1
|
Nikoonezhad M, Zavaran Hosseini A, Hajifathali A, Parkhideh S, Shadnoush M, Shakiba Y, Zahedi H. Comparison of oral zinc supplement and placebo effect in improving the T-cells regeneration in patients undergoing autologous hematopoietic stem cell transplantation: Clinical trial study. Medicine (Baltimore) 2024; 103:e33170. [PMID: 39705427 DOI: 10.1097/md.0000000000033170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
BACKGROUND Immune reconstitution is a significant factor in the success of "hematopoietic stem cell transplantation" (HSCT). Delaying the immune reconstitution increases the risk of infections and relapse after transplantation. T-cell recovery after HSCT is mainly thymus-dependent, and thymic atrophy is associated with various clinical conditions that correlate with HSCT outcomes. Thymus rejuvenation can improve immune reconstitution after transplantation.Zinc (Zn) plays a pivotal role in thymus rejuvenation. Zn deficiency can lead to thymic atrophy, which increases susceptibility to infections. Zn supplementation restores the immune system by increasing thymus output and T-cell repertoire production.We designed this protocol to investigate the effect of oral Zn supplementation on T-cell recovery in patients undergoing HSCT. METHODS Forty eligible candidates for autologous-HSCT will be selected. They will be randomly divided into Zn and placebo groups. Subsequently, they will receive 3 Zn or placebo tablets for the first 30 days post-HSCT (+1 to +30), followed by 1 pill or placebo for days (+31 to +90). The copy numbers of "recent thymic emigrants" T cells and "T cell Receptor Excision Circles" (TREC) will be assessed before and after the intervention in peripheral blood mononuclear cells (PBMCs). All patients will be followed up 365 days post-HSCT for relapse and infection. CONCLUSION This clinical trial is the first to determine the efficiency of "Zn gluconate" as daily Supplementation in T cell recovery post-HSCT.If successful, an available and inexpensive drug will improve immune system reconstruction after HSCT, reduce the risk of infection, particularly viral infections, and increase patient survival.
Collapse
Affiliation(s)
- Maryam Nikoonezhad
- Department of Immunology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Zavaran Hosseini
- Department of Immunology, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abbas Hajifathali
- Bone Marrow Transplantation Center, Ayatollah Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayeh Parkhideh
- Bone Marrow Transplantation Center, Ayatollah Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Shadnoush
- Department of Clinical Nutrition, Faculty of Nutrition & Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yadollah Shakiba
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hoda Zahedi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Franco CE, Rients EL, Diaz FE, Hansen SL, McGill JL. Dietary Zinc Supplementation in Steers Modulates Labile Zinc Concentration and Zinc Transporter Gene Expression in Circulating Immune Cells. Biol Trace Elem Res 2024; 202:5489-5501. [PMID: 38438601 PMCID: PMC11502596 DOI: 10.1007/s12011-024-04123-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/22/2024] [Indexed: 03/06/2024]
Abstract
Zinc (Zn) is critical for immune function, and marginal Zn deficiency in calves can lead to suboptimal growth and increased disease susceptibility. However, in contrast to other trace minerals such as copper, tissue concentrations of Zn do not change readily in conditions of supplementation or marginal deficiency. Therefore, the evaluation of Zn status remains challenging. Zinc transporters are essential for maintaining intracellular Zn homeostasis, and their expression may indicate changes in Zn status in the animal. Here, we investigated the effects of dietary Zn supplementation on labile Zn concentration and Zn transporter gene expression in circulating immune cells isolated from feedlot steers. Eighteen Angus crossbred steers (261 ± 14 kg) were blocked by body weight and randomly assigned to two dietary treatments: a control diet (58 mg Zn/kg DM, no supplemental Zn) or control plus 150 mg Zn/kg DM (HiZn; 207 mg Zn/kg DM total). After 33 days, Zn supplementation increased labile Zn concentrations (as FluoZin-3 fluorescence) in monocytes, granulocytes, and CD4 T cells (P < 0.05) but had the opposite effect on CD8 and γδ T cells (P < 0.05). Zn transporter gene expression was analyzed on purified immune cell populations collected on days 27 or 28. ZIP11 and ZnT1 gene expression was lower (P < 0.05) in CD4 T cells from HiZn compared to controls. Expression of ZIP6 in CD8 T cells (P = 0.02) and ZnT7 in B cells (P = 0.01) was upregulated in HiZn, while ZnT9 tended (P = 0.06) to increase in B cells from HiZn. These results suggest dietary Zn concentration affects both circulating immune cell Zn concentrations and Zn transporter gene expression in healthy steers.
Collapse
Affiliation(s)
- Carlos E Franco
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, 1907 ISU C-Drive, Ames, IA, USA
| | - Emma L Rients
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Fabian E Diaz
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, 1907 ISU C-Drive, Ames, IA, USA
| | | | - Jodi L McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, 1907 ISU C-Drive, Ames, IA, USA.
| |
Collapse
|
3
|
Sanusi KO, Ibrahim KG, Abubakar MB, Imam MU. Paternal zinc deficiency alters offspring metabolic status in Drosophila melanogaster. J Trace Elem Med Biol 2024; 86:127519. [PMID: 39255533 DOI: 10.1016/j.jtemb.2024.127519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND This study delves into the understudied yet potentially crucial role of paternal zinc deficiency in programming offspring metabolic outcomes. By examining paternal zinc deficiency, we aim to shed light on a previously unexplored avenue with the potential to significantly impact future generations. We investigated the intergenerational effects of paternal zinc deficiency on metabolic parameters in Drosophila melanogaster. METHODS Dietary zinc deficiency was induced by supplementing the diet of Drosophila F0 male flies with TPEN (N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine) from egg stage. The F0 male flies after eclosion were mated with age-matched virgin female flies from the control group, resulting in the F1 offspring generation. The F1 generation were then cultured on a standard diet for subsequent metabolic analyses, including assessments of body weight, locomotion, and levels of glucose, trehalose, glycogen, and triglycerides as well as the expression of related genes. RESULTS We observed an increase (p<0.05) in body weight in male parent flies and female offspring. Negative geotaxis performance was also impaired in the female offspring. Paternal zinc deficiency exerted distinct effects on carbohydrate and lipid metabolism, as evidenced by a significant (p<0.05) increase in trehalose and triglyceride levels in both parent and offspring. Additionally, zinc deficiency led to alterations in the expression of key metabolic genes, including significant (p<0.05) increase in DILP2 mRNA levels, highlighting potential links to insulin signaling. Also, there were reduced mRNA levels of SOD1 and CAT in both parental and offspring generations. Parental zinc deficiency also increased the expression of Eiger and UPD2 mRNA in the offspring, suggesting potential perturbations in the immune response system. CONCLUSION These findings underscore the link between zinc status and various physiological and molecular processes, revealing both immediate and intergenerational impacts on metabolic, antioxidant, and inflammatory pathways and providing valuable insights on the implications of paternal zinc deficiency in Drosophila melanogaster.
Collapse
Affiliation(s)
- Kamaldeen Olalekan Sanusi
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria; Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria; Department of Human Physiology, Faculty of Health Sciences, Al-Hikmah University, Ilorin P.M.B. 1601, Nigeria
| | - Kasimu Ghandi Ibrahim
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria; Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria; Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, P.O.BOX 2000, Zarqa 13110, Jordan; School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Murtala Bello Abubakar
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mustapha Umar Imam
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria; Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University Sokoto, Nigeria.
| |
Collapse
|
4
|
Conti MV, Santero S, Luzzi A, Cena H. Exploring potential mechanisms for zinc deficiency to impact in autism spectrum disorder: a narrative review. Nutr Res Rev 2024; 37:287-295. [PMID: 37728060 DOI: 10.1017/s0954422423000215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Autism spectrum disorder (ASD) is a heterogeneous and complex group of life-long neurodevelopmental disorders. How this clinical condition impacts an individual's intellectual, social and emotional capacities, contributing to alterations in the proprioceptive and sensory systems and increasing their selective attitude towards food, is well described in the literature. This complex condition or status exposes individuals with ASD to an increased risk of developing overweight, obesity and non-communicable diseases compared with the neurotypical population. Moreover, individuals with ASD are characterised by higher levels of inflammation, oxidative stress markers and intestinal dysbiosis. All these clinical features may also appear in zinc deficiency (ZD) condition. In fact, zinc is an essential micronutrient for human health, serving as a structural, catalytic and regulatory component in numerous physiological processes. The aim of this narrative review is to explore role of ZD in ASD. Factors affecting zinc absorption, excretion and dietary intake in this vulnerable population are taken into consideration. Starting from this manuscript, the authors encourage future research to investigate the role of ZD in ASD. The perspective is to potentially find another missing piece in the 'ASD clinical puzzle picture' to improve the health status of these individuals.
Collapse
Affiliation(s)
- M V Conti
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - S Santero
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - A Luzzi
- Clinical Nutrition Unit, General Medicine, ICS Maugeri IRCCS, Pavia, Italy
- Post Graduate Course in Food Science and Human Nutrition, Università Statale di Milano, Milan, Italy
| | - H Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Clinical Nutrition Unit, General Medicine, ICS Maugeri IRCCS, Pavia, Italy
| |
Collapse
|
5
|
Lin Z, Zhang L, Li D. Interpret the potential role of zinc against oxidative stress in inflammation with a practical fluorescent assay. Bioorg Chem 2024; 153:107886. [PMID: 39490137 DOI: 10.1016/j.bioorg.2024.107886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/05/2024]
Abstract
Zinc plays a critical role in inflammation and apoptosis, potentially offering new insights into health and disease beyond its established involvement in various biological processes. A fluorescent probe, SPI, has been designed and synthesized for the real-time detection of dynamic changes of zinc ions (Zn2+) in the potential resistance to oxidative stress, showing fluorescence enhancement at approximately 639 nm with a limit of detection of around 65 pM, which allowed it to identify even low concentrations of Zn2+ with intrinsic excellent biocompatibility. By establishing a cellular inflammation and apoptosis model using HT-DNA, hydrogen peroxide (H2O2), and dexamethasone (DXMS), the study effectively simulates conditions that can alter Zn2+ dynamics. Monitoring the fluorescence changes of SPI in response to these conditions allows researchers to observe how Zn2+ levels fluctuate in real-time, providing a clearer picture of its role in maintaining intracellular redox homeostasis. The findings indicate that SPI can be instrumental in elucidating the detailed molecular mechanisms through which Zn2+ influences immune responses and associates with cellular stress pathways. Overall, the development of SPI not only replenishes a potential assay into the toolbox to study Zn2+ in living cells but also opens new avenues for the further investigations into the therapeutic potential of modulating zinc levels in various pathological conditions.
Collapse
Affiliation(s)
- Zengyan Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, PR China
| | - Lanlan Zhang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, PR China
| | - Daliang Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou 350117, PR China.
| |
Collapse
|
6
|
Li C, Wang K, Wang C, Li J, Zhang Q, Song L, Wu Z, Zhang S. A glucose-rich heteropolysaccharide from Marsdenia tenacissima (Roxb.) Wight et Arn. and its zinc-modified complex enhance immunoregulation by regulating TLR4-Myd88-NF-κB pathway. Int J Biol Macromol 2024; 283:137529. [PMID: 39537046 DOI: 10.1016/j.ijbiomac.2024.137529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/15/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
A previously unreported immunological polysaccharide (MTP70-1) was obtained from Marsdenia tenacissima (Roxb.) Wight et Arn. MTP70-1 (2738 Da) is a heteropolysaccharide that mainly consists of (1 → 5)-linked-L-Araf, t-D-Glcp, (1 → 3,5)-linked-L-Araf, (1 → 4)-linked-D-Galp, (1 → 6)-linked-D-Glcp, and (1 → 3,6)-linked-D-Manp. In vitro cell assays revealed that MTP70-1 exhibits moderate immunomodulatory effects at the cellular level, and MTP70-1 was further modified with zinc to improve these effects. These modifications enhanced the immunomodulatory effects of MTP70-1, as phagocytosis was enhanced, the secretion of cytokines (TNF-α, IL-6, IL-1β, and IL-18) was increased, and the generation of chemokines (NO and ROS) in macrophages was enhanced. The intracellular mechanism by which MTP70-1 and MTP70-Zn activate macrophages was further revealed to be closely related to the TLR4-Myd88-NF-κB signaling pathway. In addition, a microscale thermophoresis binding (MST) assay confirmed that Zn modification can effectively enhance the binding affinity of MTP70-1 for TLR4. Ultimately, better immune-enhancing activity was attained with MTP70-Zn than MTP70-1. The immune-enhancing activity of MTP70-Zn was further demonstrated through zebrafish assays, which revealed that MTP70-Zn can effectively enhance the proliferation of macrophages and neutrophils.
Collapse
Affiliation(s)
- Chong Li
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Kai Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and KLMDASR of Tianjin, Nankai University, Tianjin 300350, China
| | - Cancan Wang
- Medical College, Guangxi University, Nanning 530004, China
| | - Junhao Li
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China
| | - Qian Zhang
- School of Pharmacy, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lijun Song
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Zhongnan Wu
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Shaojie Zhang
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
7
|
Puppa MA, Bennstein SB, Fischer HJ, Rink L. Zinc deficiency impairs the development of human regulatory B cells from purified B cells. J Trace Elem Med Biol 2024; 86:127556. [PMID: 39442468 DOI: 10.1016/j.jtemb.2024.127556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Zinc is a vital trace element, important for many different immune processes and adequate functionality. B cell development is known to be dependent on sufficient zinc supply. Recently a regulatory B cell (Breg) population has been identified, as CD19+IL-10+ B cells, able to regulate immune responses by secretion of anti-inflammatory cytokines, such as IL-10. Due to their promotion of an anti-inflammatory milieu, Bregs could reduce or might even prevent excessive pro-inflammatory responses. Hence, having and maintaining Bregs could be interesting for patients suffering from allergies, asthma, and autoimmune diseases. Therefore, understanding Breg generation, required signaling, and their developmental requirements are important. Since our group could previously show that zinc is important for regulatory T cells, we aimed to determine the effect of zinc deficiency on Breg development from human peripheral blood CD19+ B cells. We observed highest Breg generation with a combined stimulus of CD40L and the toll like receptor (TLR) ligand, CpG-ODN2006. Using this stimulus, we observed that zinc deficient medium significantly decreased Breg generation from purified B cells. This was not seen in Bregs generated from peripheral blood mononuclear cells (PBMCs) without B cell enrichment suggesting a compensatory mechanism. In line with literature, our data also confirms Bregs develop from CD19+ B cells, since total CD19+ frequencies remained unchanged, while Breg frequencies varied between stimuli and zinc media conditions. Our study shows for the first time that zinc deficiency significantly impairs Breg development, which provides an important new perspective for clinical applications and therapeutic strategies.
Collapse
Affiliation(s)
- Mary-Ann Puppa
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Sabrina B Bennstein
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Henrike J Fischer
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
8
|
Bederska-Łojewska D, Szczepanik K, Turek J, Machaczka A, Gąsior Ł, Pochwat B, Piotrowska J, Rospond B, Szewczyk B. Dietary Zinc Restriction and Chronic Restraint Stress Affect Mice Physiology, Immune Organ Morphology, and Liver Function. Nutrients 2024; 16:3934. [PMID: 39599720 PMCID: PMC11597199 DOI: 10.3390/nu16223934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Preclinical and clinical studies suggest that zinc deficiency and chronic stress contribute to depressive symptoms. Our study explores the intricate relationship between these factors by examining their physiological and biochemical effects across various organs in C57Bl/6J mice. METHODS The mice were divided into four groups: control, chronic restraint stress for 3 weeks, a zinc-restricted diet (<3 mg/kg) for 4 weeks, and a combination of stress and zinc restriction. Mice spleen and thymus weights were measured, and hematoxylin-eosin staining was conducted for liver and intestinal morphometry. Moreover, metallothionein (MT-1, MT-2, and MT-3), zinc transporter (ZnT-1), oxidative stress markers (TBARS, SOD, and GSH-Px), and zinc, iron, and copper concentrations in the liver were evaluated. Immunohistochemical analysis of the jejunum for ZIP1 and ZIP4 was also performed. CONCLUSIONS Our findings reveal that dietary zinc restriction and chronic stress induce structural changes in the intestines and immune organs and impact metallothionein expression, oxidative stress, and liver iron and copper homeostasis.
Collapse
Affiliation(s)
- Dorota Bederska-Łojewska
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| | - Kinga Szczepanik
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, ul. Krakowska 1, 32-083 Balice, Poland;
| | - Justyna Turek
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| | - Agata Machaczka
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| | - Łukasz Gąsior
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| | - Bartłomiej Pochwat
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| | - Joanna Piotrowska
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland
| | - Bartłomiej Rospond
- Department of Inorganic and Analytical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, ul. Smętna 12, 31-343 Kraków, Poland (B.S.)
| |
Collapse
|
9
|
Na-Phatthalung P, Sun S, Xie E, Wang J, Min J, Wang F. The zinc transporter Slc30a1 (ZnT1) in macrophages plays a protective role against attenuated Salmonella. eLife 2024; 13:e89509. [PMID: 39475776 PMCID: PMC11524588 DOI: 10.7554/elife.89509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/05/2024] [Indexed: 11/02/2024] Open
Abstract
The zinc transporter Slc30a1 plays an essential role in maintaining cellular zinc homeostasis. Despite this, its functional role in macrophages remains largely unknown. Here, we examine the function of Slc30a1 in host defense using mice models infected with an attenuated stain of Salmonella enterica Typhimurium and primary macrophages infected with the attenuated Salmonella. Bulk transcriptome sequencing in primary macrophages identifies Slc30a1 as a candidate in response to Salmonella infection. Whole-mount immunofluorescence and confocal microscopy imaging of primary macrophage and spleen from Salmonella-infected Slc30a1flag-EGFP mice demonstrate Slc30a1 expression is increased in infected macrophages with localization at the plasma membrane and in the cytosol. Lyz2-Cre-driven Slc30a1 conditional knockout mice (Slc30a1fl/fl;Lyz2-Cre) exhibit increased susceptibility to Salmonella infection compared to control littermates. We demonstrate that Slc30a1-deficient macrophages are defective in intracellular killing, which correlated with reduced activation of nuclear factor kappa B and reduction in nitric oxide (NO) production. Notably, the model exhibits intracellular zinc accumulation, demonstrating that Slc30a1 is required for zinc export. We thus conclude that zinc export enables the efficient NO-mediated antibacterial activity of macrophages to control invading Salmonella.
Collapse
Affiliation(s)
- Pinanong Na-Phatthalung
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of MedicineHangzhouChina
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of MedicineHangzhouChina
| | - Shumin Sun
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of MedicineHangzhouChina
| | - Enjun Xie
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of MedicineHangzhouChina
| | - Jia Wang
- School of Public Health, Zhengzhou UniversityZhengzhouChina
| | - Junxia Min
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of MedicineHangzhouChina
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of MedicineHangzhouChina
| |
Collapse
|
10
|
Yan T, Ma Y, Song X, Hu B, Liu W, Chen Y, Liu X, Ding C, Kou Z, Ding X, Chen T, Zhu X. Associations between multi-metal joint exposure and decreased estimated glomerular filtration rate (eGFR) in solar greenhouse workers: A study of a unique farmer group. CHEMOSPHERE 2024; 366:143467. [PMID: 39368494 DOI: 10.1016/j.chemosphere.2024.143467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/29/2024] [Accepted: 10/03/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Solar greenhouse workers, a unique farmer group, have been reported to have a higher risk of chronic kidney disease (CKD) compared to the general population, possible due to exposure to multiple metals. OBJECTIVE This study aimed to investigate the associations between exposure to multiple metals and the estimated glomerular filtration rate (eGFR). METHODS A cross-sectional study was conducted in the Northwest China. Urine samples were tested for concentration of 14 metals, including chromium, manganese, iron et al. Blood creatinine was measured to calculate eGFR, which was to evaluate the kidney function. Linear model and the Bayesian Kernel Machine Regression (BKMR) models were used to evaluate the associations between metals exposure and eGFR. RESULT The study included 281 solar greenhouse workers, with 128 (45.6%) males and 153 (54.4%) females. The highest median concentrations of metals were zinc (418.55 μg/L), strontium (368.77 μg/L), and iron (55.73 μg/L), respectively. The linear model analysis showed that urinary levels of copper and zinc were negatively associated with eGFR [β = -0.021, 95% CI (-0.048, -0.007); β = -0.018, 95% CI (-0.068, -0.005)] considering a false discovery rate. BKMR results indicated a significant overall negative effect of 14 metals exposure on the eGFR when all metal levels were above the 50th percentile compared to the median value. CONCLUSIONS The decrease in eGFR among solar greenhouse workers was related to mixed metal exposure. Reducing exposure to the metals of copper, zinc, and lead could effectively protects kidney function. Further prospective studies are needed to resolve concerns about reverse causality.
Collapse
Affiliation(s)
- Tenglong Yan
- Beijing Institute of Occupational Disease Prevention and Control, Beijing, 100093, China.
| | - Yetong Ma
- Department of Nutrition, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China; School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xin Song
- School of Public Health and the Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Binshuo Hu
- Beijing Institute of Occupational Disease Prevention and Control, Beijing, 100093, China
| | - Wu Liu
- Jingyuan Country Center for Disease Control and Prevention, Baiyin, 730699, China
| | - Yonglan Chen
- Jingyuan Country Center for Disease Control and Prevention, Baiyin, 730699, China
| | - Xiaodong Liu
- Beijing Institute of Occupational Disease Prevention and Control, Beijing, 100093, China
| | - Chunguang Ding
- National Center for Occupational Safety and Health, National Health Commission of the People's Republic of China, Beijing, 102308, China
| | - Zhenxia Kou
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, 730000, China
| | - Xiaowen Ding
- Beijing Institute of Occupational Disease Prevention and Control, Beijing, 100093, China
| | - Tian Chen
- School of Public Health and the Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, China
| | - Xiaojun Zhu
- National Center for Occupational Safety and Health, National Health Commission of the People's Republic of China, Beijing, 102308, China.
| |
Collapse
|
11
|
Gsoellpointner M, Thanhaeuser M, Kornsteiner-Krenn M, Eibensteiner F, Ristl R, Jilma B, Brandstetter S, Berger A, Haiden N. Micronutrient Intake during Complementary Feeding in Very Low Birth Weight Infants Comparing Early and Late Introduction of Solid Foods: A Secondary Outcome Analysis. Nutrients 2024; 16:3279. [PMID: 39408246 PMCID: PMC11478718 DOI: 10.3390/nu16193279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Background/Objectives: The complementary feeding period is crucial for addressing micronutrient imbalances, particularly in very low birth weight (VLBW) infants. However, the impact of the timing of solid food introduction on micronutrient intake in a representative VLBW population remains unclear. Methods: This prospective, observational study investigated micronutrient intake during complementary feeding in VLBW infants categorized based on whether solids were introduced early (<17 weeks corrected age (CA)) or late (≥17 weeks CA). Nutritional intake was assessed using a 24 h recall at 6 weeks CA and with 3-day dietary records at 12 weeks and at 6, 9, and 12 months CA. Results: Among 218 infants, 115 were assigned to the early group and 82 to the late group. In total, 114-170 dietary records were valid for the final analysis at each timepoint. The timepoint of solid introduction did not affect micronutrient intake, except for a higher iron and phosphorus intake at 6 months CA in the early group (early vs. late: iron 0.71 vs. 0.58 mg/kg/d, adjusted p-value (p-adj.) = 0.04; phosphorus 341 vs. 286 mg/d, p-adj. = 0.04). Total vitamin D, calcium, zinc, and phosphorus greatly met intake recommendations; however, dietary iron intake was insufficient to equalize the iron quantity from supplements during the second half year CA. While nutrient intakes were similar between infants with and without comorbidities, breastfed infants had lower micronutrient intakes compared with formula-fed infants. Conclusions: This study suggests that micronutrient intakes were sufficient during complementary feeding in VLBW infants. However, prolonged iron supplementation may be necessary beyond the introduction of iron-rich solids. Further research is essential to determine micronutrient requirements for infants with comorbidities.
Collapse
Affiliation(s)
- Melanie Gsoellpointner
- Department of Neonatology, Kepler University Hospital, Johannes Kepler University, 4020 Linz, Austria;
| | - Margarita Thanhaeuser
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (M.T.); (M.K.-K.); (F.E.); (S.B.); (A.B.)
| | - Margit Kornsteiner-Krenn
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (M.T.); (M.K.-K.); (F.E.); (S.B.); (A.B.)
| | - Fabian Eibensteiner
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (M.T.); (M.K.-K.); (F.E.); (S.B.); (A.B.)
| | - Robin Ristl
- Center for Medical Data Science, Medical University of Vienna, 1090 Vienna, Austria;
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Sophia Brandstetter
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (M.T.); (M.K.-K.); (F.E.); (S.B.); (A.B.)
| | - Angelika Berger
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria; (M.T.); (M.K.-K.); (F.E.); (S.B.); (A.B.)
| | - Nadja Haiden
- Department of Neonatology, Kepler University Hospital, Johannes Kepler University, 4020 Linz, Austria;
| |
Collapse
|
12
|
Fang D, Jiang D, Shi G, Song Y. The association between dietary zinc intake and osteopenia, osteoporosis in patients with rheumatoid arthritis. BMC Musculoskelet Disord 2024; 25:710. [PMID: 39237949 PMCID: PMC11375818 DOI: 10.1186/s12891-024-07768-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Diet has been shown to be associated with rheumatoid arthritis (RA), of which osteoporosis is the most common and important complication, and zinc has been shown to inhibit the inflammatory response, but studies on the relationship between dietary zinc and osteoporosis in patients with RA are limited and inconclusive. In this study, we aimed to explore the relationship between dietary zinc intake and osteoporosis or osteopenia in patients with RA. METHODS Data on RA patients were derived from the National Health and Nutrition Examination Survey (NHANES) 2007 to 2010, 2013 to 2014, and 2017 to 2020. Weighted univariate and multivariate logistic regression models were performed to explore the association between dietary zinc intake and osteoporosis or osteopenia in RA patients. The relationship was further investigated in different age, body mass index (BMI), nonsteroidal use, dyslipidemia, diabetes, and hypertension population. All results were presented as odds ratios (ORs) and confidence intervals (CIs). RESULTS In total, 905 RA patients aged ≥ 40 years were included. After adjusting all covariates, higher dietary zinc intake was associated with lower odds of osteopenia or osteoporosis (OR = 0.39, 95%CI: 0.18-0.86) in RA patients. The relationship between dietary zinc intake ≥ 19.52 mg and lower odds of osteopenia or osteoporosis were also found in those aged ≥ 60 years (OR = 0.38, 95%CI: 0.16-0.91), BMI normal or underweight (OR = 0.16, 95%CI: 0.03-0.84), nonsteroidal use (OR = 0.14, 95%CI: 0.02-0.82), dyslipidemia (OR = 0.40, 95%CI: 0.17-0.92), diabetes (OR = 0.37, 95%CI: 0.14-0.95), and hypertension (OR = 0.37, 95%CI: 0.16-0.86). CONCLUSION Higher dietary zinc intake was associated with reduced incidence of osteopenia or osteoporosis in patients with RA. Further longitudinal and randomized trials are necessary to validate our findings and explore the underling mechanisms. Adequate dietary zinc intake may beneficial to the bone health in RA patients.
Collapse
Affiliation(s)
- Deyu Fang
- Department of Rheumatology, Wuxi No.2 People's Hospital, Wuxi, 214000, Jiangsu Province, R.P. China
| | - Dawei Jiang
- Huai'an Economic Development Zone Hospital, Huai'an, 223010, Jiangsu Province, R.P. China
| | - Guoxun Shi
- Department of Rheumatology, Wuxi No.2 People's Hospital, Wuxi, 214000, Jiangsu Province, R.P. China
| | - Yang Song
- Department of Orthopaedics, Huzhou Traditional Chinese Medicine Hospital, Affiliated to Zhejiang Chinese Medical University, 315 Nan Jie, Huzhou, 313000, Zhejiang Province, P.R. China.
| |
Collapse
|
13
|
Whitmore M, Tobin I, Burkardt A, Zhang G. Nutritional Modulation of Host Defense Peptide Synthesis: A Novel Host-Directed Antimicrobial Therapeutic Strategy? Adv Nutr 2024; 15:100277. [PMID: 39053604 PMCID: PMC11381887 DOI: 10.1016/j.advnut.2024.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/11/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
The escalating threat of antimicrobial resistance underscores the imperative for innovative therapeutic strategies. Host defense peptides (HDPs), integral components of innate immunity, exhibit profound antimicrobial and immunomodulatory properties. Various dietary compounds, such as short-chain fatty acids, vitamins, minerals, sugars, amino acids, phytochemicals, bile acids, probiotics, and prebiotics have been identified to enhance the synthesis of endogenous HDPs without provoking inflammatory response or compromising barrier integrity. Additionally, different classes of these compounds synergize in augmenting HDP synthesis and disease resistance. Moreover, dietary supplementation of several HDP-inducing compounds or their combinations have demonstrated robust protection in rodents, rabbits, pigs, cattle, and chickens from experimental infections. However, the efficacy of these compounds in inducing HDP synthesis varies considerably among distinct compounds. Additionally, the regulation of HDP genes occurs in a gene-specific, cell type-specific, and species-specific manner. In this comprehensive review, we systematically summarized the modulation of HDP synthesis and the mechanism of action attributed to each major class of dietary compounds, including their synergistic combinations, across a spectrum of animal species including humans. We argue that the ability to enhance innate immunity and barrier function without triggering inflammation or microbial resistance positions the nutritional modulation of endogenous HDP synthesis as a promising host-directed approach for mitigating infectious diseases and antimicrobial resistance. These HDP-inducing compounds, particularly in combinations, harbor substantial clinical potential for further exploration in antimicrobial therapies for both human and other animals.
Collapse
Affiliation(s)
- Melanie Whitmore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Isabel Tobin
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Amanda Burkardt
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States.
| |
Collapse
|
14
|
Asthana S, Maddeshiya T, Tamrakar A, Kumar P, Garg N, Pandey MD. L-Tryptophan-based pyrene conjugate for intracellular zinc-guided excimer emission and controlled nano-assembly. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5633-5641. [PMID: 39139130 DOI: 10.1039/d4ay00979g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
This article describes intracellular zinc-induced excimer emission and tuning of self-assembly from L-tryptophan-pyrene conjugate (1). The zinc-guided excimer formation is due to the interaction of the pyrene moiety in an excited state. AFM studies show the structural modification in the supramolecular nano-assembly of 1 from dome-shaped to porous surface after complexation with zinc ions. Further, the interaction of 1 with Zn(II) ion is also studied using DFT, Job's plot, NMR titration and HRMS. The results of Zn(II) ion determination in natural water samples and RAW 264.7 cells demonstrate the practical utility of 1.
Collapse
Affiliation(s)
- Surabhi Asthana
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| | - Tarkeshwar Maddeshiya
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| | - Arpna Tamrakar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| | - Praveen Kumar
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Mrituanjay D Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
15
|
Palmer AC, Bedsaul-Fryer JR, Stephensen CB. Interactions of Nutrition and Infection: The Role of Micronutrient Deficiencies in the Immune Response to Pathogens and Implications for Child Health. Annu Rev Nutr 2024; 44:99-124. [PMID: 38724105 DOI: 10.1146/annurev-nutr-062122-014910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Approximately five million children die each year from preventable causes, including respiratory infections, diarrhea, and malaria. Roughly half of those deaths are attributable to undernutrition, including micronutrient deficiencies (MNDs). The influence of infection on micronutrient status is well established: The inflammatory response to pathogens triggers anorexia, while pathogens and the immune response can both alter nutrient absorption and cause nutrient losses. We review the roles of vitamin A, vitamin D, iron, zinc, and selenium in the immune system, which act in the regulation of molecular- or cellular-level host defenses, directly affecting pathogens or protecting against oxidative stress or inflammation. We further summarize high-quality evidence regarding the synergistic or antagonistic interactions between MNDs, pathogens, and morbidity or mortality relevant to child health in low- and middle-income countries. We conclude with a discussion of gaps in the literature and future directions for multidisciplinary research on the interactions of MNDs, infection, and inflammation.
Collapse
Affiliation(s)
- Amanda C Palmer
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Jacquelyn R Bedsaul-Fryer
- Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Rockville, Maryland, USA
- Center for Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| | - Charles B Stephensen
- Department of Nutrition, University of California, Davis, California, USA
- Western Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, Davis, California, USA
| |
Collapse
|
16
|
Jakobs J, Bertram J, Rink L. Ca 2+ signals are essential for T-cell proliferation, while Zn 2+ signals are necessary for T helper cell 1 differentiation. Cell Death Discov 2024; 10:336. [PMID: 39043646 PMCID: PMC11266428 DOI: 10.1038/s41420-024-02104-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
The regulation of T-cell fate is crucial for the balance between infection control and tolerance. Calcium (Ca2+) and zinc (Zn2+) signals are both induced after T-cell stimulation, but their specific roles in the fate of activation and differentiation remain to be elucidated. Are Zn2+- and Ca2+ signals responsible for different aspects in T-cell activation and differentiation and do they act in concert or in opposition? It is crucial to understand the interplay of the intracellular signals to influence the fate of T cells in diseases with undesirable T-cell activities or in Zn2+-deficient patients. Human peripheral blood mononuclear cells were stimulated with the Zn2+ ionophore pyrithione and thapsigargin, an inhibitor of the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA). Intracellular Zn2+ and Ca2+ signals were monitored by flow cytometry and ELISA, quantitative PCR and western blot were used to evaluate T-cell differentiation and the underlying molecular mechanism. We found that Zn2+ signals upregulated the early T-cell activation marker CD69, interferon regulatory factor 1 (IRF-1), and Krüppel-like factor 10 (KLF-10) expression, which are important for T helper cell (Th) 1 differentiation. Ca2+ signals, on the other hand, increased T-bet and Forkhead box P3 (FoxP3) expression and interleukin (IL)-2 release. Most interestingly, the combination of Zn2+ and Ca2+ signals was indispensable to induce interferon (IFN)-γ expression and increased the surface expression of CD69 by several-fold. These results highlight the importance of the parallel occurrence of Ca2+ and Zn2+ signals. Both signals act in concert and are required for the differentiation into Th1 cells, for the stabilization of regulatory T cells, and induces T-cell activation by several-fold. This provides further insight into the impaired immune functions of patients with zinc deficiency.
Collapse
Affiliation(s)
- Jana Jakobs
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Jens Bertram
- Institute for Occupational, Social and Environmental Medicine, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, Aachen, Germany.
| |
Collapse
|
17
|
Maywald M, Rink L. Zinc Deficiency and Zinc Supplementation in Allergic Diseases. Biomolecules 2024; 14:863. [PMID: 39062576 PMCID: PMC11274920 DOI: 10.3390/biom14070863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
In recent decades, it has become clear that allergic diseases are on the rise in both Western and developing countries. The exact reason for the increase in prevalence has not been conclusively clarified yet. Multidimensional approaches are suspected in which diet and nutrition seem to play a particularly important role. Allergic diseases are characterized by a hyper-reactive immune system to usually harmless allergens, leading to chronic inflammatory diseases comprising respiratory diseases like asthma and allergic rhinitis (AR), allergic skin diseases like atopic dermatitis (AD), and food allergies. There is evidence that diet can have a positive or negative influence on both the development and severity of allergic diseases. In particular, the intake of the essential trace element zinc plays a very important role in modulating the immune response, which was first demonstrated around 60 years ago. The most prevalent type I allergies are mainly based on altered immunoglobulin (Ig)E and T helper (Th)2 cytokine production, leading to type 2 inflammation. This immune status can also be observed during zinc deficiency and can be positively influenced by zinc supplementation. The underlying immunological mechanisms are very complex and multidimensional. Since zinc supplements vary in dose and bioavailability, and clinical trials often differ in design and structure, different results can be observed. Therefore, different results are not surprising. However, the current literature suggests a link between zinc deficiency and the development of allergies, and shows positive effects of zinc supplementation on modulating the immune system and reducing allergic symptoms, which are discussed in more detail in this review.
Collapse
Affiliation(s)
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University Hospital, 52074 Aachen, Germany;
| |
Collapse
|
18
|
Habib SS, Naz S, Saeed MQ, Ujan JA, Masud S, Mushtaq A, Ullah M, Khan K, Zahid M, Al-Rejaie SS, Mohany M. Assessment of heavy metal levels in polyculture fish farms and their aquatic ecosystems: an integrative study addressing environmental and human health risks associated with dam water usage. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:267. [PMID: 38954229 DOI: 10.1007/s10653-024-02042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/20/2024] [Indexed: 07/04/2024]
Abstract
This study examines the levels of heavy metals in polyculture fish (Labeo rohita, Cyprinus carpio, and Catla catla), water, and sediment in Tanda Dam, Kohat, Pakistan, aiming to understand environmental and health risks. Samples of fish, water, and sediment were collected from 3 fish farms, and heavy metal concentrations were measured using a Flame Atomic Absorption Spectrophotometer (AAS). Results reveal that C. catla exhibited significantly higher (p < 0.05) levels of Zn than other fish species. Conversely, C. carpio showed significantly higher (p < 0.05) concentrations of Pb, Cd, Cr, Mn, Cu, As, and Ni than other species. The heavy metal hierarchy in C. carpio was found to be Zn > Cu > Pb > Cr > Cd > Mn > As > Ni. While heavy metal levels in L. rohita and C. catla generally fell within reference ranges, exceptions were noted for Zn, Pb, and Cd. Conversely, in C. carpio, all metals exceeded reference ranges except for Cu and Ni. Principal Component Analysis (PCA) indicated a close relationship between water and sediment. Additionally, cluster analysis suggested that C. catla formed a distinct cluster from L. rohita and C. carpio, implying different responses to the environment. Despite concerns raised by the Geoaccumulation Index (Igeo) and Contamination Factor (CF), particularly for Cd, which exhibited a high CF. Furthermore, Hazard Index (HI) values for all three fish species were below 1, suggesting low health risks. However, elevated Igeo and CF values for Cd suggest significant pollution originating from anthropogenic sources. This study underscores the importance of monitoring heavy metals in water for both environmental preservation and human health protection. Future research efforts should prioritize pollution control measures to ensure ecosystem and public health safety.
Collapse
Affiliation(s)
- Syed Sikandar Habib
- Department of Zoology, University of Sargodha, Sargodha, 40100, Punjab, Pakistan.
| | - Saira Naz
- Centre for Research on Fish Nutrition and Environmental Ecology of the Ministry of Agriculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Muhammad Qamar Saeed
- Department of Microbiology and Molecular Genetics, Bahauddin Zakariya University Multan, Punjab, 60800, Pakistan
| | - Javed Ahmed Ujan
- Department of Zoology, Shah Abdul Latif University, Khairpur, 66020, Sindh, Pakistan
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32608, USA
| | - Samrah Masud
- Institute of Zoology, Bahauddin Zakariya University, Multan, 60800, Punjab, Pakistan
| | - Alia Mushtaq
- Plant and Environmental Protection, National Agricultural Research Centre, Islamabad, 45500, Pakistan
| | - Mujeeb Ullah
- Department of Zoology, Islamia College University, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Khalid Khan
- Department of Zoology, Islamia College University, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Zahid
- Department of Zoology, Islamia College University, Peshawar, 25120, Khyber Pakhtunkhwa, Pakistan
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, 11451, Riyadh, Saudi Arabia
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
19
|
Schoofs H, Schmit J, Rink L. Zinc Toxicity: Understanding the Limits. Molecules 2024; 29:3130. [PMID: 38999082 PMCID: PMC11243279 DOI: 10.3390/molecules29133130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Zinc, a vital trace element, holds significant importance in numerous physiological processes within the body. It participates in over 300 enzymatic reactions, metabolic functions, regulation of gene expression, apoptosis and immune modulation, thereby demonstrating its essential role in maintaining overall health and well-being. While zinc deficiency is associated with significant health risks, an excess of this trace element can also lead to harmful effects. According to the World Health Organization (WHO), 6.7 to 15 mg per day are referred to be the dietary reference value. An excess of the recommended daily intake may result in symptoms such as anemia, neutropenia and zinc-induced copper deficiency. The European Food Safety Authority (EFSA) defines the tolerable upper intake level (UL) as 25 mg per day, whereas the Food and Drug Administration (FDA) allows 40 mg per day. This review will summarize the current knowledge regarding the calculation of UL and other health risks associated with zinc. For example, zinc intake is not limited to oral consumption; other routes, such as inhalation or topical application, may also pose risks of zinc intoxication.
Collapse
Affiliation(s)
- Hannah Schoofs
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52074 Aachen, Germany
| | - Joyce Schmit
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52074 Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Pauwelstrasse 30, 52074 Aachen, Germany
| |
Collapse
|
20
|
Tezuka H, Imai S. Fine-tuning of mononuclear phagocytes for improved inflammatory responses: role of soybean-derived immunomodulatory compounds. Front Nutr 2024; 11:1399687. [PMID: 38854165 PMCID: PMC11157127 DOI: 10.3389/fnut.2024.1399687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024] Open
Abstract
The concept of inflammation encompasses beneficial and detrimental aspects, which are referred to as infectious and sterile inflammations, respectively. Infectious inflammation plays a crucial role in host defense, whereas sterile inflammation encompasses allergic, autoimmune, and lifestyle-related diseases, leading to detrimental effects. Dendritic cells and macrophages, both of which are representative mononuclear phagocytes (MNPs), are essential for initiating immune responses, suggesting that the regulation of MNPs limits excessive inflammation. In this context, dietary components with immunomodulatory properties have been identified. Among them, soybean-derived compounds, including isoflavones, saponins, flavonoids, and bioactive peptides, act directly on MNPs to fine-tune immune responses. Notably, some soybean-derived compounds have demonstrated the ability to alleviate the symptom of allergy and autoimmunity in mouse models. In this review, we introduce and summarize the roles of soybean-derived compounds on MNP-mediated inflammatory responses. Understanding the mechanism by which soybean-derived molecules regulate MNPs could provide valuable insights for designing safe immunomodulators.
Collapse
Affiliation(s)
- Hiroyuki Tezuka
- Department of Cellular Function Analysis, Research Promotion Headquarters, Fujita Health University (FHU), Aichi, Japan
| | - Shinjiro Imai
- Department of Cellular Function Analysis, Research Promotion Headquarters, Fujita Health University (FHU), Aichi, Japan
- School of Bioscience and Biotechnology, Tokyo University of Technology, Tokyo, Japan
- Institute of Metabolic Function, Kanagawa, Japan
| |
Collapse
|
21
|
Yan X, Wang X, Zhang J, Ming Z, Zhang C, Ma P, Liu Q, Xu Y, Cheng L, Pang X, Li Y. National trends in nine key minerals intake (quantity and source) among U.S. adults, 1999 to march 2020. Nutr J 2024; 23:52. [PMID: 38760828 PMCID: PMC11100034 DOI: 10.1186/s12937-024-00950-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/11/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Changes in economy and dietary guidelines brought a great shock to diet quality and meal behaviors, but if these transformations have extended to minerals intake and their sources was still poorly understood. It is essential to evaluate time trends in minerals intake and their sources to inform policy makers. OBJECTIVE To investigate trends in minerals intake and their sources among U.S. adults. METHODS This analysis used dietary data collected by 24-h recalls from U.S. adults (≥ 20 years) in NHANES (1999-March 2020). Minerals intake, age-adjusted percentage of participants meeting recommendations, and minerals sources were calculated among all participants and by population subgroups in each NHANES survey cycle. Weighted linear or logistic regression models were used to examine the statistical significance of time trends. RESULTS A total of 48223 U.S. adults were included in this analysis. From 1999 to March 2020, intake of calcium (from 0.94 to 1.02 g/day), magnesium (from 308.07 to 321.85 mg/day), phosphorus (from 1.24 to 1.30 g/day), and sodium (from 3.24 to 3.26 mg/day) from food and beverages (FB) and dietary supplements (DSs) significantly increased, and intake of iron (from 19.17 to 16.38 mg/day), zinc (from 16.45 to 14.19 mg/day), copper (from 1.79 to 1.38 mg/day), and potassium (from 2.65 to 2.50 g/day) from FB + DSs decreased (all FDR < 0.05). Additionally, age-adjusted percentage of participants meeting recommendations for calcium, phosphorus, sodium, and selenium significantly increased, that for iron, potassium, zinc, and copper decreased (all FDR < 0.05). Minerals intake and time trends in minerals intake were highly variable depending on age, gender, race/ethnicity, education, and income. For example, white, higher socioeconomic status participants had a higher minerals intake (e.g. iron, zinc, and copper), but had a greater decrease in minerals intake. Furthermore, the percentage of minerals from milks and DSs decreased, and that from beverages increased. CONCLUSION From 1999 to March 2020, both minerals intake and their sources experienced a significant alteration among U.S. adults. Many differences in minerals intake and their food sources across sociodemographic characteristics appeared to narrow over time. Although some improvements were observed, important challenges, such as overconsumption of sodium and underconsumption of potassium, calcium, and magnesium, still remained among U.S. adults.
Collapse
Affiliation(s)
- Xuemin Yan
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road Harbin, P. R. 150081, Harbin, China
| | - Xuanyang Wang
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road Harbin, P. R. 150081, Harbin, China
| | - Jia Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road Harbin, P. R. 150081, Harbin, China
| | - Zhu Ming
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road Harbin, P. R. 150081, Harbin, China
| | - Can Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road Harbin, P. R. 150081, Harbin, China
| | - Pingnan Ma
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road Harbin, P. R. 150081, Harbin, China
| | - Qianmin Liu
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road Harbin, P. R. 150081, Harbin, China
| | - Yuanyuan Xu
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road Harbin, P. R. 150081, Harbin, China
| | - Licheng Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road Harbin, P. R. 150081, Harbin, China
| | - Xibo Pang
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road Harbin, P. R. 150081, Harbin, China
| | - Ying Li
- Department of Nutrition and Food Hygiene, School of Public Health, the National Key Discipline, Harbin Medical University, 157 Baojian Road Harbin, P. R. 150081, Harbin, China.
| |
Collapse
|
22
|
Zhu B, Sun L, Li Z, Shang P, Yang C, Li K, Li J, Zhi Q, Hua Z. Zinc as a potential regulator of the BCR-ABL oncogene in chronic myelocytic leukemia cells. J Trace Elem Med Biol 2024; 83:127407. [PMID: 38325182 DOI: 10.1016/j.jtemb.2024.127407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Generally, decreased zinc in the serum of tumor patients but increased zinc in tumor cells can be observed. However, the role of zinc homeostasis in myeloid leukemia remains elusive. BCR-ABL is essential for the initiation, maintenance, and progression of chronic myelocytic leukemia (CML). We are currently investigating the association between zinc homeostasis and CML. METHODS Genes involved in zinc homeostasis were examined using three GEO datasets. Western blotting and qPCR were used to investigate the effects of zinc depletion on BCR-ABL expression. Furthermore, the effect of TPEN on BCR-ABL promoter activity was determined using the dual-luciferase reporter assay. MRNA stability and protein stability of BCR-ABL were assessed using actinomycin D and cycloheximide. RESULTS Transcriptome data mining revealed that zinc homeostasis-related genes were associated with CML progression and drug resistance. Several zinc homeostasis genes were affected by TPEN. Additionally, we found that zinc depletion by TPEN decreased BCR-ABL mRNA stability and transcriptional activity in K562 CML cells. Zinc supplementation and sodium nitroprusside treatment reversed BCR-ABL downregulation by TPEN, suggesting zinc- and nitric oxide-dependent mechanisms. CONCLUSION Our in vitro findings may help to understand the role of zinc homeostasis in BCR-ABL regulation and thus highlight the importance of zinc homeostasis in CML.
Collapse
MESH Headings
- Humans
- Apoptosis
- Ethylenediamines/pharmacology
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/pharmacology
- Genes, abl
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Zinc/metabolism
Collapse
Affiliation(s)
- Bo Zhu
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Longshuo Sun
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Zhonghua Li
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Pengyou Shang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Chunhao Yang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Kaiqiang Li
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jiahuang Li
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Qi Zhi
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Zichun Hua
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, PR China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
23
|
Liu C, Tang J, Chen Y, Zhang Q, Lin J, Wu S, Han J, Liu Z, Wu C, Zhuo Y, Li Y. Intracellular Zn 2+ promotes extracellular matrix remodeling in dexamethasone-treated trabecular meshwork. Am J Physiol Cell Physiol 2024; 326:C1293-C1307. [PMID: 38525543 DOI: 10.1152/ajpcell.00725.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
Given the widespread application of glucocorticoids in ophthalmology, the associated elevation of intraocular pressure (IOP) has long been a vexing concern for clinicians, yet the underlying mechanisms remain inconclusive. Much of the discussion focuses on the extracellular matrix (ECM) of trabecular meshwork (TM). It is widely agreed that glucocorticoids impact the expression of matrix metalloproteinases (MMPs), leading to ECM deposition. Since Zn2+ is vital for MMPs, we explored its role in ECM alterations induced by dexamethasone (DEX). Our study revealed that in human TM cells treated with DEX, the level of intracellular Zn2+ significantly decreased, accompanied by impaired extracellular Zn2+ uptake. This correlated with changes in several Zrt-, Irt-related proteins (ZIPs) and metallothionein. ZIP8 knockdown impaired extracellular Zn2+ uptake, but Zn2+ chelation did not affect ZIP8 expression. Resembling DEX's effects, chelation of Zn2+ decreased MMP2 expression, increased the deposition of ECM proteins, and induced structural disarray of ECM. Conversely, supplementation of exogenous Zn2+ in DEX-treated cells ameliorated these outcomes. Notably, dietary zinc supplementation in mice significantly reduced DEX-induced IOP elevation and collagen content in TM, thereby rescuing the visual function of the mice. These findings underscore zinc's pivotal role in ECM regulation, providing a novel perspective on the pathogenesis of glaucoma.NEW & NOTEWORTHY Our study explores zinc's pivotal role in mitigating extracellular matrix dysregulation in the trabecular meshwork and glucocorticoid-induced ocular hypertension. We found that in human trabecular meshwork cells treated with dexamethasone, intracellular Zn2+ significantly decreased, accompanied by impaired extracellular Zn2+ uptake. Zinc supplementation rescues visual function by modulating extracellular matrix proteins and lowering intraocular pressure, offering a direction for further exploration in glaucoma management.
Collapse
Affiliation(s)
- Canying Liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jiahui Tang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yuze Chen
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Qi Zhang
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jicheng Lin
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Siting Wu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Jiaxu Han
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Zhe Liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Caiqing Wu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yehong Zhuo
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| | - Yiqing Li
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual ScienceGuangzhouChina
| |
Collapse
|
24
|
Urbanowicz T, Hanć A, Tomczak J, Michalak M, Olasińska-Wiśniewska A, Rzesoś P, Szot M, Filipiak KJ, Krasińska B, Krasiński Z, Tykarski A, Jemielity M. The Protective Effect of the Crosstalk between Zinc Hair Concentration and Lymphocyte Count-Preliminary Report. Life (Basel) 2024; 14:571. [PMID: 38792593 PMCID: PMC11122497 DOI: 10.3390/life14050571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Accepted: 04/28/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND An imbalance between pro- and anti-inflammatory mechanisms is indicated in the pathophysiology of atherosclerotic plaque. The coronary artery and carotid disease, despite sharing similar risk factors, are developed separately. The aim of this study was to analyze possible mechanisms between trace element hair-scalp concentrations and whole blood counts that favor atherosclerotic plaque progression in certain locations. METHODS There were 65 (36 (55%) males and 29 (45%) females) patients with a median age of 68 (61-73) years enrolled in a prospective, preliminary, multicenter analysis. The study group was composed of 13 patients with stable coronary artery disease (CAD group) referred for surgical revascularization due to multivessel coronary disease, 34 patients with carotid artery disease (carotid group) admitted for vascular procedure, and 18 patients in a control group (control group). RESULTS There was a significant difference between the CAD and carotid groups regarding lymphocyte (p = 0.004) counts. The biochemical comparison between the coronary and carotid groups revealed significant differences regarding chromium (Cr) (p = 0.002), copper (Cu) (p < 0.001), and zinc (Zn) (p < 0.001) concentrations. Spearman Rank Order Correlations between lymphocyte counts and trace elements in the analyzed groups were performed, revealing a strong correlation with zinc (R = 0.733, p < 0.001) in the control group (non-CAD, non-carotid). CONCLUSION Significant differences in hair-scalp concentrations related to atherosclerosis location were observed in our analysis. The interplay between zinc concentration and lymphocyte count may play a pivotal role in cardiovascular disease development.
Collapse
Affiliation(s)
- Tomasz Urbanowicz
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Dluga 1/2, 61-848 Poznan, Poland; (T.U.); (A.O.-W.)
| | - Anetta Hanć
- Department of Trace Analysis, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Jolanta Tomczak
- Department of Vascular, Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Science, Dluga 1/2, 61-848 Poznan, Poland; (J.T.)
| | - Michał Michalak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Rokietnicka 7, 60-806 Poznan, Poland;
| | - Anna Olasińska-Wiśniewska
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Dluga 1/2, 61-848 Poznan, Poland; (T.U.); (A.O.-W.)
| | - Patrycja Rzesoś
- Faculty of Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (P.R.); (M.S.)
| | - Mateusz Szot
- Faculty of Medicine, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (P.R.); (M.S.)
| | - Krzysztof J. Filipiak
- Institute of Clinical Science, Maria Sklodowska-Curie Medical Academy, 00-136 Warsaw, Poland;
- Department of Hypertensiology, Angiology and Internal Medicine, University of Medical Sciences, Dluga 1/2, 61-848 Poznan, Poland; (B.K.)
| | - Beata Krasińska
- Department of Hypertensiology, Angiology and Internal Medicine, University of Medical Sciences, Dluga 1/2, 61-848 Poznan, Poland; (B.K.)
| | - Zbigniew Krasiński
- Department of Vascular, Endovascular Surgery, Angiology and Phlebology, Poznan University of Medical Science, Dluga 1/2, 61-848 Poznan, Poland; (J.T.)
| | - Andrzej Tykarski
- Department of Hypertensiology, Angiology and Internal Medicine, University of Medical Sciences, Dluga 1/2, 61-848 Poznan, Poland; (B.K.)
| | - Marek Jemielity
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, Dluga 1/2, 61-848 Poznan, Poland; (T.U.); (A.O.-W.)
| |
Collapse
|
25
|
Jakobs J, Rink L. Zinc Ionophore Pyrithione Mimics CD28 Costimulatory Signal in CD3 Activated T Cells. Int J Mol Sci 2024; 25:4302. [PMID: 38673887 PMCID: PMC11050009 DOI: 10.3390/ijms25084302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Zinc is an essential trace element that plays a crucial role in T cell immunity. During T cell activation, zinc is not only structurally important, but zinc signals can also act as a second messenger. This research investigates zinc signals in T cell activation and their function in T helper cell 1 differentiation. For this purpose, peripheral blood mononuclear cells were activated via the T cell receptor-CD3 complex, and via CD28 as a costimulatory signal. Fast and long-term changes in intracellular zinc and calcium were monitored by flow cytometry. Further, interferon (IFN)-γ was analyzed to investigate the differentiation into T helper 1 cells. We show that fast zinc fluxes are induced via CD3. Also, the intracellular zinc concentration dramatically increases 72 h after anti-CD3 and anti-CD28 stimulation, which goes along with the high release of IFN-γ. Interestingly, we found that zinc signals can function as a costimulatory signal for T helper cell 1 differentiation when T cells are activated only via CD3. These results demonstrate the importance of zinc signaling alongside calcium signaling in T cell differentiation.
Collapse
Affiliation(s)
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany;
| |
Collapse
|
26
|
Sagasaki M, Maruyama Y, Nakashima A, Fukui A, Yokoo T. Association between the serum zinc level and nutritional status represented by the geriatric nutritional Rrisk index. Clin Exp Nephrol 2024; 28:300-306. [PMID: 38141088 DOI: 10.1007/s10157-023-02438-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Although it is widely known that patients with chronic kidney disease (CKD) can develop zinc deficiency, in our previous analysis, the estimated glomerular filtration rate (eGFR) was not independently associated with the serum zinc level. Thus, a post hoc analysis was conducted to investigate the involvement of nutritional status. METHODS A total of 655 subjects not on dialysis (402 males; mean age, 57 ± 18 years) who underwent serum zinc level measurements at Jikei University Hospital between April 2018 and March 2019 were selected using the Standardized Structured Medical Information eXchange2 (SS-MIX2) system. In addition, anthropometric data and the Geriatric Nutritional Risk Index (GNRI) representing nutritional status were obtained, and the relationship between the serum zinc level and nutritional status was investigated by multiple regression analysis. RESULTS The serum albumin level and the GNRI were lower in the zinc-deficiency group, and both were positively associated with the serum zinc level (rho = 0.44, P < 0.01 and rho = 0.44, P < 0.01, respectively). On multiple regression analysis, the GNRI (t = 3.09, P < 0.01) and serum albumin level (t = 4.75, P < 0.01) were independently associated with the serum zinc level. Although a higher eGFR was associated with a higher serum zinc level, this association disappeared on multivariate analysis. CONCLUSION In this post hoc analysis, the GNRI, as well as the serum albumin level, were correlated with the serum zinc level, indicating that nutritional status is an important determinant of the zinc level. Further investigations are needed to clarify the effects of nutritional status and kidney function on zinc deficiency.
Collapse
Affiliation(s)
- Makoto Sagasaki
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi Minato-ku, Tokyo, 105-8471, Japan
| | - Yukio Maruyama
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi Minato-ku, Tokyo, 105-8471, Japan.
| | - Akio Nakashima
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi Minato-ku, Tokyo, 105-8471, Japan
| | - Akira Fukui
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi Minato-ku, Tokyo, 105-8471, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi Minato-ku, Tokyo, 105-8471, Japan
| |
Collapse
|
27
|
Kocyła AM, Czogalla A, Wessels I, Rink L, Krężel A. A combined biochemical and cellular approach reveals Zn 2+-dependent hetero- and homodimeric CD4 and Lck assemblies in T cells. Structure 2024; 32:292-303.e7. [PMID: 38157858 DOI: 10.1016/j.str.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/25/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
The CD4 or CD8 co-receptors' interaction with the protein-tyrosine kinase Lck initiates the tyrosine phosphorylation cascade leading to T cell activation. A critical question is: to what extent are co-receptors and Lck coupled? Our contribution concerns Zn2+, indispensable for CD4- and CD8-Lck formation. We combined biochemical and cellular approaches to show that dynamic fluctuations of free Zn2+ in physiological ranges influence Zn(CD4)2 and Zn(CD4)(Lck) species formation and their ratio, although the same Zn(Cys)2(Cys)2 cores. Moreover, we demonstrated that the affinity of Zn2+ to CD4 and CD4-Lck species differs significantly. Increased intracellular free Zn2+ concentration in T cells causes higher CD4 partitioning in the plasma membrane. We additionally found that CD4 palmitoylation decreases the specificity of CD4-Lck formation in the reconstituted membrane model. Our findings help elucidate co-receptor-Lck coupling stoichiometry and demonstrate that intracellular free Zn2+ has a major role in the interplay between CD4 dimers and CD4-Lck assembly.
Collapse
Affiliation(s)
- Anna M Kocyła
- Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - Inga Wessels
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Lothar Rink
- Institute of Immunology, Faculty of Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland.
| |
Collapse
|
28
|
Lowe NM, Hall AG, Broadley MR, Foley J, Boy E, Bhutta ZA. Preventing and Controlling Zinc Deficiency Across the Life Course: A Call to Action. Adv Nutr 2024; 15:100181. [PMID: 38280724 PMCID: PMC10882121 DOI: 10.1016/j.advnut.2024.100181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024] Open
Abstract
Through diverse roles, zinc determines a greater number of critical life functions than any other single micronutrient. Beyond the well-recognized importance of zinc for child growth and resistance to infections, zinc has numerous specific roles covering the regulation of glucose metabolism, and growing evidence links zinc deficiency with increased risk of diabetes and cardiometabolic disorders. Zinc nutriture is, thus, vitally important to health across the life course. Zinc deficiency is also one of the most common forms of micronutrient malnutrition globally. A clearer estimate of the burden of health disparity attributable to zinc deficiency in adulthood and later life emerges when accounting for its contribution to global elevated fasting blood glucose and related noncommunicable diseases (NCDs). Yet progress attenuating its prevalence has been limited due, in part, to the lack of sensitive and specific methods to assess human zinc status. This narrative review covers recent developments in our understanding of zinc's role in health, the impact of the changing climate and global context on zinc intake, novel functional biomarkers showing promise for monitoring population-level interventions, and solutions for improving population zinc intake. It aims to spur on implementation of evidence-based interventions for preventing and controlling zinc deficiency across the life course. Increasing zinc intake and combating global zinc deficiency requires context-specific strategies and a combination of complementary, evidence-based interventions, including supplementation, food fortification, and food and agricultural solutions such as biofortification, alongside efforts to improve zinc bioavailability. Enhancing dietary zinc content and bioavailability through zinc biofortification is an inclusive nutrition solution that can benefit the most vulnerable individuals and populations affected by inadequate diets to the greatest extent.
Collapse
Affiliation(s)
- Nicola M Lowe
- Center for Global Development, University of Central Lancashire, Preston, United Kingdom.
| | - Andrew G Hall
- Department of Nutrition, University of California, Davis, CA, United States; Department of Nutritional Sciences & Toxicology, University of California, Berkeley, CA, United States
| | - Martin R Broadley
- Rothamsted Research, West Common, Harpenden, United Kingdom; School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Jennifer Foley
- HarvestPlus, International Food Policy Research Institute, Washington, DC, United States
| | - Erick Boy
- HarvestPlus, International Food Policy Research Institute, Washington, DC, United States
| | - Zulfiqar A Bhutta
- Center for Global Child Health, The Hospital for Sick Children, Toronto, ON, Canada; Center of Excellence in Women and Child Health, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
29
|
Justiz-Vaillant AA, Gopaul D, Soodeen S, Arozarena-Fundora R, Barbosa OA, Unakal C, Thompson R, Pandit B, Umakanthan S, Akpaka PE. Neuropsychiatric Systemic Lupus Erythematosus: Molecules Involved in Its Imunopathogenesis, Clinical Features, and Treatment. Molecules 2024; 29:747. [PMID: 38398500 PMCID: PMC10892692 DOI: 10.3390/molecules29040747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is an idiopathic chronic autoimmune disease that can affect any organ in the body, including the neurological system. Multiple factors, such as environmental (infections), genetic (many HLA alleles including DR2 and DR3, and genes including C4), and immunological influences on self-antigens, such as nuclear antigens, lead to the formation of multiple autoantibodies that cause deleterious damage to bodily tissues and organs. The production of autoantibodies, such as anti-dsDNA, anti-SS(A), anti-SS(B), anti-Smith, and anti-neuronal DNA are characteristic features of this disease. This autoimmune disease results from a failure of the mechanisms responsible for maintaining self-tolerance in T cells, B cells, or both. Immune complexes, circulating antibodies, cytokines, and autoreactive T lymphocytes are responsible for tissue injury in this autoimmune disease. The diagnosis of SLE is a rheumatological challenge despite the availability of clinical criteria. NPSLE was previously referred to as lupus cerebritis or lupus sclerosis. However, these terms are no longer recommended because there is no definitive pathological cause for the neuropsychiatric manifestations of SLE. Currently, the treatment options are primarily based on symptomatic presentations. These include the use of antipsychotics, antidepressants, and anxiolytic medications for the treatment of psychiatric and mood disorders. Antiepileptic drugs to treat seizures, and immunosuppressants (e.g., corticosteroids, azathioprine, and mycophenolate mofetil), are directed against inflammatory responses along with non-pharmacological interventions.
Collapse
Affiliation(s)
- Angel A. Justiz-Vaillant
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (B.P.); (P.E.A.)
| | - Darren Gopaul
- Port of Spain General Hospital, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago;
| | - Sachin Soodeen
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (B.P.); (P.E.A.)
| | - Rodolfo Arozarena-Fundora
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs, San Juan 00000, Trinidad and Tobago; (R.A.-F.); (O.A.B.)
- Department of Clinical and Surgical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 00000, Trinidad and Tobago
| | - Odette Arozarena Barbosa
- Eric Williams Medical Sciences Complex, North Central Regional Health Authority, Champs Fleurs, San Juan 00000, Trinidad and Tobago; (R.A.-F.); (O.A.B.)
| | - Chandrashehkar Unakal
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (B.P.); (P.E.A.)
| | - Reinand Thompson
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (B.P.); (P.E.A.)
| | - Bijay Pandit
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (B.P.); (P.E.A.)
| | - Srikanth Umakanthan
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (B.P.); (P.E.A.)
| | - Patrick E. Akpaka
- Department of Para-Clinical Sciences, University of the West Indies, St. Augustine Campus, St. Augustine 00000, Trinidad and Tobago; (S.S.); (C.U.); (R.T.); (B.P.); (P.E.A.)
| |
Collapse
|
30
|
Wilk A, Setkowicz Z, Banas D, Fernández-Ruiz R, Marguí E, Matusiak K, Wrobel P, Wudarczyk-Mocko J, Janik-Olchawa N, Chwiej J. Glioblastoma multiforme influence on the elemental homeostasis of the distant organs: the results of inter-comparison study carried out with TXRF method. Sci Rep 2024; 14:1254. [PMID: 38218977 PMCID: PMC10787745 DOI: 10.1038/s41598-024-51731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
Glioblastoma (GBM) is a fast-growing and aggressive brain tumor which invades the nearby brain tissue but generally does not spread to the distant organs. Nonetheless, if untreated, GBM can result in patient death in time even less than few months from the diagnosis. The influence of the tumor progress on organs other than brain is obvious but still not well described. Therefore, we examined the elemental abnormalities appearing in selected body organs (kidney, heart, spleen, lung) in two rat models of GBM. The animals used for the study were subjected to the implantation of human GBM cell lines (U87MG and T98G) characterized by different levels of invasiveness. The elemental analysis of digested organ samples was carried out using the total reflection X-ray fluorescence (TXRF) method, independently, in three European laboratories utilizing various commercially available TXRF spectrometers. The comparison of the data obtained for animals subjected to T98G and U87MG cells implantation showed a number of elemental anomalies in the examined organs. What is more, the abnormalities were found for rats even if neoplastic tumor did not develop in their brains. The most of alterations for both experimental groups were noted in the spleen and lungs, with the direction of the found element changes in these organs being the opposite. The observed disorders of element homeostasis may result from many processes occurring in the animal body as a result of implantation of cancer cells or the development of GBM, including inflammation, anemia of chronic disease or changes in iron metabolism. Tumor induced changes in organ elemental composition detected in cooperating laboratories were usually in a good agreement. In case of elements with higher atomic numbers (Fe, Cu, Zn and Se), 88% of the results were classified as fully compliant. Some discrepancies between the laboratories were found for lighter elements (P, S, K and Ca). However, also in this case, the obtained results fulfilled the requirements of full (the results from three laboratories were in agreement) or partial agreement (the results from two laboratories were in agreement).
Collapse
Affiliation(s)
- Aleksandra Wilk
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Zuzanna Setkowicz
- Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Dariusz Banas
- Institute of Physics, Jan Kochanowski University, Kielce, Poland
- Holy Cross Cancer Center, Kielce, Poland
| | - Ramón Fernández-Ruiz
- Interdepartmental Research Service (SIdI), Autonomous University of Madrid, Madrid, Spain
| | - Eva Marguí
- Department of Chemistry, University of Girona, Girona, Spain
| | - Katarzyna Matusiak
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | - Pawel Wrobel
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland
| | | | - Natalia Janik-Olchawa
- Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Joanna Chwiej
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, Krakow, Poland.
| |
Collapse
|
31
|
Görg R, Büttgenbach A, Jakobs J, Kurtoğlu Babayev FH, Rolles B, Rink L, Wessels I. Leukemia cells accumulate zinc for oncofusion protein stabilization. J Nutr Biochem 2024; 123:109482. [PMID: 37839758 DOI: 10.1016/j.jnutbio.2023.109482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Acute promyelocytic leukemia (APL) and chronic myeloid leukemia (CML) are both hematological malignancies characterized by genetic alterations leading to the formation of oncofusion proteins. The classical chromosomal aberrations in APL and CML result in the PML-RARα and BCR-ABL1 oncofusion proteins, respectively. Interestingly, our flow cytometric analyses revealed elevated free intracellular zinc levels in various leukemia cells, which may play a role in stabilizing oncofusion proteins in leukemia and thus support cell proliferation and malignancy. Long-term zinc deficiency resulted in the degradation of PML-RARα in NB4 cells (APL cell line) and of BCR-ABL1 in K562 cells (CML cell line). This degradation may be explained by increased caspase 3 activity observed in zinc deficient cells, whereas zinc reconstitution normalized the caspase 3 activity and abolished zinc deficiency-induced oncofusion protein degradation. In NB4 cells, fluorescence microscopic images further indicated enlarged and enriched lysosomes during zinc deficiency, suggesting increased rates of autophagy. Moreover, NB4 cells exhibited increased expression of the zinc transporters ZIP2, ZIP10 and ZnT3 during zinc deficiency and revealed excessive accumulation of zinc in contrast to healthy peripheral blood mononuclear cells (PBMCs), when zinc was abundantly available extracellularly. Our results highlight the importance of altered zinc homeostasis for some characteristics in leukemia cells, uncover potential pathways underlying the effects of zinc deficiency in leukemia cells, and provide potential alternative strategies by which oncofusion proteins can be degraded.
Collapse
Affiliation(s)
- Richard Görg
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anna Büttgenbach
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jana Jakobs
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | | | - Benjamin Rolles
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany; Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Aachen, Germany; Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lothar Rink
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Inga Wessels
- Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany; Center of Allergy & Environment (ZAUM), Technical University and Helmholtzzentrum Munich, Munich, Germany.
| |
Collapse
|
32
|
Mairinger E, Wessolly M, Buderath P, Borchert S, Henrich L, Mach P, Steinborn J, Kimming R, Jasani B, Schmid KW, Bankfalvi A, Mairinger FD. Tumor cell cytoplasmic metallothionein expression associates with differential tumor immunogenicity and prognostic outcome in high-grade serous ovarian carcinoma. Front Oncol 2023; 13:1252700. [PMID: 38023247 PMCID: PMC10663300 DOI: 10.3389/fonc.2023.1252700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Background The underlying mechanism of high T-cell presence as a favorable prognostic factor in high-grade serous ovarian carcinoma (HGSOC) is not yet understood. In addition to immune cells, various cofactors are essential for immune processes. One of those are metallothioneins (MTs), metal-binding proteins comprising various isoforms. MTs play a role in tumor development and drug resistance. Moreover, MTs influence inflammatory processes by regulating zinc homeostasis. In particular, T-cell function and polarization are particularly susceptible to changes in zinc status. The aim of the present study was to investigate a possible role of MT-mediated immune response and its association with prognostic outcome in ovarian cancer. Methods A retrospective study was conducted on a clinically well-characterized cohort of 24 patients with HGSOC treated at the University Hospital of Essen. Gene expression patterns for anti-cancer immunogenicity-related targets were performed using the NanoString nCounter platform for digital gene expression analysis with the appurtenant PanCancer Immune Profiling panel, consisting of 770 targets and 30 reference genes. Tumor-associated immunohistochemical MT protein expression was evaluated using a semi-quantitative four-tier Immunohistochemistry (IHC) scoring. Results MT immunoexpression was detected in 43% (10/23) of all HGSOC samples. MT immunoexpression levels showed a significant association to survival, leading to prolonged progression-free and overall survival in positively stained tumors. Furthermore, T-cell receptor signaling gene signature showed a strong activation in MT-positive tumors. Activated downstream signaling cascades resulting in elevated interferon-gamma expression with a shift in the balance between T helper cells (TH1 and TH2) could be observed in the MT-positive subgroup. In addition, a higher expression pattern of perforin and several granzymes could be detected, overall suggestive of acute, targeted anti-cancer immune response in MT-positive samples. Conclusion This is the first study combining broad, digital mRNA screening of anti-tumor immune response-associated genes and their relation to MT-I/II in ovarian cancer. MT overexpression is associated with molecular characteristics of an anti-cancer immune response and is a strong prognostic marker in ovarian HGSOC. The observed immune cell activation associated with tumor MT expression comprises but is not limited to T cells and natural killer cells.
Collapse
Affiliation(s)
- Elena Mairinger
- Institute of Pathology, University Hospital Essen, Essen, Germany
| | - Michael Wessolly
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Paul Buderath
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Sabrina Borchert
- Institute of Pathology, University Hospital Essen, Essen, Germany
| | - Larissa Henrich
- Institute of Pathology, University Hospital Essen, Essen, Germany
| | - Pawel Mach
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Julia Steinborn
- Institute of Pathology, University Hospital Essen, Essen, Germany
| | - Rainer Kimming
- Department of Gynecology and Obstetrics, University Hospital Essen, Essen, Germany
| | - Bharat Jasani
- Department of Pathology, Targos - A Discovery Life Sciences Company, Kassel, Germany
| | | | - Agnes Bankfalvi
- Institute of Pathology, University Hospital Essen, Essen, Germany
| | | |
Collapse
|
33
|
Yang M, Li Y, Yao C, Wang Y, Yan C. Association between serum copper-zinc ratio and respiratory tract infection in children and adolescents. PLoS One 2023; 18:e0293836. [PMID: 37917592 PMCID: PMC10621854 DOI: 10.1371/journal.pone.0293836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND The aim of this study was to explore the association between serum copper-zinc (Cu-Zn) ratio and the risk of respiratory tract infection in children and adolescents. METHODS This cross-sectional study collected the data of 1695 participants who aged 6-17 years with follow-up data on respiratory tract infection in 2011-2012, 2013-2014 and 2015-2016 cycles from the National Health and Nutrition Examination Survey (NHANES) database. Univariate logistic regression analysis was applied to explore the covariates. Each covariate was adjusted in multivariate logistic regression analysis to explore the correlation between serum Cu-Zn ratio and respiratory tract infection. Subgroup analysis was performed to stratify the data according to age, gender and BMI. Restricted cubic spline (RCS) curve was plotted to identify the association between serum Cu-Zn ratio and respiratory tract infection. RESULTS The results of RCS curve depicted that the risk of respiratory tract infection was increased as the elevation of the serum Cu-Zn ratio. After adjusting for confounders, risk of respiratory tract infection in children and adolescents was elevated with the increase of serum copper-zinc ratio (OR = 1.38, 95%CI: 1.19-1.60). Compared with people with serum copper-zinc ratio <1.25, subjects who had serum copper-zinc ratio >1.52 was associated with increased risk of respiratory tract infection in children and adolescents (OR = 1.88, 95%CI: 1.19-2.98). Subgroup analysis demonstrated that the risk of respiratory tract infection was elevated as the increase of serum copper-zinc ratio in participants <12 years (OR = 1.65, 95%CI: 1.28-2.12), ≥12 years (OR = 1.27, 95%CI: 1.03-1.57), males (OR = 1.63, 95%CI: 1.29-2.06), females (OR = 1.26, 95%CI: 1.01-1.57), underweight and normal (OR = 1.35, 95%CI: 1.11-1.65), and overweight and obese participants (OR = 1.44, 95%CI: 1.15-1.80). CONCLUSION Higher serum Cu-Zn ratio was associated with increased risk of respiratory tract infection in children and adolescents, which suggests the importance of Zn supplement and the balance of serum Cu-Zn ratio in children and adolescents.
Collapse
Affiliation(s)
- Mei Yang
- Department of Pediatrics, Xinglin Branch of the First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yanshan Li
- Department of Pediatrics, Xinglin Branch of the First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Chunlan Yao
- Department of Pediatrics, Xinglin Branch of the First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yanzu Wang
- Department of Pediatrics, Xinglin Branch of the First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Caijin Yan
- Department of Pediatrics, Xinglin Branch of the First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
34
|
Ma W, Mei P. SLC10A3 Is a Prognostic Biomarker and Involved in Immune Infiltration and Programmed Cell Death in Lower Grade Glioma. World Neurosurg 2023; 178:e595-e640. [PMID: 37543196 DOI: 10.1016/j.wneu.2023.07.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND The association between SLC10A3 (solute carrier family 10 member 3) and lower grade glioma (LGG) remains unclear. METHODS We used public databases and bioinformatics analysis to analyze SLC10A3. These included The Cancer Genome Atlas, Genotype-Tissue Expansion, Chinese Glioma Genome Atlas, Human Protein Atlas, GeneCards, cBioPortal, Search Tool for the Retrieval of Interacting Genes/Proteins, Gene Expression Profiling Interactive Analysis, Tumor Immune Estimation Resource, Tumor-Immune System Interaction Database, receiver operating characteristic curve analysis, Kaplan-Meier analysis, Cox analysis, nomograms, calibration plots, gene ontology/Kyoto Encyclopedia of Genes and Genomes enrichment analysis, gene set enrichment analysis, single-sample gene set enrichment analysis, and Spearman's correlation analysis. RESULTS SLC10A3 was upregulated in adrenocortical carcinoma, glioblastoma, and LGG and was associated with good overall survival (OS) in adrenocortical carcinoma and poor OS in LGG and glioblastoma. SLC10A3 was increased with increased World Health Organization grade, upregulated in isocitrate dehydrogenase-wild type, 1p/19q (chromosome arms 1p and 19q) non-co-deleted, and higher in astrocytoma. Patients with LGG were grouped by the occurrence of the clinical outcome endpoints (i.e., OS, disease-specific survival [DSS], and progression-free interval events). Genetic alterations in SLC10A3 were associated with poor progression-free survival in LGG. Most of clinical characteristics were associated with the SLC10A3 expression level. SLC10A3 with diagnostic and prognostic value (OS, DSS, and progression-free interval) was an independent prognostic factor in LGG. Moreover, Nomograms (WHO grade, 1p/19q codeletion, age and SLC10A3) had moderately accurate predictive for OS and DSS. Functional analysis showed that SLC10A3 might participate in the transport of multiple substances, neurogenic signaling, immune response, and programmed cell death in LGG. SLC10A3 correlated with immune infiltration in LGG and moderately correlated with the gene signature of pyroptosis, lysosome-dependent cell death, necroptosis, apoptosis, ferroptosis, alkaliptosis, and autophagy-dependent cell death. CONCLUSIONS SLC10A3 is a potential diagnostic and prognostic biomarker for LGG and might be associated with substance transport, neurogenic signaling, immune infiltration, and programmed cell death in LGG.
Collapse
Affiliation(s)
- Weibo Ma
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pengying Mei
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
35
|
Zhivkova T, Culita DC, Abudalleh A, Dyakova L, Mocanu T, Madalan AM, Georgieva M, Miloshev G, Hanganu A, Marinescu G, Alexandrova R. Homo- and heterometallic complexes of Zn(II), {Zn(II)Au(I)}, and {Zn(II)Ag(I)} with pentadentate Schiff base ligands as promising anticancer agents. Dalton Trans 2023; 52:12282-12295. [PMID: 37574873 DOI: 10.1039/d3dt01749d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Two families of homo- and heterometallic complexes, [Zn2L1(μ-OH)(H2O)2](ClO4)2, [Zn2L2(μ-OH)(H2O)2](ClO4)2, [Zn2L3(μ-OH)(H2O)2](ClO4)2, 1∞[{L1Zn2(μ-OH)}{μ-[Ag(CN)2]}](ClO4), [{L1Zn2(μ-OH)}2{μ-[Au(CN)2]}{[Au(CN)2]2}](ClO4)·H2O, 1∞[{L2Zn2(μ3-OH)}2(H2O){μ-[Ag(CN)2]}](ClO4)3·THF·0.5MeOH, 1∞[{L2Zn2(μ3-OH)}2(H2O){μ-[Au(CN)2]}](ClO4)3·THF·H2O, and 1∞[{L3Zn2(μ-OH)}{μ-[Ag(CN)2]}][Ag(CN)2]·H2O, respectively, have been synthesized and characterized. The Schiff bases used as ligands were obtained by condensation reactions of 2,6-diformyl-p-cresol with N,N-dimethyl-ethylenediamine (HL1), 2-aminomethyl-pyridine (HL2), and 2-aminoethyl-pyridine (HL3), respectively. The cytotoxic/cytostatic and genotoxic effects in cultured human MCF-7 (luminal type A breast cancer), MDA-MB-231 (triple negative breast cancer), HeLa (cervical carcinoma), and Lep-3 (non-tumor embryonal fibroblastoid cells) were studied. The investigations were performed by thiazolyl blue tetrazolium bromide test (MTT test), neutral red uptake cytotoxicity assay, crystal violet staining, hematoxylin and eosin staining, double staining with acridine orange and propidium iodide, AnnexinV/FITC, and Comet assay in short-term experiments (24-72 h, with monolayer cell cultures) as well as by 3D colony-forming method in long-term experiments (28 days, with 3D cancer cell colonies). The results obtained revealed that: (i) applied at a concentration range of 0.1-100 μg mL-1, the compounds investigated decrease in a time- and concentration-dependent manner the viability and/or proliferation of the treated cells; (ii) complexes of {Zn(II)Au(I)} show relatively higher cytotoxic/genotoxic activity and antitumor potential as compared to {Zn(II)Ag(I)}; (iii) some of the complexes demonstrate more pronounced cytotoxic potential than commercially available antitumor agents cisplatin, oxaliplatin, and epirubicin.
Collapse
Affiliation(s)
- Tania Zhivkova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 25, Sofia 1113, Bulgaria.
| | - Daniela C Culita
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania.
| | - Abedulkadir Abudalleh
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 25, Sofia 1113, Bulgaria.
| | - Lora Dyakova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 23, Sofia 1113, Bulgaria
| | - Teodora Mocanu
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania.
| | - Augustin M Madalan
- Faculty of Chemistry, University of Bucharest, Regina Elisabeta Blvd. 4-12, 030018 Bucharest, Romania
| | - Milena Georgieva
- Institute of Molecular Biology "Roumen Tsanev", Acad. Georgi Bonchev Str., Bl. 21, Sofia 1113, Bulgaria
| | - George Miloshev
- Institute of Molecular Biology "Roumen Tsanev", Acad. Georgi Bonchev Str., Bl. 21, Sofia 1113, Bulgaria
| | - Anamaria Hanganu
- Faculty of Chemistry, University of Bucharest, Regina Elisabeta Blvd. 4-12, 030018 Bucharest, Romania
- "C.D. Nenitzescu" Institute of Organic and Supramolecular Chemistry of the Romanian Academy, Splaiul Independentei 202B, Bucharest, Romania
| | - Gabriela Marinescu
- Ilie Murgulescu Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, 060021 Bucharest, Romania.
| | - Radostina Alexandrova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bl. 25, Sofia 1113, Bulgaria.
| |
Collapse
|
36
|
Lim B, Kim KS, Na K. pH-Responsive Zinc Ion Regulating Immunomodulatory Nanoparticles for Effective Cancer Immunotherapy. Biomacromolecules 2023; 24:4263-4273. [PMID: 37616157 DOI: 10.1021/acs.biomac.3c00557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Herein, we introduce a novel approach involving the utilization of a human serum albumin-coated zeolite imidazolate framework-8 containing a photosensitizer (HPZ) that exhibits targeted recognition of the tumor microenvironment, enabling the rapid elevation of zinc ion concentrations while facilitating the controlled release of an encapsulated photosensitizer (PS). At a physiological pH of 7.4, HPZ demonstrates a size of approximately 170 nm, significantly decreasing to less than 10 nm under pH 6.5 acidic conditions. Acid-induced decomposition of HPZ triggers a rapid increase in zinc ion concentration, eliciting potent cytotoxic effects against colorectal, breast, and pancreatic cancers. Additionally, upon laser irradiation, the encapsulated PS within HPZ initiates the generation of reactive oxygen species, synergistically augmenting the cytotoxicity induced by zinc ions. Intravenous administration of HPZ in a CT26 tumor-bearing mouse model resulted in a notable expansion of CD3+CD4+ helper T cells and CD3+CD8+ cytotoxic T cells, accompanied by a reduction in the CD4+CD25+Foxp3+ regulatory T-cell population. These changes led to significant inhibition of tumor growth, highlighting the efficacy of HPZ in this experimental model. Importantly, HPZ exhibits favorable safety characteristics, displaying no toxicity toward vital organs and inducing no weight loss. Thus, HPZ holds immense promise as a standalone treatment or in combination with diverse anticancer immunotherapies, underscoring its potential in the field of anticancer immunotherapy.
Collapse
Affiliation(s)
- Byoungjun Lim
- Department of BioMedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kyoung Sub Kim
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Kun Na
- Department of BioMedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| |
Collapse
|
37
|
Zhu B, Yang C, Liu D, Zhi Q, Hua ZC. Zinc depletion induces JNK/p38 phosphorylation and suppresses Akt/mTOR expression in acute promyelocytic NB4 cells. J Trace Elem Med Biol 2023; 79:127264. [PMID: 37473591 DOI: 10.1016/j.jtemb.2023.127264] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 07/09/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Myeloid leukemia is associated with reduced serum zinc and increased intracellular zinc. Our previous studies found that zinc depletion by TPEN induced apoptosis with PML-RARα oncoprotein degradation in acute promyelocytic NB4 cells. The effect of zinc homeostasis on intracellular signaling pathways in myeloid leukemia cells remains unclear. OBJECTIVE This study examined how zinc homeostasis affected MAPK and Akt/mTOR pathways in NB4 cells. METHODS We used western blotting to detect the activation of p38 MAPK, JNK, ERK1/2, and Akt/mTOR pathways in NB4 cells stimulated with the zinc chelator TPEN. Whether the effects of TPEN on these pathways could be reversed by zinc or the nitric oxide donor sodium nitroprusside (SNP) was further explored by western blotting. We used Zinpyr-1 staining to assess the role of SNP on labile zinc levels in NB4 cells treated with TPEN. In additional, we evaluated expressional correlations between the zinc-binding protein Metallothionein-2A (MT2A) and genes related to MAPKs and Akt/mTOR pathways in acute myeloid leukemia (AML) based on the TCGA database. RESULTS Zinc depletion by TPEN activated p38 and JNK phosphorylation in NB4 cells, whereas ERK1/2 phosphorylation was increased first and then decreased. The protein expression levels of Akt and mTOR were downregulated by TPEN. The nitric oxide donor SNP promotes zinc release in NB4 cells under zinc depletion conditions. We further found that the effects of zinc depletion on MAPK and Akt/mTOR pathways in NB4 cells can be reversed by exogenous zinc supplementation or treatment with the nitric oxide donor SNP. By bioinformatics analyses based on the TCGA database, we demonstrated that MT2A expression was negatively correlated with the expression of JNK, and was positively correlated with the expression of ERK1 and Akt in AML. CONCLUSION Our findings indicate that zinc plays a critical role in leukemia cells and help understanding how zinc depletion induces apoptosis.
Collapse
Affiliation(s)
- Bo Zhu
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, PR China.
| | - Chunhao Yang
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, PR China
| | - Dekang Liu
- School of Medicine, and Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Qi Zhi
- School of Medicine, and Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Zi-Chun Hua
- School of Biopharmacy, China Pharmaceutical University, Nanjing 211198, PR China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
38
|
Irie M, Kabata H, Sasahara K, Kurihara M, Shirasaki Y, Kamatani T, Baba R, Matsusaka M, Koga S, Masaki K, Miyata J, Araki Y, Kikawada T, Kabe Y, Suematsu M, Yamagishi M, Uemura S, Moro K, Fukunaga K. Annexin A1 is a cell-intrinsic metalloregulator of zinc in human ILC2s. Cell Rep 2023; 42:112610. [PMID: 37294636 DOI: 10.1016/j.celrep.2023.112610] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/14/2023] [Accepted: 05/21/2023] [Indexed: 06/11/2023] Open
Abstract
Group 2 innate lymphoid cells (ILC2s) produce large amounts of type 2 cytokines including interleukin-5 (IL-5) and IL-13 in response to various stimuli, causing allergic and eosinophilic diseases. However, the cell-intrinsic regulatory mechanisms of human ILC2s remain unclear. Here, we analyze human ILC2s derived from different tissues and pathological conditions and identify ANXA1, encoding annexin A1, as a commonly highly expressed gene in non-activated ILC2s. The expression of ANXA1 decreases when ILC2s activate, but it increases autonomously as the activation subsides. Lentiviral vector-based gene transfer experiments show that ANXA1 suppresses the activation of human ILC2s. Mechanistically, ANXA1 regulates the expression of the metallothionein family genes, including MT2A, which modulate intracellular zinc homeostasis. Furthermore, increased intracellular zinc levels play an essential role in the activation of human ILC2s by promoting the mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) pathways and GATA3 expression. Thus, the ANXA1/MT2A/zinc pathway is identified as a cell-intrinsic metalloregulatory mechanism for human ILC2s.
Collapse
Affiliation(s)
- Misato Irie
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hiroki Kabata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan.
| | - Kotaro Sasahara
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Momoko Kurihara
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yoshitaka Shirasaki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takashi Kamatani
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan; Laboratory for Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan; Department of AI Technology Development, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo 101-0062, Japan; Division of Precision Cancer Medicine, Tokyo Medical and Dental University Hospital, Tokyo 113-8519, Japan
| | - Rie Baba
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masako Matsusaka
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Satoshi Koga
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan
| | - Katsunori Masaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Jun Miyata
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yasutomo Araki
- Nose Clinic Tokyo, 1-3-1 Kyobashi Chuo-ku, Tokyo 104-0031, Japan
| | - Toru Kikawada
- Nose Clinic Tokyo, 1-3-1 Kyobashi Chuo-ku, Tokyo 104-0031, Japan
| | - Yasuaki Kabe
- Department of Biochemistry, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Makoto Suematsu
- WPI Bio2Q Research Center, Keio University and Central Institute for Experimental Medicine, Kawasaki, Kanagawa 210-0821, Japan
| | - Mai Yamagishi
- Live Cell Diagnosis, Ltd., Asaka, Saitama 351-0022, Japan
| | - Sotaro Uemura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kazuyo Moro
- Laboratory for Innate Immune Systems, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan; Laboratory for Innate Immune Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Laboratory for Innate Immune Systems, Osaka University Immunology Frontier Research Center, Suita, Osaka 565-0871, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
39
|
Jackson C, Kolba N, Tako E. Assessing the Interactions between Zinc and Vitamin A on Intestinal Functionality, Morphology, and the Microbiome In Vivo ( Gallus gallus). Nutrients 2023; 15:2754. [PMID: 37375657 DOI: 10.3390/nu15122754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Dietary deficiencies in zinc (Zn) and vitamin A (VA) are among the leading micronutrient deficiencies globally and previous research has proposed a notable interaction between Zn and VA physiological status. This study aimed to assess the effects of zinc and vitamin A (isolated and combined) on intestinal functionality and morphology, and the gut microbiome (Gallus gallus). The study included nine treatment groups (n~11)-no-injection (NI); H2O; 0.5% oil; normal zinc (40 mg/kg ZnSO4) (ZN); low zinc (20 mg/kg) (ZL); normal retinoid (1500 IU/kg retinyl palmitate) (RN); low retinoid (100 IU/kg) (RL); normal zinc and retinoid (40 mg/kg; 1500 IU/kg) (ZNRN); low zinc and retinoid (ZLRL) (20 mg/kg; 100 IU/kg). Samples were injected into the amniotic fluid of the fertile broiler eggs. Tissue samples were collected upon hatch to target biomarkers. ZLRL reduced ZIP4 gene expression and upregulated ZnT1 gene expression (p < 0.05). Duodenal surface area increased the greatest in RL compared to RN (p < 0.01), and ZLRL compared to ZNRN (p < 0.05). All nutrient treatments yielded shorter crypt depths (p < 0.01). Compared to the oil control, ZLRL and ZNRN reduced (p < 0.05) the cecal abundance of Bifidobacterium and Clostridium genera (p < 0.05). These results suggest a potentially improved intestinal epithelium proceeding with Zn and VA intra-amniotic administration. Intestinal functionality and gut bacteria were modulated. Further research should characterize long-term responses and the microbiome profile.
Collapse
Affiliation(s)
- Cydney Jackson
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Nikolai Kolba
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
40
|
Elgheznawy A, Öftering P, Englert M, Mott K, Kaiser F, Kusch C, Gbureck U, Bösl MR, Schulze H, Nieswandt B, Vögtle T, Hermanns HM. Loss of zinc transporters ZIP1 and ZIP3 augments platelet reactivity in response to thrombin and accelerates thrombus formation in vivo. Front Immunol 2023; 14:1197894. [PMID: 37359521 PMCID: PMC10285393 DOI: 10.3389/fimmu.2023.1197894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Zinc (Zn2+) is considered as important mediator of immune cell function, thrombosis and haemostasis. However, our understanding of the transport mechanisms that regulate Zn2+ homeostasis in platelets is limited. Zn2+ transporters, ZIPs and ZnTs, are widely expressed in eukaryotic cells. Using mice globally lacking ZIP1 and ZIP3 (ZIP1/3 DKO), our aim was to explore the potential role of these Zn2+ transporters in maintaining platelet Zn2+ homeostasis and in the regulation of platelet function. While ICP-MS measurements indicated unaltered overall Zn2+ concentrations in platelets of ZIP1/3 DKO mice, we observed a significantly increased content of FluoZin3-stainable free Zn2+, which, however, appears to be released less efficiently upon thrombin-stimulated platelet activation. On the functional level, ZIP1/3 DKO platelets exhibited a hyperactive response towards threshold concentrations of G protein-coupled receptor (GPCR) agonists, while immunoreceptor tyrosine-based activation motif (ITAM)-coupled receptor agonist signalling was unaffected. This resulted in enhanced platelet aggregation towards thrombin, bigger thrombus volume under flow ex vivo and faster in vivo thrombus formation in ZIP1/3 DKO mice. Molecularly, augmented GPCR responses were accompanied by enhanced Ca2+ and PKC, CamKII and ERK1/2 signalling. The current study thereby identifies ZIP1 and ZIP3 as important regulators for the maintenance of platelet Zn2+ homeostasis and function.
Collapse
Affiliation(s)
- Amro Elgheznawy
- Medical Clinic II, Division of Hepatology, University Hospital Würzburg, Würzburg, Germany
| | - Patricia Öftering
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Maximilian Englert
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Kristina Mott
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Friederike Kaiser
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany
| | - Charly Kusch
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany
| | - Michael R. Bösl
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Harald Schulze
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Timo Vögtle
- Institute of Experimental Biomedicine I, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, Würzburg, Germany
| | - Heike M. Hermanns
- Medical Clinic II, Division of Hepatology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
41
|
Guttek K, Reinhold A, Grüngreiff K, Schraven B, Reinhold D. Zinc aspartate induces proliferation of resting and antigen-stimulated human PBMC under high-density cell culture condition. J Trace Elem Med Biol 2023; 77:127152. [PMID: 36924587 DOI: 10.1016/j.jtemb.2023.127152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND Zinc, one of the most important essential trace elements in the human body, regulates a wide range of cellular functions of immune cells, such as proliferation, differentiation and survival. Zinc deficiency affects both the innate and adaptive immune system. Zinc supplementation was discussed as possible therapy for infectious diseases and T cell-mediated autoimmune diseases. However, the influence of commercial zinc preparations on proliferation and cytokine production of resting and antigen-stimulated peripheral blood mononuclear cells (PBMC) has not yet been completely investigated. METHODS Here, we examined whether zinc aspartate (Unizink®), an approved drug to treat zinc deficiency in patients, induces proliferation, cytokine production, and induction of apoptosis/caspase 3/7 activity of resting PBMC under high-density cell culture condition. In addition, we performed antigen-specific proliferation experiments, where PBMCs of healthy donors vaccinated against Influenza A (H1N1) and/or SARS-CoV-2 were stimulated with Influenza A (H1N1) peptides or SARS-CoV-2 peptides as well as the Mixed Lymphocyte Culture (MLC) in the presence of increasing concentrations of zinc aspartate. RESULTS We observed a dose-dependent enhancement of proliferation and induction of cytokine production (IFN-γ, IL-5, GM-CSF and CXCL10) of resting PBMC in presence of zinc aspartate. The number of cells with active caspase 3/7 and, consecutively, the amount of cells undergoing apoptosis steadily decreased in presence of zinc aspartate. Moreover, zinc aspartate was capable of stimulating antigen-specific PBMC proliferation using MLC or influenza A (H1N1) and SARS-CoV-2 peptides in both a dose-dependent and a donor-specific manner. In the absence of zinc aspartate, we clearly could discriminate two groups of responders: low and high responders to antigenic stimulation. The addition of increasing concentration of zinc aspartate significantly stimulated the proliferation of PBMC from low responders, but not from high responders. CONCLUSION Taken together, our results suggest that zinc aspartate induces the proliferation of resting and antigen-stimulated PBMCs under high-density cell culture conditions. Thus, zinc might represent a supportive treatment in patients suffering from infectious diseases.
Collapse
Affiliation(s)
- Karina Guttek
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Annegret Reinhold
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Health Campus Immunology, Infection and Inflammation (GC-I3), Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Center of Health and Medical Prevention (CHaMP), Otto-von-Guericke University, Magdeburg, Germany
| | | | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Health Campus Immunology, Infection and Inflammation (GC-I3), Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Center of Health and Medical Prevention (CHaMP), Otto-von-Guericke University, Magdeburg, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Health Campus Immunology, Infection and Inflammation (GC-I3), Medical Faculty, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; Center of Health and Medical Prevention (CHaMP), Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
42
|
Chemek M, Kadi A, Merenkova S, Potoroko I, Messaoudi I. Improving Dietary Zinc Bioavailability Using New Food Fortification Approaches: A Promising Tool to Boost Immunity in the Light of COVID-19. BIOLOGY 2023; 12:biology12040514. [PMID: 37106716 PMCID: PMC10136047 DOI: 10.3390/biology12040514] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023]
Abstract
Zinc is a powerful immunomodulatory trace element, and its deficiency in the body is closely associated with changes in immune functions and viral infections, including SARS-CoV-2, the virus responsible for COVID-19. The creation of new forms of zinc delivery to target cells can make it possible to obtain smart chains of food ingredients. Recent evidence supports the idea that the optimal intake of zinc or bioactive compounds in appropriate supplements should be considered as part of a strategy to generate an immune response in the human body. Therefore, controlling the amount of this element in the diet is especially important for populations at risk of zinc deficiency, who are more susceptible to the severe progression of viral infection and disease, such as COVID-19. Convergent approaches such as micro- and nano-encapsulation develop new ways to treat zinc deficiency and make zinc more bioavailable.
Collapse
Affiliation(s)
- Marouane Chemek
- Department of Food and Biotechnology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Svetlana Merenkova
- Department of Food and Biotechnology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Irina Potoroko
- Department of Food and Biotechnology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Imed Messaoudi
- Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio-Ressourcés, Institut Supérieur de Biotechnologie de Monastir, Universitéde Monastir, Monastir 5000, Tunisia
| |
Collapse
|
43
|
van Amersfort K, van der Lee A, Hagen-Plantinga E. Evidence-base for the beneficial effect of nutraceuticals in canine dermatological immune-mediated inflammatory diseases - A literature review. Vet Dermatol 2023. [PMID: 36938651 DOI: 10.1111/vde.13152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 11/01/2022] [Accepted: 11/26/2022] [Indexed: 03/21/2023]
Abstract
BACKGROUND Immune-mediated inflammatory diseases (IMIDs) are associated with an abnormal immune response, resulting in a disturbed homeostasis and chronic inflammation. Most canine dermatological IMIDs (cDIMIDs), such as allergies, autoimmune and immune-mediated diseases, require long-term treatment with immunosuppressive drugs with potential adverse effects. In general, nutraceuticals are thought to be safe. As a result, there is a tendency for the more frequent use of nutraceuticals in veterinary medicine. OBJECTIVES The aim of this review was to present evidence-based proof for the use of various nutraceuticals in the treatment of cDIMIDs and, where possible, to provide conclusions to guide their use in veterinary dermatological practice. METHODS A comprehensive literature search on common cDIMIDs and nutraceuticals was performed. Only peer-reviewed articles published in English and related to the study topic were included. A total of 64 eligible publications were classified in five categories based on study design and substantively assessed on additional criteria such as standardisation of diets and number of included animals. For final appraisal, classification of major, minor or no evidence was used whereby efficacy was based on clinical outcome measurements. CONCLUSIONS Minor evidence for the beneficial use of several nutraceuticals, including essential fatty acids, niacinamide and probiotics, was found for treatment of specific cDIMIDs. These nutraceuticals may improve clinical signs or reduce the required dose of concurrent medication (e.g. drug-sparing effect) in some dogs. Some nutraceuticals also may be used for long-term maintenance therapy. Despite some promising findings, major evidence for the use of nutraceuticals in cDIMIDs is lacking, warranting further research.
Collapse
|
44
|
Vrieling F, Stienstra R. Obesity and dysregulated innate immune responses: impact of micronutrient deficiencies. Trends Immunol 2023; 44:217-230. [PMID: 36709082 DOI: 10.1016/j.it.2023.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/28/2023]
Abstract
Obesity is associated with the development of various complications, including diabetes, atherosclerosis, and an increased risk for infections, driven by dysfunctional innate immune responses. Recent insights have revealed that the availability of nutrients is a key determinant of innate immune cell function. Although the presence of obesity is associated with overnutrition of macronutrients, several micronutrient deficiencies, including Vitamin D and zinc, are often present. Micronutrients have been attributed important immunomodulatory roles. In this review, we summarize current knowledge of the immunomodulatory effects of Vitamin D and zinc. We also suggest future lines of research to further improve our understanding of these micronutrients; this may serve as a stepping-stone to explore micronutrient supplementation to improve innate immune cell function during obesity.
Collapse
Affiliation(s)
- Frank Vrieling
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Rinke Stienstra
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands; Department of Internal Medicine, RadboudUMC, Nijmegen, The Netherlands.
| |
Collapse
|
45
|
Gehrer CM, Mitterstiller AM, Grubwieser P, Meyron-Holtz EG, Weiss G, Nairz M. Advances in Ferritin Physiology and Possible Implications in Bacterial Infection. Int J Mol Sci 2023; 24:4659. [PMID: 36902088 PMCID: PMC10003477 DOI: 10.3390/ijms24054659] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Due to its advantageous redox properties, iron plays an important role in the metabolism of nearly all life. However, these properties are not only a boon but also the bane of such life forms. Since labile iron results in the generation of reactive oxygen species by Fenton chemistry, iron is stored in a relatively safe form inside of ferritin. Despite the fact that the iron storage protein ferritin has been extensively researched, many of its physiological functions are hitherto unresolved. However, research regarding ferritin's functions is gaining momentum. For example, recent major discoveries on its secretion and distribution mechanisms have been made as well as the paradigm-changing finding of intracellular compartmentalization of ferritin via interaction with nuclear receptor coactivator 4 (NCOA4). In this review, we discuss established knowledge as well as these new findings and the implications they may have for host-pathogen interaction during bacterial infection.
Collapse
Affiliation(s)
- Clemens M. Gehrer
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anna-Maria Mitterstiller
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Philipp Grubwieser
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Esther G. Meyron-Holtz
- Laboratory of Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
46
|
Effects of Zinc Status on Expression of Zinc Transporters, Redox-Related Enzymes and Insulin-like Growth Factor in Asian Sea Bass Cells. BIOLOGY 2023; 12:biology12030338. [PMID: 36979030 PMCID: PMC10045770 DOI: 10.3390/biology12030338] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 02/23/2023]
Abstract
Since Asian sea bass is one of the economically most important fish, aquaculture conditions are constantly optimized. Evidence from feeding studies combined with the current understanding of the importance of zinc for growth and immune defense suggest that zinc supplementation may be a possible approach to optimize aquacultures of Asian sea bass. To investigate the effects of zinc deficiency and zinc supplementation, cells from Asian sea bass were incubated in culture medium with different zinc contents. The expression of genes, important for zinc homeostasis, redox metabolism, and growth hormones was analyzed using RT-PCR. Zinc deficiency induced the expression of certain zinc transporters (ZIP14, ZIP10, ZIP6, ZIP4, ZnT4, ZnT9) as well as of SOD1, IGF I and IGF II, while expression of ZnT1 and metallothionein (MT) was reduced. Zinc supplementation decreased the expression of ZIP10, while expression of ZnT1 and MT were elevated. No differences in the effects of zinc supplementation with zinc sulfate compared to supplementation with zinc amino acid complexes were observed. Thus, extracellular zinc conditions may govern the cellular zinc homeostasis, the redox metabolism and growth hormone expression in cells from Asian sea bass as reported for other fish species. Our data indicate that supplementing aquacultures with zinc may be recommended to avoid detriments of zinc deficiency.
Collapse
|
47
|
van Bömmel-Wegmann S, Zentek J, Gehlen H, Barton AK, Paßlack N. Effects of dietary zinc chloride hydroxide and zinc methionine on the immune system and blood profile of healthy adult horses and ponies. Arch Anim Nutr 2023; 77:17-41. [PMID: 36790082 DOI: 10.1080/1745039x.2023.2168993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The effects of dietary zinc on the immune function of equines have not been evaluated in detail so far. In the present study, eight healthy adult ponies and two healthy adult horses were fed a diet supplemented with either zinc chloride hydroxide or zinc methionine in six feeding periods of four weeks each (according to maintenance zinc requirement, 120 mg zinc/kg dry matter, and 240 mg zinc/kg dry matter, for both dietary zinc supplements, respectively). All animals received the six diets, with increasing amounts of zinc chloride hydroxide in the feeding periods 1-3, and with increasing amounts of zinc methionine in the feeding periods 4-6. At the end of each feeding period, blood samples were collected for a blood profile and the measurement of selected immune variables. Increasing dietary zinc chloride hydroxide doses increased the glutathione concentrations in the erythrocyte concentrate and the glutathione peroxidase activity in the erythrocyte lysate, decreased the numbers of total leukocytes and granulocytes in the blood, and also decreased the interleukin-2 concentrations in the plasma of the animals. The dietary supplementation of increasing doses of zinc methionine enhanced the mitogen-stimulated proliferative activity of peripheral blood mononuclear cells, and decreased the glutathione concentrations in the erythrocyte concentrate and the glutathione peroxidase activity in the plasma of the animals. The percentage of blood monocytes with oxidative burst after in vitro stimulation with E. coli decreased with increasing dietary zinc concentrations, independently of the zinc compound used. The blood profile demonstrated effects of the zinc supplements on the red blood cells and the bilirubin metabolism of the horses and ponies, which require further investigation. Overall, high doses of dietary zinc modulate the equine immune system, for the most part also depending on the zinc compound used.
Collapse
Affiliation(s)
| | - Jürgen Zentek
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| | - Heidrun Gehlen
- Equine Clinic, Freie Universität Berlin, Berlin, Germany
| | | | - Nadine Paßlack
- Institute of Animal Nutrition, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
48
|
Shen F, Fang Y, Wu Y, Zhou M, Shen J, Fan X. Metal ions and nanometallic materials in antitumor immunity: Function, application, and perspective. J Nanobiotechnology 2023; 21:20. [PMID: 36658649 PMCID: PMC9850565 DOI: 10.1186/s12951-023-01771-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
The slightest change in the extra/intracellular concentration of metal ions results in amplified effects by signaling cascades that regulate both cell fate within the tumor microenvironment and immune status, which influences the network of antitumor immunity through various pathways. Based on the fact that metal ions influence the fate of cancer cells and participate in both innate and adaptive immunity, they are widely applied in antitumor therapy as immune modulators. Moreover, nanomedicine possesses the advantage of precise delivery and responsive release, which can perfectly remedy the drawbacks of metal ions, such as low target selectivity and systematic toxicity, thus providing an ideal platform for metal ion application in cancer treatment. Emerging evidence has shown that immunotherapy applied with nanometallic materials may significantly enhance therapeutic efficacy. Here, we focus on the physiopathology of metal ions in tumorigenesis and discuss several breakthroughs regarding the use of nanometallic materials in antitumor immunotherapeutics. These findings demonstrate the prominence of metal ion-based nanomedicine in cancer therapy and prophylaxis, providing many new ideas for basic immunity research and clinical application. Consequently, we provide innovative insights into the comprehensive understanding of the application of metal ions combined with nanomedicine in cancer immunotherapy in the past few years.
Collapse
Affiliation(s)
- Feiyang Shen
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025 China
| | - Yan Fang
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025 China
| | - Yijia Wu
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025 China
| | - Min Zhou
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025 China
| | - Jianfeng Shen
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025 China ,grid.16821.3c0000 0004 0368 8293Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xianqun Fan
- grid.16821.3c0000 0004 0368 8293Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China ,grid.16821.3c0000 0004 0368 8293Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025 China ,grid.16821.3c0000 0004 0368 8293Institute of Translational Medicine, National Facility for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
49
|
Zou P, Du Y, Yang C, Cao Y. Trace element zinc and skin disorders. Front Med (Lausanne) 2023; 9:1093868. [PMID: 36733937 PMCID: PMC9887131 DOI: 10.3389/fmed.2022.1093868] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
Zinc is a necessary trace element and an important constituent of proteins and other biological molecules. It has many biological functions, including antioxidant, skin and mucous membrane integrity maintenance, and the promotion of various enzymatic and transcriptional responses. The skin contains the third most zinc in the organism. Zinc deficiency can lead to a range of skin diseases. Except for acrodermatitis enteropathic, a rare genetic zinc deficiency, it has also been reported in other diseases. In recent years, zinc supplementation has been widely used for various skin conditions, including infectious diseases (viral warts, genital herpes, cutaneous leishmaniasis, leprosy), inflammatory diseases (hidradenitis suppurativa, acne vulgaris, rosacea, eczematous dermatitis, seborrheic dermatitis, psoriasis, Behcet's disease, oral lichen planus), pigmentary diseases (vitiligo, melasma), tumor-associated diseases (basal cell carcinoma), endocrine and metabolic diseases (necrolytic migratory erythema, necrolytic acral erythema), hair diseases (alopecia), and so on. We reviewed the literature on zinc application in dermatology to provide references for better use.
Collapse
Affiliation(s)
- Pan Zou
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxin Du
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunguang Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Chunguang Yang ✉
| | - Yuchun Cao
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Yuchun Cao ✉
| |
Collapse
|
50
|
Zou Y, Huang LC, Zhao D, He MJ, Su D, Zhang RH. Assessment of serum Vit A, D and zinc nutritional status and related dietary and exercise behaviors of children and adolescents in rural and urban area. Front Nutr 2023; 9:1088155. [PMID: 36712499 PMCID: PMC9877439 DOI: 10.3389/fnut.2022.1088155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Vitamin A and vitamin D deficiency in children and adolescents has a negative impact on their growth and development. This study aimed to learn the nutritional status of vitamin A and D among rural children and adolescents and to explore related dietary and exercise behaviors. A total of 10 counties (cities, districts) from 90 counties (cities, districts) in Zhejiang Province were selected by the method of random cluster sampling. Children and adolescents were investigated and their food and nutrient intake were calculated. The concentration of serum vitamin A in urban area was 0.38 ng/ml, which was higher than that in rural area (p < 0.05); while the concentration of serum vitamin D in urban area was 21.25 mg/L, which was lower than that in rural area (p < 0.05). The concentration of serum zinc was 101 μg/dl in urban area and 107 μg/dl in rural area (p < 0.05). The intake of dietary fiber, calcium, vitamin A, vitamin B1, vitamin B2, and vitamin C was lower than the recommended value. In rural area, the intakes of cereals, tubers and beans, livestock, poultry and meat of children and adolescents were higher than the recommended values; while the intake of vegetables, fruits, eggs, milk, fish and shrimp, soybean and nuts was lower than the recommended value. The intake of edible oil and salt is higher than the recommended value. The time of medium and high intensity exercise time in rural area is more than that in urban area in the age group of 12-17 years, while the sitting time is less than that in urban area. Children and adolescents living in rural area should be guided to eat reasonably, and to choose foods with high nutrient density and with low oil, salt and sugar.
Collapse
|