mallery EL, Jareczek JJ, Leach AG, Xie J, Wendel JF, Szymanski DB, Zabotina OA. Daily glycome and transcriptome profiling reveals polysaccharide structures and correlated glycosyltransferases critical for cotton fiber growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39441672 DOI: 10.1111/tpj.17084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/02/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024]
Abstract
Cotton fiber is the most valuable naturally available material for the textile industry and the fiber length and strength are key determinants of its quality. Dynamic changes in the pectin, xyloglucan, xylan, and cellulose polysaccharide epitope content during fiber growth contribute to complex remodeling of fiber cell wall (CW) and quality. Detailed knowledge about polysaccharide compositional and structural alteration in the fiber during fiber elongation and strengthening is important to understand the molecular dynamics of fiber development and improve its quality. Here, large-scale glycome profiling coupled with fiber phenotype and transcriptome profiling was conducted on fiber collected daily covering the most critical window of fiber development. The profiling studies with high temporal resolution allowed us to identify specific polysaccharide epitopes associated with distinct fiber phenotypes that might contribute to fiber quality. This study revealed the critical role of highly branched RG-I pectin epitopes such as β-1,4-linked-galactans, β-1,6-linked-galactans, and arabinogalactans, in addition to earlier reported homogalacturonans and xyloglucans in the formation of cotton fiber middle lamella and contributing to fiber plasticity and elongation. We also propose the essential role of heteroxylans (Xyl-MeGlcA and Xyl-3Ar), as a guiding factor for secondary CW cellulose microfibril arrangement, thus contributing to fiber strength. Correlation analysis of profiles of polysaccharide epitopes from glycome data and expression profiles of glycosyltransferase-encoding genes from transcriptome data identified several key putative glycosyltransferases that are potentially involved in synthesizing the critical polysaccharide epitopes. The findings of this study provide a foundation to identify molecular factors that dictate important fiber traits.
Collapse
Affiliation(s)
- Sivakumar Swaminathan
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Alither S Mugisha
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Lauren E Sichterman
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Youngwoo Lee
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Pengcheng Yang
- Department of Statistics, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Eileen L Mallery
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Josef J Jareczek
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Alexis G Leach
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Jun Xie
- Department of Statistics, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Daniel B Szymanski
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Olga A Zabotina
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, 50011, USA
| |
Collapse
|
3
|
Hoffmann N, McFarlane HE. Xyloglucan side chains enable polysaccharide secretion to the plant cell wall. Dev Cell 2024; 59:2609-2625.e8. [PMID: 38971156 DOI: 10.1016/j.devcel.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/16/2024] [Accepted: 06/08/2024] [Indexed: 07/08/2024]
Abstract
Plant cell walls are essential for growth. The cell wall hemicellulose xyloglucan (XyG) is produced in the Golgi apparatus before secretion. Loss of the Arabidopsis galactosyltransferase MURUS3 (MUR3) decreases XyG d-galactose side chains and causes intracellular aggregations and dwarfism. It is unknown how changing XyG synthesis can broadly impact organelle organization and growth. We show that intracellular aggregations are not unique to mur3 and are found in multiple mutant lines with reduced XyG D-galactose side chains. mur3 aggregations disrupt subcellular trafficking and induce formation of intracellular cell-wall-like fragments. Addition of d-galacturonic acid onto XyG can restore growth and prevent mur3 aggregations. These results indicate that the presence, but not the composition, of XyG side chains is essential, likely by ensuring XyG solubility. Our results suggest that XyG polysaccharides are synthesized in a highly substituted form for efficient secretion and then later modified by cell-wall-localized enzymes to fine-tune cell wall properties.
Collapse
Affiliation(s)
- Natalie Hoffmann
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Heather E McFarlane
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada.
| |
Collapse
|
4
|
Liao G, Sun E, Kana EBG, Huang H, Sanusi IA, Qu P, Jin H, Liu J, Shuai L. Renewable hemicellulose-based materials for value-added applications. Carbohydr Polym 2024; 341:122351. [PMID: 38876719 DOI: 10.1016/j.carbpol.2024.122351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
The importance of renewable resources and environmentally friendly materials has grown globally in recent time. Hemicellulose is renewable lignocellulosic materials that have been the subject of substantial valorisation research. Due to its distinctive benefits, including its wide availability, low cost, renewability, biodegradability, simplicity of chemical modification, etc., it has attracted increasing interest in a number of value-added fields. In this review, a systematic summarizes of the structure, extraction method, and characterization technique for hemicellulose-based materials was carried out. Also, their most current developments in a variety of value-added adsorbents, biomedical, energy-related, 3D-printed materials, sensors, food packaging applications were discussed. Additionally, the most recent challenges and prospects of hemicellulose-based materials are emphasized and examined in-depth. It is anticipated that in the near future, persistent scientific efforts will enable the renewable hemicellulose-based products to achieve practical applications.
Collapse
Affiliation(s)
- Guangfu Liao
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Enhui Sun
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville 3209, South Africa; School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - E B Gueguim Kana
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville 3209, South Africa
| | - Hongying Huang
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Isaac A Sanusi
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville 3209, South Africa
| | - Ping Qu
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hongmei Jin
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jun Liu
- School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Shuai
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China..
| |
Collapse
|
5
|
Zhou Y, Tang S, Lv Y, Zhang D, Huang X, Chen Y, Lai C, Yong Q. The prebiotic impacts of galactose side-chain of tamarind xyloglucan oligosaccharides on gut microbiota. Heliyon 2024; 10:e37864. [PMID: 39323792 PMCID: PMC11422031 DOI: 10.1016/j.heliyon.2024.e37864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024] Open
Abstract
To explore the impacts of galactose side-chain on the prebiotic activity of xyloglucan oligosaccharides (XGOS), XGOS and de-galactosylated XGOS (DG-XGOS) were prepared from tamarind using an enzymatic method. The differences in structural features of XGOS and DG-XGOS were systematically analyzed. Their in vitro fermentation characteristics of human fecal microbiota were explored. These results indicated that both XGOS and DG-XGOS promoted short-chain fatty acids (SCFAs) production, decreased pH, and changed the microbiota composition of the fermentation broth. Comparatively, DG-XGOS was more effective than XGOS in producing SCFAs, inhibiting the phylum Proteobacteria prevalence, and promoting the phyla Bacteroidetes and Actinobacteria prevalence. In summary, the xyloglucan degradation products exert potential prebiotic activity. Removing the galactose side-chains further enhances oligosaccharide utilization by fecal microbiota, offering a valuable approach to improve the biological efficacy of oligosaccharides.
Collapse
Affiliation(s)
- Yubo Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Shuo Tang
- Nanjing Institute of Comprehensive Utilization of Wild Plants, Nanjing, 211111, PR China
| | - Ying Lv
- Jiangsu Co-Innovation Center of Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Daihui Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, 210042, PR China
| | - Xiaode Huang
- Nanjing Institute of Comprehensive Utilization of Wild Plants, Nanjing, 211111, PR China
| | - Yanan Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| |
Collapse
|
6
|
He Y, Liu Y, Zhang M. Hemicellulose and unlocking potential for sustainable applications in biomedical, packaging, and material sciences: A narrative review. Int J Biol Macromol 2024; 280:135657. [PMID: 39299428 DOI: 10.1016/j.ijbiomac.2024.135657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Hemicellulose, a complex polysaccharide abundantly found in plant cell walls, has garnered significant attention for its versatile applications in various fields including biomedical, food packaging, environmental, and material sciences. This review systematically explores the composition, extraction methods, and diverse applications of hemicellulose-derived materials. Various extraction techniques such as organic acid, organic base, enzyme-assisted, and hydrothermal methods are discussed in detail, highlighting their efficacy and potential drawbacks. The applications of hemicellulose encompass biodegradable films, edible coatings, advanced hydrogels, and emulsion stabilizers, each offering unique properties suitable for different industrial needs. Current challenges in hemicellulose research include extraction efficiency, scalability of production processes, and optimization of material properties. Opportunities for future research are outlined, emphasizing the exploration of new applications and interdisciplinary approaches to harness the full potential of hemicellulose. This comprehensive review aims to provide valuable insights for researchers and industry professionals interested in utilizing hemicellulose as a sustainable and functional biomaterial.
Collapse
Affiliation(s)
- Ying He
- Department of Biological and Food Engineering, Lyuliang University, Lishi 033000, Shanxi, China; College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| | - Yongqing Liu
- Department of Biological and Food Engineering, Lyuliang University, Lishi 033000, Shanxi, China
| | - Min Zhang
- Key Laboratory of Agro-Products Primary Processing, Academy of Agricultural Planning and Engineering, MARA, 100125 Beijing, China
| |
Collapse
|
7
|
Rodd AM, Mawhinney WM, Brumer H. A scalable, chromatography-free, biocatalytic method to produce the xyloglucan heptasaccharide XXXG. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:116. [PMID: 39164748 PMCID: PMC11337882 DOI: 10.1186/s13068-024-02563-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Xyloglucan oligosaccharides (XyGOs) are highly branched, complex carbohydrates with a variety of chemical and biotechnological applications. Due to the regular repeating pattern of sidechain substitution of the xyloglucan backbone, well-defined XyGOs are readily accessed for analytical and preparative purposes by specific hydrolysis of the polysaccharide with endo-glucanases. To broaden the application potential of XyGOs, we present here an optimized, scalable method to access large quantities of galactosylated XyGOs by treatment of the bulk agricultural by-product, tamarind kernel powder (TKP), with a highly specific endo-xyloglucanase at high-solids content. Subsequent β-galactosidase treatment reduced XyGO complexity to produce exclusively the branched heptasaccharide XXXG (Xyl3Glc4: [α-D-Xylp-(1 → 6)]-β-D-Glcp-(1 → 4)-[α-D-Xylp-(1 → 6)]-β-D-Glcp-(1 → 4)-[α-D-Xylp-(1 → 6)]-β-D-Glcp-(1 → 4)-D-Glcp). The challenge of removing the co-product galactose was overcome by fermentation with baker's yeast, thereby avoiding chromatography and other fractionation steps to yield highly pure XXXG. This simplified approach employs many of the core concepts of green chemistry and engineering, enables facile production of 100 g quantities of XyGOs and XXXG for laboratory use, and serves as a guide to further production scale-up for applications, including as prebiotics, plant growth effectors and elicitors, and building blocks for glycoconjugate synthesis.
Collapse
Affiliation(s)
- Andrew M Rodd
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - William M Mawhinney
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
- BioProducts Institute, University of British Columbia, 2385 East Mall, BC, V6T 1Z4, Vancouver, Canada.
| |
Collapse
|
8
|
Chen Y, Liu J, Xu Y, Sun C, Qu W, Du H, He M, Huo J, Sun J, Huang J, Yin J. Comparison of Polygonatum sibiricum Polysaccharides Found in Young and Mature Rhizomes. Foods 2024; 13:2010. [PMID: 38998515 PMCID: PMC11240938 DOI: 10.3390/foods13132010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
The main active component of Polygonatum sibiricum (P. sibiricum) rhizome is Polygonatum sibiricum Polysaccharide (PsP) with antioxidant function. At present, only the mature rhizome of P. sibiricum is used to extract PsP, while the young rhizome of by-product is discarded directly as waste, resulting in significant wastage of P. sibiricum resources. We used ultrasound-assisted extraction-deep eutectic solvents (UAE-DESs) method to extract PsP of young and mature rhizomes, respectively. The extraction rate, structure composition and antioxidant ability of PsP between young and mature rhizomes were compared, so as to provide references for comprehensive utilization of P. sibiricum resources. The PsP extraction rate (33.88 ± 1.95%) of young rhizome was close to that (45.08 ± 1.92%) of mature rhizomes. The main component (PsP-2) of the PsP in young rhizome contained six kinds of monosaccharides, which belonged to acidic polysaccharides. The above characteristics of the PsP of young rhizome were similar to those of mature rhizome. The PsP of young rhizome also exhibited similar biological activity to that of the mature rhizome, which indicated even more advantages in DPPH free radical scavenging ability. The results of this study support the utility of the young rhizome, consequently helping to avoid unnecessary waste and provide reference for comprehensive utilization of P. sibiricum.
Collapse
Affiliation(s)
- Yan Chen
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jing Liu
- Aer-Bio Active Health Institute, Beijing 100043, China
| | - Yifan Xu
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Chaoqun Sun
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Wenjie Qu
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Hanchen Du
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Menglu He
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Junsheng Huo
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jing Sun
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jian Huang
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jiyong Yin
- Key Laboratory of Public Nutrition and Health, National Health Commission of the People's Republic of China, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| |
Collapse
|
9
|
Delmer D, Dixon RA, Keegstra K, Mohnen D. The plant cell wall-dynamic, strong, and adaptable-is a natural shapeshifter. THE PLANT CELL 2024; 36:1257-1311. [PMID: 38301734 PMCID: PMC11062476 DOI: 10.1093/plcell/koad325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024]
Abstract
Mythology is replete with good and evil shapeshifters, who, by definition, display great adaptability and assume many different forms-with several even turning themselves into trees. Cell walls certainly fit this definition as they can undergo subtle or dramatic changes in structure, assume many shapes, and perform many functions. In this review, we cover the evolution of knowledge of the structures, biosynthesis, and functions of the 5 major cell wall polymer types that range from deceptively simple to fiendishly complex. Along the way, we recognize some of the colorful historical figures who shaped cell wall research over the past 100 years. The shapeshifter analogy emerges more clearly as we examine the evolving proposals for how cell walls are constructed to allow growth while remaining strong, the complex signaling involved in maintaining cell wall integrity and defense against disease, and the ways cell walls adapt as they progress from birth, through growth to maturation, and in the end, often function long after cell death. We predict the next century of progress will include deciphering cell type-specific wall polymers; regulation at all levels of polymer production, crosslinks, and architecture; and how walls respond to developmental and environmental signals to drive plant success in diverse environments.
Collapse
Affiliation(s)
- Deborah Delmer
- Section of Plant Biology, University of California Davis, Davis, CA 95616, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kenneth Keegstra
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48823, USA
| | - Debra Mohnen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
10
|
Cosgrove DJ. Structure and growth of plant cell walls. Nat Rev Mol Cell Biol 2024; 25:340-358. [PMID: 38102449 DOI: 10.1038/s41580-023-00691-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Plant cells build nanofibrillar walls that are central to plant growth, morphogenesis and mechanics. Starting from simple sugars, three groups of polysaccharides, namely, cellulose, hemicelluloses and pectins, with very different physical properties are assembled by the cell to make a strong yet extensible wall. This Review describes the physics of wall growth and its regulation by cellular processes such as cellulose production by cellulose synthase, modulation of wall pH by plasma membrane H+-ATPase, wall loosening by expansin and signalling by plant hormones such as auxin and brassinosteroid. In addition, this Review discusses the nuanced roles, properties and interactions of cellulose, matrix polysaccharides and cell wall proteins and describes how wall stress and wall loosening cooperatively result in cell wall growth.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
11
|
Diao X, Haveman N, Califar B, Dong X, Prentice B, Paul AL, Ferl RJ. Spaceflight impacts xyloglucan oligosaccharide abundance in Arabidopsis thaliana root cell walls. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:110-118. [PMID: 38670637 DOI: 10.1016/j.lssr.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/23/2024] [Accepted: 02/10/2024] [Indexed: 04/28/2024]
Abstract
Over the course of more than a decade, space biology investigations have consistently indicated that cell wall remodeling occurs in a variety of spaceflight-grown plants. Here, we describe a mass spectrometric method to study the fundamental composition of xyloglucan, the most abundant hemicellulose in dicot cell walls, in space-grown plants. Four representative Arabidopsis root samples, from a previously conducted spaceflight experiment - Advanced Plant EXperiment - 04 (APEX-04), were used to investigate changes in xyloglucan oligosaccharides abundances in spaceflight-grown plants compared to ground controls. In situ localized enzymatic digestions and surface sampling mass spectrometry analysis provided spatial resolution of the changes in xyloglucan oligosaccharides abundances. Overall, the results showed that oligosaccharide XXLG/XLXG and XXFG branching patterns were more abundant in the lateral roots of spaceflight-grown plants, while XXXG, XLFG, and XLFG/XLFG were more abundant in the lateral roots of ground control plants. In the primary roots, XXFG had a higher abundance in ground controls than in spaceflight plants. This methodology of analyzing the basic components of the cell wall in this paper highlights two important findings. First, that are differences in the composition of xyloglucan oligosaccharides in spaceflight root cell walls compared to ground controls and, second, most of these differences are observed in the lateral roots. Thus, the methodology described in this paper provides insights into spaceflight cell wall modifications for future investigations.
Collapse
Affiliation(s)
- Xizheng Diao
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL, 32611, USA
| | - Natasha Haveman
- Department of Horticultural Sciences, University of Florida, 2550 Hull Road, Gainesville, FL, USA
| | - Brandon Califar
- Department of Horticultural Sciences, University of Florida, 2550 Hull Road, Gainesville, FL, USA
| | - Xiaoru Dong
- Department of Biostatistics, University of Florida, 2004 Mowry Road, Gainesville, FL, 32603, USA
| | - Boone Prentice
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL, 32611, USA
| | - Anna-Lisa Paul
- Department of Horticultural Sciences, University of Florida, 2550 Hull Road, Gainesville, FL, USA; Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Road, Gainesville, FL, USA.
| | - Robert J Ferl
- Department of Horticultural Sciences, University of Florida, 2550 Hull Road, Gainesville, FL, USA; University of Florida Office of Research, University of Florida, 207 Grinter Hall, Gainesville, FL, USA.
| |
Collapse
|
12
|
Chen Y, Wu J, Ma C, Zhang D, Zhou D, Zhang J, Yan M. Metabolome and transcriptome analyses reveal changes of rapeseed in response to ABA signal during early seedling development. BMC PLANT BIOLOGY 2024; 24:245. [PMID: 38575879 PMCID: PMC11000593 DOI: 10.1186/s12870-024-04918-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/17/2024] [Indexed: 04/06/2024]
Abstract
Seed germination is an important development process in plant growth. The phytohormone abscisic acid (ABA) plays a critical role during seed germination. However, the mechanism of rapeseed in response to ABA is still elusive. In order to understand changes of rapeseed under exogenous ABA treatment, we explored differentially expressed metabolites (DEMs) and the differentially expressed genes (DEGs) between mock- and ABA-treated seedlings. A widely targeted LC-MS/MS based metabolomics were used to identify and quantify metabolic changes in response to ABA during seed germination, and a total of 186 significantly DEMs were identified. There are many compounds which are involved in ABA stimuli, especially some specific ABA transportation-related metabolites such as starches and lipids were screened out. Meanwhile, a total of 4440 significantly DEGs were identified by transcriptomic analyses. There was a significant enrichment of DEGs related to phenylpropanoid and cell wall organization. It suggests that exogenous ABA mainly affects seed germination by regulating cell wall loosening. Finally, the correlation analysis of the key DEMs and DEGs indicates that many DEGs play a direct or indirect regulatory role in DEMs metabolism. The integrative analysis between DEGs and DEMs suggests that the starch and sucrose pathways were the key pathway in ABA responses. The two metabolites from starch and sucrose pathways, levan and cellobiose, both were found significantly down-regulated in ABA-treated seedlings. These comprehensive metabolic and transcript analyses provide useful information for the subsequent post-transcriptional modification and post germination growth of rapeseed in response to ABA signals and stresses.
Collapse
Affiliation(s)
- Yaqian Chen
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Jinfeng Wu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China.
- Yuelushan Laboratory, Changsha, 410125, China.
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Changrui Ma
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Dawei Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
- Yuelushan Laboratory, Changsha, 410125, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Dinggang Zhou
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
- Yuelushan Laboratory, Changsha, 410125, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Jihong Zhang
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, China
- Hunan Key Laboratory of Economic Crops Genetic Improvement and Integrated Utilization, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Mingli Yan
- Yuelushan Laboratory, Changsha, 410125, China.
- Hunan Research Center of Heterosis Utilization in Rapeseed, Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| |
Collapse
|
13
|
Sénéchal F, Robinson S, Van Schaik E, Trévisan M, Saxena P, Reinhardt D, Fankhauser C. Pectin methylesterification state and cell wall mechanical properties contribute to neighbor proximity-induced hypocotyl growth in Arabidopsis. PLANT DIRECT 2024; 8:e584. [PMID: 38646567 PMCID: PMC11033045 DOI: 10.1002/pld3.584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/25/2024] [Accepted: 03/24/2024] [Indexed: 04/23/2024]
Abstract
Plants growing with neighbors compete for light and consequently increase the growth of their vegetative organs to enhance access to sunlight. This response, called shade avoidance syndrome (SAS), involves photoreceptors such as phytochromes as well as phytochrome interacting factors (PIFs), which regulate the expression of growth-mediating genes. Numerous cell wall-related genes belong to the putative targets of PIFs, and the importance of cell wall modifications for enabling growth was extensively shown in developmental models such as dark-grown hypocotyl. However, the contribution of the cell wall in the growth of de-etiolated seedlings regulated by shade cues remains poorly established. Through analyses of mechanical and biochemical properties of the cell wall coupled with transcriptomic analysis of cell wall-related genes from previously published data, we provide evidence suggesting that cell wall modifications are important for neighbor proximity-induced elongation. Further analysis using loss-of-function mutants impaired in the synthesis and remodeling of the main cell wall polymers corroborated this. We focused on the cgr2cgr3 double mutant that is defective in methylesterification of homogalacturonan (HG)-type pectins. By following hypocotyl growth kinetically and spatially and analyzing the mechanical and biochemical properties of cell walls, we found that methylesterification of HG-type pectins was required to enable global cell wall modifications underlying neighbor proximity-induced hypocotyl growth. Collectively, our work suggests that plant competition for light induces changes in the expression of numerous cell wall genes to enable modifications in biochemical and mechanical properties of cell walls that contribute to neighbor proximity-induced growth.
Collapse
Affiliation(s)
- Fabien Sénéchal
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode BuildingUniversity of LausanneLausanneSwitzerland
- Present address:
UMR INRAE 1158 BioEcoAgro, Plant Biology and InnovationUniversity of Picardie Jules VerneAmiensFrance
| | - Sarah Robinson
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Present address:
The Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
| | - Evert Van Schaik
- Department of BiologyUniversity of FribourgFribourgSwitzerland
- Present address:
University of Applied Sciences LeidenLeidenNetherlands
| | - Martine Trévisan
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode BuildingUniversity of LausanneLausanneSwitzerland
| | - Prashant Saxena
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode BuildingUniversity of LausanneLausanneSwitzerland
- Present address:
James Watt School of EngineeringUniversity of GlasgowGlasgowUK
| | | | - Christian Fankhauser
- Centre for Integrative Genomics, Faculty of Biology and Medicine, Génopode BuildingUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
14
|
Tian X, Ji M, You J, Zhang Y, Lindsey K, Zhang X, Tu L, Wang M. Synergistic interplay of redox homeostasis and polysaccharide synthesis promotes cotton fiber elongation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:405-422. [PMID: 38163320 DOI: 10.1111/tpj.16615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Cell polarity is the foundation of cell development and tissue morphogenesis. The investigation of polarized growth provides opportunities to gain profound insights into morphogenesis and tissue functionality in organisms. Currently, there are still many mysteries surrounding the mechanisms that regulate polarized cell growth. Cotton fiber cells serve as an excellent model for studying polarized growth, and provide important clues for unraveling the molecular mechanisms, signaling pathways, and regulatory networks of polarized growth. In this study, we characterized two functional genes, GhMDHAR1AT/DT and GhDHAR2AT/DT with predominant expression during fiber elongation. Loss of function of both genes contributed to a significant increase in fiber length. Transcriptomic data revealed up-regulated expression of antioxidant genes in CRISPR mutant lines, along with delayed expression of secondary wall-related genes and temporally prolonged expression of primary wall-related genes. Experimental evidence demonstrated that the increase in GSH content and glutathione peroxidase (GPX) enzyme activity led to enhanced total antioxidant capacity (T-AOC), resulting in reduced H2O2 levels, which contributed to the extension of fiber elongation stage in CRISPR mutant lines. Moreover, the increased polysaccharide synthesis in CRISPR mutant lines was found to provide an abundant supply of raw materials for fiber cell wall elongation, suggesting that synergistic interplay between redox homeostasis and polysaccharide synthesis in fiber cells may facilitate cell wall remodeling and fiber elongation. This study provides valuable insights for deciphering the mechanisms of cell polarized growth and improving cotton fiber quality.
Collapse
Affiliation(s)
- Xuehan Tian
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Mengyuan Ji
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yuqi Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
15
|
Danso B, Ackah M, Jin X, Ayittey DM, Amoako FK, Zhao W. Genome-Wide Analysis of the Xyloglucan Endotransglucosylase/Hydrolase ( XTH) Gene Family: Expression Pattern during Magnesium Stress Treatment in the Mulberry Plant ( Morus alba L.) Leaves. PLANTS (BASEL, SWITZERLAND) 2024; 13:902. [PMID: 38592929 PMCID: PMC10975095 DOI: 10.3390/plants13060902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Mulberry (Morus alba L.), a significant fruit tree crop, requires magnesium (Mg) for its optimal growth and productivity. Nonetheless, our understanding of the molecular basis underlying magnesium stress tolerance in mulberry plants remains unexplored. In our previous study, we identified several differential candidate genes associated with Mg homeostasis via transcriptome analysis, including the xyloglucan endotransglucosylase/hydrolase (XTH) gene family. The XTH gene family is crucial for plant cell wall reconstruction and stress responses. These genes have been identified and thoroughly investigated in various plant species. However, there is no research pertaining to XTH genes within the M. alba plant. This research systematically examined the M. alba XTH (MaXTH) gene family at the genomic level using a bioinformatic approach. In total, 22 MaXTH genes were discovered and contained the Glyco_hydro_16 and XET_C conserved domains. The MaXTHs were categorized into five distinct groups by their phylogenetic relationships. The gene structure possesses four exons and three introns. Furthermore, the MaXTH gene promoter analysis reveals a plethora of cis-regulatory elements, mainly stress responsiveness, phytohormone responsiveness, and growth and development. GO analysis indicated that MaXTHs encode proteins that exhibit xyloglucan xyloglucosyl transferase and hydrolase activities in addition to cell wall biogenesis as well as xyloglucan and carbohydrate metabolic processes. Moreover, a synteny analysis unveiled an evolutionary relationship between the XTH genes in M. alba and those in three other species: A. thaliana, P. trichocarpa, and Zea mays. Expression profiles from RNA-Seq data displayed distinct expression patterns of XTH genes in M. alba leaf tissue during Mg treatments. Real-time quantitative PCR analysis confirmed the expression of the MaXTH genes in Mg stress response. Overall, this research enhances our understanding of the characteristics of MaXTH gene family members and lays the foundation for future functional genomic study in M. alba.
Collapse
Affiliation(s)
- Blessing Danso
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (B.D.)
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Michael Ackah
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (B.D.)
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xin Jin
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (B.D.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Derek M. Ayittey
- School of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai 201308, China
| | - Frank Kwarteng Amoako
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Straße 2, 24118 Kiel, Germany;
| | - Weiguo Zhao
- Jiangsu Key Laboratory of Sericulture Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (B.D.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
16
|
Wu A, Lian B, Hao P, Fu X, Zhang M, Lu J, Ma L, Yu S, Wei H, Wang H. GhMYB30-GhMUR3 affects fiber elongation and secondary wall thickening in cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:694-712. [PMID: 37988560 DOI: 10.1111/tpj.16523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
Xyloglucan, an important hemicellulose, plays a crucial role in maintaining cell wall structure and cell elongation. However, the effects of xyloglucan on cotton fiber development are not well understood. GhMUR3 encodes a xyloglucan galactosyltransferase that is essential for xyloglucan synthesis and is highly expressed during fiber elongation. In this study, we report that GhMUR3 participates in cotton fiber development under the regulation of GhMYB30. Overexpression GhMUR3 affects the fiber elongation and cell wall thickening. Transcriptome showed that the expression of genes involved in secondary cell wall synthesis was prematurely activated in OE-MUR3 lines. In addition, GhMYB30 was identified as a key regulator of GhMUR3 by Y1H, Dual-Luc, and electrophoretic mobility shift assay (EMSA) assays. GhMYB30 directly bound the GhMUR3 promoter and activated GhMUR3 expression. Furthermore, DAP-seq of GhMYB30 was performed to identify its target genes in the whole genome. The results showed that many target genes were associated with fiber development, including cell wall synthesis-related genes, BR-related genes, reactive oxygen species pathway genes, and VLCFA synthesis genes. It was demonstrated that GhMYB30 may regulate fiber development through multiple pathways. Additionally, GhMYB46 was confirmed to be a target gene of GhMYB30 by EMSA, and GhMYB46 was significantly increased in GhMYB30-silenced lines, indicating that GhMYB30 inhibited GhMYB46 expression. Overall, these results revealed that GhMUR3 under the regulation of GhMYB30 and plays an essential role in cotton fiber elongation and secondary wall thickening. Additionally, GhMYB30 plays an important role in the regulation of fiber development and regulates fiber secondary wall synthesis by inhibiting the expression of GhMYB46.
Collapse
Affiliation(s)
- Aimin Wu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430000, Hubei, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Boying Lian
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Pengbo Hao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiaokang Fu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Meng Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jianhua Lu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Liang Ma
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shuxun Yu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430000, Hubei, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hengling Wei
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hantao Wang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| |
Collapse
|
17
|
Li W, Lin YCJ, Chen YL, Zhou C, Li S, De Ridder N, Oliveira DM, Zhang L, Zhang B, Wang JP, Xu C, Fu X, Luo K, Wu AM, Demura T, Lu MZ, Zhou Y, Li L, Umezawa T, Boerjan W, Chiang VL. Woody plant cell walls: Fundamentals and utilization. MOLECULAR PLANT 2024; 17:112-140. [PMID: 38102833 DOI: 10.1016/j.molp.2023.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Cell walls in plants, particularly forest trees, are the major carbon sink of the terrestrial ecosystem. Chemical and biosynthetic features of plant cell walls were revealed early on, focusing mostly on herbaceous model species. Recent developments in genomics, transcriptomics, epigenomics, transgenesis, and associated analytical techniques are enabling novel insights into formation of woody cell walls. Here, we review multilevel regulation of cell wall biosynthesis in forest tree species. We highlight current approaches to engineering cell walls as potential feedstock for materials and energy and survey reported field tests of such engineered transgenic trees. We outline opportunities and challenges in future research to better understand cell type biogenesis for more efficient wood cell wall modification and utilization for biomaterials or for enhanced carbon capture and storage.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | | | - Ying-Lan Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, China
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Nette De Ridder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Dyoni M Oliveira
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jack P Wang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaokang Fu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ai-Min Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Taku Demura
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Laigeng Li
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Toshiaki Umezawa
- Laboratory of Metabolic Science of Forest Plants and Microorganisms, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Vincent L Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
18
|
McGregor NS, de Boer C, Foucart QPO, Beenakker T, Offen WA, Codée JDC, Willems LI, Overkleeft HS, Davies GJ. A Multiplexing Activity-Based Protein-Profiling Platform for Dissection of a Native Bacterial Xyloglucan-Degrading System. ACS CENTRAL SCIENCE 2023; 9:2306-2314. [PMID: 38161374 PMCID: PMC10755729 DOI: 10.1021/acscentsci.3c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
Bacteria and yeasts grow on biomass polysaccharides by expressing and excreting a complex array of glycoside hydrolase (GH) enzymes. Identification and annotation of such GH pools, which are valuable commodities for sustainable energy and chemistries, by conventional means (genomics, proteomics) are complicated, as primary sequence or secondary structure alignment with known active enzymes is not always predictive for new ones. Here we report a "low-tech", easy-to-use, and sensitive multiplexing activity-based protein-profiling platform to characterize the xyloglucan-degrading GH system excreted by the soil saprophyte, Cellvibrio japonicus, when grown on xyloglucan. A suite of activity-based probes bearing orthogonal fluorophores allows for the visualization of accessory exo-acting glycosidases, which are then identified using biotin-bearing probes. Substrate specificity of xyloglucanases is directly revealed by imbuing xyloglucan structural elements into bespoke activity-based probes. Our ABPP platform provides a highly useful tool to dissect xyloglucan-degrading systems from various sources and to rapidly select potentially useful ones. The observed specificity of the probes moreover bodes well for the study of other biomass polysaccharide-degrading systems, by modeling probe structures to those of desired substrates.
Collapse
Affiliation(s)
| | - Casper de Boer
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Quentin P. O. Foucart
- Department
of Chemistry, The University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Thomas Beenakker
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Wendy A. Offen
- Department
of Chemistry, The University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Jeroen D. C. Codée
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Lianne I. Willems
- York
Structural Biology Laboratory and York Biomedical Research Institute,
Department of Chemistry, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Herman S. Overkleeft
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2300 RA, Leiden, The Netherlands
| | - Gideon J. Davies
- Department
of Chemistry, The University of York, Heslington, York YO10 5DD, United
Kingdom
| |
Collapse
|
19
|
Wilson LFL, Neun S, Yu L, Tryfona T, Stott K, Hollfelder F, Dupree P. The biosynthesis, degradation, and function of cell wall β-xylosylated xyloglucan mirrors that of arabinoxyloglucan. THE NEW PHYTOLOGIST 2023; 240:2353-2371. [PMID: 37823344 PMCID: PMC10952531 DOI: 10.1111/nph.19305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/02/2023] [Indexed: 10/13/2023]
Abstract
Xyloglucan is an abundant polysaccharide in many primary cell walls and in the human diet. Decoration of its α-xylosyl sidechains with further sugars is critical for plant growth, even though the sugars themselves vary considerably between species. Plants in the Ericales order - prevalent in human diets - exhibit β1,2-linked xylosyl decorations. The biosynthetic enzymes responsible for adding these xylosyl decorations, as well as the hydrolases that remove them in the human gut, are unidentified. GT47 xyloglucan glycosyltransferase candidates were expressed in Arabidopsis and endo-xyloglucanase products from transgenic wall material were analysed by electrophoresis, mass spectrometry, and nuclear magnetic resonance (NMR) spectroscopy. The activities of gut bacterial hydrolases BoGH43A and BoGH43B on synthetic glycosides and xyloglucan oligosaccharides were measured by colorimetry and electrophoresis. CcXBT1 is a xyloglucan β-xylosyltransferase from coffee that can modify Arabidopsis xyloglucan and restore the growth of galactosyltransferase mutants. Related VmXST1 is a weakly active xyloglucan α-arabinofuranosyltransferase from cranberry. BoGH43A hydrolyses both α-arabinofuranosylated and β-xylosylated oligosaccharides. CcXBT1's presence in coffee and BoGH43A's promiscuity suggest that β-xylosylated xyloglucan is not only more widespread than thought, but might also nourish beneficial gut bacteria. The evolutionary instability of transferase specificity and lack of hydrolase specificity hint that, to enzymes, xylosides and arabinofuranosides are closely resemblant.
Collapse
Affiliation(s)
- Louis F. L. Wilson
- Department of BiochemistryUniversity of CambridgeHopkins Building, Tennis Court RoadCambridgeCB2 1QWUK
| | - Stefanie Neun
- Department of BiochemistryUniversity of CambridgeSanger Building, Tennis Court RoadCambridgeCB2 1GAUK
| | - Li Yu
- Department of BiochemistryUniversity of CambridgeHopkins Building, Tennis Court RoadCambridgeCB2 1QWUK
| | - Theodora Tryfona
- Department of BiochemistryUniversity of CambridgeHopkins Building, Tennis Court RoadCambridgeCB2 1QWUK
| | - Katherine Stott
- Department of BiochemistryUniversity of CambridgeSanger Building, Tennis Court RoadCambridgeCB2 1GAUK
| | - Florian Hollfelder
- Department of BiochemistryUniversity of CambridgeSanger Building, Tennis Court RoadCambridgeCB2 1GAUK
| | - Paul Dupree
- Department of BiochemistryUniversity of CambridgeHopkins Building, Tennis Court RoadCambridgeCB2 1QWUK
| |
Collapse
|
20
|
Stratilová B, Šesták S, Stratilová E, Vadinová K, Kozmon S, Hrmova M. Engineering of substrate specificity in a plant cell-wall modifying enzyme through alterations of carboxyl-terminal amino acid residues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1529-1544. [PMID: 37658783 DOI: 10.1111/tpj.16435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 09/05/2023]
Abstract
Structural determinants of substrate recognition remain inadequately defined in broad specific cell-wall modifying enzymes, termed xyloglucan xyloglucosyl transferases (XETs). Here, we investigate the Tropaeolum majus seed TmXET6.3 isoform, a member of the GH16_20 subfamily of the GH16 network. This enzyme recognises xyloglucan (XG)-derived donors and acceptors, and a wide spectrum of other chiefly saccharide substrates, although it lacks the activity with homogalacturonan (pectin) fragments. We focus on defining the functionality of carboxyl-terminal residues in TmXET6.3, which extend acceptor binding regions in the GH16_20 subfamily but are absent in the related GH16_21 subfamily. Site-directed mutagenesis using double to quintuple mutants in the carboxyl-terminal region - substitutions emulated on barley XETs recognising the XG/penta-galacturonide acceptor substrate pair - demonstrated that this activity could be gained in TmXET6.3. We demonstrate the roles of semi-conserved Arg238 and Lys237 residues, introducing a net positive charge in the carboxyl-terminal region (which complements a negative charge of the acidic penta-galacturonide) for the transfer of xyloglucan fragments. Experimental data, supported by molecular modelling of TmXET6.3 with the XG oligosaccharide donor and penta-galacturonide acceptor substrates, indicated that they could be accommodated in the active site. Our findings support the conclusion on the significance of positively charged residues at the carboxyl terminus of TmXET6.3 and suggest that a broad specificity could be engineered via modifications of an acceptor binding site. The definition of substrate specificity in XETs should prove invaluable for defining the structure, dynamics, and function of plant cell walls, and their metabolism; these data could be applicable in various biotechnologies.
Collapse
Affiliation(s)
- Barbora Stratilová
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538, Bratislava, Slovakia
| | - Sergej Šesták
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538, Bratislava, Slovakia
| | - Eva Stratilová
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538, Bratislava, Slovakia
| | - Kristína Vadinová
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538, Bratislava, Slovakia
| | - Stanislav Kozmon
- Institute of Chemistry, Slovak Academy of Sciences, SK-84538, Bratislava, Slovakia
| | - Maria Hrmova
- School of Agriculture, Food and Wine & Waite Research Institute, University of Adelaide, Waite Research Precinct, Glen Osmond, South Australia, 5064, Australia
- Jiangsu Collaborative Innovation Centre for Regional Modern Agriculture and Environmental Protection, School of Life Science, Huaiyin Normal University, Huai'an, 223300, China
| |
Collapse
|
21
|
Xiang M, Yuan S, Zhang Q, Liu X, Li Q, Leng Z, Sha J, Anderson CT, Xiao C. Galactosylation of xyloglucan is essential for the stabilization of the actin cytoskeleton and endomembrane system through the proper assembly of cell walls. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5104-5123. [PMID: 37386914 DOI: 10.1093/jxb/erad237] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/27/2023] [Indexed: 07/01/2023]
Abstract
Xyloglucan, a major hemicellulose, interacts with cellulose and pectin to assemble primary cell walls in plants. Loss of the xyloglucan galactosyltransferase MURUS3 (MUR3) leads to the deficiency of galactosylated xyloglucan and perturbs plant growth. However, it is unclear whether defects in xyloglucan galactosylation influence the synthesis of other wall polysaccharides, cell wall integrity, cytoskeleton behaviour, and endomembrane homeostasis. Here, we found that in mur3-7 etiolated seedlings cellulose was reduced, CELLULOSE SYNTHASE (CESA) genes were down-regulated, the density and mobility of cellulose synthase complexes (CSCs) were decreased, and cellulose microfibrils become discontinuous. Pectin, rhamnogalacturonan II (RGII), and boron contents were reduced in mur3-7 plants, and B-RGII cross-linking was abnormal. Wall porosity and thickness were significantly increased in mur3-7 seedlings. Endomembrane aggregation was also apparent in the mur3-7 mutant. Furthermore, mutant seedlings and their actin filaments were more sensitive to Latrunculin A (LatA) treatment. However, all defects in mur3-7 mutants were substantially restored by exogenous boric acid application. Our study reveals the importance of MUR3-mediated xyloglucan galactosylation for cell wall structural assembly and homeostasis, which is required for the stabilization of the actin cytoskeleton and the endomembrane system.
Collapse
Affiliation(s)
- Min Xiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Shuai Yuan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Qing Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xiaohui Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Qingyao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Zhengmei Leng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Jingjing Sha
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Chaowen Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| |
Collapse
|
22
|
Méndez T, Fuentes A, Cofre D, Moenne A, Laporte D. Oligo-Carrageenan Kappa Increases Expression of Genes Encoding Proteins Involved in Photosynthesis, C, N, and S Assimilation, and Growth in Arabidopsis thaliana. Int J Mol Sci 2023; 24:11894. [PMID: 37569270 PMCID: PMC10418774 DOI: 10.3390/ijms241511894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/19/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
To analyze the effect of oligo-carrageenan (OC) kappa in the stimulation of growth in Arabidopsis thaliana, plants were sprayed on leaves with an aqueous solution of OC kappa at 1 mg mL-1, 5 times every 2 days and cultivated for 5 or 15 additional days. Plants treated with OC kappa showed an increase in rosette diameter, fresh and dry weight, and primary root length. Plants treated with OC kappa once and cultivated for 0 to 24 h after treatment were subjected to transcriptomic analyses to identify differentially expressed genes, mainly at 12 h after treatment. Transcripts encoding proteins involved in growth and development and photosynthesis were upregulated as well as enzymes involved in primary metabolism. In addition, plants treated with OC kappa once and cultivated for 0 to 96 h showed increased levels of transcripts encoding enzymes involved in C, N, and S assimilation at 6 and 12 h after treatment that remain increased until 96 h. Therefore, OC kappa increased the expression of genes encoding proteins involved in photosynthesis, C, N, and S assimilation, and growth in A. thaliana.
Collapse
Affiliation(s)
- Tamara Méndez
- Laboratory of Plant Physiology and Molecular Biology, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca 3467987, Chile; (T.M.); (A.F.); (D.C.)
| | - Alejandra Fuentes
- Laboratory of Plant Physiology and Molecular Biology, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca 3467987, Chile; (T.M.); (A.F.); (D.C.)
| | - Diego Cofre
- Laboratory of Plant Physiology and Molecular Biology, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca 3467987, Chile; (T.M.); (A.F.); (D.C.)
| | - Alejandra Moenne
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile
| | - Daniel Laporte
- Laboratory of Plant Physiology and Molecular Biology, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca 3467987, Chile; (T.M.); (A.F.); (D.C.)
| |
Collapse
|
23
|
Kolkas H, Burlat V, Jamet E. Immunochemical Identification of the Main Cell Wall Polysaccharides of the Early Land Plant Marchantia polymorpha. Cells 2023; 12:1833. [PMID: 37508498 PMCID: PMC10378070 DOI: 10.3390/cells12141833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Plant primary cell walls are composite structures surrounding the protoplast and containing pectins, hemicelluloses, and cellulose polysaccharides, as well as proteins. Their composition changed during the evolution of the green lineage from algae to terrestrial plants, i.e., from an aquatic to a terrestrial environment. The constraints of life in terrestrial environments have generated new requirements for the organisms, necessitating adaptations, such as cell wall modifications. We have studied the cell wall polysaccharide composition of thalli of Marchantia polymorpha, a bryophyte belonging to one of the first land plant genera. Using a collection of specific antibodies raised against different cell wall polysaccharide epitopes, we were able to identify in polysaccharide-enriched fractions: pectins, including low-methylesterified homogalacturonans; rhamnogalacturonan I with arabinan side-chains; and hemicelluloses, such as xyloglucans with XXLG and XXXG modules, mannans, including galactomannans, and xylans. We could also show the even distribution of XXLG xyloglucans and galactomannans in the cell walls of thalli by immunocytochemistry. These results are discussed with regard to the cell wall proteome composition and in the context of the evolution of the green lineage. The cell wall polysaccharides of M. polymorpha illustrate the transition from the charophyte ancestors of terrestrial plants containing xyloglucans, xylans and mannans as hemicelluloses, and embryophytes which do not exhibit mannans as major primary cell wall polysaccharides.
Collapse
Affiliation(s)
- Hasan Kolkas
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| |
Collapse
|
24
|
Immelmann R, Gawenda N, Ramírez V, Pauly M. Identification of a xyloglucan beta-xylopyranosyltransferase from Vaccinium corymbosum. PLANT DIRECT 2023; 7:e514. [PMID: 37502316 PMCID: PMC10368651 DOI: 10.1002/pld3.514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023]
Abstract
Plant cell walls contain the hemicellulose xyloglucan, whose fine structure may vary depending on cell type, tissue, and/or plant species. Most but not all of the glycosyltransferases involved in the biosynthesis of xyloglucan sidechains have been identified. Here, we report the identification of several functional glycosyltransferases from blueberry (Vaccinium corymbosum bluecrop). Among those transferases is a hitherto elusive Xyloglucan:Beta-xylosylTransferase (XBT). Heterologous expression of VcXBT in the Arabidopsis thaliana double mutant mur3 xlt2, where xyloglucan consists only of an unsubstituted xylosylated glucan core structure, results in the production of the xylopyranose-containing "U" sidechain as characterized by mass spectrometry, glycosidic linkage, and NMR analysis. The introduction of the additional xylopyranosyl residue rescues the dwarfed phenotype of the untransformed Arabidopsis mur3 xlt2 mutant to wild-type height. Structural protein analysis using Alphafold of this and other related xyloglucan glycosyltransferase family 47 proteins not only identifies potential domains that might influence the regioselectivity of these enzymes but also gives hints to specific amino acids that might determine the donor-substrate specificity of these glycosyltransferases.
Collapse
Affiliation(s)
- Ronja Immelmann
- Institute of Plant Cell Biology and Biotechnology‐Cluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Niklas Gawenda
- Institute of Plant Cell Biology and Biotechnology‐Cluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Vicente Ramírez
- Institute of Plant Cell Biology and Biotechnology‐Cluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Markus Pauly
- Institute of Plant Cell Biology and Biotechnology‐Cluster of Excellence on Plant SciencesHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
25
|
Zhang N, Julian JD, Yap CE, Swaminathan S, Zabotina OA. The Arabidopsis xylosyltransferases, XXT3, XXT4, and XXT5, are essential to complete the fully xylosylated glucan backbone XXXG-type structure of xyloglucans. THE NEW PHYTOLOGIST 2023; 238:1986-1999. [PMID: 36856333 DOI: 10.1111/nph.18851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/18/2023] [Indexed: 05/04/2023]
Abstract
Although most xyloglucans (XyGs) biosynthesis enzymes have been identified, the molecular mechanism that defines XyG branching patterns is unclear. Four out of five XyG xylosyltransferases (XXT1, XXT2, XXT4, and XXT5) are known to add the xylosyl residue from UDP-xylose onto a glucan backbone chain; however, the function of XXT3 has yet to be demonstrated. Single xxt3 and triple xxt3xxt4xxt5 mutant Arabidopsis (Arabidopsis thaliana) plants were generated using CRISPR-Cas9 technology to determine the specific function of XXT3. Combined biochemical, bioinformatic, and morphological data conclusively established for the first time that XXT3, together with XXT4 and XXT5, adds xylosyl residue specifically at the third glucose in the glucan chain to synthesize XXXG-type XyGs. We propose that the specificity of XXT3, XXT4, and XXT5 is directed toward the prior synthesis of the acceptor substrate by the other two enzymes, XXT1 and XXT2. We also conclude that XXT5 plays a dominant role in the synthesis of XXXG-type XyGs, while XXT3 and XXT4 complementarily contribute their activities in a tissue-specific manner. The newly generated xxt3xxt4xxt5 mutant produces only XXGG-type XyGs, which further helps to understand the impact of structurally deficient polysaccharides on plant cell wall organization, growth, and development.
Collapse
Affiliation(s)
- Ning Zhang
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Jordan D Julian
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Cheng Ern Yap
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Sivakumar Swaminathan
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| | - Olga A Zabotina
- Roy J Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
26
|
Wannitikul P, Wattana-Amorn P, Sathitnaitham S, Sakulkoo J, Suttangkakul A, Wonnapinij P, Bassel GW, Simister R, Gomez LD, Vuttipongchaikij S. Disruption of a DUF247 Containing Protein Alters Cell Wall Polysaccharides and Reduces Growth in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:1977. [PMID: 37653894 PMCID: PMC10221614 DOI: 10.3390/plants12101977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 09/02/2023]
Abstract
Plant cell wall biosynthesis is a complex process that requires proteins and enzymes from glycan synthesis to wall assembly. We show that disruption of At3g50120 (DUF247-1), a member of the DUF247 multigene family containing 28 genes in Arabidopsis, results in alterations to the structure and composition of cell wall polysaccharides and reduced growth and plant size. An ELISA using cell wall antibodies shows that the mutants also exhibit ~50% reductions in xyloglucan (XyG), glucuronoxylan (GX) and heteromannan (HM) epitopes in the NaOH fraction and ~50% increases in homogalacturonan (HG) epitopes in the CDTA fraction. Furthermore, the polymer sizes of XyGs and GXs are reduced with concomitant increases in short-chain polymers, while those of HGs and mHGs are slightly increased. Complementation using 35S:DUF247-1 partially recovers the XyG and HG content, but not those of GX and HM, suggesting that DUF247-1 is more closely associated with XyGs and HGs. DUF247-1 is expressed throughout Arabidopsis, particularly in vascular and developing tissues, and its disruption affects the expression of other gene members, indicating a regulatory control role within the gene family. Our results demonstrate that DUF247-1 is required for normal cell wall composition and structure and Arabidopsis growth.
Collapse
Affiliation(s)
- Pitchaporn Wannitikul
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand; (P.W.); (S.S.); (J.S.); (A.S.); (P.W.)
| | - Pakorn Wattana-Amorn
- Special Research Unit for Advanced Magnetic Resonance and Center of Excellence for Innovation in Chemistry, Department of Chemistry, Faculty of Science, Kasetsart University, Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand;
| | - Sukhita Sathitnaitham
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand; (P.W.); (S.S.); (J.S.); (A.S.); (P.W.)
| | - Jenjira Sakulkoo
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand; (P.W.); (S.S.); (J.S.); (A.S.); (P.W.)
| | - Anongpat Suttangkakul
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand; (P.W.); (S.S.); (J.S.); (A.S.); (P.W.)
- Center of Advanced studies for Tropical Natural Resources, Kasetsart University, Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
| | - Passorn Wonnapinij
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand; (P.W.); (S.S.); (J.S.); (A.S.); (P.W.)
- Center of Advanced studies for Tropical Natural Resources, Kasetsart University, Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - George W. Bassel
- School of Life Sciences, The University of Warwick, Coventry CV4 7AL, UK;
| | - Rachael Simister
- CNAP, Department of Biology, University of York, Heslington, York YO10 5DD, UK; (R.S.); (L.D.G.)
| | - Leonardo D. Gomez
- CNAP, Department of Biology, University of York, Heslington, York YO10 5DD, UK; (R.S.); (L.D.G.)
| | - Supachai Vuttipongchaikij
- Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand; (P.W.); (S.S.); (J.S.); (A.S.); (P.W.)
- Center of Advanced studies for Tropical Natural Resources, Kasetsart University, Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
27
|
Xu C, Xia T, Peng H, Liu P, Wang Y, Wang Y, Kang H, Tang J, Nauman Aftab M, Peng L. BsEXLX of engineered Trichoderma reesei strain as dual-active expansin to boost cellulases secretion for synergistic enhancement of biomass enzymatic saccharification in corn and Miscanthus straws. BIORESOURCE TECHNOLOGY 2023; 376:128844. [PMID: 36906237 DOI: 10.1016/j.biortech.2023.128844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
In this study, bacterial BsEXLE1 gene was overexpressed into T. reesei (Rut-C30) to generate a desirable engineered TrEXLX10 strain. While incubated with alkali-pretreated Miscanthus straw as carbon source, the TrEXLX10 secreted the β-glucosidases, cellobiohydrolases and xylanses with activities raised by 34%, 82% and 159% compared to the Rut-C30. Supplying EXLX10-secreted crude enzymes and commercial mixed-cellulases for two-step lignocellulose hydrolyses of corn and Miscanthus straws after mild alkali pretreatments, this work measured consistently higher hexoses yields released by the EXLX10-secreted enzymes for synergistic enhancements of biomass saccharification in all parallel experiments examined. Meanwhile, this study detected that the expansin, purified from EXLX10-secreted solution, was of exceptionally high binding activities with wall polymers, and further determined its independent enhancement for cellulose hydrolysis. Therefore, this study raised a mechanism model to highlight EXLX/expansin dual-activation roles for both secretion of stable biomass-degradation enzymes at high activity and biomass enzymatic saccharification in bioenergy crops.
Collapse
Affiliation(s)
- Chengbao Xu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation & Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, College of Biotechnology & Food Science, Hubei University of Technology, Wuhan 430068, China; Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - Tao Xia
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation & Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, College of Biotechnology & Food Science, Hubei University of Technology, Wuhan 430068, China; Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation & Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, College of Biotechnology & Food Science, Hubei University of Technology, Wuhan 430068, China; Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yihong Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanting Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation & Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, College of Biotechnology & Food Science, Hubei University of Technology, Wuhan 430068, China; Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Heng Kang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation & Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, College of Biotechnology & Food Science, Hubei University of Technology, Wuhan 430068, China; Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingfeng Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation & Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, College of Biotechnology & Food Science, Hubei University of Technology, Wuhan 430068, China
| | | | - Liangcai Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation & Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, College of Biotechnology & Food Science, Hubei University of Technology, Wuhan 430068, China; Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
28
|
Stephens Z, Wilson LFL, Zimmer J. Diverse mechanisms of polysaccharide biosynthesis, assembly and secretion across kingdoms. Curr Opin Struct Biol 2023; 79:102564. [PMID: 36870276 DOI: 10.1016/j.sbi.2023.102564] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/16/2023] [Accepted: 01/28/2023] [Indexed: 03/06/2023]
Abstract
Polysaccharides are essential biopolymers produced in all kingdoms of life. On the cell surface, they represent versatile architectural components, forming protective capsules and coats, cell walls, or adhesives. Extracellular polysaccharide (EPS) biosynthesis mechanisms differ based on the cellular localization of polymer assembly. Some polysaccharides are first synthesized in the cytosol and then extruded by ATP powered transporters [1]. In other cases, the polymers are assembled outside the cell [2], synthesized and secreted in a single step [3], or deposited on the cell surface via vesicular trafficking [4]. This review focuses on recent insights into the biosynthesis, secretion, and assembly of EPS in microbes, plants and vertebrates. We focus on comparing the sites of biosynthesis, secretion mechanisms, and higher-order EPS assemblies.
Collapse
Affiliation(s)
- Zachery Stephens
- Howard Hughes Medical Institute, University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| | - Louis F L Wilson
- Howard Hughes Medical Institute, University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA
| | - Jochen Zimmer
- Howard Hughes Medical Institute, University of Virginia School of Medicine, Charlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 480 Ray C. Hunt Dr., Charlottesville, VA 22908, USA.
| |
Collapse
|
29
|
Guo R, Sun X, Kou Y, Song H, Li X, Song L, Zhao T, Zhang H, Li D, Liu Y, Song Z, Wu J, Wu Y. Hydrophobic aggregation via partial Gal removal affects solution characteristics and fine structure of tamarind kernel polysaccharides. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
30
|
Grieß-Osowski A, Voiniciuc C. Branched mannan and xyloglucan as a dynamic duo in plant cell walls. Cell Surf 2023; 9:100098. [PMID: 36756196 PMCID: PMC9900609 DOI: 10.1016/j.tcsw.2023.100098] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Affiliation(s)
- Annika Grieß-Osowski
- Independent Junior Research Group–Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany,Department of Biological Data Science, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Cătălin Voiniciuc
- Independent Junior Research Group–Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany,Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, United States,Corresponding author at: Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
31
|
Hsiung SY, Li J, Imre B, Kao MR, Liao HC, Wang D, Chen CH, Liang PH, Harris PJ, Hsieh YSY. Structures of the xyloglucans in the monocotyledon family Araceae (aroids). PLANTA 2023; 257:39. [PMID: 36650257 PMCID: PMC9845173 DOI: 10.1007/s00425-023-04071-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The xyloglucans of all aquatic Araceae species examined had unusual structures compared with those of other non-commelinid monocotyledon families previously examined. The aquatic Araceae species Lemna minor was earlier shown to have xyloglucans with a different structure from the fucogalactoxyloglucans of other non-commelinid monocotyledons. We investigated 26 Araceae species (including L. minor), from five of the seven subfamilies. All seven aquatic species examined had xyloglucans that were unusual in having one or two of three features: < 77% XXXG core motif [L. minor (Lemnoideae) and Orontium aquaticum (Orontioideae)]; no fucosylation [L. minor (Lemnoideae), Cryptocoryne aponogetonifolia, and Lagenandra ovata (Aroideae, Rheophytes clade)]; and > 14% oligosaccharide units with S or D side chains [Spirodela polyrhiza and Landoltia punctata (Lemnoideae) and Pistia stratiotes (Aroideae, Dracunculus clade)]. Orontioideae and Lemnoideae are the two most basal subfamilies, with all species being aquatic, and Aroideae is the most derived. Two terrestrial species [Dieffenbachia seguine and Spathicarpa hastifolia (Aroideae, Zantedeschia clade)] also had xyloglucans without fucose indicating this feature was not unique to aquatic species.
Collapse
Affiliation(s)
- Shih-Yi Hsiung
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing Li
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
- College of Life Science, Shanghai Normal University, Shanghai, China
| | - Balazs Imre
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Mu-Rong Kao
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hsien-Chun Liao
- Division of Botany, Taiwan Endemic Species Research Institute, Nantou, 552, Taiwan
| | - Damao Wang
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden
- College of Food Science, Southwest University, Chongqing, China
| | - Chih-Hui Chen
- Division of Botany, Taiwan Endemic Species Research Institute, Nantou, 552, Taiwan
| | - Pi-Hui Liang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Philip J Harris
- School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Yves S Y Hsieh
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, 106 91, Stockholm, Sweden.
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
32
|
Gao Y, Guo M, Wang D, Zhao D, Wang M. Advances in extraction, purification, structural characteristics and biological activities of hemicelluloses: A review. Int J Biol Macromol 2023; 225:467-483. [PMID: 36379281 DOI: 10.1016/j.ijbiomac.2022.11.099] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022]
Abstract
Hemicelluloses, a major component of plant cell walls, are a non-cellulosic heteropolysaccharide composed of several distinct sugars that is second in abundance to cellulose, which are one of the most abundant and cheapest renewable resources on earth. Hemicelluloses structure is complex and its chemical structure varies greatly among the different plant species. In addition to its wide use in production of feed and other chemical materials, hemicelluloses are known for its remarkable biological activities that remain largely underutilised to date. Therefore, comprehensive investigations of hemicelluloses structural and biological properties would be helpful for achieving rational utilisation and high-value conversion of this underutilised substance into agents with enhanced health benefits for incorporation in drugs and health foods. In this review, details of diverse research initiatives that have enhanced our understanding of hemicelluloses properties are summarised, including hemicelluloses sources, extraction and purification methods, structural characteristics and biological activities. Furthermore, hemicelluloses structure-activity relationships and new directions for future hemicelluloses research studies are discussed.
Collapse
Affiliation(s)
- Yanan Gao
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Mingkun Guo
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Dandan Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Mingxing Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
33
|
Warner J, Pöhnl T, Steingass CB, Bogarín D, Carle R, Jiménez VM. Pectins, hemicellulose and lignocellulose profiles vary in leaves among different aromatic Vanilla species (Orchidaceae). CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
34
|
Sarmiento-López LG, López-Espinoza MY, Juárez-Verdayes MA, López-Meyer M. Genome-wide characterization of the xyloglucan endotransglucosylase/hydrolase gene family in Solanum lycopersicum L. and gene expression analysis in response to arbuscular mycorrhizal symbiosis. PeerJ 2023; 11:e15257. [PMID: 37159836 PMCID: PMC10163873 DOI: 10.7717/peerj.15257] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/28/2023] [Indexed: 05/11/2023] Open
Abstract
Xyloglucan endotransglucosylase/hydrolases (XTHs) are a glycoside hydrolase protein family involved in the biosynthesis of xyloglucans, with essential roles in the regulation of plant cell wall extensibility. By taking advantage of the whole genome sequence in Solanum lycopersicum, 37 SlXTHs were identified in the present work. SlXTHs were classified into four subfamilies (ancestral, I/II, III-A, III-B) when aligned to XTHs of other plant species. Gene structure and conserved motifs showed similar compositions in each subfamily. Segmental duplication was the primary mechanism accounting for the expansion of SlXTH genes. In silico expression analysis showed that SlXTH genes exhibited differential expression in several tissues. GO analysis and 3D protein structure indicated that all 37 SlXTHs participate in cell wall biogenesis and xyloglucan metabolism. Promoter analysis revealed that some SlXTHs have MeJA- and stress-responsive elements. qRT-PCR expression analysis of nine SlXTHs in leaves and roots of mycorrhizal colonized vs. non-colonized plants showed that eight of these genes were differentially expressed in leaves and four in roots, suggesting that SlXTHs might play roles in plant defense induced by arbuscular mycorrhiza. Our results provide valuable insight into the function of XTHs in S. lycopersicum, in addition to the response of plants to mycorrhizal colonization.
Collapse
Affiliation(s)
- Luis G. Sarmiento-López
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa-Instituto Politécnico Nacional, Guasave, Sinaloa, México
| | - Maury Yanitze López-Espinoza
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa-Instituto Politécnico Nacional, Guasave, Sinaloa, México
| | - Marco Adán Juárez-Verdayes
- Departamento de Ciencias Básicas, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila, México
| | - Melina López-Meyer
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Sinaloa-Instituto Politécnico Nacional, Guasave, Sinaloa, México
| |
Collapse
|
35
|
Di Marzo M, Babolin N, Viana VE, de Oliveira AC, Gugi B, Caporali E, Herrera-Ubaldo H, Martínez-Estrada E, Driouich A, de Folter S, Colombo L, Ezquer I. The Genetic Control of SEEDSTICK and LEUNIG-HOMOLOG in Seed and Fruit Development: New Insights into Cell Wall Control. PLANTS (BASEL, SWITZERLAND) 2022; 11:3146. [PMID: 36432874 PMCID: PMC9698089 DOI: 10.3390/plants11223146] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/21/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Although much is known about seed and fruit development at the molecular level, many gaps remain in our understanding of how cell wall modifications can impact developmental processes in plants, as well as how biomechanical alterations influence seed and fruit growth. Mutants of Arabidopsis thaliana constitute an excellent tool to study the function of gene families devoted to cell wall biogenesis. We have characterized a collection of lines carrying mutations in representative cell wall-related genes for seed and fruit size developmental defects, as well as altered germination rates. We have linked these studies to cell wall composition and structure. Interestingly, we have found that disruption of genes involved in pectin maturation and hemicellulose deposition strongly influence germination dynamics. Finally, we focused on two transcriptional regulators, SEEDSTICK (STK) and LEUNIG-HOMOLOG (LUH), which positively regulate seed growth. Herein, we demonstrate that these factors regulate specific aspects of cell wall properties such as pectin distribution. We propose a model wherein changes in seed coat structure due to alterations in the xyloglucan-cellulose matrix deposition and pectin maturation are critical for organ growth and germination. The results demonstrate the importance of cell wall properties and remodeling of polysaccharides as major factors responsible for seed development.
Collapse
Affiliation(s)
- Maurizio Di Marzo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Nicola Babolin
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Vívian Ebeling Viana
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
- Plant Genomics and Breeding Center, Federal University of Pelotas, Capão do Leão 96010-610, RS, Brazil
| | - Antonio Costa de Oliveira
- Plant Genomics and Breeding Center, Federal University of Pelotas, Capão do Leão 96010-610, RS, Brazil
| | - Bruno Gugi
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, UNIROUEN—Universitè de Rouen Normandie, 76000 Rouen, France
| | - Elisabetta Caporali
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato 36824, Guanajuato, Mexico
| | - Eduardo Martínez-Estrada
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato 36824, Guanajuato, Mexico
| | - Azeddine Driouich
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale EA4358, UNIROUEN—Universitè de Rouen Normandie, 76000 Rouen, France
- Fédération de Recherche “NORVEGE”-FED 4277, 76000 Rouen, France
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato 36824, Guanajuato, Mexico
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Ignacio Ezquer
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
36
|
Chen M, Ropartz D, Mac-Béar J, Bonnin E, Lahaye M. New insight into the mode of action of a GH74 xyloglucanase on tamarind seed xyloglucan: Action pattern and cleavage site. Carbohydr Res 2022; 521:108661. [DOI: 10.1016/j.carres.2022.108661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/28/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
|
37
|
Adsorption of apple xyloglucan on cellulose nanofiber depends on molecular weight, concentration and building blocks. Carbohydr Polym 2022; 296:119994. [DOI: 10.1016/j.carbpol.2022.119994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022]
|
38
|
Yu L, Yoshimi Y, Cresswell R, Wightman R, Lyczakowski JJ, Wilson LFL, Ishida K, Stott K, Yu X, Charalambous S, Wurman-Rodrich J, Terrett OM, Brown SP, Dupree R, Temple H, Krogh KBRM, Dupree P. Eudicot primary cell wall glucomannan is related in synthesis, structure, and function to xyloglucan. THE PLANT CELL 2022; 34:4600-4622. [PMID: 35929080 PMCID: PMC9614514 DOI: 10.1093/plcell/koac238] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Hemicellulose polysaccharides influence assembly and properties of the plant primary cell wall (PCW), perhaps by interacting with cellulose to affect the deposition and bundling of cellulose fibrils. However, the functional differences between plant cell wall hemicelluloses such as glucomannan, xylan, and xyloglucan (XyG) remain unclear. As the most abundant hemicellulose, XyG is considered important in eudicot PCWs, but plants devoid of XyG show relatively mild phenotypes. We report here that a patterned β-galactoglucomannan (β-GGM) is widespread in eudicot PCWs and shows remarkable similarities to XyG. The sugar linkages forming the backbone and side chains of β-GGM are analogous to those that make up XyG, and moreover, these linkages are formed by glycosyltransferases from the same CAZy families. Solid-state nuclear magnetic resonance indicated that β-GGM shows low mobility in the cell wall, consistent with interaction with cellulose. Although Arabidopsis β-GGM synthesis mutants show no obvious growth defects, genetic crosses between β-GGM and XyG mutants produce exacerbated phenotypes compared with XyG mutants. These findings demonstrate a related role of these two similar but distinct classes of hemicelluloses in PCWs. This work opens avenues to study the roles of β-GGM and XyG in PCWs.
Collapse
Affiliation(s)
- Li Yu
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Yoshihisa Yoshimi
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | | | - Raymond Wightman
- Microscopy Core Facility, Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | | | | | - Konan Ishida
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Katherine Stott
- Department of Biochemistry, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Xiaolan Yu
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Stephan Charalambous
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | | | - Oliver M Terrett
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Steven P Brown
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Ray Dupree
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Henry Temple
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | | | | |
Collapse
|
39
|
Biorefinery of apple pomace: New insights into xyloglucan building blocks. Carbohydr Polym 2022; 290:119526. [PMID: 35550758 DOI: 10.1016/j.carbpol.2022.119526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/28/2022] [Accepted: 04/21/2022] [Indexed: 11/24/2022]
Abstract
Within the apple pomace biorefinery cascade processing framework aiming at adding value to an agroindustrial waste, after pectin recovery, this study focused on hemicellulose. The structure of the major apple hemicellulose, xyloglucan (XyG), was assessed as a prerequisite to potential developments in industrial applications. DMSO-LiCl and 4 M KOH soluble hemicelluloses from pectin-extracted apple pomace were purified by anion exchange chromatography. XyG structure was assessed by coupling xyloglucanase and endo-β-1,4-glucanase digestions to HPAEC and MALDI-TOF MS analyses. 71.9% of pomaces hemicellulose were recovered with starch. DMSO-LiCl and 4 M KOH soluble XyG exhibited Mw of 19 and 140 kDa, respectively. Besides the XXXG, XLXG, XXLG, XXFG, XLFG and XLLG structures, novel oligosaccharides with degree of polymerization of 6-10 were observed after xyloglucanase digestion. Cellobiose and cellotriose were revealed randomly distributed in XyG backbone and were more present in DMSO-LiCl soluble XyG. Residual pomace remains a potential source of other materials.
Collapse
|
40
|
Cosgrove DJ. Building an extensible cell wall. PLANT PHYSIOLOGY 2022; 189:1246-1277. [PMID: 35460252 PMCID: PMC9237729 DOI: 10.1093/plphys/kiac184] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/21/2022] [Indexed: 05/15/2023]
Abstract
This article recounts, from my perspective of four decades in this field, evolving paradigms of primary cell wall structure and the mechanism of surface enlargement of growing cell walls. Updates of the structures, physical interactions, and roles of cellulose, xyloglucan, and pectins are presented. This leads to an example of how a conceptual depiction of wall structure can be translated into an explicit quantitative model based on molecular dynamics methods. Comparison of the model's mechanical behavior with experimental results provides insights into the molecular basis of complex mechanical behaviors of primary cell wall and uncovers the dominant role of cellulose-cellulose interactions in forming a strong yet extensible network.
Collapse
Affiliation(s)
- Daniel J Cosgrove
- Department of Biology, Penn State University, Pennsylvania 16802, USA
| |
Collapse
|
41
|
Guzha A, McGee R, Scholz P, Hartken D, Lüdke D, Bauer K, Wenig M, Zienkiewicz K, Herrfurth C, Feussner I, Vlot AC, Wiermer M, Haughn G, Ischebeck T. Cell wall-localized BETA-XYLOSIDASE4 contributes to immunity of Arabidopsis against Botrytis cinerea. PLANT PHYSIOLOGY 2022; 189:1794-1813. [PMID: 35485198 PMCID: PMC9237713 DOI: 10.1093/plphys/kiac165] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/14/2022] [Indexed: 05/15/2023]
Abstract
Plant cell walls constitute physical barriers that restrict access of microbial pathogens to the contents of plant cells. The primary cell wall of multicellular plants predominantly consists of cellulose, hemicellulose, and pectin, and its composition can change upon stress. BETA-XYLOSIDASE4 (BXL4) belongs to a seven-member gene family in Arabidopsis (Arabidopsis thaliana), one of which encodes a protein (BXL1) involved in cell wall remodeling. We assayed the influence of BXL4 on plant immunity and investigated the subcellular localization and enzymatic activity of BXL4, making use of mutant and overexpression lines. BXL4 localized to the apoplast and was induced upon infection with the necrotrophic fungal pathogen Botrytis cinerea in a jasmonoyl isoleucine-dependent manner. The bxl4 mutants showed a reduced resistance to B. cinerea, while resistance was increased in conditional overexpression lines. Ectopic expression of BXL4 in Arabidopsis seed coat epidermal cells rescued a bxl1 mutant phenotype, suggesting that, like BXL1, BXL4 has both xylosidase and arabinosidase activity. We conclude that BXL4 is a xylosidase/arabinosidase that is secreted to the apoplast and its expression is upregulated under pathogen attack, contributing to immunity against B. cinerea, possibly by removal of arabinose and xylose side-chains of polysaccharides in the primary cell wall.
Collapse
Affiliation(s)
| | - Robert McGee
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany
| | - Denise Hartken
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen Germany
| | | | - Kornelia Bauer
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Marion Wenig
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Krzysztof Zienkiewicz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077 Goettingen, Germany
- UMK Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077 Goettingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany
- Service Unit for Metabolomics and Lipidomics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, D-37077 Goettingen, Germany
| | - A Corina Vlot
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Marcel Wiermer
- Molecular Biology of Plant-Microbe Interactions Research Group, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen Germany
- Freie Universität Berlin, Institute of Biology, Dahlem Centre of Plant Sciences, Biochemistry of Plant-Microbe Interactions, Königin-Luise-Str. 12-16, 14195 Berlin, Germany
| | - George Haughn
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | | |
Collapse
|
42
|
Sun X, Cheng L, Jonker A, Munidasa S, Pacheco D. A Review: Plant Carbohydrate Types—The Potential Impact on Ruminant Methane Emissions. Front Vet Sci 2022; 9:880115. [PMID: 35782553 PMCID: PMC9249355 DOI: 10.3389/fvets.2022.880115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022] Open
Abstract
Carbohydrates are the major component of most ruminant feeds. The digestion of carbohydrates in the rumen provides energy to the ruminants but also contributes to enteric methane (CH4) emissions. Fresh forage is the main feed for grazing ruminants in temperate regions. Therefore, this review explored how dietary carbohydrate type and digestion affect ruminant CH4 emissions, with a focus on fresh forage grown in temperate regions. Carbohydrates include monosaccharides, disaccharides, oligosaccharides, and polysaccharides. Rhamnose is the only monosaccharide that results in low CH4 emissions. However, rhamnose is a minor component in most plants. Among polysaccharides, pectic polysaccharides lead to greater CH4 production due to the conversion of methyl groups to methanol and finally to CH4. Thus, the degree of methyl esterification of pectic polysaccharides is an important structural characteristic to better understand CH4 emissions. Apart from pectic polysaccharides, the chemical structure of other polysaccharides per se does not seem to affect CH4 formation. However, rumen physiological parameters and fermentation types resulting from digestion in the rumen of polysaccharides differing in the rate and extent of degradation do affect CH4 emissions. For example, low rumen pH resulting from the rapid degradation of readily fermentable carbohydrates decreases and inhibits the activities of methanogens and further reduces CH4 emissions. When a large quantity of starch is supplemented or the rate of starch degradation is low, some starch may escape from the rumen and the escaped starch will not yield CH4. Similar bypass from rumen digestion applies to other polysaccharides and needs to be quantified to facilitate the interpretation of animal experiments in which CH4 emissions are measured. Rumen bypass carbohydrates may occur in ruminants fed fresh forage, especially when the passage rate is high, which could be a result of high feed intake or high water intake. The type of carbohydrates affects the concentration of dissolved hydrogen, which consequently alters fermentation pathways and finally results in differences in CH4 emissions. We recommend that the degree of methyl esterification of pectic polysaccharides is needed for pectin-rich forage. The fermentation type of carbohydrates and rumen bypass carbohydrates should be determined in the assessment of mitigation potential.
Collapse
Affiliation(s)
- Xuezhao Sun
- The Innovation Centre of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin Agricultural Science and Technology University, Jilin, China
- Jilin Inter-Regional Cooperation Centre for the Scientific and Technological Innovation of Ruminant Precision Nutrition and Smart and Ecological Farming, Jilin, China
- Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand
- *Correspondence: Xuezhao Sun
| | - Long Cheng
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Arjan Jonker
- Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand
| | - Sineka Munidasa
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - David Pacheco
- Grasslands Research Centre, AgResearch Limited, Palmerston North, New Zealand
- David Pacheco
| |
Collapse
|
43
|
Sinclair R, Hsu G, Davis D, Chang M, Rosquete M, Iwasa JH, Drakakaki G. Plant cytokinesis and the construction of new cell wall. FEBS Lett 2022; 596:2243-2255. [PMID: 35695093 DOI: 10.1002/1873-3468.14426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022]
Abstract
Cytokinesis in plants is fundamentally different from that in animals and fungi. In plant cells, a cell plate forms through the fusion of cytokinetic vesicles and then develops into the new cell wall, partitioning the cytoplasm of the dividing cell. The formation of the cell plate entails multiple stages that involve highly orchestrated vesicle accumulation, fusion, and membrane maturation, which occur concurrently with the timely deposition of polysaccharides such as callose, cellulose, and cross-linking glycans. This review summarizes the major stages in cytokinesis, endomembrane components involved in cell plate assembly and its transition to a new cell wall. An animation that can be widely used for educational purposes further summarizes the process.
Collapse
Affiliation(s)
- Rosalie Sinclair
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| | - Grace Hsu
- Department of Biochemistry University of Utah, School of Medicine, Salt Lake City, UT, 84112, USA
| | - Destiny Davis
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA.,Current address: Lawrence Berkeley National Lab, Emeryville, CA, 94608, USA
| | - Mingqin Chang
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| | - Michel Rosquete
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA.,Current address: Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Janet H Iwasa
- Department of Biochemistry University of Utah, School of Medicine, Salt Lake City, UT, 84112, USA
| | - Georgia Drakakaki
- Department of Plant Sciences University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
44
|
Comparison of the Biochemical Properties and Roles in the Xyloglucan-Rich Biomass Degradation of a GH74 Xyloglucanase and Its CBM-Deleted Variant from Thielavia terrestris. Int J Mol Sci 2022; 23:ijms23095276. [PMID: 35563667 PMCID: PMC9103125 DOI: 10.3390/ijms23095276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
Xyloglucan is closely associated with cellulose and still retained with some modification in pretreated lignocellulose; however, its influence on lignocellulose biodegradation is less understood. TtGH74 from Thielavia terrestris displayed much higher catalytic activity than previously characterized fungal GH74 xyloglucanases. The carbohydrate-binding module 1 (CBM1) deleted variant (TtGH74ΔCBM) had the same optimum temperature and pH but an elevated thermostability. TtGH74 displayed a high binding affinity on xyloglucan and cellulose, while TtGH74ΔCBM completely lost the adsorption capability on cellulose. Their hydrolysis action alone or in combination with other glycoside hydrolases on the free xyloglucan, xyloglucan-coated phosphoric acid-swollen cellulose or pretreated corn bran and apple pomace was compared. CBM1 might not be essential for the hydrolysis of free xyloglucan but still effective for the associated xyloglucan to an extent. TtGH74 alone or synergistically acting with the CBH1/EG1 mixture was more effective in the hydrolysis of xyloglucan in corn bran, while TtGH74ΔCBM showed relatively higher catalytic activity on apple pomace, indicating that the role and significance of CBM1 are substrate-specific. The degrees of synergy for TtGH74 or TtGH74ΔCBM with the CBH1/EG1 mixture reached 1.22–2.02. The addition of GH10 xylanase in TtGH74 or the TtGH74ΔCBM/CBH1/EG1 mixture further improved the overall hydrolysis efficiency, and the degrees of synergy were up to 1.50–2.16.
Collapse
|
45
|
Petrova A, Sibgatullina G, Gorshkova T, Kozlova L. Dynamics of cell wall polysaccharides during the elongation growth of rye primary roots. PLANTA 2022; 255:108. [PMID: 35449484 DOI: 10.1007/s00425-022-03887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
In cells of growing rye roots, xyloglucans and homogalacturonans demonstrate developmental stage specificity, while different xylans have tissue specificity. Mannans, arabinans and galactans are also detected within the protoplast. Mannans form films on sections of fresh material. The primary cell walls of plants represent supramolecular exocellular structures that are mainly composed of polysaccharides. Cell wall properties and architecture differ between species and across tissues within a species. We revised the distribution of cell wall polysaccharides and their dynamics during elongation growth and histogenesis in rye roots using nonfixed material and the spectrum of antibodies. Rye is a member of the Poaceae family and thus has so-called type II primary cell walls, which are supposed to be low in pectins and xyloglucans and instead have arabinoxylans and mixed-linkage glucans. However, rye cell walls at the earliest stages of cell development were enriched with the epitopes of xyloglucans and homogalacturonans. Mixed-linkage glucan, which is often considered an elongation growth-specific polysaccharide in plants with type II cell walls, did not display such dynamics in rye roots. The cessation of elongation growth and even the emergence of root hairs were not accompanied by the disappearance of mixed-linkage glucans from cell walls. The diversity of xylan motifs recognized by different antibodies was minimal in the meristem zone of rye roots, but this diversity increased and showed tissue specificity during root growth. Antibodies specific for xyloglucans, galactans, arabinans and mannans bound the cell content. When rye root cells were cut, the epitopes of xyloglucans, galactans and arabinans remained within the cell content, while mannans developed net-like or film-like structures on the surface of sections.
Collapse
Affiliation(s)
- Anna Petrova
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, 420111, Kazan, Russia
| | - Gusel Sibgatullina
- The Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, 420111, Kazan, Russia
| | - Tatyana Gorshkova
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, 420111, Kazan, Russia
| | - Liudmila Kozlova
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky str., 2/31, 420111, Kazan, Russia.
| |
Collapse
|
46
|
Di Marzo M, Viana VE, Banfi C, Cassina V, Corti R, Herrera-Ubaldo H, Babolin N, Guazzotti A, Kiegle E, Gregis V, de Folter S, Sampedro J, Mantegazza F, Colombo L, Ezquer I. Cell wall modifications by α-XYLOSIDASE1 are required for control of seed and fruit size in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1499-1515. [PMID: 34849721 DOI: 10.1093/jxb/erab514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Cell wall modifications are of pivotal importance during plant development. Among cell wall components, xyloglucans are the major hemicellulose polysaccharide in primary cell walls of dicots and non-graminaceous monocots. They can connect the cellulose microfibril surface to affect cell wall mechanical properties. Changes in xyloglucan structure are known to play an important role in regulating cell growth. Therefore, the degradation of xyloglucan is an important modification that alters the cell wall. The α-XYLOSIDASE1 (XYL1) gene encodes the only α-xylosidase acting on xyloglucans in Arabidopsis thaliana. Here, we showed that mutation of XYL1 strongly influences seed size, seed germination, and fruit elongation. We found that the expression of XYL1 is directly regulated in developing seeds and fruit by the MADS-box transcription factor SEEDSTICK. We demonstrated that XYL1 complements the stk smaller seed phenotype. Finally, by atomic force microscopy, we investigated the role of XYL1 activity in maintaining cell stiffness and growth, confirming the importance of cell wall modulation in shaping organs.
Collapse
Affiliation(s)
- Maurizio Di Marzo
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Vívian Ebeling Viana
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
- Plant Genomics and Breeding Center, Federal University of Pelotas, Capão do Leão-RS, Brazil
| | - Camilla Banfi
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Valeria Cassina
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milan-Bicocca, Monza, Italy
| | - Roberta Corti
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milan-Bicocca, Monza, Italy
- Department of Materials Science, University of Milan-Bicocca, Milan, Italy
| | - Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, CP 36824 Irapuato, Guanajuato, México
| | - Nicola Babolin
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Andrea Guazzotti
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Edward Kiegle
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Veronica Gregis
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, CP 36824 Irapuato, Guanajuato, México
| | - Javier Sampedro
- Universidad de Santiago de Compostela, Departamento de Fisiología Vegetal, Facultad de Biología, Rúa Lope Gómez de Marzoa, s/n. Campus sur, 15782 Santiago de Compostela, A Coruña, Spain
| | - Francesco Mantegazza
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milan-Bicocca, Monza, Italy
| | - Lucia Colombo
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| | - Ignacio Ezquer
- Dipartimento di BioScienze, Università degli Studi di Milano, Via Giovanni Celoria 26, 20133 Milan, Italy
| |
Collapse
|
47
|
Steinbrecher T, Leubner-Metzger G. Xyloglucan remodelling enzymes and the mechanics of plant seed and fruit biology. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1253-1257. [PMID: 35235657 PMCID: PMC8890615 DOI: 10.1093/jxb/erac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This article comments on: Di Marzo M, Ebeling Viana V, Banfi C, Cassina V, Corti R, Herrera-Ubaldo H, Babolin N, Guazzotti A, Kiegle E, Gregis V, de Folter S, Sampedro J, Mantegazza F, Colombo L, Ezquer I. 2022. Cell wall modifications by α-XYLOSIDASE1 are required for the control of seed and fruit size. Journal of Experimental Botany 73, 1499–1515.
Collapse
Affiliation(s)
- Tina Steinbrecher
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | - Gerhard Leubner-Metzger
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
48
|
Ishida K, Yokoyama R. Reconsidering the function of the xyloglucan endotransglucosylase/hydrolase family. JOURNAL OF PLANT RESEARCH 2022; 135:145-156. [PMID: 35000024 DOI: 10.1007/s10265-021-01361-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/21/2021] [Indexed: 05/21/2023]
Abstract
Plants possess an outer cell layer called the cell wall. This matrix comprises various molecules, such as polysaccharides and proteins, and serves a wide array of physiologically important functions. This structure is not static but rather flexible in response to the environment. One of the factors responsible for this plasticity is the xyloglucan endotransglucosylase/hydrolase (XTH) family, which cleaves and reconnects xyloglucan molecules. Since xyloglucan molecules have been hypothesised to tether cellulose microfibrils forming the main load-bearing network in the primary cell wall, XTHs have been thought to play a central role in cell wall loosening for plant cell expansion. However, multiple lines of recent evidence have questioned this classic model. Nevertheless, reverse genetic analyses have proven the biological importance of XTHs; therefore, a major challenge at present is to reconsider the role of XTHs in planta. Recent advances in analytical techniques have allowed for gathering rich information on the structure of the primary cell wall. Thus, the integration of accumulated knowledge in current XTH studies may offer a turning point for unveiling the precise functions of XTHs. In the present review, we redefine the biological function of the XTH family based on the recent architectural model of the cell wall. We highlight three key findings regarding this enzyme family: (1) XTHs are not strictly required for cell wall loosening during plant cell expansion but play vital roles in response to specific biotic or abiotic stresses; (2) in addition to their transglycosylase activity, the hydrolase activity of XTHs is involved in physiological benefits; and (3) XTHs can recognise a wide range of polysaccharides other than xyloglucans.
Collapse
Affiliation(s)
- Konan Ishida
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QE, UK
| | - Ryusuke Yokoyama
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
49
|
Wang M, Song X, Guo S, Li P, Xu Z, Xu H, Ding A, Ahmed RI, Zhou G, O’Neill M, Yang D, Kong Y. Using CRISPR-Cas9 Technology to Eliminate Xyloglucan in Tobacco Cell Walls and Change the Uptake and Translocation of Inorganic Arsenic. FRONTIERS IN PLANT SCIENCE 2022; 13:827453. [PMID: 35251097 PMCID: PMC8888522 DOI: 10.3389/fpls.2022.827453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Xyloglucan is a quantitatively major polysaccharide in the primary cell walls of flowering plants and has been reported to affect plants' ability to tolerate toxic elements. However, it is not known if altering the amounts of xyloglucan in the wall influences the uptake and translocation of inorganic arsenic (As). Here, we identified two Nicotiana tabacum genes that encode xyloglucan-specific xylosyltransferases (XXT), which we named NtXXT1 and NtXXT2. We used CRISPR-Cas9 technology to generate ntxxt1, ntxxt2, and ntxxt1/2 mutant tobacco plants to determine if preventing xyloglucan synthesis affects plant growth and their ability to accumulate As. We show that NtXXT1 and NtXXT2 are required for xyloglucan biosynthesis because no discernible amounts of xyloglucan were present in the cell walls of the ntxxt1/2 double mutant. The tobacco double mutant (ntxxt1/2) and the corresponding Arabidopsis mutant (atxxt1/2) do not have severe growth defects but do have a short root hair phenotype and a slow growth rate. This phenotype is rescued by overexpressing NtXXT1 or NtXXT2 in atxxt1/2. Growing ntxxt mutants in the presence of AsIII or AsV showed that the absence of cell wall xyloglucan affects the accumulation and translocation of As. Most notably, root retention of As increased substantially and the amounts of As translocated to the shoots decreased in ntxxt1/2. Our results suggest that xyloglucan-deficient plants provide a strategy for the phytoremediation of As contaminated soils.
Collapse
Affiliation(s)
- Meng Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xinxin Song
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Shuaiqiang Guo
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Peiyao Li
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Zongchang Xu
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Hua Xu
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Anming Ding
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Rana Imtiaz Ahmed
- Key Laboratory of Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Gongke Zhou
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration With Qingdao Agricultural University, Dongying, China
| | - Malcom O’Neill
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Dahai Yang
- China Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Yingzhen Kong
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
50
|
Cabral L, Persinoti GF, Paixão DAA, Martins MP, Morais MAB, Chinaglia M, Domingues MN, Sforca ML, Pirolla RAS, Generoso WC, Santos CA, Maciel LF, Terrapon N, Lombard V, Henrissat B, Murakami MT. Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides. Nat Commun 2022; 13:629. [PMID: 35110564 PMCID: PMC8810776 DOI: 10.1038/s41467-022-28310-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
The largest living rodent, capybara, can efficiently depolymerize and utilize lignocellulosic biomass through microbial symbiotic mechanisms yet elusive. Herein, we elucidate the microbial community composition, enzymatic systems and metabolic pathways involved in the conversion of dietary fibers into short-chain fatty acids, a main energy source for the host. In this microbiota, the unconventional enzymatic machinery from Fibrobacteres seems to drive cellulose degradation, whereas a diverse set of carbohydrate-active enzymes from Bacteroidetes, organized in polysaccharide utilization loci, are accounted to tackle complex hemicelluloses typically found in gramineous and aquatic plants. Exploring the genetic potential of this community, we discover a glycoside hydrolase family of β-galactosidases (named as GH173), and a carbohydrate-binding module family (named as CBM89) involved in xylan binding that establishes an unprecedented three-dimensional fold among associated modules to carbohydrate-active enzymes. Together, these results demonstrate how the capybara gut microbiota orchestrates the depolymerization and utilization of plant fibers, representing an untapped reservoir of enzymatic mechanisms to overcome the lignocellulose recalcitrance, a central challenge toward a sustainable and bio-based economy.
Collapse
Affiliation(s)
- Lucelia Cabral
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Gabriela F Persinoti
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil.
| | - Douglas A A Paixão
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Marcele P Martins
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
- Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Mariana A B Morais
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Mariana Chinaglia
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
- Graduate Program in Functional and Molecular Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil
| | - Mariane N Domingues
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Mauricio L Sforca
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Renan A S Pirolla
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Wesley C Generoso
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Clelton A Santos
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Lucas F Maciel
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
| | - Nicolas Terrapon
- The Institut National de la Recherche Agronomique, USC 1408 AFMB, 13288, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France
| | - Vincent Lombard
- The Institut National de la Recherche Agronomique, USC 1408 AFMB, 13288, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mario T Murakami
- Brazilian Biorenewables National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil.
| |
Collapse
|