1
|
LaManna JA, Hartig F, Myers JA, Freckleton RP, Detto M, Surendra A, Doolittle CJ, Bachelot B, Bagchi R, Comita LS, DeFilippis DM, Huanca-Nunez N, Hülsmann L, Jevon FV, Johnson DJ, Krishnadas M, Magee LJ, Mangan SA, Milici VR, Murengera ALB, Schnitzer SA, Smith DJB, Stein C, Sullivan MK, Torres E, Umaña MN, Delavaux CS. Consequences of Local Conspecific Density Effects for Plant Diversity and Community Dynamics. Ecol Lett 2024; 27:e14506. [PMID: 39354892 DOI: 10.1111/ele.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 10/03/2024]
Abstract
Conspecific density dependence (CDD) in plant populations is widespread, most likely caused by local-scale biotic interactions, and has potentially important implications for biodiversity, community composition, and ecosystem processes. However, progress in this important area of ecology has been hindered by differing viewpoints on CDD across subfields in ecology, lack of synthesis across CDD-related frameworks, and misunderstandings about how empirical measurements of local CDD fit within the context of broader ecological theories on community assembly and diversity maintenance. Here, we propose a conceptual synthesis of local-scale CDD and its causes, including species-specific antagonistic and mutualistic interactions. First, we compare and clarify different uses of CDD and related concepts across subfields within ecology. We suggest the use of local stabilizing/destabilizing CDD to refer to the scenario where local conspecific density effects are more negative/positive than heterospecific effects. Second, we discuss different mechanisms for local stabilizing and destabilizing CDD, how those mechanisms are interrelated, and how they cut across several fields of study within ecology. Third, we place local stabilizing/destabilizing CDD within the context of broader ecological theories and discuss implications and challenges related to scaling up the effects of local CDD on populations, communities, and metacommunities. The ultimate goal of this synthesis is to provide a conceptual roadmap for researchers studying local CDD and its implications for population and community dynamics.
Collapse
Affiliation(s)
- Joseph A LaManna
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Florian Hartig
- Theoretical Ecology, University of Regensburg, Regensburg, Germany
| | - Jonathan A Myers
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Robert P Freckleton
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Matteo Detto
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Akshay Surendra
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Cole J Doolittle
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Bénédicte Bachelot
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Robert Bagchi
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Liza S Comita
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - David M DeFilippis
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | | | - Lisa Hülsmann
- Ecosystem Analysis and Simulation (EASI) Lab, University of Bayreuth, Bayreuth, Germany
- Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Fiona V Jevon
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Daniel J Johnson
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| | - Meghna Krishnadas
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Lukas J Magee
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| | - Scott A Mangan
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, Arkansas, USA
| | - Valerie R Milici
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | | | - Stefan A Schnitzer
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Daniel J B Smith
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Claudia Stein
- Department of Biology and Environmental Sciences, Auburn University at Montgomery, Montgomery, Alabama, USA
| | - Megan K Sullivan
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Ethan Torres
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - María Natalia Umaña
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Camille S Delavaux
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| |
Collapse
|
2
|
Srednick G, Swearer SE. Effects of protection and temperature variation on temporal stability in a marine reserve network. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14220. [PMID: 37937466 DOI: 10.1111/cobi.14220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 10/23/2023] [Accepted: 10/29/2023] [Indexed: 11/09/2023]
Abstract
Understanding the drivers of ecosystem stability has been a key focus of modern ecology as the impacts of the Anthropocene become more prevalent and extreme. Marine protected areas (MPAs) are tools used globally to promote biodiversity and mediate anthropogenic impacts. However, assessing the stability of natural ecosystems and responses to management actions is inherently challenging due to the complex dynamics of communities with many interdependent taxa. Using a 12-year time series of subtidal community structure in an MPA network in the Channel Islands (United States), we estimated species interaction strength (competition and predation), prey species synchrony, and temporal stability in trophic networks, as well as temporal variation in sea surface temperature to explore the causal drivers of temporal stability at community and metacommunity scales. At the community scale, only trophic networks in MPAs at Santa Rosa Island showed greater temporal stability than reference sites, likely driven by reduced prey synchrony. Across islands, competition was sometimes greater and predation always greater in MPAs compared with reference sites. Increases in interaction strength resulted in lower temporal stability of trophic networks. Although MPAs reduced prey synchrony at the metacommunity scale, reductions were insufficient to stabilize trophic networks. In contrast, temporal variation in sea surface temperature had strong positive direct effects on stability at the regional scale and indirect effects at the local scale through reductions in species interaction strength. Although MPAs can be effective management strategies for protecting certain species or locations, our findings for this MPA network suggest that temperature variation has a stronger influence on metacommunity temporal stability by mediating species interactions and promoting a mosaic of spatiotemporal variation in community structure of trophic networks. By capturing the full spectrum of environmental variation in network planning, MPAs will have the greatest capacity to promote ecosystem stability in response to climate change.
Collapse
Affiliation(s)
- Griffin Srednick
- National Centre for Coasts and Climate, School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen E Swearer
- National Centre for Coasts and Climate, School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Brunet MJ, Huggler KS, Holbrook JD, Burke PW, Zornes M, Lionberger P, Monteith KL. Spatial prey availability and pulsed reproductive tactics: Encounter risk in a canid-ungulate system. J Anim Ecol 2024; 93:447-459. [PMID: 38348546 DOI: 10.1111/1365-2656.14056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/15/2024] [Indexed: 04/04/2024]
Abstract
Predation risk is a function of spatiotemporal overlap between predator and prey, as well as behavioural responses during encounters. Dynamic factors (e.g. group size, prey availability and animal movement or state) affect risk, but rarely are integrated in risk assessments. Our work targets a system where predation risk is fundamentally linked to temporal patterns in prey abundance and behaviour. For neonatal ungulate prey, risk is defined within a short temporal window during which the pulse in parturition, increasing movement capacity with age and antipredation tactics have the potential to mediate risk. In our coyote-mule deer (Canis latrans-Odocoileus hemionus) system, leveraging GPS data collected from both predator and prey, we tested expectations of shared enemy and reproductive risk hypotheses. We asked two questions regarding risk: (A) How does primary and alternative prey habitat, predator and prey activity, and reproductive tactics (e.g. birth synchrony and maternal defence) influence the vulnerability of a neonate encountering a predator? (B) How do the same factors affect behaviour by predators relative to the time before and after an encounter? Despite increased selection for mule deer and intensified search behaviour by coyotes during the peak in mule deer parturition, mule deer were afforded protection from predation via predator swamping, experiencing reduced per-capita encounter risk when most neonates were born. Mule deer occupying rabbit habitat (Sylvilagus spp.; coyote's primary prey) experienced the greatest risk of encounter but the availability of rabbit habitat did not affect predator behaviour during encounters. Encounter risk increased in areas with greater availability of mule deer habitat: coyotes shifted their behaviour relative to deer habitat, and the pulse in mule deer parturition and movement of neonatal deer during encounters elicited increased speed and tortuosity by coyotes. In addition to the spatial distribution of prey, temporal patterns in prey availability and animal behavioural state were fundamental in defining risk. Our work reveals the nuanced consequences of pulsed availability on predation risk for alternative prey, whereby responses by predators to sudden resource availability, the lasting effects of diversionary prey and inherent antipredation tactics ultimately dictate risk.
Collapse
Affiliation(s)
- Mitchell J Brunet
- Haub School of Environment and Natural Resources, University of Wyoming, Laramie, Wyoming, USA
- Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, Laramie, Wyoming, USA
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Katey S Huggler
- Haub School of Environment and Natural Resources, University of Wyoming, Laramie, Wyoming, USA
- Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, Laramie, Wyoming, USA
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | - Joseph D Holbrook
- Haub School of Environment and Natural Resources, University of Wyoming, Laramie, Wyoming, USA
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| | | | - Mark Zornes
- Wyoming Game and Fish Department, Green River, Wyoming, USA
| | - Patrick Lionberger
- Bureau of Land Management, Rock Springs Field Office, Rock Springs, Wyoming, USA
| | - Kevin L Monteith
- Haub School of Environment and Natural Resources, University of Wyoming, Laramie, Wyoming, USA
- Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, Laramie, Wyoming, USA
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA
| |
Collapse
|
4
|
Song C, Spaak JW. Trophic tug-of-war: Coexistence mechanisms within and across trophic levels. Ecol Lett 2024; 27:e14409. [PMID: 38590122 DOI: 10.1111/ele.14409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 02/26/2024] [Accepted: 03/06/2024] [Indexed: 04/10/2024]
Abstract
Ecological communities encompass rich diversity across multiple trophic levels. While modern coexistence theory has been widely applied to understand community assembly, its traditional formalism only allows assembly within a single trophic level. Here, using an expanded definition of niche and fitness differences applicable to multitrophic communities, we study how diversity within and across trophic levels affects species coexistence. If each trophic level is analysed separately, both lower- and higher trophic levels are governed by the same coexistence mechanisms. In contrast, if the multitrophic community is analysed as a whole, different trophic levels are governed by different coexistence mechanisms: coexistence at lower trophic levels is predominantly limited by fitness differences, whereas coexistence at higher trophic levels is predominantly limited by niche differences. This dichotomy in coexistence mechanisms is supported by theoretical derivations, simulations of phenomenological and trait-based models, and a case study of a primeval forest ecosystem. Our work provides a general and testable prediction of coexistence mechanism operating in multitrophic communities.
Collapse
Affiliation(s)
- Chuliang Song
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Jurg W Spaak
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
- Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany
| |
Collapse
|
5
|
Betancourtt C, Catalán AM, Morales-Torres DF, Lopez DN, Escares-Aguilera V, Salas-Yanquin LP, Büchner-Miranda JA, Chaparro OR, Nimptsch J, Broitman BR, Valdivia N. Transient species driving ecosystem multifunctionality: Insights from competitive interactions between rocky intertidal mussels. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106422. [PMID: 38437777 DOI: 10.1016/j.marenvres.2024.106422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024]
Abstract
Anthropogenic biodiversity loss poses a significant threat to ecosystem functioning worldwide. Numerically dominant and locally rare (i.e., transient) species are key components of biodiversity, but their contribution to multiple ecosystem functions (i.e., multifunctionality) has been seldomly assessed in marine ecosystems. To fill this gap, here we analyze the effects of a dominant and a transient species on ecosystem multifunctionality. In an observational study conducted along ca. 200 km of the southeastern Pacific coast, the purple mussel Perumytilus purpuratus numerically dominated the mid-intertidal and the dwarf mussel Semimytilus patagonicus exhibited low abundances but higher recruitment rates. In laboratory experiments, the relative abundances of both species were manipulated to simulate the replacement of P. purpuratus by S. patagonicus and five proxies for ecosystem functions-rates of clearance, oxygen consumption, total biodeposit, organic biodeposit, and excretion-were analyzed. This replacement had a positive, linear, and significant effect on the combined ecosystem functions, particularly oxygen consumption and excretion rates. Accordingly, S. patagonicus could well drive ecosystem functioning given favorable environmental conditions for its recovery from rarity. Our study highlights therefore the key role of transient species for ecosystem performance. Improving our understanding of these dynamics is crucial for effective ecosystem conservation, especially in the current scenario of biological extinctions and invasions.
Collapse
Affiliation(s)
- Claudia Betancourtt
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile; Programa de Doctorado en Biología Marina, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile.
| | - Alexis M Catalán
- Centro de Investigación en Ecosistemas de la Patagonia, CIEP, Coyhaique, Chile
| | - Diego F Morales-Torres
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Daniela N Lopez
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, Valdivia, Chile; Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valentina Escares-Aguilera
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Luis P Salas-Yanquin
- Universidad Nacional Autónoma de México, Facultad de Ciencias, Unidad Multidisciplinaria de Docencia e Investigación, Sisal, Mexico
| | - Joseline A Büchner-Miranda
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Oscar R Chaparro
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Jorge Nimptsch
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| | - Bernardo R Broitman
- Instituto Milenio en Socio-Ecología Costera (SECOS), Chile; Núcleo Milenio UPWELL, Chile; Facultad de Artes Liberales, Universidad Adolfo Ibañez, Viña Del Mar, Chile
| | - Nelson Valdivia
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile; Centro FONDAP de Investigación de Dinámicas de Ecosistemas Marinos de Altas Latitudes (IDEAL), Chile
| |
Collapse
|
6
|
Thompson AW, Nyerges G, Lamberson KM, Sutherland KR. Ubiquitous filter feeders shape open ocean microbial community structure and function. PNAS NEXUS 2024; 3:pgae091. [PMID: 38505693 PMCID: PMC10949910 DOI: 10.1093/pnasnexus/pgae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/13/2024] [Indexed: 03/21/2024]
Abstract
The mechanism of mortality plays a large role in how microorganisms in the open ocean contribute to global energy and nutrient cycling. Salps are ubiquitous pelagic tunicates that are a well-known mortality source for large phototrophic microorganisms in coastal and high-latitude systems, but their impact on the immense populations of smaller prokaryotes in the tropical and subtropical open ocean gyres is not well quantified. We used robustly quantitative techniques to measure salp clearance and enrichment of specific microbial functional groups in the North Pacific Subtropical Gyre, one of the largest ecosystems on Earth. We discovered that salps are a previously unknown predator of the globally abundant nitrogen fixer Crocosphaera; thus, salps restrain new nitrogen delivery to the marine ecosystem. We show that the ocean's two numerically dominant cells, Prochlorococcus and SAR11, are not consumed by salps, which offers a new explanation for the dominance of small cells in open ocean systems. We also identified a double bonus for Prochlorococcus, wherein it not only escapes salp predation but the salps also remove one of its major mixotrophic predators, the prymnesiophyte Chrysochromulina. When we modeled the interaction between salp mesh and particles, we found that cell size alone could not account for these prey selection patterns. Instead, the results suggest that alternative mechanisms, such as surface property, shape, nutritional quality, or even prey behavior, determine which microbial cells are consumed by salps. Together, these results identify salps as a major factor in shaping the structure, function, and ecology of open ocean microbial communities.
Collapse
Affiliation(s)
- Anne W Thompson
- Department of Biology, Portland State University, Portland, OR 97201, USA
| | - Györgyi Nyerges
- Department of Biology, Pacific University, Forest Grove, OR 97116, USA
| | - Kylee M Lamberson
- Department of Chemistry, Portland State University, Portland, OR 97201, USA
| | - Kelly R Sutherland
- Oregon Institute of Marine Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
7
|
Gordon SCC, Martin JGA, Kerr JT. Dispersal mediates trophic interactions and habitat connectivity to alter metacommunity composition. Ecology 2024; 105:e4215. [PMID: 38037245 DOI: 10.1002/ecy.4215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/14/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023]
Abstract
Dispersal contributes vitally to metacommunity structure. However, interactions between dispersal and other key processes have rarely been explored, particularly in the context of multitrophic metacommunities. We investigated such a metacommunity in naturally fragmented habitats populated by butterfly species (whose dispersal capacities were previously assessed), flowering plants, and butterfly predators. Using data on butterfly species abundance, floral abundance, and predation (on experimentally placed clay butterfly models), we asked how dispersal ability mediates interactions with predators, mutualists, and the landscape matrix. In contrast to expectations, high densities of strong dispersers were found in more isolated sites and sites with low floral resource density, while intermediate dispersers maintained similar densities across isolation and floral gradients, and higher densities of poor dispersers were found in more connected sites and sites with higher floral density. These findings raise questions about how strong dispersers experience the landscape matrix and the quality of isolated and low-resource sites. Strong dispersers were able to escape habitat patches with high predation, while intermediate dispersers maintained similar densities along a predation gradient, and poor dispersers occurred at high densities in these patches, exposing them to interactions with predators. This work demonstrates that species that vary in dispersal capacities interact differently with predators and mutualist partners in a landscape context, shaping metacommunity composition.
Collapse
Affiliation(s)
- Susan C C Gordon
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Julien G A Martin
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jeremy T Kerr
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Furey GN, Tilman D. Trade-offs between deer herbivory and nitrogen competition alter grassland forb composition. Oecologia 2024; 204:47-58. [PMID: 38091102 PMCID: PMC10830730 DOI: 10.1007/s00442-023-05485-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Two of the major factors that control the composition of herbaceous plant communities are competition for limiting soil resources and herbivory. We present results from a 14-year full factorial experiment in a tallgrass prairie ecosystem that crossed nitrogen (N) addition with fencing to exclude white-tailed deer, Odocoileus virginianus, from half the plots. Deer presence was associated with only modest decreases in aboveground plant biomass (14% decrease; -45 ± 19 g m-2) with no interaction with N addition. N addition at 5.44 and 9.52 g N m-2 year-1 led to increases in biomass. There were weak increases in species richness associated with deer presence, but only for no or low added N (1 and 2 g N m-2 year-1). However, the presence of deer greatly impacted the abundances of some of the dominant perennial forb species, but not the dominant grasses. Deer presence increased the abundance of the forb Artemisia ludoviciana by 34 ± 12 SE g m-2 (94%) and decreased the forb Solidago rigida by 32 ± 13 SE g m-2 (79%). We suggest that these changes may have resulted from trade-offs in plant competitive ability for soil N versus resistance to deer herbivory. Field observations suggest deer acted as florivores, mainly consuming the flowers of susceptible forb species. The preferential consumption of flowers of forbs that seem to be superior N competitors appears to create an axis of interspecific niche differentiation. The overpopulation of white-tailed deer in many tallgrass reserves likely structures the abundance of forb species.
Collapse
Affiliation(s)
- George N Furey
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Universitetstunet 3, 1433, Ås, Norway.
- Department of Ecology, Evolution and Behavior, College of Biological Sciences, University of Minnesota, St. Paul, MN, USA.
| | - David Tilman
- Department of Ecology, Evolution and Behavior, College of Biological Sciences, University of Minnesota, St. Paul, MN, USA
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, USA
| |
Collapse
|
9
|
Bruijning M, Metcalf CJE, Visser MD. Closing the gap in the Janzen-Connell hypothesis: What determines pathogen diversity? Ecol Lett 2024; 27:e14316. [PMID: 37787147 DOI: 10.1111/ele.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 10/04/2023]
Abstract
The high tree diversity in tropical forests has long been a puzzle to ecologists. In the 1970s, Janzen and Connell proposed that tree species (hosts) coexist due to the stabilizing actions of specialized enemies. This Janzen-Connell hypothesis was subsequently supported by theoretical studies. Yet, such studies have taken the presence of specialized pathogens for granted, overlooking that pathogen coexistence also requires an explanation. Moreover, stable ecological coexistence does not necessarily imply evolutionary stability. What are the conditions that allow Janzen-Connell effects to evolve? We link theory from community ecology, evolutionary biology and epidemiology to tackle this question, structuring our approach around five theoretical frameworks. Phenomenological Lotka-Volterra competition models provide the most basic framework, which can be restructured to include (single- or multi-)pathogen dynamics. This ecological foundation can be extended to include pathogen evolution. Hosts, of course, may also evolve, and we introduce a coevolutionary model, showing that host-pathogen coevolution can lead to highly diverse systems. Our work unpacks the assumptions underpinning Janzen-Connell and places theoretical bounds on pathogen and host ecology and evolution. The five theoretical frameworks taken together provide a stronger theoretical basis for Janzen-Connell, delivering a wider lens that can yield important insights into the maintenance of diversity in these increasingly threatened systems.
Collapse
Affiliation(s)
- Marjolein Bruijning
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - C Jessica E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Marco D Visser
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| |
Collapse
|
10
|
Sanders D, Hirt MR, Brose U, Evans DM, Gaston KJ, Gauzens B, Ryser R. How artificial light at night may rewire ecological networks: concepts and models. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220368. [PMID: 37899020 PMCID: PMC10613535 DOI: 10.1098/rstb.2022.0368] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/13/2023] [Indexed: 10/31/2023] Open
Abstract
Artificial light at night (ALAN) is eroding natural light cycles and thereby changing species distributions and activity patterns. Yet little is known about how ecological interaction networks respond to this global change driver. Here, we assess the scientific basis of the current understanding of community-wide ALAN impacts. Based on current knowledge, we conceptualize and review four major pathways by which ALAN may affect ecological interaction networks by (i) impacting primary production, (ii) acting as an environmental filter affecting species survival, (iii) driving the movement and distribution of species, and (iv) changing functional roles and niches by affecting activity patterns. Using an allometric-trophic network model, we then test how a shift in temporal activity patterns for diurnal, nocturnal and crepuscular species impacts food web stability. The results indicate that diel niche shifts can severely impact community persistence by altering the temporal overlap between species, which leads to changes in interaction strengths and rewiring of networks. ALAN can thereby lead to biodiversity loss through the homogenization of temporal niches. This integrative framework aims to advance a predictive understanding of community-level and ecological-network consequences of ALAN and their cascading effects on ecosystem functioning. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Dirk Sanders
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Myriam R. Hirt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Darren M. Evans
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Kevin J. Gaston
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Benoit Gauzens
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Remo Ryser
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07737 Jena, Germany
| |
Collapse
|
11
|
Metz JAJ, Boldin B. Immunity-driven evolution of virulence and diversity in respiratory diseases. Evolution 2023; 77:2392-2408. [PMID: 37592809 DOI: 10.1093/evolut/qpad145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 08/19/2023]
Abstract
The time-honored paradigm in the theory of virulence evolution assumes a positive relation between infectivity and harmfulness. However, the etiology of respiratory diseases yields a negative relation, with diseases of the lower respiratory tract being less infective and more harmful. We explore the evolutionary consequences in a simple model incorporating cross-immunity between disease strains that diminishes with their distance in the respiratory tract, assuming that docking rate follows the match between the local mix of cell surface types and the pathogen's surface and cross-immunity the similarity of the pathogens' surfaces. The assumed relation between fitness components causes virulent strains infecting the lower airways to evolve to milder more transmissible variants. Limited cross-immunity, generally, causes a readiness to diversify that increases with host population density. In respiratory diseases that diversity will be highest in the upper respiratory tract. More tentatively, emerging respiratory diseases are likely to start low and virulent, to evolve up, and become milder. Our results extend to a panoply of realistic generalizations of the disease's ecology to including additional epitope axes. These extensions allow us to apply our results quantitatively to elucidate the differences in diversification between rhino- and coronavirus caused common colds.
Collapse
Affiliation(s)
- Johan A J Metz
- Advancing Systems Analysis Program, International Institute of Applied Systems Analysis (IIASA), Laxenburg, Austria
- Mathematical Institute, Leiden University, Leiden, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Netherlands Centre for Biodiversity, Naturalis, Leiden, The Netherlands
- Complexity Science and Evolution Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Onna, Japan
| | - Barbara Boldin
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Koper, Slovenia
| |
Collapse
|
12
|
Bernasconi A, Lorrain C, Flury P, Alassimone J, McDonald BA, Sánchez-Vallet A. Virulent strains of Zymoseptoria tritici suppress the host immune response and facilitate the success of avirulent strains in mixed infections. PLoS Pathog 2023; 19:e1011767. [PMID: 37972205 PMCID: PMC10721197 DOI: 10.1371/journal.ppat.1011767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 12/14/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023] Open
Abstract
Plants interact with a plethora of pathogenic microorganisms in nature. Pathogen-plant interaction experiments focus mainly on single-strain infections, typically ignoring the complexity of multi-strain infections even though mixed infections are common and critical for the infection outcome. The wheat pathogen Zymoseptoria tritici forms highly diverse fungal populations in which several pathogen strains often colonize the same leaf. Despite the importance of mixed infections, the mechanisms governing interactions between a mixture of pathogen strains within a plant host remain largely unexplored. Here we demonstrate that avirulent pathogen strains benefit from being in mixed infections with virulent strains. We show that virulent strains suppress the wheat immune response, allowing avirulent strains to colonize the apoplast and to reproduce. Our experiments indicate that virulent strains in mixed infections can suppress the plant immune system, probably facilitating the persistence of avirulent pathogen strains in fields planted with resistant host plants.
Collapse
Affiliation(s)
- Alessio Bernasconi
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Cécile Lorrain
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Priska Flury
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Julien Alassimone
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Bruce A. McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Andrea Sánchez-Vallet
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Centro de Biotecnología y Genómica de Plantas (CBGP/Universidad Politécnica de Madrid-Instituto Nacional de Investigación Agraria y Alimentaria/Centro Superior de Investigaciones Científicas (INIA/CSIC), Campus de Montegancedo, Pozuelo de Alarcón (Madrid) Spain
| |
Collapse
|
13
|
Getman-Pickering ZL, Soltis GJ, Shamash S, Gruner DS, Weiss MR, Lill JT. Periodical cicadas disrupt trophic dynamics through community-level shifts in avian foraging. Science 2023; 382:320-324. [PMID: 37856588 DOI: 10.1126/science.adi7426] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023]
Abstract
Once every 13 or 17 years within eastern North American deciduous forests, billions of periodical cicadas concurrently emerge from the soil and briefly satiate a diverse array of naive consumers, offering a rare opportunity to assess the cascading impacts of an ecosystem-wide resource pulse on a complex food web. We quantified the effects of the 2021 Brood X emergence and report that more than 80 bird species opportunistically switched their foraging to include cicadas, releasing herbivorous insects from predation and essentially doubling both caterpillar densities and accumulated herbivory levels on host oak trees. These short-lived but massive emergence events help us to understand how resource pulses can rewire interaction webs and disrupt energy flows in ecosystems, with potentially long-lasting effects.
Collapse
Affiliation(s)
- Zoe L Getman-Pickering
- Department of Biological Sciences, George Washington University, Washington, DC 20052, USA
| | - Grace J Soltis
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Sarah Shamash
- Department of Biological Sciences, George Washington University, Washington, DC 20052, USA
| | - Daniel S Gruner
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Martha R Weiss
- Department of Biology, Georgetown University, Washington, DC 20007, USA
| | - John T Lill
- Department of Biological Sciences, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
14
|
Janko K, Mikulíček P, Hobza R, Schlupp I. Sperm-dependent asexual species and their role in ecology and evolution. Ecol Evol 2023; 13:e10522. [PMID: 37780083 PMCID: PMC10534198 DOI: 10.1002/ece3.10522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/16/2023] [Accepted: 08/24/2023] [Indexed: 10/03/2023] Open
Abstract
Sexual reproduction is the primary mode of reproduction in eukaryotes, but some organisms have evolved deviations from classical sex and switched to asexuality. These asexual lineages have sometimes been viewed as evolutionary dead ends, but recent research has revealed their importance in many areas of general biology. Our review explores the understudied, yet important mechanisms by which sperm-dependent asexuals that produce non-recombined gametes but rely on their fertilization, can have a significant impact on the evolution of coexisting sexual species and ecosystems. These impacts are concentrated around three major fields. Firstly, sperm-dependent asexuals can potentially impact the gene pool of coexisting sexual species by either restricting their population sizes or by providing bridges for interspecific gene flow whose type and consequences substantially differ from gene flow mechanisms expected under sexual reproduction. Secondly, they may impact on sexuals' diversification rates either directly, by serving as stepping-stones in speciation, or indirectly, by promoting the formation of pre- and postzygotic reproduction barriers among nascent species. Thirdly, they can potentially impact on spatial distribution of species, via direct or indirect (apparent) types of competition and Allee effects. For each such mechanism, we provide empirical examples of how natural sperm-dependent asexuals impact the evolution of their sexual counterparts. In particular, we highlight that these broad effects may last beyond the tenure of the individual asexual lineages causing them, which challenges the traditional perception that asexual lineages are short-lived evolutionary dead ends and minor sideshows. Our review also proposes new research directions to incorporate the aforementioned impacts of sperm-dependent asexuals. These research directions will ultimately enhance our understanding of the evolution of genomes and biological interactions in general.
Collapse
Affiliation(s)
- Karel Janko
- Laboratory of Non‐Mendelian Evolution, Institute of Animal Physiology and GeneticsAcademy of Sciences of the Czech RepublicLiběchovCzech Republic
- Department of Biology and Ecology, Faculty of ScienceUniversity of OstravaOstravaCzech Republic
| | - Peter Mikulíček
- Department of Zoology, Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovakia
| | - Roman Hobza
- Department of Plant Developmental Genetics, Institute of BiophysicsAcademy of Sciences of the Czech RepublicBrnoCzech Republic
| | - Ingo Schlupp
- Department of BiologyUniversity of OklahomaOklahomaNormanUSA
- Department of BiologyInternational Stock Center for Livebearing FishesOklahomaNormanUSA
| |
Collapse
|
15
|
Beardsell A, Berteaux D, Dulude-De Broin F, Gauthier G, Clermont J, Gravel D, Bêty J. Predator-mediated interactions through changes in predator home range size can lead to local prey exclusion. Proc Biol Sci 2023; 290:20231154. [PMID: 37554032 PMCID: PMC10410220 DOI: 10.1098/rspb.2023.1154] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023] Open
Abstract
The strength of indirect biotic interactions is difficult to quantify in the wild and can alter community composition. To investigate whether the presence of a prey species affects the population growth rate of another prey species, we quantified predator-mediated interaction strength using a multi-prey mechanistic model of predation and a population matrix model. Models were parametrized using behavioural, demographic and experimental data from a vertebrate community that includes the arctic fox (Vulpes lagopus), a predator feeding on lemmings and eggs of various species such as sandpipers and geese. We show that the positive effects of the goose colony on sandpiper nesting success (due to reduction of search time for sandpiper nests) were outweighed by the negative effect of an increase in fox density. The fox numerical response was driven by changes in home range size. As a result, the net interaction from the presence of geese was negative and could lead to local exclusion of sandpipers. Our study provides a rare empirically based model that integrates mechanistic multi-species functional responses and behavioural processes underlying the predator numerical response. This is an important step forward in our ability to quantify the consequences of predation for community structure and dynamics.
Collapse
Affiliation(s)
- Andréanne Beardsell
- Chaire de recherche du Canada en biodiversité nordique, Centre d'études nordiques et Centre de la science de la biodiversité du Québec, Université du Québec à Rimouski, Rimouski, Québec, Canada G5L 3A1
| | - Dominique Berteaux
- Chaire de recherche du Canada en biodiversité nordique, Centre d'études nordiques et Centre de la science de la biodiversité du Québec, Université du Québec à Rimouski, Rimouski, Québec, Canada G5L 3A1
| | | | - Gilles Gauthier
- Département de biologie et Centre d'études nordiques, Université Laval, Québec, Canada G1V 0A6
| | - Jeanne Clermont
- Chaire de recherche du Canada en biodiversité nordique, Centre d'études nordiques et Centre de la science de la biodiversité du Québec, Université du Québec à Rimouski, Rimouski, Québec, Canada G5L 3A1
| | - Dominique Gravel
- Département de biologie et Centre d'études nordiques, Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1
| | - Joël Bêty
- Chaire de recherche du Canada en biodiversité nordique, Centre d'études nordiques et Centre de la science de la biodiversité du Québec, Université du Québec à Rimouski, Rimouski, Québec, Canada G5L 3A1
| |
Collapse
|
16
|
Hogg BN, Nelson EH, Daane KM. A comparison of candidate banker plants for management of pests in lettuce. ENVIRONMENTAL ENTOMOLOGY 2023; 52:379-390. [PMID: 37043620 DOI: 10.1093/ee/nvad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/15/2023] [Accepted: 03/22/2023] [Indexed: 06/17/2023]
Abstract
Agricultural systems are often lacking in resources for natural enemies. Providing alternative prey can help natural enemies persist through periods of low pest abundance, although this approach has been rarely commercially implemented in open field crops. In this study, we tested the potential of eight plant species to provide alternative prey to natural enemies in lettuce fields over a 2-yr period. Results showed that the tested plants would not act as sources of the lettuce aphid Nasonovia ribisnigri Mosley (Hemiptera: Aphididae), the primary lettuce pest. Of the banker plants tested, barley contained high numbers of non-lettuce aphids and appeared to provide reliable habitat for hoverfly larvae. However, lettuce aphids were present on lettuce early in the season, and may have dwarfed any effects of nonlettuce aphids on natural enemy populations. Numbers of hoverfly larvae were also high in lettuce, but did not appear to track numbers of non-lettuce aphids on banker plants. In contrast, numbers of lacewing larvae were highest on plants containing high numbers of non-lettuce aphids, and predatory hemipterans appeared to be associated with numbers of thrips on banker plants. Although barley showed promise as a source of alternative aphids, it did not appear to improve pest control in the adjacent crop.
Collapse
Affiliation(s)
- Brian N Hogg
- USDA-ARS, Invasive Species and Pollinator Health Research Unit, 800 Buchanan Street, Albany, CA 94710, USA
- Department of Environmental Science Policy and Management, University of California, 137 Mulford Hall, Berkeley, CA 94720, USA
| | - Erik H Nelson
- Department of Environmental Science Policy and Management, University of California, 137 Mulford Hall, Berkeley, CA 94720, USA
- Department of Natural Sciences and Mathematics, Dominican University of California, 50 Acacia Avenue, San Rafael, CA 94901, USA
| | - Kent M Daane
- Department of Environmental Science Policy and Management, University of California, 137 Mulford Hall, Berkeley, CA 94720, USA
| |
Collapse
|
17
|
Song C, Simmons BI, Fortin MJ, Gonzalez A, Kaiser-Bunbury CN, Saavedra S. Rapid monitoring of ecological persistence. Proc Natl Acad Sci U S A 2023; 120:e2211288120. [PMID: 37155860 PMCID: PMC10194002 DOI: 10.1073/pnas.2211288120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 03/29/2023] [Indexed: 05/10/2023] Open
Abstract
Effective conservation of ecological communities requires accurate and up-to-date information about whether species are persisting or declining to extinction. The persistence of an ecological community is supported by its underlying network of species interactions. While the persistence of the network supporting the whole community is the most relevant scale for conservation, in practice, only small subsets of these networks can be monitored. There is therefore an urgent need to establish links between the small snapshots of data conservationists can collect, and the "big picture" conclusions about ecosystem health demanded by policymakers, scientists, and societies. Here, we show that the persistence of small subnetworks (motifs) in isolation-that is, their persistence when considered separately from the larger network of which they are a part-is a reliable probabilistic indicator of the persistence of the network as a whole. Our methods show that it is easier to detect if an ecological community is not persistent than if it is persistent, allowing for rapid detection of extinction risk in endangered systems. Our results also justify the common practice of predicting ecological persistence from incomplete surveys by simulating the population dynamics of sampled subnetworks. Empirically, we show that our theoretical predictions are supported by data on invaded networks in restored and unrestored areas, even in the presence of environmental variability. Our work suggests that coordinated action to aggregate information from incomplete sampling can provide a means to rapidly assess the persistence of entire ecological networks and the expected success of restoration strategies.
Collapse
Affiliation(s)
- Chuliang Song
- Department of Biology, Quebec Centre for Biodiversity Science, McGill University, Montreal, QCH3A 0G4, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ONM5S 3B2, Canada
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ08544
| | - Benno I. Simmons
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, PenrynTR10 9FE, United Kingdom
| | - Marie-Josée Fortin
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ONM5S 3B2, Canada
| | - Andrew Gonzalez
- Department of Biology, Quebec Centre for Biodiversity Science, McGill University, Montreal, QCH3A 0G4, Canada
| | | | - Serguei Saavedra
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA02138
| |
Collapse
|
18
|
Wauters LA, Lurz PWW, Santicchia F, Romeo C, Ferrari N, Martinoli A, Gurnell J. Interactions between native and invasive species: A systematic review of the red squirrel-gray squirrel paradigm. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1083008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
The eastern gray squirrel (Sciurus carolinensis) has been labeled as one of the 100 worst invasive alien species by the IUCN. In Europe, the species has been introduced to Britain, Ireland and Italy, and its subsequent spread has resulted in wide-scale extinction of native Eurasian red squirrels (Sciurus vulgaris) from the areas colonized by the gray squirrel. This replacement of a native by an alien competitor is one of the best documented cases of the devastating effects of biological invasions on native fauna. To understand how this replacement occurs, we present a systematic review of the literature on competition and interactions between red and gray squirrels. We describe the patterns of red and gray squirrel distribution in those parts of Europe where gray squirrels occur and summarize the evidence on the different processes and mechanisms determining the outcome of competition between the native and alien species including the influence of predators and pathogens. Some of the drivers behind the demise of the red squirrel have been intensively studied and documented in the past 30 years, but recent field studies and mathematical models revealed that the mechanisms underlying the red-gray paradigm are more complex than previously thought and affected by landscape-level processes. Therefore, we consider habitat type and multi-species interactions, including host-parasite and predator-prey relationships, to determine the outcome of the interaction between the two species and to better address gray squirrel control efforts.
Collapse
|
19
|
van Nouhuys S, Harris DC, Hajek AE. Population level interactions between an invasive woodwasp, an invasive nematode and a community of native parasitoids. NEOBIOTA 2023. [DOI: 10.3897/neobiota.82.96599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Parasitic nematodes and hymenopteran parasitoids have been introduced and used extensively to control invasive Eurasian Sirex noctilio woodwasps in pine plantations in the Southern Hemisphere where no members of this community are native. Sirex noctilio has more recently invaded North America where Sirex-associated communities are native. Sirex noctilio and its parasitic nematode, Deladenus siricidicola, plus six native hymenopteran woodwasp parasitoids in New York and Pennsylvania, were sampled from 204 pines in 2011–2019. Sirex noctilio had become the most common woodwasp in this region and the native parasitoids associated with the native woodwasps had expanded their host ranges to use this invader. We investigated the distributions of these species among occupied trees and the interactions between S. noctilio and natural enemies as well as among the natural enemies. Sirex noctilio were strongly aggregated, with a few of the occupied trees hosting hundreds of woodwasps. Nematode parasitism was positively associated with S. noctilio density, and negatively associated with the density of rhyssine parasitoids. Parasitism by the parasitoid Ibalia leucospoides was positively associated with host (S. noctilio) density, while parasitism by the rhyssine parasitoids was negatively associated with density of S. noctilio. Thus, most S. noctilio come from a few attacked trees in a forest, and S. noctilio from those high-density trees experienced high parasitism by both the invasive nematode and the most abundant native parasitoid, I. l. ensiger. There is little evidence for direct competition between the nematodes and parasitoids. The negative association occurring between rhyssine parasitoids and I. l. ensiger suggests rhyssines may suffer from competition with I. l. ensiger which parasitize the host at an earlier life stage. In addition to direct competition with the native woodwasp Sirex nigricornis for suitable larval habitat within weakened trees, the large S. noctilio population increases the parasitoid and nematode populations, which may increase parasitism of S. nigricornis.
Collapse
|
20
|
Slade A, White A, Lurz PW, Shuttleworth C, Tosh DG, Twining JP. Indirect effects of pine marten recovery result in benefits to native prey through suppression of an invasive species and a shared pathogen. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2022.110216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
21
|
Thompson AW, Sweeney CP, Sutherland KR. Selective and differential feeding on marine prokaryotes by mucous mesh feeders. Environ Microbiol 2023; 25:880-893. [PMID: 36594240 DOI: 10.1111/1462-2920.16334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
Microbial mortality impacts the structure of food webs, carbon flow, and the interactions that create dynamic patterns of abundance across gradients in space and time in diverse ecosystems. In the oceans, estimates of microbial mortality by viruses, protists, and small zooplankton do not account fully for observations of loss, suggesting the existence of underappreciated mortality sources. We examined how ubiquitous mucous mesh feeders (i.e. gelatinous zooplankton) could contribute to microbial mortality in the open ocean. We coupled capture of live animals by blue-water diving to sequence-based approaches to measure the enrichment and selectivity of feeding by two coexisting mucous grazer taxa (pteropods and salps) on numerically dominant marine prokaryotes. We show that mucous mesh grazers consume a variety of marine prokaryotes and select between coexisting lineages and similar cell sizes. We show that Prochlorococcus may evade filtration more than other cells and that planktonic archaea are consumed by macrozooplanktonic grazers. Discovery of these feeding relationships identifies a new source of mortality for Earth's dominant marine microbes and alters our understanding of how top-down processes shape microbial community and function.
Collapse
Affiliation(s)
- Anne W Thompson
- Department of Biology, Portland State University, Portland, Oregon, USA
| | - Carey P Sweeney
- Department of Biology, Portland State University, Portland, Oregon, USA
| | - Kelly R Sutherland
- Oregon Institute of Marine Biology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
22
|
Moquet L, Jobart B, Fontaine R, Delatte H. Tri-trophic interactions among Fopius arisanus, Tephritid species and host plants suggest apparent competition. Ecol Evol 2023; 13:e9742. [PMID: 36644698 PMCID: PMC9834009 DOI: 10.1002/ece3.9742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023] Open
Abstract
When several polyphagous herbivore species share a parasitoid, the tri-trophic interaction networks can be difficult to predict. In addition to direct effects, the parasitoid may influence the herbivore community by mediating indirect interactions among hosts. The plant species can also modulate the parasitoid preference for a specific host. One of the indirect effects is apparent competition, a negative interaction between individuals as a result of the action of shared natural enemies. Here, we focus on the interactions between the parasitoid Fopius arisanus (Braconidae) and two generalist fruit fly pests: Bactrocera dorsalis and Bactrocera zonata (Tephritidae). This parasitoid was introduced into La Réunion in 2003 to control populations of B. zonata and can also interact with B. dorsalis since its invasion in 2017. Our main objective is to characterize the tri-trophic interactions between F. arisanus, fruit fly and host plant species. We developed a long-term field database of fruit collected before and after the parasitoid introduction and after the B. dorsalis invasion in order to compare parasitism rate and fruit fly infestation for the different periods. In laboratory assays, we investigated how the combination of fruit fly species and fruit can influence the preference of F. arisanus. In the field, before the invasion of B. dorsalis, the parasitism rate of F. arisanus was low and had a little impact on the fruit fly infestation rate. After the B. dorsalis invasion, we observed an increase in parasitism rate from 5% to 17%. A bioassay showed that females of F. arisanus could discriminate between eggs of different fruit fly and host plant species. The host plant species preference changed in relation to the fruit fly species inoculated. Field observations and laboratory experiments suggest the possible existence of apparent competition between B. dorsalis and B. zonata via F. arisanus.
Collapse
|
23
|
Fuller HW, Frey S, Fisher JT. Integration of aerial surveys and resource selection analysis indicates human land use supports boreal deer expansion. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2722. [PMID: 36053995 DOI: 10.1002/eap.2722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Landscape change is a driver of global biodiversity loss. In the western Nearctic, petroleum exploration and extraction is a major contributor to landscape change, with concomitant effects on large mammal populations. One of those effects is the continued expansion of invasive white-tailed deer populations into the boreal forest, with ramifications for the whole ecosystem. We explored deer resource selection within the oil sands region of the boreal forest using a novel application of aerial ungulate survey (AUS) data. Deer locations from AUS were "used" points and together with randomly allocated "available" points informed deer resource selection in relation to landscape variables in the boreal forest. We created a candidate set of generalized linear models representing competing hypotheses about the role of natural landscape features, forest harvesting, cultivation, roads, and petroleum features. We ranked these in an information-theoretic framework. A combination of natural and anthropogenic landscape features best explained deer resource selection. Deer strongly selected seismic lines and other linear features associated with petroleum exploration and extraction, likely as movement corridors and resource subsidies. Forest harvesting and cultivation, important contributors to expansion in other parts of the white-tailed deer range, were not as important here. Stemming deer expansion to conserve native ungulates and maintain key predator-prey processes will likely require landscape management to restore the widespread linear features crossing the vast oil sands region.
Collapse
Affiliation(s)
- Hugh W Fuller
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| | - Sandra Frey
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| | - Jason T Fisher
- School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada
| |
Collapse
|
24
|
Morris DW. Sex‐dependent habitat selection modulates risk management by meadow voles. Ecosphere 2023. [DOI: 10.1002/ecs2.4378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Douglas W. Morris
- Department of Biology Lakehead University Thunder Bay Ontario Canada
| |
Collapse
|
25
|
Iwashita G, Yamawo A, Kondoh M. Predator discrimination of prey promotes the predator-mediated coexistence of prey species. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220859. [PMID: 36483759 PMCID: PMC9727501 DOI: 10.1098/rsos.220859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
The predator discrimination of prey can affect predation intensity and the prey density dependence of predators, which has the potential to alter the coexistence of prey species. We used a predator-prey population dynamics model accounting for the predator's adaptive diet choice and predator discrimination of prey to investigate how the latter influences prey coexistence. The model revealed that (i) prey species that are perceived as belonging to the same species by a predator are attacked in the same manner, and it is more difficult for them to coexist than those that are recognized as different prey species, and (ii) prey species that are not discriminated by a predator-and therefore cannot coexist-may coexist in the presence of an alternative predator that does discriminate between them. These results suggest that prey diversity, which favours the predator discrimination of prey, and the different capabilities of predators to identify prey species both enhance prey coexistence.
Collapse
Affiliation(s)
- Gen Iwashita
- Graduate School of Life Sciences, Tohoku University Japan, Sendai 980-8577, Japan
| | - Akira Yamawo
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki Aomori 036-8561, Japan
| | - Michio Kondoh
- Graduate School of Life Sciences, Tohoku University Japan, Sendai 980-8577, Japan
| |
Collapse
|
26
|
Wu Y, Brown A, Ricklefs RE. Host-specific soil microbes contribute to habitat restriction of closely related oaks ( Quercus spp.). Ecol Evol 2022; 12:e9614. [PMID: 36523531 PMCID: PMC9745265 DOI: 10.1002/ece3.9614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Habitat divergence among close relatives is a common phenomenon. Studying the mechanisms behind habitat divergence is fundamental to understanding niche partitioning, species diversification, and other evolutionary processes. Recent studies found that soil microbes regulate the abundance and diversity of plant species. However, it remains unclear whether soil microbes can affect the habitat distributions of plants and drive habitat divergence. To fill in this knowledge gap, we investigated whether soil microbes might restrict habitat distributions of closely related oaks (Quercus spp.) in eastern North America. We performed a soil inoculum experiment using two pairs of sister species (i.e., the most closely related species) that show habitat divergence: Quercus alba (local species) vs. Q. michauxii (foreign), and Q. shumardii (local) vs. Q. acerifolia (foreign). To test whether host-specific soil microbes are responsible for habitat restriction, we investigated the impact of local sister live soil (containing soil microbes associated with local sister species) on the survival and growth of local and foreign species. Second, to test whether habitat-specific soil microbes are responsible for habitat restriction, we examined the effect of local habitat live soil (containing soil microbes within local sister's habitats, but not directly associated with local sister species) on the seedlings of local and foreign species. We found that local sister live soil decreased the survival and biomass of foreign species' seedlings while increasing those of local species, suggesting that host-specific soil microbes could potentially mediate habitat exclusion. In contrast, local habitat live soil did not differentially affect the survival or biomass of the local vs. foreign species. Our study indicates that soil microbes associated with one sister species can suppress the recruitment of the other host species, contributing to the habitat partitioning of close relatives. Considering the complex interactions with soil microbes is essential for understanding the habitat distributions of closely related plants.
Collapse
Affiliation(s)
- Yingtong Wu
- Department of BiologyUniversity of Missouri–St. LouisSt. LouisMissouriUSA
- Whitney R. Harris World Ecology CenterUniversity of Missouri–St. LouisSt. LouisMissouriUSA
| | - Alicia Brown
- Department of BiologyUniversity of Missouri–St. LouisSt. LouisMissouriUSA
- Whitney R. Harris World Ecology CenterUniversity of Missouri–St. LouisSt. LouisMissouriUSA
| | - Robert E. Ricklefs
- Department of BiologyUniversity of Missouri–St. LouisSt. LouisMissouriUSA
- Whitney R. Harris World Ecology CenterUniversity of Missouri–St. LouisSt. LouisMissouriUSA
| |
Collapse
|
27
|
Buffalo on the Edge: Factors Affecting Historical Distribution and Restoration of Bison bison in the Western Cordillera, North America. DIVERSITY 2022. [DOI: 10.3390/d14110937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The historic western edge of the bison (Bison bison) range and the ecological processes that caused its formation are frequently debated with important implications for bison restoration across North America. We test the hypothesis that a combination of bottom-up habitat suitability and top-down harvest pressure from Indigenous peoples were important processes in forming the western edge of bison distribution. Using 9384 historical journal observations from 1691–1928, we employ MaxEnt ecological niche modelling to identify suitable bison habitat across the Western Cordillera from bottom-up climatic, land cover, and topographic factors. We then use mixed-effect logistic regression to test if bison occurrence in journal records can be in part explained by the abundance of humans, wolves, or grizzly bears, in addition to MaxEnt-derived habitat suitability. We find support for our hypothesis because of the limited suitable habitat in the Rocky Mountains that likely prevented westward bison dispersal from their core habitat, and there was a negative relationship between bison occurrence and human harvest pressure. On this basis, we propose that intensive human harvest from large populations in the Western Cordillera, subsidized by other wildlife, salmon, and vegetation resources, is an underappreciated socioecological process that needs to be restored alongside bison populations. Co-managing bison with Indigenous peoples will also mitigate the adverse effects of overabundant bison populations and maximize the ecological and cultural benefits of bison restoration.
Collapse
|
28
|
Zelnik YR, Manzoni S, Bommarco R. The coordination of green-brown food webs and their disruption by anthropogenic nutrient inputs. GLOBAL ECOLOGY AND BIOGEOGRAPHY : A JOURNAL OF MACROECOLOGY 2022; 31:2270-2280. [PMID: 36606260 PMCID: PMC9804327 DOI: 10.1111/geb.13576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/24/2022] [Accepted: 07/13/2022] [Indexed: 06/17/2023]
Abstract
Aim Our goal was to quantify nitrogen flows and stocks in green-brown food webs in different ecosystems, how they differ across ecosystems and how they respond to nutrient enrichment. Location Global. Time period Contemporary. Major taxa studied Plants, phytoplankton, macroalgae, invertebrates, vertebrates and zooplankton. Methods Data from >500 studies were combined to estimate nitrogen stocks and fluxes in green-brown food webs in forests, grasslands, brackish environments, seagrass meadows, lakes and oceans. We compared the stocks, fluxes and metabolic rates of different functional groups within each food web. We also used these estimates to build a dynamical model to test the response of the ecosystems to nutrient enrichment. Results We found surprising symmetries between the green and brown channels across ecosystems, in their stocks, fluxes and consumption coefficients and mortality rates. We also found that nitrogen enrichment, either organic or inorganic, can disrupt this balance between the green and brown channels. Main conclusions Linking green and brown food webs reveals a previously hidden symmetry between herbivory and detritivory, which appears to be a widespread property of natural ecosystems but can be disrupted by anthropogenic nitrogen additions.
Collapse
Affiliation(s)
- Yuval R. Zelnik
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Stefano Manzoni
- Department of Physical GeographyStockholm UniversityStockholmSweden
- Bolin Centre for Climate ResearchStockholm UniversityStockholmSweden
| | - Riccardo Bommarco
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
29
|
Sallee DW, McMillan BR, Hersey KR, Petersen SL, Larsen RT. Influence of interspecific competition on mule deer birthing and rearing site selection. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Daniel W. Sallee
- Department of Plant and Wildlife Sciences Brigham Young University 4105 Life Sciences Building Provo UT 84602 USA
| | - Brock R. McMillan
- Department of Plant and Wildlife Sciences Brigham Young University 4105 Life Sciences Building Provo UT 84602 USA
| | - Kent R. Hersey
- Utah Division of Wildlife Resources 1594 W North Temple Street, Suite 2110 Salt Lake City UT 84114 USA
| | - Steven L. Petersen
- Department of Plant and Wildlife Sciences Brigham Young University 4105 Life Sciences Building Provo UT 84602 USA
| | - Randy T. Larsen
- Department of Plant and Wildlife Sciences Brigham Young University 4105 Life Sciences Building Provo UT 84602 USA
| |
Collapse
|
30
|
Bernasconi A, Alassimone J, McDonald BA, Sánchez‐Vallet A. Asexual reproductive potential trumps virulence as a predictor of competitive ability in mixed infections. Environ Microbiol 2022; 24:4369-4381. [PMID: 35437879 PMCID: PMC9790533 DOI: 10.1111/1462-2920.16018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/13/2022] [Indexed: 12/30/2022]
Abstract
Natural infections frequently involve several co-infecting pathogen strains. These mixed infections can affect the extent of the infection, the transmission success of the pathogen and the eventual epidemic outcome. To date, few studies have investigated how mixed infections affect transmission between hosts. Zymoseptoria tritici is a highly diverse wheat pathogen in which multiple strains often coexist in the same lesion. Here we demonstrate that the most competitive strains often exclude their competitors during serial passages of mixed infections. The outcome of the competition depended on both the host genotype and the genotypes of the competing pathogen strains. Differences in virulence among the strains were not associated with competitive advantages during transmission, while differences in reproductive potential had a strong effect on strain competitive ability. Overall, our findings suggest that host specialization is determined mainly by the ability to successfully transmit offspring to new hosts during mixed infections.
Collapse
Affiliation(s)
- Alessio Bernasconi
- Plant Pathology, Institute of Integrative Biology, ETH ZürichZürichCH‐8092Switzerland
| | - Julien Alassimone
- Plant Pathology, Institute of Integrative Biology, ETH ZürichZürichCH‐8092Switzerland
| | - Bruce A. McDonald
- Plant Pathology, Institute of Integrative Biology, ETH ZürichZürichCH‐8092Switzerland
| | - Andrea Sánchez‐Vallet
- Plant Pathology, Institute of Integrative Biology, ETH ZürichZürichCH‐8092Switzerland
| |
Collapse
|
31
|
Jones DG, Kobelt J, Ross JM, Powell THQ, Prior KM. Latitudinal gradient in species diversity provides high niche opportunities for a range-expanding phytophagous insect. J Anim Ecol 2022; 91:2037-2049. [PMID: 35945806 DOI: 10.1111/1365-2656.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
When species undergo poleward range expansions in response to anthropogenic change, they likely encounter less diverse communities in new locations. If low diversity communities provide weak biotic interactions, such as reduced competition or predation, range-expanding species may experience high niche opportunities. Here, we investigated if oak gall wasp communities follow a latitudinal diversity gradient (LDG) and if lower diversity communities provide weaker interactions at the poles for a range-expanding community member, Neuroterus saltatorius. We performed systematic surveys of gall wasps on a dominant oak, Quercus garryana, throughout most of its range, from northern California to Vancouver Island, British Columbia. On 540 trees at 18 sites, we identified 23 oak gall wasp morphotypes in three guilds (leaf detachable, leaf integral, and stem galls). We performed regressions between oak gall wasp diversity, latitude, and other abiotic (e.g. temperature) and habitat (e.g. oak patch size) factors to reveal if gall wasp communities followed an LDG. To uncover patterns in local interactions, we first performed partial correlations of gall wasp morphotype occurrences on trees within regions). We then performed regressions between abundances of co-occurring gall wasps on trees to reveal if interactions are putatively competitive or antagonistic. Q. garryana-gall wasp communities followed an LDG, with lower diversity at higher latitudes, particularly with a loss of detachable leaf gall morphotypes. Detachable leaf gall wasps, including the range-expanding species, co-occurred most on trees, with weak co-occurrences on trees in the northern expanded region. Abundances of N. saltatorius and detachable and integral leaf galls co-occurring on trees were negatively related, suggesting antagonistic interactions. Overall, we found that LDGs create communities with weaker associations at the poles that might facilitate ecological release in a range-expanding community member. Given the ubiquity of LDGs in nature, poleward range-expanding species are likely moving into low diversity communities. Yet, understanding if latitudinal diversity pattern provides weak biotic interactions for range-expanding species is not well explored. Our large-scale study documenting diversity in a related community of phytophagous insects that co-occur on a host plant reveals that LDGs create high niche opportunities for a range-expanding community member. Biogeographical patterns in diversity and species interactions are likely important mechanisms contributing to altered biotic interactions under range-expansions.
Collapse
Affiliation(s)
- Dylan G Jones
- Department of Biological Sciences, Binghamton University SUNY, Binghamton, NY, USA
| | - Julia Kobelt
- Department of Biological Sciences, Binghamton University SUNY, Binghamton, NY, USA
| | - Jenna M Ross
- Department of Biological Sciences, Binghamton University SUNY, Binghamton, NY, USA
| | - Thomas H Q Powell
- Department of Biological Sciences, Binghamton University SUNY, Binghamton, NY, USA
| | - Kirsten M Prior
- Department of Biological Sciences, Binghamton University SUNY, Binghamton, NY, USA
| |
Collapse
|
32
|
de Jonge IK, Olff H, Wormmeester R, Veldhuis MP. Spatiotemporal habitat use of large African herbivores across a conservation border. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Inger K. de Jonge
- Conservation Ecology, Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
- Systems Ecology, Department of Ecological Science, Faculty of Science Vrije Universiteit Amsterdam Amsterdam The Netherlands
| | - Han Olff
- Conservation Ecology, Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Remo Wormmeester
- Conservation Ecology, Groningen Institute for Evolutionary Life Sciences University of Groningen Groningen The Netherlands
| | - Michiel P. Veldhuis
- Department of Environmental Biology, Institute of Environmental Sciences Leiden University Leiden The Netherlands
| |
Collapse
|
33
|
Klapwijk MJ, Bonsall MB. Associational Effects and Indirect Interactions-The Dynamical Effects of Consumer and Resource Traits on Generalist-Resource Interactions. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.854222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Trophic interaction modifications occur in food webs when the direct or indirect interaction between two species is affected by a third species. These behavioral modification effects are often referred to as associational effects. Changes in focal resource availability and consumption by a generalist herbivore can affect a range of outcomes from resource exclusion to multiple resources coexisting with the focal plant species. Here, we investigate the indirect interaction between a focal and alternative resource mediated by a generalist consumer. Using theoretical approaches we analyse the conceptual link between associational effects (both resistance and susceptibility) and the theory of apparent competition and resource switching. We find that changes in focal resource traits have the potential to affect the long-term outcome of indirect interactions. Inclusion of density-dependence expands generalist life-histories and broadens the range where, through associational effects, the availability of alternative resources positively influence a focal resource. We conclude that different forms of associational effects could, in the long-term, lead to a range of indirect interaction dynamics, including apparent competition and apparent mutualism. Our work aims to connects the theoretical body of work on indirect interactions to the concepts of associational effects. The indirect interactions between multiple resources need more thorough investigation to appreciate the range of associational effects that could result from the dynamical interaction between a generalist consumers and its focal and alternative resources.
Collapse
|
34
|
Schreiber SJ. Temporally auto-correlated predator attacks structure ecological communities. Biol Lett 2022; 18:20220150. [PMID: 35857890 PMCID: PMC9256083 DOI: 10.1098/rsbl.2022.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
For species primarily regulated by a common predator, the P* rule of Holt & Lawton (Holt & Lawton, 1993. Am. Nat.142, 623-645. (doi:10.1086/285561)) predicts that the prey species that supports the highest mean predator density (P*) excludes the other prey species. This prediction is re-examined in the presence of temporal fluctuations in the vital rates of the interacting species including predator attack rates. When the fluctuations in predator attack rates are temporally uncorrelated, the P* rule still holds even when the other vital rates are temporally auto-correlated. However, when temporal auto-correlations in attack rates are positive but not too strong, the prey species can coexist due to the emergence of a positive covariance between predator density and prey vulnerability. This coexistence mechanism is similar to the storage effect for species regulated by a common resource. Negative or strongly positive auto-correlations in attack rates generate a negative covariance between predator density and prey vulnerability and a stochastic priority effect can emerge: with non-zero probability either prey species is excluded. These results highlight how temporally auto-correlated species' interaction rates impact the structure and dynamics of ecological communities.
Collapse
Affiliation(s)
- Sebastian J. Schreiber
- Department of Evolution and Ecology, and Center for Population Biology, University of California, Davis, CA 95616, USA
| |
Collapse
|
35
|
Lorusso NS, Faillace CA. Indirect facilitation between prey promotes asymmetric apparent competition. J Anim Ecol 2022; 91:1869-1879. [PMID: 35765925 PMCID: PMC9544837 DOI: 10.1111/1365-2656.13768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
Apparent competition is one mechanism that can contribute to the complex dynamics observed in natural systems, yet it remains understudied in empirical systems. Understanding the dynamics that shape the outcome of processes like apparent competition is vital for appreciating how they influence natural systems. We empirically evaluated the role of indirect trophic interactions in driving apparent competition in a model laboratory system. Our experimental system was designed to let us evaluate combined direct and indirect interactions among species. Here we describe the results of a factorial experiment using two noncompeting prey (Colpidium kleini, a heterotroph, and Chlamydomonas reinhardtii, an autotroph) consumed by a generalist predator Euplotes eurystomus to explore the dynamics of apparent competition. To gain intuition into the potential mechanism driving the asymmetry in the observed results, we further explored the system using structural equation modelling. Our results show an important role of positive interactions and indirect effects contributing to apparent competition in this system with a marked asymmetrical outcome favouring one prey, Chlamydomonas. The selected structural equation supports a role of indirect facilitation; although Chlamydomonas (a photoautotroph) and Colpidium (a bacterivore) use different resources and therefor do not directly compete, Colpidium reduces bacteria that may compete with Chlamydomonas. In addition, formation of colonies by Chlamydomonas in response to predation by Euplotes provides an antipredator defence not available to Colpidium. Asymmetric apparent competition may be more common in natural systems than the symmetric interaction originally proposed in classic theory, suggesting that exploration of the mechanisms driving the asymmetry of the interaction can be a fruitful area of further research to better our understanding of interspecific interactions and community dynamics.
Collapse
Affiliation(s)
- Nicholas S Lorusso
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, Jersey.,Current Institution: Department of Life Sciences, University of North Texas at Dallas, 7500 University Hills Blvd, Dallas, Texas, USA
| | - Cara A Faillace
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, Jersey.,Current Institution: University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
36
|
Kortessis N, Kendig AE, Barfield M, Flory SL, Simon MW, Holt RD. Litter, plant competition, and ecosystem dynamics: A theoretical perspective. Am Nat 2022; 200:739-754. [DOI: 10.1086/721438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Borden JB, San Antonio KM, Tomat-Kelly G, Clark T, Flory SL. Invasive grass indirectly alters seasonal patterns in seed predation. Biol Lett 2022; 18:20220095. [PMID: 35702984 PMCID: PMC9198778 DOI: 10.1098/rsbl.2022.0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 05/16/2022] [Indexed: 11/12/2022] Open
Abstract
Invasive species threaten ecosystems globally, but their impacts can be cryptic when they occur indirectly. Invader phenology can also differ from that of native species, potentially causing seasonality in invader impacts. Yet, it is unclear if invader phenology can drive seasonal patterns in indirect effects. We used a field experiment to test if an invasive grass (Imperata cylindrica) caused seasonal indirect effects by altering rodent foraging and seed predation patterns through time. Using seeds from native longleaf pine (Pinus palustris), we found seed predation was 25% greater, on average, in invaded than control plots, but this effect varied by season. Seed predation was 24-157% greater in invaded plots during spring and autumn months, but invasion had no effect on seed predation in other months. One of the largest effects occurred in October when longleaf pine seeds are dispersed, suggesting potential effects on tree regeneration. Thus, seasonal patterns in indirect effects from invaders may cause underappreciated impacts on ecological communities.
Collapse
Affiliation(s)
- Jesse B. Borden
- School of Natural Resources and Environment, University of Florida, Gainesville, FL 32611, USA
| | - Kelly M. San Antonio
- Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| | | | - Taylor Clark
- Agronomy Department, University of Florida, Gainesville, FL 32611, USA
| | - S. Luke Flory
- Agronomy Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
38
|
Salazar D, Marquis RJ. Testing the role of local plant chemical diversity on plant-herbivore interactions and plant species coexistence. Ecology 2022; 103:e3765. [PMID: 35611398 DOI: 10.1002/ecy.3765] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/24/2022] [Accepted: 04/20/2022] [Indexed: 11/09/2022]
Abstract
Accumulating evidence suggests that herbivorous insects influence local composition and richness of Neotropical plant species, particularly in species-rich genera. Species richness, phylogenetic diversity, and chemical diversity all influence the ability of insect herbivores to find and utilize their hosts. The relative impact of these components of diversity on species coexistence and plant-herbivore interactions is not well understood. We constructed 60 local communities of up to 13 species of Piper (Piperaceae) in native, mature forest at a lowland wet forest location in Costa Rica. Species composition of each community was chosen such that species richness, phylogenetic diversity, and GCMS-based chemical diversity were varied independently among communities. We predicted that chemical diversity would most strongly affect the communities across time, with smaller effects of taxonomic and phylogenetic diversity. Thirteen months after the experimental planting, we assessed survivorship of each cutting, measured total leaf area loss of the survivors, leaf area loss to generalist and specialist herbivorous insect species, and local extinction of species. Generalist and specialist herbivory decreased with increasing levels of species richness and phylogenetic diversity, respectively. Surprisingly, there was no independent effect of chemical diversity on any of the three measures of herbivore damage. Nevertheless, plots with a higher chemical and phylogenetic diversity showed decreased plant mortality and local species extinction. Overall, our results suggest that both chemical and phylogenetic similarity are important factors in the assembly and maintenance of tropical plant communities. The fact that chemical diversity influences plant mortality suggests that leaf herbivores, and possibly other plant natural enemies, could increase plant diversity via selective mortality of similar chemotypes.
Collapse
Affiliation(s)
- Diego Salazar
- International Center for Tropical Botany, Institute of Environment, Department of Biological Sciences, Florida International University
| | - Robert J Marquis
- Department of Biology and the Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, St. Louis, MO, United States
| |
Collapse
|
39
|
Scott R, Resetarits WJ. Spatially explicit habitat selection: Testing contagion and the ideal free distribution with Culex mosquitoes. Am Nat 2022; 200:675-690. [DOI: 10.1086/721009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Olesen JM. Ego network analysis of the trophic structure of an island land bird through 300 years of climate change and invaders. Ecol Evol 2022; 12:e8916. [PMID: 35600677 PMCID: PMC9121045 DOI: 10.1002/ece3.8916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/01/2022] [Accepted: 03/09/2022] [Indexed: 11/06/2022] Open
Abstract
Ego net analysis is a well‐known practice in social sciences, where an ego net (EN) consists of a focal node, the ego, and its links to other nodes, called alters, and alter–alter links may also be included. An EN describes how a focal node is embedded in its interaction context. Here, I introduce EN analysis to ecology in a study of the trophic network of a sub‐Antarctic land bird, Lesser Sheathbill (Chionis minor). Data originate from the sheathbill population on Marion Island in the Southern Ocean. The bird is ego and its enemies and food are alters. The EN is organized along three dimensions: habitat, interaction type, and time (from before human arrival in 1803 and until a future year 2100). Ten EN descriptors are defined, estimated, and used to track the 300 years of change in sheathbill EN structure. Since 1803, the EN has passed two major, but reversible shifts—seal exploitation in the 19th century and presence of cats from 1949 to 1991. These shifts can be read as structural changes in the sheathbill EN. In the future, a third, perhaps irreversible change is predicted, driven by climate change and a surprising, recent shift to seabird predation by House Mouse, the most detrimental of all extant invaders on Marion. In a warmer and drier future, the mouse will proliferate, and if this forces seabirds to abandon the island, their accumulation of detritus runs dry, starving a rich invertebrate detritivore fauna, which also is a key food source to sheathbills. These detritivores together with plants have also constituted the main food sources of mice. The EN descriptors quantify that story. In the future, these events may lead to a collapse of the island ecosystem, including extinction of the sheathbill—unless plans for mouse eradication are implemented.
Collapse
Affiliation(s)
- Jens M. Olesen
- Department of Biology Aarhus University Aarhus C Denmark
| |
Collapse
|
41
|
Lingle S, Breiter C, Schowalter DB, Wilmshurst JF. Prairie dogs, cattle subsidies and alternative prey: seasonal and spatial variation in coyote diet in a temperate grassland. WILDLIFE BIOLOGY 2022. [DOI: 10.1002/wlb3.01048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Susan Lingle
- Dept of Biology, Univ. of Winnipeg Winnipeg MB Canada
| | - C‐Jae Breiter
- Research and Conservation Dept, Assiniboine Park Zoo Winnipeg MB Canada
| | | | - John F. Wilmshurst
- Dept of Geography and Planning, Univ. of Saskatchewan Saskatoon SK Canada
| |
Collapse
|
42
|
Grover JP, Scott JT, Roelke DL, Brooks BW. Competitive superiority of N-fixing cyanobacteria when fixed N is scarce: Reconsiderations based on a model with heterocyst differentiation. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.109904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
43
|
Influence of habitat complexity on the prey mortality in IGP system involving insect predators (Heteroptera) and prey (Diptera): Implications in biological control. PLoS One 2022; 17:e0264840. [PMID: 35286333 PMCID: PMC8920208 DOI: 10.1371/journal.pone.0264840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/17/2022] [Indexed: 11/30/2022] Open
Abstract
Intraguild predation (IGP) is common in the freshwater insect communities, involving a top predator, intraguild prey (IG prey) and a shared prey. Influence of the habitat complexity on the prey-predator interactions is well established through several studies. In the present instance, the IGP involving the heteropteran predators and the dipteran prey were assessed in the background of the habitat complexity. The three predators Diplonychus rusticus, Ranatra filiformis, and Laccotrephes griseus, one intraguild prey Anisops bouvieri and two dipteran prey Culex quinquefasciatus and Chironomus sp. were used in different relative density against the complex habitat conditions to deduce the impact on the mortality on the prey. In comparison to the open conditions, the presence of the macrophytes and pebbles reduced the mortality of the shared prey under intraguild system as well as single predator system. The mortality of the shared prey was however dependent on the density of the predator and prey. Considering the shared prey mortality, predation on mosquito larvae was always higher in single predator system than chironomid larvae irrespective of identity and density of predators. However, for both the shared prey, complexity of habitat reduced the prey vulnerability in comparison to the simple habitat condition. Higher observed prey consumption depicts the higher risk to predation of shared prey, though the values varied with habitat conditions. Mortality of IG prey (A. bouvieri) in IGP system followed the opposite trend of the shared prey. The lower mortality in simple habitat and higher mortality in complex habitat conditions was observed for the IG prey, irrespective of shared prey and predator density. In IGP system, the shared prey mortality was influenced by the habitat conditions, with more complex habitat reducing the vulnerability of the shared prey and increased mortality of the IG prey. This implies that the regulation of the mosquitoes, in the IGP system will be impeded by the habitat conditions, with the heteropteran predators as the top predator.
Collapse
|
44
|
Wilson EC, Zuckerberg B, Peery MZ, Pauli JN. Experimental repatriation of snowshoe hares along a southern range boundary reveals historical community interactions. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Evan C. Wilson
- Department of Forest and Wildlife Ecology University of Wisconsin Madison Wisconsin USA
| | - Benjamin Zuckerberg
- Department of Forest and Wildlife Ecology University of Wisconsin Madison Wisconsin USA
| | - M. Zachariah Peery
- Department of Forest and Wildlife Ecology University of Wisconsin Madison Wisconsin USA
| | - Jonathan N. Pauli
- Department of Forest and Wildlife Ecology University of Wisconsin Madison Wisconsin USA
| |
Collapse
|
45
|
Poelman EH, Cusumano A. Impact of parasitoid-associated polydnaviruses on plant-mediated herbivore interactions. CURRENT OPINION IN INSECT SCIENCE 2022; 49:56-62. [PMID: 34839032 DOI: 10.1016/j.cois.2021.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/05/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Insect herbivores interact via plant-mediated interactions in which one herbivore species induces changes in plant quality that affects the performance of a second phytophagous insect that shares the food plant. These interactions are often asymmetric due to specificity in induced plant responses to herbivore attack, amount of plant damage, elicitors in herbivore saliva and plant organ damaged by herbivores. Parasitoids and their symbiotic polydnaviruses alter herbivore physiology and behaviour and may influence how plants respond to parasitized herbivores. We argue that these phenomena affect plant-mediated interactions between herbivores. We identify that the extended phenotype of parasitoid polydnaviruses is an important knowledge gap in interaction networks of insect communities.
Collapse
Affiliation(s)
- Erik H Poelman
- Wageningen University, Laboratory of Entomology, P.O. Box 16, Wageningen, 6700 AA, The Netherlands.
| | - Antonino Cusumano
- University of Palermo, Department of Agricultural, Food And Forest Sciences (SAAF), Viale delle Scienze, 90128, Palermo, Italy.
| |
Collapse
|
46
|
Hogle SL, Hepolehto I, Ruokolainen L, Cairns J, Hiltunen T. Effects of phenotypic variation on consumer coexistence and prey community structure. Ecol Lett 2022; 25:307-319. [PMID: 34808704 PMCID: PMC9299012 DOI: 10.1111/ele.13924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/06/2021] [Accepted: 10/15/2021] [Indexed: 12/29/2022]
Abstract
A popular idea in ecology is that trait variation among individuals from the same species may promote the coexistence of competing species. However, theoretical and empirical tests of this idea have yielded inconsistent findings. We manipulated intraspecific trait diversity in a ciliate competing with a nematode for bacterial prey in experimental microcosms. We found that intraspecific trait variation inverted the original competitive hierarchy to favour the consumer with variable traits, ultimately resulting in competitive exclusion. This competitive outcome was driven by foraging traits (size, speed and directionality) that increased the ciliate's fitness ratio and niche overlap with the nematode. The interplay between consumer trait variation and competition resulted in non-additive cascading effects-mediated through prey defence traits-on prey community assembly. Our results suggest that predicting consumer competitive population dynamics and the assembly of prey communities will require understanding the complexities of trait variation within consumer species.
Collapse
Affiliation(s)
| | - Iina Hepolehto
- Department of MicrobiologyUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Lasse Ruokolainen
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Johannes Cairns
- Organismal and Evolutionary Biology Research ProgrammeUniversity of HelsinkiFinland
- Department of Computer ScienceUniversity of HelsinkiFinland
| | | |
Collapse
|
47
|
Zbinden ZD. A needle in the haystack? Applying species co-occurrence frameworks with fish assemblage data to identify species associations and sharpen ecological hypotheses. JOURNAL OF FISH BIOLOGY 2022; 100:339-351. [PMID: 33860934 DOI: 10.1111/jfb.14752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Different species can associate or interact in many ways, and methods exist for inferring associations and underlying mechanisms from incidence data (e.g., co-occurrence frameworks). These methods have received criticism despite their recent resurgence in the literature. However, co-occurrence frameworks for identifying nonrandomly associated species pairs (e.g., aggregated or segregated pairs) have value as heuristic tools for sharpening hypotheses concerning fish ecology. This paper provides a case study examining species co-occurrence across 33 stream fish assemblages in southeastern Oklahoma, USA, which were sampled twice (1974 and 2014). This study sought to determine (a) which species were nonrandomly associated, (b) what processes might have driven these associations and (c) how consistent patterns were across time. Associations among most pairs of species (24 species, 276 unique pairs) were not significantly different from random (>80%). Among all significant, nonrandomly associated species pairs (54 unique pairs), 78% (42 pairs) were aggregated and 22% (12 pairs) segregated. Most of these (28 pairs, 52%) were hypothesized to be driven by nonbiotic mechanisms: habitat filtering (20 pairs, 37%), dispersal limitation (two pairs, 0.4%) or both (six pairs, 11%). The remaining 26 nonrandomly associated pairs (48%) had no detectable signal of spatial or environmental factors involved with the association, therefore the potential for biotic interaction was not refuted. Only five species pairs were consistently associated across both sampling periods: stonerollers Campostoma spp. and orangebelly darter Etheostoma radiosum; red shiner Cyprinella lutrensis and bullhead minnow Pimephales vigilax; bluegill sunfish Lepomis macrochirus and redear sunfish Lepomis microlophus; redfin shiner Lythrurus umbratilis and bluntnose minnow Pimephales notatus; and bigeye shiner Notropis boops and golden shiner Notemigonus crysoleucas. Frameworks for identifying nonrandomly associated species pairs can provide insight into broader mechanisms of species assembly and point to potentially interesting species interactions (out of many possible pairs). However, this approach is best applied as a tool for sharpening hypotheses to be investigated further. Rather than a weakness, the heuristic nature is the strength of such methods, and can help guide biologists toward better questions by employing relatively cheap diversity survey data, which are often already in hand, to reduce complex interaction networks down to their nonstochastic parts which warrant further investigation.
Collapse
Affiliation(s)
- Zachery D Zbinden
- Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
48
|
|
49
|
LaBarge LR, Evans MJ, Miller JRB, Cannataro G, Hunt C, Elbroch LM. Pumas
Puma concolor
as ecological brokers: a review of their biotic relationships. Mamm Rev 2022. [DOI: 10.1111/mam.12281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Laura R. LaBarge
- Program in Evolution, Ecology and Behavior, Department of Environment and Sustainability, The State University of New York University at Buffalo Amherst NY14260USA
- Center for Conservation Innovation Defenders of Wildlife Washington DC20036USA
- Max Planck Institute of Animal Behavior Bücklestraße 5 Konstanz DE78467Germany
| | - Michael J. Evans
- Center for Conservation Innovation Defenders of Wildlife Washington DC20036USA
- Department of Environmental Science and Policy George Mason University 4400 University Dr Fairfax VA22030USA
| | - Jennifer R. B. Miller
- Center for Conservation Innovation Defenders of Wildlife Washington DC20036USA
- Department of Environmental Science and Policy George Mason University 4400 University Dr Fairfax VA22030USA
| | - Gillian Cannataro
- Center for Conservation Innovation Defenders of Wildlife Washington DC20036USA
- Conservation, Management and Welfare Sciences Association of Zoos and Aquariums 8403 Colesville Rd., Suite 710 Silver Spring MD20910‐3314USA
| | - Christian Hunt
- Field Conservation Defenders of Wildlife Washington DC20036USA
| | | |
Collapse
|
50
|
Twining JP, Sutherland C, Reid N, Tosh DG. Habitat mediates coevolved but not novel species interactions. Proc Biol Sci 2022; 289:20212338. [PMID: 35016538 PMCID: PMC8753165 DOI: 10.1098/rspb.2021.2338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ongoing recovery of native predators has the potential to alter species interactions, with community and ecosystem wide implications. We estimated the co-occurrence of three species of conservation and management interest from a multi-species citizen science camera trap survey. We demonstrate fundamental differences in novel and coevolved predator-prey interactions that are mediated by habitat. Specifically, we demonstrate that anthropogenic habitat modification had no influence on the expansion of the recovering native pine marten in Ireland, nor does it affect the predator's suppressive influence on an invasive prey species, the grey squirrel. By contrast, the direction of the interaction between the pine marten and a native prey species, the red squirrel, is dependent on habitat. Pine martens had a positive influence on red squirrel occurrence at a landscape scale, especially in native broadleaf woodlands. However, in areas dominated by non-native conifer plantations, the pine marten reduced red squirrel occurrence. These findings suggest that following the recovery of a native predator, the benefits of competitive release are spatially structured and habitat-specific. The potential for past and future landscape modification to alter established interactions between predators and prey has global implications in the context of the ongoing recovery of predator populations in human-modified landscapes.
Collapse
Affiliation(s)
- Joshua P. Twining
- Department of Natural Resources, Cornell University, Fernow Hall, Ithaca, NY 14882, USA,School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - Chris Sutherland
- Centre for Research into Ecological and Environmental Modelling (CREEM), The Observatory, Buchanan Gardens, University of St Andrews, St Andrews, Fife, KY16 9LZ, UK
| | - Neil Reid
- School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK,Institute of Global Food Security (IGFS), Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, UK
| | - David G. Tosh
- National Museums NI, 153 Bangor Road, Cultra BT18 0EU, UK
| |
Collapse
|