1
|
Li J, Xu S, Liu Z, Yang L, Ming Z, Zhang R, Zhao W, Peng H, Quinn JJ, Wu M, Geng Y, Zhang Y, He J, Chen M, Li N, Shao NY, Ma Q. A noncanonical role of roX RNAs in autosomal epigenetic repression. Nat Commun 2025; 16:155. [PMID: 39747148 PMCID: PMC11696496 DOI: 10.1038/s41467-024-55711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Long noncoding RNAs known as roX (RNA on the X) are crucial for male development in Drosophila, as their loss leads to male lethality from the late larval stages. While roX RNAs are recognized for their role in sex-chromosome dosage compensation, ensuring balanced expression of X-linked genes in both sexes, their potential influence on autosomal gene regulation remains unexplored. Here, using an integrative multi-omics approach, we show that roX RNAs not only govern the X chromosome but also target genes on autosomes that lack male-specific lethal (MSL) complex occupancy, together with Polycomb repressive complexes (PRCs). We observed that roX RNAs colocalize with MSL proteins on the X chromosome and PRC components on autosomes. Intriguingly, loss of roX function reduces X-chromosomal H4K16ac levels and autosomal H3K27me3 levels. Correspondingly, X-linked genes display reduced expression, whereas many autosomal genes exhibit elevated expression upon roX loss. Our findings propose a dual role for roX RNAs: activators of X-linked genes and repressors of autosomal genes, achieved through interactions with MSL and PRC complexes, respectively. This study uncovers the unconventional epigenetic repressive function of roX RNAs with PRC interaction.
Collapse
Affiliation(s)
- Jianjian Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, China
| | - Shuyang Xu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zicong Liu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Liuyi Yang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhe Ming
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
| | - Rui Zhang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wenjuan Zhao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huipai Peng
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jeffrey J Quinn
- Center for Personal Dynamic Regulomes and Program in Epithelial Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Manyin Wu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yushan Geng
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuying Zhang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jiazhi He
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Minghai Chen
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Nan Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ning-Yi Shao
- Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
| | - Qing Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
2
|
Lomoschitz A, Meyer J, Guitart T, Krepl M, Lapouge K, Hayn C, Schweimer K, Simon B, Šponer J, Gebauer F, Hennig J. The Drosophila RNA binding protein Hrp48 binds a specific RNA sequence of the msl-2 mRNA 3' UTR to regulate translation. Biophys Chem 2025; 316:107346. [PMID: 39504588 DOI: 10.1016/j.bpc.2024.107346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/02/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024]
Abstract
Repression of msl-2 mRNA translation is essential for viability of Drosophila melanogaster females to prevent hypertranscription of both X chromosomes. This translational control event is coordinated by the female-specific protein Sex-lethal (Sxl) which recruits the RNA binding proteins Unr and Hrp48 to the 3' untranslated region (UTR) of the msl-2 transcript and represses translation initiation. The mechanism exerted by Hrp48 during translation repression and its interaction with msl-2 are not well understood. Here we investigate the RNA binding specificity and affinity of the tandem RNA recognition motifs of Hrp48. Using NMR spectroscopy, molecular dynamics simulations and isothermal titration calorimetry, we identified the exact region of msl-2 3' UTR recognized by Hrp48. Additional biophysical experiments and translation assays give further insights into complex formation of Hrp48, Unr, Sxl and RNA. Our results show that Hrp48 binds independent of Sxl and Unr downstream of the E and F binding sites of Sxl and Unr to msl-2.
Collapse
Affiliation(s)
- Andrea Lomoschitz
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Julia Meyer
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Department of Biochemistry IV - Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Tanit Guitart
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Karine Lapouge
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory Heidelberg, 69117 Heidelberg, Germany
| | - Clara Hayn
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Kristian Schweimer
- Department of Biochemistry IV - Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Bernd Simon
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Molecular Biology and Biophysics - University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Fátima Gebauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Janosch Hennig
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Department of Biochemistry IV - Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|
3
|
Babosha V, Klimenko N, Revel-Muroz A, Tikhonova E, Georgiev P, Maksimenko O. N-terminus of Drosophila melanogaster MSL1 is critical for dosage compensation. eLife 2024; 13:RP93241. [PMID: 39699942 DOI: 10.7554/elife.93241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
The male-specific lethal complex (MSL), which consists of five proteins and two non-coding roX RNAs, is involved in the transcriptional enhancement of X-linked genes to compensate for the sex chromosome monosomy in Drosophila XY males compared with XX females. The MSL1 and MSL2 proteins form the heterotetrameric core of the MSL complex and are critical for the specific recruitment of the complex to the high-affinity 'entry' sites (HAS) on the X chromosome. In this study, we demonstrated that the N-terminal region of MSL1 is critical for stability and functions of MSL1. Amino acid deletions and substitutions in the N-terminal region of MSL1 strongly affect both the interaction with roX2 RNA and the MSL complex binding to HAS on the X chromosome. In particular, substitution of the conserved N-terminal amino-acids 3-7 in MSL1 (MSL1GS) affects male viability similar to the inactivation of genes encoding roX RNAs. In addition, MSL1GS binds to promoters such as MSL1WT but does not co-bind with MSL2 and MSL3 to X chromosomal HAS. However, overexpression of MSL2 partially restores the dosage compensation. Thus, the interaction of MSL1 with roX RNA is critical for the efficient assembly of the MSL complex on HAS of the male X chromosome.
Collapse
Affiliation(s)
- Valentin Babosha
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Anastasia Revel-Muroz
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Evgeniya Tikhonova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
4
|
Forbes Beadle L, Sutcliffe C, Ashe HL. A simple MiMIC-based approach for tagging endogenous genes to visualise live transcription in Drosophila. Development 2024; 151:dev204294. [PMID: 39584418 DOI: 10.1242/dev.204294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Live imaging of transcription in the Drosophila embryo using the MS2 or PP7 systems is transforming our understanding of transcriptional regulation. However, insertion of MS2/PP7 stem-loops into endogenous genes requires laborious CRISPR genome editing. Here, we exploit the previously described Minos-mediated integration cassette (MiMIC) transposon system in Drosophila to establish a method for simply and rapidly inserting MS2/PP7 cassettes into any of the thousands of genes carrying a MiMIC insertion. In addition to generating a variety of stem-loop donor fly stocks, we have made new stocks expressing the complementary coat proteins fused to different fluorescent proteins. We show the utility of this MiMIC-based approach by MS2/PP7 tagging of endogenous genes and the long non-coding RNA roX1, then imaging their transcription in living embryos. We also present live transcription data from larval brains, the wing disc and ovary, thereby extending the tissues that can be studied using the MS2/PP7 system. Overall, this first high-throughput method for tagging mRNAs in Drosophila will facilitate the study of transcription dynamics of thousands of endogenous genes in a range of Drosophila tissues.
Collapse
Affiliation(s)
- Lauren Forbes Beadle
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Catherine Sutcliffe
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Hilary L Ashe
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
5
|
Hussain MS, Sharma S, Kumari A, Kamran A, Bahl G, Bisht AS, Sultana A, Ashique S, Ramalingam PS, Arumugam S. Role of long non-coding RNAs in neurofibromatosis and Schwannomatosis: pathogenesis and therapeutic potential. Epigenomics 2024; 16:1453-1464. [PMID: 39601046 PMCID: PMC11622780 DOI: 10.1080/17501911.2024.2430170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/05/2024] [Indexed: 11/29/2024] Open
Abstract
Neurofibromatosis (NF) is identified as genetic disorder characterized by multiple tumors on nerve tissues. NF1 is the most prevalent form, identified by neurofibromas and skin changes. NF1 is the most prevalent neurofibromatosis disorder, distinct from the rarer NF2 and schwannomatosis (SWN) conditions. NF2, including NF2-related SWN (NF2-SWN), predominantly involves schwannoma formation and differs from NF1 in its genetic basis and clinical presentation. Despite the established genetic basis of NF, effective treatments remain scarce. Long non-coding RNAs (lncRNAs) have emerged as important regulators of gene expression, impacting pathways vital to tumor biology. This review explores the lncRNAs role in NF pathogenesis along with their potential as therapeutic targets. LncRNAs such as ANRIL and H19 show dysregulated expression in NF, influencing signaling pathways like Ras/MAPK and JAK/STAT, thereby contributing to tumor development. Understanding these interactions sheds light on the molecular mechanisms underlying NF and highlights lncRNAs as potential biomarkers of diagnosis and prognosis of NF. Additionally, therapeutic strategies targeting lncRNAs with antisense oligonucleotides (ASOs) or CRISPR-Cas9 offer promising treatment options. The present review emphasizes crucial role of lncRNAs in NF pathogenesis and their promise to create innovative treatments, aiming to improve patient outcomes and meet the urgent need for effective NF therapies.
Collapse
Affiliation(s)
- Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Somya Sharma
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, India
| | - Alka Kumari
- University institute of pharmacy, Chandigarh University, Chandigarh, India
| | | | - Gurusha Bahl
- School of Pharmaceutical Sciences, Jaipur National University, Jaipur, India
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, India
| | - Ayesha Sultana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya University (Deemed to be University), Mangalore, India
| | - Sumel Ashique
- Department of Pharmaceutical Sciences, Bengal College of Pharmaceutical Sciences & Research, Durgapur, India
| | | | - Sivakumar Arumugam
- Protein Engineering lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
6
|
Wang S, Bai Y, Ma J, Qiao L, Zhang M. Long non-coding RNAs: regulators of autophagy and potential biomarkers in therapy resistance and urological cancers. Front Pharmacol 2024; 15:1442227. [PMID: 39512820 PMCID: PMC11540796 DOI: 10.3389/fphar.2024.1442227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
The non-coding RNAs (ncRNAs) comprise a large part of human genome that mainly do not code for proteins. Although ncRNAs were first believed to be non-functional, the more investigations highlighted tthe possibility of ncRNAs in controlling vital biological processes. The length of long non-coding RNAs (lncRNAs) exceeds 200 nucleotidesand can be present in nucleus and cytoplasm. LncRNAs do not translate to proteins and they have been implicated in the regulation of tumorigenesis. On the other hand, One way cells die is by a process called autophagy, which breaks down proteins and other components in the cytoplasm., while the aberrant activation of autophagy allegedly involved in the pathogenesis of diseases. The autophagy exerts anti-cancer activity in pre-cancerous lesions, while it has oncogenic function in advanced stages of cancers. The current overview focuses on the connection between lncRNAs and autophagy in urological cancers is discussed. Notably, one possible role for lncRNAs is as diagnostic and prognostic variablesin urological cancers. The proliferation, metastasis, apoptosis and therapy response in prostate, bladder and renal cancers are regulated by lncRNAs. The changes in autophagy levels can also influence the apoptosis, proliferation and therapy response in urological tumors. Since lncRNAs have modulatory functions, they can affect autophagy mechanism to determine progression of urological cancers.
Collapse
Affiliation(s)
- Shizong Wang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Yang Bai
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Jie Ma
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Liang Qiao
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Mingqing Zhang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| |
Collapse
|
7
|
Salzler HR, Vandadi V, Sallean JR, Matera AG. Set2 and H3K36 regulate the Drosophila male X chromosome in a context-specific manner, independent from MSL complex spreading. Genetics 2024; 228:iyae168. [PMID: 39417694 PMCID: PMC11631440 DOI: 10.1093/genetics/iyae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024] Open
Abstract
Dosage compensation in Drosophila involves upregulating male X-genes two-fold. This process is carried out by the MSL (male-specific lethal) complex, which binds high-affinity sites and spreads to surrounding genes. Current models of MSL spreading focus on interactions betwen MSL3 (male-specific lethal 3) and Set2-dependent histone marks like trimethylated H3 lysine-36 (H3K36me3). However, Set2 could affect DC via another target, or there could be redundancy between canonical H3.2 and variant H3.3 histones. Furthermore, it is important to parse male-specific effects from those that are X-specific. To discriminate among these possibilities, we employed genomic approaches in H3K36 'residue' and Set2 'writer' mutants. The results confirm a role for Set2 in X-gene regulation, but show that expression trends in males are often mirrored in females. Instead of global, male-specific reduction of X-genes in Set2 or H3K36 mutants, we observe heterogeneous effects. Interestingly, we identified groups of differentially expressed genes (DEGs) whose changes were in opposite directions following loss of H3K36 or Set2, suggesting that H3K36me states have reciprocal functions. In contrast to H4K16R controls, differential expression analysis of combined H3.2K36R/H3.3K36R mutants showed neither consistent reduction in X-gene expression, nor correlation with MSL3 binding. Motif analysis of the DEGs implicated BEAF-32 and other insulator proteins in Set2/H3K36-dependent regulation. Overall, the data are inconsistent with the prevailing model wherein H3K36me3 is essential for spreading the MSL complex to genes along the male X. Rather, we propose that Set2 and H3K36 support DC indirectly, via processes that are utilized by MSL but common to both sexes.
Collapse
Affiliation(s)
- Harmony R Salzler
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Vasudha Vandadi
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Julia R Sallean
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - A Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
- RNA Discovery and Lineberger Comprehensive Cancer Centers, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Maqbool M, Hussain MS, Bisht AS, Kumari A, Kamran A, Sultana A, Kumar R, Khan Y, Gupta G. Connecting the dots: LncRNAs in the KRAS pathway and cancer. Pathol Res Pract 2024; 262:155570. [PMID: 39226802 DOI: 10.1016/j.prp.2024.155570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Long non-coding RNAs (lncRNAs) have been identified as important participants in several biological functions, particularly their complex interactions with the KRAS pathway, which provide insights into the significant roles lncRNAs play in cancer development. The KRAS pathway, a central signaling cascade crucial for cell proliferation, survival, and differentiation, stands out as a key therapeutic target due to its aberrant activation in many human cancers. Recent investigations have unveiled a myriad of lncRNAs, such as H19, ANRIL, and MEG3, intricately modulating the KRAS pathway, influencing both its activation and repression through various mechanisms, including epigenetic modifications, transcriptional regulation, and post-transcriptional control. These lncRNAs function as fine-tuners, delicately orchestrating the balance required for normal cellular function. Their dysregulation has been linked to the development and progression of multiple malignancies, including lung, pancreatic, and colorectal carcinomas, which frequently harbor KRAS mutations. This scrutiny delves into the functional diversity of specific lncRNAs within the KRAS pathway, elucidating their molecular mechanisms and downstream effects on cancer phenotypes. Additionally, it underscores the diagnostic and prognostic potential of these lncRNAs as indicators for cancer detection and assessment. The complex regulatory network that lncRNAs construct within the context of the KRAS pathway offers important insights for the creation of focused therapeutic approaches, opening new possibilities for precision medicine in oncology. However, challenges such as the dual roles of lncRNAs in different cancer types and the difficulty in therapeutically targeting these molecules highlight the ongoing debates and need for further research. As ongoing studies unveil the complexities of lncRNA-mediated KRAS pathway modulation, the potential for innovative cancer interventions becomes increasingly promising.
Collapse
Affiliation(s)
- Mudasir Maqbool
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Md Sadique Hussain
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand 248007, India.
| | - Ajay Singh Bisht
- School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand 248001, India
| | - Alka Kumari
- University institute of pharmacy, Chandigarh University, Gharaun, Punjab 140413, India
| | - Almaz Kamran
- HIMT College of Pharmacy, Plot No. 08, Knowledge Park - 1, Greater Noida, Uttar Pradesh 201310, India
| | - Ayesha Sultana
- Department of Pharmaceutics, Yenepoya Pharmacy College & Research Centre, Yenepoya University, Deralakatte, Mangalore, Karnataka, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Yumna Khan
- Institute of Biotechnology and Genetic Engineering (Health Division), The University of Agriculture, Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
| | - Gaurav Gupta
- Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
9
|
Li YR, Ling LB, Chao A, Fugmann SD, Yang SY. Transient chromatin decompaction at the start of D. melanogaster male embryonic germline development. Life Sci Alliance 2024; 7:e202302401. [PMID: 38991729 PMCID: PMC11239976 DOI: 10.26508/lsa.202302401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Embryonic germ cells develop rapidly to establish the foundation for future developmental trajectories, and in this process, they make critical lineage choices including the configuration of their unique identity and a decision on sex. Here, we use single-cell genomics patterns for the entire embryonic germline in Drosophila melanogaster along with the somatic gonadal precursors after embryonic gonad coalescence to investigate molecular mechanisms involved in the setting up and regulation of the germline program. Profiling of the early germline chromatin landscape revealed sex- and stage-specific features. In the male germline immediately after zygotic activation, the chromatin structure underwent a brief remodeling phase during which nucleosome density was lower and deconcentrated from promoter regions. These findings echoed enrichment analysis results of our genomics data in which top candidates were factors with the ability to mediate large-scale chromatin reorganization. Together, they point to the importance of chromatin regulation in the early germline and raise the possibility of a conserved epigenetic reprogramming-like process required for proper initiation of germline development.
Collapse
Affiliation(s)
- Yi-Ru Li
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li Bin Ling
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Angel Chao
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Sebastian D Fugmann
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shu Yuan Yang
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
10
|
Kalita AI, Keller Valsecchi CI. Dosage compensation in non-model insects - progress and perspectives. Trends Genet 2024:S0168-9525(24)00207-5. [PMID: 39341686 DOI: 10.1016/j.tig.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024]
Abstract
In many multicellular eukaryotes, heteromorphic sex chromosomes are responsible for determining the sexual characteristics and reproductive functions of individuals. Sex chromosomes can cause a dosage imbalance between sexes, which in some species is re-equilibrated by dosage compensation (DC). Recent genomic advances have extended our understanding of DC mechanisms in insects beyond model organisms such as Drosophila melanogaster. We review current knowledge of insect DC, focusing on its conservation and divergence across orders, the evolutionary dynamics of neo-sex chromosomes, and the diversity of molecular mechanisms. We propose a framework to uncover DC regulators in non-model insects that relies on integrating evolutionary, genomic, and functional approaches. This comprehensive approach will facilitate a deeper understanding of the evolution and essentiality of gene regulatory mechanisms.
Collapse
|
11
|
Camilleri-Robles C, Amador R, Tiebe M, Teleman A, Serras F, Guigó R, Corominas M. Long non-coding RNAs involved in Drosophila development and regeneration. NAR Genom Bioinform 2024; 6:lqae091. [PMID: 39157585 PMCID: PMC11327875 DOI: 10.1093/nargab/lqae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/12/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
The discovery of functional long non-coding RNAs (lncRNAs) changed their initial concept as transcriptional noise. LncRNAs have been identified as regulators of multiple biological processes, including chromatin structure, gene expression, splicing, mRNA degradation, and translation. However, functional studies of lncRNAs are hindered by the usual lack of phenotypes upon deletion or inhibition. Here, we used Drosophila imaginal discs as a model system to identify lncRNAs involved in development and regeneration. We examined a subset of lncRNAs expressed in the wing, leg, and eye disc development. Additionally, we analyzed transcriptomic data from regenerating wing discs to profile the expression pattern of lncRNAs during tissue repair. We focused on the lncRNA CR40469, which is upregulated during regeneration. We generated CR40469 mutant flies that developed normally but showed impaired wing regeneration upon cell death induction. The ability of these mutants to regenerate was restored by the ectopic expression of CR40469. Furthermore, we found that the lncRNA CR34335 has a high degree of sequence similarity with CR40469 and can partially compensate for its function during regeneration in the absence of CR40469. Our findings point to a potential role of the lncRNA CR40469 in trans during the response to damage in the wing imaginal disc.
Collapse
Affiliation(s)
- Carlos Camilleri-Robles
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Raziel Amador
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Marcel Tiebe
- German Cancer Research Center (DKFZ) Heidelberg, Division B140, 69120 Heidelberg, Germany
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ) Heidelberg, Division B140, 69120 Heidelberg, Germany
| | - Florenci Serras
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Roderic Guigó
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Catalonia, Spain
| | - Montserrat Corominas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
12
|
Catalán A, Gygax D, Rodríguez-Montes L, Hinzke T, Hoff KJ, Duchen P. Two novel genomes of fireflies with different degrees of sexual dimorphism reveal insights into sex-biased gene expression and dosage compensation. Commun Biol 2024; 7:906. [PMID: 39068254 PMCID: PMC11283472 DOI: 10.1038/s42003-024-06550-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Sexual dimorphism arises because of divergent fitness optima between the sexes. Phenotypic divergence between sexes can range from mild to extreme. Fireflies, bioluminescent beetles, present various degrees of sexual dimorphism, with species showing very mild sexual dimorphism to species presenting female-specific neoteny, posing a unique framework to investigate the evolution of sexually dimorphic traits across species. In this work, we present novel assembled genomes of two firefly species, Lamprohiza splendidula and Luciola italica, species with different degrees of sexual dimorphism. We uncover high synteny conservation of the X-chromosome across ~ 180 Mya and find full X-chromosome dosage compensation in our two fireflies, hinting at common mechanism upregulating the single male X-chromosome. Different degrees of sex-biased expressed genes were found across two body parts showing different proportions of expression conservation between species. Interestingly, we do not find X-chromosome enrichment of sex-biased genes, but retrieve autosomal enrichment of sex-biased genes. We further uncover higher nucleotide diversity in the intronic regions of sex-biased genes, hinting at a maintenance of heterozygosity through sexual selection. We identify different levels of sex-biased gene expression divergence including a set of genes showing conserved sex-biased gene expression between species. Divergent and conserved sex-biased genes are good candidates to test their role in the maintenance of sexually dimorphic traits.
Collapse
Affiliation(s)
- Ana Catalán
- Ludwig-Maximilians-Universität Munich, Division of Evolutionary Biology, Großhaderner Straße 2, Planegg-Martinsried, Bavaria, 82152, Germany.
| | - Daniel Gygax
- Ludwig-Maximilians-Universität Munich, Division of Evolutionary Biology, Großhaderner Straße 2, Planegg-Martinsried, Bavaria, 82152, Germany
- Helmholtz Center Munich, Helmholtz Pioneer Campus, Ingolstädter Landstraße 1, Munich, Oberschleißheim, 85764, Germany
| | - Leticia Rodríguez-Montes
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, D-69120, Heidelberg, Germany
| | - Tjorven Hinzke
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, University of Greifswald, Greifswald, Germany
- Department of Pathogen Evolution, Helmholtz Institute for One Health, Greifswald, Germany
| | - Katharina J Hoff
- University of Greifswald, Institute for Mathematics and Computer Science, Walther-Rathenau-Str. 47, 17489, Greifswald, Germany
| | - Pablo Duchen
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University of Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128, Mainz, Germany
| |
Collapse
|
13
|
Tian SZ, Yang Y, Ning D, Fang K, Jing K, Huang G, Xu Y, Yin P, Huang H, Chen G, Deng Y, Zhang S, Zhang Z, Chen Z, Gao T, Chen W, Li G, Tian R, Ruan Y, Li Y, Zheng M. 3D chromatin structures associated with ncRNA roX2 for hyperactivation and coactivation across the entire X chromosome. SCIENCE ADVANCES 2024; 10:eado5716. [PMID: 39058769 PMCID: PMC11277285 DOI: 10.1126/sciadv.ado5716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
The three-dimensional (3D) organization of chromatin within the nucleus is crucial for gene regulation. However, the 3D architectural features that coordinate the activation of an entire chromosome remain largely unknown. We introduce an omics method, RNA-associated chromatin DNA-DNA interactions, that integrates RNA polymerase II (RNAPII)-mediated regulome with stochastic optical reconstruction microscopy to investigate the landscape of noncoding RNA roX2-associated chromatin topology for gene equalization to achieve dosage compensation. Our findings reveal that roX2 anchors to the target gene transcription end sites (TESs) and spreads in a distinctive boot-shaped configuration, promoting a more open chromatin state for hyperactivation. Furthermore, roX2 arches TES to transcription start sites to enhance transcriptional loops, potentially facilitating RNAPII convoying and connecting proximal promoter-promoter transcriptional hubs for synergistic gene regulation. These TESs cluster as roX2 compartments, surrounded by inactive domains for coactivation of multiple genes within the roX2 territory. In addition, roX2 structures gradually form and scaffold for stepwise coactivation in dosage compensation.
Collapse
Affiliation(s)
- Simon Zhongyuan Tian
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yang Yang
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Duo Ning
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ke Fang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Kai Jing
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Guangyu Huang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yewen Xu
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Pengfei Yin
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Haibo Huang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518000, China
| | - Gengzhan Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yuqing Deng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Shaohong Zhang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhimin Zhang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhenxia Chen
- Hubei Hongshan Laboratory, College of Life Science and Technology, College of Biomedicine and Health, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Tong Gao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wei Chen
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Guoliang Li
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, 3D Genomics Research Center, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Ruilin Tian
- Department of Medical Neuroscience, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yijun Ruan
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yiming Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Meizhen Zheng
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
14
|
Phongbunchoo Y, Braikia FZ, Pessoa-Rodrigues C, Ramamoorthy S, Ramachandran H, Grosschedl A, Ma F, Cauchy P, Akhtar A, Sen R, Mittler G, Grosschedl R. YY1-mediated enhancer-promoter communication in the immunoglobulin μ locus is regulated by MSL/MOF recruitment. Cell Rep 2024; 43:114456. [PMID: 38990722 DOI: 10.1016/j.celrep.2024.114456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/02/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
The rearrangement and expression of the immunoglobulin μ heavy chain (Igh) gene require communication of the intragenic Eμ and 3' regulatory region (RR) enhancers with the variable (VH) gene promoter. Eμ binding of the transcription factor YY1 has been implicated in enhancer-promoter communication, but the YY1 protein network remains obscure. By analyzing the comprehensive proteome of the 1-kb Eμ wild-type enhancer and that of Eμ lacking the YY1 binding site, we identified the male-specific lethal (MSL)/MOF complex as a component of the YY1 protein network. We found that MSL2 recruitment depends on YY1 and that gene knockout of Msl2 in primary pre-B cells reduces μ gene expression and chromatin looping of Eμ to the 3' RR enhancer and VH promoter. Moreover, Mof heterozygosity in mice impaired μ expression and early B cell differentiation. Together, these data suggest that the MSL/MOF complex regulates Igh gene expression by augmenting YY1-mediated enhancer-promoter communication.
Collapse
Affiliation(s)
- Yutthaphong Phongbunchoo
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Fatima-Zohra Braikia
- Laboratory of Molecular Biology & Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Cecilia Pessoa-Rodrigues
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Senthilkumar Ramamoorthy
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute of Medical Bioinformatics and Systems Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Haribaskar Ramachandran
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Anna Grosschedl
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Fei Ma
- Laboratory of Molecular Biology & Immunology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Pierre Cauchy
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Asifa Akhtar
- Department of Chromatin Regulation, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - Ranjan Sen
- Laboratory of Molecular Biology & Immunology, National Institute on Aging, NIH, Baltimore, MD, USA.
| | - Gerhard Mittler
- Proteomics Facility, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| | - Rudolf Grosschedl
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
15
|
Palihati M, Saitoh N. RNA in chromatin organization and nuclear architecture. Curr Opin Genet Dev 2024; 86:102176. [PMID: 38490161 DOI: 10.1016/j.gde.2024.102176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 03/17/2024]
Abstract
In the cell nucleus, genomic DNA is surrounded by nonmembranous nuclear bodies. This might result from specific regions of the genome being transcribed into long noncoding RNAs (lncRNAs), which tend to remain at the sites of their own transcription. The lncRNAs seed the nuclear bodies by recruiting and concentrating proteins and RNAs, which undergo liquid-liquid-phase separation, and form molecular condensates, the so-called nuclear bodies. These nuclear bodies may provide appropriate environments for gene activation or repression. Notably, lncRNAs also contribute to three-dimensional genome structure by mediating long-range chromatin interactions. In this review, we discuss the mechanisms by which lncRNAs regulate gene expression through shaping chromatin and nuclear architectures. We also explore lncRNAs' potential as a therapeutic target for cancer, because lncRNAs are often expressed in a disease-specific manner.
Collapse
Affiliation(s)
- Maierdan Palihati
- Division of Cancer Biology, The Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Noriko Saitoh
- Division of Cancer Biology, The Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|
16
|
Kiss AE, Venkatasubramani AV, Pathirana D, Krause S, Sparr A, Hasenauer J, Imhof A, Müller M, Becker P. Processivity and specificity of histone acetylation by the male-specific lethal complex. Nucleic Acids Res 2024; 52:4889-4905. [PMID: 38407474 PMCID: PMC11109948 DOI: 10.1093/nar/gkae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024] Open
Abstract
Acetylation of lysine 16 of histone H4 (H4K16ac) stands out among the histone modifications, because it decompacts the chromatin fiber. The metazoan acetyltransferase MOF (KAT8) regulates transcription through H4K16 acetylation. Antibody-based studies had yielded inconclusive results about the selectivity of MOF to acetylate the H4 N-terminus. We used targeted mass spectrometry to examine the activity of MOF in the male-specific lethal core (4-MSL) complex on nucleosome array substrates. This complex is part of the Dosage Compensation Complex (DCC) that activates X-chromosomal genes in male Drosophila. During short reaction times, MOF acetylated H4K16 efficiently and with excellent selectivity. Upon longer incubation, the enzyme progressively acetylated lysines 12, 8 and 5, leading to a mixture of oligo-acetylated H4. Mathematical modeling suggests that MOF recognizes and acetylates H4K16 with high selectivity, but remains substrate-bound and continues to acetylate more N-terminal H4 lysines in a processive manner. The 4-MSL complex lacks non-coding roX RNA, a critical component of the DCC. Remarkably, addition of RNA to the reaction non-specifically suppressed H4 oligo-acetylation in favor of specific H4K16 acetylation. Because RNA destabilizes the MSL-nucleosome interaction in vitro we speculate that RNA accelerates enzyme-substrate turn-over in vivo, thus limiting the processivity of MOF, thereby increasing specific H4K16 acetylation.
Collapse
Affiliation(s)
- Anna E Kiss
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
| | - Anuroop V Venkatasubramani
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
| | - Dilan Pathirana
- Life and Medical Sciences (LIMES) Institute, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Silke Krause
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
| | - Aline Campos Sparr
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
| | - Jan Hasenauer
- Life and Medical Sciences (LIMES) Institute, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Computational Health Center, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Axel Imhof
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
| | - Marisa Müller
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
| | - Peter B Becker
- Biomedical Center, Molecular Biology Division, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
| |
Collapse
|
17
|
Choudhury R, Venkateswaran Venkatasubramani A, Hua J, Borsò M, Franconi C, Kinkley S, Forné I, Imhof A. The role of RNA in the maintenance of chromatin domains as revealed by antibody-mediated proximity labelling coupled to mass spectrometry. eLife 2024; 13:e95718. [PMID: 38717135 PMCID: PMC11147508 DOI: 10.7554/elife.95718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/26/2024] [Indexed: 06/04/2024] Open
Abstract
Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity biotinylation method targeting the RNA and proteins constituents. The method that we termed antibody-mediated proximity labelling coupled to mass spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X chromosome in Drosophila. This analysis identified a number of known RNA-binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.
Collapse
Affiliation(s)
- Rupam Choudhury
- Department of Molecular Biology, Biomedical Center Munich, Ludwig-Maximilians UniversityPlanegg-MartinsriedGermany
| | - Anuroop Venkateswaran Venkatasubramani
- Department of Molecular Biology, Biomedical Center Munich, Ludwig-Maximilians UniversityPlanegg-MartinsriedGermany
- Graduate School of Quantitative Biosciences (QBM), Ludwig-Maximilians-Universität MünchenMunichGermany
| | - Jie Hua
- Department of Molecular Biology, Biomedical Center Munich, Ludwig-Maximilians UniversityPlanegg-MartinsriedGermany
| | - Marco Borsò
- Protein Analysis Unit, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians, University (LMU) MunichPlanegg-MartinsriedGermany
| | - Celeste Franconi
- Chromatin Structure and Function group, Department of Computational Molecular Biology, Max Planck Institute for Molecular GeneticsBerlinGermany
| | - Sarah Kinkley
- Chromatin Structure and Function group, Department of Computational Molecular Biology, Max Planck Institute for Molecular GeneticsBerlinGermany
| | - Ignasi Forné
- Protein Analysis Unit, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians, University (LMU) MunichPlanegg-MartinsriedGermany
| | - Axel Imhof
- Department of Molecular Biology, Biomedical Center Munich, Ludwig-Maximilians UniversityPlanegg-MartinsriedGermany
- Protein Analysis Unit, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians, University (LMU) MunichPlanegg-MartinsriedGermany
| |
Collapse
|
18
|
Salzler HR, Vandadi V, Matera AG. Set2 and H3K36 regulate the Drosophila male X chromosome in a context-specific manner, independent from MSL complex spreading. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592390. [PMID: 38766267 PMCID: PMC11100620 DOI: 10.1101/2024.05.03.592390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Dosage compensation in Drosophila involves upregulating male X-genes two-fold. This process is carried out by the MSL (male-specific lethal) complex, which binds high-affinity sites and spreads to surrounding genes. Current models of MSL spreading focus on interactions of MSL3 (male-specific lethal 3) with histone marks; in particular, Set2-dependent H3 lysine-36 trimethylation (H3K36me3). However, Set2 might affect DC via another target, or there could be redundancy between canonical H3.2 and variant H3.3 histones. Further, it is difficult to parse male-specific effects from those that are simply X-specific. To discriminate among these possibilities, we employed genomic approaches in H3K36 (residue) and Set2 (writer) mutants. The results confirm a role for Set2 in X-gene regulation, but show that expression trends in males are often mirrored in females. Instead of global male-specific reduction of X-genes in Set2/H3K36 mutants, the effects were heterogeneous. We identified cohorts of genes whose expression was significantly altered following loss of H3K36 or Set2, but the changes were in opposite directions, suggesting that H3K36me states have reciprocal functions. In contrast to H4K16R controls, analysis of combined H3.2K36R/H3.3K36R mutants neither showed consistent reduction in X-gene expression, nor any correlation with MSL3 binding. Examination of other developmental stages/tissues revealed additional layers of context-dependence. Our studies implicate BEAF-32 and other insulator proteins in Set2/H3K36-dependent regulation. Overall, the data are inconsistent with the prevailing model wherein H3K36me3 directly recruits the MSL complex. We propose that Set2 and H3K36 support DC indirectly, via processes that are utilized by MSL but common to both sexes.
Collapse
Affiliation(s)
- Harmony R. Salzler
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Vasudha Vandadi
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - A. Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
- Department of Biology, University of North Carolina, Chapel Hill, NC, USA
- RNA Discovery and Lineberger Comprehensive Cancer Centers, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
19
|
Mitchell T, Lin J, Hicks S, James J, Rangan P, Forni P. Loss of function of male-specific lethal 3 (Msl3) does not affect spermatogenesis in rodents. Dev Dyn 2024; 253:453-466. [PMID: 37847071 PMCID: PMC11021377 DOI: 10.1002/dvdy.669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/12/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Male-specific lethal 3 (Msl3) is a member of the chromatin-associated male-specific lethal MSL complex, which is responsible for the transcriptional upregulation of genes on the X chromosome in males of Drosophila. Although the dosage complex operates differently in mammals, the Msl3 gene is conserved from flies to humans. Msl3 is required for meiotic entry during Drosophila oogenesis. Recent reports indicate that also in primates, Msl3 is expressed in undifferentiated germline cells before meiotic entry. However, if Msl3 plays a role in the meiotic entry of mammals has yet to be explored. RESULTS To understand, if Msl3a plays a role in the meiotic entry of mammals, we used mouse spermatogenesis as a study model. Analyses of single-cell RNA-seq data revealed that, in mice, Msl3 is mostly expressed in meiotic cells. To test the role of Msl3 in meiosis, we used a male germline-specific Stra8-iCre driver and a newly generated Msl3flox conditional knock-out mouse line. Msl3 conditional loss-of-function in spermatogonia did not cause spermatogenesis defects or changes in the expression of genes related to meiosis. CONCLUSIONS Our data suggest that, in mice, Msl3 exhibits delayed expression compared to Drosophila and primates, and loss-of-function mutations disrupting the chromodomain of Msl3 alone do not impede meiotic entry in rodents.
Collapse
Affiliation(s)
- T.A. Mitchell
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- The Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, USA
| | - J.M. Lin
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- The Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, USA
| | - S.M. Hicks
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - J.R. James
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - P. Rangan
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - P.E. Forni
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
- The Center for Neuroscience Research, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
20
|
Tikhonova EA, Georgiev PG, Maksimenko OG. Functional Role of C-terminal Domains in the MSL2 Protein of Drosophila melanogaster. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:663-673. [PMID: 38831503 DOI: 10.1134/s0006297924040060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 06/05/2024]
Abstract
Dosage compensation complex (DCC), which consists of five proteins and two non-coding RNAs roX, specifically binds to the X chromosome in males, providing a higher level of gene expression necessary to compensate for the monosomy of the sex chromosome in male Drosophila compared to the two X chromosomes in females. The MSL2 protein contains the N-terminal RING domain, which acts as an E3 ligase in ubiquitination of proteins and is the only subunit of the complex expressed only in males. Functional role of the two C-terminal domains of the MSL2 protein, enriched with proline (P-domain) and basic amino acids (B-domain), was investigated. As a result, it was shown that the B-domain destabilizes the MSL2 protein, which is associated with the presence of two lysines ubiquitination of which is under control of the RING domain of MSL2. The unstructured proline-rich domain stimulates transcription of the roX2 gene, which is necessary for effective formation of the dosage compensation complex.
Collapse
Affiliation(s)
| | - Pavel G Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Oksana G Maksimenko
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| |
Collapse
|
21
|
Tikhonova E, Revel-Muroz A, Georgiev P, Maksimenko O. Interaction of MLE with CLAMP zinc finger is involved in proper MSL proteins binding to chromosomes in Drosophila. Open Biol 2024; 14:230270. [PMID: 38471568 DOI: 10.1098/rsob.230270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
The Drosophila male-specific lethal (MSL) complex binds to the male X chromosome to activate transcription. It comprises five proteins (MSL1, MSL2, MSL3, male absent on the first (MOF), and maleless (MLE)) and two long noncoding RNAs (lncRNAs; roX1 and roX2). The MLE helicase remodels the roX lncRNAs, enabling the lncRNA-mediated assembly of the Drosophila dosage compensation complex. MSL2 is expressed only in males and interacts with the N-terminal zinc finger of the transcription factor chromatin-linked adapter for MSL proteins (CLAMP), which is important for the specific recruitment of the MSL complex to the male X chromosome. Here, we found that MLE's unstructured C-terminal region interacts with the sixth zinc-finger domain of CLAMP. In vitro, 4-5 zinc fingers are critical for the specific DNA-binding of CLAMP with GA repeats, which constitute the core motif at the high affinity binding sites for MSL proteins. Deleting the CLAMP binding region in MLE decreases the association of MSL proteins with the male X chromosome and increases male lethality. These results suggest that interactions of unstructured regions in MSL2 and MLE with CLAMP zinc finger domains are important for the specific recruitment of the MSL complex to the male X chromosome.
Collapse
Affiliation(s)
- Evgeniya Tikhonova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Anastasia Revel-Muroz
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
22
|
Luchsinger-Morcelle SJ, Gribnau J, Mira-Bontenbal H. Orchestrating Asymmetric Expression: Mechanisms behind Xist Regulation. EPIGENOMES 2024; 8:6. [PMID: 38390897 PMCID: PMC10885031 DOI: 10.3390/epigenomes8010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Compensation for the gene dosage disequilibrium between sex chromosomes in mammals is achieved in female cells by repressing one of its X chromosomes through a process called X chromosome inactivation (XCI), exemplifying the control of gene expression by epigenetic mechanisms. A critical player in this mechanism is Xist, a long, non-coding RNA upregulated from a single X chromosome during early embryonic development in female cells. Over the past few decades, many factors involved at different levels in the regulation of Xist have been discovered. In this review, we hierarchically describe and analyze the different layers of Xist regulation operating concurrently and intricately interacting with each other to achieve asymmetric and monoallelic upregulation of Xist in murine female cells. We categorize these into five different classes: DNA elements, transcription factors, other regulatory proteins, long non-coding RNAs, and the chromatin and topological landscape surrounding Xist.
Collapse
Affiliation(s)
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Hegias Mira-Bontenbal
- Department of Developmental Biology, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
23
|
Lang N, Jagtap PKA, Hennig J. Regulation and mechanisms of action of RNA helicases. RNA Biol 2024; 21:24-38. [PMID: 39435974 PMCID: PMC11498004 DOI: 10.1080/15476286.2024.2415801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
RNA helicases are an evolutionary conserved class of nucleoside triphosphate dependent enzymes found in all kingdoms of life. Their cellular functions range from transcription regulation up to maintaining genomic stability and viral defence. As dysregulation of RNA helicases has been shown to be involved in several cancers and various diseases, RNA helicases are potential therapeutic targets. However, for selective targeting of a specific RNA helicase, it is crucial to develop a detailed understanding about its dynamics and regulation on a molecular and structural level. Deciphering unique features of specific RNA helicases is of fundamental importance not only for future drug development but also to deepen our understanding of RNA helicase regulation and function in cellular processes. In this review, we discuss recent insights into regulation mechanisms of RNA helicases and highlight models which demonstrate the interplay between helicase structure and their functions.
Collapse
Affiliation(s)
- Nina Lang
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Pravin Kumar Ankush Jagtap
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| | - Janosch Hennig
- Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany
- Molecular Systems Biology Unit, EMBL Heidelberg, Heidelberg, Germany
| |
Collapse
|
24
|
Hussain MS, Altamimi ASA, Afzal M, Almalki WH, Kazmi I, Alzarea SI, Saleem S, Prasher P, Oliver B, Singh SK, MacLoughlin R, Dua K, Gupta G. From carcinogenesis to therapeutic avenues: lncRNAs and mTOR crosstalk in lung cancer. Pathol Res Pract 2024; 253:155015. [PMID: 38103364 DOI: 10.1016/j.prp.2023.155015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been demonstrated to have a crucial function in the modulation of the activity of genes, impacting a variety of homeostatic processes involving growth, survival, movement, and genomic consistency. Certain lncRNAs' aberrant expression has been linked to carcinogenesis, tumor growth, and therapeutic resistance. They are beneficial for the management of malignancies since they can function as cancer-causing or cancer-suppressing genes and behave as screening or prognosis indicators. The modulation of the tumor microenvironment, metabolic modification, and spread have all been linked to lncRNAs in lung cancer. Recent research has indicated that lncRNAs may interact with various mTOR signalling systems to control expression in lung cancer. Furthermore, the route can affect how lncRNAs are expressed. Emphasizing the function of lncRNAs as crucial participants in the mTOR pathway, the current review intends to examine the interactions between the mTOR cascade and the advancement of lung cancer. The article will shed light on the roles and processes of a few lncRNAs associated with the development of lung cancer, as well as their therapeutic prospects.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- ōDepartment of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun 248007, India
| | - Brian Oliver
- Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia; Woolcock Institute of Medical Research, Macquarie university, Sydney, NSW, 2137
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Ronan MacLoughlin
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster D02 YN77, Ireland; School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster D02 PN40, Ireland; Research and Development, Science and Emerging Technologies, Aerogen Ltd., Galway Business Park, H91 HE94 Galway, Ireland
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India.
| |
Collapse
|
25
|
Alharthi NS, Al-Zahrani MH, Hazazi A, Alhuthali HM, Gharib AF, Alzahrani S, Altalhi W, Almalki WH, Khan FR. Exploring the lncRNA-VEGF axis: Implications for cancer detection and therapy. Pathol Res Pract 2024; 253:154998. [PMID: 38056133 DOI: 10.1016/j.prp.2023.154998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023]
Abstract
Cancer is a complicated illness that spreads indefinitely owing to epigenetic, genetic, and genomic alterations. Cancer cell multidrug susceptibility represents a severe barrier in cancer therapy. As a result, creating effective therapies requires a better knowledge of the mechanisms driving cancer development, progress, and resistance to medications. The human genome is predominantly made up of long non coding RNAs (lncRNAs), which are currently identified as critical moderators in a variety of biological functions. Recent research has found that changes in lncRNAs are closely related to cancer biology. The vascular endothelial growth factor (VEGF) signalling system is necessary for angiogenesis and vascular growth and has been related to an array of health illnesses, such as cancer. LncRNAs have been identified to alter a variety of cancer-related processes, notably the division of cells, movement, angiogenesis, and treatment sensitivity. Furthermore, lncRNAs may modulate immune suppression and are being investigated as possible indicators for early identification of cancer. Various lncRNAs have been associated with cancer development and advancement, serving as cancer-causing or suppressing genes. Several lncRNAs have been demonstrated through research to impact the VEGF cascade, resulting in changes in angiogenesis and tumor severity. For example, the lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been shown to foster the formation of oral squamous cell carcinoma and the epithelial-mesenchymal transition by stimulating the VEGF-A and Notch systems. Plasmacytoma variant translocation 1 (PVT1) promotes angiogenesis in non-small-cell lung cancer by affecting miR-29c and boosting the VEGF cascade. Furthermore, lncRNAs regulate VEGF production and angiogenesis by interacting with multiple downstream signalling networks, including Wnt, p53, and AKT systems. Identifying how lncRNAs engage with the VEGF cascade in cancer gives beneficial insights into tumor biology and possible treatment strategies. Exploring the complicated interaction between lncRNAs and the VEGF pathway certainly paves avenues for novel ways to detect better accurately, prognosis, and cure cancers. Future studies in this area could open avenues toward the creation of innovative cancer therapy regimens that enhance the lives of patients.
Collapse
Affiliation(s)
- Nahed S Alharthi
- Department of Medical Laboratory, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudia Arabia
| | | | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Hayaa Moeed Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amal F Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Shatha Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Wafa Altalhi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Farhan R Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences AlQuwayiyah, Shaqra University, Saudi Arabia.
| |
Collapse
|
26
|
Jagtap PKA, Müller M, Kiss AE, Thomae AW, Lapouge K, Beck M, Becker PB, Hennig J. Structural basis of RNA-induced autoregulation of the DExH-type RNA helicase maleless. Mol Cell 2023; 83:4318-4333.e10. [PMID: 37989319 DOI: 10.1016/j.molcel.2023.10.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 07/27/2023] [Accepted: 10/18/2023] [Indexed: 11/23/2023]
Abstract
RNA unwinding by DExH-type helicases underlies most RNA metabolism and function. It remains unresolved if and how the basic unwinding reaction of helicases is regulated by auxiliary domains. We explored the interplay between the RecA and auxiliary domains of the RNA helicase maleless (MLE) from Drosophila using structural and functional studies. We discovered that MLE exists in a dsRNA-bound open conformation and that the auxiliary dsRBD2 domain aligns the substrate RNA with the accessible helicase tunnel. In an ATP-dependent manner, dsRBD2 associates with the helicase module, leading to tunnel closure around ssRNA. Furthermore, our structures provide a rationale for blunt-ended dsRNA unwinding and 3'-5' translocation by MLE. Structure-based MLE mutations confirm the functional relevance of our model for RNA unwinding. Our findings contribute to our understanding of the fundamental mechanics of auxiliary domains in DExH helicase MLE, which serves as a model for its human ortholog and potential therapeutic target, DHX9/RHA.
Collapse
Affiliation(s)
- Pravin Kumar Ankush Jagtap
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany.
| | - Marisa Müller
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Anna E Kiss
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Andreas W Thomae
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany; Core Facility Bioimaging at the Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Karine Lapouge
- Protein Expression and Purification Core Facility, EMBL Heidelberg, 69117 Heidelberg, Germany
| | - Martin Beck
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Peter B Becker
- Molecular Biology Division, Biomedical Center, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - Janosch Hennig
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Chair of Biochemistry IV, Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
27
|
Mohapatra S, Tripathi S, Sharma V, Basu A. Regulation of microglia-mediated inflammation by host lncRNA Gm20559 upon flaviviral infection. Cytokine 2023; 172:156383. [PMID: 37801852 DOI: 10.1016/j.cyto.2023.156383] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/01/2023] [Accepted: 09/25/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Japanese Encephalitis Virus (JEV) and West Nile Viruses (WNV) are neurotropic flaviviruses which cause neuronal death and exaggerated glial activation in the central nervous system. Role of host long non coding RNAs in shaping microglial inflammation upon flavivirus infections has been unexplored. This study attempted to decipher the role of lncRNA Gm20559 in regulating microglial inflammatory response in context of flaviviruses. METHODS Antisense oligonucleotide LNA Gapmers designed against lncRNA Gm20559 and non-specific site (negative control) were used for Gm20559 knockdown in JEV and WNV-infected N9 microglial cells. Upon establishing successful Gm20559 knockdown, expression of various proinflammatory cytokines, chemokines, interferon-stimulated genes (ISGs) and RIG-I were checked by qRT-PCR and cytometric bead array. Western Blotting was done to analyse the phosphorylation level of various inflammatory markers and viral non-structural protein expression. Plaque Assays were employed to quantify viral titres in microglial supernatant upon knocking down Gm20559. Effect of microglial supernatant on HT22 neuronal cells was assessed by checking expression of apoptotic protein and viral non-structural protein by Western Blotting. RESULTS Upregulation in Gm20559 expression was observed in BALB/c pup brains, primary microglia as well as N9 microglia cell line upon both JEV and WNV infection. Knockdown of Gm20559 in JEV and WNV-infected N9 cell led to the reduction of major proinflammatory cytokines - IL-1β, IL-6, IP-10 and IFN-β. Inhibition of Gm20559 upon JEV infection in N9 microglia also led to downregulation of RIG-I and OAS-2, which was not the case in WNV-infected N9 microglia. Phosphorylation level of P38 MAPK was reduced in case of JEV-infected N9 microglia and not WNV-infected N9 microglia. Whereas phosphorylation of NF-κB pathway was unchanged upon Gm20559 knockdown in both JEV and WNV-infected N9 microglia. However, treating HT22 cells with JEV and WNV-infected microglial supernatant with and without Gm20559 could not trigger cell death or influence viral replication. CONCLUSION Knockdown studies on lncRNA Gm20559 suggests its pivotal role in maintaining the inflammatory milieu of microglia in flaviviral infection by modulating the expression of various pro-inflammatory cytokines. However, Gm20559-induced increased microglial proinflammatory response upon flavivirus infection fails to trigger neuronal death.
Collapse
Affiliation(s)
- Stuti Mohapatra
- National Brain Research Centre, Manesar, Haryana 122052, India
| | - Shraddha Tripathi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana 500078, India
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Telangana 500078, India.
| | - Anirban Basu
- National Brain Research Centre, Manesar, Haryana 122052, India.
| |
Collapse
|
28
|
Babosha VA, Georgiev PG, Maksimenko OG. Study of the Role of Long Noncoding roX RNA in Maintaining of the Dosage Compensation Complex in Drosophila melanogaster. DOKL BIOCHEM BIOPHYS 2023; 513:S8-S11. [PMID: 38189885 DOI: 10.1134/s160767292370062x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 01/09/2024]
Abstract
The proteins MSL1, MSL2, MSL3, MLE, and MOF and noncoding RNAs roX1 and roX2 form the Drosophila dosage compensation complex (DCC), which specifically binds to the X chromosome of males. It is known that noncoding RNA roX are primary component of the DCC in the process of assembly and spreading of the complex among the X chromosome of males. However, the role of this RNA in maintaining the structure of the already assembled complex remains unclear. In this work, we have shown that the full-assembled dosage compensation complex dissociates rather weakly when treated with RNases: the MLE helicase is effectively released from the complex, and the remaining protein components (MSL1, MSL2, and MSL3) undergo partial disassembly and continue to be part of subcomplexes. The results confirm the importance of the noncoding roX2 RNA not only in the processes of initiation of DCC assembly but also at the stage of maintaining the structure of the already assembled complex.
Collapse
Affiliation(s)
- V A Babosha
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| | - P G Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - O G Maksimenko
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
29
|
Krzywinska E, Ribeca P, Ferretti L, Hammond A, Krzywinski J. A novel factor modulating X chromosome dosage compensation in Anopheles. Curr Biol 2023; 33:4697-4703.e4. [PMID: 37774706 DOI: 10.1016/j.cub.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 10/01/2023]
Abstract
Dosage compensation (DC), a process countering chromosomal imbalance in individuals with heteromorphic sex chromosomes, has been molecularly characterized only in mammals, Caenorhabditis elegans, and fruit flies.1 In Drosophila melanogaster males, it is achieved by an approximately 2-fold hypertranscription of the monosomic X chromosome mediated by the MSL complex.2,3 The complex is not assembled on female X chromosomes because production of its key protein MSL-2 is prevented due to intron retention and inhibition of translation by Sex-lethal, a female-specific protein operating at the top of the sex determination pathway.4 It remains unclear how DC is mechanistically regulated in other insects. In the malaria mosquito Anopheles gambiae, an approximately 2-fold hypertranscription of the male X also occurs5 by a yet-unknown molecular mechanism distinct from that in D. melanogaster.6 Here we show that a male-specifically spliced gene we call 007, which arose by a tandem duplication in the Anopheles ancestral lineage, is involved in the control of DC in males. Homozygous 007 knockouts lead to a global downregulation of the male X, phenotypically manifested by a slower development compared to wild-type mosquitoes or mutant females-however, without loss of viability or fertility. In females, a 007 intron retention promoted by the sex determination protein Femaleless, known to prevent hypertranscription from both X chromosomes,7 introduces a premature termination codon apparently rendering the female transcripts non-productive. In addition to providing a unique perspective on DC evolution, the 007, with its conserved properties, may represent an important addition to a genetic toolbox for malaria vector control.
Collapse
Affiliation(s)
| | - Paolo Ribeca
- The Pirbright Institute, Ash Road, Pirbright, Surrey GU24 0NF, UK; National Infection Service, UK Health Security Agency, Colindale Avenue, London NW9 5EQ, UK
| | - Luca Ferretti
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK
| | - Andrew Hammond
- Department of Life Sciences, Imperial College, Exhibition Road, London SW7 2AZ, UK; Biocentis, S.r.l., Via Mazzieri, 05100 Terni, Italy
| | | |
Collapse
|
30
|
Murphy PJ, Berger F. The chromatin source-sink hypothesis: a shared mode of chromatin-mediated regulations. Development 2023; 150:dev201989. [PMID: 38771301 PMCID: PMC10629678 DOI: 10.1242/dev.201989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/12/2023] [Indexed: 11/05/2023]
Abstract
We propose that several chromatin-mediated regulatory processes are dominated by source-sink relationships in which factors operate as 'sources' to produce or provide a resource and compete with each other to occupy separate 'sinks'. In this model, large portions of genomic DNA operate as 'sinks', which are filled by 'sources', such as available histone variants, covalent modifications to histones, the readers of these modifications and non-coding RNAs. Competing occupation for the sinks by different sources leads to distinct states of genomic equilibrium in differentiated cells. During dynamic developmental events, such as sexual reproduction, we propose that dramatic and rapid reconfiguration of source-sink relationships modifies chromatin states. We envision that re-routing of sources could occur by altering the dimensions of the sink, by reconfiguration of existing sink occupation or by varying the size of the source, providing a central mechanism to explain a plethora of epigenetic phenomena, which contribute to phenotypic variegation, zygotic genome activation and nucleolar dominance.
Collapse
Affiliation(s)
- Patrick J. Murphy
- University of Rochester, Department of Biomedical Genetics and Department of Biology, 601 Elmwood Ave., Rochester NY 14620, USA
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter; Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
31
|
Eggers N, Gkountromichos F, Krause S, Campos-Sparr A, Becker P. Physical interaction between MSL2 and CLAMP assures direct cooperativity and prevents competition at composite binding sites. Nucleic Acids Res 2023; 51:9039-9054. [PMID: 37602401 PMCID: PMC10516644 DOI: 10.1093/nar/gkad680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/13/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023] Open
Abstract
MSL2, the DNA-binding subunit of the Drosophila dosage compensation complex, cooperates with the ubiquitous protein CLAMP to bind MSL recognition elements (MREs) on the X chromosome. We explore the nature of the cooperative binding to these GA-rich, composite sequence elements in reconstituted naïve embryonic chromatin. We found that the cooperativity requires physical interaction between both proteins. Remarkably, disruption of this interaction does not lead to indirect, nucleosome-mediated cooperativity as expected, but to competition. The protein interaction apparently not only increases the affinity for composite binding sites, but also locks both proteins in a defined dimeric state that prevents competition. High Affinity Sites of MSL2 on the X chromosome contain variable numbers of MREs. We find that the cooperation between MSL2/CLAMP is not influenced by MRE clustering or arrangement, but happens largely at the level of individual MREs. The sites where MSL2/CLAMP bind strongly in vitro locate to all chromosomes and show little overlap to an expanded set of X-chromosomal MSL2 in vivo binding sites generated by CUT&RUN. Apparently, the intrinsic MSL2/CLAMP cooperativity is limited to a small selection of potential sites in vivo. This restriction must be due to components missing in our reconstitution, such as roX2 lncRNA.
Collapse
Affiliation(s)
- Nikolas Eggers
- Biomedical Center, Molecular Biology Division, LMU, Munich, Germany
| | | | - Silke Krause
- Biomedical Center, Molecular Biology Division, LMU, Munich, Germany
| | | | - Peter B Becker
- Biomedical Center, Molecular Biology Division, LMU, Munich, Germany
| |
Collapse
|
32
|
Guo B, Li T, Wang L, Liu F, Chen B. Long non-coding RNAs regulate heavy metal-induced apoptosis in embryo-derived cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121956. [PMID: 37271361 DOI: 10.1016/j.envpol.2023.121956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/14/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Heavy metal pollution has been a worldwide prevalent problem, and particularly a threat to ecosystem integrity and animals' health. Previous studies on the mechanisms of heavy metal toxicity have focused on protein-coding genes, whereas most genomic transcripts are long non-coding RNAs (lncRNAs). Although lncRNAs are known to play important regulatory roles in biological processes, their role in heavy metal stress regulation is still not fully understood. We here developed an insect embryo cell model for studying metal toxicity and the underlying regulatory mechanisms. We performed genome-wide screening and functional characterization of lncRNAs induced by two essential and two non-essential heavy metals in Drosophila embryo-derived S2 cells. We identified 4894 lncRNAs, of which 1410 were novel. Forty-one lncRNAs, together with 328 mRNAs, were induced by all the four heavy metals. LncRNA-mRNA co-expression network and pathway enrichment analysis showed that detoxification metabolism, circadian rhythm, and apoptosis regulation pathways were activated in response to heavy metal stress. LncRNA CR44138 was remarkably upregulated in cells exposed to the four heavy metals and was associated with the apoptosis pathway. Expression interference confirmed that CR44138 aggravated cytotoxicity-induced apoptosis in cells under heavy metals stress. This study highlights the important role of lncRNAs in regulating the cellular response to heavy metals. This study also lays the foundation for discovering the novel regulatory mechanisms and developing diagnostic biomarkers of the toxic effects of heavy metal pollutants on organisms.
Collapse
Affiliation(s)
- Boyang Guo
- College of Life Science, Hebei University, Baoding 071002, China
| | - Ting Li
- School of Life Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, 271016, Shandong Province, China
| | - Lingyan Wang
- College of Life Science, Hebei University, Baoding 071002, China
| | - Fengsong Liu
- College of Life Science, Hebei University, Baoding 071002, China
| | - Bing Chen
- College of Life Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
33
|
Hussain MS, Afzal O, Gupta G, Altamimi ASA, Almalki WH, Alzarea SI, Kazmi I, Fuloria NK, Sekar M, Meenakshi DU, Thangavelu L, Sharma A. Long non-coding RNAs in lung cancer: Unraveling the molecular modulators of MAPK signaling. Pathol Res Pract 2023; 249:154738. [PMID: 37595448 DOI: 10.1016/j.prp.2023.154738] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023]
Abstract
Lung cancer (LC) continues to pose a significant global medical burden, necessitating a comprehensive understanding of its molecular foundations to establish effective treatment strategies. The mitogen-activated protein kinase (MAPK) signaling system has been scientifically associated with LC growth; however, the intricate regulatory mechanisms governing this system remain unknown. Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of diverse cellular activities, including cancer growth. LncRNAs have been implicated in LC, which can function as oncogenes or tumor suppressors, and their dysregulation has been linked to cancer cell death, metastasis, spread, and proliferation. Due to their involvement in critical pathophysiological processes, lncRNAs are gaining attention as potential candidates for anti-cancer treatments. This article aims to elucidate the regulatory role of lncRNAs in MAPK signaling in LC. We provide a comprehensive review of the key components of the MAPK pathway and their relevance in LC, focusing on aberrant signaling processes associated with disease progression. By examining recent research and experimental findings, this article examines the molecular mechanisms through which lncRNAs influence MAPK signaling in lung cancer, ultimately contributing to tumor development.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | | | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | | | - Lakshmi Thangavelu
- Center for Global Health Research , Saveetha Medical College , Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
| | - Ajay Sharma
- Delhi Pharmaceutical Science and Research University, Pushp Vihar Sector-3, MB Road, New Delhi 110017, India.
| |
Collapse
|
34
|
Rücklé C, Körtel N, Basilicata MF, Busch A, Zhou Y, Hoch-Kraft P, Tretow K, Kielisch F, Bertin M, Pradhan M, Musheev M, Schweiger S, Niehrs C, Rausch O, Zarnack K, Keller Valsecchi CI, König J. RNA stability controlled by m 6A methylation contributes to X-to-autosome dosage compensation in mammals. Nat Struct Mol Biol 2023; 30:1207-1215. [PMID: 37202476 PMCID: PMC10442230 DOI: 10.1038/s41594-023-00997-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/06/2023] [Indexed: 05/20/2023]
Abstract
In mammals, X-chromosomal genes are expressed from a single copy since males (XY) possess a single X chromosome, while females (XX) undergo X inactivation. To compensate for this reduction in dosage compared with two active copies of autosomes, it has been proposed that genes from the active X chromosome exhibit dosage compensation. However, the existence and mechanisms of X-to-autosome dosage compensation are still under debate. Here we show that X-chromosomal transcripts have fewer m6A modifications and are more stable than their autosomal counterparts. Acute depletion of m6A selectively stabilizes autosomal transcripts, resulting in perturbed dosage compensation in mouse embryonic stem cells. We propose that higher stability of X-chromosomal transcripts is directed by lower levels of m6A, indicating that mammalian dosage compensation is partly regulated by epitranscriptomic RNA modifications.
Collapse
Affiliation(s)
| | - Nadine Körtel
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - M Felicia Basilicata
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anke Busch
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - You Zhou
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | | | | | | | - Marco Bertin
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | - Susann Schweiger
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christof Niehrs
- Institute of Molecular Biology (IMB), Mainz, Germany
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Julian König
- Institute of Molecular Biology (IMB), Mainz, Germany.
| |
Collapse
|
35
|
Mattimoe T, Payer B. The compleX balancing act of controlling X-chromosome dosage and how it impacts mammalian germline development. Biochem J 2023; 480:521-537. [PMID: 37096944 PMCID: PMC10212525 DOI: 10.1042/bcj20220450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 04/26/2023]
Abstract
In female mammals, the two X chromosomes are subject to epigenetic gene regulation in order to balance X-linked gene dosage with autosomes and in relation to males, which have one X and one Y chromosome. This is achieved by an intricate interplay of several processes; X-chromosome inactivation and reactivation elicit global epigenetic regulation of expression from one X chromosome in a stage-specific manner, whilst the process of X-chromosome upregulation responds to this by fine-tuning transcription levels of the second X. The germline is unique in its function of transmitting both the genetic and epigenetic information from one generation to the next, and remodelling of the X chromosome is one of the key steps in setting the stage for successful development. Here, we provide an overview of the complex dynamics of X-chromosome dosage control during embryonic and germ cell development, and aim to decipher its potential role for normal germline competency.
Collapse
Affiliation(s)
- Tom Mattimoe
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Bernhard Payer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer Dr. Aiguader 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
36
|
Forbes Beadle L, Zhou H, Rattray M, Ashe HL. Modulation of transcription burst amplitude underpins dosage compensation in the Drosophila embryo. Cell Rep 2023; 42:112382. [PMID: 37060568 PMCID: PMC10283159 DOI: 10.1016/j.celrep.2023.112382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/03/2023] [Accepted: 03/27/2023] [Indexed: 04/16/2023] Open
Abstract
Dosage compensation, the balancing of X-linked gene expression between sexes and to the autosomes, is critical to an organism's fitness and survival. In Drosophila, dosage compensation involves hypertranscription of the male X chromosome. Here, we use quantitative live imaging and modeling at single-cell resolution to study X chromosome dosage compensation in Drosophila. We show that the four X chromosome genes studied undergo transcriptional bursting in male and female embryos. Mechanistically, our data reveal that transcriptional upregulation of male X chromosome genes is primarily mediated by a higher RNA polymerase II initiation rate and burst amplitude across the expression domain. In contrast, burst frequency is spatially modulated in nuclei within the expression domain in response to different transcription factor concentrations to tune the transcriptional response. Together, these data show how the local and global regulation of distinct burst parameters can establish the complex transcriptional outputs underpinning developmental patterning.
Collapse
Affiliation(s)
- Lauren Forbes Beadle
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Hongpeng Zhou
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Magnus Rattray
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| | - Hilary L Ashe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
37
|
Yang Q, Lo TW, Brejc K, Schartner C, Ralston EJ, Lapidus DM, Meyer BJ. X-chromosome target specificity diverged between dosage compensation mechanisms of two closely related Caenorhabditis species. eLife 2023; 12:e85413. [PMID: 36951246 PMCID: PMC10076027 DOI: 10.7554/elife.85413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/21/2023] [Indexed: 03/24/2023] Open
Abstract
An evolutionary perspective enhances our understanding of biological mechanisms. Comparison of sex determination and X-chromosome dosage compensation mechanisms between the closely related nematode species Caenorhabditis briggsae (Cbr) and Caenorhabditis elegans (Cel) revealed that the genetic regulatory hierarchy controlling both processes is conserved, but the X-chromosome target specificity and mode of binding for the specialized condensin dosage compensation complex (DCC) controlling X expression have diverged. We identified two motifs within Cbr DCC recruitment sites that are highly enriched on X: 13 bp MEX and 30 bp MEX II. Mutating either MEX or MEX II in an endogenous recruitment site with multiple copies of one or both motifs reduced binding, but only removing all motifs eliminated binding in vivo. Hence, DCC binding to Cbr recruitment sites appears additive. In contrast, DCC binding to Cel recruitment sites is synergistic: mutating even one motif in vivo eliminated binding. Although all X-chromosome motifs share the sequence CAGGG, they have otherwise diverged so that a motif from one species cannot function in the other. Functional divergence was demonstrated in vivo and in vitro. A single nucleotide position in Cbr MEX can determine whether Cel DCC binds. This rapid divergence of DCC target specificity could have been an important factor in establishing reproductive isolation between nematode species and contrasts dramatically with the conservation of target specificity for X-chromosome dosage compensation across Drosophila species and for transcription factors controlling developmental processes such as body-plan specification from fruit flies to mice.
Collapse
Affiliation(s)
- Qiming Yang
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Te-Wen Lo
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Katjuša Brejc
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Caitlin Schartner
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Edward J Ralston
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Denise M Lapidus
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Barbara J Meyer
- Howard Hughes Medical InstituteBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
38
|
Chang HY, Qi LS. Reversing the Central Dogma: RNA-guided control of DNA in epigenetics and genome editing. Mol Cell 2023; 83:442-451. [PMID: 36736311 PMCID: PMC10044466 DOI: 10.1016/j.molcel.2023.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 02/05/2023]
Abstract
The Central Dogma of the flow of genetic information is arguably the crowning achievement of 20th century molecular biology. Reversing the flow of information from RNA to DNA or chromatin has come to the fore in recent years, from the convergence of fundamental discoveries and synthetic biology. Inspired by the example of long noncoding RNAs (lncRNAs) in mammalian genomes that direct chromatin modifications and gene expression, synthetic biologists have repurposed prokaryotic RNA-guided genome defense systems such as CRISPR to edit eukaryotic genomes and epigenomes. Here we explore the parallels of these two fields and highlight opportunities for synergy and future breakthroughs.
Collapse
Affiliation(s)
- Howard Y Chang
- Center for Personal Dynamic Regulome, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Lei S Qi
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94080, USA.
| |
Collapse
|
39
|
Nikolenko JV, Georgieva SG, Kopytova DV. Diversity of MLE Helicase Functions in the Regulation of Gene Expression in Higher Eukaryotes. Mol Biol 2023. [DOI: 10.1134/s0026893323010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
40
|
Di Liegro CM, Schiera G, Schirò G, Di Liegro I. RNA-Binding Proteins as Epigenetic Regulators of Brain Functions and Their Involvement in Neurodegeneration. Int J Mol Sci 2022; 23:ijms232314622. [PMID: 36498959 PMCID: PMC9739182 DOI: 10.3390/ijms232314622] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
A central aspect of nervous system development and function is the post-transcriptional regulation of mRNA fate, which implies time- and site-dependent translation, in response to cues originating from cell-to-cell crosstalk. Such events are fundamental for the establishment of brain cell asymmetry, as well as of long-lasting modifications of synapses (long-term potentiation: LTP), responsible for learning, memory, and higher cognitive functions. Post-transcriptional regulation is in turn dependent on RNA-binding proteins that, by recognizing and binding brief RNA sequences, base modifications, or secondary/tertiary structures, are able to control maturation, localization, stability, and translation of the transcripts. Notably, most RBPs contain intrinsically disordered regions (IDRs) that are thought to be involved in the formation of membrane-less structures, probably due to liquid-liquid phase separation (LLPS). Such structures are evidenced as a variety of granules that contain proteins and different classes of RNAs. The other side of the peculiar properties of IDRs is, however, that, under altered cellular conditions, they are also prone to form aggregates, as observed in neurodegeneration. Interestingly, RBPs, as part of both normal and aggregated complexes, are also able to enter extracellular vesicles (EVs), and in doing so, they can also reach cells other than those that produced them.
Collapse
Affiliation(s)
- Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche) (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata) (Bi.N.D.), University of Palermo, 90127 Palermo, Italy
- Correspondence: ; Tel.: +39-091-238-97 (ext. 415/446)
| |
Collapse
|
41
|
Dosage Compensation in Drosophila: Its Canonical and Non-Canonical Mechanisms. Int J Mol Sci 2022; 23:ijms231810976. [PMID: 36142884 PMCID: PMC9506574 DOI: 10.3390/ijms231810976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Dosage compensation equalizes gene expression in a single male X chromosome with that in the pairs of autosomes and female X chromosomes. In the fruit fly Drosophila, canonical dosage compensation is implemented by the male-specific lethal (MSL) complex functioning in all male somatic cells. This complex contains acetyl transferase males absent on the first (MOF), which performs H4K16 hyperacetylation specifically in the male X chromosome, thus facilitating transcription of the X-linked genes. However, accumulating evidence points to an existence of additional, non-canonical dosage compensation mechanisms operating in somatic and germline cells. In this review, we discuss current advances in the understanding of both canonical and non-canonical mechanisms of dosage compensation in Drosophila.
Collapse
|
42
|
Combinatorial clustering of distinct DNA motifs directs synergistic binding of Caenorhabditis elegans dosage compensation complex to X chromosomes. Proc Natl Acad Sci U S A 2022; 119:e2211642119. [PMID: 36067293 PMCID: PMC9477397 DOI: 10.1073/pnas.2211642119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Diverse regulatory mechanisms balance X-chromosome gene expression between sexes in mammals, fruit flies, and nematodes (XY/XO males and XX females/hermaphrodites). We identify DNA motifs on X that recruit dosage compensation complexes (DCCs) in nematode hermaphrodites to reduce X-chromosome expression. Recruitment sites on X, but not regions on autosomes, contain diverse combinations of different motifs or multiple copies of one motif. DCC binding studies in vivo and in vitro of wild-type and mutant X-recruitment sites validate motif usage. We find that clustering of motifs in different combinations with appropriate orientation and spacing promotes synergy in DCC binding, thereby triggering DCC assembly specifically along X. We demonstrate how regulatory complexes can be recruited across an entire chromosome to control its gene expression. Organisms that count X-chromosome number to determine sex utilize dosage compensation mechanisms to balance X-gene expression between sexes. Typically, a regulatory complex is recruited to X chromosomes of one sex to modulate gene expression. A major challenge is to determine the mechanisms that target regulatory complexes specifically to X. Here, we identify critical X-sequence motifs in Caenorhabditis elegans that act synergistically in hermaphrodites to direct X-specific recruitment of the dosage compensation complex (DCC), a condensin complex. We find two DNA motifs that collaborate with a previously defined 12-bp motif called MEX (motif enriched on X) to mediate binding: MEX II, a 26-bp X-enriched motif and Motif C, a 9-bp motif that lacks X enrichment. Inserting both MEX and MEX II into a new location on X creates a DCC binding site equivalent to an endogenous recruitment site, but inserting only MEX or MEX II alone does not. Moreover, mutating MEX, MEX II, or Motif C in endogenous recruitment sites with multiple different motifs dramatically reduces DCC binding in vivo to nearly the same extent as mutating all motifs. Changing the orientation or spacing of motifs also reduces DCC binding. Hence, synergy in DCC binding via combinatorial clustering of motifs triggers DCC assembly specifically on X chromosomes. Using an in vitro DNA binding assay, we refine the features of motifs and flanking sequences that are critical for DCC binding. Our work reveals general principles by which regulatory complexes can be recruited across an entire chromosome to control its gene expression.
Collapse
|
43
|
Montgomery SA, Hisanaga T, Wang N, Axelsson E, Akimcheva S, Sramek M, Liu C, Berger F. Polycomb-mediated repression of paternal chromosomes maintains haploid dosage in diploid embryos of Marchantia. eLife 2022; 11:e79258. [PMID: 35996955 PMCID: PMC9402228 DOI: 10.7554/elife.79258] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/18/2022] [Indexed: 02/06/2023] Open
Abstract
Complex mechanisms regulate gene dosage throughout eukaryotic life cycles. Mechanisms controlling gene dosage have been extensively studied in animals, however it is unknown how generalizable these mechanisms are to diverse eukaryotes. Here, we use the haploid plant Marchantia polymorpha to assess gene dosage control in its short-lived diploid embryo. We show that throughout embryogenesis, paternal chromosomes are repressed resulting in functional haploidy. The paternal genome is targeted for genomic imprinting by the Polycomb mark H3K27me3 starting at fertilization, rendering the maternal genome in control of embryogenesis. Maintaining haploid gene dosage by this new form of imprinting is essential for embryonic development. Our findings illustrate how haploid-dominant species can regulate gene dosage through paternal chromosome inactivation and initiates the exploration of the link between life cycle history and gene dosage in a broader range of organisms.
Collapse
Affiliation(s)
- Sean Akira Montgomery
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenterViennaAustria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of ViennaViennaAustria
| | - Tetsuya Hisanaga
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenterViennaAustria
| | - Nan Wang
- Institute of Biology, University of HohenheimStuttgartGermany
| | - Elin Axelsson
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenterViennaAustria
| | - Svetlana Akimcheva
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenterViennaAustria
| | - Milos Sramek
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenterViennaAustria
| | - Chang Liu
- Institute of Biology, University of HohenheimStuttgartGermany
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenterViennaAustria
| |
Collapse
|
44
|
Ragipani B, Albritton SE, Morao AK, Mesquita D, Kramer M, Ercan S. Increased gene dosage and mRNA expression from chromosomal duplications in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2022; 12:jkac151. [PMID: 35731207 PMCID: PMC9339279 DOI: 10.1093/g3journal/jkac151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/09/2022] [Indexed: 11/14/2022]
Abstract
Isolation of copy number variations and chromosomal duplications at high frequency in the laboratory suggested that Caenorhabditis elegans tolerates increased gene dosage. Here, we addressed if a general dosage compensation mechanism acts at the level of mRNA expression in C. elegans. We characterized gene dosage and mRNA expression in 3 chromosomal duplications and a fosmid integration strain using DNA-seq and mRNA-seq. Our results show that on average, increased gene dosage leads to increased mRNA expression, pointing to a lack of genome-wide dosage compensation. Different genes within the same chromosomal duplication show variable levels of mRNA increase, suggesting feedback regulation of individual genes. Somatic dosage compensation and germline repression reduce the level of mRNA increase from X chromosomal duplications. Together, our results show a lack of genome-wide dosage compensation mechanism acting at the mRNA level in C. elegans and highlight the role of epigenetic and individual gene regulation contributing to the varied consequences of increased gene dosage.
Collapse
Affiliation(s)
- Bhavana Ragipani
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Sarah Elizabeth Albritton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Ana Karina Morao
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Diogo Mesquita
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Maxwell Kramer
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Sevinç Ercan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
45
|
Stanek TJ, Cao W, Mehra RM, Ellison CE. Sex-specific variation in R-loop formation in Drosophila melanogaster. PLoS Genet 2022; 18:e1010268. [PMID: 35687614 PMCID: PMC9223372 DOI: 10.1371/journal.pgen.1010268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/23/2022] [Accepted: 05/22/2022] [Indexed: 11/18/2022] Open
Abstract
R-loops are three-stranded nucleotide structures consisting of a DNA:RNA hybrid and a displaced ssDNA non-template strand. Previous work suggests that R-loop formation is primarily determined by the thermodynamics of DNA:RNA binding, which are governed by base composition (e.g., GC skew) and transcription-induced DNA superhelicity. However, R-loops have been described at genomic locations that lack these properties, suggesting that they may serve other context-specific roles. To better understand the genetic determinants of R-loop formation, we have characterized the Drosophila melanogaster R-loop landscape across strains and between sexes using DNA:RNA immunoprecipitation followed by high-throughput sequencing (DRIP-seq). We find that R-loops are associated with sequence motifs that are G-rich or exhibit G/C skew, as well as highly expressed genes, tRNAs, and small nuclear RNAs, consistent with a role for DNA sequence and torsion in R-loop specification. However, we also find motifs associated with R-loops that are A/T-rich and lack G/C skew as well as a subset of R-loops that are enriched in polycomb-repressed chromatin. Differential enrichment analysis reveals a small number of sex-biased R-loops: while non-differentially enriched and male-enriched R-loops form at similar genetic features and chromatin states and contain similar sequence motifs, female-enriched R-loops form at unique genetic features, chromatin states, and sequence motifs and are associated with genes that show ovary-biased expression. Male-enriched R-loops are most abundant on the dosage-compensated X chromosome, where R-loops appear stronger compared to autosomal R-loops. R-loop-containing genes on the X chromosome are dosage-compensated yet show lower MOF binding and reduced H4K16ac compared to R-loop-absent genes, suggesting that H4K16ac or MOF may attenuate R-loop formation. Collectively, these results suggest that R-loop formation in vivo is not fully explained by DNA sequence and topology and raise the possibility that a distinct subset of these hybrid structures plays an important role in the establishment and maintenance of epigenetic differences between sexes.
Collapse
Affiliation(s)
- Timothy J. Stanek
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- Department of Pathology, Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Weihuan Cao
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Rohan M Mehra
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Christopher E. Ellison
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
46
|
Meyer BJ. The X chromosome in C. elegans sex determination and dosage compensation. Curr Opin Genet Dev 2022; 74:101912. [PMID: 35490475 DOI: 10.1016/j.gde.2022.101912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022]
Abstract
Abnormalities in chromosome dose can reduce organismal fitness and viability by disrupting the balance of gene expression. Unlike imbalances in chromosome dose that cause pathologies, differences in X-chromosome dose that determine sex are well tolerated. Dosage compensation mechanisms have evolved in diverse species to balance X-chromosome gene expression between sexes. Mechanisms underlying nematode X-chromosome counting to determine sex revealed how small quantitative differences in molecular signals are translated into dramatically different developmental fates. Mechanisms underlying X-chromosome dosage compensation revealed the interplay between chromatin modification and three-dimensional chromosome structure imposed by an X-specific condensin complex to regulate gene expression over vast chromosomal territories. In a surprising twist of evolution, this dosage-compensation condensin complex also regulates lifespan and tolerance to proteotoxic stress.
Collapse
Affiliation(s)
- Barbara J Meyer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, 16 Barker Hall, Berkeley, CA 94720-3204, USA.
| |
Collapse
|
47
|
Tikhonova E, Mariasina S, Efimov S, Polshakov V, Maksimenko O, Georgiev P, Bonchuk A. Structural basis for interaction between CLAMP and MSL2 proteins involved in the specific recruitment of the dosage compensation complex in Drosophila. Nucleic Acids Res 2022; 50:6521-6531. [PMID: 35648444 PMCID: PMC9226498 DOI: 10.1093/nar/gkac455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 04/26/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
Transcriptional regulators select their targets from a large pool of similar genomic sites. The binding of the Drosophila dosage compensation complex (DCC) exclusively to the male X chromosome provides insight into binding site selectivity rules. Previous studies showed that the male-specific organizer of the complex, MSL2, and ubiquitous DNA-binding protein CLAMP directly interact and play an important role in the specificity of X chromosome binding. Here, we studied the highly specific interaction between the intrinsically disordered region of MSL2 and the N-terminal zinc-finger C2H2-type (C2H2) domain of CLAMP. We obtained the NMR structure of the CLAMP N-terminal C2H2 zinc finger, which has a classic C2H2 zinc-finger fold with a rather unusual distribution of residues typically used in DNA recognition. Substitutions of residues in this C2H2 domain had the same effect on the viability of males and females, suggesting that it plays a general role in CLAMP activity. The N-terminal C2H2 domain of CLAMP is highly conserved in insects. However, the MSL2 region involved in the interaction is conserved only within the Drosophila genus, suggesting that this interaction emerged during the evolution of a mechanism for the specific recruitment of the DCC on the male X chromosome in Drosophilidae.
Collapse
Affiliation(s)
- Evgeniya Tikhonova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Moscow 119334, Russia
| | - Sofia Mariasina
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sergey Efimov
- NMR Laboratory, Institute of Physics, Kazan Federal University, Kazan 420008, Russia
| | - Vladimir Polshakov
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Moscow 119334, Russia
| | - Artem Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology, Moscow 119334, Russia.,Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Moscow 119334, Russia
| |
Collapse
|
48
|
Fu Y, Wang Y, Huang Q, Zhao C, Li X, Kan Y, Li D. Long Noncoding RNA lncR17454 Regulates Metamorphosis of Silkworm Through let-7 miRNA Cluster. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:12. [PMID: 35640247 PMCID: PMC9155153 DOI: 10.1093/jisesa/ieac028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 06/15/2023]
Abstract
A number of long noncoding RNAs (lncRNAs) have been identified in silkworm, but little is known about their functions. Recent study showed that the let-7 miRNA cluster (contains let-7, miR-2795, and miR-100) was transcribed from the last exon of lncRNA lncR17454 in silkworm. To investigate the functional role of lncR17454, dsRNAs of lncR17454 were injected into the hemolymph of 1-d-old third-instar larvae of Bombyx mori, repression of lncR17454 led to molting arrestment during the larval-larval and larval-pupal transition of silkworm, which was consistent to the result as let-7 knockdown in other studies. The expression level of mature let-7, miR-100, and miR-2795 decreased 40%, 36%, and 40%, respectively, while the mRNA level of two predicted target genes of let-7, the Broad Complex isoform 2 (BR-C-Z2) and the BTB-Zinc finger transcription repression factor gene Abrupt (Ab), increased significantly after lncR17454 knockdown. In contrast, when adding the 20-Hydroxyecdysone (20E) to silkworm BmN4 cell lines, the expression level of lncR17454 and let-7 cluster all increased significantly, but the expression of Abrupt, the predicted target gene of let-7, was repressed. Dual-luciferase reporter assays confirmed Abrupt was the real target of let-7. Here we found that the lncRNA lncR17454 can play regulator roles in the metamorphosis of silkworm through let-7 miRNA cluster and the ecdysone signaling pathway, which will provide new clues for lepidopteran pest control.
Collapse
Affiliation(s)
| | | | - Qunxia Huang
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, China
| | - Chenyue Zhao
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, China
| | - Xinmei Li
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan International Joint Laboratory of Insect Biology, College of Life Science and Agricultural Engineering, Nanyang Normal University, 1638 Wolong Road, Nanyang, Henan 473061, China
| | | | | |
Collapse
|
49
|
Krzywinska E, Ferretti L, Krzywinski J. Establishment and a comparative transcriptomic analysis of a male-specific cell line from the African malaria mosquito Anopheles gambiae. Sci Rep 2022; 12:6885. [PMID: 35477969 PMCID: PMC9046191 DOI: 10.1038/s41598-022-10686-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
Cell lines allow studying various biological processes that may not be easily tractable in whole organisms. Here, we have established the first male-specific cell line from the African malaria mosquito, Anopheles gambiae. The cells, named AgMM and derived from the sex-sorted neonate larvae, were able to undergo spontaneous contractions for a number of passages following establishment, indicating their myoblast origin. Comparison of their transcriptome to the transcriptome of an A. gambiae-derived Sua5.1 hemocyte cells revealed distinguishing molecular signatures of each cell line, including numerous muscle-related genes that were highly and uniquely expressed in the AgMM cells. Moreover, the AgMM cells express the primary sex determiner gene Yob and support male sex determination and dosage compensation pathways. Therefore, the AgMM cell line represents a valuable tool for molecular and biochemical in vitro studies of these male-specific processes. In a broader context, a rich transcriptomic data set generated in this study contributes to a better understanding of transcribed regions of the A. gambiae genome and sheds light on the biology of both cell types, facilitating their anticipated use for various cell-based assays.
Collapse
Affiliation(s)
| | - Luca Ferretti
- Big Data Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
| | | |
Collapse
|
50
|
Faucillion ML, Johansson AM, Larsson J. Modulation of RNA stability regulates gene expression in two opposite ways: through buffering of RNA levels upon global perturbations and by supporting adapted differential expression. Nucleic Acids Res 2022; 50:4372-4388. [PMID: 35390159 PMCID: PMC9071389 DOI: 10.1093/nar/gkac208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 01/02/2023] Open
Abstract
The steady state levels of RNAs, often referred to as expression levels, result from a well-balanced combination of RNA transcription and decay. Alterations in RNA levels will therefore result from tight regulation of transcription rates, decay rates or both. Here, we explore the role of RNA stability in achieving balanced gene expression and present genome-wide RNA stabilities in Drosophila melanogaster male and female cells as well as male cells depleted of proteins essential for dosage compensation. We identify two distinct RNA-stability mediated responses involved in regulation of gene expression. The first of these responds to acute and global changes in transcription and thus counteracts potentially harmful gene mis-expression by shifting the RNA stability in the direction opposite to the transcriptional change. The second response enhances inter-individual differential gene expression by adjusting the RNA stability in the same direction as a transcriptional change. Both mechanisms are global, act on housekeeping as well as non-housekeeping genes and were observed in both flies and mammals. Additionally, we show that, in contrast to mammals, modulation of RNA stability does not detectably contribute to dosage compensation of the sex-chromosomes in D. melanogaster.
Collapse
Affiliation(s)
| | | | - Jan Larsson
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|