1
|
Hou C, Li W, Li Y, Ma J. O-GlcNAcAtlas 4.0: An updated protein O-GlcNAcylation database with site-specific quantification. J Mol Biol 2025:169033. [PMID: 39988118 DOI: 10.1016/j.jmb.2025.169033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) is a monosaccharide modification on proteins predominantly inside cells. It is widely appreciated that spatiotemporal protein O-GlcNAcylation regulates a plethora of biological processes. High-throughput analytical techniques, particularly site-specific O-GlcNAc proteomics, have tremendously advanced the profiling of O-GlcNAc proteomes. Recently we established O-GlcNAcAtlas, a highly curated database of O-GlcNAc proteins/peptides/sites from experiments reported in the past forty years. However, a resource for O-GlcNAcylation quantification information is not available yet. Herein, we provide an updated database O-GlcNAcAtlas 4.0 by incorporating information of O-GlcNAcylation quantification. Exhaustive curation of published literature yielded a total of about 5400 quantification events for 3130 unique O-GlcNAc sites. The quantification vales were then systematically integrated with the specific O-GlcNAc sites and catalogued in O-GlcNAcAtlas, with key experimental details (including sample materials, conditions and methods) presented. Taken together, we present O-GlcNAcAtlas 4.0, a unique database hosting qualitative and quantitative data of O-GlcNAcylation on proteins. As a comprehensive repository supplemented with protein O-GlcNAcylation dynamics, the updated database will further facilitate related functional investigations by the biomedical community. O-GlcNAcAtlas 4.0 is freely accessible at https://oglcnac.org/atlas/.
Collapse
Affiliation(s)
- Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20007, USA
| | - Weiyu Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20007, USA; Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20007, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC 20007, USA.
| |
Collapse
|
2
|
Kang D, Lee J, Yook G, Jeong S, Shin J, Kim MS, Kim YJ, Jung H, Ahn J, Kim TW, Chang MJ, Chang CB, Kang SB, Yang WH, Lee YH, Cho JW, Yi EC, Kang C, Kim JH. Regulation of senescence-associated secretory phenotypes in osteoarthritis by cytosolic UDP-GlcNAc retention and O-GlcNAcylation. Nat Commun 2025; 16:1094. [PMID: 39904978 PMCID: PMC11794700 DOI: 10.1038/s41467-024-55085-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 11/27/2024] [Indexed: 02/06/2025] Open
Abstract
UDP-GlcNAc serves as a building block for glycosaminoglycan (GAG) chains in cartilage proteoglycans and simultaneously acts as a substrate for O-GlcNAcylation. Here, we show that transporters for UDP-GlcNAc to the endoplasmic reticulum (ER) and Golgi are significantly downregulated in osteoarthritic cartilage, leading to increased cytosolic UDP-GlcNAc and O-GlcNAcylation in chondrocytes. Mechanistically, upregulated O-GlcNAcylation governs the senescence-associated secretory phenotype (SASP) by stabilizing GATA4 via O-GlcNAcylation at S406, which compromises its degradation by p62-mediated selective autophagy. Elevated O-GlcNAcylation in the superficial layer of osteoarthritic cartilage coincides with increased GATA4 levels. The topical deletion of Gata4 in this cartilage layer ameliorates post-traumatic osteoarthritis (OA) in mice while inhibiting O-GlcNAc transferase mitigates OA by decreasing GATA4 levels. Excessive glucosamine-induced O-GlcNAcylation stabilizes GATA4 in chondrocytes and exacerbates post-traumatic OA in mice. Our findings elucidate the role of UDP-GlcNAc compartmentalization in regulating secretory pathways associated with chronic joint inflammation, providing a senostatic strategy for the treatment of OA.
Collapse
Affiliation(s)
- Donghyun Kang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea
| | - Jeeyeon Lee
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea
| | - Geunho Yook
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea
| | - Sehan Jeong
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea
| | - Jungkwon Shin
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea
| | - Mi-Sung Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Yi-Jun Kim
- Department of Environmental Medicine, College of Medicine, Ewha Womans University, Seoul, 07985, South Korea
| | - Hyeryeon Jung
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology, College of Medicine, Seoul National University, Seoul, 03080, South Korea
| | - Jinsung Ahn
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology, College of Medicine, Seoul National University, Seoul, 03080, South Korea
| | - Tae Woo Kim
- Department of Orthopaedic Surgery, Seoul National University Boramae Hospital, Seoul, 07061, South Korea
| | - Moon Jong Chang
- Department of Orthopaedic Surgery, Seoul National University Boramae Hospital, Seoul, 07061, South Korea
| | - Chong Bum Chang
- Department of Orthopaedic Surgery, Seoul National University Bundang Hospital, Seongnam, 13620, South Korea
| | - Seung-Baik Kang
- Department of Orthopaedic Surgery, Seoul National University Boramae Hospital, Seoul, 07061, South Korea
| | - Won Ho Yang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
- Glycosylation Network Research Center, Yonsei University, Seoul, 03722, South Korea
| | - Yong-Ho Lee
- Glycosylation Network Research Center, Yonsei University, Seoul, 03722, South Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Jin Won Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, South Korea
- Glycosylation Network Research Center, Yonsei University, Seoul, 03722, South Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology, College of Medicine, Seoul National University, Seoul, 03080, South Korea
- Glycosylation Network Research Center, Yonsei University, Seoul, 03722, South Korea
| | - Chanhee Kang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jin-Hong Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, South Korea.
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, South Korea.
- Glycosylation Network Research Center, Yonsei University, Seoul, 03722, South Korea.
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea.
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
3
|
Hou C, Li W, Li Y, Ma J. O-GlcNAc informatics: advances and trends. Anal Bioanal Chem 2025; 417:895-905. [PMID: 39294469 DOI: 10.1007/s00216-024-05531-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/29/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
As a post-translational modification, protein glycosylation is critical in health and disease. O-Linked β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation), as an intracellular monosaccharide modification on proteins, was discovered 40 years ago. Thanks to technological advances, the physiological and pathological significance of O-GlcNAcylation has been gradually revealed and widely appreciated, especially in recent years. O-GlcNAc informatics has been quickly evolving. Clearly, O-GlcNAc informatics tools have not only facilitated O-GlcNAc functional studies, but also provided us a unique perspective on protein O-GlcNAcylation. In this article, we review O-GlcNAc-focused software tools and servers that have been developed for O-GlcNAc research over the past four decades. Specifically, we will (1) survey bioinformatics tools that have facilitated O-GlcNAc proteomics data analysis, (2) introduce databases/servers for O-GlcNAc proteins/sites that have been experimentally identified by individual research labs, (3) describe software tools that have been developed to predict O-GlcNAc sites, and (4) introduce platforms cataloging proteins that interact with the O-GlcNAc cycling enzymes (i.e., O-GlcNAc transferase and O-GlcNAcase). We hope these resources will provide useful information to both experienced researchers and new incomers to the O-GlcNAc field. We anticipate that this review provides a framework to stimulate the future development of more sophisticated informatic tools for O-GlcNAc research.
Collapse
Affiliation(s)
- Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Weiyu Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20007, USA
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yaoxiang Li
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, 20007, USA.
| |
Collapse
|
4
|
Ong Q, Lim LTR, Goh C, Liao Y, Chan SE, Lim CJY, Kam V, Yap J, Tseng T, Desrouleaux R, Wang LC, Ler SG, Lim SL, Kim SY, Sobota RM, Bennett AM, Han W, Yang X. Spatiotemporal control of subcellular O-GlcNAc signaling using Opto-OGT. Nat Chem Biol 2025; 21:300-308. [PMID: 39543398 DOI: 10.1038/s41589-024-01770-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/03/2024] [Indexed: 11/17/2024]
Abstract
The post-translational modification of intracellular proteins through O-linked β-N-acetylglucosamine (O-GlcNAc) is a conserved regulatory mechanism in multicellular organisms. Catalyzed by O-GlcNAc transferase (OGT), this dynamic modification has an essential role in signal transduction, gene expression, organelle function and systemic physiology. Here, we present Opto-OGT, an optogenetic probe that allows for precise spatiotemporal control of OGT activity through light stimulation. By fusing a photosensitive cryptochrome protein to OGT, Opto-OGT can be robustly and reversibly activated with high temporal resolution by blue light and exhibits minimal background activity without illumination. Transient activation of Opto-OGT results in mTORC activation and AMPK suppression, which recapitulate nutrient-sensing signaling. Furthermore, Opto-OGT can be customized to localize to specific subcellular sites. By targeting OGT to the plasma membrane, we demonstrate the downregulation of site-specific AKT phosphorylation and signaling outputs in response to insulin stimulation. Thus, Opto-OGT is a powerful tool for defining the role of O-GlcNAcylation in cell signaling and physiology.
Collapse
Affiliation(s)
- Qunxiang Ong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Ler Ting Rachel Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Cameron Goh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yilie Liao
- Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Sher En Chan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Crystal Jing Yi Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Valerie Kam
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jerome Yap
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Tiffany Tseng
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Reina Desrouleaux
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Loo Chien Wang
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Siok Ghee Ler
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Siew Lan Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sun-Yee Kim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Radoslaw M Sobota
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Anton M Bennett
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Weiping Han
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Xiaoyong Yang
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Joiner CM, Glogowski TJ, NewRingeisen EM, Huynh HV, Roberts MG, Rognerud MM, Huebsch HE. Photoactivatable O-GlcNAc Transferase Library Enables Covalent Chemical Capture of Solvent-Exposed TPR Domain Interactions. Chembiochem 2025; 26:e202400709. [PMID: 39541256 PMCID: PMC11729469 DOI: 10.1002/cbic.202400709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/16/2024]
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) is an essential, stress-sensing enzyme responsible for adding the O-GlcNAc monosaccharide to thousands of nuclear and cytoplasmic proteins to regulate cellular homeostasis. OGT substrates are found in almost all intracellular processes, and perturbations in protein O-GlcNAc levels have been implicated in proteostatic diseases, such as cancers, metabolic disorders, and neurodegeneration. This broad disease activity makes OGT an attractive therapeutic target; however, the substrate diversity makes pan-inhibition as a therapeutic strategy unfeasible. Rather, a substrate-specific approach to targeting is more advantageous, but how OGT chooses its substrates remains poorly understood. Substrate specificity is controlled by the interactions between OGT's non-catalytic tetratricopeptide repeat (TPR) domain, rather than its glycosyltransferase domain. OGT's TPR domain forms a 100 Å superhelical structure, containing a lumenal surface, known as the substrate-binding surface, and a solvent-exposed surface. To date, there are no tools to site-selectively target regions of the domain and differentiate between the two binding surfaces. Here, we developed a library of recombinant OGT constructs containing site-specifically incorporated photoactivatable unnatural amino acids (UAAs) along the solvent-exposed surface of the TPR domain to covalently capture and map OGT's interactome.
Collapse
Affiliation(s)
- Cassandra M. Joiner
- Department of Chemistry, St. Olaf College, 1520 St. Olaf Ave., Northfield, MN 55057
| | - Tiarra J. Glogowski
- Department of Chemistry, St. Olaf College, 1520 St. Olaf Ave., Northfield, MN 55057
| | - Erin M. NewRingeisen
- Department of Chemistry, St. Olaf College, 1520 St. Olaf Ave., Northfield, MN 55057
| | - Huy V. Huynh
- Department of Chemistry, St. Olaf College, 1520 St. Olaf Ave., Northfield, MN 55057
| | - Melanie G. Roberts
- Department of Chemistry, St. Olaf College, 1520 St. Olaf Ave., Northfield, MN 55057
| | - Madison M. Rognerud
- Department of Chemistry, St. Olaf College, 1520 St. Olaf Ave., Northfield, MN 55057
| | - Hahns E. Huebsch
- Department of Chemistry, St. Olaf College, 1520 St. Olaf Ave., Northfield, MN 55057
| |
Collapse
|
6
|
Du Y, Gao X, Chen J, Chen X, Liu H, He W, Liu L, Jiang Y, He B, Deng Z, Liang C, Guo F. OGT mediated HDAC5 O-GlcNAcylation promotes osteogenesis by regulating the homeostasis of epigenetic modifications and proteolysis. J Orthop Translat 2025; 50:14-29. [PMID: 39659899 PMCID: PMC11626777 DOI: 10.1016/j.jot.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 12/12/2024] Open
Abstract
Background O-GlcNAc transferase (OGT) is responsible for attaching O-linked N-acetylglucosamine (O-GlcNAc) to proteins, regulating diverse cellular processes ranging from transcription and translation to signaling and metabolism. This study focuses on the role and mechanisms of OGT in osteogenesis. Materials and methods We found that OGT is downregulated in osteoporosis by bioinformatics analysis, determined its role in osteogenic differentiation by using OGT inhibitors (or OGA inhibitors) as well as conditional knockout OGT mice in vitro and in vivo, and explored and specific mechanisms by quantitative proteomic analysis and RNA-seq, qRT-PCR, western blotting, immunofluorescence, H&E, ALP, ARS, Masson staining, IHC, micro CT, etc. Results we revealed that OGT positively influenced osteogenesis and osteoblast differentiation in vitro as well as ovariectomy (OVX) mice in vivo. Consistently, mice with conditionally depleted OGT exhibited a reduction in bone mass, while O-GlcNAcylation enhancer could partially recover bone mass in ovariectomy (OVX) mice. Mechanistically, quantitative proteomic analysis and high-throughput RNAseq further reveals that HDAC5 is one of the endogenous O-GlcNAcylation substrates, and O-GlcNAcylation of HDAC5 on Thr934 promotes its translocation to lysosomes and subsequent degradation, thus, elevating the O-GlcNAcylation level of HDAC5 leads to its cytoplasmic cleavage, consequently diminished its nuclear entry and enhanced DNA transcription. The OGT-mediated O-GlcNAcylation of HDAC5 modulates the balance between its cytoplasmic proteolysis and nuclear entry, thereby impacting the Notch signaling pathway and DNA epigenetic modifications then playing a role in osteogenesis. Conclusion OGT is a regulator that promotes osteoblast differentiation and bone regeneration. Additionally, it highlights the critical function of HDAC5 O-GlcNAcylation in controlling epigenetics. This study offers fresh perspectives on osteogenesis and O-GlcNAcylation, proposing that the OGT-mediated O-GlcNAcylation of HDAC5 could be a promising target for osteoporosis treatment. The translational potential of this article On one side, OGT might potentially be used as a new biomarker for clinical diagnosis of osteoporosis (OP) in the future. On the other side, small molecule inhibitors of HDAC5, a glycosylation substrate of OGT, or OGT agonists such as silymarin, could all potentially serve as therapeutic targets for the prevention or treatment of OP in the future.
Collapse
Affiliation(s)
- Yu Du
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Xiang Gao
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jianqiang Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Xinxin Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Hang Liu
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Wenge He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Lu Liu
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yue Jiang
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Baicheng He
- Department of Pharmacology, School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Zhongliang Deng
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Fengjin Guo
- Department of Orthopedics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, School of Basic Medical Sciences, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Wang J, Wang Y, Xiao H, Yang W, Zuo W, You Z, Wu C, Bao J. Dynamic O-GlcNAcylation coordinates etoposide-triggered tumor cell pyroptosis by regulating p53 stability. J Biol Chem 2025; 301:108050. [PMID: 39667498 PMCID: PMC11761933 DOI: 10.1016/j.jbc.2024.108050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/13/2024] [Accepted: 11/19/2024] [Indexed: 12/14/2024] Open
Abstract
O-GlcNAcylation, a modification of nucleocytoplasmic proteins in mammals, plays a critical role in various cellular processes. However, the interplay and their underlying mechanisms in chemotherapy-induced tumor regression between O-GlcNAcylation and pyroptosis, a form of programmed cell death associated with innate immunity, remains unclear. Here, we observed that during the etoposide-induced pyroptosis of SH-SY5Y and A549 cells, overall O-GlcNAcylation levels are substantially reduced. Pharmacological inhibition or genetic manipulation of O-GlcNAcylation, such as OGT inhibition or OGA overexpression, sensitized these cells to etoposide-induced pyroptosis both in vitro and in vivo. Mechanistically, mutations at S96 and S149 residues attenuated p53 O-GlcNAcylation, weakening its interaction with MDM2, reducing p53 ubiquitination, and increasing protein stability. These results suggest that S96 may be a putative O-GlcNAcylation site. Therefore, p53 target genes-Fas, DR-5, Puma, and PIDD-were transcriptionally upregulated, leading to activation of the caspase-3-GSDME axis and promoting etoposide-induced pyroptosis in various tumor cells. This study demonstrates a previously uncharacterized association between O-GlcNAcylation and chemotherapy-induced pyroptosis, offering potential therapeutic interventions for pyroptosis-related diseases.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Yida Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Huan Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Wanyi Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Weibo Zuo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Ziming You
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China
| | - Chuanfang Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China.
| | - Jinku Bao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
8
|
Ma Y, Zhang F, Li J, Li J, Li Y. Diverse perspectives on proteomic posttranslational modifications to address EGFR-TKI resistance in non-small cell lung cancer. Front Cell Dev Biol 2024; 12:1436033. [PMID: 39777265 PMCID: PMC11703921 DOI: 10.3389/fcell.2024.1436033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) is the main histological subtype of lung cancer. For locally advanced and advanced NSCLC, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI)-targeted therapy has been the first choice for NSCLC patients with EGFR mutations. TKIs, as targeted drugs, inhibit kinase activity and autophosphorylation by competitively binding to the ATP binding site of the EGFR tyrosine kinase domain, which blocks the signal transduction mediated by EGFR and thus inhibits the proliferation of tumor cells. However, drug resistance to TKIs is inevitable. EGFR is also a highly glycosylated receptor tyrosine kinase, and a wide range of crosstalk occurs between phosphorylation and glycosylation. Therefore, can the phosphorylation state be altered by glycosylation to improve drug resistance? In this review, we summarize phosphorylation, glycosylation and the crosstalk between these processes as well as the current research status and methods. We also summarize the autophosphorylation and glycosylation sites of the EGFR protein and their crosstalk. By exploring the relationship between EGFR glycosylation and autophosphorylation in targeted TKI therapy, we find that research on EGFR glycosylation is crucial for targeted NSCLC treatment and will become a research direction for identifying potential targets related to regulating TKI drug sensitivity.
Collapse
Affiliation(s)
- Yuhong Ma
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Feng Zhang
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jin Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Juan Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanhua Li
- Department of International Medical Department, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
Sidhu JS, Kaur G, Chavan AR, Chahal MK, Taliyan R. Phenoxy-1,2-dioxetane-based activatable chemiluminescent probes: tuning of photophysical properties for tracing enzymatic activities in living cells. Analyst 2024; 149:5739-5761. [PMID: 39569538 DOI: 10.1039/d4an01082e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The use of chemiluminophores for tracing enzymatic activities in live-cell imaging has gained significant attention, making them valuable tools for diagnostic applications. Among various chemiluminophores, the phenoxy-1,2-dioxetane scaffold exhibits significant structural versatility and its activation is governed by the chemically initiated electron exchange luminescence (CIEEL) mechanism. This mechanism can be initiated by enzymatic activity, changes in pH, or other chemical stimuli. The photophysical properties of phenoxy-1,2-dioxetanes can be fine-tuned through the incorporation of different substituents on the phenolic ring and by anchoring them with specific triggers. This review discusses the variations in physicochemical properties, including emission maxima, quantum yield, aqueous solubility, and pKa, as influenced by structural modifications, thereby establishing a comprehensive structure-activity relationship. Furthermore, it categorises the probes based on different enzyme classes, such as hydrolase-sensitive probes, oxidoreductase-responsive probes, and transferase-activatable phenoxy-1,2-dioxetanes, offering a promising platform technology for the early diagnosis of diseases and disorders. The summary section highlights key opportunities and limitations associated with applying phenoxy-1,2-dioxetanes in achieving precise and effective enzyme assays.
Collapse
Affiliation(s)
- Jagpreet Singh Sidhu
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| | - Gurjot Kaur
- Khalsa College Amritsar, Punjab, 143002, India
| | - Atharva Rajesh Chavan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| | - Mandeep K Chahal
- School of Chemistry and Forensic Science, University of Kent, Canterbury, CT2 7NH, UK
| | - Rajeev Taliyan
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan, 333031, India.
| |
Collapse
|
10
|
He C, Wu Q, Zeng Z, Yang Y, He H, Hu M, Liu S. OGT-induced O-GlcNAcylation of NEK7 protein aggravates osteoarthritis progression by enhancing NEK7/NLRP3 axis. Autoimmunity 2024; 57:2319202. [PMID: 38389178 DOI: 10.1080/08916934.2024.2319202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/11/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUNDS The role of O-GlcNAc transferase (OGT)-induced O-linked N-acetylglucosaminylation (O-GlcNAcylation) has been reported in multiple human diseases. However, its specific functions in osteoarthritis (OA) progression remain undetermined. OBJECTIVE This study focused on the target proteins of OGT-induced O-GlcNAcylation in OA and the specific functional mechanism. METHODS The levels of total O-GlcNAc and OGT were measured in both in vitro and in vivo OA models using western blot. The effects of OGT knockout on OA progression were detected through Safranin O staining, immunohistochemical staining and OARSI score evaluation. The effects of OGT silencing on LPS-induced chondrocyte injury were assessed by performing loss-of function assays. Co-immunoprecipitation (co-IP) was conducted to verify the effect of OGT-induced O-GlcNAcylation on the interaction between NEK7 and NLRP3. The role of OGT in modulating the O-GlcNAcylation and phosphorylation levels of NEK7 was analysed using western blot. RESULTS The OGT-indued O-GlcNAcylation level was increased in both in vitro and in vivo OA models. Knockout of OGT mitigated OA progression in model mice. Additionally, silencing of OGT suppressed LPS-induced chondrocyte pyroptosis. Moreover, silencing of OGT inhibited the O-GlcNAcylation and enhanced the phosphorylation of NEK7 at S260 site, thereby blocking the binding of NEK7 with NLRP3. CONCLUSION OGT-induced NEK7 O-GlcNAcylation promotes OA progression by promoting chondrocyte pyroptosis via the suppressing interaction between NEK7 and NLRP3.
Collapse
Affiliation(s)
- Chunlei He
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Qiang Wu
- Gannan Medical University, Ganzhou, China
| | | | - Yadong Yang
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Huabin He
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Meiyu Hu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Sheng Liu
- Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| |
Collapse
|
11
|
Hou C, Deng J, Wu C, Zhang J, Byers S, Moremen KW, Pei H, Ma J. Ultradeep O-GlcNAc proteomics reveals widespread O-GlcNAcylation on tyrosine residues of proteins. Proc Natl Acad Sci U S A 2024; 121:e2409501121. [PMID: 39531497 PMCID: PMC11588081 DOI: 10.1073/pnas.2409501121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
As a unique type of glycosylation, O-linked β-N-acetylglucosamine (O-GlcNAc) modification (O-GlcNAcylation) on Ser/Thr residues of proteins was discovered 40 y ago. O-GlcNAcylation is catalyzed by two enzymes: O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which add and remove O-GlcNAc, respectively. O-GlcNAcylation is an essential glycosylation that regulates the functions of many proteins in virtually all cellular processes. However, deep and site-specific characterization of O-GlcNAcylated proteins remains a challenge. We developed an ultradeep O-GlcNAc proteomics workflow by integrating digestion with multiple proteases, two mass spectrometric approaches (i.e., electron-transfer/higher-energy collision dissociation [EThcD] and HCD product-dependent electron-transfer/higher-energy collision dissociation [HCD-pd-EThcD]), and two data analysis tools (i.e., MaxQuant and Proteome Discoverer). The performance of this strategy was benchmarked by the analysis of whole lysates from PANC-1 (a pancreatic cancer cell line). In total, 2,831 O-GlcNAc sites were unambiguously identified, representing the largest O-GlcNAc dataset of an individual study reported so far. Unexpectedly, in addition to confirming known sites and identifying many other sites of Ser/Thr modification, O-GlcNAcylation was found on 121 tyrosine (Tyr) residues of 93 proteins. In vitro enzymatic assays showed that OGT catalyzes the transfer of O-GlcNAc onto Tyr residues of peptides and OGA catalyzes its removal. Taken together, our work reveals widespread O-GlcNAcylation on Tyr residues of proteins and that Tyr O-GlcNAcylation is mediated by OGT and OGA. As another form of glycosylation, Tyr O-GlcNAcylation is likely to have important regulatory roles.
Collapse
Affiliation(s)
- Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC20007
| | - Jingtao Deng
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC20007
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC20007
| | - Jing Zhang
- Department of Chemistry and Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA30302
| | - Stephen Byers
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC20007
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA30602
| | - Huadong Pei
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC20007
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC20007
| |
Collapse
|
12
|
Vanni E, Beauloye C, Horman S, Bertrand L. AMPK and O-GlcNAcylation: interplay in cardiac pathologies and heart failure. Essays Biochem 2024; 68:363-377. [PMID: 39319471 DOI: 10.1042/ebc20240003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024]
Abstract
Heart failure (HF) represents a multifaceted clinical syndrome characterized by the heart's inability to pump blood efficiently to meet the body's metabolic demands. Despite advances in medical management, HF remains a major cause of morbidity and mortality worldwide. In recent years, considerable attention has been directed toward understanding the molecular mechanisms underlying HF pathogenesis, with a particular focus on the role of AMP-activated protein kinase (AMPK) and protein O-GlcNAcylation. This review comprehensively examines the current understanding of AMPK and O-GlcNAcylation signalling pathways in HF, emphasizing their interplay and dysregulation. We delve into the intricate molecular mechanisms by which AMPK and O-GlcNAcylation contribute to cardiac energetics, metabolism, and remodelling, highlighting recent preclinical and clinical studies that have explored novel therapeutic interventions targeting these pathways.
Collapse
Affiliation(s)
- Ettore Vanni
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Christophe Beauloye
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
- Division of Cardiology, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | - Sandrine Horman
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| | - Luc Bertrand
- Pole of Cardiovascular Research, Institute of Experimental and Clinical Research (IREC), UCLouvain, Brussels, Belgium
| |
Collapse
|
13
|
Moriggi M, Ruggiero L, Torretta E, Zoppi D, Arosio B, Ferri E, Castegna A, Fiorillo C, Gelfi C, Capitanio D. Muscle Proteome Analysis of Facioscapulohumeral Dystrophy Patients Reveals a Metabolic Rewiring Promoting Oxidative/Reductive Stress Contributing to the Loss of Muscle Function. Antioxidants (Basel) 2024; 13:1406. [PMID: 39594549 PMCID: PMC11591206 DOI: 10.3390/antiox13111406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is caused by the epigenetic de-repression of the double homeobox 4 (DUX4) gene, leading to asymmetric muscle weakness and atrophy that begins in the facial and scapular muscles and progresses to the lower limbs. This incurable condition can severely impair muscle function, ultimately resulting in a loss of ambulation. A thorough analysis of molecular factors associated with the varying degrees of muscle impairment in FSHD is still lacking. This study investigates the molecular mechanisms and biomarkers in the biceps brachii of FSHD patients, classified according to the FSHD clinical score, the A-B-C-D classification scheme, and global proteomic variation. Our findings reveal distinct metabolic signatures and compensatory responses in patients. In severe cases, we observe pronounced metabolic dysfunction, marked by dysregulated glycolysis, activation of the reductive pentose phosphate pathway (PPP), a shift toward a reductive TCA cycle, suppression of oxidative phosphorylation, and an overproduction of antioxidants that is not matched by an increase in the redox cofactors needed for their function. This imbalance culminates in reductive stress, exacerbating muscle wasting and inflammation. In contrast, mild cases show metabolic adaptations that mitigate stress by activating polyols and the oxidative PPP, preserving partial energy flow through the oxidative TCA cycle, which supports mitochondrial function and energy balance. Furthermore, activation of the hexosamine biosynthetic pathway promotes autophagy, protecting muscle cells from apoptosis. In conclusion, our proteomic data indicate that specific metabolic alterations characterize both mild and severe FSHD patients. Molecules identified in mild cases may represent potential diagnostic and therapeutic targets for FSHD.
Collapse
Affiliation(s)
- Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 31, 20133 Milan, Italy; (M.M.); (D.C.)
| | - Lucia Ruggiero
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy; (L.R.); (D.Z.)
| | - Enrica Torretta
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy;
| | - Dario Zoppi
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy; (L.R.); (D.Z.)
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Via della Commenda 19, 20122 Milan, Italy;
| | - Evelyn Ferri
- IRCCS Ca’ Granda Ospedale Maggiore Policlinico Foundation, Via Francesco Sforza 35, 20122 Milan, Italy;
| | - Alessandra Castegna
- Department of Biosciences, Biotechnologies and Environment, University of Bari ALDO MORO, Via Orabona 4, 70125 Bari, Italy;
| | - Chiara Fiorillo
- Child Neuropsychiatric Unit, IRCCS Istituto Giannina Gaslini, DINOGMI-University of Genova, Via Gerolamo Gaslini 5, 16147 Genova, Italy;
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 31, 20133 Milan, Italy; (M.M.); (D.C.)
- Laboratory of Proteomics and Lipidomics, IRCCS Orthopedic Institute Galeazzi, Via R. Galeazzi 4, 20161 Milan, Italy;
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Via Luigi Mangiagalli 31, 20133 Milan, Italy; (M.M.); (D.C.)
| |
Collapse
|
14
|
Hou C, Wu C, Wu Z, Cheng Y, Li W, Sun H, Ma J. Systematic Evaluation of Affinity Enrichment Methods for O-GlcNAc Proteomics. J Proteome Res 2024; 23:4422-4432. [PMID: 39302247 PMCID: PMC11459509 DOI: 10.1021/acs.jproteome.4c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) modification (i.e., O-GlcNAcylation) on proteins plays critical roles in the regulation of diverse biological processes. However, protein O-GlcNAcylation analysis, especially at a large scale, has been a challenge. So far, a number of enrichment materials and methods have been developed for site-specific O-GlcNAc proteomics in different biological settings. Despite the presence of multiple methods, their performance for the O-GlcNAc proteomics is largely unclear. In this work, by using the lysates of PANC-1 cells (a pancreatic cancer cell line), we provided a head-to-head comparison of three affinity enrichment methods and materials (i.e., antibody, lectin AANL6, and an OGA mutant) for site-specific O-GlcNAc proteomics. The enriched peptides were analyzed by HCD product-dependent EThcD (i.e., HCD-pd-EThcD) mass spectrometry. The resulting data files were processed by three different data analysis packages (i.e., Sequest HT, Byonic, and FragPipe). Our data suggest that each method captures a subpopulation of the O-GlcNAc proteins. Besides the enrichment methods, we also observe complementarity between the different data analysis tools. Thus, combining different approaches holds promise for enhanced coverage of O-GlcNAc proteomics.
Collapse
Affiliation(s)
- Chunyan Hou
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20007, United States
| | - Ci Wu
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20007, United States
| | - Zichun Wu
- Information
Science and Technology College, Dalian Maritime
University, Dalian 116026, China
| | - Yifan Cheng
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20007, United States
| | - Weiyu Li
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20007, United States
- Department
of Applied Mathematics and Statistics, Johns
Hopkins University, Baltimore, Maryland 21218, United States
| | - Hui Sun
- Department
of Biochemistry, College of Life Sciences,
Wuhan University, Wuhan 430072, China
| | - Junfeng Ma
- Department
of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20007, United States
| |
Collapse
|
15
|
Gonzalez R, Massman L, Ho S, Luna S, Cheok S, Liang B, Mrachek K, Coss D, Ioachimescu AG, Zwagerman N, Olivier-Van Stichelen S. The diverging role of O-GlcNAc transferase in corticotroph and somatotroph adenomas. Pituitary 2024; 27:577-589. [PMID: 39066842 DOI: 10.1007/s11102-024-01431-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
PURPOSE Molecular mechanisms involved in the pathogenesis and tumor progression of pituitary adenomas (PA) remain incompletely understood. Corticotroph and somatotroph PA are associated with a high clinical burden, and despite improved surgical outcomes and medical treatment options, they sometimes require multiple surgeries and radiation. Preliminary data suggested a role for O-GlcNAc Transferase (OGT), the enzyme responsible for the O-GlcNAcylation of proteins. O-GlcNAcylation and OGT have been found elevated in other types of tumors. METHODS We evaluated 60 functioning and nonfunctioning PA (NFPA) from operated patients and postmortem normal and tumoral pituitary tissue by immunohistochemistry. We performed transcriptomic analyses to explore the relevance of the O-GlcNAc Transferase (OGT) in PAs. We detected OGT in immunobiological analysis and define its level in PA tissue in patients. RESULTS OGT was strongly associated with PA hormone secretory capacity in functioning PA and with tumor growth in NFPAs. In NFPAs, OGT was positively associated with tumor size but not with cavernous sinus invasion (Knosp grading). In GH-secreting PA, OGT expression was negatively correlated with circulating Insulin-like Growth Factor 1 level. In adrenocorticotropic hormone (ACTH)-secreting PA, OGT expression was positively associated with circulating ACTH levels. OGT did not correlate with tumor size in secreting PAs. OGT levels were higher in gonadotroph PA compared to normal glands. CONCLUSION O-GlcNAcylation can be downregulated in non-cancerous tumors such as GH-secreting adenomas. Future studies are warranted to elucidate the role of OGT in the pathogenesis of PAs.
Collapse
Affiliation(s)
- Roel Gonzalez
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Logan Massman
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Sophia Ho
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Sarai Luna
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Stephanie Cheok
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Brandon Liang
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Kelly Mrachek
- Department of Pathology & Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Dylan Coss
- Department of Pathology & Laboratory Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Adriana G Ioachimescu
- Department of Endocrinology and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Nathan Zwagerman
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | |
Collapse
|
16
|
Morales MM, Pratt MR. The post-translational modification O-GlcNAc is a sensor and regulator of metabolism. Open Biol 2024; 14:240209. [PMID: 39474868 PMCID: PMC11523104 DOI: 10.1098/rsob.240209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Cells must rapidly adapt to changes in nutrient conditions through responsive signalling cascades to maintain homeostasis. One of these adaptive pathways results in the post-translational modification of proteins by O-GlcNAc. O-GlcNAc modifies thousands of nuclear and cytoplasmic proteins in response to nutrient availability through the hexosamine biosynthetic pathway. O-GlcNAc is highly dynamic and can be added and removed from proteins multiple times throughout their life cycle, setting it up to be an ideal regulator of cellular processes in response to metabolic changes. Here, we describe the link between cellular metabolism and O-GlcNAc, and we explore O-GlcNAc's role in regulating cellular processes in response to nutrient levels. Specifically, we discuss the mechanisms of elevated O-GlcNAc levels in contributing to diabetes and cancer, as well as the role of decreased O-GlcNAc levels in neurodegeneration. These studies form a foundational understanding of aberrant O-GlcNAc in human disease and provide an opportunity to further improve disease identification and treatment.
Collapse
Affiliation(s)
- Murielle M. Morales
- Department of Biological Sciences, University of Southern California, Los Angeles, CA90089, USA
| | - Matthew R. Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA90089, USA
| |
Collapse
|
17
|
Zhang X, Wang LQ, Liu ZY. Senegenin suppresses hepatocellular carcinoma by regulating O-GlcNAcylation. World J Gastrointest Oncol 2024; 16:3994-4005. [PMID: 39350979 PMCID: PMC11438784 DOI: 10.4251/wjgo.v16.i9.3994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 08/01/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Based on current knowledge, hepatocellular carcinoma (HCC) is a condition with numerous etiologies and risk factors. However, the pathogenesis of HCC remains unclear. AIM To investigate the roles of senegenin and O-GlcNAcylation in the growth and metastasis of HCC. METHODS The levels of O-linked N-acetylglucosamine transferase (OGT) and O-GlcNAcylation in HCC cells and tissues were detected using western blot analysis. The effects of senegenin and O-GlcNAcylation on the proliferation of HCC cells were investigated in vitro using cell counting kit-8 and clonogenic assays. The potential effects of senegenin and O-GlcNAcylation on HCC metastasis were examined using the transwell migration assay. O-GlcNAcylation levels were altered via drug treatment and lentiviral infection, and western blot analysis was used to detect proteins involved in various pathways. RESULTS Western blot analysis revealed that OGT and O-GlcNAcylation levels were significantly elevated in HCC tissues and cells. O-GlcNAcylation levels in HCC cells were significantly altered by drug treatment and lentiviral infection. An increase in the glycosylation level was linked to enhanced proliferation, invasiveness, clonogenicity, and metastatic potential of cancer cells. O-GlcNAcylation induced by senegenin was found to slow the proliferation and migration of HCC cells. The levels of proteins involved in nuclear factor-kappa B (NF-κB) and c-Jun N-terminal kinase (JNK) pathways, which are associated with endoplasmic reticulum stress, were altered. CONCLUSION Senegenin lowers O-GlcNAcylation levels, decreases OGT expression, and inhibits cancer cell growth and metastasis by regulating proteins involved in NF-κB and JNK pathways.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Traditional Chinese Medicine, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
| | - Li-Qiong Wang
- Department of Hepatology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zhi-Yong Liu
- Department of Traditional Chinese Medicine, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
| |
Collapse
|
18
|
Wells L, Hart GW. O-GlcNAcylation: A major nutrient/stress sensor that regulates cellular physiology. J Biol Chem 2024; 300:107635. [PMID: 39111732 PMCID: PMC11402027 DOI: 10.1016/j.jbc.2024.107635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Affiliation(s)
- Lance Wells
- Complex Carbohydrate Research Center, Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA.
| | - Gerald W Hart
- Complex Carbohydrate Research Center, Department of Biochemistry & Molecular Biology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
19
|
He M, Zhou X, Wang X. Glycosylation: mechanisms, biological functions and clinical implications. Signal Transduct Target Ther 2024; 9:194. [PMID: 39098853 PMCID: PMC11298558 DOI: 10.1038/s41392-024-01886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 05/25/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Protein post-translational modification (PTM) is a covalent process that occurs in proteins during or after translation through the addition or removal of one or more functional groups, and has a profound effect on protein function. Glycosylation is one of the most common PTMs, in which polysaccharides are transferred to specific amino acid residues in proteins by glycosyltransferases. A growing body of evidence suggests that glycosylation is essential for the unfolding of various functional activities in organisms, such as playing a key role in the regulation of protein function, cell adhesion and immune escape. Aberrant glycosylation is also closely associated with the development of various diseases. Abnormal glycosylation patterns are closely linked to the emergence of various health conditions, including cancer, inflammation, autoimmune disorders, and several other diseases. However, the underlying composition and structure of the glycosylated residues have not been determined. It is imperative to fully understand the internal structure and differential expression of glycosylation, and to incorporate advanced detection technologies to keep the knowledge advancing. Investigations on the clinical applications of glycosylation focused on sensitive and promising biomarkers, development of more effective small molecule targeted drugs and emerging vaccines. These studies provide a new area for novel therapeutic strategies based on glycosylation.
Collapse
Affiliation(s)
- Mengyuan He
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, 250021, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
- Taishan Scholars Program of Shandong Province, Jinan, Shandong, 250021, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
20
|
Ohgaku S, Ida S, Ohashi N, Morino K, Ishikado A, Yanagimachi T, Murata K, Sato D, Ugi S, Nasiri A, Shulman GI, Maegawa H, Kume S, Fujita Y. O-GlcNAc modification in endothelial cells modulates adiposity via fat absorption from the intestine in mice. Heliyon 2024; 10:e34490. [PMID: 39130439 PMCID: PMC11315187 DOI: 10.1016/j.heliyon.2024.e34490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
Introduction Endothelial cells have a crucial function in transporting and exchanging various nutrients. O-GlcNAcylation, mediated by O-GlcNAc transferase (OGT), involves the addition of N-acetylglucosamine to proteins and serves as an intracellular nutrient sensing mechanism. However, the role of O-GlcNAcylation in endothelial cells remains poorly understood. Objective This study investigated the role of O-GlcNAcylation in endothelial cells. Methods Endothelial-cell-specific Ogt -knockout mice (Ogt-ECKO) were generated by crossing Ogt-floxed mice (Ogt-flox) with VE-Cadherin Cre ERT2 mice. Ogt-ECKO mice and Ogt-flox control mice were subjected to a normal or high-fat diet, and their body weight, glucose metabolism, and lipid metabolism were examined. Results Ogt-ECKO mice exhibited reduced body weight compared with Ogt-flox control mice under a high-fat diet. Lipid absorption was significantly impaired in Ogt-ECKO mice. Changes in the intercellular junctions of small intestinal lacteal endothelial cells from a button-like to a zipper-like configuration were observed. Furthermore, Ogt-ECKO mice showed decreased expression of VEGFR3. The administration of a nitric oxide donor restored lipid absorption and reversed the morphological alterations in Ogt-ECKO mice. Conclusions These findings demonstrate the critical role of O-GlcNAcylation in endothelial cells in lipid absorption in the intestine through the modulation of lacteal junction morphology. These results provide novel insight into the metabolic regulatory mechanisms under physiological conditions and have implications for the development of new therapeutic strategies for obesity.
Collapse
Affiliation(s)
- Seiichiro Ohgaku
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Shogo Ida
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Natsuko Ohashi
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
- Department of Stem Cell Biology and Regenerative Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Katsutaro Morino
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
- Institutional Research Office, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Atsushi Ishikado
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
- R&D Department, Sunstar Inc., Osaka 569-1195, Japan
| | - Tsuyoshi Yanagimachi
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Koichiro Murata
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Daisuke Sato
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Satoshi Ugi
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Ali Nasiri
- Department of Medicine (Endocrinology), Yale School of Medicine, New Haven, CT 06520, USA
| | - Gerald I. Shulman
- Department of Medicine (Endocrinology), Yale School of Medicine, New Haven, CT 06520, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
| | - Yukihiro Fujita
- Department of Medicine, Shiga University of Medical Science, Otsu 520-2192, Japan
| |
Collapse
|
21
|
Xu T, Yang J, Xu Y, Wang X, Gao X, Sun J, Zhou C, Huang Y. Post-acute ischemic stroke hyperglycemia aggravates destruction of the blood-brain barrier. Neural Regen Res 2024; 19:1344-1350. [PMID: 37905884 PMCID: PMC11467929 DOI: 10.4103/1673-5374.385851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/11/2023] [Accepted: 08/10/2023] [Indexed: 11/02/2023] Open
Abstract
Post-acute ischemic stroke hyperglycemia increases the risk of hemorrhagic transformation, which is associated with blood-brain barrier disruption. Brain microvascular endothelial cells are a major component of the blood-brain barrier. Intercellular mitochondrial transfer has emerged as a novel paradigm for repairing cells with mitochondrial dysfunction. In this study, we first investigated whether mitochondrial transfer exists between brain microvascular endothelial cells, and then investigated the effects of post-acute ischemic stroke hyperglycemia on mitochondrial transfer between brain microvascular endothelial cells. We found that healthy brain microvascular endothelial cells can transfer intact mitochondria to oxygen glucose deprivation-injured brain microvascular endothelial cells. However, post-oxygen glucose deprivation hyperglycemia hindered mitochondrial transfer and exacerbated mitochondrial dysfunction. We established an in vitro brain microvascular endothelial cell model of the blood-brain barrier. We found that post-acute ischemic stroke hyperglycemia reduced the overall energy metabolism levels of brain microvascular endothelial cells and increased permeability of the blood-brain barrier. In a clinical study, we retrospectively analyzed the relationship between post-acute ischemic stroke hyperglycemia and the severity of hemorrhagic transformation. We found that post-acute ischemic stroke hyperglycemia serves as an independent predictor of severe hemorrhagic transformation. These findings suggest that post-acute ischemic stroke hyperglycemia can aggravate disruption of the blood-brain barrier by inhibiting mitochondrial transfer.
Collapse
Affiliation(s)
- Tianqi Xu
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Jianhong Yang
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Yao Xu
- Department of Neurology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Xiaofeng Wang
- Department of General Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Xiang Gao
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Jie Sun
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
| | - Chenhui Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang Province, China
| | - Yi Huang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo, Zhejiang Province, China
| |
Collapse
|
22
|
Luna S, Malard F, Pereckas M, Aoki M, Aoki K, Olivier-Van Stichelen S. Studying the O-GlcNAcome of human placentas using banked tissue samples. Glycobiology 2024; 34:cwae005. [PMID: 38253038 PMCID: PMC11005170 DOI: 10.1093/glycob/cwae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
O-GlcNAcylation is a dynamic modulator of signaling pathways, equal in magnitude to the widely studied phosphorylation. With the rapid development of tools for its detection at the single protein level, the O-GlcNAc modification rapidly emerged as a novel diagnostic and therapeutic target in human diseases. Yet, mapping the human O-GlcNAcome in various tissues is essential for generating relevant biomarkers. In this study, we used human banked tissue as a sample source to identify O-GlcNAcylated protein targets relevant to human diseases. Using human term placentas, we propose (1) a method to clean frozen banked tissue of blood proteins; (2) an optimized protocol for the enrichment of O-GlcNAcylated proteins using immunoaffinity purification; and (3) a bioinformatic workflow to identify the most promising O-GlcNAc targets. As a proof-of-concept, we used 45 mg of banked placental samples from two pregnancies to generate intracellular protein extracts depleted of blood protein. Then, antibody-based O-GlcNAc enrichment on denatured samples yielded over 2000 unique HexNAc PSMs and 900 unique sites using 300 μg of protein lysate. Due to efficient sample cleanup, we also captured 82 HexNAc proteins with high placental expression. Finally, we provide a bioinformatic tool (CytOVS) to sort the HexNAc proteins based on their cellular localization and extract the most promising O-GlcNAc targets to explore further. To conclude, we provide a simple 3-step workflow to generate a manageable list of O-GlcNAc proteins from human tissue and improve our understanding of O-GlcNAcylation's role in health and diseases.
Collapse
Affiliation(s)
- Sarai Luna
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, United States
| | - Florian Malard
- INSERM U1212, CNRS UMR5320, ARNA Laboratory, University of Bordeaux, 146 rue Léo Saignat, 33000 Bordeaux, France
| | - Michaela Pereckas
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, United States
| | - Mayumi Aoki
- Cancer Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, United States
| | - Kazuhiro Aoki
- Cancer Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, United States
- Department of Cell Biology, Neurobiology and Anatomy (CBNA), Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, United States
| | - Stephanie Olivier-Van Stichelen
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, United States
- Cancer Research Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, United States
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, United States
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, United States
| |
Collapse
|
23
|
Authier F, Ondruskova N, Ferenbach AT, McNeilly AD, van Aalten DMF. Neurodevelopmental defects in a mouse model of O-GlcNAc transferase intellectual disability. Dis Model Mech 2024; 17:dmm050671. [PMID: 38566589 PMCID: PMC11095632 DOI: 10.1242/dmm.050671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
The addition of O-linked β-N-acetylglucosamine (O-GlcNAc) to proteins (referred to as O-GlcNAcylation) is a modification that is crucial for vertebrate development. O-GlcNAcylation is catalyzed by O-GlcNAc transferase (OGT) and reversed by O-GlcNAcase (OGA). Missense variants of OGT have recently been shown to segregate with an X-linked syndromic form of intellectual disability, OGT-linked congenital disorder of glycosylation (OGT-CDG). Although the existence of OGT-CDG suggests that O-GlcNAcylation is crucial for neurodevelopment and/or cognitive function, the underlying pathophysiologic mechanisms remain unknown. Here we report a mouse line that carries a catalytically impaired OGT-CDG variant. These mice show altered O-GlcNAc homeostasis with decreased global O-GlcNAcylation and reduced levels of OGT and OGA in the brain. Phenotypic characterization of the mice revealed lower body weight associated with reduced body fat mass, short stature and microcephaly. This mouse model will serve as an important tool to study genotype-phenotype correlations in OGT-CDG in vivo and for the development of possible treatment avenues for this disorder.
Collapse
Affiliation(s)
- Florence Authier
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Nina Ondruskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, 128 08 Praha 2, Czech Republic
| | - Andrew T. Ferenbach
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Alison D. McNeilly
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Daan M. F. van Aalten
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
24
|
Shrestha R, Karunadasa S, Grismer TS, Reyes AV, Xu SL. SECRET AGENT O-GlcNAcylates Hundreds of Proteins Involved in Diverse Cellular Processes in Arabidopsis. Mol Cell Proteomics 2024; 23:100732. [PMID: 38336175 PMCID: PMC10979276 DOI: 10.1016/j.mcpro.2024.100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
O-GlcNAcylation is a critical post-translational modification of proteins observed in both plants and animals and plays a key role in growth and development. While considerable knowledge exists about over 3000 substrates in animals, our understanding of this modification in plants remains limited. Unlike animals, plants possess two putative homologs: SECRET AGENT (SEC) and SPINDLY, with SPINDLY also exhibiting O-fucosylation activity. To investigate the role of SEC as a major O-GlcNAc transferase in plants, we utilized lectin-weak affinity chromatography enrichment and stable isotope labeling in Arabidopsis labeling, quantifying at both MS1 and MS2 levels. Our findings reveal a significant reduction in O-GlcNAc levels in the sec mutant, indicating the critical role of SEC in mediating O-GlcNAcylation. Through a comprehensive approach, combining higher-energy collision dissociation and electron-transfer high-energy collision dissociation fragmentation with substantial fractionations, we expanded our GlcNAc profiling, identifying 436 O-GlcNAc targets, including 227 new targets. The targets span diverse cellular processes, suggesting broad regulatory functions of O-GlcNAcylation. The expanded targets also enabled exploration of crosstalk between O-GlcNAcylation and O-fucosylation. We also examined electron-transfer high-energy collision dissociation fragmentation for site assignment. This report advances our understanding of O-GlcNAcylation in plants, facilitating further research in this field.
Collapse
Affiliation(s)
- Ruben Shrestha
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - Sumudu Karunadasa
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA
| | - TaraBryn S Grismer
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA; Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| | - Andres V Reyes
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA; Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA
| | - Shou-Ling Xu
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, USA; Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, California, USA.
| |
Collapse
|
25
|
Nguyen QTN, Park J, Kim DY, Tran DT, Han IO. Forskolin rescues hypoxia-induced cognitive dysfunction in zebrafish with potential involvement of O-GlcNAc cycling regulation. Biochem Pharmacol 2024; 221:116032. [PMID: 38281601 DOI: 10.1016/j.bcp.2024.116032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/28/2023] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Repeated sublethal hypoxia exposure induces brain inflammation and affects the initiation and progression of cognitive dysfunction. Experiments from the current study showed that hypoxic exposure downregulates PKA/CREB signaling, which is restored by forskolin (FSK), an adenylate cyclase activator, in both Neuro2a (N2a) cells and zebrafish brain. FSK significantly protected N2a cells from hypoxia-induced cell death and neurite shrinkage. Intraperitoneal administration of FSK for 5 days on zebrafish additionally led to significant recovery from hypoxia-induced social interaction impairment and learning and memory (L/M) deficit. FSK suppressed hypoxia-induced neuroinflammation, as indicated by the observed decrease in NF-κB activation and GFAP expression. We further investigated the potential effect of FSK on O-GlcNAcylation changes induced by hypoxia. Intriguingly FSK induced marked upregulation of the protein level of O-GlcNAc transferase catalyzing addition of the GlcNAc group to target proteins, accompanied by elevated O-GlcNAcylation of nucleocytoplasmic proteins. The hypoxia-induced O-GlcNAcylation decrease in the brain of zebrafish was considerably restored following FSK treatment. Based on the collective results, we propose that FSK rescues hypoxia-induced cognitive dysfunction, potentially through regulation of HBP/O-GlcNAc cycling.
Collapse
Affiliation(s)
- Quynh T N Nguyen
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Jiwon Park
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Dong Yeol Kim
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Duong T Tran
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea
| | - Inn Oc Han
- Department of Biomedical Science, Program in Biomedical Science and Engineering, College of Medicine, Inha University, Incheon, South Korea.
| |
Collapse
|
26
|
Tran TDT, Park J, Kim DY, Han IO. Caffeine-induced protein kinase A activation restores cognitive deficits induced by sleep deprivation by regulating O-GlcNAc cycling in adult zebrafish. Am J Physiol Cell Physiol 2024; 326:C978-C989. [PMID: 38314722 DOI: 10.1152/ajpcell.00691.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/07/2024]
Abstract
Sleep deprivation (SD) is widely acknowledged as a significant risk factor for cognitive impairment. In this study, intraperitoneal caffeine administration significantly ameliorated the learning and memory (L/M) deficits induced by SD and reduced aggressive behaviors in adult zebrafish. SD led to a reduction in protein kinase A (PKA) phosphorylation, phosphorylated-cAMP response element-binding protein (p-CREB), and c-Fos expression in zebrafish brain. Notably, these alterations were effectively reversed by caffeine. In addition, caffeine mitigated neuroinflammation induced by SD, as evident from suppression of the SD-mediated increase in glial fibrillary acidic protein (GFAP) and nuclear factor-κB (NF-κB) activation. Caffeine restored normal O-GlcNAcylation and O-GlcNAc transferase (OGT) levels while reversing the increased expression of O-GlcNAcase (OGA) in zebrafish brain after SD. Intriguingly, rolipram, a selective phosphodiesterase 4 (PDE4) inhibitor, effectively mitigated cognitive deficits, restored p-CREB and c-Fos levels, and attenuated the increase in GFAP in brain induced by SD. In addition, rolipram reversed the decrease in O-GlcNAcylation and OGT expression as well as elevation of OGA expression following SD. Treatment with H89, a PKA inhibitor, significantly impaired the L/M functions of zebrafish compared with the control group, inducing a decrease in O-GlcNAcylation and OGT expression and, conversely, an increase in OGA expression. The H89-induced changes in O-GlcNAc cycling and L/M dysfunction were effectively reversed by glucosamine treatment. H89 suppressed, whereas caffeine and rolipram promoted O-GlcNAc cycling in Neuro2a cells. Our collective findings underscore the interplay between PKA signaling and O-GlcNAc cycling in the regulation of cognitive function in the brain, offering potential therapeutic targets for cognitive deficits associated with SD.NEW & NOTEWORTHY Our observation highlights the intricate interplay between cAMP/PKA signaling and O-GlcNAc cycling, unveiling a novel mechanism that potentially governs the regulation of learning and memory functions. The dynamic interplay between these two pathways provides a novel and nuanced perspective on the molecular foundation of learning and memory regulation. These insights open avenues for the development of targeted interventions to treat conditions that impact cognitive function, including SD.
Collapse
Affiliation(s)
- Thuy-Duong Thi Tran
- Program in Biomedical Science and Engineering, Department of Biomedical Science, College of Medicine, Inha University, Incheon, South Korea
- Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, South Korea
| | - Jiwon Park
- Program in Biomedical Science and Engineering, Department of Biomedical Science, College of Medicine, Inha University, Incheon, South Korea
- Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, South Korea
| | - Dong Yeol Kim
- Program in Biomedical Science and Engineering, Department of Biomedical Science, College of Medicine, Inha University, Incheon, South Korea
- Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, South Korea
| | - Inn-Oc Han
- Program in Biomedical Science and Engineering, Department of Biomedical Science, College of Medicine, Inha University, Incheon, South Korea
- Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, South Korea
| |
Collapse
|
27
|
Zhang J, Wang Y. Emerging roles of O-GlcNAcylation in protein trafficking and secretion. J Biol Chem 2024; 300:105677. [PMID: 38272225 PMCID: PMC10907171 DOI: 10.1016/j.jbc.2024.105677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
The emerging roles of O-GlcNAcylation, a distinctive post-translational modification, are increasingly recognized for their involvement in the intricate processes of protein trafficking and secretion. This modification exerts its influence on both conventional and unconventional secretory pathways. Under healthy and stress conditions, such as during diseases, it orchestrates the transport of proteins within cells, ensuring timely delivery to their intended destinations. O-GlcNAcylation occurs on key factors, like coat protein complexes (COPI and COPII), clathrin, SNAREs (soluble N-ethylmaleimide-sensitive factor attachment protein receptors), and GRASP55 (Golgi reassembly stacking protein of 55 kDa) that control vesicle budding and fusion in anterograde and retrograde trafficking and unconventional secretion. The understanding of O-GlcNAcylation offers valuable insights into its critical functions in cellular physiology and the progression of diseases, including neurodegeneration, cancer, and metabolic disorders. In this review, we summarize and discuss the latest findings elucidating the involvement of O-GlcNAc in protein trafficking and its significance in various human disorders.
Collapse
Affiliation(s)
- Jianchao Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA; Department of Neurology, University of Michigan School of Medicine, Ann Arbor, Michigan, USA.
| |
Collapse
|
28
|
Nelson ZM, Leonard GD, Fehl C. Tools for investigating O-GlcNAc in signaling and other fundamental biological pathways. J Biol Chem 2024; 300:105615. [PMID: 38159850 PMCID: PMC10831167 DOI: 10.1016/j.jbc.2023.105615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
Cells continuously fine-tune signaling pathway proteins to match nutrient and stress levels in their local environment by modifying intracellular proteins with O-linked N-acetylglucosamine (O-GlcNAc) sugars, an essential process for cell survival and growth. The small size of these monosaccharide modifications poses a challenge for functional determination, but the chemistry and biology communities have together created a collection of precision tools to study these dynamic sugars. This review presents the major themes by which O-GlcNAc influences signaling pathway proteins, including G-protein coupled receptors, growth factor signaling, mitogen-activated protein kinase (MAPK) pathways, lipid sensing, and cytokine signaling pathways. Along the way, we describe in detail key chemical biology tools that have been developed and applied to determine specific O-GlcNAc roles in these pathways. These tools include metabolic labeling, O-GlcNAc-enhancing RNA aptamers, fluorescent biosensors, proximity labeling tools, nanobody targeting tools, O-GlcNAc cycling inhibitors, light-activated systems, chemoenzymatic labeling, and nutrient reporter assays. An emergent feature of this signaling pathway meta-analysis is the intricate interplay between O-GlcNAc modifications across different signaling systems, underscoring the importance of O-GlcNAc in regulating cellular processes. We highlight the significance of O-GlcNAc in signaling and the role of chemical and biochemical tools in unraveling distinct glycobiological regulatory mechanisms. Collectively, our field has determined effective strategies to probe O-GlcNAc roles in biology. At the same time, this survey of what we do not yet know presents a clear roadmap for the field to use these powerful chemical tools to explore cross-pathway O-GlcNAc interactions in signaling and other major biological pathways.
Collapse
Affiliation(s)
- Zachary M Nelson
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Garry D Leonard
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Charlie Fehl
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
29
|
Zafar S, Fatima SI, Schmitz M, Zerr I. Current Technologies Unraveling the Significance of Post-Translational Modifications (PTMs) as Crucial Players in Neurodegeneration. Biomolecules 2024; 14:118. [PMID: 38254718 PMCID: PMC10813409 DOI: 10.3390/biom14010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, and Huntington's disease, are identified and characterized by the progressive loss of neurons and neuronal dysfunction, resulting in cognitive and motor impairment. Recent research has shown the importance of PTMs, such as phosphorylation, acetylation, methylation, ubiquitination, sumoylation, nitration, truncation, O-GlcNAcylation, and hydroxylation, in the progression of neurodegenerative disorders. PTMs can alter protein structure and function, affecting protein stability, localization, interactions, and enzymatic activity. Aberrant PTMs can lead to protein misfolding and aggregation, impaired degradation, and clearance, and ultimately, to neuronal dysfunction and death. The main objective of this review is to provide an overview of the PTMs involved in neurodegeneration, their underlying mechanisms, methods to isolate PTMs, and the potential therapeutic targets for these disorders. The PTMs discussed in this article include tau phosphorylation, α-synuclein and Huntingtin ubiquitination, histone acetylation and methylation, and RNA modifications. Understanding the role of PTMs in neurodegenerative diseases may provide new therapeutic strategies for these devastating disorders.
Collapse
Affiliation(s)
- Saima Zafar
- Department of Neurology, Clinical Dementia Center and DZNE, University Medical Center Goettingen (UMG), Georg-August University, Robert-Koch-Str. 40, 37075 Goettingen, Germany
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, H-12, Islamabad 44000, Pakistan
| | - Shehzadi Irum Fatima
- Department of Neurology, Clinical Dementia Center and DZNE, University Medical Center Goettingen (UMG), Georg-August University, Robert-Koch-Str. 40, 37075 Goettingen, Germany
| | - Matthias Schmitz
- Department of Neurology, Clinical Dementia Center and DZNE, University Medical Center Goettingen (UMG), Georg-August University, Robert-Koch-Str. 40, 37075 Goettingen, Germany
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center and DZNE, University Medical Center Goettingen (UMG), Georg-August University, Robert-Koch-Str. 40, 37075 Goettingen, Germany
| |
Collapse
|
30
|
Hu F, Li W, Li Y, Hou C, Ma J, Jia C. O-GlcNAcPRED-DL: Prediction of Protein O-GlcNAcylation Sites Based on an Ensemble Model of Deep Learning. J Proteome Res 2024; 23:95-106. [PMID: 38054441 DOI: 10.1021/acs.jproteome.3c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) is a post-translational modification (i.e., O-GlcNAcylation) on serine/threonine residues of proteins, regulating a plethora of physiological and pathological events. As a dynamic process, O-GlcNAc functions in a site-specific manner. However, the experimental identification of the O-GlcNAc sites remains challenging in many scenarios. Herein, by leveraging the recent progress in cataloguing experimentally identified O-GlcNAc sites and advanced deep learning approaches, we establish an ensemble model, O-GlcNAcPRED-DL, a deep learning-based tool, for the prediction of O-GlcNAc sites. In brief, to make a benchmark O-GlcNAc data set, we extracted the information on O-GlcNAc from the recently constructed database O-GlcNAcAtlas, which contains thousands of experimentally identified and curated O-GlcNAc sites on proteins from multiple species. To overcome the imbalance between positive and negative data sets, we selected five groups of negative data sets in humans and mice to construct an ensemble predictor based on connection of a convolutional neural network and bidirectional long short-term memory. By taking into account three types of sequence information, we constructed four network frameworks, with the systematically optimized parameters used for the models. The thorough comparison analysis on two independent data sets of humans and mice and six independent data sets from other species demonstrated remarkably increased sensitivity and accuracy of the O-GlcNAcPRED-DL models, outperforming other existing tools. Moreover, a user-friendly Web server for O-GlcNAcPRED-DL has been constructed, which is freely available at http://oglcnac.org/pred_dl.
Collapse
Affiliation(s)
- Fengzhu Hu
- School of Science, Dalian Maritime University, Dalian 116026, China
| | - Weiyu Li
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20007, United States
| | - Yaoxiang Li
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20007, United States
| | - Chunyan Hou
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20007, United States
| | - Junfeng Ma
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, District of Columbia 20007, United States
| | - Cangzhi Jia
- School of Science, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
31
|
Sunden M, Upadhyay D, Banerjee R, Sipari N, Fellman V, Kallijärvi J, Purhonen J. Enzymatic assay for UDP-GlcNAc and its application in the parallel assessment of substrate availability and protein O-GlcNAcylation. CELL REPORTS METHODS 2023; 3:100518. [PMID: 37533645 PMCID: PMC10391344 DOI: 10.1016/j.crmeth.2023.100518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/11/2023] [Accepted: 06/05/2023] [Indexed: 08/04/2023]
Abstract
O-linked N-acetylglucosaminylation (O-GlcNAcylation) is a ubiquitous and dynamic non-canonical glycosylation of intracellular proteins. Several branches of metabolism converge at the hexosamine biosynthetic pathway (HBP) to produce the substrate for protein O-GlcNAcylation, the uridine diphosphate N-acetylglucosamine (UDP-GlcNAc). Availability of UDP-GlcNAc is considered a key regulator of O-GlcNAcylation. Yet UDP-GlcNAc concentrations are rarely reported in studies exploring the HBP and O-GlcNAcylation, most likely because the methods to measure it are restricted to specialized chromatographic procedures. Here, we introduce an enzymatic method to quantify cellular and tissue UDP-GlcNAc. The method is based on O-GlcNAcylation of a substrate peptide by O-linked N-acetylglucosamine transferase (OGT) and subsequent immunodetection of the modification. The assay can be performed in dot-blot or microplate format. We apply it to quantify UDP-GlcNAc concentrations in several mouse tissues and cell lines. Furthermore, we show how changes in UDP-GlcNAc levels correlate with O-GlcNAcylation and the expression of OGT and O-GlcNAcase (OGA).
Collapse
Affiliation(s)
- Marc Sunden
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Divya Upadhyay
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rishi Banerjee
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nina Sipari
- Viikki Metabolomics Unit, University of Helsinki, Helsinki, Finland
| | - Vineta Fellman
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Children’s Hospital, Helsinki University Hospital, Helsinki, Finland
- Pediatrics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Jukka Kallijärvi
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Janne Purhonen
- Folkhälsan Research Center, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
32
|
Yang YH, Wen R, Yang N, Zhang TN, Liu CF. Roles of protein post-translational modifications in glucose and lipid metabolism: mechanisms and perspectives. Mol Med 2023; 29:93. [PMID: 37415097 DOI: 10.1186/s10020-023-00684-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023] Open
Abstract
The metabolism of glucose and lipids is essential for energy production in the body, and dysregulation of the metabolic pathways of these molecules is implicated in various acute and chronic diseases, such as type 2 diabetes, Alzheimer's disease, atherosclerosis (AS), obesity, tumor, and sepsis. Post-translational modifications (PTMs) of proteins, which involve the addition or removal of covalent functional groups, play a crucial role in regulating protein structure, localization function, and activity. Common PTMs include phosphorylation, acetylation, ubiquitination, methylation, and glycosylation. Emerging evidence indicates that PTMs are significant in modulating glucose and lipid metabolism by modifying key enzymes or proteins. In this review, we summarize the current understanding of the role and regulatory mechanisms of PTMs in glucose and lipid metabolism, with a focus on their involvement in disease progression associated with aberrant metabolism. Furthermore, we discuss the future prospects of PTMs, highlighting their potential for gaining deeper insights into glucose and lipid metabolism and related diseases.
Collapse
Affiliation(s)
- Yu-Hang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China
| | - Ri Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China.
| | - Chun-Feng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, No.36, SanHao Street, Liaoning Province, Shenyang City, 110004, China.
| |
Collapse
|
33
|
Bell MB, Ouyang X, Shelton AK, Huynh NV, Mueller T, Chacko BK, Jegga AG, Chatham JC, Miller CR, Darley-Usmar V, Zhang J. Relationships between gene expression and behavior in mice in response to systemic modulation of the O-GlcNAcylation pathway. J Neurochem 2023; 165:682-700. [PMID: 37129420 DOI: 10.1111/jnc.15835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/30/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023]
Abstract
Enhancing protein O-GlcNAcylation by pharmacological inhibition of the enzyme O-GlcNAcase (OGA), which removes the O-GlcNAc modification from proteins, has been explored in mouse models of amyloid-beta and tau pathology. However, the O-GlcNAcylation-dependent link between gene expression and neurological behavior remains to be explored. Using chronic administration of Thiamet G (TG, an OGA inhibitor) in vivo, we used a protocol designed to relate behavior with the transcriptome and selected biochemical parameters from the cortex of individual animals. TG-treated mice showed improved working memory as measured using a Y-maze test. RNA sequencing analysis revealed 151 top differentially expressed genes with a Log2fold change >0.33 and adjusted p-value <0.05. Top TG-dependent upregulated genes were related to learning, cognition and behavior, while top downregulated genes were related to IL-17 signaling, inflammatory response and chemotaxis. Additional pathway analysis uncovered 3 pathways, involving gene expression including 14 cytochrome c oxidase subunits/regulatory components, chaperones or assembly factors, and 5 mTOR (mechanistic target of rapamycin) signaling factors. Multivariate Kendall correlation analyses of behavioral tests and the top TG-dependent differentially expressed genes revealed 91 statistically significant correlations in saline-treated mice and 70 statistically significant correlations in TG-treated mice. These analyses provide a network regulation landscape that is important in relating the transcriptome to behavior and the potential impact of the O-GlcNAC pathway.
Collapse
Affiliation(s)
- Margaret B Bell
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xiaosen Ouyang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Abigail K Shelton
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Nha V Huynh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Toni Mueller
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Balu K Chacko
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Anil G Jegga
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - John C Chatham
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - C Ryan Miller
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Birmingham VA Medical Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
34
|
Brembati V, Faustini G, Longhena F, Bellucci A. Alpha synuclein post translational modifications: potential targets for Parkinson's disease therapy? Front Mol Neurosci 2023; 16:1197853. [PMID: 37305556 PMCID: PMC10248004 DOI: 10.3389/fnmol.2023.1197853] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/27/2023] [Indexed: 06/13/2023] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative disorder with motor symptoms. The neuropathological alterations characterizing the brain of patients with PD include the loss of dopaminergic neurons of the nigrostriatal system and the presence of Lewy bodies (LB), intraneuronal inclusions that are mainly composed of alpha-synuclein (α-Syn) fibrils. The accumulation of α-Syn in insoluble aggregates is a main neuropathological feature in PD and in other neurodegenerative diseases, including LB dementia (LBD) and multiple system atrophy (MSA), which are therefore defined as synucleinopathies. Compelling evidence supports that α-Syn post translational modifications (PTMs) such as phosphorylation, nitration, acetylation, O-GlcNAcylation, glycation, SUMOylation, ubiquitination and C-terminal cleavage, play important roles in the modulation α-Syn aggregation, solubility, turnover and membrane binding. In particular, PTMs can impact on α-Syn conformational state, thus supporting that their modulation can in turn affect α-Syn aggregation and its ability to seed further soluble α-Syn fibrillation. This review focuses on the importance of α-Syn PTMs in PD pathophysiology but also aims at highlighting their general relevance as possible biomarkers and, more importantly, as innovative therapeutic targets for synucleinopathies. In addition, we call attention to the multiple challenges that we still need to face to enable the development of novel therapeutic approaches modulating α-Syn PTMs.
Collapse
Affiliation(s)
| | | | | | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
35
|
Ben Ahmed A, Lemaire Q, Scache J, Mariller C, Lefebvre T, Vercoutter-Edouart AS. O-GlcNAc Dynamics: The Sweet Side of Protein Trafficking Regulation in Mammalian Cells. Cells 2023; 12:1396. [PMID: 37408229 PMCID: PMC10216988 DOI: 10.3390/cells12101396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 07/07/2023] Open
Abstract
The transport of proteins between the different cellular compartments and the cell surface is governed by the secretory pathway. Alternatively, unconventional secretion pathways have been described in mammalian cells, especially through multivesicular bodies and exosomes. These highly sophisticated biological processes rely on a wide variety of signaling and regulatory proteins that act sequentially and in a well-orchestrated manner to ensure the proper delivery of cargoes to their final destination. By modifying numerous proteins involved in the regulation of vesicular trafficking, post-translational modifications (PTMs) participate in the tight regulation of cargo transport in response to extracellular stimuli such as nutrient availability and stress. Among the PTMs, O-GlcNAcylation is the reversible addition of a single N-acetylglucosamine monosaccharide (GlcNAc) on serine or threonine residues of cytosolic, nuclear, and mitochondrial proteins. O-GlcNAc cycling is mediated by a single couple of enzymes: the O-GlcNAc transferase (OGT) which catalyzes the addition of O-GlcNAc onto proteins, and the O-GlcNAcase (OGA) which hydrolyses it. Here, we review the current knowledge on the emerging role of O-GlcNAc modification in the regulation of protein trafficking in mammalian cells, in classical and unconventional secretory pathways.
Collapse
|
36
|
Li X, Lei C, Song Q, Bai L, Cheng B, Qin K, Li X, Ma B, Wang B, Zhou W, Chen X, Li J. Chemoproteomic profiling of O-GlcNAcylated proteins and identification of O-GlcNAc transferases in rice. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:742-753. [PMID: 36577688 PMCID: PMC10037131 DOI: 10.1111/pbi.13991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 01/05/2023] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) is a ubiquitous post-translation modification occurring in both animals and plants. Thousands of proteins along with their O-GlcNAcylation sites have been identified in various animal systems, yet the O-GlcNAcylated proteomes in plants remain poorly understood. Here, we report a large-scale profiling of protein O-GlcNAcylation in a site-specific manner in rice. We first established the metabolic glycan labelling (MGL) strategy with N-azidoacetylgalactosamine (GalNAz) in rice seedlings, which enabled incorporation of azides as a bioorthogonal handle into O-GlcNAc. By conjugation of the azide-incorporated O-GlcNAc with alkyne-biotin containing a cleavable linker via click chemistry, O-GlcNAcylated proteins were selectively enriched for mass spectrometry (MS) analysis. A total of 1591 unambiguous O-GlcNAcylation sites distributed on 709 O-GlcNAcylated proteins were identified. Additionally, 102 O-GlcNAcylated proteins were identified with their O-GlcNAcylation sites located within serine/threonine-enriched peptides, causing ambiguous site assignment. The identified O-GlcNAcylated proteins are involved in multiple biological processes, such as transcription, translation and plant hormone signalling. Furthermore, we discovered two O-GlcNAc transferases (OsOGTs) in rice. By expressing OsOGTs in Escherichia coli and Nicotiana benthamiana leaves, we confirmed their OGT enzymatic activities and used them to validate the identified rice O-GlcNAcylated proteins. Our dataset provides a valuable resource for studying O-GlcNAc biology in rice, and the MGL method should facilitate the identification of O-GlcNAcylated proteins in various plants.
Collapse
Affiliation(s)
- Xilong Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Cong Lei
- College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
- Beijing National Laboratory for Molecular SciencesPeking UniversityBeijingChina
| | - Qitao Song
- College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Lin Bai
- State Key Laboratory of Plant Genomics and National Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Bo Cheng
- College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
- Beijing National Laboratory for Molecular SciencesPeking UniversityBeijingChina
| | - Ke Qin
- College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
- Beijing National Laboratory for Molecular SciencesPeking UniversityBeijingChina
| | - Xiang Li
- College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
- Beijing National Laboratory for Molecular SciencesPeking UniversityBeijingChina
| | - Boyuan Ma
- State Key Laboratory of Plant Genomics and National Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Bing Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
| | - Wen Zhou
- College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
- Beijing National Laboratory for Molecular SciencesPeking UniversityBeijingChina
| | - Xing Chen
- College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
- Beijing National Laboratory for Molecular SciencesPeking UniversityBeijingChina
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
- Synthetic and Functional Biomolecules CenterPeking UniversityBeijingChina
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationPeking UniversityBeijingChina
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene ResearchInstitute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
37
|
Hu CW, Wang A, Fan D, Worth M, Chen Z, Huang J, Xie J, Macdonald J, Li L, Jiang J. Cancer-derived mutation in the OGA stalk domain promotes cell malignancy through dysregulating PDLIM7 and p53. RESEARCH SQUARE 2023:rs.3.rs-2709128. [PMID: 36993758 PMCID: PMC10055641 DOI: 10.21203/rs.3.rs-2709128/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
O-GlcNAcase (OGA) is the sole enzyme that hydrolyzes O-GlcNAcylation from thousands of proteins and is dysregulated in many diseases including cancer. However, the substrate recognition and pathogenic mechanisms of OGA remain largely unknown. Here we report the first discovery of a cancer-derived point mutation on the OGA's non-catalytic stalk domain that aberrantly regulated a small set of OGA-protein interactions and O-GlcNAc hydrolysis in critical cellular processes. We uncovered a novel cancer-promoting mechanism in which the OGA mutant preferentially hydrolyzed the O-GlcNAcylation from modified PDLIM7 and promoted cell malignancy by down-regulating p53 tumor suppressor in different types of cells through transcription inhibition and MDM2-mediated ubiquitination. Our study revealed the OGA deglycosylated PDLIM7 as a novel regulator of p53-MDM2 pathway, offered the first set of direct evidence on OGA substrate recognition beyond its catalytic site, and illuminated new directions to interrogate OGA's precise role without perturbing global O-GlcNAc homeostasis for biomedical applications.
Collapse
Affiliation(s)
| | - Ao Wang
- University of Wisconsin-Madison
| | | | | | | | | | | | | | | | - Jiaoyang Jiang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison
| |
Collapse
|
38
|
Mishra S, Ma J, McKoy D, Sasaki M, Farinelli F, Page RC, Ranek MJ, Zachara N, Kass DA. Transient receptor potential canonical type 6 (TRPC6) O-GlcNAcylation at Threonine-221 plays potent role in channel regulation. iScience 2023; 26:106294. [PMID: 36936781 PMCID: PMC10014292 DOI: 10.1016/j.isci.2023.106294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 01/16/2023] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Transient receptor potential canonical type 6 (TRPC6) is a non-voltage-gated channel that principally conducts calcium. Elevated channel activation contributes to fibrosis, hypertrophy, and proteinuria, often coupled to stimulation of nuclear factor of activated T-cells (NFAT). TRPC6 is post-translationally regulated, but a role for O-linked β-N-acetyl glucosamine (O-GlcNAcylation) as elevated by diabetes, is unknown. Here we show TRPC6 is constitutively O-GlcNAcylated at Ser14, Thr70, and Thr221 in the N-terminus ankryn-4 (AR4) and linker (LH1) domains. Mutagenesis to alanine reveals T221 as a critical controller of resting TRPC6 conductance, and associated NFAT activity and pro-hypertrophic signaling. T→A mutations at sites homologous in closely related TRPC3 and TRPC7 also increases their activity. Molecular modeling predicts interactions between Thr221-O-GlcNAc and Ser199, Glu200, and Glu246, and combined alanine substitutions of the latter similarly elevates resting NFAT activity. Thus, O-GlcNAcylated T221 and interactions with coordinating residues is required for normal TRPC6 channel conductance and NFAT activation.
Collapse
Affiliation(s)
- Sumita Mishra
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Desirae McKoy
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Masayuki Sasaki
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Federica Farinelli
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard C. Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - Mark J. Ranek
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Natasha Zachara
- Department of Biological Chemistry, Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - David A. Kass
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, USA
- Corresponding author
| |
Collapse
|
39
|
Balsollier C, Tomašič T, Yasini D, Bijkerk S, Anderluh M, Pieters RJ. Design of OSMI-4 Analogs Using Scaffold Hopping: Investigating the Importance of the Uridine Mimic in the Binding of OGT Inhibitors. ChemMedChem 2023; 18:e202300001. [PMID: 36752318 DOI: 10.1002/cmdc.202300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/09/2023]
Abstract
β-N-Acetylglucosamine transferase (OGT) inhibition is considered an important topic in medicinal chemistry. The involvement of O-GlcNAcylation in several important biological pathways is pointing to OGT as a potential therapeutic target. The field of OGT inhibitors drastically changed after the discovery of the 7-quinolone-4-carboxamide scaffold and its optimization to the first nanomolar OGT inhibitor: OSMI-4. While OSMI-4 is still the most potent inhibitor reported to date, its physicochemical properties are limiting its use as a potential drug candidate as well as a biological tool. In this study, we have introduced a simple modification (elongation) of the peptide part of OSMI-4 that limits the unwanted cyclisation during OSMI-4 synthesis while retaining OGT inhibitory potency. Secondly, we have kept this modified peptide unchanged while incorporating new sulfonamide UDP mimics to try to improve binding of newly designed OGT inhibitors in the UDP-binding site. With the use of computational methods, a small library of OSMI-4 derivatives was designed, prepared and evaluated that provided information about the OGT binding pocket and its specificity toward quinolone-4-carboxamides.
Collapse
Affiliation(s)
- Cyril Balsollier
- Department of Chemical Biology & Drug Discovery Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.,Department of Pharmaceutical Chemistry Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Tihomir Tomašič
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Daniel Yasini
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Simon Bijkerk
- Department of Chemical Biology & Drug Discovery Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Roland J Pieters
- Department of Chemical Biology & Drug Discovery Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
40
|
Yan S, Peng B, Kan S, Shao G, Xiahou Z, Tang X, Chen YX, Dong MQ, Liu X, Xu X, Li J. Polo-like kinase 1 (PLK1) O-GlcNAcylation is essential for dividing mammalian cells and inhibits uterine carcinoma. J Biol Chem 2023; 299:102887. [PMID: 36626982 PMCID: PMC9932112 DOI: 10.1016/j.jbc.2023.102887] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023] Open
Abstract
The O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) mediates intracellular O-GlcNAcylation modification. O-GlcNAcylation occurs on Ser/Thr residues and is important for numerous physiological processes. OGT is essential for dividing mammalian cells and is involved in many human diseases; however, many of its fundamental substrates during cell division remain unknown. Here, we focus on the effect of OGT on polo-like kinase 1 (PLK1), a mitotic master kinase that governs DNA replication, mitotic entry, chromosome segregation, and mitotic exit. We show that PLK1 interacts with OGT and is O-GlcNAcylated. By utilizing stepped collisional energy/higher-energy collisional dissociation mass spectrometry, we found a peptide fragment of PLK1 that is modified by O-GlcNAc. Further mutation analysis of PLK1 shows that the T291A mutant decreases O-GlcNAcylation. Interestingly, T291N is a uterine carcinoma mutant in The Cancer Genome Atlas. Our biochemical assays demonstrate that T291A and T291N both increase PLK1 stability. Using stable H2B-GFP cells, we found that PLK1-T291A and PLK1-T291N mutants display chromosome segregation defects and result in misaligned and lagging chromosomes. In mouse xenograft models, we demonstrate that the O-GlcNAc-deficient PLK1-T291A and PLK1-T291N mutants enhance uterine carcinoma in animals. Hence, we propose that OGT partially exerts its mitotic function through O-GlcNAcylation of PLK1, which might be one mechanism by which elevated levels of O-GlcNAc promote tumorigenesis.
Collapse
Affiliation(s)
- Sheng Yan
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Bin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Shifeng Kan
- Zaozhuang Municipal Hospital, Shandong, China
| | - Guangcan Shao
- National Institute of Biological Sciences, Beijing, China
| | - Zhikai Xiahou
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Xiangyan Tang
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China
| | - Xiao Liu
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China.
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, Guangdong, China.
| | - Jing Li
- Beijing Key Laboratory of DNA Damage Response and College of Life Sciences, Capital Normal University, Beijing, China.
| |
Collapse
|
41
|
Liu J, Li M, Liu X, Huang J, Yang L. Ultrasensitive assay of O-GlcNAc transferase using capillary electrophoresis-laser induced fluorescence. Electrophoresis 2023; 44:53-61. [PMID: 35871308 DOI: 10.1002/elps.202200118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023]
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) is directly associated with the level of O-GlcNAc glycosylation of biomolecules and various diseases, and it is expected to be a promising potential new therapeutic target. Here, we develop a robust and sensitive method for OGT assay based on capillary electrophoresis-laser induced fluorescence (CE-LIF) method. AF-488-modified peptide containing serine active group is designed as substrate for OGT-catalyzed reaction, and nonradioactive UDP-GlcNAc is employed as sugar donor to perform O-GlcNAc glycosylation modification. The enzyme activity of OGT is measured by quantitative determination of glycosylated peptide produced by the reaction. Large volume sample stacking technique for sample injection and a unique fluorescence collection system for LIF detection are adopted to greatly enhance the detection sensitivity, thus a low limit of detection down to 0.23 pM for OGT detection is achieved. The method is successfully applied to detect OGT activity in clinical blood samples with satisfactory accuracy. Our study provides a simple, accurate, and sensitive method with great potential application in clinical diagnosis of O-GlcNAc-related diseases.
Collapse
Affiliation(s)
- Jianing Liu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, P. R. China
| | - Minmin Li
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, P. R. China
| | - Xiaojuan Liu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, P. R. China
| | - Jing Huang
- Laboratory Department of The First Hospital of Jilin University, Changchun, P. R. China
| | - Li Yang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, Changchun, P. R. China
| |
Collapse
|
42
|
Wenzel DM, Olivier-Van Stichelen S. The O-GlcNAc cycling in neurodevelopment and associated diseases. Biochem Soc Trans 2022; 50:1693-1702. [PMID: 36383066 PMCID: PMC10462390 DOI: 10.1042/bst20220539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/18/2022]
Abstract
Proper neuronal development is essential to growth and adult brain function. Alterations at any step of this highly organized sequence of events, due to genetic mutations or environmental factors, triggers brain malformations, which are leading causes of diseases including epilepsy, intellectual disabilities, and many others. The role of glycosylation in neuronal development has been emphasized for many years, notably in studying human congenital disorders of glycosylation (CDGs). These diseases highlight that genetic defects in glycosylation pathways are almost always associated with severe neurological abnormalities, suggesting that glycosylation plays an essential role in early brain development. Congenital disorders of O-GlcNAcylation are no exception, and all mutations of the O-GlcNAc transferase (OGT) are associated with X-linked intellectual disabilities (XLID). In addition, mouse models and in vitro mechanistic studies have reinforced the essential role of O-GlcNAcylation in neuronal development and signaling. In this review, we give an overview of the role of O-GlcNAcylation in this critical physiological process and emphasize the consequences of its dysregulation.
Collapse
Affiliation(s)
- Dawn M Wenzel
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, U.S.A
| | | |
Collapse
|
43
|
The Potential Roles of Post-Translational Modifications of PPARγ in Treating Diabetes. Biomolecules 2022; 12:biom12121832. [PMID: 36551260 PMCID: PMC9775095 DOI: 10.3390/biom12121832] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The number of patients with type 2 diabetes mellitus (T2DM), which is mainly characterized by insulin resistance and insulin secretion deficiency, has been soaring in recent years. Accompanied by many other metabolic syndromes, such as cardiovascular diseases, T2DM represents a big challenge to public health and economic development. Peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated nuclear receptor that is critical in regulating glucose and lipid metabolism, has been developed as a powerful drug target for T2DM, such as thiazolidinediones (TZDs). Despite thiazolidinediones (TZDs), a class of PPARγ agonists, having been proven to be potent insulin sensitizers, their use is restricted in the treatment of diabetes for their adverse effects. Post-translational modifications (PTMs) have shed light on the selective activation of PPARγ, which shows great potential to circumvent TZDs' side effects while maintaining insulin sensitization. In this review, we will focus on the potential effects of PTMs of PPARγ on treating T2DM in terms of phosphorylation, acetylation, ubiquitination, SUMOylation, O-GlcNAcylation, and S-nitrosylation. A better understanding of PTMs of PPARγ will help to design a new generation of safer compounds targeting PPARγ to treat type 2 diabetes.
Collapse
|
44
|
Konzman D, Fukushige T, Dagnachew M, Krause M, Hanover JA. O-GlcNAc transferase plays a non-catalytic role in C. elegans male fertility. PLoS Genet 2022; 18:e1010273. [PMID: 36383567 PMCID: PMC9710795 DOI: 10.1371/journal.pgen.1010273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 11/30/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
Animal behavior is influenced by the competing drives to maintain energy and to reproduce. The balance between these evolutionary pressures and how nutrient signaling pathways intersect with mating remains unclear. The nutrient sensor O-GlcNAc transferase, which post-translationally modifies intracellular proteins with a single monosaccharide, is responsive to cellular nutrient status and regulates diverse biological processes. Though essential in most metazoans, O-GlcNAc transferase (ogt-1) is dispensable in Caenorhabditis elegans, allowing genetic analysis of its physiological roles. Compared to control, ogt-1 males had a four-fold reduction in mean offspring, with nearly two thirds producing zero progeny. Interestingly, we found that ogt-1 males transferred sperm less often, and virgin males had reduced sperm count. ogt-1 males were also less likely to engage in mate-searching and mate-response behaviors. Surprisingly, we found normal fertility for males with hypodermal expression of ogt-1 and for ogt-1 strains with catalytic-dead mutations. This suggests OGT-1 serves a non-catalytic function in the hypodermis impacting male fertility and mating behavior. This study builds upon research on the nutrient sensor O-GlcNAc transferase and demonstrates a role it plays in the interplay between the evolutionary drives for reproduction and survival.
Collapse
Affiliation(s)
- Daniel Konzman
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Tetsunari Fukushige
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mesgana Dagnachew
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael Krause
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John A. Hanover
- Laboratory of Cellular and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
45
|
Nutrient sensing pathways regulating adult reproductive diapause in C. elegans. PLoS One 2022; 17:e0274076. [PMID: 36112613 PMCID: PMC9480990 DOI: 10.1371/journal.pone.0274076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/22/2022] [Indexed: 11/19/2022] Open
Abstract
Genetic and environmental manipulations, such as dietary restriction, can improve both health span and lifespan in a wide range of organisms, including humans. Changes in nutrient intake trigger often overlapping metabolic pathways that can generate distinct or even opposite outputs depending on several factors, such as when dietary restriction occurs in the lifecycle of the organism or the nature of the changes in nutrients. Due to the complexity of metabolic pathways and the diversity in outputs, the underlying mechanisms regulating diet-associated pro-longevity are not yet well understood. Adult reproductive diapause (ARD) in the model organism Caenorhabditis elegans is a dietary restriction model that is associated with lengthened lifespan and reproductive potential. To explore the metabolic pathways regulating ARD in greater depth, we performed a candidate-based genetic screen analyzing select nutrient-sensing pathways to determine their contribution to the regulation of ARD. Focusing on the three phases of ARD (initiation, maintenance, and recovery), we found that ARD initiation is regulated by fatty acid metabolism, sirtuins, AMPK, and the O-linked N-acetyl glucosamine (O-GlcNAc) pathway. Although ARD maintenance was not significantly influenced by the nutrient sensors in our screen, we found that ARD recovery was modulated by energy sensing, stress response, insulin-like signaling, and the TOR pathway. Further investigation of downstream targets of NHR-49 suggest the transcription factor influences ARD initiation through the fatty acid β-oxidation pathway. Consistent with these findings, our analysis revealed a change in levels of neutral lipids associated with ARD entry defects. Our findings identify conserved genetic pathways required for ARD entry and recovery and uncover genetic interactions that provide insight into the role of OGT and OGA.
Collapse
|
46
|
Liu X, Song S, Chen Z, Gao C, Li Y, Luo Y, Huang J, Zhang Z. Release of O-GlcNAc transferase inhibitor promotes neuronal differentiation of neural stem cells in 3D bioprinted supramolecular hydrogel scaffold for spinal cord injury repair. Acta Biomater 2022; 151:148-162. [PMID: 36002129 DOI: 10.1016/j.actbio.2022.08.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 02/07/2023]
Abstract
Precise fabrication of biomimetic three-dimensional (3D) structure and effective neuronal differentiation under the pathological environment are the key to neural stem cell (NSC)-based spinal cord injury (SCI) therapy. In this study, we have developed a spinal cord-like bioprinted scaffold loading with OSMI-4, a small molecule O-GlcNAc transferase (OGT) inhibitor, to induce and guide the neuron differentiation of NSCs for efficient SCI repair. To achieve this, we developed a supramolecular bioink (SM bioink) consisting of methacrylated gelatin and acrylated β-cyclodextrins to load NSCs and OSMI-4. This bioink showed fast gelation and stable mechanical properties, facilitating bioprinting of functional neural scaffolds. Moreover, the weak host-guest cross-linking of the SM scaffolds significantly improved the cell-matrix interaction for the infiltration and migration of NSCs. What's more, the sustained delivery of OSMI-4 remarkably enhanced the intrinsic neuronal differentiation of the encapsulated NSCs in vitro by inhibiting Notch signaling pathway. In vivo experiment further revealed that the functional bioprinted scaffolds promoted the neuronal regeneration and axonal growth, leading to significant locomotor recovery of the SCI model rats. Together, the NSC-laden bioprinted SM scaffolds in combination with sustained release of the therapeutic agent OSMI-4 largely induced neuronal differentiation of NSCs and thus leading to efficient SCI repair. STATEMENT OF SIGNIFICANCE: Efficient neuronal differentiation of neural stem cells (NSCs) under the complex pathological microenvironment of spinal cord injury (SCI) is a major challenge of neural regeneration. By the use of a supramolecular bioink, we bioprinted a spinal cord-like scaffold loaded with NSCs and a small molecule drug OSMI-4 to significantly induce neuronal differentiation of NSCs for efficient SCI repair in vivo. The scaffolds with spinal cord-like structure can support the interaction and neuronal differentiation of NSCs by providing a dynamic matrix and a source of molecular release of OSMI-4. The influences of OSMI-4 on NSCs and its molecular mechanism were investigated for the first time in this study. Altogether, three-dimensional bioprinting fabrication of NSC- and small molecule drug-laden biomimetic construct may represent a promising therapeutic strategy for SCI repair.
Collapse
Affiliation(s)
- Xiaoyun Liu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Shaoshuai Song
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Zhongjin Chen
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Chen Gao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Yuxuan Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Yu Luo
- Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-coding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Jie Huang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.
| | - Zhijun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
47
|
Griffin ME, Hsieh-Wilson LC. Tools for mammalian glycoscience research. Cell 2022; 185:2657-2677. [PMID: 35809571 PMCID: PMC9339253 DOI: 10.1016/j.cell.2022.06.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 10/17/2022]
Abstract
Cellular carbohydrates or glycans are critical mediators of biological function. Their remarkably diverse structures and varied activities present exciting opportunities for understanding many areas of biology. In this primer, we discuss key methods and recent breakthrough technologies for identifying, monitoring, and manipulating glycans in mammalian systems.
Collapse
Affiliation(s)
- Matthew E Griffin
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Microbiology and Immunology, Scripps Research, La Jolla, CA 92037, USA
| | - Linda C Hsieh-Wilson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
48
|
She C, Zhu J, Liu A, Xu Y, Jiang Z, Peng Y. Dexmedetomidine Inhibits NF-κB-Transcriptional Activity in Neurons Undergoing Ischemia-Reperfusion by Regulating O-GlcNAcylation of SNW1. J Neuropathol Exp Neurol 2022; 81:836-849. [PMID: 35818332 DOI: 10.1093/jnen/nlac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Dexmedetomidine (Dex) is neuroprotective in ischemia-reperfusion (I/R) by suppressing inflammation but the underlying molecular mechanisms are not known. SNW domain-containing protein 1 (SNW1) is a coactivator of the pro-inflammatory transcription factor NF-κB p65. Because SNW1 is regulated by O-GlcNAcylation, we aimed to determine whether this modification influences NF-κB transcriptional activity in neurons undergoing I/R and how Dex may affect the O-GlcNAcylation of SNW1. SH-SY5Y and PC12 cells under hypoxia/reoxygenation (H/R) conditions were treated with Dex and with inhibitors of O-GlcNAc transferase (OGT). O-GlcNAc levels in SNW1 and effects of SNW1 on NF-κB p65 were determined by immunoprecipitation. H/R increased SNW1 protein levels but inhibited O-GlcNAcylation of SNW1. A Luciferase reporter assay demonstrated that increased SNW1 levels led to increased NF-κB p65 activity and increased secretion of neuron-derived inflammatory factors demonstrated by ELISA. Dex reversed the H/R-induced increase of SNW1 protein by upregulating OGT and enhancing O-GlcNAcylation of SNW1. Dex suppression of the SNW1/NF-κB complex resulted in neuroprotection in vitro and in a middle cerebral artery occlusion model in vivo. PKA and ERK1/2 inhibitors abolished the effect of Dex on OGT protein. Taken together, these data indicate that Dex inhibits NF-κB-transcriptional activity in neurons undergoing I/R by regulating O-GlcNAcylation of SNW1.
Collapse
Affiliation(s)
- Chang She
- From the 5th Department of Cardiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P.R. China.,Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Hunan Normal University, The Fourth Hospital of Changsha, Changsha, Hunan, P.R. China
| | - Jiahua Zhu
- 2nd Emergency Department, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, P.R. China
| | - An Liu
- Third Xiangya Hospital Central South University, Changsha, Hunan, P.R. China
| | - Yangting Xu
- Third Xiangya Hospital Central South University, Changsha, Hunan, P.R. China
| | - Zhengqian Jiang
- Third Xiangya Hospital Central South University, Changsha, Hunan, P.R. China
| | - Ya Peng
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Hunan Normal University, The Fourth Hospital of Changsha, Changsha, Hunan, P.R. China
| |
Collapse
|
49
|
Short O-GlcNAcase Is Targeted to the Mitochondria and Regulates Mitochondrial Reactive Oxygen Species Level. Cells 2022; 11:cells11111827. [PMID: 35681522 PMCID: PMC9180253 DOI: 10.3390/cells11111827] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
O-GlcNAcylation is a reversible post-translational modification involved in the regulation of cytosolic, nuclear, and mitochondrial proteins. Only two enzymes, OGT (O-GlcNAc transferase) and OGA (O-GlcNAcase), control the attachment and removal of O-GlcNAc on proteins, respectively. Whereas a variant OGT (mOGT) has been proposed as the main isoform that O-GlcNAcylates proteins in mitochondria, identification of a mitochondrial OGA has not been performed yet. Two splice variants of OGA (short and long isoforms) have been described previously. In this work, using cell fractionation experiments, we show that short-OGA is preferentially recovered in mitochondria-enriched fractions from HEK-293T cells and RAW 264.7 cells, as well as mouse embryonic fibroblasts. Moreover, fluorescent microscopy imaging confirmed that GFP-tagged short-OGA is addressed to mitochondria. In addition, using a Bioluminescence Resonance Energy Transfer (BRET)-based mitochondrial O-GlcNAcylation biosensor, we show that co-transfection of short-OGA markedly reduced O-GlcNAcylation of the biosensor, whereas long-OGA had no significant effect. Finally, using genetically encoded or chemical fluorescent mitochondrial probes, we show that short-OGA overexpression increases mitochondrial ROS levels, whereas long-OGA has no significant effect. Together, our work reveals that the short-OGA isoform is targeted to the mitochondria where it regulates ROS homoeostasis.
Collapse
|
50
|
Dynamic O-GlcNAcylation coordinates ferritinophagy and mitophagy to activate ferroptosis. Cell Discov 2022; 8:40. [PMID: 35504898 PMCID: PMC9065108 DOI: 10.1038/s41421-022-00390-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 02/16/2022] [Indexed: 11/08/2022] Open
Abstract
Ferroptosis is a regulated iron-dependent cell death characterized by the accumulation of lipid peroxidation. A myriad of facets linking amino acid, lipid, redox, and iron metabolisms were found to drive or to suppress the execution of ferroptosis. However, how the cells decipher the diverse pro-ferroptotic stress to activate ferroptosis remains elusive. Here, we report that protein O-GlcNAcylation, the primary nutrient sensor of glucose flux, orchestrates both ferritinophagy and mitophagy for ferroptosis. Following the treatment of ferroptosis stimuli such as RSL3, a commonly used ferroptosis inducer, there exists a biphasic change of protein O-GlcNAcylation to modulate ferroptosis. Pharmacological or genetic inhibition of O-GlcNAcylation promoted ferritinophagy, resulting in the accumulation of labile iron towards mitochondria. Inhibition of O-GlcNAcylation resulted in mitochondria fragmentation and enhanced mitophagy, providing an additional source of labile iron and rendering the cell more sensitive to ferroptosis. Mechanistically, we found that de-O-GlcNAcylation of the ferritin heavy chain at S179 promoted its interaction with NCOA4, the ferritinophagy receptor, thereby accumulating labile iron for ferroptosis. Our findings reveal a previously uncharacterized link of dynamic O-GlcNAcylation with iron metabolism and decision-making for ferroptosis, thus offering potential therapeutic intervention for fighting disease.
Collapse
|