1
|
Jesenak M, Diamant Z, Simon D, Tufvesson E, Seys SF, Mukherjee M, Lacy P, Vijverberg S, Slisz T, Sediva A, Simon HU, Striz I, Plevkova J, Schwarze J, Kosturiak R, Alexis NE, Untersmayr E, Vasakova MK, Knol E, Koenderman L. Eosinophils-from cradle to grave: An EAACI task force paper on new molecular insights and clinical functions of eosinophils and the clinical effects of targeted eosinophil depletion. Allergy 2023; 78:3077-3102. [PMID: 37702095 DOI: 10.1111/all.15884] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/21/2023] [Accepted: 08/27/2023] [Indexed: 09/14/2023]
Abstract
Over the past years, eosinophils have become a focus of scientific interest, especially in the context of their recently uncovered functions (e.g. antiviral, anti-inflammatory, regulatory). These versatile cells display both beneficial and detrimental activities under various physiological and pathological conditions. Eosinophils are involved in the pathogenesis of many diseases which can be classified into primary (clonal) and secondary (reactive) disorders and idiopathic (hyper)eosinophilic syndromes. Depending on the biological specimen, the eosinophil count in different body compartments may serve as a biomarker reflecting the underlying pathophysiology and/or activity of distinct diseases and as a therapy-driving (predictive) and monitoring tool. Personalized selection of an appropriate therapeutic strategy directly or indirectly targeting the increased number and/or activity of eosinophils should be based on the understanding of eosinophil homeostasis including their interactions with other immune and non-immune cells within different body compartments. Hence, restoring as well as maintaining homeostasis within an individual's eosinophil pool is a goal of both specific and non-specific eosinophil-targeting therapies. Despite the overall favourable safety profile of the currently available anti-eosinophil biologics, the effect of eosinophil depletion should be monitored from the perspective of possible unwanted consequences.
Collapse
Affiliation(s)
- Milos Jesenak
- Department of Clinical Immunology and Allergology, University Teaching Hospital in Martin, Martin, Slovak Republic
- Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
- Department of Pulmonology and Phthisiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
| | - Zuzana Diamant
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
- Department Microbiology Immunology & Transplantation, KU Leuven, Catholic University of Leuven, Leuven, Belgium
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ellen Tufvesson
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology and Palliative Medicine, Lund University, Lund, Sweden
| | - Sven F Seys
- Laboratory of Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Manali Mukherjee
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- The Firestone Institute for Respiratory Health, Research Institute of St. Joe's Hamilton, Hamilton, Ontario, Canada
| | - Paige Lacy
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Susanne Vijverberg
- Amsterdam UMC Location University of Amsterdam, Pulmonary Diseases, Amsterdam, The Netherlands
| | - Tomas Slisz
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine, Charles University, Motol University Hospital, Prague, Czech Republic
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Ilja Striz
- Department of Clinical and Transplant Immunology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Jana Plevkova
- Department of Pathophysiology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| | - Jurgen Schwarze
- Child Life and Health and Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Radovan Kosturiak
- Department of Paediatrics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, University Teaching Hospital in Martin, Martin, Slovak Republic
- Outpatient Clinic for Clinical Immunology and Allergology, Nitra, Slovak Republic
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, Department of Paediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Martina Koziar Vasakova
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Edward Knol
- Department Center of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leo Koenderman
- Department Center of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department Pulmonary Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
2
|
Hou X, Luo W, Gan H, Chen T, Sun B. Childhood blood eosinophils and symptoms of allergic disorders: a cross-sectional study in Southern China. Ann Med 2022; 54:2929-2940. [PMID: 36259652 PMCID: PMC9586638 DOI: 10.1080/07853890.2022.2134584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
PURPOSE The relationship between childhood blood eosinophils and subtypes of allergic diseases remains understudied. This study aimed to examine the associations between childhood blood eosinophils and subtypes of asthma, rhinitis and dermatitis, as well as the modifying effect of age. METHODS We obtained concurrent blood cell counts and serum Immunoglobulin E (IgE) test results in 5026 children (0-13, years) from First Affiliated Hospital of Guangzhou Medical University from 2014 to 2019. Generalized additive models with multivariable adjustments were utilized to model the exposure-response relationship between eosinophils and allergic symptoms. The robustness of the association was assessed in two age categories (<6, 6-13 years). RESULTS The association of eosinophils with allergic asthma/rhinitis was positively nonlinear, with a plateau at levels of Q4 (≥0.51, 109/L). Conversely, exposure-response curves between eosinophils and the risk of non-allergic asthma and rhinitis were negatively linear, and especially, became statistically significant when levels of eosinophils were larger than Q3 (≥0.30, 109/L). Compared with their counterparts, school-aged children (6-13, years) with a higher level of blood eosinophils (≥0.35, 109/L) were more likely to suffer from allergic asthma [relative excess risk due to interaction (RERI), 2.51; 95% CI, 1.24-3.78], allergic rhinitis (RERI, 2.79; 95% CI, 1.14-4.45) but not allergic dermatitis (RERI not significant). CONCLUSION Higher eosinophil counts were associated with the increased risk of allergic subtype symptoms and the decreased risk of non-allergic subtypes in children. Moreover, the associations between eosinophils and allergic asthma/rhinitis were accentuated in the school-aged child. These findings may contribute to providing novel insights for clinical administration relevance of allergic-related symptoms.Key messages:There was a positively nonlinear association between childhood eosinophils and allergic asthma/rhinitis.Age modified the associations between eosinophils and allergy-related outcomes. The associations of eosinophil with allergic asthma/rhinitis accentuated in the school-aged child (6-13, years).
Collapse
Affiliation(s)
- Xiangqing Hou
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Wenting Luo
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangdong, China
| | - Hui Gan
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangdong, China
| | - Tianhao Chen
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Baoqing Sun
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, National Clinical Research Center of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangdong, China
| |
Collapse
|
3
|
Milne ME, Kimball J, Tarrant TK, Al-Rohil RN, Leverenz DL. The Role of T Helper Type 2 (Th2) Cytokines in the Pathogenesis of Eosinophilic Granulomatosis with Polyangiitis (eGPA): an Illustrative Case and Discussion. Curr Allergy Asthma Rep 2022; 22:141-150. [PMID: 36103081 PMCID: PMC9471022 DOI: 10.1007/s11882-022-01039-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2022] [Indexed: 11/26/2022]
Abstract
Purposeof Review The pathogenesis of eosinophilic granulomatosis with polyangiitis (eGPA) is driven largely by CD4 + type 2 helper T cells (Th2), B cells, and eosinophils. Interleukin (IL)-4 and IL-13 are critical cytokines in Th2 cell–mediated inflammation; however, inhibition of IL-4 and IL-13 does not reduce serum eosinophil counts and has even been associated with hypereosinophilia. This review explores the role of IL-4, IL-5, and IL-13 in Th2-mediated inflammation to consider the potential clinical consequences of inhibiting these individual cytokines in eGPA. Recent Findings Treatments for eosinophilic granulomatosis with polyangiitis (eGPA) are rapidly evolving through using biologic therapies to modulate the Th2 inflammatory response via eosinophil inhibition. While IL-4, IL-5, IL-13, and IL-25 can all affect eosinophils, only IL-5 inhibition has demonstrated therapeutic benefit to-date. In this review, we report a clinical vignette of a patient with adult-onset asthma who developed severe manifestations of eGPA after switching from mepolizumab (an IL-5 inhibitor) to dupilumab (an inhibitor of IL-4 and IL-13). Summary By understanding the role of IL-4, IL-5, and IL-13 in Th2-mediated vasculitis, we can start to understand how eGPA might respond differently to focused cytokine inhibition.
Collapse
Affiliation(s)
- Megan E Milne
- Division of Rheumatology and Immunology, Department of Medicine, Duke University School of Medicine, 40 Duke Medicine Circle, Clinic 1J, Durham, NC, 27710, USA.
| | - Jack Kimball
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Teresa K Tarrant
- Division of Rheumatology and Immunology, Department of Medicine, Duke University School of Medicine, 40 Duke Medicine Circle, Clinic 1J, Durham, NC, 27710, USA
| | | | - David L Leverenz
- Division of Rheumatology and Immunology, Department of Medicine, Duke University School of Medicine, 40 Duke Medicine Circle, Clinic 1J, Durham, NC, 27710, USA
| |
Collapse
|
4
|
Valent P. Mepolizumab in Hypereosinophilic Syndromes: Proposed Therapeutic Algorithm. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:2375-2377. [PMID: 36087944 DOI: 10.1016/j.jaip.2022.06.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Austria.
| |
Collapse
|
5
|
Ortega MA, Gómez-Lahoz AM, Sánchez-Trujillo L, Fraile-Martinez O, García-Montero C, Guijarro LG, Bravo C, De Leon-Luis JA, Saz JV, Bujan J, García-Honduvilla N, Monserrat J, Alvarez-Mon M. Chronic Venous Disease during Pregnancy Causes a Systematic Increase in Maternal and Fetal Proinflammatory Markers. Int J Mol Sci 2022; 23:ijms23168976. [PMID: 36012236 PMCID: PMC9409364 DOI: 10.3390/ijms23168976] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic venous disease (CVD) is a common vascular disorder characterized by increased venous hypertension and insufficient venous return from the lower limbs. Pregnancy is a high-risk situation for developing CVD. Approximately a third of the women will develop this condition during pregnancy, and similarly to arterial hypertensive disorders, previous evidence has described a plethora of alterations in placental structure and function in women with pregnancy-induced CVD. It is widely known that arterial-induced placenta dysfunction is accompanied by an important immune system alteration along with increased inflammatory markers, which may provide detrimental consequences for the women and their offspring. However, to our knowledge, there are still no data collected regarding cytokine profiling in women with pregnancy-induced CVD. Thus, the aim of the present work was to examine cytokine signatures in the serum of pregnant women (PW) with CVD and their newborns (NB). This study was conducted through a multiplex technique in 62 PW with pregnancy-induced CVD in comparison to 52 PW without CVD (HC) as well as their NB. Our results show significant alterations in a broad spectrum of inflammatory cytokines (IL-6, IL-12, TNF-α, IL-10, IL-13, IL-2, IL-7, IFN-γ, IL-4, IL-5, IL-21, IL-23, GM-CSF, chemokines (fractalkine), MIP-3α, and MIP-1β). Overall, we demonstrate that pregnancy-induced CVD is associated with a proinflammatory environment, therefore highlighting the potentially alarming consequences of this condition for maternal and fetal wellbeing.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Correspondence:
| | - Ana M. Gómez-Lahoz
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Lara Sánchez-Trujillo
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Service of Pediatric, Hospital Universitario Principe de Asturias, 28801 Alcalá de Henares, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Systems Biology, Faculty of Medicine and Health Sciences (Networking Research Center on for Liver and Digestive Diseases (CIBEREHD)), University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Juan A. De Leon-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Jose V. Saz
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Biomedicine and Biotechnology, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcalá de Henares, Spain
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Príncipe de Asturias, CIBEREHD, 28806 Alcalá de Henares, Spain
| |
Collapse
|
6
|
Xu JY, Xiong YY, Tang RJ, Jiang WY, Ning Y, Gong ZT, Huang PS, Chen GH, Xu J, Wu CX, Hu MJ, Xu J, Xu Y, Huang CR, Jin C, Lu XT, Qian HY, Li XD, Yang YJ. Interleukin-5-induced eosinophil population improves cardiac function after myocardial infarction. Cardiovasc Res 2021; 118:2165-2178. [PMID: 34259869 DOI: 10.1093/cvr/cvab237] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022] Open
Abstract
AIMS Interleukin (IL)-5 mediates the development of eosinophils (EOS) that are essential for tissue post-injury repair. It remains unknown whether IL-5 plays a role in heart repair after myocardial infarction (MI). This study aims to test whether IL-5-induced EOS population promotes the healing and repair process post-MI and to reveal the underlying mechanisms. METHOD AND RESULTS MI was induced by permanent ligation of the left anterior descending coronary artery in wild-type C57BL/6 mice. Western blot and real-time polymerase chain reaction revealed elevated expression of IL-5 in the heart at 5 days post-MI. Immunohistostaining indicated that IL-5 was secreted mainly from macrophages and type 2 innate lymphoid cells in the setting of experimental MI. External supply of recombinant mouse IL-5 (20 min, 1 day, and 2 days after MI surgery) reduced the infarct size and increased ejection fraction and angiogenesis in the border zone. A significant expansion of EOS was detected in both the peripheral blood and infarcted myocardium after IL-5 administration. Pharmacological depletion of EOS by TRFK5 pretreatment muted the beneficial effects of IL-5 in MI mice. Mechanistic studies demonstrated that IL-5 increased the accumulation of CD206+ macrophages in infarcted myocardium at 7 days post-MI. In vitro co-culture experiments showed that EOS shifted bone marrow-derived macrophage polarization towards the CD206+ phenotypes. This activity of EOS was abolished by IL-4 neutralizing antibody, but not IL-10 or IL-13 neutralization. Western blot analyses demonstrated that EOS promoted the macrophage downstream signal transducer and activator of transcription 6 (STAT6) phosphorylation. CONCLUSION IL-5 facilitates the recovery of cardiac dysfunction post-MI by promoting EOS accumulation and subsequent CD206+ macrophage polarization via the IL-4/STAT6 axis. TRANSLATIONAL PERSPECTIVE Accumulating evidence suggests that modulation of innate and adaptive immune responses is a promising therapeutic strategy for myocardial infarction. In this study, we demonstrate that IL-5 exerts cardioprotective effects on infarcted myocardium by promoting eosinophil accumulation and subsequent CD206+ macrophage polarization via the IL-4/STAT6 axis. Hence, regulation of cardiac IL-5 level or eosinophil count may become a therapeutic approach for post-myocardial infarction cardiac repair in humans.
Collapse
Affiliation(s)
- Jun-Yan Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China.,Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yu-Yan Xiong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Rui-Jie Tang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Wen-Yang Jiang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Yu Ning
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Zhao-Ting Gong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Pei-Sen Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China.,Department of Cardiology, The First Affiliated Hospital of Sun Yat-Sen University, Key Laboratory on Assisted Circulation, Ministry of Health, Guangzhou, China
| | - Gui-Hao Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Jun Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Chun-Xiao Wu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Meng-Jin Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Yi Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Cun-Rong Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Chen Jin
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Xiao-Tong Lu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, People's Republic of China
| | - Hai-Yan Qian
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Xiang-Dong Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Bei Li Shi Road, Xicheng District, Beijing, 100037, People's Republic of China
| |
Collapse
|
7
|
Radonjic-Hoesli S, Brüggen MC, Feldmeyer L, Simon HU, Simon D. Eosinophils in skin diseases. Semin Immunopathol 2021; 43:393-409. [PMID: 34097126 PMCID: PMC8241748 DOI: 10.1007/s00281-021-00868-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
Eosinophil infiltration is a common finding in a broad spectrum of skin diseases, despite the fact that the skin is devoid of eosinophils under physiologic conditions. Although cutaneous eosinophilia is reactive, cytokine-mediated in most cases, diseases with an intrinsic mutation-mediated clonal expansion of eosinophils can also manifest on the skin. As eosinophils are involved in host defense, regulate immune responses, generate pruritus, induce remodeling and fibrosis, and can cause tissue damage, they have the capacity to actively contribute to the pathogenesis of diseases. Recent research provided deeper insights in the mechanisms, e.g., bacterial and viral clearance, blister formation, recruitment of cytotoxic T cells, and generation of pruritus, by which eosinophils might come into action. This review aims at providing an overview on the clinical presentations of eosinophil-associated dermatoses and the current understanding of their pathogenic role in these diseases. Further, we discuss the effects of therapies targeting eosinophils.
Collapse
Affiliation(s)
- Susanne Radonjic-Hoesli
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marie-Charlotte Brüggen
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Department of Dermatology, Hochgebirgsklinik Davos, Davos, Switzerland
| | - Laurence Feldmeyer
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia
- Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
8
|
Renz H, Bachert C, Berek C, Hamelmann E, Levi‐Schaffer F, Raap U, Simon H, Ploetz S, Taube C, Valent P, Voehringer D, Werfel T, Zhang N, Ring J. Physiology and pathology of eosinophils: Recent developments: Summary of the Focus Workshop Organized by DGAKI. Scand J Immunol 2021; 93:e13032. [PMID: 33624312 PMCID: PMC11475402 DOI: 10.1111/sji.13032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/10/2021] [Accepted: 02/21/2021] [Indexed: 12/15/2022]
Abstract
Over the last century, eosinophils have been regarded ambiguously either as 'friends' or 'foes'. Recent developments have greatly enhanced our understanding of the role and function of eosinophils in health and disease. Pathogenic eosinophilic inflammation can lead to severe diseases in various organs, such as the gastrointestinal tract, airways, heart and skin. In a 2-day focus workshop of the German Society for Allergology and Clinical Immunology (DGAKI), the state of the art was discussed and practical recommendations for diagnosis and treatment of eosinophilic diseases, with a particular focus on new biologics, such as anti-interleukin 5 and anti-interleukin 5R, were derived.
Collapse
Affiliation(s)
- Harald Renz
- Institute of Laboratory MedicineUniversities of Giessen and Marburg Lung Center (UGMLC)German Center for Lung Research (DZL)Philipps Universität MarburgMarburgGermany
| | - Claus Bachert
- Upper Airways Research Laboratory and Department of Oto‐Rhino‐LaryngologyGhent University and Ghent University HospitalGhentBelgium
- Division of ENT DiseasesCLINTECKarolinska InstituteUniversity of StockholmStockholmSweden
| | - Claudia Berek
- Deutsches Rheuma ForschungszentrumEin Institut der LeibnizgemeinschaftBerlinGermany
| | - Eckard Hamelmann
- Klinik für Kinder‐ und JugendmedizinEvangelisches Klinikum BethelBielefeldGermany
- Allergy Center of the Ruhr UniversityBochumGermany
| | - Francesca Levi‐Schaffer
- School of PharmacyFaculty of MedicineThe Institute for Drug ResearchThe Hebrew University of JerusalemIsrael
| | - Ulrike Raap
- Clinics of Dermatology and AllergyFaculty of Medical Health and SciencesUniversity of OldenburgGermany
| | - Hans‐Uwe Simon
- Institute of PharmacologyUniversity of BernBernSwitzerland
| | | | - Christian Taube
- Department of Pulmonary MedicineUniversity Hospital Essen—RuhrlandklinikEssenGermany
| | - Peter Valent
- Department of Internal Medicine IDivision of Hematology and Hemostaseology, and Ludwig Boltzmann Institute for Hematology & OncologyMedical University of ViennaViennaAustria
| | - David Voehringer
- Department of Infection BiologyUniversity Hospital Erlangen and Friedrich‐Alexander University Erlangen‐NurembergErlangenGermany
| | - Thomas Werfel
- Klinik für DermatologieAllergologie und VenerologieMedizinische Hochschule HannoverHannoverGermany
| | - Nan Zhang
- Upper Airways Research Laboratory and Department of Oto‐Rhino‐LaryngologyGhent University and Ghent University HospitalGhentBelgium
| | - Johannes Ring
- Deptment of Dermatology and Allergology BiedersteinTechnical University Munich (TUM)MunichGermany
| |
Collapse
|
9
|
Valent P, Degenfeld-Schonburg L, Sadovnik I, Horny HP, Arock M, Simon HU, Reiter A, Bochner BS. Eosinophils and eosinophil-associated disorders: immunological, clinical, and molecular complexity. Semin Immunopathol 2021; 43:423-438. [PMID: 34052871 PMCID: PMC8164832 DOI: 10.1007/s00281-021-00863-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022]
Abstract
Eosinophils and their mediators play a crucial role in various reactive states such as bacterial and viral infections, chronic inflammatory disorders, and certain hematologic malignancies. Depending on the underlying pathology, molecular defect(s), and the cytokine- and mediator-cascades involved, peripheral blood and tissue hypereosinophilia (HE) may develop and may lead to organ dysfunction or even organ damage which usually leads to the diagnosis of a HE syndrome (HES). In some of these patients, the etiology and impact of HE remain unclear. These patients are diagnosed with idiopathic HE. In other patients, HES is diagnosed but the etiology remains unknown — these patients are classified as idiopathic HES. For patients with HES, early therapeutic application of agents reducing eosinophil counts is usually effective in avoiding irreversible organ damage. Therefore, it is important to systematically explore various diagnostic markers and to correctly identify the disease elicitors and etiology. Depending on the presence and type of underlying disease, HES are classified into primary (clonal) HES, reactive HES, and idiopathic HES. In most of these patients, effective therapies can be administered. The current article provides an overview of the pathogenesis of eosinophil-associated disorders, with special emphasis on the molecular, immunological, and clinical complexity of HE and HES. In addition, diagnostic criteria and the classification of eosinophil disorders are reviewed in light of new developments in the field.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel, 18-20 1090, Vienna, Austria. .,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria.
| | - Lina Degenfeld-Schonburg
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel, 18-20 1090, Vienna, Austria
| | - Irina Sadovnik
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Währinger Gürtel, 18-20 1090, Vienna, Austria.,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig Maximilian University, Munich, Germany
| | - Michel Arock
- Laboratory of Hematology, Pitié-Salpêtrière Hospital, Paris, France
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland.,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia.,Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Bruce S Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
10
|
Germic N, Hosseini A, Yousefi S, Karaulov A, Simon HU. Regulation of eosinophil functions by autophagy. Semin Immunopathol 2021; 43:347-362. [PMID: 34019141 PMCID: PMC8241657 DOI: 10.1007/s00281-021-00860-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022]
Abstract
Eosinophils are granule-containing leukocytes which develop in the bone marrow. For many years, eosinophils have been recognized as cytotoxic effector cells, but recent studies suggest that they perform additional immunomodulatory and homeostatic functions. Autophagy is a conserved intracellular process which preserves cellular homeostasis. Autophagy defects have been linked to the pathogenesis of many human disorders. Evidence for abnormal regulation of autophagy, including decreased or increased expression of autophagy-related (ATG) proteins, has been reported in several eosinophilic inflammatory disorders, such as Crohn's disease, bronchial asthma, eosinophilic esophagitis, and chronic rhinosinusitis. Despite the increasing extent of research using preclinical models of immune cell-specific autophagy deficiency, the physiological relevance of autophagic pathway in eosinophils has remained unknown until recently. Owing to the increasing evidence that eosinophils play a role in keeping organismal homeostasis, the regulation of eosinophil functions is of considerable interest. Here, we discuss the most recent advances on the role of autophagy in eosinophils, placing particular emphasis on insights obtained in mouse models of infections and malignant diseases in which autophagy has genetically dismantled in the eosinophil lineage. These studies pointed to the possibility that autophagy-deficient eosinophils exaggerate inflammation. Therefore, the pharmacological modulation of the autophagic pathway in these cells could be used for therapeutic interventions.
Collapse
Affiliation(s)
- Nina Germic
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010, Bern, Switzerland
| | - Aref Hosseini
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010, Bern, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010, Bern, Switzerland
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Sechenov University, 119991, Moscow, Russia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, 3010, Bern, Switzerland. .,Department of Clinical Immunology and Allergology, Sechenov University, 119991, Moscow, Russia. .,Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420012, Kazan, Russia.
| |
Collapse
|
11
|
Zustakova M, Kratochvilova L, Slama P. Apoptosis of Eosinophil Granulocytes. BIOLOGY 2020; 9:biology9120457. [PMID: 33321726 PMCID: PMC7763668 DOI: 10.3390/biology9120457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/27/2022]
Abstract
Simple Summary Eosinophil granulocytes (eosinophils) belong to the family of white blood cells that play important roles in the development of asthma and various types of allergy. Eosinophils are cells with a diameter of 12–17 µm and they originate from myeloid precursors. They were discovered by Paul Ehrlich in 1879 in the process of staining fixed blood smears with aniline dyes. Apoptosis (programmed cell death) is the process by which cells lose their functionality. Therefore, it is very important to study the apoptosis of eosinophils and their survival factors to understand how to develop new drugs based on the modulation of eosinophil apoptosis for the treatment of asthma and allergic diseases. Abstract In the past 10 years, the number of people in the Czech Republic with allergies has doubled to over three million. Allergic pollen catarrh, constitutional dermatitis and asthma are the allergic disorders most often diagnosed. Genuine food allergies today affect 6–8% of nursing infants, 3–5% of small children, and 2–4% of adults. These disorders are connected with eosinophil granulocytes and their apoptosis. Eosinophil granulocytes are postmitotic leukocytes containing a number of histotoxic substances that contribute to the initiation and continuation of allergic inflammatory reactions. Eosinophilia results from the disruption of the standard half-life of eosinophils by the expression of mechanisms that block the apoptosis of eosinophils, leading to the development of chronic inflammation. Glucocorticoids are used as a strong acting anti-inflammatory medicine in the treatment of hypereosinophilia. The removal of eosinophils by the mechanism of apoptosis is the effect of this process. This work sums up the contemporary knowledge concerning the apoptosis of eosinophils, its role in the aforementioned disorders, and the indications for the use of glucocorticoids in their related therapies.
Collapse
|
12
|
Simon D, Yousefi S, Cazzaniga S, Bürgler C, Radonjic S, Houriet C, Heidemeyer K, Klötgen H, Kozlowski E, Borradori L, Simon H. Mepolizumab failed to affect bullous pemphigoid: A randomized, placebo-controlled, double-blind phase 2 pilot study. Allergy 2020; 75:669-672. [PMID: 31230371 DOI: 10.1111/all.13950] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital University of Bern Bern Switzerland
| | - Shida Yousefi
- Institute of Pharmacology University of Bern Bern Switzerland
| | - Simone Cazzaniga
- Department of Dermatology, Inselspital, Bern University Hospital University of Bern Bern Switzerland
- Centro Studi GISED Bergamo Italy
| | - Christina Bürgler
- Department of Dermatology, Inselspital, Bern University Hospital University of Bern Bern Switzerland
| | - Susanne Radonjic
- Department of Dermatology, Inselspital, Bern University Hospital University of Bern Bern Switzerland
| | - Carine Houriet
- Department of Dermatology, Inselspital, Bern University Hospital University of Bern Bern Switzerland
| | - Kristine Heidemeyer
- Department of Dermatology, Inselspital, Bern University Hospital University of Bern Bern Switzerland
| | - Hans‐Wilhelm Klötgen
- Department of Dermatology, Inselspital, Bern University Hospital University of Bern Bern Switzerland
| | | | - Luca Borradori
- Department of Dermatology, Inselspital, Bern University Hospital University of Bern Bern Switzerland
| | - Hans‐Uwe Simon
- Institute of Pharmacology University of Bern Bern Switzerland
- Department of Clinical Immunology and Allergology Sechenov University Moscow Russia
| |
Collapse
|
13
|
Simon HU, Yousefi S, Germic N, Arnold IC, Haczku A, Karaulov AV, Simon D, Rosenberg HF. The Cellular Functions of Eosinophils: Collegium Internationale Allergologicum (CIA) Update 2020. Int Arch Allergy Immunol 2019; 181:11-23. [PMID: 31786573 DOI: 10.1159/000504847] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 12/20/2022] Open
Abstract
Eosinophils and their secretory mediators play an important role in the pathogenesis of infectious and inflammatory disorders. Although eosinophils are largely evolutionally conserved, their physiologic functions are not well understood. Given the availability of new eosinophil-targeted depletion therapies, there has been a renewed interest in understanding eosinophil biology as these strategies may result in secondary disorders when applied over long periods of time. Recent data suggest that eosinophils are not only involved in immunological effector functions but also carry out tissue protective and immunoregulatory functions that actively contribute to the maintenance of homeostasis. Prolonged eosinophil depletion may therefore result in the development of secondary disorders. Here, we review recent literature pointing to important roles for eosinophils in promoting immune defense, antibody production, activation of adipose tissue, and tissue remodeling and fibrosis. We also reflect on patient data from clinical trials that feature anti-eosinophil therapeutics.
Collapse
Affiliation(s)
- Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland, .,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russian Federation,
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Nina Germic
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Isabelle C Arnold
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Angela Haczku
- University of California, Davis, Davis, California, USA
| | - Alexander V Karaulov
- Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russian Federation
| | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Helene F Rosenberg
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
14
|
Lou H, Wang C, Zhang L. Endotype-driven precision medicine in chronic rhinosinusitis. Expert Rev Clin Immunol 2019; 15:1171-1183. [PMID: 31600458 DOI: 10.1080/1744666x.2020.1679626] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Hongfei Lou
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Chengshuo Wang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
- Department of Allergy, Beijing TongRen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Pharmacotherapies for the Treatment of Eosinophilic Esophagitis: State of the Art Review. Drugs 2019; 79:1419-1434. [DOI: 10.1007/s40265-019-01173-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Amber KT, Maglie R, Solimani F, Eming R, Hertl M. Targeted Therapies for Autoimmune Bullous Diseases: Current Status. Drugs 2019; 78:1527-1548. [PMID: 30238396 DOI: 10.1007/s40265-018-0976-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Autoimmune bullous skin disorders are rare but meaningful chronic inflammatory diseases, many of which had a poor or devastating prognosis prior to the advent of immunosuppressive drugs such as systemic corticosteroids, which down-regulate the immune pathogenesis in these disorders. Glucocorticoids and adjuvant immunosuppressive drugs have been of major benefit for the fast control of most of these disorders, but their long-term use is limited by major side effects such as blood cytopenia, osteoporosis, diabetes mellitus, hypertension, and gastrointestinal ulcers. In recent years, major efforts were made to identify key elements in the pathogenesis of autoimmune bullous disorders, leading to the identification of their autoantigens, which are mainly located in desmosomes (pemphigus) and the basement membrane zone (pemphigoids). In the majority of cases, immunoglobulin G, and to a lesser extent, immunoglobulin A autoantibodies directed against distinct cutaneous adhesion molecules are directly responsible for the loss of cell-cell and cell-basement membrane adhesion, which is clinically related to the formation of blisters and/or erosions of the skin and mucous membranes. We describe and discuss novel therapeutic strategies that directly interfere with the production and regulation of pathogenic autoantibodies (rituximab), their catabolism (intravenous immunoglobulins), and their presence in the circulation and extravascular tissues such as the skin (immunoadsorption), leading to a significant amelioration of disease. Moreover, we show that these novel therapies have pleiotropic effects on various proinflammatory cells and cytokines. Recent studies in bullous pemphigoid suggest that targeting of immunoglobulin E autoantibodies (omalizumab) may be also beneficial. In summary, the introduction of targeted therapies in pemphigus and pemphigoid holds major promise because of the high efficacy and fewer side effects compared with conventional global immunosuppressive therapy.
Collapse
Affiliation(s)
- Kyle T Amber
- Department of Dermatology, University of Illinois at Chicago, 808 Wood St. Room 377, Chicago, IL, 60612, USA.
| | - Roberto Maglie
- Department of Dermatology, Philipps University, Baldingerstr., 35043, Marburg, Germany.,Department of Surgery and Translational Medicine, Section of Dermatology, University of Florence, Florence, Italy
| | - Farzan Solimani
- Department of Dermatology, Philipps University, Baldingerstr., 35043, Marburg, Germany
| | - Rüdiger Eming
- Department of Dermatology, Philipps University, Baldingerstr., 35043, Marburg, Germany
| | - Michael Hertl
- Department of Dermatology, Philipps University, Baldingerstr., 35043, Marburg, Germany.
| |
Collapse
|
17
|
Segal BM. Modulation of the Innate Immune System: A Future Approach to the Treatment of Neurological Disease. Clin Immunol 2019; 189:1-3. [PMID: 29628125 DOI: 10.1016/j.clim.2018.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Benjamin M Segal
- Holtom-Garrett Family Program in Neuroimmunology and the Multiple Sclerosis Center, Department of Neurology, University of Michigan, Ann Arbor, MI; Neurology Service, VA Ann Arbor Health Care System, Ann Arbor, MI
| |
Collapse
|
18
|
Simon D, Simon HU. Therapeutic strategies for eosinophilic dermatoses. Curr Opin Pharmacol 2019; 46:29-33. [DOI: 10.1016/j.coph.2019.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/17/2022]
|
19
|
Germic N, Frangez Z, Yousefi S, Simon HU. Regulation of the innate immune system by autophagy: neutrophils, eosinophils, mast cells, NK cells. Cell Death Differ 2019; 26:703-714. [PMID: 30737478 PMCID: PMC6460399 DOI: 10.1038/s41418-019-0295-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/15/2022] Open
Abstract
Autophagy is an evolutionally conserved, highly regulated catabolic process that combines cellular functions required for the regulation of metabolic balance under conditions of stress with those needed for the degradation of damaged cell organelles via the lysosomal machinery. The importance of autophagy for cell homeostasis and survival has long been appreciated. Recent data suggest that autophagy is also involved in non-metabolic functions that impact the immune system. Here, we reflect in two review articles the recent literature pointing to an important role for autophagy in innate immune cells. In this article, we focus on neutrophils, eosinophils, mast cells, and natural killer cells. We mainly discuss the influence of autophagy on functional cellular responses and its importance for overall host defense. In the companion review, we present the role of autophagy in the functions performed by monocytes/macrophages and dendritic cells.
Collapse
Affiliation(s)
- Nina Germic
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Ziva Frangez
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland.
- Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia.
| |
Collapse
|
20
|
Abstract
Eosinophilic granulocytes are a subpopulation of leucocytes and part of the innate immune cell pool. Additionally, they have homeostatic functions in different tissues. Classically, an increased number of eosinophils is associated with allergies and parasitic infections; however, eosinophilia can also be found in vasculitides and malignant tumors. The most important controlling factors of eosinophils are the cytokine interleukin 5 and eotaxins. Eosinophils are able to produce a broad range of signalling factors and toxic proteins, which are stored in cytoplasmic granules and can be quickly and specifically released when needed depending on the stimulus. To combat pathogens, eosinophils can catapult extracellular traps consisting of mitochondrial DNA and toxic proteins into the intercellular space. This review focuses on the basic structure, control and function of eosinophils in health and disease.
Collapse
Affiliation(s)
- C Sokollik
- Pädiatrische Gastroenterologie, Hepatologie und Ernährung, Kinderklinik, Inselspital, Universität Bern, Bern, Schweiz
| | - H-U Simon
- Institut für Pharmakologie, Universität Bern, Inselspital, INO-F, 3010, Bern, Schweiz.
| |
Collapse
|
21
|
Leuppi JD, Schmid-Grendelmeier P, Rothe T, von Garnier C, Simon HU, Schuoler C, Pendl G, Solèr M. [Benralizumab: Targeting the IL-5 Receptor in Severe Eosinophilic Asthma]. PRAXIS 2019; 108:469-476. [PMID: 31136272 DOI: 10.1024/1661-8157/a003222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Benralizumab: Targeting the IL-5 Receptor in Severe Eosinophilic Asthma Abstract. For patients with difficult-to-control, severe bronchial asthma, highly effective, targeted treatment options are available in addition to inhaled medication. In the presence of eosinophilia, inhibition of the interleukin-5 (IL‑5) axis with specific monoclonal antibodies promises to be an effective alternative to continuous systemic steroid therapy with few side effects. This review summarizes the data on benralizumab, a specific antibody against the IL-5 receptor alpha preventing receptor stimulation by IL-5 and activating a NK-cell mediated cytotoxic reaction with apoptosis of eosinophils. The s.c.-application of benralizumab leads within days to a virtually complete depletion of blood eosinophils with consecutive improvement in lung function and stabilization of asthma. For selected severe asthmatics, this is a promising therapy option.
Collapse
Affiliation(s)
- Jörg D Leuppi
- 1 Medizinische Universitätsklinik, Kantonsspital Baselland, Liestal
| | - Peter Schmid-Grendelmeier
- 2 Allergiestation, Dermatologische Klinik, Universitätsspital Zürich, Zürich und Christine-Kühne Center for Allergy Research and Education (CK-CARE), Davos
| | | | | | | | | | | | - Markus Solèr
- 7 7 Abteilung für Pneumologie, St. Claraspital, Basel
| |
Collapse
|
22
|
Leuppi JD, Schmid-Grendelmeier P, Rothe T, von Garnier C, Simon HU, Schuoler C, Pendl G, Solèr M. [Benralizumab: Targeting the IL-5 Receptor in Severe Eosinophilic Asthma]. PRAXIS 2019; 108:1-8. [PMID: 31136278 DOI: 10.1024/1661-8157/a003250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Benralizumab: Targeting the IL-5 Receptor in Severe Eosinophilic Asthma Abstract. Abstract:For patients with difficult-to-control, severe bronchial asthma, highly effective, targeted treatment options are available in addition to inhaled medication. In the presence of eosinophilia, inhibition of the interleukin-5 (IL-5) axis with specific monoclonal antibodies promises to be an effective alternative to continuous systemic steroid therapy with few side effects. This review summarizes the data on benralizumab, a specific antibody against the IL-5 receptor alpha preventing receptor stimulation by IL-5 and activating a NK-cell mediated cytotoxic reaction with apoptosis of eosinophils. The s.c.-application of benralizumab leads within days to a virtually complete depletion of blood eosinophils with consecutive improvement in lung function and stabilization of asthma. For selected severe asthmatics, this is a promising therapy option.
Collapse
Affiliation(s)
- Jörg D Leuppi
- 1 Medizinische Universitätsklinik, Kantonsspital Baselland, Liestal
| | - Peter Schmid-Grendelmeier
- 2 Allergiestation, Dermatologische Klinik, Universitätsspital Zurich, Zurich und Christine-Kühne Center for Allergy Research and Education (CK-CARE), Davos
| | | | | | | | | | | | - Markus Solèr
- 7 Abteilung für Pneumologie, St. Claraspital, Bâle
| |
Collapse
|
23
|
Gauckler P, Shin JI, Mayer G, Kronbichler A. Eosinophilia and Kidney Disease: More than Just an Incidental Finding? J Clin Med 2018; 7:E529. [PMID: 30544782 PMCID: PMC6306805 DOI: 10.3390/jcm7120529] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 02/07/2023] Open
Abstract
Peripheral blood eosinophilia (PBE), defined as 500 eosinophils or above per microliter (µL) blood, is a condition that is not uncommon but often neglected in the management of patients with chronic kidney disease (CKD), acute kidney injury (AKI), or patients on renal replacement therapy (RRT). The nature of PBE in the context of kidney diseases is predominantly secondary or reactive and has to be distinguished from primary eosinophilic disorders. Nonetheless, the finding of persistent PBE can be a useful clue for the differential diagnosis of underdiagnosed entities and overlapping syndromes, such as eosinophilic granulomatosis with polyangiitis (EGPA), IgG4-related disease (IgG4-RD), acute interstitial nephritis (AIN), or the hypereosinophilic syndrome (HES). For patients on RRT, PBE may be an indicator for bio-incompatibility of the dialysis material, acute allograft rejection, or Strongyloides hyperinfection. In a subset of patients with EGPA, eosinophils might even be the driving force in disease pathogenesis. This improved understanding is already being used to facilitate novel therapeutic options. Mepolizumab has been licensed for the management of EGPA and is applied with the aim to abrogate the underlying immunologic process by blocking interleukin-5. The current article provides an overview of different renal pathologies that are associated with PBE. Further scientific effort is required to understand the exact role and function of eosinophils in these disorders which may pave the way to improved interdisciplinary management of such patients.
Collapse
Affiliation(s)
- Philipp Gauckler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria.
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea.
- Department of Pediatric Nephrology, Severance Children's Hospital, Seoul 03722, Korea.
- Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul 03722, Korea.
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Gert Mayer
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria.
| | - Andreas Kronbichler
- Department of Internal Medicine IV (Nephrology and Hypertension), Medical University Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
24
|
Laidlaw TM, Prussin C, Panettieri RA, Lee S, Ferguson BJ, Adappa ND, Lane AP, Palumbo ML, Sullivan M, Archibald D, Dworetzky SI, Hebrank GT, Bozik ME. Dexpramipexole depletes blood and tissue eosinophils in nasal polyps with no change in polyp size. Laryngoscope 2018; 129:E61-E66. [DOI: 10.1002/lary.27564] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/20/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Tanya M. Laidlaw
- Brigham and Women's Hospital, Division of Rheumatology, Immunology, and Allergy; Boston Massachusetts
| | | | | | | | | | | | - Andrew P. Lane
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore Maryland U.S.A
| | - Marina L. Palumbo
- Brigham and Women's Hospital, Division of Rheumatology, Immunology, and Allergy; Boston Massachusetts
| | | | | | | | | | | |
Collapse
|
25
|
Leiferman KM, Peters MS. Eosinophil-Related Disease and the Skin. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2018; 6:1462-1482.e6. [DOI: 10.1016/j.jaip.2018.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 02/06/2023]
|
26
|
Bochner BS. The eosinophil: For better or worse, in sickness and in health. Ann Allergy Asthma Immunol 2018; 121:150-155. [PMID: 29499369 PMCID: PMC6087501 DOI: 10.1016/j.anai.2018.02.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 02/08/2023]
Affiliation(s)
- Bruce S Bochner
- Department of Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
27
|
Smith KA, Pulsipher A, Gabrielsen DA, Alt JA. Biologics in Chronic Rhinosinusitis: An Update and Thoughts for Future Directions. Am J Rhinol Allergy 2018; 32:412-423. [PMID: 30021447 DOI: 10.1177/1945892418787132] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Potential biologic therapies for chronic rhinosinusitis (CRS) is a growing field of interest and research. Biologics target specific immune cells or inflammatory pathways within a disease process, increasing drug efficacy while reducing complications. The success of biologics in other inflammatory conditions such as asthma and atopic dermatitis has spurred much of the corresponding research in CRS. A rapid expansion in the volume of research concerning biologic therapies with potential crossover to treating CRS has made it difficult to stay current. Furthermore, much of the literature has been focused on allergy, asthma, and immunology subspecialties. As the role for biologic therapies in CRS continues to expand, it is increasingly important for otolaryngologists to remain up to date on their progression. Objective The objectives of this review are to provide an update on the growing field of biologics for otolaryngologists who treat CRS and discuss potential future areas of research. Methods A literature review of biologic therapies studied in CRS was performed. In addition, a detailed review of all biologic therapies targeting inflammatory markers involved in Th1-, Th2-, and Th17-mediated inflammation was performed to identify potential areas for future research. The role for biologic therapies in CRS, endotypes of CRS, current biologic therapies studies in CRS, and future areas for research were reviewed. Results Sixty-nine unique biologic therapies have been developed for Th1-, Th2-, and Th17-mediated inflammation. Five biologics are currently being investigated for use in patients with CRS with nasal polyposis. Conclusions As the field of biologics continues to expand, remaining up to date on the current literature may help clinicians identify patients who may benefit from biologic therapies. In addition, ongoing research in other inflammatory disorders with shared pathophysiology to CRS may reveal other potential therapies for CRS that have not previously been investigated.
Collapse
Affiliation(s)
- Kristine A Smith
- 1 Division of Otolaryngology - Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Abigail Pulsipher
- 1 Division of Otolaryngology - Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, Utah.,2 GlycoMira Therapeutics, Inc., Salt Lake City, Utah
| | - David A Gabrielsen
- 1 Division of Otolaryngology - Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Jeremiah A Alt
- 1 Division of Otolaryngology - Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
28
|
Baos S, Calzada D, Cremades-Jimeno L, Sastre J, Picado C, Quiralte J, Florido F, Lahoz C, Cárdaba B. Nonallergic Asthma and Its Severity: Biomarkers for Its Discrimination in Peripheral Samples. Front Immunol 2018; 9:1416. [PMID: 29977241 PMCID: PMC6021512 DOI: 10.3389/fimmu.2018.01416] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/06/2018] [Indexed: 12/12/2022] Open
Abstract
Asthma is a complex and heterogeneous respiratory disorder characterized by chronic airway inflammation. It has generally been associated with allergic mechanisms related to type 2 airway inflammation. Nevertheless, between 10 and 33% of asthmatic individuals have nonallergic asthma (NA). Several targeted treatments are in clinical development for patients with Th2 immune response, but few biomarkers are been defined for low or non-Th2-mediated inflammation asthma. We have recently defined by gene expression a set of genes as potential biomarkers of NA, mainly associated with disease severity: IL10, MSR1, PHLDA1, SERPINB2, CHI3L1, IL8, and PI3. Here, we analyzed their protein expression and specificity using sera and isolated peripheral blood mononuclear cells (PBMCs). First, protein quantification was carried out using ELISA (in sera) or Western blot (proteins extracted from PBMCs by Trizol procedure), depending on the biomarker in 30 healthy controls (C) subjects and 30 NA patients. A receiver operating characteristic curve analysis was performed by using the R program to study the specificity and sensitivity of the candidate biomarkers at a gene- and protein expression level. Four kinds of comparisons were performed: total NA group vs C group, severe NA patients vs C, moderate-mild NA patients vs C, and severe NA patients vs moderate-mild NA patients. We found that all the single genes showed good sensitivity vs specificity for some phenotypic discrimination, with CHI3L1 and PI3 exhibiting the best results for C vs NA: CHI3L1 area under the curve (AUC) (CI 95%): 0.95 (0.84-1.00) and PI3 AUC: 0.99 (0.98-1.00); C vs severe NA: PI3 AUC: 1 (0.99-1.00); and C vs moderate-mild NA: CHI3L1 AUC: 1 (0.99-1.00) and PI3 AUC: 0.99 (0.96-1.00). However, the results for discriminating asthma disease and severity with protein expression were better when two or three biomarkers were combined. In conclusion, individual genes and combinations of proteins have been evaluated as reliable biomarkers for classifying NA subjects and their severity. These new panels could be good diagnostic tests.
Collapse
Affiliation(s)
- Selene Baos
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - David Calzada
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Lucía Cremades-Jimeno
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Joaquín Sastre
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Allergy Department, Fundación Jiménez Díaz, Madrid, Spain
| | - César Picado
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
- Service of Pneumology, Hospital Clinic, Universitat de Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Joaquín Quiralte
- Allergy Department, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Fernando Florido
- Allergy Department, Hospital Universitario San Cecilio, Granada, Spain
| | - Carlos Lahoz
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Blanca Cárdaba
- Immunology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
29
|
Wechsler JB, Hirano I. Biological therapies for eosinophilic gastrointestinal diseases. J Allergy Clin Immunol 2018; 142:24-31.e2. [PMID: 29859203 DOI: 10.1016/j.jaci.2018.05.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 02/06/2023]
Abstract
The scientific basis and the clinical application of mAb therapies that target specific immunologic pathways for eosinophilic gastrointestinal diseases are areas of active interest. There is a growing recognition of a subset of patients with eosinophilic esophagitis whose disease does not respond well to topical steroids or elimination diets. In addition, long-term use of corticosteroids presents possible risks that are currently being evaluated. Systemic therapy with a biologic agent offers potential advantages as a global approach that could limit the need for multiple, locally active medical therapies and allergen avoidance. The identification of novel biologic strategies is ongoing, and the recent validation of instruments and outcome measures to assess disease activity has proved essential in demonstrating efficacy. Studies using biologics that target IL-13 pathways in the treatment of eosinophilic esophagitis have demonstrated substantial promise.
Collapse
Affiliation(s)
- Joshua B Wechsler
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Ill.
| | - Ikuo Hirano
- Division of Gastroenterology and Hepatology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| |
Collapse
|
30
|
Lin L, Hwang BJ, Culton DA, Li N, Burette S, Koller BH, Messingham KA, Fairley JA, Lee JJ, Hall RP, An L, Diaz LA, Liu Z. Eosinophils Mediate Tissue Injury in the Autoimmune Skin Disease Bullous Pemphigoid. J Invest Dermatol 2018; 138:1032-1043. [PMID: 29246800 PMCID: PMC7531612 DOI: 10.1016/j.jid.2017.11.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 11/03/2017] [Accepted: 11/14/2017] [Indexed: 01/21/2023]
Abstract
Eosinophils are typically associated with unique inflammatory settings, including allergic inflammation and helminth infections. However, new information suggests that eosinophils contribute more broadly to inflammatory responses and participate in local immune regulation and the tissue remodeling/repair events linked with a variety of diseases. Eosinophilic infiltration has long been a histologic hallmark of bullous pemphigoid (BP), a subepidermal autoimmune blistering disease characterized by autoantibodies directed against basement membrane protein BP180. However, the exact role of eosinophils in disease pathogenesis remains largely unknown. We show here that eosinophils are necessary for IgE autoantibody-mediated BP blister formation in a humanized IgE receptor mouse model of BP. Disease severity is IgE dose dependent and correlates with the degree of eosinophil infiltration in the skin. Furthermore, IgE autoantibodies fail to induce BP in eosinophil-deficient mice, confirming that eosinophils are required for IgE-mediated tissue injury. Thus, eosinophils provide the cellular link between IgE autoantibodies and skin blistering in this murine model of BP. These findings suggest a role for eosinophils in autoimmune disease and have important implications for the treatment of BP and other antibody-mediated inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Lan Lin
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | - Bin-Jin Hwang
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Donna A Culton
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ning Li
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Susan Burette
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Beverly H Koller
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | - Janet A Fairley
- Department of Dermatology, University of Iowa, Iowa City, Iowa, USA
| | - James J Lee
- Mayo Clinic Arizona, Department of Biochemistry and Molecular Biology, Scottsdale, Arizona, USA
| | - Russell P Hall
- Department of Dermatology, Duke University Medical Center, Durham, North Carolina, USA
| | - Lijia An
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning, People's Republic of China
| | - Luis A Diaz
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Zhi Liu
- Department of Dermatology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
31
|
Valent P, Reiter A, Gotlib J. Eosinophilia, Eosinophil-Associated Diseases, Eosinophilic Leukemias, and the Hypereosinophilic Syndromes. Hematology 2018. [DOI: 10.1016/b978-0-323-35762-3.00071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
32
|
Simon D, Borradori L, Simon HU. Eosinophils as putative therapeutic targets in bullous pemphigoid. Exp Dermatol 2017; 26:1187-1192. [PMID: 28833620 DOI: 10.1111/exd.13416] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2017] [Indexed: 12/14/2022]
Abstract
Bullous pemphigoid (BP) is the most common autoimmune subepidermal blistering skin disease and is characterized by the presence of autoantibodies directed against the hemidesmosomal proteins BP180 and BP230 that can be detected in the skin and serum of BP patients. Histologically, the dermal infiltration of eosinophils is obvious. The objective of this review was to present evidence that eosinophils play a key role in the pathogenesis of BP. Eosinophils, together with cytokines and chemokines regulating their production, recruitment and activation, are abundantly present in lesional skin, in blisters and in peripheral blood of patients with BP. Recently, using a cryosection model, eosinophils were demonstrated to induce dermal-epidermal separation in the presence of BP antibodies. Thus, eosinophils and their products, as well as mediators regulating their function, present promising targets for the treatment of BP.
Collapse
Affiliation(s)
- Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Luca Borradori
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| |
Collapse
|
33
|
O’Sullivan JA, Carroll DJ, Bochner BS. Glycobiology of Eosinophilic Inflammation: Contributions of Siglecs, Glycans, and Other Glycan-Binding Proteins. Front Med (Lausanne) 2017; 4:116. [PMID: 28824909 PMCID: PMC5539825 DOI: 10.3389/fmed.2017.00116] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022] Open
Abstract
The historical focus on protein-protein interactions in biological systems, at the expense of attention given to interactions between other classes of molecules, has overlooked important and clinically relevant processes and points of potential clinical intervention. For example, the significance of protein-carbohydrate interactions, especially in the regulation of immune responses, has recently received greater recognition and appreciation. This review discusses several ways by which cell-surface lectin-glycan interactions can modulate eosinophil function, particularly at the levels of eosinophil recruitment and survival, and how such interactions can be exploited therapeutically. A primary focus is on discoveries concerning Siglec-8, a glycan-binding protein selectively expressed on human eosinophils, and its closest functional paralog in the mouse, Siglec-F. Recent advances in the synthesis of polymeric ligands, the identification of physiological ligands for Siglec-8 and Siglec-F in the airway, and the determination of the basis of glycan ligand discrimination of Siglec-8 are discussed. Important similarities and differences between these siglecs are outlined. Eosinophil expression of additional glycan-binding proteins or their glycan ligands, including interactions involving members of the selectin, galectin, and siglec families, is summarized. The roles of these molecules in eosinophil recruitment, survival, and inflammation are described. Finally, the modulation of these interactions and potential therapeutic exploitation of glycan-binding proteins and their ligands to ameliorate eosinophil-associated diseases are considered.
Collapse
Affiliation(s)
- Jeremy A. O’Sullivan
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Daniela J. Carroll
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Bruce S. Bochner
- Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
34
|
Soman KV, Stafford SJ, Pazdrak K, Wu Z, Luo X, White WI, Wiktorowicz JE, Calhoun WJ, Kurosky A. Activation of Human Peripheral Blood Eosinophils by Cytokines in a Comparative Time-Course Proteomic/Phosphoproteomic Study. J Proteome Res 2017; 16:2663-2679. [PMID: 28679203 DOI: 10.1021/acs.jproteome.6b00367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Activated eosinophils contribute to airway dysfunction and tissue remodeling in asthma and thus are considered to be important factors in asthma pathology. We report here comparative proteomic and phosphoproteomic changes upon activation of eosinophils using eight cytokines individually and in selected cytokine combinations in time-course reactions. Differential protein and phosphoprotein expressions were determined by mass spectrometry after 2-dimensional gel electrophoresis (2DGE) and by LC-MS/MS. We found that each cytokine-stimulation produced significantly different changes in the eosinophil proteome and phosphoproteome, with phosphoproteomic changes being more pronounced and having an earlier onset. Furthermore, we observed that IL-5, GM-CSF, and IL-3 showed the greatest change in protein expression and phosphorylation, and this expression differed markedly from those of the other five cytokines evaluated. Comprehensive univariate and multivariate statistical analyses were employed to evaluate the comparative results. We also monitored eosinophil activation using flow cytometry (FC) analysis of CD69. In agreement with our proteomic studies, FC indicated that IL-5, GM-CSF, and IL-3 were more effective than the other five cytokines studied in stimulating a cell surface CD69 increase indicative of eosinophil activation. Moreover, selected combinations of cytokines revealed proteomic patterns with many proteins in common with single cytokine expression patterns but also showed a greater effect of the two cytokines employed, indicating a more complex signaling pathway that was reflective of a more typical inflammatory pathology.
Collapse
Affiliation(s)
- Kizhake V Soman
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Susan J Stafford
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Konrad Pazdrak
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Institute for Translational Sciences, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Zheng Wu
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Xuemei Luo
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Wendy I White
- MedImmune LLC , One MedImmune Way, Gaithersburg, Maryland 20878, United States
| | - John E Wiktorowicz
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Institute for Translational Sciences, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Institute for Human Immunity & Infection, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - William J Calhoun
- Department of Internal Medicine, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | - Alexander Kurosky
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch , Galveston, Texas 77555, United States.,Sealy Center for Molecular Medicine, University of Texas Medical Branch , Galveston, Texas 77555, United States
| |
Collapse
|
35
|
CD300f:IL-5 cross-talk inhibits adipose tissue eosinophil homing and subsequent IL-4 production. Sci Rep 2017; 7:5922. [PMID: 28725048 PMCID: PMC5517555 DOI: 10.1038/s41598-017-06397-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/09/2017] [Indexed: 12/22/2022] Open
Abstract
Eosinophils and their associated cytokines IL-4 and IL-5 are emerging as central orchestrators of the immune-metabolic axis. Herein, we demonstrate that cross-talk between the Ig-superfamily receptor CD300f and IL-5 is a key checkpoint that modifies the ability of eosinophils to regulate metabolic outcomes. Generation of Il5 Tg /Cd300f -/- mice revealed marked and distinct increases in eosinophil levels and their production of IL-4 in the white and brown adipose tissues. Consequently, Il5 Tg /Cd300f -/- mice had increased alternatively activated macrophage accumulation in the adipose tissue. Cd300f -/- mice displayed age-related accumulation of eosinophils and macrophages in the adipose tissue and decreased adipose tissue weight, which was associated with decreased diet-induced weight gain and insulin resistance. Notably, Il5 Tg /CD300f -/- were protected from diet-induced weight gain and glucose intolerance. These findings highlight the cross-talk between IL-5 receptor and CD300f as a novel pathway regulating adipose tissue eosinophils and offer new entry points for therapeutic intervention for obesity and its complications.
Collapse
|
36
|
de Graauw E, Sitaru C, Horn M, Borradori L, Yousefi S, Simon HU, Simon D. Evidence for a role of eosinophils in blister formation in bullous pemphigoid. Allergy 2017; 72:1105-1113. [PMID: 28135772 DOI: 10.1111/all.13131] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND Bullous pemphigoid (BP) is an autoimmune bullous disease of the skin characterized by subepidermal blister formation due to tissue-bound and circulating autoantibodies to the hemidesmosomal antigens BP180 and BP230. Although eosinophils and their toxic mediators are found abundantly in BP lesions, their role in blister formation has remained unclear. OBJECTIVE To investigate the role of eosinophils in the pathogenesis of BP with a specific focus on blister formation and to define conditions inducing dermal-epidermal separation (DES). METHODS In an ex vivo human model of BP, normal human skin cryosections were incubated with purified human peripheral blood eosinophils with or without activation in the presence or absence of BP autoantibodies, brefeldin A, diphenyleneiodonium, DNase or blocking F(ab')2 fragments to CD16, CD18, CD32 and CD64. Dermal-epidermal separation was assessed by light microscopy studies and quantified using Fiji software. RESULTS Following activation with IL-5 and in the presence of BP autoantibodies, eosinophils induced separation along the dermal-epidermal junction of ex vivo skin. Dermal-epidermal separation was significantly reduced by blocking any of the following: Fcγ receptor binding (P = 0.048), eosinophil adhesion (P = 0.046), reactive oxygen species (ROS) production (P = 0.002), degranulation (P < 0.0001) or eosinophil extracellular trap (EET) formation (P = 0.048). CONCLUSIONS Our results provide evidence that IL-5-activated eosinophils directly contribute to BP blister formation in the presence of BP autoantibodies. Dermal-epidermal separation by IL-5-activated eosinophils depends on adhesion and Fcγ receptor activation, requires elevated ROS production and degranulation and involves EET formation. Thus, targeting eosinophils may be a promising therapeutic approach for BP.
Collapse
Affiliation(s)
- E. de Graauw
- Institute of Pharmacology; University of Bern; Bern Switzerland
| | - C. Sitaru
- Department of Dermatology and Centre for Biological Signaling Studies (BIOSS); University Medical Center Freiburg; Freiburg Germany
| | - M. Horn
- Centre of Laboratory Medicine; Inselspital; Bern University Hospital; Bern Switzerland
| | - L. Borradori
- Department of Dermatology; Inselspital; Bern University Hospital; University of Bern; Bern Switzerland
| | - S. Yousefi
- Institute of Pharmacology; University of Bern; Bern Switzerland
| | - H.-U. Simon
- Institute of Pharmacology; University of Bern; Bern Switzerland
| | - D. Simon
- Department of Dermatology; Inselspital; Bern University Hospital; University of Bern; Bern Switzerland
| |
Collapse
|
37
|
Precision medicine in patients with allergic diseases: Airway diseases and atopic dermatitis-PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol 2017; 137:1347-58. [PMID: 27155030 DOI: 10.1016/j.jaci.2016.03.010] [Citation(s) in RCA: 214] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 01/01/2023]
Abstract
In this consensus document we summarize the current knowledge on major asthma, rhinitis, and atopic dermatitis endotypes under the auspices of the PRACTALL collaboration platform. PRACTALL is an initiative of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology aiming to harmonize the European and American approaches to best allergy practice and science. Precision medicine is of broad relevance for the management of asthma, rhinitis, and atopic dermatitis in the context of a better selection of treatment responders, risk prediction, and design of disease-modifying strategies. Progress has been made in profiling the type 2 immune response-driven asthma. The endotype driven approach for non-type 2 immune response asthma, rhinitis, and atopic dermatitis is lagging behind. Validation and qualification of biomarkers are needed to facilitate their translation into pathway-specific diagnostic tests. Wide consensus between academia, governmental regulators, and industry for further development and application of precision medicine in management of allergic diseases is of utmost importance. Improved knowledge of disease pathogenesis together with defining validated and qualified biomarkers are key approaches to precision medicine.
Collapse
|
38
|
Radonjic-Hoesli S, Wang X, de Graauw E, Stoeckle C, Styp-Rekowska B, Hlushchuk R, Simon D, Spaeth PJ, Yousefi S, Simon HU. Adhesion-induced eosinophil cytolysis requires the receptor-interacting protein kinase 3 (RIPK3)-mixed lineage kinase-like (MLKL) signaling pathway, which is counterregulated by autophagy. J Allergy Clin Immunol 2017; 140:1632-1642. [PMID: 28412393 DOI: 10.1016/j.jaci.2017.01.044] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/22/2016] [Accepted: 01/12/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND Eosinophils are a subset of granulocytes that can be involved in the pathogenesis of different diseases, including allergy. Their effector functions are closely linked to their cytotoxic granule proteins. Release takes place through several different mechanisms, one of which is cytolysis, which is associated with release of intact granules, so-called clusters of free eosinophil granules. The mechanism underlying this activation-induced form of cell death in eosinophils has remained unclear. OBJECTIVE We aimed to elucidate the molecular mechanism of eosinophil cytolysis. METHODS Isolated blood eosinophils were incubated on glass coverslips coated with intravenous immunoglobulin and inactive complement component 3b. A morphologic characterization of the distinct stages of the proposed cascade was addressed by means of time-lapse automated fluorescence microscopy, electron microscopy, and immunohistochemistry. Experiments with pharmacologic inhibitors were performed to elucidate the sequence of events within the cascade. Tissue samples of patients with eosinophilic skin diseases or eosinophilic esophagitis were used for in vivo analyses. RESULTS After eosinophil adhesion, we observed reactive oxygen species production, early degranulation, and granule fusion processes, leading to a distinct morphology exhibiting cytoplasmic vacuolization and, finally, cytolysis. Using a pharmacologic approach, we demonstrate the presence of a receptor-interacting protein kinase 3 (RIPK3)-mixed lineage kinase-like (MLKL) signaling pathway in eosinophils, which, after its activation, leads to the production of high levels of reactive oxygen species in a p38 mitogen-activated protein kinase and phosphatidylinositol 3'-kinase-dependent manner. All these steps are required for cytoplasmic vacuolization and subsequent cytolysis to occur. Interestingly, triggering cytolysis is associated with an induction of autophagy in eosinophils, and additional stimulation of autophagy by means of pharmacologic inhibition of the mechanistic target of rapamycin counterregulates cell death. Moreover, MLKL phosphorylation, cytoplasmic vacuolization, and cytolysis were observed in eosinophils under in vivo inflammatory conditions. CONCLUSION We report that adhesion-induced eosinophil cytolysis takes place through RIPK3-MLKL-dependent necroptosis, which can be counterregulated by autophagy.
Collapse
Affiliation(s)
- Susanne Radonjic-Hoesli
- Institute of Pharmacology, University of Bern, Bern, Switzerland; Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Xiaoliang Wang
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | | | | | | | | | - Dagmar Simon
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Peter J Spaeth
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland.
| |
Collapse
|
39
|
Stoeckle C, Geering B, Yousefi S, Rožman S, Andina N, Benarafa C, Simon HU. RhoH is a negative regulator of eosinophilopoiesis. Cell Death Differ 2016; 23:1961-1972. [PMID: 27740624 DOI: 10.1038/cdd.2016.73] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 06/16/2016] [Accepted: 06/27/2016] [Indexed: 02/07/2023] Open
Abstract
Eosinophils are frequently elevated in pathological conditions and can cause tissue damage and disease exacerbation. The number of eosinophils in the blood is largely regulated by factors controlling their production in the bone marrow. While several exogenous factors, such as interleukin-5, have been described to promote eosinophil differentiation, comparatively little is known about eosinophil-intrinsic factors that control their de novo generation. Here, we report that the small atypical GTPase RhoH is induced during human eosinophil differentiation, highly expressed in mature blood eosinophils and further upregulated in patients suffering from a hypereosinophilic syndrome. Overexpression of RhoH increases, in a Rho-associated protein kinase-dependent manner, the expression of GATA-2, a transcription factor involved in regulating eosinophil differentiation. In RhoH-/- mice, we observed reduced GATA-2 expression as well as accelerated eosinophil differentiation both in vitro and in vivo. Conversely, RhoH overexpression in bone marrow progenitors reduces eosinophil development in mixed bone marrow chimeras. These results highlight a novel negative regulatory role for RhoH in eosinophil differentiation, most likely in consequence of altered GATA-2 levels.
Collapse
Affiliation(s)
| | - Barbara Geering
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Saša Rožman
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Nicola Andina
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Charaf Benarafa
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| |
Collapse
|
40
|
Carr TF, Berdnikovs S, Simon HU, Bochner BS, Rosenwasser LJ. Eosinophilic bioactivities in severe asthma. World Allergy Organ J 2016; 9:21. [PMID: 27386041 PMCID: PMC4924237 DOI: 10.1186/s40413-016-0112-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/15/2016] [Indexed: 12/17/2022] Open
Abstract
Asthma is clearly related to airway or blood eosinophilia, and asthmatics with significant eosinophilia are at higher risk for more severe disease. Eosinophils actively contribute to innate and adaptive immune responses and inflammatory cascades through the production and release of diverse chemokines, cytokines, lipid mediators and other growth factors. Eosinophils may persist in the blood and airways despite guidelines-based treatment. This review details eosinophil effector mechanisms, surface markers, and clinical outcomes associated with eosinophilia and asthma severity. There is interest in the potential of eosinophils or their products to predict treatment response with biotherapeutics and their usefulness as biomarkers. This is important as monoclonal antibodies are targeting cytokines and eosinophils in different lung environments for treating severe asthma. Identifying disease state-specific eosinophil biomarkers would help to refine these strategies and choose likely responders to biotherapeutics.
Collapse
Affiliation(s)
| | - Sergejs Berdnikovs
- />Northwestern University Feinberg School of Medicine, Chicago, Illinois USA
| | - Hans-Uwe Simon
- />Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Bruce S. Bochner
- />Northwestern University Feinberg School of Medicine, Chicago, Illinois USA
| | | |
Collapse
|
41
|
Abstract
Current therapies for eosinophilic disorders are limited. Most treatment approaches remain empirical, are not supported by data from controlled clinical trials, involve the off-label use of agents developed for treatment of other diseases, and tend to rely heavily on the use of glucocorticoids and other agents with significant toxicity. Great progress has been made in the discovery, preclinical development, and clinical testing of a variety of biologics and small molecules that have the potential to directly or indirectly influence eosinophils, eosinophilic inflammation, and the consequences of eosinophil activation.
Collapse
|
42
|
Legrand F, Klion AD. Biologic therapies targeting eosinophils: current status and future prospects. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2015; 3:167-74. [PMID: 25754717 DOI: 10.1016/j.jaip.2015.01.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 01/22/2015] [Accepted: 01/26/2015] [Indexed: 01/14/2023]
Abstract
The recent explosion in the number of biologic therapies in clinical development for the treatment of eosinophilic disorders is unprecedented. As these agents become available for clinical use, the selection of the most appropriate agent for a given patient will become increasingly complicated. The aims of this review were 2-fold: (1) to present the lessons learned from clinical trials using the first generation of eosinophil-targeted biologics (anti-IL-5 antibodies) and (2) to discuss the advantages and potential limitations of currently available and novel targeted therapies to treat eosinophilic disorders.
Collapse
Affiliation(s)
- Fanny Legrand
- Human Eosinophil Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda
| | - Amy D Klion
- Human Eosinophil Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda.
| |
Collapse
|
43
|
Abstract
Abstract
Eosinophilia is associated with a wide variety of allergic, rheumatologic, infectious, neoplastic, and rare idiopathic disorders. Clinical manifestations range from benign asymptomatic presentations to life-threatening complications, including endomyocardial fibrosis and thromboembolism. The prognosis and choice of treatment depend not only on the degree of eosinophilia and severity of organ involvement, but also on the etiology of the eosinophilia. Unfortunately, despite recent advances in molecular and immunologic techniques, the etiology remains unproven in the overwhelming majority of cases. This review presents a practical approach to the diagnosis and treatment of patients presenting with unexplained marked eosinophilia. A brief overview of the mechanisms of eosinophilia and eosinophil pathogenesis is also provided.
Collapse
|
44
|
Boyman O, Kaegi C, Akdis M, Bavbek S, Bossios A, Chatzipetrou A, Eiwegger T, Firinu D, Harr T, Knol E, Matucci A, Palomares O, Schmidt-Weber C, Simon HU, Steiner UC, Vultaggio A, Akdis CA, Spertini F. EAACI IG Biologicals task force paper on the use of biologic agents in allergic disorders. Allergy 2015; 70:727-54. [PMID: 25819018 DOI: 10.1111/all.12616] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2015] [Indexed: 12/22/2022]
Abstract
Biologic agents (also termed biologicals or biologics) are therapeutics that are synthesized by living organisms and directed against a specific determinant, for example, a cytokine or receptor. In inflammatory and autoimmune diseases, biologicals have revolutionized the treatment of several immune-mediated disorders. Biologicals have also been tested in allergic disorders. These include agents targeting IgE; T helper 2 (Th2)-type and Th2-promoting cytokines, including interleukin-4 (IL-4), IL-5, IL-9, IL-13, IL-31, and thymic stromal lymphopoietin (TSLP); pro-inflammatory cytokines, such as IL-1β, IL-12, IL-17A, IL-17F, IL-23, and tumor necrosis factor (TNF); chemokine receptor CCR4; and lymphocyte surface and adhesion molecules, including CD2, CD11a, CD20, CD25, CD52, and OX40 ligand. In this task force paper of the Interest Group on Biologicals of the European Academy of Allergy and Clinical Immunology, we review biologicals that are currently available or tested for the use in various allergic and urticarial pathologies, by providing an overview on their state of development, area of use, adverse events, and future research directions.
Collapse
Affiliation(s)
- O. Boyman
- Department of Immunology; University Hospital Zurich; University of Zurich; Zurich Switzerland
| | - C. Kaegi
- Department of Immunology; University Hospital Zurich; University of Zurich; Zurich Switzerland
| | - M. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE); Davos Switzerland
| | - S. Bavbek
- Division of Immunology and Allergy; Department of Pulmonary Disease; School of Medicine; Ankara University; Ankara Turkey
| | - A. Bossios
- Krefting Research Centre; Department of Internal Medicine and Nutrition; Institute of Medicine; Sahlgrenska Academy; University of Gothenburg; Gothenburg Sweden
| | - A. Chatzipetrou
- Allergy Unit ‘D. Kalogeromitros’; 2nd Department of Dermatology and Venereology; ‘Attikon’ University Hospital; Medical School; University of Athens; Athens Greece
| | - T. Eiwegger
- Department of Pediatrics and Adolescent Medicine; Medical University of Vienna; Vienna Austria
| | - D. Firinu
- Unit of Internal Medicine, Allergy and Clinical Immunology; Department of Medical Sciences ‘M. Aresu’; University of Cagliari; Monserrato Italy
| | - T. Harr
- Service d'Immunologie et d'Allergologie; Spécialités de Médecine; Hôpitaux Universitaires de Genève; Geneva Switzerland
| | - E. Knol
- Departments of Immunology and Dermatology/Allergology; University Medical Center Utrecht; Utrecht The Netherlands
| | - A. Matucci
- Immunoallergology Unit; Department of Biomedicine; Azienda Ospedaliero Universitaria Careggi; Florence Italy
| | - O. Palomares
- Department of Biochemistry and Molecular Biology; School of Chemistry; Complutense University of Madrid; Madrid Spain
| | - C. Schmidt-Weber
- Center of Allergy and Environment (ZAUM); Technische Universität and Helmholtz Center Munich; Member of the German Center for Lung Research (DZL); Munich Germany
| | - H.-U. Simon
- Institute of Pharmacology; University of Bern; Bern Switzerland
| | - U. C. Steiner
- Division of Allergology and Clinical Immunology; Spitalnetz Bern Tiefenau Ziegler; Bern Switzerland
| | - A. Vultaggio
- Immunoallergology Unit; Department of Biomedicine; Azienda Ospedaliero Universitaria Careggi; Florence Italy
| | - C. A. Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF); University of Zurich; Davos Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE); Davos Switzerland
| | - F. Spertini
- Division of Immunology and Allergy; Centre Hospitalier Universitaire Vaudois; Lausanne Switzerland
| |
Collapse
|
45
|
Abstract
Eosinophil infiltration can be observed in skin disorders, such as allergic/immunologic, autoimmune, infectious, and neoplastic diseases. Clinical presentations are variable and include eczematous, papular, urticarial, bullous, nodular, and fibrotic lesions; pruritus is a common symptom in all. In this review, we present representative eosinophilic skin diseases according to their clinical pattern, together with histologic findings and diagnostic procedures. We also discuss the potential roles of eosinophils in the pathogenesis of dermatologic disorder. Current pathogenesis-based diagnostic and therapeutic approaches are outlined.
Collapse
Affiliation(s)
- Elisabeth de Graauw
- Department of Dermatology, Inselspital, Freiburgstrasse, Bern CH-3010, Switzerland; Institute of Pharmacology, University of Bern, Inselspital, Bern CH-3010, Switzerland
| | - Helmut Beltraminelli
- Department of Dermatology, Inselspital, Freiburgstrasse, Bern CH-3010, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Inselspital, Bern CH-3010, Switzerland
| | - Dagmar Simon
- Department of Dermatology, Inselspital, Freiburgstrasse, Bern CH-3010, Switzerland.
| |
Collapse
|