1
|
Do AD, Portet C, Goutagny R, Jackson J. The claustrum and synchronized brain states. Trends Neurosci 2024:S0166-2236(24)00200-5. [PMID: 39488479 DOI: 10.1016/j.tins.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 11/04/2024]
Abstract
Cortical activity is constantly fluctuating between distinct spatiotemporal activity patterns denoted by changes in brain state. States of cortical desynchronization arise during motor generation, increased attention, and high cognitive load. Synchronized brain states comprise spatially widespread, coordinated low-frequency neural activity during rest and sleep when disengaged from the external environment or 'offline'. The claustrum is a small subcortical structure with dense reciprocal connections with the cortex suggesting modulation by, or participation in, brain state regulation. Here, we highlight recent work suggesting that neural activity in the claustrum supports cognitive processes associated with synchronized brain states characterized by increased low-frequency network activity. As an example, we outline how claustrum activity could support episodic memory consolidation during sleep.
Collapse
Affiliation(s)
- Alison D Do
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
| | - Coline Portet
- University of Strasbourg, Strasbourg, France; Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS UMR7364, Strasbourg, France
| | - Romain Goutagny
- University of Strasbourg, Strasbourg, France; Laboratoire de Neurosciences Cognitives et Adaptatives, CNRS UMR7364, Strasbourg, France
| | - Jesse Jackson
- Department of Physiology, University of Alberta, Edmonton, AB, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Lamsam L, Gu B, Liang M, Sun G, Khan KJ, Sheth KN, Hirsch LJ, Pittenger C, Kaye AP, Krystal JH, Damisah EC. The human claustrum tracks slow waves during sleep. Nat Commun 2024; 15:8964. [PMID: 39419999 PMCID: PMC11487173 DOI: 10.1038/s41467-024-53477-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
Slow waves are a distinguishing feature of non-rapid-eye-movement (NREM) sleep, an evolutionarily conserved process critical for brain function. Non-human studies suggest that the claustrum, a small subcortical nucleus, coordinates slow waves. We show that, in contrast to neurons from other brain regions, claustrum neurons in the human brain increase their spiking activity and track slow waves during NREM sleep, suggesting that the claustrum plays a role in coordinating human sleep architecture.
Collapse
Affiliation(s)
- Layton Lamsam
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Brett Gu
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Mingli Liang
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - George Sun
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Kamren J Khan
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Kevin N Sheth
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Lawrence J Hirsch
- Department of Neurology, Yale School of Medicine, Yale University, New Haven, CT, USA
- Department of Neurology, Yale School of Medicine, Comprehensive Epilepsy Center, Yale University, New Haven, CT, USA
| | - Christopher Pittenger
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, Yale University, New Haven, CT, USA
- Center for Brain and Mind Health, Yale University, New Haven, CT, USA
| | - Alfred P Kaye
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Clinical Neurosciences Division, VA National Center for PTSD, West Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- Clinical Neurosciences Division, VA National Center for PTSD, West Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Eyiyemisi C Damisah
- Department of Neurosurgery, Yale School of Medicine, Yale University, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
- Center for Brain and Mind Health, Yale University, New Haven, CT, USA.
- Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Anderson TL, Keady JV, Songrady J, Tavakoli NS, Asadipooya A, Neeley RE, Turner JR, Ortinski PI. Distinct 5-HT receptor subtypes regulate claustrum excitability by serotonin and the psychedelic, DOI. Prog Neurobiol 2024; 240:102660. [PMID: 39218140 PMCID: PMC11444019 DOI: 10.1016/j.pneurobio.2024.102660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/03/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Recent evidence indicates that neuronal activity within the claustrum (CLA) may be central to cellular and behavioral responses to psychedelic hallucinogens. The CLA prominently innervates many cortical targets and displays exceptionally high levels of serotonin (5-HT) binding. However, the influence of serotonin receptors, prime targets of psychedelic drug action, on CLA activity remains unexplored. We characterize the CLA expression of all known 5-HT subtypes and contrast the effects of 5-HT and the psychedelic hallucinogen, 2,5-dimethoxy-4-iodoamphetamine (DOI), on excitability of cortical-projecting CLA neurons. We find that the CLA is particularly enriched with 5-HT2C receptors, expressed predominantly on glutamatergic neurons. Electrophysiological recordings from CLA neurons that project to the anterior cingulate cortex (ACC) indicate that application of 5-HT inhibits glutamate receptor-mediated excitatory postsynaptic currents (EPSCs). In contrast, application of DOI stimulates EPSCs. We find that the opposite effects of 5-HT and DOI on synaptic signaling can both be reversed by inhibition of the 5-HT2C, but not 5-HT2A, receptors. We identify specific 5-HT receptor subtypes as serotonergic regulators of the CLA excitability and argue against the canonical role of 5-HT2A in glutamatergic synapse response to psychedelics within the CLA-ACC circuit.
Collapse
Affiliation(s)
- Tanner L Anderson
- University of Kentucky, College of Medicine, Department of Neuroscience, Lexington, KY 40536, United States
| | - Jack V Keady
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, Lexington, KY 40536, United States
| | - Judy Songrady
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, Lexington, KY 40536, United States
| | - Navid S Tavakoli
- University of Kentucky, College of Medicine, Department of Neuroscience, Lexington, KY 40536, United States
| | - Artin Asadipooya
- University of Kentucky, College of Medicine, Department of Neuroscience, Lexington, KY 40536, United States
| | - Ryson E Neeley
- University of Kentucky, College of Medicine, Department of Neuroscience, Lexington, KY 40536, United States
| | - Jill R Turner
- University of Kentucky, College of Pharmacy, Department of Pharmaceutical Sciences, Lexington, KY 40536, United States
| | - Pavel I Ortinski
- University of Kentucky, College of Medicine, Department of Neuroscience, Lexington, KY 40536, United States.
| |
Collapse
|
4
|
Yamakawa H, Fukawa A, Yairi IE, Matsuo Y. Brain-consistent architecture for imagination. Front Syst Neurosci 2024; 18:1302429. [PMID: 39229305 PMCID: PMC11368743 DOI: 10.3389/fnsys.2024.1302429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Background Imagination represents a pivotal capability of human intelligence. To develop human-like artificial intelligence, uncovering the computational architecture pertinent to imaginative capabilities through reverse engineering the brain's computational functions is essential. The existing Structure-Constrained Interface Decomposition (SCID) method, leverages the anatomical structure of the brain to extract computational architecture. However, its efficacy is limited to narrow brain regions, making it unsuitable for realizing the function of imagination, which involves diverse brain areas such as the neocortex, basal ganglia, thalamus, and hippocampus. Objective In this study, we proposed the Function-Oriented SCID method, an advancement over the existing SCID method, comprising four steps designed for reverse engineering broader brain areas. This method was applied to the brain's imaginative capabilities to design a hypothetical computational architecture. The implementation began with defining the human imaginative ability that we aspire to simulate. Subsequently, six critical requirements necessary for actualizing the defined imagination were identified. Constraints were established considering the unique representational capacity and the singularity of the neocortex's modes, a distributed memory structure responsible for executing imaginative functions. In line with these constraints, we developed five distinct functions to fulfill the requirements. We allocated specific components for each function, followed by an architectural proposal aligning each component with a corresponding brain organ. Results In the proposed architecture, the distributed memory component, associated with the neocortex, realizes the representation and execution function; the imaginary zone maker component, associated with the claustrum, accomplishes the dynamic-zone partitioning function; the routing conductor component, linked with the complex of thalamus and basal ganglia, performs the manipulation function; the mode memory component, related to the specific agranular neocortical area executes the mode maintenance function; and the recorder component, affiliated with the hippocampal formation, handles the history management function. Thus, we have provided a fundamental cognitive architecture of the brain that comprehensively covers the brain's imaginative capacities.
Collapse
Affiliation(s)
- Hiroshi Yamakawa
- School of Engineering, The University of Tokyo, Tokyo, Japan
- The Whole Brain Architecture Initiative, Tokyo, Japan
| | - Ayako Fukawa
- The Whole Brain Architecture Initiative, Tokyo, Japan
- Graduate School of Science and Technology, Sophia University, Tokyo, Japan
| | - Ikuko Eguchi Yairi
- Graduate School of Science and Technology, Sophia University, Tokyo, Japan
| | - Yutaka Matsuo
- School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Atlan G, Matosevich N, Peretz-Rivlin N, Marsh-Yvgi I, Zelinger N, Chen E, Kleinman T, Bleistein N, Sheinbach E, Groysman M, Nir Y, Citri A. Claustrum neurons projecting to the anterior cingulate restrict engagement during sleep and behavior. Nat Commun 2024; 15:5415. [PMID: 38926345 PMCID: PMC11208603 DOI: 10.1038/s41467-024-48829-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
The claustrum has been linked to attention and sleep. We hypothesized that this reflects a shared function, determining responsiveness to stimuli, which spans the axis of engagement. To test this hypothesis, we recorded claustrum population dynamics from male mice during both sleep and an attentional task ('ENGAGE'). Heightened activity in claustrum neurons projecting to the anterior cingulate cortex (ACCp) corresponded to reduced sensory responsiveness during sleep. Similarly, in the ENGAGE task, heightened ACCp activity correlated with disengagement and behavioral lapses, while low ACCp activity correlated with hyper-engagement and impulsive errors. Chemogenetic elevation of ACCp activity reduced both awakenings during sleep and impulsive errors in the ENGAGE task. Furthermore, mice employing an exploration strategy in the task showed a stronger correlation between ACCp activity and performance compared to mice employing an exploitation strategy which reduced task complexity. Our results implicate ACCp claustrum neurons in restricting engagement during sleep and goal-directed behavior.
Collapse
Affiliation(s)
- Gal Atlan
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Noa Matosevich
- Department of Physiology & Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Noa Peretz-Rivlin
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Idit Marsh-Yvgi
- The Alexander Silberman Institute of Life Science, Faculty of Science, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Noam Zelinger
- Department of Physiology & Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Eden Chen
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Timna Kleinman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Noa Bleistein
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
- The Alexander Silberman Institute of Life Science, Faculty of Science, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Efrat Sheinbach
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
- The Alexander Silberman Institute of Life Science, Faculty of Science, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Maya Groysman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Yuval Nir
- Department of Physiology & Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
- The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ami Citri
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel.
- The Alexander Silberman Institute of Life Science, Faculty of Science, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel.
- Program in Child and Brain Development, Canadian Institute for Advanced Research; MaRS Centre, Toronto, ON, Canada.
| |
Collapse
|
6
|
Borra E, Ballestrazzi G, Biancheri D, Caminiti R, Luppino G. Involvement of the claustrum in the cortico-basal ganglia circuitry: connectional study in the non-human primate. Brain Struct Funct 2024; 229:1143-1164. [PMID: 38615290 PMCID: PMC11147942 DOI: 10.1007/s00429-024-02784-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/04/2024] [Indexed: 04/15/2024]
Abstract
The claustrum is an ancient telencephalic subcortical structure displaying extensive, reciprocal connections with much of the cortex and receiving projections from thalamus, amygdala, and hippocampus. This structure has a general role in modulating cortical excitability and is considered to be engaged in different cognitive and motor functions, such as sensory integration and perceptual binding, salience-guided attention, top-down executive functions, as well as in the control of brain states, such as sleep and its interhemispheric integration. The present study is the first to describe in detail a projection from the claustrum to the striatum in the macaque brain. Based on tracer injections in different striatal regions and in different cortical areas, we observed a rough topography of the claustral connectivity, thanks to which a claustral zone projects to both a specific striatal territory and to cortical areas involved in a network projecting to the same striatal territory. The present data add new elements of complexity of the basal ganglia information processing mode in motor and non-motor functions and provide evidence for an influence of the claustrum on both cortical functional domains and cortico-basal ganglia circuits.
Collapse
Affiliation(s)
- Elena Borra
- Unità di Neuroscienze, Dipartimento di Medicina e Chirurgia, Università di Parma, 43100, Parma, Italy.
| | - Gemma Ballestrazzi
- Unità di Neuroscienze, Dipartimento di Medicina e Chirurgia, Università di Parma, 43100, Parma, Italy
| | - Dalila Biancheri
- Unità di Neuroscienze, Dipartimento di Medicina e Chirurgia, Università di Parma, 43100, Parma, Italy
| | - Roberto Caminiti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia (IIT), 00161, Rome, Italy
| | - Giuseppe Luppino
- Unità di Neuroscienze, Dipartimento di Medicina e Chirurgia, Università di Parma, 43100, Parma, Italy
| |
Collapse
|
7
|
Yokoyama R, Ago Y, Igarashi H, Higuchi M, Tanuma M, Shimazaki Y, Kawai T, Seiriki K, Hayashida M, Yamaguchi S, Tanaka H, Nakazawa T, Okamura Y, Hashimoto K, Kasai A, Hashimoto H. (R)-ketamine restores anterior insular cortex activity and cognitive deficits in social isolation-reared mice. Mol Psychiatry 2024; 29:1406-1416. [PMID: 38388704 PMCID: PMC11189812 DOI: 10.1038/s41380-024-02419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/22/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Chronic social isolation increases the risk of mental health problems, including cognitive impairments and depression. While subanesthetic ketamine is considered effective for cognitive impairments in patients with depression, the neural mechanisms underlying its effects are not well understood. Here we identified unique activation of the anterior insular cortex (aIC) as a characteristic feature in brain-wide regions of mice reared in social isolation and treated with (R)-ketamine, a ketamine enantiomer. Using fiber photometry recording on freely moving mice, we found that social isolation attenuates aIC neuronal activation upon social contact and that (R)-ketamine, but not (S)-ketamine, is able to counteracts this reduction. (R)-ketamine facilitated social cognition in social isolation-reared mice during the social memory test. aIC inactivation offset the effect of (R)-ketamine on social memory. Our results suggest that (R)-ketamine has promising potential as an effective intervention for social cognitive deficits by restoring aIC function.
Collapse
Affiliation(s)
- Rei Yokoyama
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Hiroshima, 734-8553, Japan
| | - Hisato Igarashi
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Momoko Higuchi
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masato Tanuma
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuto Shimazaki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takafumi Kawai
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kaoru Seiriki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Misuzu Hayashida
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shun Yamaguchi
- Department of Morphological Neuroscience, Graduate School of Medicine, Gifu University, Gifu, Gifu, 501-1194, Japan
- Center for One Medicine Innovative Translational Research, Institute for Advanced Study, Gifu University, Gifu, Gifu, 501-1194, Japan
| | - Hirokazu Tanaka
- Faculty of Information Technology, Tokyo City University, Setagaya, Tokyo, 158-8557, Japan
| | - Takanobu Nakazawa
- Department of Bioscience, Tokyo University of Agriculture, Setagaya, Tokyo, 156-8502, Japan
| | - Yasushi Okamura
- Laboratory of Integrative Physiology, Department of Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chuo, Chiba, 260-8670, Japan
| | - Atsushi Kasai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.
- Systems Brain Science Project, Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan.
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Suita, Osaka, 565-0871, Japan.
- Division of Bioscience, Institute for Datability Science, Osaka University, Suita, Osaka, 565-0871, Japan.
- Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka, 565-0871, Japan.
- Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
8
|
Rodríguez-Vidal L, Alcauter S, Barrios FA. The functional connectivity of the human claustrum, according to the Human Connectome Project database. PLoS One 2024; 19:e0298349. [PMID: 38635579 PMCID: PMC11025802 DOI: 10.1371/journal.pone.0298349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/22/2024] [Indexed: 04/20/2024] Open
Abstract
The claustrum is an irregular and fine sheet of grey matter in the basolateral telencephalon present in almost all mammals. The claustrum has been the object of several studies using animal models and, more recently, in human beings using neuroimaging. One of the most extended cognitive processes attributed to the claustrum is the salience process, which is also related to the insular cortex. In the same way, studies with human subjects and functional magnetic resonance imaging have reported the coactivation of the claustrum/insular cortex in the integration of sensory signals. This coactivation has been reported in the left claustrum/insular cortex or in the right claustrum/insular cortex. The asymmetry has been reported in task studies and literature related to neurological disorders such as Alzheimer's disease and schizophrenia, relating the severity of delusions with the reduction in left claustral volume. We present a functional connectivity study of the claustrum. Resting-state functional and anatomical MRI data from 100 healthy subjects were analyzed; taken from the Human Connectome Project (HCP, NIH Blueprint: The Human Connectome Project), with 2x2x2 mm3 voxel resolution. We hypothesize that 1) the claustrum is a node involved in different brain networks, 2) the functional connectivity pattern of the claustrum is different from the insular cortex's pattern, and 3) the asymmetry is present in the claustrum's functional connectivity. Our findings include at least three brain networks related to the claustrum. We found functional connectivity between the claustrum, frontoparietal network, and the default mode network as a distinctive attribute. The functional connectivity between the right claustrum with the frontoparietal network and the dorsal attention network supports the hypothesis of claustral asymmetry. These findings provide functional evidence, suggesting that the claustrum is coupled with the frontoparietal network serving together to instantiate new task states by flexibly modulating and interacting with other control and processing networks.
Collapse
Affiliation(s)
- Lluviana Rodríguez-Vidal
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Querétaro, Querétaro, México
| | - Sarael Alcauter
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Querétaro, Querétaro, México
| | - Fernando A. Barrios
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Querétaro, Querétaro, México
| |
Collapse
|
9
|
Pałasz A, Lipiec-Borowicz A, Suszka-Świtek A, Kistowska J, Horká P, Kaśkosz A, Piwowarczyk-Nowak A, Worthington JJ, Mordecka-Chamera K. Spexin and nesfatin-1-expressing neurons in the male human claustrum. J Chem Neuroanat 2024; 136:102400. [PMID: 38342331 DOI: 10.1016/j.jchemneu.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/07/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Neuropeptides are involved in numerous brain activities being responsible for a wide spectrum of higher mental functions. The purpose of this concise, structural and qualitative investigation was to map the possible immunoreactivity of the novel regulatory peptides: spexin (SPX) and nesfatin-1 within the human claustrum. SPX is a newly identified peptide, a natural ligand for the galanin receptors (GALR) 2/3, with no molecular structure similarities to currently known regulatory factors. SPX seems to have multiple physiological functions, with an involvement in reproduction and food-intake regulation recently revealed in animal studies. Nesfatin-1, a second pleiotropic neuropeptide, which is a derivative of the nucleobindin-2 (NUCB-2) protein, is characterized by a wide distribution in the brain. Nesfatin-1 is a substance with a strong anorexigenic effect, playing an important role in the neuronal circuits of the hypothalamus that regulate food intake and energy homeostasis. On the other hand, nesfatin-1 may be involved in several important brain functions such as sleep, reproductive behaviour, cognitive processes, stress responses and anxiety. For the first time we detected and described a population of nesfatin-1 and SPX expressing neurons in the human claustrum using immunohistochemical and fluorescent methods. The study presents the novel identification of SPX and nesfatin-1 immunopositive neurons in the human claustrum and their assemblies show similar patterns of distribution in the whole structure.
Collapse
Affiliation(s)
- Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland.
| | - Anna Lipiec-Borowicz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Aleksandra Suszka-Świtek
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Julia Kistowska
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| | - Petra Horká
- Institute for Environmental Studies, Faculty of Science, Charles University, Benatska 2, 12801 Prague, Czechia
| | - Andrzej Kaśkosz
- Department of Anatomy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752 Katowice, Poland
| | - Aneta Piwowarczyk-Nowak
- Department of Anatomy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752 Katowice, Poland
| | - John J Worthington
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Kinga Mordecka-Chamera
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, ul. Medyków 18, 40-752, Katowice, Poland
| |
Collapse
|
10
|
Han Y, Sohn K, Yoon D, Park S, Lee J, Choi S. Delayed escape behavior requires claustral activity. Cell Rep 2024; 43:113748. [PMID: 38324450 DOI: 10.1016/j.celrep.2024.113748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/05/2023] [Accepted: 01/21/2024] [Indexed: 02/09/2024] Open
Abstract
Animals are known to exhibit innate and learned forms of defensive behaviors, but it is unclear whether animals can escape through methods other than these forms. In this study, we develop the delayed escape task, in which male rats temporarily hold the information required for future escape, and we demonstrate that this task, in which the subject extrapolates from past experience without direct experience of its behavioral outcome, does not fall into either of the two forms of behavior. During the holding period, a subset of neurons in the rostral-to-striatum claustrum (rsCla), only when pooled together, sustain enhanced population activity without ongoing sensory stimuli. Transient inhibition of rsCla neurons during the initial part of the holding period produces prolonged inhibition of the enhanced activity. The transient inhibition also attenuates the delayed escape behavior. Our data suggest that the rsCla activity bridges escape-inducing stimuli to the delayed onset of escape.
Collapse
Affiliation(s)
- Yujin Han
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Kuenbae Sohn
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Donghyeon Yoon
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Sewon Park
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea
| | - Junghwa Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea.
| | - Sukwoo Choi
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Korea.
| |
Collapse
|
11
|
Shaker T, Dagpa GJ, Cattaud V, Marriott BA, Sultan M, Almokdad M, Jackson J. A simple and reliable method for claustrum localization across age in mice. Mol Brain 2024; 17:10. [PMID: 38368400 PMCID: PMC10874566 DOI: 10.1186/s13041-024-01082-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/11/2024] [Indexed: 02/19/2024] Open
Abstract
The anatomical organization of the rodent claustrum remains obscure due to lack of clear borders that distinguish it from neighboring forebrain structures. Defining what constitutes the claustrum is imperative for elucidating its functions. Methods based on gene/protein expression or transgenic mice have been used to spatially outline the claustrum but often report incomplete labeling and/or lack of specificity during certain neurodevelopmental timepoints. To reliably identify claustrum projection cells in mice, we propose a simple immunolabelling method that juxtaposes the expression pattern of claustrum-enriched and cortical-enriched markers. We determined that claustrum cells immunoreactive for the claustrum-enriched markers Nurr1 and Nr2f2 are devoid of the cortical marker Tle4, which allowed us to differentiate the claustrum from adjoining cortical cells. Using retrograde tracing, we verified that nearly all claustrum projection neurons lack Tle4 but expressed Nurr1/Nr2f2 markers to different degrees. At neonatal stages between 7 and 21 days, claustrum projection neurons were identified by their Nurr1-postive/Tle4-negative expression profile, a time-period when other immunolabelling techniques used to localize the claustrum in adult mice are ineffective. Finally, exposure to environmental novelty enhanced the expression of the neuronal activation marker c-Fos in the claustrum region. Notably, c-Fos labeling was mainly restricted to Nurr1-positive cells and nearly absent from Tle4-positive cells, thus corroborating previous work reporting novelty-induced claustrum activation. Taken together, this method will aid in studying the claustrum during postnatal development and may improve histological and functional studies where other approaches are not amenable.
Collapse
Affiliation(s)
- Tarek Shaker
- Department of Physiology, University of Alberta, 7-22 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - Gwyneth J Dagpa
- Department of Physiology, University of Alberta, 7-22 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - Vanessa Cattaud
- Department of Physiology, University of Alberta, 7-22 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - Brian A Marriott
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Mariam Sultan
- Department of Physiology, University of Alberta, 7-22 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada
| | - Mohammed Almokdad
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Jesse Jackson
- Department of Physiology, University of Alberta, 7-22 Medical Sciences Building, Edmonton, AB, T6G 2H7, Canada.
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
12
|
Lamsam L, Liang M, Gu B, Sun G, Hirsch LJ, Pittenger C, Kaye AP, Krystal JH, Damisah EC. The human claustrum tracks slow waves during sleep. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577851. [PMID: 38352615 PMCID: PMC10862750 DOI: 10.1101/2024.01.29.577851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Slow waves are a distinguishing feature of non-rapid-eye-movement (NREM) sleep, an evolutionarily conserved process critical for brain function. Non-human studies posit that the claustrum, a small subcortical nucleus, coordinates slow waves. We recorded claustrum neurons in humans during sleep. In contrast to neurons from other brain regions, claustrum neurons increased their activity and tracked slow waves during NREM sleep suggesting that the claustrum plays a role in human sleep architecture.
Collapse
|
13
|
Sijtsma M, Marjoram D, Gallagher HL, Grealy MA, Brennan D, Mathias C, Cavanagh J, Pollick FE. Major Depression and the Perception of Affective Instrumental and Expressive Gestures: An fMRI Investigation. Psychiatry Res Neuroimaging 2023; 336:111728. [PMID: 37939431 DOI: 10.1016/j.pscychresns.2023.111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/24/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023]
Abstract
Major depressive disorder (MDD) is associated with biased perception of human movement. Gesture is important for communication and in this study we investigated neural correlates of gesture perception in MDD. We hypothesised different neural activity between individuals with MDD and typical individuals when viewing instrumental and expressive gestures that were negatively or positively valenced. Differences were expected in brain areas associated with gesture perception, including superior temporal, frontal, and emotion processing regions. We recruited 12 individuals with MDD and 12 typical controls matched on age, gender, and handedness. They viewed gestures displayed by stick figures while functional magnetic resonance imaging (fMRI) was performed. Results of a random effects three-way mixed ANOVA indicated that individuals with MDD had greater activity in the right claustrum compared to controls, regardless of gesture type or valence. Additionally, we observed main effects of gesture type and valence, regardless of group. Perceiving instrumental compared to expressive gestures was associated with greater activity in the left cuneus and left superior temporal gyrus, while perceiving negative compared to positive gestures was associated with greater activity in the right precuneus and right lingual gyrus. We also observed a two-way interaction between gesture type and valence in various brain regions.
Collapse
Affiliation(s)
- Mathilde Sijtsma
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - Dominic Marjoram
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
| | - Helen L Gallagher
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Madeleine A Grealy
- Department of Psychological Science and Health, University of Strathclyde, Glasgow, UK
| | - David Brennan
- Department of MRI Physics, Imaging Centre of Excellence, Queen Elizabeth University Hospital, Glasgow, UK
| | | | - Jonathan Cavanagh
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Frank E Pollick
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK.
| |
Collapse
|
14
|
Wang YJ, Zan GY, Xu C, Li XP, Shu X, Yao SY, Xu XS, Qiu X, Chen Y, Jin K, Zhou QX, Ye JY, Wang Y, Xu L, Chen Z, Liu JG. The claustrum-prelimbic cortex circuit through dynorphin/κ-opioid receptor signaling underlies depression-like behaviors associated with social stress etiology. Nat Commun 2023; 14:7903. [PMID: 38036497 PMCID: PMC10689794 DOI: 10.1038/s41467-023-43636-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023] Open
Abstract
Ample evidence has suggested the stress etiology of depression, but the underlying mechanism is not fully understood yet. Here, we report that chronic social defeat stress (CSDS) attenuates the excitatory output of the claustrum (CLA) to the prelimbic cortex (PL) through the dynorphin/κ-opioid receptor (KOR) signaling, being critical for depression-related behaviors in male mice. The CSDS preferentially impairs the excitatory output from the CLA onto the parvalbumin (PV) of the PL, leading to PL micronetwork dysfunction by disinhibiting pyramidal neurons (PNs). Optogenetic activation or inhibition of this circuit suppresses or promotes depressive-like behaviors, which is reversed by chemogenetic inhibition or activation of the PV neurons. Notably, manipulating the dynorphin/KOR signaling in the CLA-PL projecting terminals controls depressive-like behaviors that is suppressed or promoted by optogenetic activation or inhibition of CLA-PL circuit. Thus, this study reveals both mechanism of the stress etiology of depression and possibly therapeutic interventions by targeting CLA-PL circuit.
Collapse
Affiliation(s)
- Yu-Jun Wang
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, 100049, Beijing, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China
| | - Gui-Ying Zan
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, 100049, Beijing, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xue-Ping Li
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Xuelian Shu
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, 100049, Beijing, China
| | - Song-Yu Yao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Shan Xu
- Laboratory of Learning and Memory, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Kunming, 650223, China
| | - Xiaoyun Qiu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yexiang Chen
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurobiology of Zhejiang Province, Hangzhou, 310053, China
| | - Kai Jin
- Laboratory of Learning and Memory, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Kunming, 650223, China
| | - Qi-Xin Zhou
- Laboratory of Learning and Memory, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Kunming, 650223, China
| | - Jia-Yu Ye
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurobiology of Zhejiang Province, Hangzhou, 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Xu
- Laboratory of Learning and Memory, Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Kunming, 650223, China.
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Jing-Gen Liu
- CAS Key Laboratory of Receptor Research and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, No. 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19 A Yuquan Road, 100049, Beijing, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurobiology of Zhejiang Province, Hangzhou, 310053, China.
| |
Collapse
|
15
|
Dou Z, Su N, Zhou Z, Mi A, Xu L, Zhou J, Sun S, Liu Y, Hao M, Li Z. Modulation of visceral pain by brain nuclei and brain circuits and the role of acupuncture: a narrative review. Front Neurosci 2023; 17:1243232. [PMID: 38027491 PMCID: PMC10646320 DOI: 10.3389/fnins.2023.1243232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Visceral pain is a complex and heterogeneous pain condition that is often associated with pain-related negative emotional states, including anxiety and depression, and can exert serious effects on a patient's physical and mental health. According to modeling stimulation protocols, the current animal models of visceral pain mainly include the mechanical dilatation model, the ischemic model, and the inflammatory model. Acupuncture can exert analgesic effects by integrating and interacting input signals from acupuncture points and the sites of pain in the central nervous system. The brain nuclei involved in regulating visceral pain mainly include the nucleus of the solitary tract, parabrachial nucleus (PBN), locus coeruleus (LC), rostral ventromedial medulla (RVM), anterior cingulate cortex (ACC), paraventricular nucleus (PVN), and the amygdala. The neural circuits involved are PBN-amygdala, LC-RVM, amygdala-insula, ACC-amygdala, claustrum-ACC, bed nucleus of the stria terminalis-PVN and the PVN-ventral lateral septum circuit. Signals generated by acupuncture can modulate the central structures and interconnected neural circuits of multiple brain regions, including the medulla oblongata, cerebral cortex, thalamus, and hypothalamus. This analgesic process also involves the participation of various neurotransmitters and/or receptors, such as 5-hydroxytryptamine, glutamate, and enkephalin. In addition, acupuncture can regulate visceral pain by influencing functional connections between different brain regions and regulating glucose metabolism. However, there are still some limitations in the research efforts focusing on the specific brain mechanisms associated with the effects of acupuncture on the alleviation of visceral pain. Further animal experiments and clinical studies are now needed to improve our understanding of this area.
Collapse
Affiliation(s)
- Zhiqiang Dou
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Na Su
- First Clinical Medicine College, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Ziyang Zhou
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Aoyue Mi
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Luyao Xu
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Jiazheng Zhou
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Sizhe Sun
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Yanyi Liu
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Mingyao Hao
- External Treatment Center of Traditional Chinese Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Ji’nan, China
| | - Zhaofeng Li
- College of Acupuncture and Moxibustion and Tuina, Shandong University of Traditional Chinese Medicine, Ji’nan, China
- International Office, Shandong University of Traditional Chinese Medicine, Ji’nan, China
| |
Collapse
|
16
|
Liaw YS, Augustine GJ. The claustrum and consciousness: An update. Int J Clin Health Psychol 2023; 23:100405. [PMID: 37701759 PMCID: PMC10493512 DOI: 10.1016/j.ijchp.2023.100405] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/10/2023] [Indexed: 09/14/2023] Open
Abstract
The seminal paper of Crick and Koch (2005) proposed that the claustrum, an enigmatic and thin grey matter structure that lies beside the insular cortex, may be involved in the processing of consciousness. As a result, this otherwise obscure structure has received ever-increasing interest in the search for neural correlates of consciousness. Here we review theories of consciousness and discuss the possible relationship between the claustrum and consciousness. We review relevant experimental evidence collected since the Crick and Koch (2005) paper and consider whether these findings support or contradict their hypothesis. We also explore how future experimental work can be designed to clarify how consciousness emerges from neural activity and to understand the role of the claustrum in consciousness.
Collapse
Affiliation(s)
- Yin Siang Liaw
- Neuroscience & Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - George J. Augustine
- Neuroscience & Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
17
|
Pirone A, Ciregia F, Lazzarini G, Miragliotta V, Ronci M, Zuccarini M, Zallocco L, Beghelli D, Mazzoni MR, Lucacchini A, Giusti L. Proteomic Profiling Reveals Specific Molecular Hallmarks of the Pig Claustrum. Mol Neurobiol 2023; 60:4336-4358. [PMID: 37095366 PMCID: PMC10293365 DOI: 10.1007/s12035-023-03347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
The present study, employing a comparative proteomic approach, analyzes the protein profile of pig claustrum (CLA), putamen (PU), and insula (IN). Pig brain is an interesting model whose key translational features are its similarities with cortical and subcortical structures of human brain. A greater difference in protein spot expression was observed in CLA vs PU as compared to CLA vs IN. The deregulated proteins identified in CLA resulted to be deeply implicated in neurodegenerative (i.e., sirtuin 2, protein disulfide-isomerase 3, transketolase) and psychiatric (i.e., copine 3 and myelin basic protein) disorders in humans. Metascape analysis of differentially expressed proteins in CLA vs PU comparison suggested activation of the α-synuclein pathway and L1 recycling pathway corroborating the involvement of these anatomical structures in neurodegenerative diseases. The expression of calcium/calmodulin-dependent protein kinase and dihydropyrimidinase like 2, which are linked to these pathways, was validated using western blot analysis. Moreover, the protein data set of CLA vs PU comparison was analyzed by Ingenuity Pathways Analysis to obtain a prediction of most significant canonical pathways, upstream regulators, human diseases, and biological functions. Interestingly, inhibition of presenilin 1 (PSEN1) upstream regulator and activation of endocannabinoid neuronal synapse pathway were observed. In conclusion, this is the first study presenting an extensive proteomic analysis of pig CLA in comparison with adjacent areas, IN and PUT. These results reinforce the common origin of CLA and IN and suggest an interesting involvement of CLA in endocannabinoid circuitry, neurodegenerative, and psychiatric disorders in humans.
Collapse
Affiliation(s)
- Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy.
| | - Federica Ciregia
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giulia Lazzarini
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | | | - Maurizio Ronci
- Department of Medical, Oral and Biotechnological Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
- Interuniversitary Consortium for Engineering and Medicine, COIIM, Campobasso, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Lorenzo Zallocco
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Daniela Beghelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | - Antonio Lucacchini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Giusti
- School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
18
|
Nguyen R, Koukoutselos K, Forro T, Ciocchi S. Fear extinction relies on ventral hippocampal safety codes shaped by the amygdala. SCIENCE ADVANCES 2023; 9:eadg4881. [PMID: 37256958 PMCID: PMC10413664 DOI: 10.1126/sciadv.adg4881] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
Extinction memory retrieval is influenced by spatial contextual information that determines responding to conditioned stimuli (CS). However, it is poorly understood whether contextual representations are imbued with emotional values to support memory selection. Here, we performed activity-dependent engram tagging and in vivo single-unit electrophysiological recordings from the ventral hippocampus (vH) while optogenetically manipulating basolateral amygdala (BLA) inputs during the formation of cued fear extinction memory. During fear extinction when CS acquire safety properties, we found that CS-related activity in the vH reactivated during sleep consolidation and was strengthened upon memory retrieval. Moreover, fear extinction memory was facilitated when the extinction context exhibited precise coding of its affective zones. Last, these activity patterns along with the retrieval of the fear extinction memory were dependent on glutamatergic transmission from the BLA during extinction learning. Thus, fear extinction memory relies on the formation of contextual and stimulus safety representations in the vH instructed by the BLA.
Collapse
Affiliation(s)
| | | | - Thomas Forro
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
19
|
Kamali A, Milosavljevic S, Gandhi A, Lano KR, Shobeiri P, Sherbaf FG, Sair HI, Riascos RF, Hasan KM. The Cortico-Limbo-Thalamo-Cortical Circuits: An Update to the Original Papez Circuit of the Human Limbic System. Brain Topogr 2023; 36:371-389. [PMID: 37148369 PMCID: PMC10164017 DOI: 10.1007/s10548-023-00955-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/06/2023] [Indexed: 05/08/2023]
Abstract
The Papez circuit, first proposed by James Papez in 1937, is a circuit believed to control memory and emotions, composed of the cingulate cortex, entorhinal cortex, parahippocampal gyrus, hippocampus, hypothalamus, and thalamus. Pursuant to James Papez, Paul Yakovlev and Paul MacLean incorporated the prefrontal/orbitofrontal cortex, septum, amygdalae, and anterior temporal lobes into the limbic system. Over the past few years, diffusion-weighted tractography techniques revealed additional limbic fiber connectivity, which incorporates multiple circuits to the already known complex limbic network. In the current review, we aimed to comprehensively summarize the anatomy of the limbic system and elaborate on the anatomical connectivity of the limbic circuits based on the published literature as an update to the original Papez circuit.
Collapse
Affiliation(s)
- Arash Kamali
- Department of Diagnostic and Interventional Radiology, Neuroradiology Section, University of Texas at Houston, 6431 Fannin St, Houston, TX, 77030, USA.
| | | | - Anusha Gandhi
- Baylor College of Medicine Medical School, Houston, TX, USA
| | - Kinsey R Lano
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Parnian Shobeiri
- Faculty of Medicine, Tehran University Medical School, Tehran, Iran
| | - Farzaneh Ghazi Sherbaf
- Department of Radiology and Radiological Science, Division of Neuroradiology, The Russell H. Morgan, Johns Hopkins University, Baltimore, MD, USA
| | - Haris I Sair
- Department of Radiology and Radiological Science, Division of Neuroradiology, The Russell H. Morgan, Johns Hopkins University, Baltimore, MD, USA
| | - Roy F Riascos
- Department of Diagnostic and Interventional Radiology, Neuroradiology Section, University of Texas at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Khader M Hasan
- Department of Diagnostic and Interventional Radiology, Neuroradiology Section, University of Texas at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| |
Collapse
|
20
|
Takahashi M, Kobayashi T, Mizuma H, Yamauchi K, Okamoto S, Okamoto K, Ishida Y, Koike M, Watanabe M, Isa T, Hioki H. Preferential arborization of dendrites and axons of parvalbumin- and somatostatin-positive GABAergic neurons within subregions of the mouse claustrum. Neurosci Res 2023; 190:92-106. [PMID: 36574563 DOI: 10.1016/j.neures.2022.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/06/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
The claustrum coordinates the activities of individual cortical areas through abundant reciprocal connections with the cerebral cortex. Although these excitatory connections have been extensively investigated in three subregions of the claustrum-core region and dorsal and ventral shell regions-the contribution of GABAergic neurons to the circuitry in each subregion remains unclear. Here, we examined the distribution of GABAergic neurons and their dendritic and axonal arborizations in each subregion. Combining in situ hybridization with immunofluorescence histochemistry showed that approximately 10% of neuronal nuclei-positive cells expressed glutamic acid decarboxylase 67 mRNA across the claustral subregions. Approximately 20%, 30%, and 10% of GABAergic neurons were immunoreactive for parvalbumin (PV), somatostatin (SOM), and vasoactive intestinal polypeptide, respectively, in each subregion, and these neurochemical markers showed little overlap with each other. We then reconstructed PV and SOM neurons labeled with adeno-associated virus vectors. The dendrites and axons of PV and SOM neurons were preferentially localized to their respective subregions where their cell bodies were located. Furthermore, the axons were preferentially extended in a rostrocaudal direction, whereas the dendrites were relatively isotropic. The present findings suggest that claustral PV and SOM neurons might execute information processing separately within the core and shell regions.
Collapse
Affiliation(s)
- Megumu Takahashi
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Research Fellow of Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo 102-0083, Japan
| | - Tomoyo Kobayashi
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Haruhi Mizuma
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Kenta Yamauchi
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Shinichiro Okamoto
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Advanced Research Institute for Health Sciences, Juntendo University, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Kazuki Okamoto
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Yoko Ishida
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Advanced Research Institute for Health Sciences, Juntendo University, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Advanced Research Institute for Health Sciences, Juntendo University, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido 060-8638, Japan
| | - Tadashi Isa
- Department of Neuroscience, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto 606-8501, Japan
| | - Hiroyuki Hioki
- Department of Neuroanatomy, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan; Department of Multi-Scale Brain Structure Imaging, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan.
| |
Collapse
|
21
|
Smith-Osborne L, Duong A, Resendez A, Palme R, Fadok JP. Female dominance hierarchies influence responses to psychosocial stressors. Curr Biol 2023; 33:1535-1549.e5. [PMID: 37003262 PMCID: PMC10321215 DOI: 10.1016/j.cub.2023.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/26/2023] [Accepted: 03/07/2023] [Indexed: 04/03/2023]
Abstract
Social species form dominance hierarchies to ensure survival and promote reproductive success. Traditionally studied in males, rodent hierarchies are considered despotic, and dominant social rank results from a history of winning agonistic encounters. By contrast, female hierarchies are thought to be less despotic, and rank is conferred by intrinsic traits. Both social buffering and elevated social status confer resilience to depression, anxiety, and other consequences of chronic stress. Here, we investigate whether female social hierarchies and individual traits related to social rank likewise influence stress resilience. We observe the formation of dyadic female hierarchies under varying conditions of ambient light and circadian phase and subject mice to two forms of chronic psychosocial stress: social isolation or social instability. We find that stable female hierarchies emerge rapidly in dyads. Individual behavioral and endocrinological traits are characteristic of rank, some of which are circadian phase dependent. Further, female social rank is predicted by behavior and stress status prior to social introduction. Other behavioral characteristics suggest that rank is motivation-based, indicating that female rank identity serves an evolutionarily relevant purpose. Rank is associated with alterations in behavior in response to social instability stress and prolonged social isolation, but the different forms of stress produce disparate rank responses in endocrine status. Histological examination of c-Fos protein expression identified brain regions that respond to social novelty or social reunion following chronic isolation in a rank-specific manner. Collectively, female rank is linked to neurobiology, and hierarchies exert context-specific influence upon stress outcomes.
Collapse
Affiliation(s)
- Lydia Smith-Osborne
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA; Tulane National Primate Research Center, Covington, LA 70433, USA.
| | - Anh Duong
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA; Neuroscience Program, Tulane University, New Orleans, LA 70118, USA
| | - Alexis Resendez
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, 1210 Vienna, Austria
| | - Jonathan P Fadok
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
22
|
Fenk LA, Riquelme JL, Laurent G. Interhemispheric competition during sleep. Nature 2023; 616:312-318. [PMID: 36949193 PMCID: PMC10097603 DOI: 10.1038/s41586-023-05827-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/10/2023] [Indexed: 03/24/2023]
Abstract
Our understanding of the functions and mechanisms of sleep remains incomplete, reflecting their increasingly evident complexity1-3. Likewise, studies of interhemispheric coordination during sleep4-6 are often hard to connect precisely to known sleep circuits and mechanisms. Here, by recording from the claustra of sleeping bearded dragons (Pogona vitticeps), we show that, although the onsets and offsets of Pogona rapid-eye-movement (REMP) and slow-wave sleep are coordinated bilaterally, these two sleep states differ markedly in their inter-claustral coordination. During slow-wave sleep, the claustra produce sharp-wave ripples independently of one another, showing no coordination. By contrast, during REMP sleep, the potentials produced by the two claustra are precisely coordinated in amplitude and time. These signals, however, are not synchronous: one side leads the other by about 20 ms, with the leading side switching typically once per REMP episode or in between successive episodes. The leading claustrum expresses the stronger activity, suggesting bilateral competition. This competition does not occur directly between the two claustra or telencephalic hemispheres. Rather, it occurs in the midbrain and depends on the integrity of a GABAergic (γ-aminobutyric-acid-producing) nucleus of the isthmic complex, which exists in all vertebrates and is known in birds to underlie bottom-up attention and gaze control. These results reveal that a winner-take-all-type competition exists between the two sides of the brain of Pogona, which originates in the midbrain and has precise consequences for claustrum activity and coordination during REMP sleep.
Collapse
Affiliation(s)
- Lorenz A Fenk
- Max Planck Institute for Brain Research, Frankfurt, Germany.
| | - Juan Luis Riquelme
- Max Planck Institute for Brain Research, Frankfurt, Germany
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Gilles Laurent
- Max Planck Institute for Brain Research, Frankfurt, Germany.
| |
Collapse
|
23
|
Wang Q, Wang Y, Kuo HC, Xie P, Kuang X, Hirokawa KE, Naeemi M, Yao S, Mallory M, Ouellette B, Lesnar P, Li Y, Ye M, Chen C, Xiong W, Ahmadinia L, El-Hifnawi L, Cetin A, Sorensen SA, Harris JA, Zeng H, Koch C. Regional and cell-type-specific afferent and efferent projections of the mouse claustrum. Cell Rep 2023; 42:112118. [PMID: 36774552 PMCID: PMC10415534 DOI: 10.1016/j.celrep.2023.112118] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 12/17/2022] [Accepted: 01/30/2023] [Indexed: 02/13/2023] Open
Abstract
The claustrum (CLA) is a conspicuous subcortical structure interconnected with cortical and subcortical regions. Its regional anatomy and cell-type-specific connections in the mouse remain not fully determined. Using multimodal reference datasets, we confirmed the delineation of the mouse CLA as a single group of neurons embedded in the agranular insular cortex. We quantitatively investigated brain-wide inputs and outputs of CLA using bulk anterograde and retrograde viral tracing data and single neuron tracing data. We found that the prefrontal module has more cell types projecting to the CLA than other cortical modules, with layer 5 IT neurons predominating. We found nine morphological types of CLA principal neurons that topographically innervate functionally linked cortical targets, preferentially the midline cortical areas, secondary motor area, and entorhinal area. Together, this study provides a detailed wiring diagram of the cell-type-specific connections of the mouse CLA, laying a foundation for studying its functions at the cellular level.
Collapse
Affiliation(s)
- Quanxin Wang
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| | - Yun Wang
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hsien-Chi Kuo
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Peng Xie
- Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu, China
| | - Xiuli Kuang
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | | | - Maitham Naeemi
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Shenqin Yao
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Matt Mallory
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Ben Ouellette
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Phil Lesnar
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Yaoyao Li
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Min Ye
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Chao Chen
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Wei Xiong
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | | | | | - Ali Cetin
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Julie A Harris
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Christof Koch
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| |
Collapse
|
24
|
Coolen RL, Cambier JC, van Asselt E, Blok BFM. Androgen receptors in the forebrain: A study in adult male cats. J Morphol 2023; 284:e21553. [PMID: 36601705 PMCID: PMC10107852 DOI: 10.1002/jmor.21553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
Androgens and their receptors are present throughout the body. Various structures such as muscles, genitals, and prostate express androgen receptors. The central nervous system also expresses androgen receptors. Androgens cross the blood-brain barrier to reach these central areas. In the central nervous system, androgens are involved in multiple functions. The current study investigated in which forebrain areas androgens are expressed in the male cat. Androgen receptor immunoreactive (AR-IR) nuclei were plotted and the results were quantified with a Heidelberg Topaz II + scanner and Linocolor 5.0 software. The density and intensity of the labeled cells were the main outcomes of interest. The analysis revealed a dense distribution of AR-IR nuclei in the preoptic area, periventricular complex of the hypothalamus, posterior hypothalamic area, ventromedial hypothalamic, parvocellular hypothalamic, infundibular, and supramammillary nucleus. Numerous AR-IR cells were also observed in the dorsal division of the anterior olfactory nucleus, lateral septal nucleus, medial and lateral divisions of the bed nucleus of the stria terminalis, lateral olfactory tract nucleus, anterior amygdaloid area, and the central and medial amygdaloid nuclei. AR-IR nuclei were predominantly observed in areas involved in autonomic and neuroendocrinergic responses which are important for many physiological processes and behaviors.
Collapse
Affiliation(s)
- Rosa L Coolen
- Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Els van Asselt
- Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bertil F M Blok
- Department of Urology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
25
|
Influence of claustrum on cortex varies by area, layer, and cell type. Neuron 2023; 111:275-290.e5. [PMID: 36368317 DOI: 10.1016/j.neuron.2022.10.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 07/15/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
The claustrum is a small subcortical structure with widespread connections to disparate regions of the cortex. However, the impact of the claustrum on cortical activity is not fully understood, particularly beyond frontal areas. Here, using optogenetics and multi-regional Neuropixels recordings from over 15,000 cortical neurons in awake mice, we demonstrate that the effect of claustrum input to the cortex differs depending on brain area, layer, and cell type. Brief claustrum stimulation, producing approximately 1 spike per claustrum neuron, affects many fast spiking (FS; putative inhibitory) but relatively fewer regular-spiking (RS; putative excitatory) cortical neurons and leads to a modest decrease in population activity in frontal cortical areas. Prolonged claustrum stimulation affects many more cortical neurons and can increase or decrease spiking activity. More excitation occurs in posterior regions and superficial layers, while inhibition predominates in frontal regions and deeper layers. These findings suggest that claustro-cortical circuits are organized into functional modules.
Collapse
|
26
|
Neubauer A, Menegaux A, Wendt J, Li HB, Schmitz-Koep B, Ruzok T, Thalhammer M, Schinz D, Bartmann P, Wolke D, Priller J, Zimmer C, Rueckert D, Hedderich DM, Sorg C. Aberrant claustrum structure in preterm-born neonates: an MRI study. Neuroimage Clin 2023; 37:103286. [PMID: 36516730 PMCID: PMC9755238 DOI: 10.1016/j.nicl.2022.103286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
The human claustrum is a gray matter structure in the white matter between insula and striatum. Previous analysis found altered claustrum microstructure in very preterm-born adults associated with lower cognitive performance. As the claustrum development is related to hypoxia-ischemia sensitive transient cell populations being at-risk in premature birth, we hypothesized that claustrum structure is already altered in preterm-born neonates. We studied anatomical and diffusion-weighted MRIs of 83 preterm- and 83 term-born neonates at term-equivalent age. Additionally, claustrum development was analyzed both in a spectrum of 377 term-born neonates and longitudinally in 53 preterm-born subjects. Data was provided by the developing Human Connectome Project. Claustrum development showed increasing volume, increasing fractional anisotropy (FA), and decreasing mean diffusivity (MD) around term both across term- and preterm-born neonates. Relative to term-born ones, preterm-born neonates had (i) increased absolute and relative claustrum volumes, both indicating increased cellular and/or extracellular matter and being in contrast to other subcortical gray matter regions of decreased volumes such as thalamus; (ii) lower claustrum FA and higher claustrum MD, pointing at increased extracellular matrix and impaired axonal integrity; and (iii) aberrant covariance between claustrum FA and MD, respectively, and that of distributed gray matter regions, hinting at relatively altered claustrum microstructure. Results together demonstrate specifically aberrant claustrum structure in preterm-born neonates, suggesting altered claustrum development in prematurity, potentially relevant for later cognitive performance.
Collapse
Affiliation(s)
- Antonia Neubauer
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany.
| | - Aurore Menegaux
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Jil Wendt
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Hongwei Bran Li
- Department of Informatics, Technical University of Munich, Germany; Department of Quantitative Biomedicine, University of Zurich, Switzerland
| | - Benita Schmitz-Koep
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Tobias Ruzok
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Melissa Thalhammer
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - David Schinz
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Peter Bartmann
- Department of Neonatology and Pediatric Intensive Care, University Hospital Bonn, Germany
| | - Dieter Wolke
- Department of Psychology, University of Warwick, Coventry, UK; Warwick Medical School, University of Warwick, Coventry, UK
| | - Josef Priller
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Germany; Neuropsychiatry, Charité - Universitätsmedizin Berlin and DZNE, Berlin, Germany; University of Edinburgh and UK DRI, Edinburgh, UK
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Daniel Rueckert
- School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany; Department of Informatics, Technical University of Munich, Germany; Department of Computing, Imperial College London, UK
| | - Dennis M Hedderich
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany
| | - Christian Sorg
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Germany; School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Germany; Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Germany
| |
Collapse
|
27
|
Johnson BN, Kumar A, Su Y, Singh S, Sai KKS, Nader SH, Li S, Reboussin BA, Huang Y, Deep G, Nader MA. PET imaging of kappa opioid receptors and receptor expression quantified in neuron-derived extracellular vesicles in socially housed female and male cynomolgus macaques. Neuropsychopharmacology 2023; 48:410-417. [PMID: 36100655 PMCID: PMC9751296 DOI: 10.1038/s41386-022-01444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/27/2022] [Accepted: 08/24/2022] [Indexed: 12/26/2022]
Abstract
Recent positron emission tomography (PET) studies of kappa opioid receptors (KOR) in humans reported significant relationships between KOR availability and social status, as well as cocaine choice. In monkey models, social status influences physiology, receptor pharmacology and behavior; these variables have been associated vulnerability to cocaine abuse. The present study utilized PET imaging to examine KOR availability in socially housed, cocaine-naïve female and male monkeys, and peripheral measures of KORs with neuron-derived extracellular vesicles (NDE). KOR availability was assessed in dominant and subordinate female and male cynomolgus macaques (N = 4/rank/sex), using PET imaging with the KOR selective agonist [11C]EKAP. In addition, NDE from the plasma of socially housed monkeys (N = 13/sex; N = 6-7/rank) were isolated by immunocapture method and analyzed for OPRK1 protein expression by ELISA. We found significant interactions between sex and social rank in KOR availability across 12 of 15 brain regions. This was driven by female data, in which KOR availability was significantly higher in subordinate monkeys compared with dominant monkeys; the opposite relationship was observed among males, but not statistically significant. No sex or rank differences were observed for NDE OPRK1 concentrations. In summary, the relationship between brain KOR availability and social rank was different in female and male monkeys. This was particularly true in female monkeys. We hypothesize that lower [11C]EKAP binding potentials were due to higher concentrations of circulating dynorphin, which is consistent with greater vulnerability in dominant compared with subordinate females. These findings suggest that the KOR is an important target for understanding the neurobiology associated with vulnerability to abused drugs and sex differences, and detectable in peripheral circulation.
Collapse
Affiliation(s)
- Bernard N Johnson
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Center for Addiction Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ashish Kumar
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Yixin Su
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Sangeeta Singh
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Kiran Kumar Solingapuram Sai
- Center for Addiction Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Susan H Nader
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Songye Li
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Beth A Reboussin
- Department of Biostatistics and Data Sciences, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Yiyun Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Gagan Deep
- Center for Addiction Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Center for Addiction Research, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
28
|
Tanuma M, Niu M, Ohkubo J, Ueno H, Nakai Y, Yokoyama Y, Seiriki K, Hashimoto H, Kasai A. Acute social defeat stress activated neurons project to the claustrum and basolateral amygdala. Mol Brain 2022; 15:100. [PMID: 36539776 PMCID: PMC9768926 DOI: 10.1186/s13041-022-00987-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
We recently reported that a neuronal population in the claustrum (CLA) identified under exposure to psychological stressors plays a key role in stress response processing. Upon stress exposure, the main inputs to the CLA come from the basolateral amygdala (BLA); however, the upstream brain regions that potentially regulate both the CLA and BLA during stressful experiences remain unclear. Here by combining activity-dependent viral retrograde labeling with whole brain imaging, we analyzed neurons projecting to the CLA and BLA activated by exposure to social defeat stress. The labeled CLA projecting neurons were mostly ipsilateral, excluding the prefrontal cortices, which had a distinctly labeled population in the contralateral hemisphere. Similarly, the labeled BLA projecting neurons were predominantly ipsilateral, aside from the BLA in the opposite hemisphere, which also had a notably labeled population. Moreover, we found co-labeled double-projecting single neurons in multiple brain regions such as the ipsilateral ectorhinal/perirhinal cortex, entorhinal cortex, and the contralateral BLA. These results suggest that CLA and BLA receive inputs from neuron collaterals in various brain regions during stress, which may regulate the CLA and BLA forming in a stress response circuitry.
Collapse
Affiliation(s)
- Masato Tanuma
- grid.136593.b0000 0004 0373 3971Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871 Japan
| | - Misaki Niu
- grid.136593.b0000 0004 0373 3971Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871 Japan
| | - Jin Ohkubo
- grid.136593.b0000 0004 0373 3971Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871 Japan
| | - Hiroki Ueno
- grid.136593.b0000 0004 0373 3971Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871 Japan
| | - Yuka Nakai
- grid.136593.b0000 0004 0373 3971Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871 Japan
| | - Yoshihisa Yokoyama
- grid.136593.b0000 0004 0373 3971Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871 Japan
| | - Kaoru Seiriki
- grid.136593.b0000 0004 0373 3971Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871 Japan
| | - Hitoshi Hashimoto
- grid.136593.b0000 0004 0373 3971Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871 Japan ,Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Suita, Osaka 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Institute for Datability Science, Osaka University, Suita, Osaka 565-0871 Japan ,grid.136593.b0000 0004 0373 3971Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan
| | - Atsushi Kasai
- grid.136593.b0000 0004 0373 3971Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871 Japan
| |
Collapse
|
29
|
Madden MB, Stewart BW, White MG, Krimmel SR, Qadir H, Barrett FS, Seminowicz DA, Mathur BN. A role for the claustrum in cognitive control. Trends Cogn Sci 2022; 26:1133-1152. [PMID: 36192309 PMCID: PMC9669149 DOI: 10.1016/j.tics.2022.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 01/12/2023]
Abstract
Early hypotheses of claustrum function were fueled by neuroanatomical data and yielded suggestions that the claustrum is involved in processes ranging from salience detection to multisensory integration for perceptual binding. While these hypotheses spurred useful investigations, incompatibilities inherent in these views must be reconciled to further conceptualize claustrum function amid a wealth of new data. Here, we review the varied models of claustrum function and synthesize them with developments in the field to produce a novel functional model: network instantiation in cognitive control (NICC). This model proposes that frontal cortices direct the claustrum to flexibly instantiate cortical networks to subserve cognitive control. We present literature support for this model and provide testable predictions arising from this conceptual framework.
Collapse
Affiliation(s)
- Maxwell B Madden
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Brent W Stewart
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Michael G White
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Samuel R Krimmel
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA
| | - Houman Qadir
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Frederick S Barrett
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA; Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21224, USA
| | - David A Seminowicz
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; Center to Advance Chronic Pain Research, University of Maryland, Baltimore, MD 21201, USA; Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Brian N Mathur
- Department of Pharmacology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
30
|
HUANG W, QIN J, ZHANG C, QIN H, XIE P. Footshock-induced activation of the claustrum-entorhinal cortical pathway in freely moving mice. Physiol Res 2022; 71:695-701. [PMID: 36047724 PMCID: PMC9841810 DOI: 10.33549/physiolres.934899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Footshock is frequently used as an unconditioned stimulus in fear conditioning behavior studies. The medial entorhinal cortex (MEC) contributes to fear learning and receives neuronal inputs from the claustrum. However, whether footshocks can induce a neuronal response in claustrum-MEC (CLA-MEC) projection remains unknown. Here, we combined fiber-based Ca2+ recordings with a retrograde AAV labeling method to investigate neuronal responses of MEC-projecting claustral neurons to footshock stimulation in freely moving mice. We achieved successful Ca2+ recordings in both anesthetized and freely exploring mice. We found that footshock stimulation reliably induced neuronal responses to MEC-projecting claustral neurons. Therefore, the footshock-induced response detected in the CLA-MEC projection suggests its potential role in fear processin.
Collapse
Affiliation(s)
- Wushuang HUANG
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
| | - Jing QIN
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
| | - Chunqing ZHANG
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Han QIN
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Peng XIE
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China, NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China
| |
Collapse
|
31
|
Qin J, Huang WS, DU HR, Zhang CQ, Xie P, Qin H. Ca 2+-based neural activity recording for rapidly screening behavioral correlates of the claustrum in freely behaving mice. Biomed Res 2022; 43:81-89. [PMID: 35718448 DOI: 10.2220/biomedres.43.81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The claustrum has been hypothesized to participate in high-order brain functions, but experimental studies to demonstrate these functions are currently lacking. Neural activity recording of the claustrum in freely-behaving animals allows for correlating claustral activities with specific behaviors. However, previously utilized methods for studying the claustrum make it difficult to monitor neural activity patterns of freely-behaving animals in real time. Here we applied fiber photometry to monitor Ca2+ activity in the claustrum of freely-behaving mice. Using this method, we were able to achieve Ca2+ activity recording in both anesthetized and freely-behaving mice. We found that the dynamics of Ca2+ activity depended on anesthesia levels. As compared to the use of genetically encoded Ca2+ indicators that requires a few weeks of virus-dependent expression, we used a synthetic fluorescent Ca2+-sensitive dye, Oregon green 488 BAPTA-1, that allows for rapidly screening neural activity of interest within a few hours that relates to certain behaviors. In this way, we found the correlation between Ca2+ activity and specific behaviors, such as approaching an object. Our work offers an effective method for recording neural activity in the claustrum and thus for rapidly screening any behavioral relevance of the claustrum in freely-behaving mice.
Collapse
Affiliation(s)
- Jing Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University
| | - Wu-Shuang Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University
| | - Hao-Ran DU
- Center for Neurointelligence, School of Medicine, Chongqing University
| | - Chun-Qing Zhang
- Department of Neurosurgery, Xinqiao Hospital, Army Medical University
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University
| | - Han Qin
- Center for Neurointelligence, School of Medicine, Chongqing University
| |
Collapse
|
32
|
Atilgan H, Doody M, Oliver DK, McGrath TM, Shelton AM, Echeverria-Altuna I, Tracey I, Vyazovskiy VV, Manohar SG, Packer AM. Human lesions and animal studies link the claustrum to perception, salience, sleep and pain. Brain 2022; 145:1610-1623. [PMID: 35348621 PMCID: PMC9166552 DOI: 10.1093/brain/awac114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 11/24/2022] Open
Abstract
The claustrum is the most densely interconnected region in the human brain. Despite the accumulating data from clinical and experimental studies, the functional role of the claustrum remains unknown. Here, we systematically review claustrum lesion studies and discuss their functional implications. Claustral lesions are associated with an array of signs and symptoms, including changes in cognitive, perceptual and motor abilities; electrical activity; mental state; and sleep. The wide range of symptoms observed following claustral lesions do not provide compelling evidence to support prominent current theories of claustrum function such as multisensory integration or salience computation. Conversely, the lesions studies support the hypothesis that the claustrum regulates cortical excitability. We argue that the claustrum is connected to, or part of, multiple brain networks that perform both fundamental and higher cognitive functions. As a multifunctional node in numerous networks, this may explain the manifold effects of claustrum damage on brain and behaviour.
Collapse
Affiliation(s)
- Huriye Atilgan
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Max Doody
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - David K. Oliver
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Thomas M. McGrath
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Andrew M. Shelton
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | | | - Irene Tracey
- Wellcome Centre for Integrative Neuroimaging, FMRIB Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital and Merton College, University of Oxford, Oxford OX3 9DU, UK
| | | | - Sanjay G. Manohar
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Adam M. Packer
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
33
|
Niu M, Kasai A, Tanuma M, Seiriki K, Igarashi H, Kuwaki T, Nagayasu K, Miyaji K, Ueno H, Tanabe W, Seo K, Yokoyama R, Ohkubo J, Ago Y, Hayashida M, Inoue KI, Takada M, Yamaguchi S, Nakazawa T, Kaneko S, Okuno H, Yamanaka A, Hashimoto H. Claustrum mediates bidirectional and reversible control of stress-induced anxiety responses. SCIENCE ADVANCES 2022; 8:eabi6375. [PMID: 35302853 PMCID: PMC8932664 DOI: 10.1126/sciadv.abi6375] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
The processing of stress responses involves brain-wide communication among cortical and subcortical regions; however, the underlying mechanisms remain elusive. Here, we show that the claustrum (CLA) is crucial for the control of stress-induced anxiety-related behaviors. A combined approach using brain activation mapping and machine learning showed that the CLA activation serves as a reliable marker of exposure to acute stressors. In TRAP2 mice, which allow activity-dependent genetic labeling, chemogenetic activation of the CLA neuronal ensemble tagged by acute social defeat stress (DS) elicited anxiety-related behaviors, whereas silencing of the CLA ensemble attenuated DS-induced anxiety-related behaviors. Moreover, the CLA received strong input from DS-activated basolateral amygdala neurons, and its circuit-selective optogenetic photostimulation temporarily elicited anxiety-related behaviors. Last, silencing of the CLA ensemble during stress exposure increased resistance to chronic DS. The CLA thus bidirectionally controls stress-induced emotional responses, and its inactivation can serve as a preventative strategy to increase stress resilience.
Collapse
Affiliation(s)
- Misaki Niu
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Atsushi Kasai
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Masato Tanuma
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kaoru Seiriki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Institute for Transdisciplinary Graduate Degree Programs, Osaka University, Osaka, Japan
| | - Hisato Igarashi
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Takahiro Kuwaki
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kazuki Nagayasu
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Keita Miyaji
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hiroki Ueno
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Wataru Tanabe
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Kei Seo
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Rei Yokoyama
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Jin Ohkubo
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yukio Ago
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Misuzu Hayashida
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Ken-ichi Inoue
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Aichi, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Aichi, Japan
| | - Shun Yamaguchi
- Department of Morphological Neuroscience, Graduate School of Medicine, Gifu University, Gifu, Japan
- Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University, Gifu, Japan
| | - Takanobu Nakazawa
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, Osaka, Japan
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Okuno
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Molecular Research Center for Children’s Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka Japan
- Division of Bioscience, Institute for Datability Science, Osaka University, Osaka, Japan
- Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Department of Molecular Pharmaceutical Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
34
|
Differential distribution of inhibitory neuron types in subregions of claustrum and dorsal endopiriform nucleus of the short-tailed fruit bat. Brain Struct Funct 2022; 227:1615-1640. [PMID: 35188589 DOI: 10.1007/s00429-022-02459-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022]
Abstract
Few brain regions have such wide-ranging inputs and outputs as the claustrum does, and fewer have posed equivalent challenges in defining their structural boundaries. We studied the distributions of three calcium-binding proteins-calretinin, parvalbumin, and calbindin-in the claustrum and dorsal endopiriform nucleus of the fruit bat, Carollia perspicillata. The proportionately large sizes of claustrum and dorsal endopiriform nucleus in Carollia brain afford unique access to these structures' intrinsic anatomy. Latexin immunoreactivity permits a separation of claustrum into core and shell subregions and an equivalent separation of dorsal endopiriform nucleus. Using latexin labeling, we found that the claustral shell in Carollia brain can be further subdivided into at least four distinct subregions. Calretinin and parvalbumin immunoreactivity reinforced the boundaries of the claustral core and its shell subregions with diametrically opposite distribution patterns. Calretinin, parvalbumin, and calbindin all colocalized with GAD67, indicating that these proteins label inhibitory neurons in both claustrum and dorsal endopiriform nucleus. Calretinin, however, also colocalized with latexin in a subset of neurons. Confocal microscopy revealed appositions that suggest synaptic contacts between cells labeled for each of the three calcium-binding proteins and latexin-immunoreactive somata in claustrum and dorsal endopiriform nucleus. Our results indicate significant subregional differences in the intrinsic inhibitory connectivity within and between claustrum and dorsal endopiriform nucleus. We conclude that the claustrum is structurally more complex than previously appreciated and that claustral and dorsal endopiriform nucleus subregions are differentially modulated by multiple inhibitory systems. These findings can also account for the excitability differences between claustrum and dorsal endopiriform nucleus described previously.
Collapse
|
35
|
Chevée M, Finkel EA, Kim SJ, O’Connor DH, Brown SP. Neural activity in the mouse claustrum in a cross-modal sensory selection task. Neuron 2022; 110:486-501.e7. [PMID: 34863367 PMCID: PMC8829966 DOI: 10.1016/j.neuron.2021.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 09/28/2021] [Accepted: 11/12/2021] [Indexed: 02/04/2023]
Abstract
The claustrum, a subcortical nucleus forming extensive connections with the neocortex, has been implicated in sensory selection. Sensory-evoked claustrum activity is thought to modulate the neocortex's context-dependent response to sensory input. Recording from claustrum neurons while mice performed a tactile-visual sensory-selection task, we found that neurons in the anterior claustrum, including putative optotagged claustrocortical neurons projecting to the primary somatosensory cortex (S1), were rarely modulated by sensory input. Rather, they exhibited different types of direction-tuned motor responses. Furthermore, we found that claustrum neurons encoded upcoming movement during intertrial intervals and that pairs of claustrum neurons exhibiting synchronous firing were enriched for pairs preferring contralateral lick directions, suggesting that the activity of specific ensembles of similarly tuned claustrum neurons may modulate cortical activity. Chemogenetic inhibition of claustrocortical neurons decreased lick responses to inappropriate sensory stimuli. Altogether, our data indicate that the claustrum is integrated into higher-order premotor circuits recently implicated in decision-making.
Collapse
Affiliation(s)
- Maxime Chevée
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Eric A. Finkel
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Su-Jeong Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Daniel H. O’Connor
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Solange P. Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,Lead contact,Correspondence:
| |
Collapse
|
36
|
Fang C, Wang H, Naumann RK. Developmental Patterning and Neurogenetic Gradients of Nurr1 Positive Neurons in the Rat Claustrum and Lateral Cortex. Front Neuroanat 2021; 15:786329. [PMID: 34924965 PMCID: PMC8675902 DOI: 10.3389/fnana.2021.786329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/05/2021] [Indexed: 12/20/2022] Open
Abstract
The claustrum is an enigmatic brain structure thought to be important for conscious sensations. Recent studies have focused on gene expression patterns, connectivity, and function of the claustrum, but relatively little is known about its development. Interestingly, claustrum-enriched genes, including the previously identified marker Nurr1, are not only expressed in the classical claustrum complex, but also embedded within lateral neocortical regions in rodents. Recent studies suggest that Nurr1 positive neurons in the lateral cortex share a highly conserved genetic expression pattern with claustrum neurons. Thus, we focus on the developmental progression and birth dating pattern of the claustrum and Nurr1 positive neurons in the lateral cortex. We comprehensively investigate the expression of Nurr1 at various stages of development in the rat and find that Nurr1 expression first appears as an elongated line along the anterior-posterior axis on embryonic day 13.5 (E13.5) and then gradually differentiates into multiple sub-regions during prenatal development. Previous birth dating studies of the claustrum have led to conflicting results, therefore, we combine 5-ethynyl-2'-deoxyuridine (EdU) labeling with in situ hybridization for Nurr1 to study birth dating patterns. We find that most dorsal endopiriform (DEn) neurons are born on E13.5 to E14.5. Ventral claustrum (vCL) and dorsal claustrum (dCL) are mainly born on E14.5 to E15.5. Nurr1 positive cortical deep layer neurons (dLn) and superficial layer neurons (sLn) are mainly born on E14.5 to E15.5 and E15.5 to E17.5, respectively. Finally, we identify ventral to dorsal and posterior to anterior neurogenetic gradients within vCL and DEn. Thus, our findings suggest that claustrum and Nurr1 positive neurons in the lateral cortex are born sequentially over several days of embryonic development and contribute toward charting the complex developmental pattern of the claustrum in rodents.
Collapse
Affiliation(s)
| | | | - Robert Konrad Naumann
- CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China
| |
Collapse
|
37
|
Convergence of forepaw somatosensory and motor cortical projections in the striatum, claustrum, thalamus, and pontine nuclei of cats. Brain Struct Funct 2021; 227:361-379. [PMID: 34665323 DOI: 10.1007/s00429-021-02405-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
The basal ganglia and pontocerebellar systems regulate somesthetic-guided motor behaviors and receive prominent inputs from sensorimotor cortex. In addition, the claustrum and thalamus are forebrain subcortical structures that have connections with somatosensory and motor cortices. Our previous studies in rats have shown that primary and secondary somatosensory cortex (S1 and S2) send overlapping projections to the neostriatum and pontine nuclei, whereas, overlap of primary motor cortex (M1) and S1 was much weaker. In addition, we have shown that M1, but not S1, projects to the claustrum in rats. The goal of the current study was to compare these rodent projection patterns with connections in cats, a mammalian species that evolved in a separate phylogenetic superorder. Three different anterograde tracers were injected into the physiologically identified forepaw representations of M1, S1, and S2 in cats. Labeled fibers terminated throughout the ipsilateral striatum (caudate and putamen), claustrum, thalamus, and pontine nuclei. Digital reconstructions of tracer labeling allowed us to quantify both the normalized distribution of labeling in each subcortical area from each tracer injection, as well as the amount of tracer overlap. Surprisingly, in contrast to our previous findings in rodents, we observed M1 and S1 projections converging prominently in striatum and pons, whereas, S1 and S2 overlap was much weaker. Furthermore, whereas, rat S1 does not project to claustrum, we confirmed dense claustral inputs from S1 in cats. These findings suggest that the basal ganglia, claustrum, and pontocerebellar systems in rat and cat have evolved distinct patterns of sensorimotor cortical convergence.
Collapse
|
38
|
Yang D, Qi G, Ding C, Feldmeyer D. Layer 6A Pyramidal Cell Subtypes Form Synaptic Microcircuits with Distinct Functional and Structural Properties. Cereb Cortex 2021; 32:2095-2111. [PMID: 34628499 PMCID: PMC9113278 DOI: 10.1093/cercor/bhab340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/03/2021] [Accepted: 08/25/2021] [Indexed: 11/27/2022] Open
Abstract
Neocortical layer 6 plays a crucial role in sensorimotor co-ordination and integration through functionally segregated circuits linking intracortical and subcortical areas. We performed whole-cell recordings combined with morphological reconstructions to identify morpho-electric types of layer 6A pyramidal cells (PCs) in rat barrel cortex. Cortico-thalamic (CT), cortico-cortical (CC), and cortico-claustral (CCla) PCs were classified based on their distinct morphologies and have been shown to exhibit different electrophysiological properties. We demonstrate that these three types of layer 6A PCs innervate neighboring excitatory neurons with distinct synaptic properties: CT PCs establish weak facilitating synapses onto other L6A PCs; CC PCs form synapses of moderate efficacy, while synapses made by putative CCla PCs display the highest release probability and a marked short-term depression. For excitatory-inhibitory synaptic connections in layer 6, both the presynaptic PC type and the postsynaptic interneuron type govern the dynamic properties of the respective synaptic connections. We have identified a functional division of local layer 6A excitatory microcircuits which may be responsible for the differential temporal engagement of layer 6 feed-forward and feedback networks. Our results provide a basis for further investigations on the long-range CC, CT, and CCla pathways.
Collapse
Affiliation(s)
- Danqing Yang
- Research Center Juelich, Institute of Neuroscience and Medicine 10, 52425 Juelich, Germany
| | - Guanxiao Qi
- Research Center Juelich, Institute of Neuroscience and Medicine 10, 52425 Juelich, Germany
| | - Chao Ding
- Research Center Juelich, Institute of Neuroscience and Medicine 10, 52425 Juelich, Germany
| | - Dirk Feldmeyer
- Research Center Juelich, Institute of Neuroscience and Medicine 10, 52425 Juelich, Germany.,RWTH Aachen University Hospital, Dept of Psychiatry, Psychotherapy, and Psychosomatics, 52074 Aachen, Germany.,Jülich-Aachen Research Alliance, Translational Brain Medicine (JARA Brain), Aachen, Germany
| |
Collapse
|
39
|
Tosches MA. From Cell Types to an Integrated Understanding of Brain Evolution: The Case of the Cerebral Cortex. Annu Rev Cell Dev Biol 2021; 37:495-517. [PMID: 34416113 DOI: 10.1146/annurev-cellbio-120319-112654] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the discovery of the incredible diversity of neurons, Cajal and coworkers laid the foundation of modern neuroscience. Neuron types are not only structural units of nervous systems but also evolutionary units, because their identities are encoded in the genome. With the advent of high-throughput cellular transcriptomics, neuronal identities can be characterized and compared systematically across species. The comparison of neurons in mammals, reptiles, and birds indicates that the mammalian cerebral cortex is a mosaic of deeply conserved and recently evolved neuron types. Using the cerebral cortex as a case study, this review illustrates how comparing neuron types across species is key to reconciling observations on neural development, neuroanatomy, circuit wiring, and physiology for an integrated understanding of brain evolution.
Collapse
|
40
|
Morgan KK, Hathaway E, Carson M, Fernandez-Corazza M, Shusterman R, Luu P, Tucker DM. Focal limbic sources create the large slow oscillations of the EEG in human deep sleep. Sleep Med 2021; 85:291-302. [PMID: 34388508 DOI: 10.1016/j.sleep.2021.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/19/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Initial observations with the human electroencephalogram (EEG) have interpreted slow oscillations (SOs) of the EEG during deep sleep (N3) as reflecting widespread surface-negative traveling waves that originate in frontal regions and propagate across the neocortex. However, mapping SOs with a high-density array shows the simultaneous appearance of posterior positive voltage fields in the EEG at the time of the frontal-negative fields, with the typical inversion point (apparent source) around the temporal lobe. METHODS Overnight 256-channel EEG recordings were gathered from 10 healthy young adults. Individual head conductivity models were created using each participant's own structural MRI. Source localization of SOs during N3 was then performed. RESULTS Electrical source localization models confirmed that these large waves were created by focal discharges within the ventral limbic cortex, including medial temporal and caudal orbitofrontal cortex. CONCLUSIONS Although the functional neurophysiology of deep sleep involves interactions between limbic and neocortical networks, the large EEG deflections of deep sleep are not created by distributed traveling waves in lateral neocortex but instead by relatively focal limbic discharges.
Collapse
Affiliation(s)
- Kyle K Morgan
- Brain Electrophysiology Laboratory Company, Eugene, OR, 97403, USA
| | - Evan Hathaway
- Brain Electrophysiology Laboratory Company, Eugene, OR, 97403, USA
| | - Megan Carson
- Brain Electrophysiology Laboratory Company, Eugene, OR, 97403, USA
| | - Mariano Fernandez-Corazza
- Brain Electrophysiology Laboratory Company, Eugene, OR, 97403, USA; LEICI Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales, Universidad Nacional de La Plata, CONICET, Argentina
| | - Roma Shusterman
- Brain Electrophysiology Laboratory Company, Eugene, OR, 97403, USA
| | - Phan Luu
- Brain Electrophysiology Laboratory Company, Eugene, OR, 97403, USA; University of Oregon, Eugene, OR, 97403, USA
| | - Don M Tucker
- Brain Electrophysiology Laboratory Company, Eugene, OR, 97403, USA; University of Oregon, Eugene, OR, 97403, USA.
| |
Collapse
|
41
|
Nikolenko VN, Rizaeva NA, Beeraka NM, Oganesyan MV, Kudryashova VA, Dubovets AA, Borminskaya ID, Bulygin KV, Sinelnikov MY, Aliev G. The mystery of claustral neural circuits and recent updates on its role in neurodegenerative pathology. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2021; 17:8. [PMID: 34233707 PMCID: PMC8261917 DOI: 10.1186/s12993-021-00181-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The claustrum is a structure involved in formation of several cortical and subcortical neural microcircuits which may be involved in such functions as conscious sensations and rewarding behavior. The claustrum is regarded as a multi-modal information processing network. Pathology of the claustrum is seen in certain neurological disorders. To date, there are not enough comprehensive studies that contain accurate information regarding involvement of the claustrum in development of neurological disorders. OBJECTIVE Our review aims to provide an update on claustrum anatomy, ontogenesis, cytoarchitecture, neural networks and their functional relation to the incidence of neurological diseases. MATERIALS AND METHODS A literature review was conducted using the Google Scholar, PubMed, NCBI MedLine, and eLibrary databases. RESULTS Despite new methods that have made it possible to study the claustrum at the molecular, genetic and epigenetic levels, its functions and connectivity are still poorly understood. The anatomical location, relatively uniform cytoarchitecture, and vast network of connections suggest a divergent role of the claustrum in integration and processing of input information and formation of coherent perceptions. Several studies have shown changes in the appearance, structure and volume of the claustrum in neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), autism, schizophrenia, and depressive disorders. Taking into account the structure, ontogenesis, and functions of the claustrum, this literature review offers insight into understanding the crucial role of this structure in brain function and behavior.
Collapse
Affiliation(s)
- Vladimir N Nikolenko
- Sechenov University, 11/10 Mokhovaya St, Moscow, 125009, Russia
- Moscow State University, Vrorbyebi Gori, Moscow, Russian Federation
| | | | - Narasimha M Beeraka
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR), Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | | | | | | | | | - Kirill V Bulygin
- Sechenov University, 11/10 Mokhovaya St, Moscow, 125009, Russia
- Moscow State University, Vrorbyebi Gori, Moscow, Russian Federation
| | - Mikhail Y Sinelnikov
- Sechenov University, 11/10 Mokhovaya St, Moscow, 125009, Russia.
- Research Institute of Human Morphology, Moscow, 117418, Russia.
| | - Gjumrakch Aliev
- Sechenov University, 11/10 Mokhovaya St, Moscow, 125009, Russia
- Research Institute of Human Morphology, Moscow, 117418, Russia
| |
Collapse
|
42
|
Wong KLL, Nair A, Augustine GJ. Changing the Cortical Conductor's Tempo: Neuromodulation of the Claustrum. Front Neural Circuits 2021; 15:658228. [PMID: 34054437 PMCID: PMC8155375 DOI: 10.3389/fncir.2021.658228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The claustrum is a thin sheet of neurons that is densely connected to many cortical regions and has been implicated in numerous high-order brain functions. Such brain functions arise from brain states that are influenced by neuromodulatory pathways from the cholinergic basal forebrain, dopaminergic substantia nigra and ventral tegmental area, and serotonergic raphe. Recent revelations that the claustrum receives dense input from these structures have inspired investigation of state-dependent control of the claustrum. Here, we review neuromodulation in the claustrum-from anatomical connectivity to behavioral manipulations-to inform future analyses of claustral function.
Collapse
Affiliation(s)
- Kelly L. L. Wong
- Neuroscience and Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Aditya Nair
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Computation and Neural Systems, California Institute of Technology, Pasadena, CA, United States
| | - George J. Augustine
- Neuroscience and Mental Health Program, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
43
|
Spool JA, Macedo-Lima M, Scarpa G, Morohashi Y, Yazaki-Sugiyama Y, Remage-Healey L. Genetically identified neurons in avian auditory pallium mirror core principles of their mammalian counterparts. Curr Biol 2021; 31:2831-2843.e6. [PMID: 33989528 DOI: 10.1016/j.cub.2021.04.039] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/12/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022]
Abstract
In vertebrates, advanced cognitive abilities are typically associated with the telencephalic pallium. In mammals, the pallium is a layered mixture of excitatory and inhibitory neuronal populations with distinct molecular, physiological, and network phenotypes. This cortical architecture is proposed to support efficient, high-level information processing. Comparative perspectives across vertebrates provide a lens to understand the common features of pallium that are important for advanced cognition. Studies in songbirds have established strikingly parallel features of neuronal types between mammalian and avian pallium. However, lack of genetic access to defined pallial cell types in non-mammalian vertebrates has hindered progress in resolving connections between molecular and physiological phenotypes. A definitive mapping of the physiology of pallial cells onto their molecular identities in birds is critical for understanding how synaptic and computational properties depend on underlying molecular phenotypes. Using viral tools to target excitatory versus inhibitory neurons in the zebra finch auditory association pallium (calmodulin-dependent kinase alpha [CaMKIIα] and glutamate decarboxylase 1 [GAD1] promoters, respectively), we systematically tested predictions derived from mammalian pallium. We identified two genetically distinct neuronal populations that exhibit profound physiological and computational similarities with mammalian excitatory and inhibitory pallial cells, definitively aligning putative cell types in avian caudal nidopallium with these molecular identities. Specifically, genetically identified CaMKIIα and GAD1 cell types in avian auditory association pallium exhibit distinct intrinsic physiological parameters, distinct auditory coding principles, and inhibitory-dependent pallial synchrony, gamma oscillations, and local suppression. The retention, or convergence, of these molecular and physiological features in both birds and mammals clarifies the characteristics of pallial circuits for advanced cognitive abilities.
Collapse
Affiliation(s)
- Jeremy A Spool
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
| | - Matheus Macedo-Lima
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA; CAPES Foundation, Ministry of Education of Brazil, Brasília 70040-020, Brazil
| | - Garrett Scarpa
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA
| | - Yuichi Morohashi
- Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, Japan
| | - Yoko Yazaki-Sugiyama
- Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, Japan
| | - Luke Remage-Healey
- Neuroscience and Behavior, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
44
|
Gamberini M, Passarelli L, Impieri D, Montanari G, Diomedi S, Worthy KH, Burman KJ, Reser DH, Fattori P, Galletti C, Bakola S, Rosa MGP. Claustral Input to the Macaque Medial Posterior Parietal Cortex (Superior Parietal Lobule and Adjacent Areas). Cereb Cortex 2021; 31:4595-4611. [PMID: 33939798 DOI: 10.1093/cercor/bhab108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 11/14/2022] Open
Abstract
The projections from the claustrum to cortical areas within and adjacent to the superior parietal lobule were studied in 10 macaque monkeys, using retrograde tracers, computerized reconstructions, and quantitative methods. In contrast with the classical view that posterior parietal areas receive afferents primarily from the dorsal and posterior regions of the claustrum, we found that these areas receive more extensive projections, including substantial afferents from the anterior and ventral regions of the claustrum. Moreover, our findings uncover a previously unsuspected variability in the precise regions of the claustrum that originate the projections, according to the target areas. For example, areas dominated by somatosensory inputs for control of body movements tend to receive most afferents from the dorsal-posterior claustrum, whereas those which also receive significant visual inputs tend to receive more afferents from the ventral claustrum. In addition, different areas within these broadly defined groups differ in terms of quantitative emphasis in the origin of projections. Overall, these results argue against a simple model whereby adjacency in the cortex determines adjacency in the sectors of claustral origin of projections and indicate that subnetworks defined by commonality of function may be an important factor in defining claustrocortical topography.
Collapse
Affiliation(s)
- Michela Gamberini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Lauretta Passarelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Daniele Impieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Giulia Montanari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Stefano Diomedi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Katrina H Worthy
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| | - Kathleen J Burman
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - David H Reser
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Graduate Entry Medicine Program, Monash Rural Health-Churchill, Churchill, Victoria 3842, Australia
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Sophia Bakola
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council, Centre of Excellence for Integrative Brain Function, Monash University Node, Clayton, Victoria 3800, Australia
| |
Collapse
|
45
|
Marriott BA, Do AD, Zahacy R, Jackson J. Topographic gradients define the projection patterns of the claustrum core and shell in mice. J Comp Neurol 2021; 529:1607-1627. [PMID: 32975316 PMCID: PMC8048916 DOI: 10.1002/cne.25043] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 01/05/2023]
Abstract
The claustrum is densely connected to the cortex and participates in brain functions such as attention and sleep. Although some studies have reported the widely divergent organization of claustrum projections, others describe parallel claustrocortical connections to different cortical regions. Therefore, the details underlying how claustrum neurons broadcast information to cortical networks remain incompletely understood. Using multicolor retrograde tracing we determined the density, topography, and co-projection pattern of 14 claustrocortical pathways, in mice. We spatially registered these pathways to a common coordinate space and found that the claustrocortical system is topographically organized as a series of overlapping spatial modules, continuously distributed across the dorsoventral claustrum axis. The claustrum core projects predominantly to frontal-midline cortical regions, whereas the dorsal and ventral shell project to the cortical motor system and temporal lobe, respectively. Anatomically connected cortical regions receive common input from a subset of claustrum neurons shared by neighboring modules, whereas spatially separated regions of cortex are innervated by different claustrum modules. Therefore, each output module exhibits a unique position within the claustrum and overlaps substantially with other modules projecting to functionally related cortical regions. Claustrum inhibitory cells containing parvalbumin, somatostatin, and neuropeptide Y also show unique topographical distributions, suggesting different output modules are controlled by distinct inhibitory circuit motifs. The topographic organization of excitatory and inhibitory cell types may enable parallel claustrum outputs to independently coordinate distinct cortical networks.
Collapse
Affiliation(s)
- Brian A. Marriott
- Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Alison D. Do
- Department of PhysiologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Ryan Zahacy
- Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Jesse Jackson
- Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
- Department of PhysiologyUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
46
|
Benarroch EE. What is the Role of the Claustrum in Cortical Function and Neurologic Disease? Neurology 2021; 96:110-113. [PMID: 33462127 DOI: 10.1212/wnl.0000000000011280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/03/2020] [Indexed: 11/15/2022] Open
|
47
|
Pirone A, Graïc J, Grisan E, Cozzi B. The claustrum of the sheep and its connections to the visual cortex. J Anat 2021; 238:1-12. [PMID: 32885430 PMCID: PMC7755083 DOI: 10.1111/joa.13302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 01/03/2023] Open
Abstract
The present study analyses the organization and selected neurochemical features of the claustrum and visual cortex of the sheep, based on the patterns of calcium-binding proteins expression. Connections of the claustrum with the visual cortex have been studied by tractography. Parvalbumin-immunoreactive (PV-ir) and Calbindin-immunoreactive (CB-ir) cell bodies increased along the rostro-caudal axis of the nucleus. Calretinin (CR)-labeled somata were few and evenly distributed along the rostro-caudal axis. PV and CB distribution in the visual cortex was characterized by larger round and multipolar cells for PV, and more bitufted neurons for CB. The staining pattern for PV was the opposite of that of CR, which showed densely stained but rare cell bodies. Tractography shows the existence of connections with the caudal visual cortex. However, we detected no contralateral projection in the visuo-claustral interconnections. Since sheep and goats have laterally placed eyes and a limited binocular vision, the absence of contralateral projections could be of prime importance if confirmed by other studies, to rule out the role of the claustrum in stereopsis.
Collapse
Affiliation(s)
- Andrea Pirone
- Department of Veterinary SciencesUniversity of PisaPisaItaly
| | - Jean‐Marie Graïc
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| | - Enrico Grisan
- Department of Information EngineeringUniversity of PadovaVicenzaItaly,School of EngineeringLondon South Bank UniversityLondonUK
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroItaly
| |
Collapse
|
48
|
|
49
|
Sinitsyn DO, Bakulin IS, Poydasheva AG, Legostaeva LA, Kremneva EI, Lagoda DY, Chernyavskiy AY, Medyntsev AA, Suponeva NA, Piradov MA. Brain Activations and Functional Connectivity Patterns Associated with Insight-Based and Analytical Anagram Solving. Behav Sci (Basel) 2020; 10:E170. [PMID: 33171616 PMCID: PMC7695184 DOI: 10.3390/bs10110170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/01/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
Insight is one of the most mysterious problem-solving phenomena involving the sudden emergence of a solution, often preceded by long unproductive attempts to find it. This seemingly unexplainable generation of the answer, together with the role attributed to insight in the advancement of science, technology and culture, stimulate active research interest in discovering its neuronal underpinnings. The present study employs functional Magnetic resonance imaging (fMRI) to probe and compare the brain activations occurring in the course of solving anagrams by insight or analytically, as judged by the subjects. A number of regions were activated in both strategies, including the left premotor cortex, left claustrum, and bilateral clusters in the precuneus and middle temporal gyrus. The activated areas span the majority of the clusters reported in a recent meta-analysis of insight-related fMRI studies. At the same time, the activation patterns were very similar between the insight and analytical solutions, with the only difference in the right sensorimotor region probably explainable by subject motion related to the study design. Additionally, we applied resting-state fMRI to study functional connectivity patterns correlated with the individual frequency of insight anagram solutions. Significant correlations were found for the seed-based connectivity of areas in the left premotor cortex, left claustrum, and left frontal eye field. The results stress the need for optimizing insight paradigms with respect to the accuracy and reliability of the subjective insight/analytical solution classification. Furthermore, the short-lived nature of the insight phenomenon makes it difficult to capture the associated neural events with the current experimental techniques and motivates complementing such studies by the investigation of the structural and functional brain features related to the individual differences in the frequency of insight-based decisions.
Collapse
Affiliation(s)
- Dmitry O. Sinitsyn
- Research Center of Neurology, 125367 Moscow, Russia; (D.O.S.); (I.S.B.); (L.A.L.); (E.I.K.); (D.Y.L.); (A.Y.C.); (N.A.S.); (M.A.P.)
| | - Ilya S. Bakulin
- Research Center of Neurology, 125367 Moscow, Russia; (D.O.S.); (I.S.B.); (L.A.L.); (E.I.K.); (D.Y.L.); (A.Y.C.); (N.A.S.); (M.A.P.)
| | - Alexandra G. Poydasheva
- Research Center of Neurology, 125367 Moscow, Russia; (D.O.S.); (I.S.B.); (L.A.L.); (E.I.K.); (D.Y.L.); (A.Y.C.); (N.A.S.); (M.A.P.)
| | - Liudmila A. Legostaeva
- Research Center of Neurology, 125367 Moscow, Russia; (D.O.S.); (I.S.B.); (L.A.L.); (E.I.K.); (D.Y.L.); (A.Y.C.); (N.A.S.); (M.A.P.)
| | - Elena I. Kremneva
- Research Center of Neurology, 125367 Moscow, Russia; (D.O.S.); (I.S.B.); (L.A.L.); (E.I.K.); (D.Y.L.); (A.Y.C.); (N.A.S.); (M.A.P.)
| | - Dmitry Yu. Lagoda
- Research Center of Neurology, 125367 Moscow, Russia; (D.O.S.); (I.S.B.); (L.A.L.); (E.I.K.); (D.Y.L.); (A.Y.C.); (N.A.S.); (M.A.P.)
| | - Andrey Yu. Chernyavskiy
- Research Center of Neurology, 125367 Moscow, Russia; (D.O.S.); (I.S.B.); (L.A.L.); (E.I.K.); (D.Y.L.); (A.Y.C.); (N.A.S.); (M.A.P.)
- Valiev Institute of Physics and Technology, Russian Academy of Sciences, 117218 Moscow, Russia
| | - Alexey A. Medyntsev
- Institute of Psychology, Russian Academy of Sciences, 129366 Moscow, Russia;
| | - Natalia A. Suponeva
- Research Center of Neurology, 125367 Moscow, Russia; (D.O.S.); (I.S.B.); (L.A.L.); (E.I.K.); (D.Y.L.); (A.Y.C.); (N.A.S.); (M.A.P.)
| | - Michael A. Piradov
- Research Center of Neurology, 125367 Moscow, Russia; (D.O.S.); (I.S.B.); (L.A.L.); (E.I.K.); (D.Y.L.); (A.Y.C.); (N.A.S.); (M.A.P.)
| |
Collapse
|
50
|
Goode TD, Tanaka KZ, Sahay A, McHugh TJ. An Integrated Index: Engrams, Place Cells, and Hippocampal Memory. Neuron 2020; 107:805-820. [PMID: 32763146 PMCID: PMC7486247 DOI: 10.1016/j.neuron.2020.07.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/17/2020] [Accepted: 07/13/2020] [Indexed: 01/10/2023]
Abstract
The hippocampus and its extended network contribute to encoding and recall of episodic experiences. Drawing from recent anatomical, physiological, and behavioral studies, we propose that hippocampal engrams function as indices to mediate memory recall. We broaden this idea to discuss potential relationships between engrams and hippocampal place cells, as well as the molecular, cellular, physiological, and circuit determinants of engrams that permit flexible routing of information to intra- and extrahippocampal circuits for reinstatement, a feature critical to memory indexing. Incorporating indexing into frameworks of memory function opens new avenues of study and even therapies for hippocampal dysfunction.
Collapse
Affiliation(s)
- Travis D Goode
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Kazumasa Z Tanaka
- Memory Research Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Kunigami-gun, Okinawa, Japan
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114 USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Wakoshi, Saitama, Japan.
| |
Collapse
|