1
|
Ripandelli RA, van Oijen AM, Robinson A. Single-Cell Microfluidics: A Primer for Microbiologists. J Phys Chem B 2024; 128:10311-10328. [PMID: 39400277 PMCID: PMC11514030 DOI: 10.1021/acs.jpcb.4c02746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 10/15/2024]
Abstract
Recent advances in microfluidic technology have made it possible to image live bacterial cells with a high degree of precision and control. In particular, single-cell microfluidic designs have created new opportunities to study phenotypic variation in bacterial populations. However, the development and use of microfluidic devices require specialized resources, and these can be practical barriers to entry for microbiologists. With this review, our intentions are to help demystify the design, construction, and application of microfluidics. Our approach is to present design elements as building blocks from which a multitude of microfluidics applications can be imagined by the microbiologist.
Collapse
|
2
|
Diaz-Diaz S, Garcia-Montaner A, Vanni R, Murillo-Torres M, Recacha E, Pulido MR, Romero-Muñoz M, Docobo-Pérez F, Pascual A, Rodriguez-Martinez JM. Heterogeneity of SOS response expression in clinical isolates of Escherichia coli influences adaptation to antimicrobial stress. Drug Resist Updat 2024; 75:101087. [PMID: 38678745 DOI: 10.1016/j.drup.2024.101087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/22/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
In recent years, new evidence has shown that the SOS response plays an important role in the response to antimicrobials, with involvement in the generation of clinical resistance. Here we evaluate the impact of heterogeneous expression of the SOS response in clinical isolates of Escherichia coli on response to the fluoroquinolone, ciprofloxacin. In silico analysis of whole genome sequencing data showed remarkable sequence conservation of the SOS response regulators, RecA and LexA. Despite the genetic homogeneity, our results revealed a marked differential heterogeneity in SOS response activation, both at population and single-cell level, among clinical isolates of E. coli in the presence of subinhibitory concentrations of ciprofloxacin. Four main stages of SOS response activation were identified and correlated with cell filamentation. Interestingly, there was a correlation between clinical isolates with higher expression of the SOS response and further progression to resistance. This heterogeneity in response to DNA damage repair (mediated by the SOS response) and induced by antimicrobial agents could be a new factor with implications for bacterial evolution and survival contributing to the generation of antimicrobial resistance.
Collapse
Affiliation(s)
- Sara Diaz-Diaz
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain, Sevilla, Spain.
| | - Andrea Garcia-Montaner
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Roberta Vanni
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Marina Murillo-Torres
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain, Sevilla, Spain; Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Esther Recacha
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain, Sevilla, Spain; Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Marina R Pulido
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain, Sevilla, Spain; Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Romero-Muñoz
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Fernando Docobo-Pérez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain, Sevilla, Spain; Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Alvaro Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain, Sevilla, Spain; Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain; Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Sevilla, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jose Manuel Rodriguez-Martinez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Sevilla, Spain, Sevilla, Spain; Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain; Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Singh CK, Sodhi KK, Shree P, Nitin V. Heavy Metals as Catalysts in the Evolution of Antimicrobial Resistance and the Mechanisms Underpinning Co-selection. Curr Microbiol 2024; 81:148. [PMID: 38642082 DOI: 10.1007/s00284-024-03648-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/22/2024] [Indexed: 04/22/2024]
Abstract
The menace caused by antibiotic resistance in bacteria is acknowledged on a global scale. Concerns over the same are increasing because of the selection pressure exerted by a huge number of different antimicrobial agents, including heavy metals. Heavy metals are non-metabolizable and recalcitrant to degradation, therefore the bacteria can expel the pollutants out of the system and make it less harmful via different mechanisms. The selection of antibiotic-resistant bacteria may be influenced by heavy metals present in environmental reservoirs. Through co-resistance and cross-resistance processes, the presence of heavy metals in the environment can act as co-selecting agents, hence increasing resistance to both heavy metals and antibiotics. The horizontal gene transfer or mutation assists in the selection of mutant bacteria resistant to the polluted environment. Hence, bioremediation and biodegradation are sustainable methods for the natural clean-up of pollutants. This review sheds light on the occurrence of metal and antibiotic resistance in the environment via the co-resistance and cross-resistance mechanisms underpinning co-selection emphasizing the dearth of studies that specifically examine the method of co-selection in clinical settings. Furthermore, it is advised that future research incorporate both culture- and molecular-based methodologies to further our comprehension of the mechanisms underlying bacterial co- and cross-resistance to antibiotics and heavy metals.
Collapse
Affiliation(s)
| | - Kushneet Kaur Sodhi
- Department of Zoology, Sri Guru Tegh Bahadur Khalsa College, University of Delhi, Delhi, 110007, India.
| | - Pallee Shree
- Department of Zoology, Lady Irwin College, University of Delhi, Delhi, 110001, India
| | - V Nitin
- Bhaskaracharya College of Applied Sciences, University of Delhi, Delhi, 110075, India
| |
Collapse
|
4
|
Xue J, Li W, Zhao Y, Wang L, Cheng P, Zhang L, Zheng Y, Zhang W, Bi Y, Chen Z, Jiang T, Sun Y. Antibiotic-induced ROS-mediated Fur allosterism contributes to Helicobacter pylori resistance by inhibiting arsR activation of mutS and mutY. Antimicrob Agents Chemother 2024; 68:e0167923. [PMID: 38386782 PMCID: PMC10989006 DOI: 10.1128/aac.01679-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/28/2024] [Indexed: 02/24/2024] Open
Abstract
The increasing antibiotic resistance of Helicobacter pylori primarily driven by genetic mutations poses a significant clinical challenge. Although previous research has suggested that antibiotics could induce genetic mutations in H. pylori, the molecular mechanisms regulating the antibiotic induction remain unclear. In this study, we applied various techniques (e.g., fluorescence microscopy, flow cytometry, and multifunctional microplate reader) to discover that three different types of antibiotics could induce the intracellular generation of reactive oxygen species (ROS) in H. pylori. It is well known that ROS, a critical factor contributing to bacterial drug resistance, not only induces damage to bacterial genomic DNA but also inhibits the expression of genes associated with DNA damage repair, thereby increasing the mutation rate of bacterial genes and leading to drug resistance. However, further research is needed to explore the molecular mechanisms underlying the ROS inhibition of the expression of DNA damage repair-related genes in H. pylori. In this work, we validated that ROS could trigger an allosteric change in the iron uptake regulatory protein Fur, causing its transition from apo-Fur to holo-Fur, repressing the expression of the regulatory protein ArsR, ultimately causing the down-regulation of key DNA damage repair genes (e.g., mutS and mutY); this cascade increased the genomic DNA mutation rate in H. pylori. This study unveils a novel mechanism of antibiotic-induced resistance in H. pylori, providing crucial insights for the prevention and control of antibiotic resistance in H. pylori.
Collapse
Affiliation(s)
- Junyuan Xue
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Wen Li
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Yican Zhao
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Liyuan Wang
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Peiyuan Cheng
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Jilin, China
| | - Lu Zhang
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Yantong Zheng
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Wenxin Zhang
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| | - Yakun Bi
- Science and Technology Management Center, The Maternal and Child Health Care Hospital of Guizhou Medical University, Guiyang, China
| | - Zhenghong Chen
- Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, China
| | - Ting Jiang
- Jiangsu Luye Diagnostic Technology, Wuxi, China
| | - Yundong Sun
- Department of Microbiology, Key Laboratory for Experimental Teratology of Ministry of Education, School of Basic Medical Science, Shandong University, Jinan, Shandong, China
| |
Collapse
|
5
|
Chowdhury AR, Mukherjee D, Chatterjee R, Chakravortty D. Defying the odds: Determinants of the antimicrobial response of Salmonella Typhi and their interplay. Mol Microbiol 2024; 121:213-229. [PMID: 38071466 DOI: 10.1111/mmi.15209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 02/12/2024]
Abstract
Salmonella Typhi, the invasive serovar of S. enterica subspecies enterica, causes typhoid fever in healthy human hosts. The emergence of antibiotic-resistant strains has consistently challenged the successful treatment of typhoid fever with conventional antibiotics. Antimicrobial resistance (AMR) in Salmonella is acquired either by mutations in the genomic DNA or by acquiring extrachromosomal DNA via horizontal gene transfer. In addition, Salmonella can form a subpopulation of antibiotic persistent (AP) cells that can survive at high concentrations of antibiotics. These have reduced the effectiveness of the first and second lines of antibiotics used to treat Salmonella infection. The recurrent and chronic carriage of S. Typhi in human hosts further complicates the treatment process, as a remarkable shift in the immune response from pro-inflammatory Th1 to anti-inflammatory Th2 is observed. Recent studies have also highlighted the overlap between AP, persistent infection (PI) and AMR. These incidents have revealed several areas of research. In this review, we have put forward a timeline for the evolution of antibiotic resistance in Salmonella and discussed the different mechanisms of the same availed by the pathogen at the genotypic and phenotypic levels. Further, we have presented a detailed discussion on Salmonella antibiotic persistence (AP), PI, the host and bacterial virulence factors that can influence PI, and how both AP and PI can lead to AMR.
Collapse
Affiliation(s)
- Atish Roy Chowdhury
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Debapriya Mukherjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Ritika Chatterjee
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian Institute of Science, Bangalore, India
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India
| |
Collapse
|
6
|
Zhang C, Lin X, Lin D, Liang T, Huang L, Zheng L, Xu Y. Study on toxicity responses and their mechanisms in Xenopus tropicalis long-term exposure to Shigella flexneri and ciprofloxacin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167040. [PMID: 37709083 DOI: 10.1016/j.scitotenv.2023.167040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The abuse and overuse of antibiotics increased not only the exposure of aquatic animals to antibiotics but also the development of resistance in pathogenic bacteria. To investigate the effects and mechanisms of exposure, a long-term experiment lasting 120 days was conducted in which Xenopus tropicalis was exposed to single and combined stress factors of multiresistant pathogenic Shigella flexneri and ciprofloxacin (CIP). The intestinal oxidative stress, immune factors and flora, as well as the brain-gut axis correlation factors of X. tropicalis, were tracked to account for the response of aquatic animals to the exogenous pollutants. SOD activity and MDA content were significantly increased in stressed X. tropicalis (p < 0.001), while the levels of proinflammatory factors (IL-1β, IFN-γ) were significantly reduced (p < 0.01). The content of intestinal beneficial bacteria decreased and that of harmful bacteria increased in the intestinal flora of the stressed X. tropicalis (p < 0.001). These results suggested that S. flexneri and CIP disturbed the intestinal flora and caused oxidative damage in the host, and the body produced a series of responses, such as oxidative stress responses and regulation of the expression of immune factors, to maintain the balance of antioxidant inflammation. Significant changes in the expression of intestinal neurotransmitters (5-HT, CGRP) and brain peptides (BDNF, NCAM, NPY) (p < 0.05) also indicated that the brain-gut axis interaction was disrupted. In addition, although the coexisting CIP could reduce intestinal toxicity caused by S. flexneri, the amount of intestinal pathogenic bacteria Desulfovibrio increased significantly. Moreover, compared with the single exposure group, SOD activity, CAT activity and MDA content were significantly reduced in the dual exposure group. Therefore, the health risks of multiresistant pathogenic bacteria on the intestinal and brain-gut axis interaction should be given more attention, and the interaction of brain-gut axis is more important when antibiotics coexist.
Collapse
Affiliation(s)
- Chaonan Zhang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiaojun Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Dawu Lin
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Taojie Liang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Lu Huang
- Instrumental Analysis Center, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yanbin Xu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
7
|
Qi W, Jonker MJ, de Leeuw W, Brul S, ter Kuile BH. Reactive oxygen species accelerate de novo acquisition of antibiotic resistance in E. coli. iScience 2023; 26:108373. [PMID: 38025768 PMCID: PMC10679899 DOI: 10.1016/j.isci.2023.108373] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/06/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Reactive oxygen species (ROS) produced as a secondary effect of bactericidal antibiotics are hypothesized to play a role in killing bacteria. If correct, ROS may play a role in development of de novo resistance. Here we report that single-gene knockout strains with reduced ROS scavenging exhibited enhanced ROS accumulation and more rapid acquisition of resistance when exposed to sublethal levels of bactericidal antibiotics. Consistent with this observation, the ROS scavenger thiourea in the medium decelerated resistance development. Thiourea downregulated the transcriptional level of error-prone DNA polymerase and DNA glycosylase MutM, which counters the incorporation and accumulation of 8-hydroxy-2'-deoxyguanosine (8-HOdG) in the genome. The level of 8-HOdG significantly increased following incubation with bactericidal antibiotics but decreased after treatment with the ROS scavenger thiourea. These observations suggest that in E. coli sublethal levels of ROS stimulate de novo development of resistance, providing a mechanistic basis for hormetic responses induced by antibiotics.
Collapse
Affiliation(s)
- Wenxi Qi
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Martijs J. Jonker
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Wim de Leeuw
- RNA Biology & Applied Bioinformatics, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Stanley Brul
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Benno H. ter Kuile
- Laboratory for Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Fernández-Billón M, Llambías-Cabot AE, Jordana-Lluch E, Oliver A, Macià MD. Mechanisms of antibiotic resistance in Pseudomonas aeruginosa biofilms. Biofilm 2023; 5:100129. [PMID: 37205903 PMCID: PMC10189392 DOI: 10.1016/j.bioflm.2023.100129] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023] Open
Abstract
Pseudomonas aeruginosa is a major cause of life-threatening acute infections and life-long lasting chronic infections. The characteristic biofilm mode of life in P. aeruginosa chronic infections severely limits the efficacy of antimicrobial therapies, as it leads to intrinsic tolerance, involving physical and physiological factors in addition to biofilm-specific genes that can confer a transient protection against antibiotics promoting the development of resistance. Indeed, a striking feature of this pathogen is the extraordinary capacity to develop resistance to nearly all available antibiotics through the selection of chromosomal mutations, evidenced by its outstanding and versatile mutational resistome. This threat is dramatically amplified in chronic infections, driven by the frequent emergence of mutator variants with enhanced spontaneous mutation rates. Thus, this mini review is focused on describing the complex interplay of antibiotic resistance mechanisms in P. aeruginosa biofilms, to provide potentially useful information for the design of effective therapeutic strategies.
Collapse
Affiliation(s)
- María Fernández-Billón
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - Aina E. Llambías-Cabot
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - Elena Jordana-Lluch
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - Antonio Oliver
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
| | - María D. Macià
- Department of Microbiology, Hospital Universitario Son Espases, Health Research Institute of the Balearic Islands (IdISBa), 07120, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC), 28029, Madrid, Spain
- Corresponding author. Department of Microbiology, Hospital Universitario Son Espases, Crta. Vallemossa 79, 07120, Palma de Mallorca, Spain.
| |
Collapse
|
9
|
Yang S, Li X, Cang W, Mu D, Ji S, An Y, Wu R, Wu J. Biofilm tolerance, resistance and infections increasing threat of public health. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:233-247. [PMID: 37933277 PMCID: PMC10625689 DOI: 10.15698/mic2023.11.807] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 09/14/2023] [Indexed: 11/08/2023]
Abstract
Microbial biofilms can cause chronic infection. In the clinical setting, the biofilm-related infections usually persist and reoccur; the main reason is the increased antibiotic resistance of biofilms. Traditional antibiotic therapy is not effective and might increase the threat of antibiotic resistance to public health. Therefore, it is urgent to study the tolerance and resistance mechanism of biofilms to antibiotics and find effective therapies for biofilm-related infections. The tolerance mechanism and host reaction of biofilm to antibiotics are reviewed, and bacterial biofilm related diseases formed by human pathogens are discussed thoroughly. The review also explored the role of biofilms in the development of bacterial resistance mechanisms and proposed therapeutic intervention strategies for biofilm related diseases.
Collapse
Affiliation(s)
- Shanshan Yang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| | - Xinfei Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, P.R. China
| | - Weihe Cang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, P.R. China
| | - Delun Mu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| | - Shuaiqi Ji
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| | - Yuejia An
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| | - Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, P.R. China
- Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang 110866, P.R. China
- Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang 110866, P.R. China
| |
Collapse
|
10
|
Sun X, Sanchez A. Synthesizing microbial biodiversity. Curr Opin Microbiol 2023; 75:102348. [PMID: 37352679 DOI: 10.1016/j.mib.2023.102348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 05/25/2023] [Indexed: 06/25/2023]
Abstract
The diversity of microbial ecosystems is linked to crucial ecological processes and functions. Despite its significance, the ecological mechanisms responsible for the initiation and maintenance of microbiome diversity are still not fully understood. The primary challenge lies in the difficulty of isolating, monitoring, and manipulating the complex and interrelated ecological processes that modulate the diversity of microbial communities in their natural habitats. Synthetic ecology experiments provide a suitable alternative for investigating the mechanisms behind microbial biodiversity in controlled laboratory settings, as the environment can be systematically and modularly manipulated by adding and removing components. This enables the testing of hypotheses and the advancement of predictive theories. In this review, we present an overview of recent progress toward achieving this goal.
Collapse
Affiliation(s)
- Xin Sun
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Alvaro Sanchez
- Department of Microbial Biotechnology, National Center for Biotechnology CNB-CSIC, Madrid, Spain.
| |
Collapse
|
11
|
Campbell RP, Whittington AC, Zorio DAR, Miller BG. Recruitment of a Middling Promiscuous Enzyme Drives Adaptive Metabolic Evolution in Escherichia coli. Mol Biol Evol 2023; 40:msad202. [PMID: 37708398 PMCID: PMC10519446 DOI: 10.1093/molbev/msad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023] Open
Abstract
A key step in metabolic pathway evolution is the recruitment of promiscuous enzymes to perform new functions. Despite the recognition that promiscuity is widespread in biology, factors dictating the preferential recruitment of one promiscuous enzyme over other candidates are unknown. Escherichia coli contains four sugar kinases that are candidates for recruitment when the native glucokinase machinery is deleted-allokinase (AlsK), manno(fructo)kinase (Mak), N-acetylmannosamine kinase (NanK), and N-acetylglucosamine kinase (NagK). The catalytic efficiencies of these enzymes are 103- to 105-fold lower than native glucokinases, ranging from 2,400 M-1 s-1 for the most active candidate, NagK, to 15 M-1 s-1 for the least active candidate, AlsK. To investigate the relationship between catalytic activities of promiscuous enzymes and their recruitment, we performed adaptive evolution of a glucokinase-deficient E. coli strain to restore glycolytic metabolism. We observed preferential recruitment of NanK via a trajectory involving early mutations that facilitate glucose uptake and amplify nanK transcription, followed by nonsynonymous substitutions in NanK that enhance the enzyme's promiscuous glucokinase activity. These substitutions reduced the native activity of NanK and reduced organismal fitness during growth on an N-acetylated carbon source, indicating that enzyme recruitment comes at a cost for growth on other substrates. Notably, the two most active candidates, NagK and Mak, were not recruited, suggesting that catalytic activity alone does not dictate evolutionary outcomes. The results highlight our lack of knowledge regarding biological drivers of enzyme recruitment and emphasize the need for a systems-wide approach to identify factors facilitating or constraining this important adaptive process.
Collapse
Affiliation(s)
- Ryan P Campbell
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| | - A Carl Whittington
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Diego A R Zorio
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Brian G Miller
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
12
|
Xu Z, Wang Y, Sheng K, Rosenthal R, Liu N, Hua X, Zhang T, Chen J, Song M, Lv Y, Zhang S, Huang Y, Wang Z, Cao T, Shen Y, Jiang Y, Yu Y, Chen Y, Guo G, Yin P, Weitz DA, Wang Y. Droplet-based high-throughput single microbe RNA sequencing by smRandom-seq. Nat Commun 2023; 14:5130. [PMID: 37612289 PMCID: PMC10447461 DOI: 10.1038/s41467-023-40137-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/10/2023] [Indexed: 08/25/2023] Open
Abstract
Bacteria colonize almost all parts of the human body and can differ significantly. However, the population level transcriptomics measurements can only describe the average bacteria population behaviors, ignoring the heterogeneity among bacteria. Here, we report a droplet-based high-throughput single-microbe RNA-seq assay (smRandom-seq), using random primers for in situ cDNA generation, droplets for single-microbe barcoding, and CRISPR-based rRNA depletion for mRNA enrichment. smRandom-seq showed a high species specificity (99%), a minor doublet rate (1.6%), a reduced rRNA percentage (32%), and a sensitive gene detection (a median of ~1000 genes per single E. coli). Furthermore, smRandom-seq successfully captured transcriptome changes of thousands of individual E. coli and discovered a few antibiotic resistant subpopulations displaying distinct gene expression patterns of SOS response and metabolic pathways in E. coli population upon antibiotic stress. smRandom-seq provides a high-throughput single-microbe transcriptome profiling tool that will facilitate future discoveries in microbial resistance, persistence, microbe-host interaction, and microbiome research.
Collapse
Affiliation(s)
- Ziye Xu
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Yuting Wang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Kuanwei Sheng
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - Raoul Rosenthal
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge, MA, USA
| | - Nan Liu
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyu Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Jiaye Chen
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Mengdi Song
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Yuexiao Lv
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Shunji Zhang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Yingjuan Huang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Zhaolun Wang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Ting Cao
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge, MA, USA
| | - Yifei Shen
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Chen
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoji Guo
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - David A Weitz
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA.
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge, MA, USA.
| | - Yongcheng Wang
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA.
| |
Collapse
|
13
|
Cebrián-Sastre E, Chiner-Oms A, Torres-Pérez R, Comas I, Oliveros JC, Blázquez J, Castañeda-García A. Selective Pressure by Rifampicin Modulates Mutation Rates and Evolutionary Trajectories of Mycobacterial Genomes. Microbiol Spectr 2023; 11:e0101723. [PMID: 37436169 PMCID: PMC10433840 DOI: 10.1128/spectrum.01017-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/16/2023] [Indexed: 07/13/2023] Open
Abstract
Resistance to the frontline antibiotic rifampicin constitutes a challenge to the treatment and control of tuberculosis. Here, we analyzed the mutational landscape of Mycobacterium smegmatis during long-term evolution with increasing concentrations of rifampicin, using a mutation accumulation assay combined with whole-genome sequencing. Antibiotic treatment enhanced the acquisition of mutations, doubling the genome-wide mutation rate of the wild-type cells. While antibiotic exposure led to extinction of almost all wild-type lines, the hypermutable phenotype of the ΔnucS mutant strain (noncanonical mismatch repair deficient) provided an efficient response to the antibiotic, leading to high rates of survival. This adaptative advantage resulted in the emergence of higher levels of rifampicin resistance, an accelerated acquisition of drug resistance mutations in rpoB (β RNA polymerase), and a wider diversity of evolutionary pathways that led to drug resistance. Finally, this approach revealed a subset of adaptive genes under positive selection with rifampicin that could be associated with the development of antibiotic resistance. IMPORTANCE Rifampicin is the most important first-line antibiotic against mycobacterial infections, including tuberculosis, one of the top causes of death worldwide. Acquisition of rifampicin resistance constitutes a major global public health problem that makes the control of the disease challenging. Here, we performed an experimental evolution assay under antibiotic selection to analyze the response and adaptation of mycobacteria, leading to the acquisition of rifampicin resistance. This approach explored the total number of mutations that arose in the mycobacterial genomes under long-term rifampicin exposure, using whole-genome sequencing. Our results revealed the effect of rifampicin at a genomic level, identifying different mechanisms and multiple pathways leading to rifampicin resistance in mycobacteria. Moreover, this study detected that an increase in the rate of mutations led to enhanced levels of drug resistance and survival. In summary, all of these results could be useful to understand and prevent the emergence of drug-resistant isolates in mycobacterial infections.
Collapse
Affiliation(s)
- E. Cebrián-Sastre
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - A. Chiner-Oms
- Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, Spain
| | - R. Torres-Pérez
- Servicio de Bioinformática para Genómica y Proteómica. Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - I. Comas
- Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, Spain
| | - J. C. Oliveros
- Servicio de Bioinformática para Genómica y Proteómica. Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - J. Blázquez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - A. Castañeda-García
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
- Centro Nacional de Microbiología, Instituto de Salud Carlos III (CNM-ISCIII), Majadahonda (Madrid), Spain
| |
Collapse
|
14
|
Zhai Y, Pribis JP, Dooling SW, Garcia-Villada L, Minnick P, Xia J, Liu J, Mei Q, Fitzgerald DM, Herman C, Hastings P, Costa-Mattioli M, Rosenberg SM. Drugging evolution of antibiotic resistance at a regulatory network hub. SCIENCE ADVANCES 2023; 9:eadg0188. [PMID: 37352342 PMCID: PMC10289659 DOI: 10.1126/sciadv.adg0188] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/22/2023] [Indexed: 06/25/2023]
Abstract
Evolution of antibiotic resistance is a world health crisis, fueled by new mutations. Drugs to slow mutagenesis could, as cotherapies, prolong the shelf-life of antibiotics, yet evolution-slowing drugs and drug targets have been underexplored and ineffective. Here, we used a network-based strategy to identify drugs that block hubs of fluoroquinolone antibiotic-induced mutagenesis. We identify a U.S. Food and Drug Administration- and European Medicines Agency-approved drug, dequalinium chloride (DEQ), that inhibits activation of the Escherichia coli general stress response, which promotes ciprofloxacin-induced (stress-induced) mutagenic DNA break repair. We uncover the step in the pathway inhibited: activation of the upstream "stringent" starvation stress response, and find that DEQ slows evolution without favoring proliferation of DEQ-resistant mutants. Furthermore, we demonstrate stress-induced mutagenesis during mouse infections and its inhibition by DEQ. Our work provides a proof-of-concept strategy for drugs to slow evolution in bacteria and generally.
Collapse
Affiliation(s)
- Yin Zhai
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - John P. Pribis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean W. Dooling
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Libertad Garcia-Villada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - P.J. Minnick
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jun Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jingjing Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qian Mei
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77030, USA
| | - Devon M. Fitzgerald
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - P.J. Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mauro Costa-Mattioli
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan M. Rosenberg
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
15
|
Zhai Y, Minnick PJ, Pribis JP, Garcia-Villada L, Hastings PJ, Herman C, Rosenberg SM. ppGpp and RNA-polymerase backtracking guide antibiotic-induced mutable gambler cells. Mol Cell 2023; 83:1298-1310.e4. [PMID: 36965481 PMCID: PMC10317147 DOI: 10.1016/j.molcel.2023.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/14/2022] [Accepted: 03/02/2023] [Indexed: 03/27/2023]
Abstract
Antibiotic resistance is a global health threat and often results from new mutations. Antibiotics can induce mutations via mechanisms activated by stress responses, which both reveal environmental cues of mutagenesis and are weak links in mutagenesis networks. Network inhibition could slow the evolution of resistance during antibiotic therapies. Despite its pivotal importance, few identities and fewer functions of stress responses in mutagenesis are clear. Here, we identify the Escherichia coli stringent starvation response in fluoroquinolone-antibiotic ciprofloxacin-induced mutagenesis. Binding of response-activator ppGpp to RNA polymerase (RNAP) at two sites leads to an antibiotic-induced mutable gambler-cell subpopulation. Each activates a stress response required for mutagenic DNA-break repair: surprisingly, ppGpp-site-1-RNAP triggers the DNA-damage response, and ppGpp-site-2-RNAP induces σS-response activity. We propose that RNAP regulates DNA-damage processing in transcribed regions. The data demonstrate a critical node in ciprofloxacin-induced mutagenesis, imply RNAP-regulation of DNA-break repair, and identify promising targets for resistance-resisting drugs.
Collapse
Affiliation(s)
- Yin Zhai
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - P J Minnick
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - John P Pribis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Libertad Garcia-Villada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Susan M Rosenberg
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA; The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA; Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Diaz-Diaz S, Recacha E, Pulido MR, Romero-Muñoz M, de Gregorio-Iaria B, Docobo-Pérez F, Pascual A, Rodríguez-Martínez JM. Synergistic Effect of SOS Response and GATC Methylome Suppression on Antibiotic Stress Survival in Escherichia coli. Antimicrob Agents Chemother 2023; 67:e0139222. [PMID: 36802234 PMCID: PMC10019295 DOI: 10.1128/aac.01392-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/22/2023] [Indexed: 02/23/2023] Open
Abstract
The suppression of the SOS response has been shown to enhance the in vitro activity of quinolones. Furthermore, Dam-dependent base methylation has an impact on susceptibility to other antimicrobials affecting DNA synthesis. Here, we investigated the interplay between these two processes, alone and in combination, in terms of antimicrobial activity. A genetic strategy was used employing single- and double-gene mutants for the SOS response (recA gene) and the Dam methylation system (dam gene) in isogenic models of Escherichia coli both susceptible and resistant to quinolones. Regarding the bacteriostatic activity of quinolones, a synergistic sensitization effect was observed when the Dam methylation system and the recA gene were suppressed. In terms of growth, after 24 h in the presence of quinolones, the Δdam ΔrecA double mutant showed no growth or delayed growth compared to the control strain. In bactericidal terms, spot tests showed that the Δdam ΔrecA double mutant was more sensitive than the ΔrecA single mutant (about 10- to 102-fold) and the wild type (about 103- to 104-fold) in both susceptible and resistant genetic backgrounds. Differences between the wild type and the Δdam ΔrecA double mutant were confirmed by time-kill assays. The suppression of both systems, in a strain with chromosomal mechanisms of quinolone resistance, prevents the evolution of resistance. This genetic and microbiological approach demonstrated the enhanced sensitization of E. coli to quinolones by dual targeting of the recA (SOS response) and Dam methylation system genes, even in a resistant strain model.
Collapse
Affiliation(s)
- S. Diaz-Diaz
- Unidad de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Seville, Spain
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
| | - E. Recacha
- Unidad de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Seville, Spain
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
| | - Marina R. Pulido
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
| | - María Romero-Muñoz
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - B. de Gregorio-Iaria
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - F. Docobo-Pérez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
| | - A. Pascual
- Unidad de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena, Seville, Spain
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
| | - J. M. Rodríguez-Martínez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen Macarena/CSIC/Universidad de Sevilla, Seville, Spain
| |
Collapse
|
17
|
Jiang M, Su YB, Ye JZ, Li H, Kuang SF, Wu JH, Li SH, Peng XX, Peng B. Ampicillin-controlled glucose metabolism manipulates the transition from tolerance to resistance in bacteria. SCIENCE ADVANCES 2023; 9:eade8582. [PMID: 36888710 PMCID: PMC9995076 DOI: 10.1126/sciadv.ade8582] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/07/2023] [Indexed: 05/31/2023]
Abstract
The mechanism(s) of how bacteria acquire tolerance and then resistance to antibiotics remains poorly understood. Here, we show that glucose abundance decreases progressively as ampicillin-sensitive strains acquire resistance to ampicillin. The mechanism involves that ampicillin initiates this event via targeting pts promoter and pyruvate dehydrogenase (PDH) to promote glucose transport and inhibit glycolysis, respectively. Thus, glucose fluxes into pentose phosphate pathway to generate reactive oxygen species (ROS) causing genetic mutations. Meanwhile, PDH activity is gradually restored due to the competitive binding of accumulated pyruvate and ampicillin, which lowers glucose level, and activates cyclic adenosine monophosphate (cAMP)/cAMP receptor protein (CRP) complex. cAMP/CRP negatively regulates glucose transport and ROS but enhances DNA repair, leading to ampicillin resistance. Glucose and Mn2+ delay the acquisition, providing an effective approach to control the resistance. The same effect is also determined in the intracellular pathogen Edwardsiella tarda. Thus, glucose metabolism represents a promising target to stop/delay the transition of tolerance to resistance.
Collapse
Affiliation(s)
- Ming Jiang
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yu-bin Su
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jin-zhou Ye
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
| | - Hui Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Su-fang Kuang
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
| | - Jia-han Wu
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
| | - Shao-hua Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
| | - Xuan-xian Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Bo Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Province Key Laboratory for Pharmaceutical Functional Genes, Sun Yat-sen University, Higher Education Mega Center, Guangzhou 510006, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
| |
Collapse
|
18
|
Milton ME, Cavanagh J. The Biofilm Regulatory Network from Bacillus subtilis: A Structure-Function Analysis. J Mol Biol 2023; 435:167923. [PMID: 36535428 DOI: 10.1016/j.jmb.2022.167923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/02/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Bacterial biofilms are notorious for their ability to protect bacteria from environmental challenges, most importantly the action of antibiotics. Bacillus subtilis is an extensively studied model organism used to understand the process of biofilm formation. A complex network of principal regulatory proteins including Spo0A, AbrB, AbbA, Abh, SinR, SinI, SlrR, and RemA, work in concert to transition B. subtilis from the free-swimming planktonic state to the biofilm state. In this review, we explore, connect, and summarize decades worth of structural and biochemical studies that have elucidated this protein signaling network. Since structure dictates function, unraveling aspects of protein molecular mechanisms will allow us to devise ways to exploit critical features of the biofilm regulatory pathway, such as possible therapeutic intervention. This review pools our current knowledge base of B. subtilis biofilm regulatory proteins and highlights potential therapeutic intervention points.
Collapse
Affiliation(s)
- Morgan E Milton
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine, East Carolina University, NC 27834, USA.
| | - John Cavanagh
- Department of Biochemistry and Molecular Biology, The Brody School of Medicine, East Carolina University, NC 27834, USA.
| |
Collapse
|
19
|
RecA inactivation as a strategy to reverse the heteroresistance phenomenon in clinical isolates of Escherichia coli. Int J Antimicrob Agents 2023; 61:106721. [PMID: 36642235 DOI: 10.1016/j.ijantimicag.2023.106721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/25/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
RecA inhibition could be an important strategy to combat antimicrobial resistance because of its key role in the SOS response, DNA repair and homologous recombination contributing to bacterial survival. This study evaluated the impact of RecA inactivation on heteroresistance in clinical isolates of Escherichia coli and their corresponding recA-deficient isogenic strains to multiple classes of antimicrobial agents. A high frequency (>30%) of heteroresistance was observed in this collection of clinical isolates. Deletion of the recA gene led to a marked reduction in heteroresistant subpopulations, especially against quinolones or β-lactams. The molecular basis of heteroresistance was associated with an increase in copy number of plasmid-borne resistance genes (blaTEM-1B) or tandem gene amplifications (qnrA1). Of note, in the absence of the recA gene, the increase in copy number of resistance genes was suppressed. This makes the recA gene a promising target for combating heteroresistance.
Collapse
|
20
|
Nikolic P, Mudgil P. The Cell Wall, Cell Membrane and Virulence Factors of Staphylococcus aureus and Their Role in Antibiotic Resistance. Microorganisms 2023; 11:microorganisms11020259. [PMID: 36838224 PMCID: PMC9965861 DOI: 10.3390/microorganisms11020259] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Antibiotic resistant strains of bacteria are a serious threat to human health. With increasing antibiotic resistance in common human pathogens, fewer antibiotics remain effective against infectious diseases. Staphylococcus aureus is a pathogenic bacterium of particular concern to human health as it has developed resistance to many of the currently used antibiotics leaving very few remaining as effective treatment. Alternatives to conventional antibiotics are needed for treating resistant bacterial infections. A deeper understanding of the cellular characteristics of resistant bacteria beyond well characterized resistance mechanisms can allow for increased ability to properly treat them and to potentially identify targetable changes. This review looks at antibiotic resistance in S aureus in relation to its cellular components, the cell wall, cell membrane and virulence factors. Methicillin resistant S aureus bacteria are resistant to most antibiotics and some strains have even developed resistance to the last resort antibiotics vancomycin and daptomycin. Modifications in cell wall peptidoglycan and teichoic acids are noted in antibiotic resistant bacteria. Alterations in cell membrane lipids affect susceptibility to antibiotics through surface charge, permeability, fluidity, and stability of the bacterial membrane. Virulence factors such as adhesins, toxins and immunomodulators serve versatile pathogenic functions in S aureus. New antimicrobial strategies can target cell membrane lipids and virulence factors including anti-virulence treatment as an adjuvant to traditional antibiotic therapy.
Collapse
|
21
|
Ding M, Ye Z, Liu L, Wang W, Chen Q, Zhang F, Wang Y, Sjöling Å, Martín-Rodríguez AJ, Hu R, Chen W, Zhou Y. Subinhibitory antibiotic concentrations promote the horizontal transfer of plasmid-borne resistance genes from Klebsiellae pneumoniae to Escherichia coli. Front Microbiol 2022; 13:1017092. [PMID: 36419429 PMCID: PMC9678054 DOI: 10.3389/fmicb.2022.1017092] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2023] Open
Abstract
Horizontal gene transfer plays an important role in the spread of antibiotic resistance, in which plasmid-mediated conjugation transfer is the most important mechanism. While sub-minimal inhibitory concentrations (sub-MIC) of antibiotics could promote conjugation frequency, the mechanism by which sub-MIC levels of antibiotics affect conjugation frequency is not clear. Here, we used Klebsiella pneumoniae SW1780 carrying the multi-drug resistance plasmid pSW1780-KPC as the donor strain, to investigate the effects of sub-MICs of meropenem (MEM), ciprofloxacin (CIP), cefotaxime (CTX), and amikacin (AK) on conjugational transfer of pSW1780-KPC from SW1780 to Escherichia coli J53. Our results showed that the transfer frequencies increased significantly by treating SW1780 strain with sub-MIC levels of MEM, CIP, CTX and AK. Transfer frequencies at sub-MIC conditions in a Galleria mellonella were significantly higher than in vitro. To investigate gene expression and metabolic effects, RT-qPCR and LC-MS-based metabolome sequencing were performed. Transcript levels of T4SS genes virB1, virB2, virB4, virB8, and conjugation-related genes traB, traK, traE, and traL were significantly upregulated by exposure to sub-MICs of MEM, CIP, CTX, and AK. Metabolome sequencing revealed nine differentially regulated metabolites. Our findings are an early warning for a wide assessment of the roles of sub-MIC levels of antibiotics in the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Manlin Ding
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
- Department of Clinical Laboratory, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Zi Ye
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Lu Liu
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Wei Wang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Qiao Chen
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Feiyang Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Ying Wang
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Åsa Sjöling
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Renjing Hu
- Department of Laboratory Medicine, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi, China
| | - Wenbi Chen
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| | - Yingshun Zhou
- Department of Pathogenic Biology, School of Basic Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
22
|
Nanobodies targeting LexA autocleavage disclose a novel suppression strategy of SOS-response pathway. Structure 2022; 30:1479-1493.e9. [DOI: 10.1016/j.str.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/29/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022]
|
23
|
Enterotoxin tilimycin from gut-resident Klebsiella promotes mutational evolution and antibiotic resistance in mice. Nat Microbiol 2022; 7:1834-1848. [PMID: 36289400 PMCID: PMC9613472 DOI: 10.1038/s41564-022-01260-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 09/29/2022] [Indexed: 11/20/2022]
Abstract
Klebsiella spp. that secrete the DNA-alkylating enterotoxin tilimycin colonize the human intestinal tract. Numbers of toxigenic bacteria increase during antibiotic use, and the resulting accumulation of tilimycin in the intestinal lumen damages the epithelium via genetic instability and apoptosis. Here we examine the impact of this genotoxin on the gut ecosystem. 16S rRNA sequencing of faecal samples from mice colonized with Klebsiella oxytoca strains and mechanistic analyses show that tilimycin is a pro-mutagenic antibiotic affecting multiple phyla. Transient synthesis of tilimycin in the murine gut antagonized niche competitors, reduced microbial richness and altered taxonomic composition of the microbiota both during and following exposure. Moreover, tilimycin secretion increased rates of mutagenesis in co-resident opportunistic pathogens such as Klebsiella pneumoniae and Escherichia coli, as shown by de novo acquisition of antibiotic resistance. We conclude that tilimycin is a bacterial mutagen, and flares of genotoxic Klebsiella have the potential to drive the emergence of resistance, destabilize the gut microbiota and shape its evolutionary trajectory. Production of the enterotoxin tilimycin by gut-resident Klebsiella species can alter gut microbiota composition, induce mutational evolution and drive the emergence of antibiotic resistance in mice.
Collapse
|
24
|
Low Ciprofloxacin Concentrations Select Multidrug-Resistant Mutants Overproducing Efflux Pumps in Clinical Isolates of Pseudomonas aeruginosa. Microbiol Spectr 2022; 10:e0072322. [PMID: 36000896 PMCID: PMC9603996 DOI: 10.1128/spectrum.00723-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Low antibiotic concentrations present in natural environments are a severe and often neglected threat to public health. Even if they are present below their MICs, they may select for antibiotic-resistant pathogens. Notably, the minimal subinhibitory concentrations that select resistant bacteria, and define the respective sub-MIC selective windows, differ between antibiotics. The establishment of these selective concentrations is needed for risk-assessment studies regarding the presence of antibiotics in different habitats. Using short-term evolution experiments in a set of 12 Pseudomonas aeruginosa clinical isolates (including high-risk clones with ubiquitous distribution), we have determined that ciprofloxacin sub-MIC selective windows are strain specific and resistome dependent. Nonetheless, in all cases, clinically relevant multidrug-resistant (MDR) mutants emerged upon exposure to low ciprofloxacin concentrations, with these concentrations being below the levels reported in ciprofloxacin-polluted natural habitats where P. aeruginosa can be present. This feature expands the conditions and habitats where clinically relevant quinolone-resistant mutants can emerge. In addition, we established the lowest concentration threshold beyond which P. aeruginosa, regardless of the strain, becomes resistant to ciprofloxacin. Three days of exposure under this sub-MIC "risk concentration" led to the selection of MDR mutants that displayed resistance mechanisms usually ascribed to high selective pressures, i.e., the overproduction of the efflux pumps MexCD-OprJ and MexEF-OprN. From a One-Health viewpoint, these data stress the transcendent role of low drug concentrations, which can be encountered in natural ecosystems, in aggravating the antibiotic resistance problem, especially when it comes to pathogens of environmental origin. IMPORTANCE It has been established that antibiotic concentrations below MICs can select antibiotic-resistant pathogens, a feature of relevance for analyzing the role of nonclinical ecosystems in antibiotic resistance evolution. The range of concentrations where this selection occurs defines the sub-MIC selective window, whose width depends on the antibiotic. Herein, we have determined the ciprofloxacin sub-MIC selective windows of a set of Pseudomonas aeruginosa clinical isolates (including high-risk clones with worldwide distribution) and established the lowest concentration threshold, notably an amount reported to be present in natural ecosystems, beyond which this pathogen acquires resistance. Importantly, our results show that this ciprofloxacin sub-MIC selects for multidrug-resistant mutants overproducing clinically relevant efflux pumps. From a One-Health angle, this information supports that low antimicrobial concentrations, present in natural environments, may have a relevant role in worsening the antibiotic resistance crisis, particularly regarding pathogens with environmental niches, such as P. aeruginosa.
Collapse
|
25
|
Rodríguez-Rojas A, Rolff J. Antimicrobial activity of cationic antimicrobial peptides against stationary phase bacteria. Front Microbiol 2022; 13:1029084. [PMID: 36386690 PMCID: PMC9641054 DOI: 10.3389/fmicb.2022.1029084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/10/2022] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial peptides (AMPs) are ancient antimicrobial weapons used by multicellular organisms as components of their innate immune defenses. Because of the antibiotic crisis, AMPs have also become candidates for developing new drugs. Here, we show that five different AMPs of different classes are effective against non-dividing Escherichia coli and Staphylococcus aureus. By comparison, three conventional antibiotics from the main three classes of antibiotics poorly kill non-dividing bacteria at clinically relevant doses. The killing of fast-growing bacteria by AMPs is faster than that of slow-dividing bacteria and, in some cases, without any difference. Still, non-dividing bacteria are effectively killed over time. Our results point to a general property of AMPs, which might explain why selection has favored AMPs in the evolution of metazoan immune systems. The ability to kill non-dividing cells is another reason that makes AMPs exciting candidates for drug development.
Collapse
Affiliation(s)
- Alexandro Rodríguez-Rojas
- Evolutionary Biology, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Department for Small Animal Internal Medicine, Clinic for Small Animals, University of Veterinary Medicine, Vienna, Austria
| | - Jens Rolff
- Evolutionary Biology, Institut für Biologie, Freie Universität Berlin, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
26
|
Revitt‐Mills SA, Wright EK, Vereker M, O'Flaherty C, McPherson F, Dawson C, van Oijen AM, Robinson A. Defects in DNA double-strand break repair resensitize antibiotic-resistant Escherichia coli to multiple bactericidal antibiotics. Microbiologyopen 2022; 11:e1316. [PMID: 36314749 PMCID: PMC9500592 DOI: 10.1002/mbo3.1316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/03/2022] [Accepted: 09/03/2022] [Indexed: 11/11/2022] Open
Abstract
Antibiotic resistance is becoming increasingly prevalent amongst bacterial pathogens and there is an urgent need to develop new types of antibiotics with novel modes of action. One promising strategy is to develop resistance-breaker compounds, which inhibit resistance mechanisms and thus resensitize bacteria to existing antibiotics. In the current study, we identify bacterial DNA double-strand break repair as a promising target for the development of resistance-breaking co-therapies. We examined genetic variants of Escherichia coli that combined antibiotic-resistance determinants with DNA repair defects. We observed that defects in the double-strand break repair pathway led to significant resensitization toward five bactericidal antibiotics representing different functional classes. Effects ranged from partial to full resensitization. For ciprofloxacin and nitrofurantoin, sensitization manifested as a reduction in the minimum inhibitory concentration. For kanamycin and trimethoprim, sensitivity manifested through increased rates of killing at high antibiotic concentrations. For ampicillin, repair defects dramatically reduced antibiotic tolerance. Ciprofloxacin, nitrofurantoin, and trimethoprim induce the promutagenic SOS response. Disruption of double-strand break repair strongly dampened the induction of SOS by these antibiotics. Our findings suggest that if break-repair inhibitors can be developed they could resensitize antibiotic-resistant bacteria to multiple classes of existing antibiotics and may suppress the development of de novo antibiotic-resistance mutations.
Collapse
Affiliation(s)
- Sarah A. Revitt‐Mills
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Elizabeth K. Wright
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Madaline Vereker
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Callum O'Flaherty
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Fairley McPherson
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Catherine Dawson
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Antoine M. van Oijen
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| | - Andrew Robinson
- School of Chemistry and Molecular Bioscience, Molecular Horizons InstituteUniversity of WollongongWollongongNew South WalesAustralia
- Illawarra Health and Medical Research InstituteWollongongNew South WalesAustralia
| |
Collapse
|
27
|
Ciofu O, Moser C, Jensen PØ, Høiby N. Tolerance and resistance of microbial biofilms. Nat Rev Microbiol 2022; 20:621-635. [PMID: 35115704 DOI: 10.1038/s41579-022-00682-4] [Citation(s) in RCA: 359] [Impact Index Per Article: 179.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 02/07/2023]
Abstract
Chronic infections caused by microbial biofilms represent an important clinical challenge. The recalcitrance of microbial biofilms to antimicrobials and to the immune system is a major cause of persistence and clinical recurrence of these infections. In this Review, we present the extent of the clinical problem, and the mechanisms underlying the tolerance of biofilms to antibiotics and to host responses. We also explore the role of biofilms in the development of antimicrobial resistance mechanisms.
Collapse
Affiliation(s)
- Oana Ciofu
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Claus Moser
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Peter Østrup Jensen
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Niels Høiby
- Department of Immunology and Microbiology, Costerton Biofilm Center, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
28
|
Zhang P. Influence of Foods and Nutrition on the Gut Microbiome and Implications for Intestinal Health. Int J Mol Sci 2022; 23:ijms23179588. [PMID: 36076980 PMCID: PMC9455721 DOI: 10.3390/ijms23179588] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Food components in our diet provide not only necessary nutrients to our body but also substrates for the mutualistic microbial flora in our gastrointestinal tract, termed the gut microbiome. Undigested food components are metabolized to a diverse array of metabolites. Thus, what we eat shapes the structure, composition, and function of the gut microbiome, which interacts with the gut epithelium and mucosal immune system and maintains intestinal homeostasis in a healthy state. Alterations of the gut microbiome are implicated in many diseases, such as inflammatory bowel disease (IBD). There is growing interest in nutritional therapy to target the gut microbiome in IBD. Investigations into dietary effects on the composition changes in the gut microbiome flourished in recent years, but few focused on gut physiology. This review summarizes the current knowledge regarding the impacts of major food components and their metabolites on the gut and health consequences, specifically within the GI tract. Additionally, the influence of the diet on the gut microbiome-host immune system interaction in IBD is also discussed. Understanding the influence of the diet on the interaction of the gut microbiome and the host immune system will be useful in developing nutritional strategies to maintain gut health and restore a healthy microbiome in IBD.
Collapse
Affiliation(s)
- Ping Zhang
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun 666303, China
| |
Collapse
|
29
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. Link Between Antibiotic Persistence and Antibiotic Resistance in Bacterial Pathogens. Front Cell Infect Microbiol 2022; 12:900848. [PMID: 35928205 PMCID: PMC9343593 DOI: 10.3389/fcimb.2022.900848] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/21/2022] [Indexed: 12/15/2022] Open
Abstract
Both, antibiotic persistence and antibiotic resistance characterize phenotypes of survival in which a bacterial cell becomes insensitive to one (or even) more antibiotic(s). However, the molecular basis for these two antibiotic-tolerant phenotypes is fundamentally different. Whereas antibiotic resistance is genetically determined and hence represents a rather stable phenotype, antibiotic persistence marks a transient physiological state triggered by various stress-inducing conditions that switches back to the original antibiotic sensitive state once the environmental situation improves. The molecular basics of antibiotic resistance are in principle well understood. This is not the case for antibiotic persistence. Under all culture conditions, there is a stochastically formed, subpopulation of persister cells in bacterial populations, the size of which depends on the culture conditions. The proportion of persisters in a bacterial population increases under different stress conditions, including treatment with bactericidal antibiotics (BCAs). Various models have been proposed to explain the formation of persistence in bacteria. We recently hypothesized that all physiological culture conditions leading to persistence converge in the inability of the bacteria to re-initiate a new round of DNA replication caused by an insufficient level of the initiator complex ATP-DnaA and hence by the lack of formation of a functional orisome. Here, we extend this hypothesis by proposing that in this persistence state the bacteria become more susceptible to mutation-based antibiotic resistance provided they are equipped with error-prone DNA repair functions. This is - in our opinion - in particular the case when such bacterial populations are exposed to BCAs.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Bavarian NMR Center – Structural Membrane Biochemistry, Department of Chemistry, Technische Universität München, Garching, Germany
- *Correspondence: Wolfgang Eisenreich,
| | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Ludwig Maximilian University of Munich, München, Germany
| |
Collapse
|
30
|
de Korne-Elenbaas J, Bruisten SM, de Vries HJC, van Dam AP. Within-Host Genetic Variation in Neisseria gonorrhoeae over the Course of Infection. Microbiol Spectr 2022; 10:e0031322. [PMID: 35467402 PMCID: PMC9241688 DOI: 10.1128/spectrum.00313-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/02/2022] [Indexed: 11/20/2022] Open
Abstract
Knowledge of within-host genetic variation informs studies on transmission dynamics. We studied within-host genetic variation in Neisseria gonorrhoeae over the course of infection and across different anatomical locations. Isolates were obtained during a clinical trial, and isolates from consecutive time points reflected persistent infections after treatment failure. We compared sequence types (STs) and recombination unfiltered- and filtered core genome single nucleotide polymorphism (SNP) distances in 65 within-host isolate pairs from the same anatomical location over time-obtained with a median interval of 7 days-and 65 isolate pairs across different anatomical locations at one time point. Isolates with different Multi-Locus Sequence Types (MLST), NG-Sequence Types for Antimicrobial Resistance (NG-STAR) and NG-Multi Antigen Sequence Types (NG-MAST) had a median of 1466 recombination filtered SNPs, whereas a median of 1 SNP was found between isolates with identical STs or a different NG-MAST only. The threshold for differentiating between strains was set at 10 recombination filtered SNPs, showing that isolates from persistent infections could have different NG-MASTs. Antibiotic pressure applied through treatment did not lead to an increase in genetic variation in specific genes or in overall extent of variation, compared to variation across anatomical locations. Instead, within-host genetic variation was proposedly driven by the host immune response, as it was concentrated in genomic regions encoding surface exposed proteins involved in host-microbe interaction. Ultimately, 15/228 (6.5%) between-host pairs contained a single strain, suggesting between-host transmission. However, patient reported data are needed to differentiate within-host persistence from between-host transmission. IMPORTANCE Understanding transmission dynamics of Neisseria gonorrhoeae (Ng) is based on the identification of transmission events. These can be identified by assessing genetic relatedness between Ng isolates, expressed as core genome SNP distances. However, a SNP threshold to differentiate between strains needs to be defined, using knowledge on within- and between-host genetic variation. Here, we assessed within-host genetic variation, using a unique set of within-host Ng isolates from the same anatomical location over time or across different anatomical locations at one time point. The insights in genetic variation that occurred during the infection period contribute to the understanding of infection dynamics. In addition, the obtained knowledge can be used for future research on transmission dynamics and development of public health interventions based on bacterial genomic data.
Collapse
Affiliation(s)
- Jolinda de Korne-Elenbaas
- Department of Infectious Diseases, Public Health Laboratory, Public Health Service of Amsterdam, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Amsterdam Institute for Infection and Immunity (AII), location Academic Medical Center, Amsterdam, the Netherlands
| | - Sylvia M. Bruisten
- Department of Infectious Diseases, Public Health Laboratory, Public Health Service of Amsterdam, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Amsterdam Institute for Infection and Immunity (AII), Amsterdam, the Netherlands
| | - Henry J. C. de Vries
- Amsterdam UMC, University of Amsterdam, Department of Dermatology, Amsterdam Institute for Infection and Immunity (AII), location Academic Medical Center, Amsterdam, the Netherlands
- Center for Sexual Health, Department of Infectious Diseases, Public Health Service Amsterdam, Amsterdam, the Netherlands
| | - Alje P. van Dam
- Department of Infectious Diseases, Public Health Laboratory, Public Health Service of Amsterdam, Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Amsterdam Institute for Infection and Immunity (AII), location Academic Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
31
|
Abstract
Mechanisms of evolution and evolution of antibiotic resistance are both fundamental and world health problems. Stress-induced mutagenesis defines mechanisms of mutagenesis upregulated by stress responses, which drive adaptation when cells are maladapted to their environments—when stressed. Work in mutagenesis induced by antibiotics had produced tantalizing clues but not coherent mechanisms. We review recent advances in antibiotic-induced mutagenesis that integrate how reactive oxygen species (ROS), the SOS and general stress responses, and multichromosome cells orchestrate a stress response-induced switch from high-fidelity to mutagenic repair of DNA breaks. Moreover, while sibling cells stay stable, a mutable “gambler” cell subpopulation is induced by differentially generated ROS, which signal the general stress response. We discuss other evolvable subpopulations and consider diverse evolution-promoting molecules as potential targets for drugs to slow evolution of antibiotic resistance, cross-resistance, and immune evasion. An FDA-approved drug exemplifies “stealth” evolution-slowing drugs that avoid selecting resistance to themselves or antibiotics.
Collapse
|
32
|
The Atypical Antipsychotic Quetiapine Promotes Multiple Antibiotic Resistance in Escherichia coli. J Bacteriol 2022; 204:e0010222. [PMID: 35416690 DOI: 10.1128/jb.00102-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Atypical antipsychotic (AAP) medication is a critical tool for treating symptoms of psychiatric disorders. While AAPs primarily target dopamine (D2) and serotonin (5HT2A and 5HT1A) receptors, they also exhibit intrinsic antimicrobial activity as an off-target effect. Because AAPs are often prescribed to patients for many years, a potential risk associated with long-term AAP use is the unintended emergence of bacteria with antimicrobial resistance (AMR). Here, we show that exposure to the AAP quetiapine at estimated gut concentrations promotes AMR in Escherichia coli after 6 weeks. Quetiapine-exposed isolates exhibited an increase in MICs for ampicillin, tetracycline, ceftriaxone, and levofloxacin. By whole-genome sequencing analysis, we identified mutations in genes that confer AMR, including the repressor for the multiple antibiotic resistance mar operon (marR), and real-time reverse transcription-quantitative PCR (RT-qPCR) analysis showed increased levels of marA, acrA, and tolC mRNAs and reduced levels of ompF mRNA in the isolates carrying marR mutations. To determine the contribution of each marR mutation to AMR, we constructed isogenic strains carrying individual mutant marR alleles in the parent background and reevaluated their resistance phenotypes using MIC and RT-qPCR assays. While marR mutations induced robust activity of the mar operon, they resulted in only modest increases in MICs. Interestingly, although these marR mutations did not fully recapitulate the AMR phenotype of the quetiapine-exposed isolates, we show that marR mutations promote growth fitness in the presence of quetiapine. Our findings revealed an important link between the use of AAPs and AMR development in E. coli. IMPORTANCE AAP medication is a cornerstone in the treatment of serious psychiatric disease. The AAPs are known to exhibit antimicrobial activity; therefore, a potential unintended risk of long-term AAP use may be the emergence of AMR, although such risk has received little attention. In this study, we describe the development of multidrug antibiotic resistance in Escherichia coli after 6 weeks of exposure to the AAP quetiapine. Investigation of mutations in the marR gene, which encodes a repressor for the multiple antibiotic resistance (mar) operon, reveals a potential mechanism that increases the fitness of E. coli in the presence of quetiapine. Our findings establish a link between the use of AAPs and AMR development in bacteria.
Collapse
|
33
|
Mercolino J, Lo Sciuto A, Spinnato MC, Rampioni G, Imperi F. RecA and Specialized Error-Prone DNA Polymerases Are Not Required for Mutagenesis and Antibiotic Resistance Induced by Fluoroquinolones in Pseudomonas aeruginosa. Antibiotics (Basel) 2022; 11:325. [PMID: 35326787 PMCID: PMC8944484 DOI: 10.3390/antibiotics11030325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 02/05/2023] Open
Abstract
To cope with stressful conditions, including antibiotic exposure, bacteria activate the SOS response, a pathway that induces error-prone DNA repair and mutagenesis mechanisms. In most bacteria, the SOS response relies on the transcriptional repressor LexA and the co-protease RecA, the latter being also involved in homologous recombination. The role of the SOS response in stress- and antibiotic-induced mutagenesis has been characterized in detail in the model organism Escherichia coli. However, its effect on antibiotic resistance in the human pathogen Pseudomonas aeruginosa is less clear. Here, we analyzed a recA deletion mutant and confirmed, by conjugation and gene expression assays, that RecA is required for homologous recombination and SOS response induction in P. aeruginosa. MIC assays demonstrated that RecA affects P. aeruginosa resistance only towards fluoroquinolones and genotoxic agents. The comparison of antibiotic-resistant mutant frequency between treated and untreated cultures revealed that, among the antibiotics tested, only fluoroquinolones induced mutagenesis in P. aeruginosa. Notably, both RecA and error-prone DNA polymerases were found to be dispensable for this process. These data demonstrate that the SOS response is not required for antibiotic-induced mutagenesis in P. aeruginosa, suggesting that RecA inhibition is not a suitable strategy to target antibiotic-induced emergence of resistance in this pathogen.
Collapse
Affiliation(s)
- Jessica Mercolino
- Department of Science, Roma Tre University, 00146 Rome, Italy; (J.M.); (A.L.S.); (M.C.S.); (G.R.)
| | - Alessandra Lo Sciuto
- Department of Science, Roma Tre University, 00146 Rome, Italy; (J.M.); (A.L.S.); (M.C.S.); (G.R.)
| | - Maria Concetta Spinnato
- Department of Science, Roma Tre University, 00146 Rome, Italy; (J.M.); (A.L.S.); (M.C.S.); (G.R.)
| | - Giordano Rampioni
- Department of Science, Roma Tre University, 00146 Rome, Italy; (J.M.); (A.L.S.); (M.C.S.); (G.R.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Francesco Imperi
- Department of Science, Roma Tre University, 00146 Rome, Italy; (J.M.); (A.L.S.); (M.C.S.); (G.R.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
34
|
Kulikov M, Statsenko V, Prazdnova E, Emelyantsev S. Antioxidant, DNA-protective, and SOS inhibitory activities of Enterococcus durans metabolites. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Population dynamics in colonizing vancomycin-resistant E. faecium isolated from immunosuppressed patients. J Glob Antimicrob Resist 2022; 28:267-273. [DOI: 10.1016/j.jgar.2022.01.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/23/2021] [Accepted: 01/31/2022] [Indexed: 11/22/2022] Open
|
36
|
Crane JK, Burke SR, Alvarado CL. Inhibition of SOS Response by Nitric Oxide Donors in Escherichia coli Blocks Toxin Production and Hypermutation. Front Cell Infect Microbiol 2022; 11:798136. [PMID: 35004358 PMCID: PMC8727911 DOI: 10.3389/fcimb.2021.798136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/30/2021] [Indexed: 12/03/2022] Open
Abstract
Background Previous reports have differed as to whether nitric oxide inhibits or stimulates the SOS response, a bacterial stress response that is often triggered by DNA damage. The SOS response is an important regulator of production of Shiga toxins (Stx) in Shiga-toxigenic E. coli (STEC). In addition, the SOS response is accompanied by hypermutation, which can lead to de novo emergence of antibiotic resistance. We studied these effects in vitro as well as in vivo. Results Nitric oxide donors inhibited induction of the SOS response by classical inducers such as mitomycin C, ciprofloxacin, and zidovudine, as measured by assays for E. coli RecA. Nitric oxide donors also inhibited Stx toxin protein production as well as stx2 RNA in vitro and in vivo. In vivo experiments were performed with ligated ileal segments in the rabbit using a 20 h infection. The NO donor S-nitroso-acetylpenicillamine (SNAP) reduced hypermutation in vitro and in vivo, as measured by emergence of rifampin resistance. SNAP blocked the ability of the RecA protein to bind to single-stranded DNA in an electrophoretic mobility shift assay (EMSA) in vitro, an early event in the SOS response. The inhibitory effects of SNAP were additive with those of zinc acetate. Conclusions Nitric oxide donors blocked the initiation step of the SOS response. Downstream effects of this blockade included inhibition of Stx production and of hypermutation. Infection of rabbit loops with STEC resulted in a downregulation, rather than stimulation, of nitric oxide host defenses at 20 h of infection.
Collapse
Affiliation(s)
- John K Crane
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Sarah R Burke
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Cassandra L Alvarado
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
37
|
Ramsay KA, McTavish SM, Wardell SJT, Lamont IL. The Effects of Sub-inhibitory Antibiotic Concentrations on Pseudomonas aeruginosa: Reduced Susceptibility Due to Mutations. Front Microbiol 2021; 12:789550. [PMID: 34987489 PMCID: PMC8721600 DOI: 10.3389/fmicb.2021.789550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/05/2021] [Indexed: 12/21/2022] Open
Abstract
Pseudomonas aeruginosa chronically infects in the lungs of people with cystic fibrosis and other forms of lung disease. Infections are treated with antibiotics, but over time, the bacteria acquire mutations that reduce their antibiotic susceptibility. The effects of inhibitory amounts of antibiotics in selecting for antibiotic-resistant mutants have been well studied. However, the concentrations of antibiotics that reach infecting bacteria can be sub-inhibitory and but may nonetheless promote emergence of antibiotic-resistant bacteria. Therefore, the aim of this research was to investigate the effects of sub-inhibitory concentrations of antibiotics on the antibiotic susceptibility of P. aeruginosa. Two P. aeruginosa reference strains, PAO1 and PA14, and six isolates from individuals with cystic fibrosis were studied. The bacteria were passaged in the presence of antibiotics (ceftazidime, ciprofloxacin, meropenem or tobramycin) at sub-inhibitory amounts. Fifteen populations of bacteria (up to five per strain) were exposed to each of the four antibiotics. Antibiotic susceptibility was determined following 10 passages on agar supplemented with antibiotic and compared with susceptibility prior to antibiotic exposure. Antibiotic exposure resulted in susceptibility being significantly (>2-fold) reduced for 13 of the 60 populations. Seven samples had reduced susceptibility to ciprofloxacin, three to tobramycin, two to ceftazidime and one to meropenem. Whole-genome sequencing revealed the mutations arising following antibiotic exposure. Mutants with reduced antibiotic susceptibility had mutations in genes known to affect antibiotic resistance, including regulators of efflux pumps (mexR, mexS, mexZ and nalC) and the fusA1 gene that is associated with aminoglycoside resistance. Genes not previously associated with resistance, including gacS, sigX and crfX and two genes with no known function, were also mutated in some isolates with reduced antibiotic susceptibility. Our results show that exposure to sub-inhibitory amounts of antibiotics can select for mutations that reduce the susceptibility of P. aeruginosa to antibiotics and that the profile of mutations is different from that arising during selection with inhibitory antibiotic concentrations. It is likely that exposure to sub-inhibitory amounts of antibiotics during infection contributes to P. aeruginosa becoming antibiotic-resistant.
Collapse
Affiliation(s)
| | | | | | - Iain L. Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
38
|
Diaz-Diaz S, Recacha E, García-Duque A, Docobo-Pérez F, Blázquez J, Pascual A, Rodríguez-Martínez JM. Effect of RecA inactivation and detoxification systems on the evolution of ciprofloxacin resistance in Escherichia coli. J Antimicrob Chemother 2021; 77:641-645. [PMID: 34878138 PMCID: PMC8864997 DOI: 10.1093/jac/dkab445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Background Suppression of SOS response and overproduction of reactive oxygen species (ROS) through detoxification system suppression enhance the activity of fluoroquinolones. Objectives To evaluate the role of both systems in the evolution of resistance to ciprofloxacin in an isogenic model of Escherichia coli. Methods Single-gene deletion mutants of E. coli BW25113 (wild-type) (ΔrecA, ΔkatG, ΔkatE, ΔsodA, ΔsodB), double-gene (ΔrecA-ΔkatG, ΔrecA-ΔkatE, ΔrecA-ΔsodA, ΔrecA-ΔsodB, ΔkatG-ΔkatE, ΔsodB-ΔsodA) and triple-gene (ΔrecA-ΔkatG-ΔkatE) mutants were included. The response to sudden high ciprofloxacin pressure was evaluated by mutant prevention concentration (MPC). The gradual antimicrobial pressure response was evaluated through experimental evolution and antibiotic resistance assays. Results For E. coli BW25113 strain, ΔkatE, ΔsodB and ΔsodB/ΔsodA mutants, MPC values were 0.25 mg/L. The ΔkatG, ΔsodA, ΔkatG/katE and ΔrecA mutants showed 2-fold reductions (0.125 mg/L). The ΔkatG/ΔrecA, ΔkatE/ΔrecA, ΔsodA/ΔrecA, ΔsodB/ΔrecA and ΔkatG/ΔkatE/ΔrecA strains showed 4–8-fold reductions (0.03–0.06 mg/L) relative to the wild-type. Gradual antimicrobial pressure increased growth capacity for ΔsodA and ΔsodB and ΔsodB/ΔsodA mutants (no growth in 4 mg/L) compared with the wild-type (no growth in the range of 0.5–2 mg/L). Accordingly, increased growth was observed with the mutants ΔrecA/ΔkatG (no growth in 2 mg/L), ΔrecA/ΔkatE (no growth in 2 mg/L), ΔrecA/ΔsodA (no growth in 0.06 mg/L), ΔrecA/ΔsodB (no growth in 0.25 mg/L) and ΔrecA/ΔkatG/ΔkatE (no growth in 0.5 mg/L) compared with ΔrecA (no growth in the range of 0.002–0.015 mg/L). Conclusions After RecA inactivation, gradual exposure to ciprofloxacin reduces the evolution of resistance. After suppression of RecA and detoxification systems, sudden high exposure to ciprofloxacin reduces the evolution of resistance in E. coli.
Collapse
Affiliation(s)
- S Diaz-Diaz
- Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Seville, Spain.,Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - E Recacha
- Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Seville, Spain.,Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - A García-Duque
- Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Seville, Spain
| | - F Docobo-Pérez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - J Blázquez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - A Pascual
- Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Seville, Spain.,Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - J M Rodríguez-Martínez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
39
|
Jusková P, Schmitt S, Armbrecht L, Dittrich PS. Microbial factories: monitoring vitamin B 2 production by Escherichia coli in microfluidic cultivation chambers. LAB ON A CHIP 2021; 21:4071-4080. [PMID: 34618882 PMCID: PMC8547325 DOI: 10.1039/d1lc00621e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Microbial cells represent a standard production host for various important biotechnological products. Production yields can be increased by optimising strains and growth conditions and understanding deviations in production rates over time or within the microbial population. We introduce here microfluidic cultivation chambers for highly parallel studies on microbial cultures, enabling continuous biosynthesis monitoring of the industrially relevant product by Escherichia coli cells. The growth chambers are defined by ring-valves that encapsulate a volume of 200 pL when activated. Bacterial cells, labelled with magnetic beads, are inoculated in a small magnetic trap, positioned in the centre of each chamber. Afterwards, the ring-valves are partially activated, allowing for exchange reagents, such as the addition of fresh media or specific inducers of biosynthesis, while the bacterial cells and their progeny are maintained inside. On this platform, we monitor the production of riboflavin (vitamin B2). We used different variants of a riboflavin-overproducing bacterial strain with different riboflavin production levels and could distinguish them on the level of individual micro-colonies. In addition, we could also observe differences in the bacterial morphology with respect to the production. The presented platform represents a flexible microfluidic tool for further studies of microbial cell factories.
Collapse
Affiliation(s)
- Petra Jusková
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| | - Steven Schmitt
- Department of Biosystems Science and Engineering, Bioprocess Laboratory, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Lucas Armbrecht
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, Bioanalytics Group, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland.
| |
Collapse
|
40
|
Ortiz-Padilla M, Diaz-Diaz S, Machuca J, Tejada-Gonzalez A, Recacha E, Docobo-Pérez F, Pascual A, Rodríguez-Martínez JM. Role of low-level quinolone resistance in generating tolerance in Escherichia coli under therapeutic concentrations of ciprofloxacin. J Antimicrob Chemother 2021; 75:2124-2132. [PMID: 32427318 DOI: 10.1093/jac/dkaa151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/13/2020] [Accepted: 03/26/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Tolerance (including persistence) and resistance result in increased survival under antibiotic pressure. OBJECTIVES We evaluated the interplay between resistance and tolerance to ciprofloxacin under therapeutic and killing conditions to determine the contribution of low-level quinolone resistance (LLQR) mechanisms to tolerance. We also determined how the interaction between resistance (LLQR phenotypes) and tolerance was modified under SOS response suppression. METHODS Twelve isogenic Escherichia coli strains harbouring quinolone resistance mechanisms combined with SOS response deficiency and six clinical E. coli isolates (LLQR or non-LLQR) were evaluated. Survival (tolerance or persistence) assays were used to measure surviving bacteria after a short period (up to 4 h) of bactericidal antibiotic treatment under therapeutic and killing concentrations of ciprofloxacin [1 mg/L, EUCAST/CLSI breakpoint for resistance; and 2.5 mg/L, peak serum concentration (Cmax) of this drug]. RESULTS QRDR substitutions (S83L in GyrA alone or combined with S80R in ParC) significantly increased the fraction of tolerant bacteria (2-4 log10 cfu/mL) after exposure to ciprofloxacin at clinically relevant concentrations. The impact on tolerant bacteria due to SOS response suppression (including persistence mediated by the tisB gene) was reversed by LLQR mechanisms at therapeutic concentrations. Furthermore, no reduction in the fraction of tolerant bacteria due to SOS response suppression was observed when S83L in GyrA plus S80R in ParC were combined. CONCLUSIONS Tolerance and quinolone resistance mutations interact synergistically, giving LLQR mechanisms an additional role in allowing bacterial survival and evasion of therapeutic antimicrobial conditions by a combination of the two strategies. At clinically relevant concentrations, LLQR mechanisms reverse further impact of SOS response suppression in reducing bacterial tolerance.
Collapse
Affiliation(s)
- M Ortiz-Padilla
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Seville, Spain.,Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Departamento de Microbiología, Universidad de Sevilla, Seville, Spain
| | - S Diaz-Diaz
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Seville, Spain.,Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Departamento de Microbiología, Universidad de Sevilla, Seville, Spain
| | - J Machuca
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Seville, Spain.,Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Departamento de Microbiología, Universidad de Sevilla, Seville, Spain
| | - A Tejada-Gonzalez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - E Recacha
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Seville, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Departamento de Microbiología, Universidad de Sevilla, Seville, Spain
| | - F Docobo-Pérez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Departamento de Microbiología, Universidad de Sevilla, Seville, Spain
| | - A Pascual
- Unidad Clínica de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen Macarena, Seville, Spain.,Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Departamento de Microbiología, Universidad de Sevilla, Seville, Spain
| | - J M Rodríguez-Martínez
- Departamento de Microbiología, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena/CSIC/Departamento de Microbiología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
41
|
Role of the SOS Response in the Generation of Antibiotic Resistance In Vivo. Antimicrob Agents Chemother 2021; 65:e0001321. [PMID: 33875437 DOI: 10.1128/aac.00013-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The SOS response to DNA damage is a conserved stress response in Gram-negative and Gram-positive bacteria. Although this pathway has been studied for years, its relevance is still not familiar to many working in the fields of clinical antibiotic resistance and stewardship. Under some conditions, the SOS response favors DNA repair and preserves the genetic integrity of the organism. On the other hand, the SOS response also includes induction of error-prone DNA polymerases, which can increase the rate of mutation, called the mutator phenotype or "hypermutation." As a result, mutations can occur in genes conferring antibiotic resistance, increasing the acquisition of resistance to antibiotics. Almost all of the work on the SOS response has been on bacteria exposed to stressors in vitro. In this study, we sought to quantitate the effects of SOS-inducing drugs in vivo, in comparison with the same drugs in vitro. We used a rabbit model of intestinal infection with enteropathogenic Escherichia coli strain E22. SOS-inducing drugs triggered the mutator phenotype response in vivo as well as in vitro. Exposure of E. coli strain E22 to ciprofloxacin or zidovudine, both of which induce the SOS response in vitro, resulted in increased antibiotic resistance to 3 antibiotics: rifampin, minocycline, and fosfomycin. Zinc was able to inhibit the SOS-induced emergence of antibiotic resistance in vivo, as previously observed in vitro. Our findings may have relevance in reducing the emergence of resistance to new antimicrobial drugs.
Collapse
|
42
|
Antioxidant Molecules as a Source of Mitigation of Antibiotic Resistance Gene Dissemination. Antimicrob Agents Chemother 2021; 65:AAC.02658-20. [PMID: 33753335 DOI: 10.1128/aac.02658-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/16/2021] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli is the most commonly identified human pathogen and a prominent microorganism of the gut microbiota. Acquired resistance to antibiotics in this species is driven mainly by horizontal gene transfer and plasmid acquisition. Currently, the main concern is the acquisition of extended-spectrum β-lactamases of the CTX-M type in E. coli, a worldwide-observed phenomenon. Plasmids encoding CTX-M enzymes have different scaffolds and conjugate at different frequencies. Here, we show that the conjugation rates of several plasmid types encoding broad-spectrum β-lactamases are increased when the E. coli donor strain is exposed to subinhibitory concentrations of diverse orally given antibiotics, including fluoroquinolones, such as ciprofloxacin and levofloxacin, but also trimethoprim and nitrofurantoin. This study provides insights into underlying mechanisms leading to increased plasmid conjugation frequency in relation to DNA synthesis inhibitor-type antibiotics, involving reactive oxygen species (ROS) production and probably increased expression of genes involved in the SOS response. Furthermore, we show that some antioxidant molecules currently approved for unrelated clinical uses, such as edaravone, p-coumaric acid, and N-acetylcysteine, may antagonize the ability of antibiotics to increase plasmid conjugation rates. These results suggest that several antioxidative molecules might be used in combination with these "inducer" antibiotics to mitigate the unwanted increased resistance plasmid dissemination.
Collapse
|
43
|
Ma P, He LL, Pironti A, Laibinis HH, Ernst CM, Manson AL, Bhattacharyya RP, Earl AM, Livny J, Hung DT. Genetic determinants facilitating the evolution of resistance to carbapenem antibiotics. eLife 2021; 10:e67310. [PMID: 33871353 PMCID: PMC8079144 DOI: 10.7554/elife.67310] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023] Open
Abstract
In this era of rising antibiotic resistance, in contrast to our increasing understanding of mechanisms that cause resistance, our understanding of mechanisms that influence the propensity to evolve resistance remains limited. Here, we identified genetic factors that facilitate the evolution of resistance to carbapenems, the antibiotic of 'last resort', in Klebsiella pneumoniae, the major carbapenem-resistant species. In clinical isolates, we found that high-level transposon insertional mutagenesis plays an important role in contributing to high-level resistance frequencies in several major and emerging carbapenem-resistant lineages. A broader spectrum of resistance-conferring mutations for select carbapenems such as ertapenem also enables higher resistance frequencies and, importantly, creates stepping-stones to achieve high-level resistance to all carbapenems. These mutational mechanisms can contribute to the evolution of resistance, in conjunction with the loss of systems that restrict horizontal resistance gene uptake, such as the CRISPR-Cas system. Given the need for greater antibiotic stewardship, these findings argue that in addition to considering the current efficacy of an antibiotic for a clinical isolate in antibiotic selection, considerations of future efficacy are also important. The genetic background of a clinical isolate and the exact antibiotic identity can and should also be considered as they are determinants of a strain's propensity to become resistant. Together, these findings thus provide a molecular framework for understanding acquisition of carbapenem resistance in K. pneumoniae with important implications for diagnosing and treating this important class of pathogens.
Collapse
Affiliation(s)
- Peijun Ma
- The Broad Institute of MIT and HarvardCambridgeUnited States
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
- Center for Computational and Integrative Biology, Massachusetts General HospitalBostonUnited States
| | - Lorrie L He
- The Broad Institute of MIT and HarvardCambridgeUnited States
| | | | | | - Christoph M Ernst
- The Broad Institute of MIT and HarvardCambridgeUnited States
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
- Center for Computational and Integrative Biology, Massachusetts General HospitalBostonUnited States
| | | | - Roby P Bhattacharyya
- The Broad Institute of MIT and HarvardCambridgeUnited States
- Division of Infectious Diseases, Massachusetts General HospitalBostonUnited States
| | - Ashlee M Earl
- The Broad Institute of MIT and HarvardCambridgeUnited States
| | - Jonathan Livny
- The Broad Institute of MIT and HarvardCambridgeUnited States
| | - Deborah T Hung
- The Broad Institute of MIT and HarvardCambridgeUnited States
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
- Center for Computational and Integrative Biology, Massachusetts General HospitalBostonUnited States
| |
Collapse
|
44
|
Rodríguez-Rojas A, Baeder DY, Johnston P, Regoes RR, Rolff J. Bacteria primed by antimicrobial peptides develop tolerance and persist. PLoS Pathog 2021; 17:e1009443. [PMID: 33788905 PMCID: PMC8041211 DOI: 10.1371/journal.ppat.1009443] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 04/12/2021] [Accepted: 03/02/2021] [Indexed: 12/21/2022] Open
Abstract
Antimicrobial peptides (AMPs) are key components of innate immune defenses. Because of the antibiotic crisis, AMPs have also come into focus as new drugs. Here, we explore whether prior exposure to sub-lethal doses of AMPs increases bacterial survival and abets the evolution of resistance. We show that Escherichia coli primed by sub-lethal doses of AMPs develop tolerance and increase persistence by producing curli or colanic acid, responses linked to biofilm formation. We develop a population dynamic model that predicts that priming delays the clearance of infections and fuels the evolution of resistance. The effects we describe should apply to many AMPs and other drugs that target the cell surface. The optimal strategy to tackle tolerant or persistent cells requires high concentrations of AMPs and fast and long-lasting expression. Our findings also offer a new understanding of non-inherited drug resistance as an adaptive response and could lead to measures that slow the evolution of resistance. Animals and plants defend themselves with ancient molecules called antimicrobial peptides (AMPs) against pathogens. As more and more bacterial diseases have become drug resistant, these AMPs are considered as promising alternatives. In natural situation such as on the skin, bacteria are often exposed to low concentrations of AMPs that do no kill. Here we show that the bacterium Escherichia coli when exposed to such low concentrations becomes recalcitrant to killing concentrations of the same AMPs. We report the ways in which the bacteria alter their surface to do so. We then use a mathematical model to show that these effects caused by low concentrations can drive the evolution of resistance. From the perspective of an organism using AMPs in self-defense, the best option is to deploy high concentrations of AMPs for long. Our findings also offer a new understanding of similar drug resistance mechanisms.
Collapse
Affiliation(s)
| | | | - Paul Johnston
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Roland R. Regoes
- Institute of Integrative Biology, Zürich, Switzerland
- * E-mail: (RRR); (JR)
| | - Jens Rolff
- Freie Universität Berlin, Institut für Biologie, Evolutionary Biology, Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- * E-mail: (RRR); (JR)
| |
Collapse
|
45
|
Synergistic Quinolone Sensitization by Targeting the recA SOS Response Gene and Oxidative Stress. Antimicrob Agents Chemother 2021; 65:AAC.02004-20. [PMID: 33526493 DOI: 10.1128/aac.02004-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/28/2021] [Indexed: 12/24/2022] Open
Abstract
Suppression of the recA SOS response gene and reactive oxygen species (ROS) overproduction have been shown, separately, to enhance fluoroquinolone activity and lethality. Their putative synergistic impact as a strategy to potentiate the efficacy of bactericidal antimicrobial agents such as fluoroquinolones is unknown. We generated Escherichia coli mutants that exhibited a suppressed ΔrecA gene in combination with inactivated ROS detoxification system genes (ΔsodA, ΔsodB, ΔkatG, ΔkatE, and ΔahpC) or inactivated oxidative stress regulator genes (ΔoxyR and ΔrpoS) to evaluate the interplay of both DNA repair and detoxification systems in drug response. Synergistic sensitization effects, ranging from 7.5- to 30-fold relative to the wild type, were observed with ciprofloxacin in double knockouts of recA and inactivated detoxification system genes. Compared to recA knockout, inactivation of an additional detoxification system gene reduced MIC values up to 8-fold. In growth curves, no growth was evident in mutants doubly deficient for recA gene and oxidative detoxification systems at subinhibitory concentrations of ciprofloxacin, in contrast to the recA-deficient strain. There was a marked reduction of viable bacteria in a short period of time when the recA gene and other detoxification system genes (katG, sodA, or ahpC) were inactivated (using absolute ciprofloxacin concentrations). At 4 h, a bactericidal effect of ciprofloxacin was observed for ΔkatG ΔrecA and ΔahpC ΔrecA double mutants compared to the single ΔrecA mutant (Δ3.4 log10 CFU/ml). Synergistic quinolone sensitization, by targeting the recA gene and oxidative detoxification stress systems, reinforces the role of both DNA repair systems and ROS in antibiotic-induced bacterial cell death, opening up a new pathway for antimicrobial sensitization.
Collapse
|
46
|
Computational analysis of LexA regulons in Proteus species. 3 Biotech 2021; 11:131. [PMID: 33680696 DOI: 10.1007/s13205-021-02683-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 02/08/2021] [Indexed: 10/22/2022] Open
Abstract
To gain a general understanding of the SOS system in Proteus species, in this study LexA-binding sites and the LexA regulons in 23 Proteus genomes were first predicted by phylogenetic footprinting server, then with Proteus vulgaris as an example, the expression of LexA regulon in iron limitation was investigated by proteomic analysis and quantitative reverse transcription polymerase chain reaction (RT-qPCR) method. The results showed that LexA proteins were highly conserved in Proteus species, and were in a close phylogenetic relationship with those in Gram-negative bacteria; the core SOS response genes lexA and recA were found in all the 23 genomes, indicating that this system was widely distributed in this genus; besides that, putative LexA-binding sites were also found in the upstream sequences of some genes involved in other biological processes such as biosynthesis, drug resistance, and stress response. Proteomic and RT-qPCR analyses showed that under iron deficient condition, the expression of lexA, recA and sulA was transcriptionally upregulated (p < 0.05), lexA was also translationally upregulated but recA was on the contrary (p < 0.05), whereas another SOS response gene dinI was transcriptionally downregulated (p < 0.01). These results indicated that in response to iron deficiency, the members of LexA regulon were not regulated by the same way, suggesting the existence of a precise regulation mechanism of SOS response in P. vulgaris. In conclusion, this study provided a preliminary understanding of the SOS system in Proteus species, which laid the foundation for further investigation of its roles in SOS response and other biological processes.
Collapse
|
47
|
Gupta A, Tennakoon L, Spain DA, Forrester JD. Outcomes after Surgery among Patients Diagnosed with One or More Multi-Drug-Resistant Organisms. Surg Infect (Larchmt) 2021; 22:722-729. [PMID: 33471591 DOI: 10.1089/sur.2020.400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background: Infections with multi-drug-resistant organisms (MDROs) may be difficult to treat and prolong patient hospitalization and recovery. Multiple MDRO coinfections may increase the complexity of clinical management. However, association between multiple MDROs and outcomes of patients who undergo surgery is unknown. Patients and Methods: We performed a retrospective, cross-sectional analysis of the 2016 National Inpatient Sample for identified by International Classification of Disease, 10th Revision Clinical Modification (ICD-10-CM) diagnosis codes associated with multi-drug-resistant organisms: methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), multi-drug-resistant gram-negative bacilli, and Clostridioides difficile infection (CDI). Admitted patients with diagnosis codes for MDROs were cross-matched with codes for common general surgery procedures. Outcomes of interest included length of stay and mortality. Weighted univariable and multivariable analyses accounting for the survey methodology were performed. Results: Of 1,550,224 patients undergoing surgery in 2016, 39,065 (3%) admissions were diagnosed with an MDRO and 1,176 (0.1%) were associated with dual MDROs diagnoses. Patients diagnosed with one MDRO were hospitalized three times longer (17.3 days; 95% confidence interval [CI], 16.8-17.7) and patients diagnosed with two MDROs five times longer (31.6 days; 95% CI, 27.0-36.2; p < 0.0001) than undiagnosed patients (6.1 days; 95% CI, 6.1-6.1; all p < 0.0001). On multivariable analysis, the strongest predictor of mortality was a diagnosis of two MDRO infections (odds ratio [OR], 4.8; 95% CI, 3.16-7.21; p < 0.0001). The second strongest predictor was diagnosis of single MDRO infection (OR, 2.9; 95% CI, 2.64-3.20; p < 0.0001). Conclusion: Presence of an MDRO was associated with increased odds of mortality and length of stay in admitted surgical patients. Interventions to reduce MDRO infection among surgical patients may reduce hospital length of stay and mortality.
Collapse
Affiliation(s)
- Anshal Gupta
- Division of General Surgery, Department of Surgery, Stanford University, Stanford, California, USA
| | - Lakshika Tennakoon
- Division of General Surgery, Department of Surgery, Stanford University, Stanford, California, USA
| | - David A Spain
- Division of General Surgery, Department of Surgery, Stanford University, Stanford, California, USA
| | - Joseph D Forrester
- Division of General Surgery, Department of Surgery, Stanford University, Stanford, California, USA
| |
Collapse
|
48
|
Tagel M, Ilves H, Leppik M, Jürgenstein K, Remme J, Kivisaar M. Pseudouridines of tRNA Anticodon Stem-Loop Have Unexpected Role in Mutagenesis in Pseudomonas sp. Microorganisms 2020; 9:microorganisms9010025. [PMID: 33374637 PMCID: PMC7822408 DOI: 10.3390/microorganisms9010025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Pseudouridines are known to be important for optimal translation. In this study we demonstrate an unexpected link between pseudouridylation of tRNA and mutation frequency in Pseudomonas species. We observed that the lack of pseudouridylation activity of pseudouridine synthases TruA or RluA elevates the mutation frequency in Pseudomonas putida 3 to 5-fold. The absence of TruA but not RluA elevates mutation frequency also in Pseudomonas aeruginosa. Based on the results of genetic studies and analysis of proteome data, the mutagenic effect of the pseudouridylation deficiency cannot be ascribed to the involvement of error-prone DNA polymerases or malfunctioning of DNA repair pathways. In addition, although the deficiency in TruA-dependent pseudouridylation made P. putida cells more sensitive to antimicrobial compounds that may cause oxidative stress and DNA damage, cultivation of bacteria in the presence of reactive oxygen species (ROS)-scavenging compounds did not eliminate the mutator phenotype. Thus, the elevated mutation frequency in the absence of tRNA pseudouridylation could be the result of a more specific response or, alternatively, of a cumulative effect of several small effects disturbing distinct cellular functions, which remain undetected when studied independently. This work suggests that pseudouridines link the translation machinery to mutation frequency.
Collapse
Affiliation(s)
- Mari Tagel
- Correspondence: (M.T.); (J.R.); (M.K.); Tel.: +372-737-5036 (M.K.)
| | | | | | | | - Jaanus Remme
- Correspondence: (M.T.); (J.R.); (M.K.); Tel.: +372-737-5036 (M.K.)
| | - Maia Kivisaar
- Correspondence: (M.T.); (J.R.); (M.K.); Tel.: +372-737-5036 (M.K.)
| |
Collapse
|
49
|
Bush NG, Diez-Santos I, Abbott LR, Maxwell A. Quinolones: Mechanism, Lethality and Their Contributions to Antibiotic Resistance. Molecules 2020; 25:E5662. [PMID: 33271787 PMCID: PMC7730664 DOI: 10.3390/molecules25235662] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 12/05/2022] Open
Abstract
Fluoroquinolones (FQs) are arguably among the most successful antibiotics of recent times. They have enjoyed over 30 years of clinical usage and become essential tools in the armoury of clinical treatments. FQs target the bacterial enzymes DNA gyrase and DNA topoisomerase IV, where they stabilise a covalent enzyme-DNA complex in which the DNA is cleaved in both strands. This leads to cell death and turns out to be a very effective way of killing bacteria. However, resistance to FQs is increasingly problematic, and alternative compounds are urgently needed. Here, we review the mechanisms of action of FQs and discuss the potential pathways leading to cell death. We also discuss quinolone resistance and how quinolone treatment can lead to resistance to non-quinolone antibiotics.
Collapse
Affiliation(s)
| | | | | | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; (N.G.B.); (I.D.-S.); (L.R.A.)
| |
Collapse
|
50
|
Pishchany G, Kolter R. On the possible ecological roles of antimicrobials. Mol Microbiol 2020; 113:580-587. [PMID: 31975454 DOI: 10.1111/mmi.14471] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/13/2020] [Accepted: 01/17/2020] [Indexed: 12/29/2022]
Abstract
The Introduction of antibiotics into the clinical use in the middle of the 20th century had a profound impact on modern medicine and human wellbeing. The contribution of these wonder molecules to public health and science is hard to overestimate. Much research has informed our understanding of antibiotic mechanisms of action and resistance at inhibitory concentrations in the lab and in the clinic. Antibiotics, however, are not a human invention as most of them are either natural products produced by soil microorganisms or semisynthetic derivatives of natural products. Because we use antibiotics to inhibit the bacterial growth, it is generally assumed that growth inhibition is also their primary ecological function in the environment. Nevertheless, multiple studies point to diverse nonlethal effects that are exhibited at lower levels of antibiotics. Here we review accumulating evidence of antibiosis and of alternative functions of antibiotics exhibited at subinhibitory concentrations. We also speculate on how these effects might alter phenotypes, fitness, and community composition of microbes in the context of the environment and suggest directions for future research.
Collapse
Affiliation(s)
- Gleb Pishchany
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Roberto Kolter
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|