1
|
Feng X, Cai W, Li Q, Zhao L, Meng Y, Xu H. Activation of lysosomal Ca2+ channels mitigates mitochondrial damage and oxidative stress. J Cell Biol 2025; 224:e202403104. [PMID: 39500490 PMCID: PMC11540856 DOI: 10.1083/jcb.202403104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 11/09/2024] Open
Abstract
Elevated levels of plasma-free fatty acids and oxidative stress have been identified as putative primary pathogenic factors in endothelial dysfunction etiology, though their roles are unclear. In human endothelial cells, we found that saturated fatty acids (SFAs)-including the plasma-predominant palmitic acid (PA)-cause mitochondrial fragmentation and elevation of intracellular reactive oxygen species (ROS) levels. TRPML1 is a lysosomal ROS-sensitive Ca2+ channel that regulates lysosomal trafficking and biogenesis. Small-molecule agonists of TRPML1 prevented PA-induced mitochondrial damage and ROS elevation through activation of transcriptional factor EB (TFEB), which boosts lysosome biogenesis and mitophagy. Whereas genetically silencing TRPML1 abolished the protective effects of TRPML1 agonism, TRPML1 overexpression conferred a full resistance to PA-induced oxidative damage. Pharmacologically activating the TRPML1-TFEB pathway was sufficient to restore mitochondrial and redox homeostasis in SFA-damaged endothelial cells. The present results suggest that lysosome activation represents a viable strategy for alleviating oxidative damage, a common pathogenic mechanism of metabolic and age-related diseases.
Collapse
Affiliation(s)
- Xinghua Feng
- New Cornerstone Science Laboratory and Liangzhu Laboratory, The Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Weijie Cai
- New Cornerstone Science Laboratory and Liangzhu Laboratory, The Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Qian Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Liding Zhao
- The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaping Meng
- New Cornerstone Science Laboratory and Liangzhu Laboratory, The Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Haoxing Xu
- New Cornerstone Science Laboratory and Liangzhu Laboratory, The Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Ahmad F, Qaisar R. Nicotinamide riboside kinase 2: A unique target for skeletal muscle and cardiometabolic diseases. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167487. [PMID: 39216649 DOI: 10.1016/j.bbadis.2024.167487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Myopathy leads to skeletal and cardiac muscle degeneration which is a major cause of physical disability and heart failure. Despite the therapeutic advancement the prevalence of particularly cardiac diseases is rising at an alarming rate and novel therapeutic targets are required. Nicotinamide riboside kinase-2 (NRK-2 or NMRK2) is a muscle-specific β1-integrin binding protein abundantly expressed in the skeletal muscle while only a trace amount is detected in the healthy cardiac muscle. The level in cardiac tissue is profoundly upregulated under pathogenic conditions such as ischemia and hypertension. NRK-2 was initially identified to regulate myoblast differentiation and to enhance the levels of NAD+, an important coenzyme that potentiates cellular energy production and stress resilience. Recent advancement has shown that NRK-2 critically regulates numerous cellular and molecular processes under pathogenic conditions to modulate the disease severity. Therefore, given its restricted expression in the cardiac and skeletal muscle, NRK-2 may serve as a unique therapeutic target. In this review, we provided a comprehensive overview of the diverse roles of NRK-2 played in different cardiac and muscular diseases and discussed the underlying molecular mechanisms in detail. Moreover, this review precisely examined how NRK-2 regulates metabolism in cardiac muscle, and how dysfunctional NRK-2 is associated with energetic deficit and impaired muscle function, manifesting various cardiac and skeletal muscle disease conditions.
Collapse
Affiliation(s)
- Firdos Ahmad
- Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Space Medicine Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Rizwan Qaisar
- Cardiovascular Research Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Space Medicine Group, Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates; Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
3
|
Zhang J, Lei J, Liu X, Zhang N, Wu L, Li Y. LC-MS simultaneous profiling of acyl-CoA and acyl-carnitine in dynamic metabolic status. Anal Chim Acta 2024; 1329:343235. [PMID: 39396298 DOI: 10.1016/j.aca.2024.343235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Affiliation(s)
- Jiangang Zhang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Juan Lei
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xudong Liu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Nan Zhang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
4
|
Moliterni C, Vari F, Schifano E, Tacconi S, Stanca E, Friuli M, Longo S, Conte M, Salvioli S, Gnocchi D, Mazzocca A, Uccelletti D, Vergara D, Dini L, Giudetti AM. Lipotoxicity of palmitic acid is associated with DGAT1 downregulation and abolished by PPARα activation in liver cells. J Lipid Res 2024:100692. [PMID: 39505261 DOI: 10.1016/j.jlr.2024.100692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024] Open
Abstract
Lipotoxicity refers to the harmful effects of excess fatty acids on metabolic health, and it can vary depending on the type of fatty acids involved. Saturated and unsaturated fatty acids exhibit distinct effects, though the precise mechanisms behind these differences remain unclear. Here, we investigated the lipotoxicity of palmitic acid (PA), a saturated fatty acid, compared with oleic acid (OA), a monounsaturated fatty acid, in the hepatic cell line HuH7. Our results demonstrated that PA, unlike OA, induces lipotoxicity, endoplasmic reticulum (ER) stress, and autophagy inhibition. Compared with OA, PA treatment leads to less lipid droplet (LD) accumulation and a significant reduction in the mRNA and protein level of diacylglycerol acyltransferase 1 (DGAT1), a key enzyme of triacylglycerol synthesis. Using modulators of ER stress and autophagy, we established that DGAT1 downregulation by PA is closely linked to these cellular pathways. Notably, the ER stress inhibitor 4-phenylbutyrate can suppress PA-induced DGAT1 downregulation. Furthermore, knockdown of DGAT1 by siRNA or with A922500, a specific DGAT1 inhibitor, resulted in cell death, even with OA. Both PA and OA increased the oxygen consumption rate; however, the increase associated with PA was only partially coupled to ATP synthesis. Importantly, treatment with GW7647 a specific PPARα agonist mitigated the lipotoxic effects of PA, restoring PA-induced ER stress, autophagy block, and DGAT1 suppression. In conclusion, our study highlights the crucial role of DGAT1 in PA-induced lipotoxicity, broadening the knowledge of the mechanisms underlying hepatic lipotoxicity and providing the basis for potential therapeutic interventions.
Collapse
Affiliation(s)
- Camilla Moliterni
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Francesco Vari
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Emily Schifano
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Stefano Tacconi
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy; CarMeN Laboratory (UMR INSERM 1060/INRA 1397), HCL, Lyon 1 University, Pierre-Bénite, France
| | - Eleonora Stanca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Marzia Friuli
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Serena Longo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Maria Conte
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Stefano Salvioli
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Davide Gnocchi
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, 70124 Bari, Italy
| | - Antonio Mazzocca
- Interdisciplinary Department of Medicine, University of Bari School of Medicine, 70124 Bari, Italy
| | - Daniela Uccelletti
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy
| | - Daniele Vergara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Luciana Dini
- Department of Biology and Biotechnology "C. Darwin", Sapienza University of Rome, Rome, Italy.
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy.
| |
Collapse
|
5
|
Lin Y, Zhang W, Jiang X, Wu C, Yang J, Tao J, Chen Z, He J, Zhu R, Zhong H, Zhang J, Xu J, Zhang Z, Zhang M. Sodium octanoate mediates GPR84-dependent and independent protection against sepsis-induced myocardial dysfunction. Biomed Pharmacother 2024; 180:117455. [PMID: 39341076 DOI: 10.1016/j.biopha.2024.117455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
INTRODUCTION This study aims to evaluate the therapeutic effects of sodium octanoate (SO), a medium-chain fatty acid salt, on SIMD in a murine model and to explore its underlying mechanisms. METHODS Male mice were subjected to sepsis models through two methods: intraperitoneal injection of lipopolysaccharide (LPS) and cecal ligation and punction (CLP). Mice received interval doses of SO every 2 hours or 4 hours for a total of six times or three times after LPS treatment. The relationship between SO and G protein-coupled receptor 84 (GPR84) was evaluated through GEO data analysis and molecular docking studies. DBA/2 mice were used to study the role of the GPR84 protein in the SO-mediated protection. Energy metabolomics was utilized to comprehensively assess the impact of SO on the levels of cardiac energy metabolic products in septic mice. histone modification identification techniques were used to further identify the specific sites of histone modification in the hearts of SO-treated septic mice. RESULTS SO treatment significantly improved myocardial contractile function, restored the oxidative stress imbalance and enhanced the myocardium's resistance to oxidative injury. SO significantly promotes the expression of GPR84. The loss of GPR84 function markedly attenuates the protective effects of SO. SO enhanced myocardial energy metabolism by promoting the synthesis of acetyl-CoA and upregulating genes involved in fatty acid β-oxidation which were abolished by medium-chain acyl-CoA dehydrogenase (MCAD) knockdown. SO induced histone acetylation, particularly at H3K123 and H3K80. CONCLUSION Our study demonstrates that SO exerts protective effects against SIMD through both GPR84-mediated anti-inflammatory and antioxidant actions and GPR84-independent enhancement of myocardial energy metabolism, possibly mediated by MCAD.
Collapse
Affiliation(s)
- Yao Lin
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Hangzhou 310009, China; Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China.
| | - Wenbin Zhang
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Hangzhou 310009, China; Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China.
| | - Xiangkang Jiang
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Hangzhou 310009, China; Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China.
| | - Chenghao Wu
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Hangzhou 310009, China; Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China.
| | - Jingyuan Yang
- Department of Dermatology, Air Force Medical Center, PLA, Beijing, 100142, China.
| | - Jiawei Tao
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Hangzhou 310009, China; Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China.
| | - Ziwei Chen
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Hangzhou 310009, China; Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China.
| | - Jiantao He
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Hangzhou 310009, China; Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China.
| | - Ruojie Zhu
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Hangzhou 310009, China; Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China.
| | - Huiming Zhong
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Hangzhou 310009, China; Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China.
| | - Jinbo Zhang
- Department of Emergency Medicine, The First People's Hospital of Wenling, Wenling 317500, China.
| | - Jiefeng Xu
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Hangzhou 310009, China; Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China.
| | - Zhaocai Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Mao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China; Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burns of Zhejiang Province, Hangzhou 310009, China; Clinical Research Center for Emergency and Critical Care Medicine of Zhejiang Province, Hangzhou 310009, China.
| |
Collapse
|
6
|
Tang Y, Chen Z, Zuo Q, Kang Y. Regulation of CD8+ T cells by lipid metabolism in cancer progression. Cell Mol Immunol 2024; 21:1215-1230. [PMID: 39402302 PMCID: PMC11527989 DOI: 10.1038/s41423-024-01224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/22/2024] [Indexed: 11/02/2024] Open
Abstract
Dysregulation of lipid metabolism is a key characteristic of the tumor microenvironment, where tumor cells utilize lipids for proliferation, survival, metastasis, and evasion of immune surveillance. Lipid metabolism has become a critical regulator of CD8+ T-cell-mediated antitumor immunity, with excess lipids in the tumor microenvironment impeding CD8+ T-cell activities. Considering the limited efficacy of immunotherapy in many solid tumors, targeting lipid metabolism to enhance CD8+ T-cell effector functions could significantly improve immunotherapy outcomes. In this review, we examine recent findings on how lipid metabolic processes, including lipid uptake, synthesis, and oxidation, regulate CD8+ T cells within tumors. We also assessed the impact of different lipids on CD8+ T-cell-mediated antitumor immunity, with a particular focus on how lipid metabolism affects mitochondrial function in tumor-infiltrating CD8+ T cells. Furthermore, as cancer is a systemic disease, we examined systemic factors linking lipid metabolism to CD8+ T-cell effector function. Finally, we summarize current therapeutic approaches that target lipid metabolism to increase antitumor immunity and enhance immunotherapy. Understanding the molecular and functional interplay between lipid metabolism and CD8+ T cells offers promising therapeutic opportunities for cancer treatment.
Collapse
Affiliation(s)
- Yong Tang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Ziqing Chen
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Qianying Zuo
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA.
- Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
7
|
Ma N, Xu C, Wang Y, Cui K, Kuang H. Telomerase reverse transcriptase protects against diabetic kidney disease by promoting AMPK/PGC-1a-regulated mitochondrial energy homeostasis. Chem Biol Interact 2024; 403:111238. [PMID: 39265716 DOI: 10.1016/j.cbi.2024.111238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Disordered glucose and lipid metabolism, coupled with disturbed mitochondrial bioenergetics, are pivotal in the initiation and development of diabetic kidney disease (DKD). While the essential role of telomerase reverse transcriptase (TERT) in regulating mitochondrial function in the cardiovascular system has been recognized, its specific function in maintaining mitochondrial homeostasis in DKD remains unclear. This study aimed to explore how TERT regulates mitochondrial function and the underlying mechanisms. In vitro, human renal proximal tubular HK-2 cells exposed to high glucose/high fat (HG/HF) presented significant downregulation of TERT and AMPK dephosphorylation. This led to decreased ATP production, altered NAD+/NADH ratios, reduced mitochondrial complex activities, increased mitochondrial dysfunction, lipid accumulation, and reactive oxygen species (ROS) production. Knockdown of TERT (si-TERT) further exacerbated mitochondrial dysfunction, decreased mitochondrial membrane potential, and lowered levels of cellular oxidative phosphorylation and glycolysis, as determined via a Seahorse X24 flux analyzer. Conversely, mitochondrial dysfunction was significantly alleviated after pcDNA-TERT plasmid transfection and adeno-associated virus (AAV) 9-TERT gene therapy in vivo. Notably, treatment with an AMPK inhibitor, activator, and si-PGC-1a (peroxisome proliferator-activated receptor γ coactivator-1α), resulted in mitochondrial dysfunction and decreased expression of genes related to energy metabolism and mitochondrial biogenesis. Our findings reveal that TERT protects mitochondrial function and homeostasis by partially activating the AMPK/PGC-1a signaling pathway. These results establish a crucial foundation for understanding TERT's critical role inmitochondrial regulation and its protective effect on DKD.
Collapse
Affiliation(s)
- Nan Ma
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengye Xu
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Wang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kexin Cui
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyu Kuang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
8
|
Wu J, Gong L, Li Y, Qu J, Yang Y, Wu R, Fan G, Ding M, Xie K, Li F, Li X. Tao-Hong-Si-Wu-Tang improves thioacetamide-induced liver fibrosis by reversing ACSL4-mediated lipid accumulation and promoting mitophagy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118456. [PMID: 38878839 DOI: 10.1016/j.jep.2024.118456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver fibrosis is a generic fibrous scarring event resulting from accumulation of extracellular matrix (ECM) proteins, easily progressing to end-stage liver diseases. Tao-Hong-Si-Wu-Tang (THSWT) is a traditional Chinese medicine formula applied in clinics to treat gynecological and chronic liver diseases. However, the role of THSWT on thioacetamide (TAA)-induced hepatic fibrosis and the specific mechanisms remains unclear. AIM OF THE STUDY To investigate the improving effects of THSWT on TAA-insulted hepatic fibrosis and the underlying mechanisms. MATERIALS AND METHODS UHPLC-MS/MS was performed to explore the chemical characterization of THSWT. Mice were orally administered with THSWT once daily for 6 weeks along with TAA challenge. Liver function was reflected through serum biomarkers and histopathological staining. RNA sequencing, non-targeted metabolomics and molecular biology experiments were applied to investigate the underlying mechanisms. RESULTS THSWT profoundly repaired lipid metabolism dysfunction and blocked collagen accumulation both in TAA-stimulated mice and in hepatocytes. Results of RNA sequencing and non-targeted metabolomics revealed that the anti-fibrotic effects of THSWT mostly relied on lipid metabolism repairment by increasing levels of acetyl-CoA, phosphatidylcholine, phosphatidylethanolamine, lysophosphatidylcholine and lysophosphatidylethanolamine, and decreasing relative abundances of acyl-CoA, total cholesterol, diacylglycerol, triacylglycerol and phosphatidylinositol. Mechanically, long-chain acyl-CoA synthetases 4 (ACSL4) was a key profibrotic target both in human and mice by disrupting lipid oxidation and metabolism in hepatic mitochondria. THSWT effectively blocked ACSL4 and promoted mitophagy to reverse above outcomes, which was verified by mitophagy depletion. CONCLUSION THSWT may be a promising therapeutic option for treating hepatic fibrosis and its complications by modulating lipid metabolism and promoting mitophagy in livers.
Collapse
Affiliation(s)
- Jianzhi Wu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Liping Gong
- The Second Hospital of Shandong University, Shan Dong University, 247 Bei Yuan Da Jie, Jinan, 250033, China
| | - Yufei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Jiaorong Qu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yang Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Ruiyu Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Mingning Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Kaihong Xie
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fanghong Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11 Bei San Huan Dong Lu, Beijing, 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
9
|
Tian L, Liu Q, Guo H, Zang H, Li Y. Fighting ischemia-reperfusion injury: Focusing on mitochondria-derived ferroptosis. Mitochondrion 2024; 79:101974. [PMID: 39461581 DOI: 10.1016/j.mito.2024.101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/12/2024] [Accepted: 10/12/2024] [Indexed: 10/29/2024]
Abstract
Ischemia-reperfusion injury (IRI) is a major cause of mortality and morbidity. Current treatments for IRI have limited efficacy and novel therapeutic strategies are needed. Mitochondrial dysfunction not only initiates IRI but also plays a significant role in ferroptosis pathogenesis. Recent studies have highlighted that targeting mitochondrial pathways is a promising therapeutic approach for ferroptosis-induced IRI. The association between ferroptosis and IRI has been reviewed many times, but our review provides the first comprehensive overview with a focus on recent mitochondrial research. First, we present the role of mitochondria in ferroptosis. Then, we summarize the evidence on mitochondrial manipulation of ferroptosis in IRI and review recent therapeutic strategies aimed at targeting mitochondria-related ferroptosis to mitigate IRI. We hope our review will provide new ideas for the treatment of IRI and accelerate the transition from bench to bedside.
Collapse
Affiliation(s)
- Lei Tian
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qian Liu
- Department of Anesthesiology, Zigong First People's Hospital, Zigong Academy of Medical Sciences, Zigong, China
| | - Hong Guo
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Honggang Zang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yulan Li
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
10
|
Roy-Dorval A, Deagle RC, Roth F, Raybaud M, Ismailova N, Krisna SS, Aboud DGK, Stegen C, Leconte J, Berberi G, Esomojumi A, Fritz JH. Analysis of lipid uptake, storage, and fatty acid oxidation by group 2 innate lymphoid cells. Front Immunol 2024; 15:1493848. [PMID: 39497825 PMCID: PMC11532145 DOI: 10.3389/fimmu.2024.1493848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/24/2024] [Indexed: 11/07/2024] Open
Abstract
Group 2 Innate Lymphoid Cells (ILC2) are critical drivers of both innate and adaptive type 2 immune responses, known to orchestrate processes involved in tissue restoration and wound healing. In addition, ILC2 have been implicated in chronic inflammatory barrier disorders in type 2 immunopathologies such as allergic rhinitis and asthma. ILC2 in the context of allergen-driven airway inflammation have recently been shown to influence local and systemic metabolism, as well as being rich in lipid-storing organelles called lipid droplets. However, mechanisms of ILC2 lipid anabolism and catabolism remain largely unknown and the impact of these metabolic processes in regulating ILC2 phenotypes and effector functions has not been extensively characterized. ILC2 phenotypes and effector functions are shaped by their metabolic status, and determining the metabolic requirements of ILC2 is critical in understanding their role in type 2 immune responses and their associated pathophysiology. We detail here a novel experimental method of implementing flow cytometry for large scale analysis of fatty acid uptake, storage of neutral lipids, and fatty acid oxidation in primary murine ILC2 with complementary morphological analysis of lipid storage using confocal microscopy. By combining flow cytometry and confocal microscopy, we can identify the metabolic lipid requirements for ILC2 functions as well as characterize the phenotype of lipid storage in ILC2. Linking lipid metabolism pathways to ILC2 phenotypes and effector functions is critical for the assessment of novel pharmaceutical strategies to regulate ILC2 functions in type 2 immunopathologies.
Collapse
Affiliation(s)
- Audrey Roy-Dorval
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Rebecca C. Deagle
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Frederik Roth
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Mathilde Raybaud
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Nailya Ismailova
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Sai Sakktee Krisna
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Damon G. K. Aboud
- Department of Chemical Engineering, McGill University, Montréal, QC, Canada
| | - Camille Stegen
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Julien Leconte
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Gabriel Berberi
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Ademola Esomojumi
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
| | - Jörg H. Fritz
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- McGill University Research Center on Complex Traits (MRCCT), McGill University, Montréal, QC, Canada
- Dahdaleh Institute of Genomic Medicine (DIgM), McGill University, Montréal, QC, Canada
- Department of Physiology, McGill University, Montréal, QC, Canada
| |
Collapse
|
11
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2024; 104:101306. [PMID: 39433211 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
12
|
de Juan A, Tabtim-On D, Coillard A, Becher B, Goudot C, Segura E. The aryl hydrocarbon receptor shapes monocyte transcriptional responses to interleukin-4 by prolonging STAT6 binding to promoters. Sci Signal 2024; 17:eadn6324. [PMID: 39405377 DOI: 10.1126/scisignal.adn6324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/25/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024]
Abstract
Cytokines induce functional and metabolic adaptations in immune cells, typically through transcriptional responses that can be influenced by other extracellular signals and by intracellular factors. The binding of the cytokine interleukin-4 (IL-4) to its receptor induces the phosphorylation and activation of the transcription factor STAT6. The aryl hydrocarbon receptor (AhR), a transcription factor activated by various endogenous and microbe-derived metabolites, modulates the responses of immune cells to danger signals or inflammatory mediators such as cytokines. Here, we investigated cross-talk between the AhR and signaling stimulated by IL-4 in human and mouse monocytes. AhR activation was required for a subset of IL-4-induced transcriptional responses and inhibited the IL-4-induced metabolic switch to fatty acid β-oxidation. The promoters of the genes that were induced by IL-4 in an AhR-dependent manner lacked canonical AhR binding sites, implying a nongenomic mechanism of AhR action. Mechanistically, AhR activation reduced the activity of SHP-1, a phosphatase that targets and inhibits STAT6, and prolonged STAT6 phosphorylation and binding to specific target loci, thus extending the duration of STAT6 activity. Our results identify AhR as a key player in the molecular control of responses to IL-4 in monocytes and suggest a nongenomic mechanism through which AhR ligands may influence the functional responses of cells to IL-4.
Collapse
Affiliation(s)
- Alba de Juan
- Institut Curie, PSL Research University, INSERM, U932, 26 rue d'Ulm, Paris, France
| | - Darawan Tabtim-On
- Institut Curie, PSL Research University, INSERM, U932, 26 rue d'Ulm, Paris, France
| | - Alice Coillard
- Institut Curie, PSL Research University, INSERM, U932, 26 rue d'Ulm, Paris, France
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, 8057 Zurich, Switzerland
| | - Christel Goudot
- Institut Curie, PSL Research University, INSERM, U932, 26 rue d'Ulm, Paris, France
| | - Elodie Segura
- Institut Curie, PSL Research University, INSERM, U932, 26 rue d'Ulm, Paris, France
| |
Collapse
|
13
|
Kazane KR, Labarta-Bajo L, Zangwill DR, Liimatta K, Vargas F, Weldon KC, Dorrestein PC, Zúñiga EI. Metabolomic Profiling Reveals Potential of Fatty Acids as Regulators of Stem-like Exhausted CD8 T Cells During Chronic Viral Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617124. [PMID: 39416134 PMCID: PMC11483027 DOI: 10.1101/2024.10.07.617124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Chronic infections drive a CD8 T cell program termed T cell exhaustion, characterized by reduced effector functions. While cell-intrinsic mechanisms underlying CD8 T cell exhaustion have been extensively studied, the impact of the metabolic environment in which exhausted CD8 T cells (Tex) operate remains less clear. Using untargeted metabolomics and the murine lymphocytic choriomeningitis virus infection model we investigated systemic metabolite changes early and late following acute versus chronic viral infections. We identified distinct short-term and persistent metabolite shifts, with the most significant differences occurring transiently during the acute phase of the sustained infection. This included nutrient changes that were independent of viral loads and partially associated with CD8 T cell-induced anorexia and lipolysis. One remarkable observation was the elevation of medium- and long-chain fatty acid (FA) and acylcarnitines during the early phase after chronic infection. During this time, virus-specific CD8 T cells from chronically infected mice exhibited increased lipid accumulation and uptake compared to their counterparts from acute infection, particularly stem-like Tex (Tex STEM ), a subset that generates effector-like Tex INT which directly limit viral replication. Notably, only Tex STEM increased oxidative metabolism and ATP production upon FA exposure. Consistently, short-term reintroduction of FA during late chronic infection exclusively improved Tex STEM mitochondrial fitness, percentages and numbers. This treatment, however, also reduced Tex INT , resulting in compromised viral control. Our study offers a valuable resource for investigating the role of specific metabolites in regulating immune responses during acute and chronic viral infections and highlights the potential of long-chain FA to influence Tex STEM and viral control during a protracted infection. Significance This study examines systemic metabolite changes during acute and chronic viral infections. Notably, we identified an early, transient nutrient shift in chronic infection, marked by an increase in medium- and long-chain fatty acid related species. Concomitantly, a virus-specific stem-like T cell population, essential for maintaining other T cells, displayed high lipid avidity and was capable of metabolizing exogenous fatty acids. Administering fatty acids late in chronic infection, when endogenous lipid levels had normalized, expanded this stem-like T cell population and enhanced their mitochondrial fitness. These findings highlight the potential role of fatty acids in regulating stem-like T cells in chronic settings and offer a valuable resource for studying other metabolic signatures in both acute and persistent infections.
Collapse
|
14
|
Bertels JC, He G, Long F. Metabolic reprogramming in skeletal cell differentiation. Bone Res 2024; 12:57. [PMID: 39394187 PMCID: PMC11470040 DOI: 10.1038/s41413-024-00374-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 10/13/2024] Open
Abstract
The human skeleton is a multifunctional organ made up of multiple cell types working in concert to maintain bone and mineral homeostasis and to perform critical mechanical and endocrine functions. From the beginning steps of chondrogenesis that prefigures most of the skeleton, to the rapid bone accrual during skeletal growth, followed by bone remodeling of the mature skeleton, cell differentiation is integral to skeletal health. While growth factors and nuclear proteins that influence skeletal cell differentiation have been extensively studied, the role of cellular metabolism is just beginning to be uncovered. Besides energy production, metabolic pathways have been shown to exert epigenetic regulation via key metabolites to influence cell fate in both cancerous and normal tissues. In this review, we will assess the role of growth factors and transcription factors in reprogramming cellular metabolism to meet the energetic and biosynthetic needs of chondrocytes, osteoblasts, or osteoclasts. We will also summarize the emerging evidence linking metabolic changes to epigenetic modifications during skeletal cell differentiation.
Collapse
Affiliation(s)
- Joshua C Bertels
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Guangxu He
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Orthopedics, The Second Xiangya Hospital, Changsha, Hunan, China
| | - Fanxin Long
- Department of Surgery, Translational Research Program in Pediatric Orthopedics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Orthopedic Surgery, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Cheng J, Yang S, Shou D, Chen J, Li Y, Huang C, Chen H, Zhou Y. FOXO1 induced fatty acid oxidation in hepatic cells by targeting ALDH1L2. J Gastroenterol Hepatol 2024; 39:2197-2207. [PMID: 38923573 DOI: 10.1111/jgh.16662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/28/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND AND AIM Lipid metabolism disorder is the primary feature of numerous refractory chronic diseases. Fatty acid oxidation, an essential aerobic biological process, is closely related to the progression of NAFLD. The forkhead transcription factor FOXO1 has been reported to play an important role in lipid metabolism. However, the molecular mechanism through which FOXO1 regulates fatty acid oxidation remains unclear. METHODS Transcriptomic analysis was performed to examine the cellular expression profile to determine the functional role of FOXO1 in HepG2 cells with palmitic acid (PA)-induced lipid accumulation. FOXO1-binding motifs at the promoter region of aldehyde dehydrogenase 1 family member L2 (ALDH1L2) were predicted via bioinformatic analysis and confirmed via luciferase reporter assay. Overexpression of ALDH1L2 was induced to recover the impaired fatty acid oxidation in FOXO1-knockout cells. RESULTS Knockout of FOXO1 aggravated lipid deposition in hepatic cells. Transcriptomic profiling revealed that knockout of FOXO1 increased the expression of genes associated with fatty acid synthesis but decreased the expression of carnitine palmitoyltransferase1a (CPT1α) and adipose triglyceride lipase (ATGL), which contribute to fatty acid oxidation. Mechanistically, FOXO1 was identified as a transcription factor of ALDH1L2. Knockout of FOXO1 significantly decreased the protein expression of ALDH1L2 and CPT1α in vitro and in vivo. Furthermore, overexpression of ALDH1L2 restored fatty acid oxidation in FOXO1-knockout cells. CONCLUSION The findings of this study indicate that FOXO1 modulates fatty acid oxidation by targeting ALDH1L2.
Collapse
Affiliation(s)
- Jiemin Cheng
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Siqi Yang
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Diwen Shou
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Jiawei Chen
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Yongqiang Li
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Chen Huang
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Huiting Chen
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| | - Yongjian Zhou
- Department of Gastroenterology and Hepatology, Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, China
| |
Collapse
|
16
|
Grzesiuk M, Grabska M, Malinowska A, Świderska B, Grzesiuk E, Garbicz D, Gorecki A. Daphnia stress response to environmental concentrations of chloramphenicol-multi-omics approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58876-58888. [PMID: 39317899 PMCID: PMC11513740 DOI: 10.1007/s11356-024-35045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Commonly used medicines, when discarded or improperly disposed of, are known to contaminate freshwater ecosystems. Pharmaceuticals can be toxic and mutagenic, and can modify freshwater organisms, even at environmentally relevant concentrations. Chloramphenicol (CAP) is an antibiotic banned in Europe. However, it is still found in surface waters around the world. The aim of this study was to evaluate the impact of chloramphenicol contamination in freshwater on the model organism Daphnia magna. Specific life history parameters, proteome, and host-associated microbiome of four D. magna clones were analyzed during a three-generation exposure to CAP at environmental concentrations (32 ng L-1). In the first generation, no statistically significant CAP effect at the individual level was detected. After three generations, exposed animals were smaller at first reproduction and on average produced fewer offspring. The differences in D. magna's life history after CAP treatment were in accordance with proteome changes. D. magna's response to CAP presence indicates the high stress that the tested organisms are under, e.g., male production, upregulation of ubiquitin-conjugating enzyme E2 and calcium-binding protein, and downregulation of glutathione transferase. The CAP-exposed D. magna proteome profile confirms that CAP, being reactive oxygen species (ROS)-inducing compounds, contributes to structural changes in mitochondria. Microbiome analysis showed a significant difference in the Shannon index between control and CAP-exposed animals, the latter having a more diverse microbiome. Multilevel analyses, together with long exposure in the laboratory imitating conditions in a polluted environment, allow us to obtain a more complete picture of the impact of CAP on D. magna.
Collapse
Affiliation(s)
- Malgorzata Grzesiuk
- Department of Biochemistry and Microbiology, Institute of Biology; Warsaw, University of Life Sciences (SGGW), Warsaw, Poland.
| | - Marta Grabska
- Department of Biochemistry and Microbiology, Institute of Biology; Warsaw, University of Life Sciences (SGGW), Warsaw, Poland
| | - Agata Malinowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Bianka Świderska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Elzbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Damian Garbicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
- Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, Warsaw, Poland
| | - Adrian Gorecki
- Department of Biochemistry and Microbiology, Institute of Biology; Warsaw, University of Life Sciences (SGGW), Warsaw, Poland
| |
Collapse
|
17
|
Amo-Aparicio J, Dinarello CA, Lopez-Vales R. Metabolic reprogramming of the inflammatory response in the nervous system: the crossover between inflammation and metabolism. Neural Regen Res 2024; 19:2189-2201. [PMID: 38488552 PMCID: PMC11034585 DOI: 10.4103/1673-5374.391330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 04/24/2024] Open
Abstract
Metabolism is a fundamental process by which biochemicals are broken down to produce energy (catabolism) or used to build macromolecules (anabolism). Metabolism has received renewed attention as a mechanism that generates molecules that modulate multiple cellular responses. This was first identified in cancer cells as the Warburg effect, but it is also present in immunocompetent cells. Studies have revealed a bidirectional influence of cellular metabolism and immune cell function, highlighting the significance of metabolic reprogramming in immune cell activation and effector functions. Metabolic processes such as glycolysis, oxidative phosphorylation, and fatty acid oxidation have been shown to undergo dynamic changes during immune cell response, facilitating the energetic and biosynthetic demands. This review aims to provide a better understanding of the metabolic reprogramming that occurs in different immune cells upon activation, with a special focus on central nervous system disorders. Understanding the metabolic changes of the immune response not only provides insights into the fundamental mechanisms that regulate immune cell function but also opens new approaches for therapeutic strategies aimed at manipulating the immune system.
Collapse
Affiliation(s)
| | | | - Ruben Lopez-Vales
- Institute of Neurosciences, and Department Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Spain
| |
Collapse
|
18
|
Yang J, Chen Y, Li X, Qin H, Bao J, Wang C, Dong X, Xu D. Complex Interplay Between Metabolism and CD4 + T-Cell Activation, Differentiation, and Function: a Novel Perspective for Atherosclerosis Immunotherapy. Cardiovasc Drugs Ther 2024; 38:1033-1046. [PMID: 37199882 DOI: 10.1007/s10557-023-07466-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2023] [Indexed: 05/19/2023]
Abstract
Atherosclerosis is a complex pathological process that results from the chronic inflammatory reaction of the blood vessel wall and involves various immune cells and cytokines. An imbalance in the proportion and function of the effector CD4+ T-cell (Teff) and regulatory T-cell (Treg) subsets is an important cause of the occurrence and development of atherosclerotic plaques. Teff cells depend on glycolytic metabolism and glutamine catabolic metabolism for energy, while Treg cells mainly rely on fatty acid oxidation (FAO), which is crucial for determining the fate of CD4+ T cells during differentiation and maintaining their respective immune functions. Here, we review recent research achievements in the field of immunometabolism related to CD4+ T cells, focusing on the cellular metabolic pathways and metabolic reprogramming involved in the activation, proliferation, and differentiation of CD4+ T cells. Subsequently, we discuss the important roles of mTOR and AMPK signaling in regulating CD4+ T-cell differentiation. Finally, we evaluated the links between CD4+ T-cell metabolism and atherosclerosis, highlighting the potential of targeted modulation of CD4+ T-cell metabolism in the prevention and treatment of atherosclerosis in the future.
Collapse
Affiliation(s)
- Jingmin Yang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Yanying Chen
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Xiao Li
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Huali Qin
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Jinghui Bao
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Chunfang Wang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Xiaochen Dong
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China
| | - Danyan Xu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410000, Hunan, China.
| |
Collapse
|
19
|
Gan PXL, Zhang S, Fred Wong WS. Targeting reprogrammed metabolism as a therapeutic approach for respiratory diseases. Biochem Pharmacol 2024; 228:116187. [PMID: 38561090 DOI: 10.1016/j.bcp.2024.116187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Metabolic reprogramming underlies the etiology and pathophysiology of respiratory diseases such as asthma, idiopathic pulmonary fibrosis (IPF), and chronic obstructive pulmonary disease (COPD). The dysregulated cellular activities driving airway inflammation and remodelling in these diseases have reportedly been linked to aberrant shifts in energy-producing metabolic pathways: glycolysis and oxidative phosphorylation (OXPHOS). The rewiring of glycolysis and OXPHOS accompanying the therapeutic effects of many clinical compounds and natural products in asthma, IPF, and COPD, supports targeting metabolism as a therapeutic approach for respiratory diseases. Correspondingly, inhibiting glycolysis has largely attested effective against experimental asthma, IPF, and COPD. However, modulating OXPHOS and its supporting catabolic pathways like mitochondrial pyruvate catabolism, fatty acid β-oxidation (FAO), and glutaminolysis for these respiratory diseases remain inconclusive. An emerging repertoire of metabolic enzymes are also interconnected to these canonical metabolic pathways that similarly possess therapeutic potential for respiratory diseases. Taken together, this review highlights the urgent demand for future studies to ascertain the role of OXPHOS in different respiratory diseases, under different stimulatory conditions, and in different cell types. While this review provides strong experimental evidence in support of the inhibition of glycolysis for asthma, IPF, and COPD, further verification by clinical trials is definitely required.
Collapse
Affiliation(s)
- Phyllis X L Gan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore, Singapore
| | - Shanshan Zhang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore-HUJ Alliance for Research and Enterprise, National University of Singapore, Singapore; Drug Discovery and Optimization Platform, Yong Loo Lin School of Medicine, National University Health System, Singapore.
| |
Collapse
|
20
|
Tian L, Liu Q, Wang X, Chen S, Li Y. Fighting ferroptosis: Protective effects of dexmedetomidine on vital organ injuries. Life Sci 2024; 354:122949. [PMID: 39127318 DOI: 10.1016/j.lfs.2024.122949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Vital organ injury is one of the leading causes of global mortality and socio-economic burdens. Current treatments have limited efficacy, and new strategies are needed. Dexmedetomidine (DEX) is a highly selective α2-adrenergic receptor that protects multiple organs by reducing inflammation and preventing cell death. However, its exact mechanism is not yet fully understood. Understanding the underlying molecular mechanisms of its protective effects is crucial as it could provide a basis for designing highly targeted and more effective drugs. Ferroptosis is the primary mode of cell death during organ injury, and recent studies have shown that DEX can protect vital organs from this process. This review provides a detailed analysis of preclinical in vitro and in vivo studies and gains a better understanding of how DEX protects against vital organ injuries by inhibiting ferroptosis. Our findings suggest that DEX can potentially protect vital organs mainly by regulating iron metabolism and the antioxidant defense system. This is the first review that summarizes all evidence of ferroptosis's role in DEX's protective effects against vital organ injuries. Our work aims to provide new insights into organ therapy with DEX and accelerate its translation from the laboratory to clinical settings.
Collapse
Affiliation(s)
- Lei Tian
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Qian Liu
- Department of Anesthesiology, Zigong First People's Hospital, Zigong, China
| | - Xing Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Suheng Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Yulan Li
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
21
|
Liang J, Huang F, Hao X, Zhang P, Chen R. Nicotinamide mononucleotide supplementation rescues mitochondrial and energy metabolism functions and ameliorates inflammatory states in the ovaries of aging mice. MedComm (Beijing) 2024; 5:e727. [PMID: 39355508 PMCID: PMC11442848 DOI: 10.1002/mco2.727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 10/03/2024] Open
Abstract
Noninvasive pharmacological strategies like nicotinamide mononucleotide (NMN) supplementation can effectively address age-related ovarian infertility by maintaining or enhancing oocyte quality and quantity. This study revealed that ovarian nicotinamide adenine dinucleotide levels decline with age, but NMN administration significantly restores these levels, preventing ovarian atrophy and enhancing the quality and quantity of ovulated oocytes. Improvements in serum hormone secretion and antioxidant factors, along with decreased expression of proinflammatory factors, were observed. Additionally, a significant increase in the number of ovarian follicles in aging individuals was noted. Scanning electron microscopy data indicated that NMN significantly alters the density and morphology of lipid droplets and mitochondria in granulosa cells, suggesting potential targets and mechanisms. Transcriptomic analysis and validation experiments collectively suggested that the beneficial effects of NMN on aging ovaries are mediated through enhanced mitochondrial function, improved energy metabolism, and reduced inflammation levels. Our results suggest that NMN supplementation could improve the health status of aging ovaries and enhance ovarian reserve, offering new insights into addressing fertility challenges in older women through assisted reproductive technology.
Collapse
Affiliation(s)
- Jinghui Liang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College National Clinical Research Center for Obstetric & Gynecologic Diseases Beijing China
| | - Feiling Huang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College National Clinical Research Center for Obstetric & Gynecologic Diseases Beijing China
| | - Xueyu Hao
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University National Center for Children's Health Beijing China
- MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University National Center for Children's Health Beijing China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Rare Disease Center, Beijing Children's Hospital, Capital Medical University National Center for Children's Health Beijing China
| | - Peng Zhang
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University National Center for Children's Health Beijing China
- MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University National Center for Children's Health Beijing China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children; Rare Disease Center, Beijing Children's Hospital, Capital Medical University National Center for Children's Health Beijing China
| | - Rong Chen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College National Clinical Research Center for Obstetric & Gynecologic Diseases Beijing China
| |
Collapse
|
22
|
Hu Y, Wang S, Wang R, Zhang Y, Yuan Q, Yuan C. Total saponins from Panax japonicus regulated the intestinal microbiota to alleviate lipid metabolism disorders in aging mice. Arch Gerontol Geriatr 2024; 125:105500. [PMID: 38851092 DOI: 10.1016/j.archger.2024.105500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
Total saponins from Panax japonicus (TSPJ) have many beneficial physiological activities, particularly in alleviating the damages of aging and abnormal lipid metabolism. This work used mice models to investigate if TSPJ reduced obesity and regulated metabolic functions via the intestinal microbiota, the disturbance of which has been shown to cause aging-related diseases. The results showed that TSPJ significantly reduced the weight and blood lipid level of aging mice. Further analyses showed that TSPJ significantly inhibited adipogenesis, changed the composition of the intestinal flora, and protected the integrity of the intestinal barrier. It was inferred from the accumulated experimental data that TSPJ helped to combat obesity in aging mice by regulating the intestinal microbiota and promoting microbial metabolism.
Collapse
Affiliation(s)
- Yaqi Hu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Shuwen Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Rui Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yifan Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Qi Yuan
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China; College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, China; College of Basic Medical Science, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
23
|
Hasegawa K, Fujimori H, Nakatani K, Takahashi M, Izumi Y, Bamba T, Nakamura-Shima M, Shibuya-Takahashi R, Mochizuki M, Wakui Y, Abue M, Iwai W, Fukushi D, Satoh K, Yamaguchi K, Shindo N, Yasuda J, Asano N, Imai T, Asada Y, Katori Y, Tamai K. Delta-6 desaturase FADS2 is a tumor-promoting factor in cholangiocarcinoma. Cancer Sci 2024; 115:3346-3357. [PMID: 39113435 PMCID: PMC11447924 DOI: 10.1111/cas.16306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024] Open
Abstract
Cholangiocarcinoma is a fatal disease with limited therapeutic options. We screened genes required for cholangiocarcinoma tumorigenicity and identified FADS2, a delta-6 desaturase. FADS2 depletion reduced in vivo tumorigenicity and cell proliferation. In clinical samples, FADS2 was expressed in cancer cells but not in stromal cells. FADS2 inhibition also reduced the migration and sphere-forming ability of cells and increased apoptotic cell death and ferroptosis markers. Lipidome assay revealed that triglyceride and cholesterol ester levels were decreased in FADS2-knockdown cells. The oxygen consumption ratio was also decreased in FADS2-depleted cells. These data indicate that FADS2 depletion causes a reduction in lipid levels, resulting in decrease of energy production and attenuation of cancer cell malignancy.
Collapse
Affiliation(s)
- Kohsei Hasegawa
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
- Department of Head and Neck Surgery, Miyagi Cancer Center, Natori, Miyagi, Japan
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Haruna Fujimori
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Kohta Nakatani
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takeshi Bamba
- Division of Metabolomics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Mao Nakamura-Shima
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Rie Shibuya-Takahashi
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Mai Mochizuki
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Yuta Wakui
- Division of Gastroenterology, Miyagi Cancer Center, Natori, Miyagi, Japan
| | - Makoto Abue
- Division of Gastroenterology, Miyagi Cancer Center, Natori, Miyagi, Japan
| | - Wataru Iwai
- Division of Gastroenterology, Miyagi Cancer Center, Natori, Miyagi, Japan
| | - Daisuke Fukushi
- Division of Gastroenterology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Kennichi Satoh
- Division of Gastroenterology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Kazunori Yamaguchi
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Norihisa Shindo
- Division of Cancer Chromosome Biology Unit, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Jun Yasuda
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Naoki Asano
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takayuki Imai
- Department of Head and Neck Surgery, Miyagi Cancer Center, Natori, Miyagi, Japan
| | - Yukinori Asada
- Department of Head and Neck Surgery, Miyagi Cancer Center, Natori, Miyagi, Japan
| | - Yukio Katori
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Keiichi Tamai
- Division of Cancer Stem Cell, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| |
Collapse
|
24
|
Wilson TK, Zishiri OT. Prostate Cancer: A Review of Genetics, Current Biomarkers and Personalised Treatments. Cancer Rep (Hoboken) 2024; 7:e70016. [PMID: 39410867 PMCID: PMC11480670 DOI: 10.1002/cnr2.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Prostate cancer is the second leading cause of cancer deaths in men, second only to lung cancer. Despite this, diagnosis and prognosis methods remain limited, with effective treatments being few and far between. Traditionally, prostate cancer is initially tested for through a prostate serum antigen (PSA) test and a digital rectum examination (DRE), followed by confirmation through an invasive prostate biopsy. The DRE and biopsy are uncomfortable for the patient, so less invasive, accurate diagnostic tools are needed. Current diagnostic tools, along with genes that hold possible biomarker uses in diagnosis, prognosis and indications for personalised treatment plans, were reviewed in this article. RECENT FINDINGS Several genes from multiple families have been identified as possible biomarkers for disease, including those from the MYC and ETS families, as well as several tumour suppressor genes, Androgen Receptor signalling genes and DNA repair genes. There have also been advances in diagnostic tools, including MRI-targeted and liquid biopsies. Several personalised treatments have been developed over the years, including those that target metabolism-driven prostate cancer or those that target inflammation-driven cancer. CONCLUSION Several advances have been made in prostate cancer diagnosis and treatment, but the disease still grows year by year, leading to more and more deaths annually. This calls for even more research into this disease, allowing for better diagnosis and treatment methods and a better chance of patient survival.
Collapse
Affiliation(s)
- Trevor K. Wilson
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering, and ScienceUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Oliver T. Zishiri
- Discipline of Genetics, School of Life Sciences, College of Agriculture, Engineering, and ScienceUniversity of KwaZulu‐NatalDurbanSouth Africa
| |
Collapse
|
25
|
Guo W, Weng Y, Ma W, Chang C, Gao Y, Huang X, Zhang F. Improving Lipid Content in the Diatom Phaeodactylum tricornutum by the Knockdown of the Enoyl-CoA Hydratase Using CRISPR Interference. Curr Issues Mol Biol 2024; 46:10923-10933. [PMID: 39451529 PMCID: PMC11506698 DOI: 10.3390/cimb46100649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
The diatom Phaeodactylum tricornutum shows potential as a source for biofuel production because of its considerable lipid content. Fatty acid β-oxidation plays a critical role in lipid breakdown. However, we still have a limited understanding of the role of fatty acid β-oxidation in lipid content in this microalga. In our study, we utilized a CRISPR interference method to reduce the expression of enoyl-CoA hydratase (PtECH), which is involved in the hydration of trans-2-enoyl-CoA to produce 3-hydroxyacyl-CoA during the β-oxidation pathway. Using this method, we developed two transgenic lines, PtECH21 and PtECH1487, which resulted from interference at two different sites of the PtECH gene, respectively. RT-qPCR analysis confirmed that the mRNA levels of PtECH in both mutants were significantly lower compared to the wild type. Surprisingly, the lipid content of both mutants increased notably. Additionally, both knockdown mutants exhibited higher chlorophyll content and improved photosynthetic efficiency of the photosystem II compared to the wild type. This study introduces a new approach for enhancing lipid content in P. tricornutum and expands our knowledge of the functions of enoyl-CoA hydratase in microalgae.
Collapse
Affiliation(s)
- Wenfeng Guo
- College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Yuwei Weng
- College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou 363000, China
- School of Advanced Manufacturing, Fuzhou University, Quanzhou 362251, China
| | - Wenkai Ma
- College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Chaofeng Chang
- College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Yuqing Gao
- College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Xuguang Huang
- College of Chemistry and Environmental Science, Minnan Normal University, Zhangzhou 363000, China
| | - Feng Zhang
- College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
26
|
Fan T, Zhu N, Li M, Wang Z, Lin X. CTRP6-mediated cardiac protection in heart failure via the AMPK/SIRT1/PGC-1α signalling pathway. Exp Physiol 2024. [PMID: 39325807 DOI: 10.1113/ep092036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
Heart failure (HF) remains a significant global health concern with limited effective treatments available. C1q/TNF-related protein 6 (CTRP6) is a member of the CTRP family analogous to adiponectin and its role in HF pathogenesis remains unclear. Here, we investigated the impact of CTRP6 on HF progression. To mimic heart failure with reduced ejection fraction (HFrEF), we used isoproterenol injection in mice and administered adenovirus vectors expressing CTRP6 (Ad-CTRP6) via tail vein injection. We assessed cardiac function through echocardiography and histology. CTRP6's effects on hypertrophy, fibrosis, apoptosis, oxidative stress and mitochondrial function were analysed. Downstream pathways (phosphorylated AMP-activated protein kinase (p-AMPK), sirtuin 1 (SIRT1) and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) were studied in heart tissues. In vitro, isoproterenol-stimulated H9c2 cardiomyocytes were treated with CTRP6 to examine viability, apoptosis, F-actin and signalling proteins. Compound C was used to assess AMPK involvement. CTRP6 expression was lower in the plasma of HF patients. In an isoproterenol-induced HFrEF mouse model, adenovirus-mediated overexpression of CTRP6 ameliorated cardiac dysfunction and reduced cardiomyocyte apoptosis, oxidative stress, inflammation and myocardial injury markers. Mechanistically, CTRP6 activation of the AMPK/SIRT1/PGC-1α signalling pathway restored mitochondrial homeostasis, evidenced by reduced mitochondrial reactive oxygen species levels, increased ATP content, and enhanced mitochondrial complex I/III activities in cardiac tissues. In vitro studies using isoproterenol-stimulated H9c2 cardiomyocytes corroborated these findings, demonstrating that CTRP6 upregulation attenuated hypertrophy, apoptosis, oxidative stress and mitochondrial dysfunction. Furthermore, these effects were partially reversed by the AMPK inhibitor Compound C, implicating the involvement of the AMPK pathway in CTRP6-mediated cardioprotection. CTRP6 alleviates HF progression through the AMPK/SIRT1/PGC-1α signalling pathway.
Collapse
Affiliation(s)
- Tingting Fan
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ningjun Zhu
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mengli Li
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhen Wang
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xianhe Lin
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
27
|
Yang EC, Fang Z, Tan R, Guo Y, He S, Kruger E, Nedzesky J, Marsden D. Clinical manifestations, healthcare resource utilization, and costs among patients with long-chain fatty acid oxidation disorders: a retrospective claims database analysis. Curr Med Res Opin 2024:1-14. [PMID: 39291999 DOI: 10.1080/03007995.2024.2405124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
OBJECTIVE Long-chain fatty acid oxidation disorders (LC-FAOD) are a group of rare genetic inborn errors of metabolism. Clinical manifestations may result in frequent healthcare visits, hospitalizations, and early death. This retrospective cohort study assessed manifestations, healthcare resource use (HRU), direct medical costs, and the impact of COVID-19 on HRU among patients with LC-FAOD. METHODS The IQVIA PharMetrics Plus database was searched for pediatric (0-17 years) and adult (≥18 years) patients with confirmed LC-FAOD (ICD-10-CM Diagnosis Code E71.310) and ≥12 months continuous enrollment (CE) between January 2016-February 2020. A non-LC-FAOD general population cohort was randomly selected and matched using 1:20 exact matching on age, gender, payer type, and CE start year. Manifestations were identified via ICD-10 diagnosis codes (any billing position). Overall HRU and attributable costs were stratified by care setting. Pre-COVID-19 (March 2019-February 2020) and during COVID-19 (March 2020-February 2021) HRU was assessed among a subgroup of patients and the general population. Outcomes were evaluated among children and adults, respectively. RESULTS 423 patients with LC-FAOD (47% female; 79.7% children) were included. The mean enrollment duration was 2.6 ± 1.2 years. 22.6% of children with LC-FAOD had at least one major clinical event (MCE), consisting of rhabdomyolysis (10.1%), hypoglycemia (9.8%), or cardiomyopathy (8.6%) versus 1.5% overall occurrence in the general population. Adults with LC-FAOD had a higher incidence of MCEs (37.2%) than children with LC-FAOD. Annualized all-cause HRU in all care settings and mean total annualized medical costs (children: $17,082 vs $4144; adults: $43,602 vs $3949) were higher in patients with LC-FAOD versus the general population. Patients with LC-FAOD had substantially fewer healthcare visits during COVID-19 across care settings than during the pre-COVID-19 period. CONCLUSIONS LC-FAOD impart a high burden on patients. Extended hospital stays and increased outpatient management were especially pronounced for adults and for patients with ≥1 MCE, resulting in substantially higher medical costs than the general population.
Collapse
Affiliation(s)
| | - Zhenzhen Fang
- Tianjin Happy Life Technology Co., Ltd, Beijing, China
| | - Ruixin Tan
- Tianjin Happy Life Technology Co., Ltd, Beijing, China
| | - Yun Guo
- Tianjin Happy Life Technology Co., Ltd, Beijing, China
| | - Siyi He
- Tianjin Happy Life Technology Co., Ltd, Beijing, China
| | | | | | | |
Collapse
|
28
|
Choi J, Smith DM, Lee YJ, Cai D, Hossain MJ, O'Connor TJ, Deme P, Haughey NJ, Scafidi S, Riddle RC, Wolfgang MJ. Etomoxir repurposed as a promiscuous fatty acid mimetic chemoproteomic probe. iScience 2024; 27:110642. [PMID: 39252970 PMCID: PMC11381838 DOI: 10.1016/j.isci.2024.110642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/17/2024] [Accepted: 07/30/2024] [Indexed: 09/11/2024] Open
Abstract
Etomoxir has been used for decades as a popular small molecule inhibitor of carnitine palmitoyltransferase I, Cpt1, to block mitochondrial fatty acid β-oxidation. To test the specificity of etomoxir, we generated click chemistry-enabled reagents to label etomoxir binding proteins in situ. Etomoxir bound to Cpt1, but also bound to a large array of diverse proteins that metabolize and transport fatty acids in the cytoplasm, peroxisome, and mitochondria. Many of the most abundant proteins identified in primary hepatocytes were peroxisomal proteins. The loss of Pex5, required for the import of peroxisomal matrix proteins, eliminated many of these etomoxir-labeled proteins. By utilizing the promiscuous, covalent, and fatty acid mimetic properties of etomoxir, etomoxir targets of fatty acid ω-oxidation were revealed following the loss of Pex5. These data demonstrate that etomoxir is not specific for Cpt1 and is not appropriate as a tool to distinguish the biological effects of fatty acid oxidation.
Collapse
Affiliation(s)
- Joseph Choi
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Danielle M Smith
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ye Jin Lee
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Danfeng Cai
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Mohammad J Hossain
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tamara J O'Connor
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pragney Deme
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Norman J Haughey
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susanna Scafidi
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan C Riddle
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD, USA
- Research and Development Service, Baltimore VA Medical Center, Baltimore, MD, USA
| | - Michael J Wolfgang
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Wang H, You X, Wang J, Chen X, Gao Y, Wang M, Zhang W, Zhang J, Yu Y, Han B, Qi M, Liu X, Lou H, Dong T. MFSD7C protects hemolysis-induced lung impairments by inhibiting ferroptosis. Nat Commun 2024; 15:8226. [PMID: 39300060 PMCID: PMC11413235 DOI: 10.1038/s41467-024-52537-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Hemolysis drives susceptibility to lung injury and predicts poor outcomes in diseases, such as malaria and sickle cell disease (SCD). However, the underlying pathological mechanism remains elusive. Here, we report that major facilitator superfamily domain containing 7 C (MFSD7C) protects the lung from hemolytic-induced damage by preventing ferroptosis. Mechanistically, MFSD7C deficiency in HuLEC-5A cells leads to mitochondrial dysfunction, lipid remodeling and dysregulation of ACSL4 and GPX4, thereby enhancing lipid peroxidation and promoting ferroptosis. Furthermore, systemic administration of MFSD7C mRNA-loaded nanoparticles effectively prevents lung injury in hemolytic mice, such as HbSS-Townes mice and PHZ-challenged 7 C-/- mice. These findings present the detailed link between hemolytic complications and ferroptosis, providing potential therapeutic targets for patients with hemolytic disorders.
Collapse
Affiliation(s)
- Huirui Wang
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan, China
| | - Xiaona You
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Jingcheng Wang
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan, China
| | - Xinyi Chen
- Division of Infection and Immunity, University College London, London, USA
| | - Yinghui Gao
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan, China
| | - Mengmeng Wang
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan, China
| | - Wenru Zhang
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan, China
| | - Jiaozhen Zhang
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan, China
| | - Yang Yu
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo Han
- Department of Pathology, Shandong University School of Basic Medical Sciences, Jinan, China
| | - Mei Qi
- Department of Pathology, Shandong University Qilu hospital, Jinan, China
| | - Xiaohui Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hongxiang Lou
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan, China.
| | - Ting Dong
- Department of Natural Products Chemistry, Key Lab of Chemical Biology of the Ministry of Education, Shandong University, Jinan, China.
| |
Collapse
|
30
|
Kohlmaier B, Skok K, Lackner C, Haselrieder G, Müller T, Sailer S, Zschocke J, Keller MA, Knisely AS, Janecke AR. Steatotic liver disease associated with 2,4-dienoyl-CoA reductase 1 deficiency. Int J Obes (Lond) 2024:10.1038/s41366-024-01634-z. [PMID: 39277655 DOI: 10.1038/s41366-024-01634-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is considered multifactorial with a number of predisposing gene polymorphisms known. METHODS The occurrence of MASLD in 7 and 10 year old siblings, one without classical risk factors and one with type 2 diabetes suggested a monogenic etiology and prompted next-generation sequencing. Exome sequencing was performed in the proband, both parents and both siblings. The impact of a likely disease-causing DNA variant was assessed on the transcript and protein level. RESULTS Two siblings have hepatomegaly, elevated serum transaminase activity, and steatosis and harbor a homozygous DECR1 splice-site variant, c.330+3A>T. The variant caused DECR1 transcript decay. Immunostaining demonstrated lack of DECR1 in patient liver. CONCLUSIONS These patients may represent the first individuals with DECR1 deficiency, then defining within MASLD an autosomal-recessive entity, well corresponding to the reported steatotic liver disease in Decr1 knockout mice. DECR1 may need to be considered in the genetic work-up of MASLD.
Collapse
Affiliation(s)
- Benno Kohlmaier
- Department of General Paediatrics, Medical University of Graz, 8010, Graz, Austria
| | - Kristijan Skok
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010, Graz, Austria
| | - Carolin Lackner
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010, Graz, Austria
| | - Greta Haselrieder
- Department of Paediatrics I, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Thomas Müller
- Department of Paediatrics I, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Sabrina Sailer
- Institute of Human Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Johannes Zschocke
- Institute of Human Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Markus A Keller
- Institute of Human Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - A S Knisely
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010, Graz, Austria.
| | - Andreas R Janecke
- Department of Paediatrics I, Medical University of Innsbruck, 6020, Innsbruck, Austria.
- Institute of Human Genetics, Medical University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
31
|
Vieira Neto E, Wang M, Szuminsky AJ, Ferraro L, Koppes E, Wang Y, Van’t Land C, Mohsen AW, Zanatta G, El-Gharbawy AH, Anthonymuthu TS, Tyurina YY, Tyurin VA, Kagan V, Bayır H, Vockley J. Mitochondrial bioenergetics and cardiolipin remodeling abnormalities in mitochondrial trifunctional protein deficiency. JCI Insight 2024; 9:e176887. [PMID: 39088276 PMCID: PMC11385086 DOI: 10.1172/jci.insight.176887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/25/2024] [Indexed: 08/03/2024] Open
Abstract
Mitochondrial trifunctional protein (TFP) deficiency is an inherited metabolic disorder leading to a block in long-chain fatty acid β-oxidation. Mutations in HADHA and HADHB, which encode the TFP α and β subunits, respectively, usually result in combined TFP deficiency. A single common mutation, HADHA c.1528G>C (p.E510Q), leads to isolated 3-hydroxyacyl-CoA dehydrogenase deficiency. TFP also catalyzes a step in the remodeling of cardiolipin (CL), a phospholipid critical to mitochondrial membrane stability and function. We explored the effect of mutations in TFP subunits on CL and other phospholipid content and composition and the consequences of these changes on mitochondrial bioenergetics in patient-derived fibroblasts. Abnormalities in these parameters varied extensively among different fibroblasts, and some cells were able to maintain basal oxygen consumption rates similar to controls. Although CL reduction was universally identified, a simultaneous increase in monolysocardiolipins was discrepant among cells. A similar profile was seen in liver mitochondria isolates from a TFP-deficient mouse model. Response to new potential drugs targeting CL metabolism might be dependent on patient genotype.
Collapse
Affiliation(s)
- Eduardo Vieira Neto
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
- Children’s Neuroscience Institute, Department of Pediatrics, School of Medicine, and
| | - Meicheng Wang
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
| | - Austin J. Szuminsky
- Department of Biological Sciences, Kenneth P. Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lethicia Ferraro
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
- School of Medicine and
| | - Erik Koppes
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
| | - Yudong Wang
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
| | - Clinton Van’t Land
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
| | - Al-Walid Mohsen
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
| | - Geancarlo Zanatta
- Department of Biophysics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Areeg H. El-Gharbawy
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | | | - Yulia Y. Tyurina
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health
| | - Vladimir A. Tyurin
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health
| | - Valerian Kagan
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, School of Public Health
- Department of Pharmacology and Chemical Biology, School of Medicine; Department of Chemistry, Kenneth P. Dietrich School of Arts and Sciences; and Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hülya Bayır
- Division of Critical Care and Hospital Medicine, Department of Pediatrics, Redox Health Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Jerry Vockley
- Genetic and Genomic Medicine Division, Department of Pediatrics, UPMC Children’s Hospital of Pittsburgh
- Department of Human Genetics, School of Public Health, Center for Rare Disease Therapy, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
32
|
Yuan G, Luo Y, Qian P, He N. Mitochondrial Labeling with Mulberrin-Cy3: A New Fluorescent Probe for Live Cell Visualization. BIOSENSORS 2024; 14:428. [PMID: 39329803 PMCID: PMC11429601 DOI: 10.3390/bios14090428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024]
Abstract
Mitochondria, crucial intracellular organelles, are central to energy metabolism, signal transduction, apoptosis, calcium homeostasis, and a myriad of other biological processes, making them a focal point in diverse research fields. The capacity to fluorescently label and visually track mitochondria is crucial for understanding their biological roles. We present mulberrin-Cy3, a novel small molecule fluorescent probe that selectively labels mitochondria in animal cells, including cancer cells, with relative ease. This protocol details the synthesis of mulberrin-Cy3 and its use for visualizing mitochondria in living cells. The synthesis is straightforward and time-efficient, and the labeling method is more accessible than traditional approaches, providing a cost-effective option for mitochondrial visualization at room temperature. The labeling is rapid, with effective labeling achieved within 5 min of incubation. The fluorescent signal is stable and brighter, offering a significant advantage over existing methods. Mulberrin-Cy3 represents a promising mitochondrial labeling compound, providing researchers with a novel experimental tool to explore the complex biological functions of mitochondria. This innovation has the potential to significantly advance our comprehension of mitochondrial dynamics and their role in cellular health and disease.
Collapse
Affiliation(s)
- Gangxiang Yuan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Yiwei Luo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Peng Qian
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Ningjia He
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| |
Collapse
|
33
|
Moon SH, Liu X, Jenkins CM, Dilthey BG, Patti GJ, Gross RW. Etomoxir-carnitine, a novel pharmaco-metabolite of etomoxir, inhibits phospholipases A 2 and mitochondrial respiration. J Lipid Res 2024; 65:100611. [PMID: 39094773 PMCID: PMC11402452 DOI: 10.1016/j.jlr.2024.100611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Mitochondrial fatty acid oxidation serves as an essential process for cellular survival, differentiation, proliferation, and energy metabolism. Numerous studies have utilized etomoxir (ETO) for the irreversible inhibition of carnitine palmitoylcarnitine transferase 1 (CPT1), which catalyzes the rate-limiting step for mitochondrial long-chain fatty acid β-oxidation to examine the bioenergetic roles of mitochondrial fatty acid metabolism in many tissues in multiple diverse disease states. Herein, we demonstrate that intact mitochondria robustly metabolize ETO to etomoxir-carnitine (ETO-carnitine) prior to nearly complete ETO-mediated inhibition of CPT1. The novel pharmaco-metabolite, ETO-carnitine, was conclusively identified by accurate mass, fragmentation patterns, and isotopic fine structure. On the basis of these data, ETO-carnitine was successfully differentiated from isobaric structures (e.g., 3-hydroxy-C18:0 carnitine and 3-hydroxy-C18:1 carnitine). Mechanistically, generation of ETO-carnitine from mitochondria required exogenous Mg2+, ATP or ADP, CoASH, and L-carnitine, indicating that thioesterification by long-chain acyl-CoA synthetase to form ETO-CoA precedes its conversion to ETO-carnitine by CPT1. CPT1-dependent generation of ETO-carnitine was substantiated by an orthogonal approach using ST1326 (a CPT1 inhibitor), which effectively inhibits mitochondrial ETO-carnitine production. Surprisingly, purified ETO-carnitine potently inhibited calcium-independent PLA2γ and PLA2β as well as mitochondrial respiration independent of CPT1. Robust production and release of ETO-carnitine from HepG2 cells incubated in the presence of ETO was also demonstrated. Collectively, this study identifies the chemical mechanism for the biosynthesis of a novel pharmaco-metabolite of ETO, ETO-carnitine, that is generated by CPT1 in mitochondria and likely impacts multiple downstream (non-CPT1 related) enzymes and processes in multiple subcellular compartments.
Collapse
Affiliation(s)
- Sung Ho Moon
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Xinping Liu
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Christopher M Jenkins
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Beverly Gibson Dilthey
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Gary J Patti
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA; Department of Chemistry, Washington University, Saint Louis, MO, USA; Siteman Cancer Center, Washington University in St. Louis, Saint Louis, MO, USA; Center for Metabolomics and Isotope Tracing, Washington University in St. Louis, Saint Louis, MO, USA
| | - Richard W Gross
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA; Department of Chemistry, Washington University, Saint Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, USA; Center for Cardiovascular Research, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
34
|
Zhang JX, Chen PP, Li XQ, Li L, Wu QY, Wang GH, Ruan XZ, Ma KL. Deficiency of thiosulfate sulfurtransferase mediates the dysfunction of renal tubular mitochondrial fatty acid oxidation in diabetic kidney disease. Cell Death Differ 2024:10.1038/s41418-024-01365-8. [PMID: 39169174 DOI: 10.1038/s41418-024-01365-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
One of the main characteristics of diabetic kidney disease (DKD) is abnormal renal tubular fatty acid metabolism, especially defective fatty acid oxidation (FAO), accelerating tubular injury and tubulointerstitial fibrosis. Thiosulfate sulfurtransferase (TST), a mitochondrial enzyme essential for sulfur transfer, is reduced in metabolic diseases like diabetes and obesity. However, the potential role of TST in regulating fatty acid metabolic abnormalities in DKD remains unclear. Here, our data revealed decreased TST expression in the renal cortex of DKD patients. TST deficiency exacerbated tubular impairment in both diabetic and renal fibrosis mouse models, while sodium thiosulfate treatment or TST overexpression mitigated renal tubular injury with high-glucose exposure. TST downregulation mediated the decrease in S-sulfhydration of very long-chain specific acyl-CoA dehydrogenase, resulting in mitochondrial FAO dysfunction. This sequence of events exacerbates the progression of tubulointerstitial injury in DKD. Together, our findings demonstrate TST as a regulator of renal tubular injury in DKD.
Collapse
Affiliation(s)
- Jia Xiu Zhang
- Institute of Nephrology, Zhong da Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Pei Pei Chen
- Institute of Nephrology, Zhong da Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xue Qi Li
- Institute of Nephrology, Zhong da Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Liang Li
- Institute of Nephrology, Zhong da Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Qin Yi Wu
- Institute of Nephrology, Zhong da Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Gui Hua Wang
- Institute of Nephrology, Zhong da Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiong Zhong Ruan
- Centre for Lipid Research, Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Kun Ling Ma
- Institute of Nephrology, Zhong da Hospital, School of Medicine, Southeast University, Nanjing, China.
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
35
|
Qin B, Li Z, Azad MAK, Chen T, Cui Y, Lan W, Wang H, Kong X. Fermented blueberry pomace supplementation improves egg quality, liver synthesis, and ovary antioxidant capacity of laying hens. Poult Sci 2024; 103:104241. [PMID: 39278113 PMCID: PMC11419820 DOI: 10.1016/j.psj.2024.104241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 09/17/2024] Open
Abstract
The present study aimed to investigate the effects of dietary fermented blueberry pomace (FBP) supplementation on production performance, egg quality and nutritional value, plasma biochemical parameters, follicle number, reproductive hormones, lipid metabolism, and antioxidant capacity of laying hens during the late laying period. A total of 320 (345-d-old) Yukou Jingfen No. 8 laying hens were randomly divided into 4 groups, with eight replicates per group and 10 hens per replicate. The birds were fed a basal diet (control group) and a basal diet supplemented with 0.25, 0.5, and 1.0% FBP. The trial lasted 56 d. The results showed that FBP (0.25-1.0%) supplementation increased the egg albumen height and Haugh unit compared with the control group on d 14, while 0.5 to 1.0% FBP increased the eggshell thickness compared with the 0.25% FBP group on d 28 of the trial (P < 0.05). The methionine content in egg white was higher (P < 0.05) in the 1.0% FBP group compared with the 0.25% FBP group. The CAT activity in the ovary was increased (P < 0.05) in the FBP groups compared with the control group, while plasma GSH-PX activity was higher (P < 0.05) in the 1.0% FBP group compared with the 0.25% FBP and 0.5% FBP groups. Dietary FBP supplementation up-regulated (P < 0.05) gene expressions related to lipid metabolism in the liver (ACC, FAS, SCD1, and SREBP1) and yolk precursor synthesis (ESR2 and VTG II). Moreover, CYP11A1 expression in the ovary was up-regulated (P < 0.05) in the FBP groups compared with the control group, as well as in the 0.25% FBP group compared with the 1.0% FBP group. In summary, dietary FBP supplementation improved egg quality and nutritional value, ovarian antioxidant capacity, and yolk precursor synthesis, while 1.0% FBP had better effects than 0.25 and 0.5% doses.
Collapse
Affiliation(s)
- Binghua Qin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Md Abul Kalam Azad
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yadong Cui
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Wei Lan
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Haoran Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangfeng Kong
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutrition Physiology and Metabolic Processes, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
36
|
Pang M, Yu L, Li X, Lu C, Xiao C, Liu Y. A promising anti-tumor targeting on ERMMDs mediated abnormal lipid metabolism in tumor cells. Cell Death Dis 2024; 15:562. [PMID: 39098929 PMCID: PMC11298533 DOI: 10.1038/s41419-024-06956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
The investigation of aberrations in lipid metabolism within tumor has become a burgeoning field of study that has garnered significant attention in recent years. Lipids can serve as a potent source of highly energetic fuel to support the rapid growth of neoplasia, in where the ER-mitochondrial membrane domains (ERMMDs) provide an interactive network for facilitating communication between ER and mitochondria as well as their intermembrane space and adjunctive proteins. In this review, we discuss fatty acids (FAs) anabolic and catabolic metabolism, as well as how CPT1A-VDAC-ACSL clusters on ERMMDs participate in FAs transport, with a major focus on ERMMDs mediated collaborative loop of FAO, Ca2+ transmission in TCA cycle and OXPHOS process. Here, we present a comprehensive perspective on the regulation of aberrant lipid metabolism through ERMMDs conducted tumor physiology might be a promising and potential target for tumor starvation therapy.
Collapse
Affiliation(s)
- Mingshi Pang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoyu Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
37
|
Boone C, Lewis SC. Bridging lipid metabolism and mitochondrial genome maintenance. J Biol Chem 2024; 300:107498. [PMID: 38944117 PMCID: PMC11326895 DOI: 10.1016/j.jbc.2024.107498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024] Open
Abstract
Mitochondria are the nexus of cellular energy metabolism and major signaling hubs that integrate information from within and without the cell to implement cell function. Mitochondria harbor a distinct polyploid genome, mitochondrial DNA (mtDNA), that encodes respiratory chain components required for energy production. MtDNA mutation and depletion have been linked to obesity and metabolic syndrome in humans. At the cellular and subcellular levels, mtDNA synthesis is coordinated by membrane contact sites implicated in lipid transfer from the endoplasmic reticulum, tying genome maintenance to lipid storage and homeostasis. Here, we examine the relationship between mtDNA and lipid trafficking, the influence of lipotoxicity on mtDNA integrity, and how lipid metabolism may be disrupted in primary mtDNA disease.
Collapse
Affiliation(s)
- Casadora Boone
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA
| | - Samantha C Lewis
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California, USA; Department of Molecular and Cell Biology, University of California, Berkeley, California, USA.
| |
Collapse
|
38
|
Lietzke AC, Bealer E, Crumley K, King J, Stendahl AM, Zhu J, Pearson GL, Levi-D'Ancona E, Henry-Kanarek B, Reck EC, Arnipalli M, Sidarala V, Walker EM, Pennathur S, Madsen JGS, Shea LD, Soleimanpour SA. Limitations in mitochondrial programming restrain the differentiation and maturation of human stem cell-derived β cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605318. [PMID: 39211191 PMCID: PMC11361182 DOI: 10.1101/2024.07.26.605318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Pluripotent stem cell (SC)-derived islets offer hope as a renewable source for β cell replacement for type 1 diabetes (T1D), yet functional and metabolic immaturity may limit their long-term therapeutic potential. Here, we show that limitations in mitochondrial transcriptional programming impede the formation and maturation of SC-derived β (SC-β) cells. Utilizing transcriptomic profiling, assessments of chromatin accessibility, mitochondrial phenotyping, and lipidomics analyses, we observed that SC-β cells exhibit reduced oxidative and mitochondrial fatty acid metabolism compared to primary human islets that are related to limitations in key mitochondrial transcriptional networks. Surprisingly, we found that reductions in glucose- stimulated mitochondrial respiration in SC-islets were not associated with alterations in mitochondrial mass, structure, or genome integrity. In contrast, SC-islets show limited expression of targets of PPARIZ and PPARγ, which regulate mitochondrial programming, yet whose functions in β cell differentiation are unknown. Importantly, treatment with WY14643, a potent PPARIZ agonist, induced expression of mitochondrial targets, improved insulin secretion, and increased the formation and maturation of SC-β cells both in vitro and following transplantation. Thus, mitochondrial programming promotes the differentiation and maturation of SC-β cells and may be a promising target to improve β cell replacement efforts for T1D.
Collapse
|
39
|
Freeburg SH, Shwartz A, Kemény LV, Smith CJ, Weeks O, Miller BM, PenkoffLidbeck N, Fisher DE, Evason KJ, Goessling W. Hepatocyte vitamin D receptor functions as a nutrient sensor that regulates energy storage and tissue growth in zebrafish. Cell Rep 2024; 43:114393. [PMID: 38944835 DOI: 10.1016/j.celrep.2024.114393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/20/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024] Open
Abstract
Vitamin D receptor (VDR) has been implicated in fatty liver pathogenesis, but its role in the regulation of organismal energy usage remains unclear. Here, we illuminate the evolutionary function of VDR by demonstrating that zebrafish Vdr coordinates hepatic and organismal energy homeostasis through antagonistic regulation of nutrient storage and tissue growth. Hepatocyte-specific Vdr impairment increases hepatic lipid storage, partially through acsl4a induction, while simultaneously diminishing fatty acid oxidation and liver growth. Importantly, Vdr impairment exacerbates the starvation-induced hepatic storage of systemic fatty acids, indicating that loss of Vdr signaling elicits hepatocellular energy deficiency. Strikingly, hepatocyte Vdr impairment diminishes diet-induced systemic growth while increasing hepatic and visceral fat in adult fish, revealing that hepatic Vdr signaling is required for complete adaptation to food availability. These data establish hepatocyte Vdr as a regulator of organismal energy expenditure and define an evolutionary function for VDR as a transcriptional effector of environmental nutrient supply.
Collapse
Affiliation(s)
- Scott H Freeburg
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Arkadi Shwartz
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lajos V Kemény
- Cutaneous Biology Research Center, Department of Dermatology and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; HCEMM-SU Translational Dermatology Research Group, Department of Physiology, Semmelweis University, 1085 Budapest Hungary; Department of Dermatology, Venereology, and Dermatooncology, Semmelweis University, 1085 Budapest Hungary
| | - Colton J Smith
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Olivia Weeks
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bess M Miller
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nadia PenkoffLidbeck
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Department of Dermatology and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Kimberley J Evason
- Huntsman Cancer Institute and Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Boston, MA 02115, USA; Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
40
|
Yin Y, Wang Z, Yang Y, Shen M, Hu H, Chen C, Zhou H, Li Z, Wu S. Ginsenoside Rb1 regulates CPT1A deacetylation to inhibit intramuscular fat infiltration after rotator cuff tear. iScience 2024; 27:110331. [PMID: 39071885 PMCID: PMC11277379 DOI: 10.1016/j.isci.2024.110331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/23/2024] [Accepted: 06/18/2024] [Indexed: 07/30/2024] Open
Abstract
Fat infiltration (FI) in the rotator cuff muscle is associated with poor clinical outcomes and failed repair of rotator cuff tears (RCTs) in patients. In this study, we aimed to investigate the function of ginsenoside Rb1 in inhibiting FI in muscles after RCT and its underlying molecular mechanism. After TT modeling, mice treated with Rb1 for 6 weeks showed lower FI in the SS muscle compared with mice in the control groups and those treated with other ginsenoside components. Mechanically, Rb1 binds to the NAD+ domain of SIRT1, activating its expression and enzyme activity. This activation stimulates the deacetylation of CPT1A at site K195, thereby promoting fatty acid β-oxidation in adipocyte cells and improving lipolysis. These findings suggest that Rb1 is a potential therapeutic component for improving the outcomes of patients with RCTs.
Collapse
Affiliation(s)
- Yuesong Yin
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| | - Zili Wang
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| | - Yian Yang
- Department of Oncology, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| | - Minren Shen
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| | - Hai Hu
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| | - Chuanshun Chen
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| | - Hecheng Zhou
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| | - Zheng Li
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Song Wu
- Department of Orthopaedics, The Third Xiangya Hospital, Central South University, No. 138 Tongzipo Road, Changsha 410013, China
| |
Collapse
|
41
|
Xiao W, Lee LY, Loscalzo J. Metabolic Responses to Redox Stress in Vascular Cells. Antioxid Redox Signal 2024. [PMID: 38985660 DOI: 10.1089/ars.2023.0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Significance: Redox stress underlies numerous vascular disease mechanisms. Metabolic adaptability is essential for vascular cells to preserve energy and redox homeostasis. Recent Advances: Single-cell technologies and multiomic studies demonstrate significant metabolic heterogeneity among vascular cells in health and disease. Increasing evidence shows that reductive or oxidative stress can induce metabolic reprogramming of vascular cells. A recent example is intracellular L-2-hydroxyglutarate accumulation in response to hypoxic reductive stress, which attenuates the glucose flux through glycolysis and mitochondrial respiration in pulmonary vascular cells and provides protection against further reductive stress. Critical Issues: Regulation of cellular redox homeostasis is highly compartmentalized and complex. Vascular cells rely on multiple metabolic pathways, but the precise connectivity among these pathways and their regulatory mechanisms is only partially defined. There is also a critical need to understand better the cross-regulatory mechanisms between the redox system and metabolic pathways as perturbations in either systems or their cross talk can be detrimental. Future Directions: Future studies are needed to define further how multiple metabolic pathways are wired in vascular cells individually and as a network of closely intertwined processes given that a perturbation in one metabolic compartment often affects others. There also needs to be a comprehensive understanding of how different types of redox perturbations are sensed by and regulate different cellular metabolic pathways with specific attention to subcellular compartmentalization. Lastly, integration of dynamic changes occurring in multiple metabolic pathways and their cross talk with the redox system is an important goal in this multiomics era.
Collapse
Affiliation(s)
- Wusheng Xiao
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
| | - Laurel Y Lee
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
42
|
Das K, Roy K, Mráz J, Buřič M, Kouba A. Considerations for fatty acids in standardized reference diet for parthenogenetic marbled crayfish Procambarus virginalis model organism. Sci Rep 2024; 14:15933. [PMID: 38987279 PMCID: PMC11237046 DOI: 10.1038/s41598-024-66268-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Fatty acid accumulation was studied in the parthenogenetic all-female marbled crayfish Procambarus virginalis using six arbitrarily designed experimental feeds and related to individuals with glair glands (sexual maturity) after 100 days of ad libitum feeding at 21 °C, including gravid females from the wild as a reference. Fatty acids 16:0 and 18:1n-9 comprised 40% of the total amount of fatty acids and tended to up-concentrate in bodies. Shorter chain 14:0 depleted from feed to body. Across diets, there was a concomitant decrease in precursor fatty acid and increase in product fatty acid, such as reinforcements in monounsaturated fatty acid (18:1n-9), eicosanoid precursors 20:4n-6 (arachidonic acid, ARA) and 20:5n-3 (eicosapentaenoic acid, EPA) in-vivo, but not 22:6n-3 (docosahexaenoic acid, DHA) except when deficient in CHI or CHI + SPI diets. Saturation kinetics modeling (R2 0.7-0.9, p < 0.05) showed that when the ARA share is ~ 1%, the EPA share is ~ 8%, and the DHA share is ~ 2% in the food lipids, the accumulation of fatty acids in body lipids levels off. The lowest DHA in the CHI (0% glair glands) or CHI + SPI (0-3.9% glair glands) diets, and the lowest ARA in SER (0% glair glands) or SER + SPI (0-3% glair glands) diets, were synchronous with negligible sexual maturity despite a wide range of observed specific growth rates (2.77-3.60% per day), body size (0.44-0.84 g), ≤ 5% crude lipid and 40-46% crude protein feed. The FISH and SHRIMP diets (56% protein, 11-14% lipid) with the highest ARA, EPA, and DHA together seem to be the most conducive diets for sexual maturity (up to 20% of individuals with glair glands). We propose a fatty acid profile mimicking the FISH or SHRIMP diets as a starting point for designing the lipid content required in the marbled crayfish standardized reference diet.
Collapse
Affiliation(s)
- Koushik Das
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Koushik Roy
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Jan Mráz
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Miloš Buřič
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Antonín Kouba
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic.
| |
Collapse
|
43
|
Zhang YF, Fan MY, Bai QR, Zhao R, Song S, Wu L, Lu JH, Liu JW, Wang Q, Li Y, Chen X. Precision therapy for ulcerative colitis: insights from mitochondrial dysfunction interacting with the immune microenvironment. Front Immunol 2024; 15:1396221. [PMID: 39026683 PMCID: PMC11254623 DOI: 10.3389/fimmu.2024.1396221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/19/2024] [Indexed: 07/20/2024] Open
Abstract
Background Accumulating evidence reveals mitochondrial dysfunction exacerbates intestinal barrier dysfunction and inflammation. Despite the growing knowledge of mitochondrial dysfunction and ulcerative colitis (UC), the mechanism of mitochondrial dysfunction in UC remains to be fully explored. Methods We integrated 1137 UC colon mucosal samples from 12 multicenter cohorts worldwide to create a normalized compendium. Differentially expressed mitochondria-related genes (DE-MiRGs) in individuals with UC were identified using the "Limma" R package. Unsupervised consensus clustering was utilized to determine the intrinsic subtypes of UC driven by DE-MiRGs. Weighted gene co-expression network analysis was employed to investigate module genes related to UC. Four machine learning algorithms were utilized for screening DE-MiRGs in UC and construct MiRGs diagnostic models. The models were developed utilizing the over-sampled training cohort, followed by validation in both the internal test cohort and the external validation cohort. Immune cell infiltration was assessed using the Xcell and CIBERSORT algorithms, while potential biological mechanisms were explored through GSVA and GSEA algorithms. Hub genes were selected using the PPI network. Results The study identified 108 DE-MiRGs in the colonic mucosa of patients with UC compared to healthy controls, showing significant enrichment in pathways associated with mitochondrial metabolism and inflammation. The MiRGs diagnostic models for UC were constructed based on 17 signature genes identified through various machine learning algorithms, demonstrated excellent predictive capabilities. Utilizing the identified DE-MiRGs from the normalized compendium, 941 patients with UC were stratified into three subtypes characterized by distinct cellular and molecular profiles. Specifically, the metabolic subtype demonstrated enrichment in epithelial cells, the immune-inflamed subtype displayed high enrichment in antigen-presenting cells and pathways related to pro-inflammatory activation, and the transitional subtype exhibited moderate activation across all signaling pathways. Importantly, the immune-inflamed subtype exhibited a stronger correlation with superior response to four biologics: infliximab, ustekinumab, vedolizumab, and golimumab compared to the metabolic subtype. Conclusion This analysis unveils the interplay between mitochondrial dysfunction and the immune microenvironment in UC, thereby offering novel perspectives on the potential pathogenesis of UC and precision treatment of UC patients, and identifying new therapeutic targets.
Collapse
Affiliation(s)
- Yi-fan Zhang
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of Gastroenterology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Meng-ying Fan
- The Anesthesiology College, Shanxi Medical University, Taiyuan, China
| | - Qi-rui Bai
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Rong Zhao
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Shan Song
- The Second Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Li Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jun-hui Lu
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of Gastroenterology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jing-wei Liu
- The First Clinical Medical College, Shanxi Medical University, Taiyuan, China
- Department of Gastroenterology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Qi Wang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yuan Li
- Department of Gastroenterology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xing Chen
- Department of Gastroenterology, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
44
|
Qiao J, Tan Y, Liu H, Yang B, Zhang Q, Liu Q, Sun W, Li Z, Wang Q, Feng W, Yang S, Cui L. Histone H3K18 and Ezrin Lactylation Promote Renal Dysfunction in Sepsis-Associated Acute Kidney Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307216. [PMID: 38767134 PMCID: PMC11267308 DOI: 10.1002/advs.202307216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Histone lactylation is a metabolic stress-related histone modification. However, the role of histone lactylation in the development of sepsis-associated acute kidney injury (SA-AKI) remains unclear. Here, histone H3K18 lactylation (H3K18la) is elevated in SA-AKI, which is reported in this study. Furthermore, this lactate-dependent histone modification is enriched at the promoter of Ras homolog gene family member A (RhoA) and positively correlated with the transcription. Correction of abnormal lactate levels resulted in a reversal of abnormal histone lactylation at the promoter of RhoA. Examination of related mechanism revealed that histone lactylation promoted the RhoA/Rho-associated protein kinase (ROCK) /Ezrin signaling, the activation of nuclear factor-κB (NF-κB), inflammation, cell apoptosis, and aggravated renal dysfunction. In addition, Ezrin can undergo lactylation modification. Multiple lactylation sites are identified in Ezrin and confirmed that lactylation mainly occurred at the K263 site. The role of histone lactylation is revealed in SA-AKI and reportes a novel post-translational modification in Ezrin. Its potential role in regulating inflammatory metabolic adaptation of renal proximal tubule epithelial cells is also elucidated. The results provide novel insights into the epigenetic regulation of the onset of SA-AKI.
Collapse
Affiliation(s)
- Jiao Qiao
- Institute of Medical TechnologyPeking University Health Science CenterBeijing100191China
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| | - Yuan Tan
- Institute of Medical TechnologyPeking University Health Science CenterBeijing100191China
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| | - Hongchao Liu
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| | - Boxin Yang
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| | - Qian Zhang
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| | - Qi Liu
- Institute of Medical TechnologyPeking University Health Science CenterBeijing100191China
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| | - Wenyuan Sun
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| | - Zhongxin Li
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| | - Qingchen Wang
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| | - Weimin Feng
- Institute of Medical TechnologyPeking University Health Science CenterBeijing100191China
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| | - Shuo Yang
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| | - Liyan Cui
- Institute of Medical TechnologyPeking University Health Science CenterBeijing100191China
- Department of Laboratory MedicinePeking University Third HospitalBeijing100191China
- Core Unit of National Clinical Research Center for Laboratory MedicinePeking University Third HospitalBeijing100191China
| |
Collapse
|
45
|
Fan X, Yang M, Lang Y, Lu S, Kong Z, Gao Y, Shen N, Zhang D, Lv Z. Mitochondrial metabolic reprogramming in diabetic kidney disease. Cell Death Dis 2024; 15:442. [PMID: 38910210 PMCID: PMC11194272 DOI: 10.1038/s41419-024-06833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
Diabetic kidney disease, known as a glomerular disease, arises from a metabolic disorder impairing renal cell function. Mitochondria, crucial organelles, play a key role in substance metabolism via oxidative phosphorylation to generate ATP. Cells undergo metabolic reprogramming as a compensatory mechanism to fulfill energy needs for survival and growth, attracting scholarly attention in recent years. Studies indicate that mitochondrial metabolic reprogramming significantly influences the pathophysiological progression of DKD. Alterations in kidney metabolism lead to abnormal expression of signaling molecules and activation of pathways, inducing oxidative stress-related cellular damage, inflammatory responses, apoptosis, and autophagy irregularities, culminating in renal fibrosis and insufficiency. This review delves into the impact of mitochondrial metabolic reprogramming on DKD pathogenesis, emphasizing the regulation of metabolic regulators and downstream signaling pathways. Therapeutic interventions targeting renal metabolic reprogramming can potentially delay DKD progression. The findings underscore the importance of focusing on metabolic reprogramming to develop safer and more effective therapeutic approaches.
Collapse
Affiliation(s)
- Xiaoting Fan
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Meilin Yang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yating Lang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Shangwei Lu
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhijuan Kong
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ning Shen
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Dongdong Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhimei Lv
- Department of Nephrology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
46
|
Qu H, Liu X, Zhu J, He N, He Q, Zhang L, Wang Y, Gong X, Xiong X, Liu J, Wang C, Yang G, Yang Q, Luo G, Zhu Z, Zheng Y, Zheng H. Mitochondrial glycerol 3-phosphate dehydrogenase deficiency exacerbates lipotoxic cardiomyopathy. iScience 2024; 27:109796. [PMID: 38832016 PMCID: PMC11145339 DOI: 10.1016/j.isci.2024.109796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 03/21/2024] [Accepted: 04/18/2024] [Indexed: 06/05/2024] Open
Abstract
Metabolic diseases such as obesity and diabetes induce lipotoxic cardiomyopathy, which is characterized by myocardial lipid accumulation, dysfunction, hypertrophy, fibrosis and mitochondrial dysfunction. Here, we identify that mitochondrial glycerol 3-phosphate dehydrogenase (mGPDH) is a pivotal regulator of cardiac fatty acid metabolism and function in the setting of lipotoxic cardiomyopathy. Cardiomyocyte-specific deletion of mGPDH promotes high-fat diet induced cardiac dysfunction, pathological hypertrophy, myocardial fibrosis, and lipid accumulation. Mechanically, mGPDH deficiency inhibits the expression of desuccinylase SIRT5, and in turn, the hypersuccinylates majority of enzymes in the fatty acid oxidation (FAO) cycle and promotes the degradation of these enzymes. Moreover, manipulating SIRT5 abolishes the effects of mGPDH ablation or overexpression on cardiac function. Finally, restoration of mGPDH improves lipid accumulation and cardiomyopathy in both diet-induced and genetic obese mouse models. Thus, our study indicates that targeting mGPDH could be a promising strategy for lipotoxic cardiomyopathy in the context of obesity and diabetes.
Collapse
Affiliation(s)
- Hua Qu
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiufei Liu
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jiaran Zhu
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Niexia He
- Department of Ultrasound, The Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Qingshan He
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Linlin Zhang
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yuren Wang
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xiaoli Gong
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Xin Xiong
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Jinbo Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
| | - Chuan Wang
- Department of Endocrinology, Qilu Hospital of Shandong University, Jinan, China
| | - Gangyi Yang
- Department of Endocrinology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingwu Yang
- Department of Neurology, the Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Gang Luo
- Department of Orthopedics, the Second Affiliated Hospital of Army Medical University, Chongqing 400037, China
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, the Third Affiliated Hospital of Army Medical University, Chongqing, China
| | - Yi Zheng
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Hongting Zheng
- Department of Endocrinology, Translational Research of Diabetes Key Laboratory of Chongqing Education Commission of China, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
47
|
Li M, Zhang D, Yang Q, Zhao Z, Zhang C, Zhou Y, Bai Y, Chen L, Tang X, Liu C, Zhou J, Chen X, Ying B. Longitudinal metabolomics of human plasma reveal metabolic dynamics and predictive markers of antituberculosis drug-induced liver injury. Respir Res 2024; 25:254. [PMID: 38907347 PMCID: PMC11193241 DOI: 10.1186/s12931-024-02837-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/04/2024] [Indexed: 06/23/2024] Open
Abstract
Tuberculosis (TB) remains the second leading cause of death from a single infectious agent and long-term medication could lead to antituberculosis drug-induced liver injury (ATB-DILI). We established a prospective longitudinal cohort of ATB-DILI with multiple timepoint blood sampling and used untargeted metabolomics to analyze the metabolic profiles of 107 plasma samples from healthy controls and newly diagnosed TB patients who either developed ATB-DILI within 2 months of anti-TB treatment (ATB-DILI subjects) or completed their treatment without any adverse drug reaction (ATB-Ctrl subjects). The untargeted metabolome revealed that 77 metabolites (of 895 total) were significantly changed with ATB-DILI progression. Among them, levels of multiple fatty acids and bile acids significantly increased over time in ATB-DILI subjects. Meanwhile, metabolites of the same class were highly correlated with each other and pathway analysis indicated both fatty acids metabolism and bile acids metabolism were up-regulated with ATB-DILI progression. The targeted metabolome further validated that 5 fatty acids had prediction capability at the early stage of the disease and 6 bile acids had a better diagnostic performance when ATB-DILI occurred. These findings provide evidence indicating that fatty acids metabolism and bile acids metabolism play a vital role during ATB-DILI progression. Our report adds a dynamic perspective better to understand the pathological process of ATB-DILI in clinical settings.
Collapse
Affiliation(s)
- Mengjiao Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Zhang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qingxin Yang
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenzhen Zhao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chunying Zhang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yanbing Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yangjuan Bai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyan Tang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Cuihua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Xuerong Chen
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China.
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
48
|
Zhang X, Chen L, Ye L, Zhang B, Zhang X, Li X. Label-free based comparative proteomics approach revealed the changes in proteomic profiles driven by different maturities in two Chinese white truffles, Tuber panzhihuanense and Tuber latisporum. Food Chem 2024; 443:138535. [PMID: 38295568 DOI: 10.1016/j.foodchem.2024.138535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/15/2023] [Accepted: 01/20/2024] [Indexed: 02/02/2024]
Abstract
T. panzhihuanense and T. latisporum are white truffle species native to China, of which T. panzhihuanense has significant commercial potential, with high nutritional value and unique flavor. Maturity is an important factor affecting the nutrition and aroma of truffles, which determines their economic status. Here, a label-free-based comparative proteomics method was used to determine the proteomic profiles of T. panzhihuanense and T. latisporum at two different stages of maturity. The results showed that both maturity and species significantly affected the protein expression patterns. T. panzhihuanense responded stronger to maturity than T. latisporum, accompanied by a more complex interaction network between proteins. Some critical proteins were regulated by maturity and variety, including those involved in aroma formation, e.g., S-adenosyl-methionine synthetase. The enrichment of oxidation-reduction processes, glycolysis, and SNARE interactions in vesicular transport were driven by species and maturity. This study provides the first insights into the proteomic profiles of T. panzhihuanense and T. latisporum, revealing the roles of key proteins and biological processes in their maturation.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Li Chen
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Lei Ye
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Bo Zhang
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| | - Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiaolin Li
- Sichuan Institute of Edible Fungi, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
| |
Collapse
|
49
|
Li J, Wang Z, Zhang Y, Li Y, Feng L, Wang J, Zhang J, Zhou Z, Zhang Y, Chang X. Effects of environmentally relevant concentration of short-chain chlorinated paraffins on BV2 microglia activation and lipid metabolism, implicating altered neurogenesis. ENVIRONMENTAL RESEARCH 2024; 251:118602. [PMID: 38431072 DOI: 10.1016/j.envres.2024.118602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/11/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Short-chain chlorinated paraffins (SCCPs), a class of persistent organic pollutants, have been found to cause diverse organ and systemic toxicity. However, little is known about their neurotoxic effects. In this study, we exposed BV2, a mouse microglia cell line, to environmentally relevant concentration of SCCPs (1 μg/L, 10 μg/L, 100 μg/L) for 24 h to investigate their impacts on the nervous system. Our observations revealed that SCCPs induced the activation of BV2 microglia, as indicated by altered morphology, stimulated cell proliferation, enhanced phagocytic and migratory capabilities. Analysis at the mRNA level confirmed the activation status, with the downregulation of TMEM119 and Tgfbr1, and upregulation of Iba1 and CD11b. The upregulated expression of genes such as cenpe, mki67, Axl, APOE and LPL also validated alterations in cell functions. Moreover, BV2 microglia presented an M2 alternative phenotype upon SCCPs exposure, substantiated by the reduction of NF-κB, TNF-α, IL-1β, and the elevation of TGF-β. Additionally, SCCPs caused lipid metabolic changes in BV2 microglia, characterized by the upregulations of long-chain fatty acids and acylcarnitines, reflecting an enhancement of β-oxidation. This aligns with our findings of increased ATP production upon SCCPs exposure. Intriguingly, cell activation coincided with elevated levels of omega-3 polyunsaturated fatty acids. Furthermore, activated microglial medium remarkably altered the proliferation and differentiation of mouse neural stem cells. Collectively, exposure to environmentally relevant concentrations of SCCPs resulted in activation and lipid metabolic alterations in BV2 microglia, potentially impacting neurogenesis. These findings provide valuable insights for further research on the neurotoxic effect of SCCPs.
Collapse
Affiliation(s)
- Jiayi Li
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Zheng Wang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yuwei Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yixi Li
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Longfei Feng
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Jinglin Wang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Jiming Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China
| | - Yunhui Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China.
| | - Xiuli Chang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
50
|
Khoshkerdar A, Eid N, Batra V, Baker N, Holmes N, Henson S, Sang F, Wright V, McLaren J, Shakesheff K, Woad KJ, Morgan HL, Watkins AJ. Sub-Optimal Paternal Diet at the Time of Mating Disrupts Maternal Adaptations to Pregnancy in the Late Gestation Mouse. Nutrients 2024; 16:1879. [PMID: 38931234 PMCID: PMC11206308 DOI: 10.3390/nu16121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Pregnancy represents a stage during which maternal physiology and homeostatic regulation undergo dramatic change and adaptation. The fundamental purpose of these adaptations is to ensure the survival of her offspring through adequate nutrient provision and an environment that is tolerant to the semi-allogenic foetus. While poor maternal diet during pregnancy is associated with perturbed maternal adaptations during pregnancy, the influence of paternal diet on maternal well-being is less clearly defined. We fed C57BL/6 male mice either a control (CD), low protein diet (LPD), a high fat/sugar Western diet (WD) or the LPD or WD supplemented with methyl donors (MD-LPD and MD-WD, respectively) for a minimum of 8 weeks prior to mating with C57BL/6 females. Mated females were culled at day 17 of gestation for the analysis of maternal metabolic, gut, cardiac and bone health. Paternal diet had minimal influences on maternal serum and hepatic metabolite levels or gut microbiota diversity. However, analysis of the maternal hepatic transcriptome revealed distinct profiles of differential gene expression in response to the diet of the father. Paternal LPD and MD-LPD resulted in differential expression of genes associated with lipid metabolism, transcription, ubiquitin conjugation and immunity in dams, while paternal WD and MD-WD modified the expression of genes associated with ubiquitin conjugation and cardiac morphology. Finally, we observed changes in maternal femur length, volume of trabecular bone, trabecular connectivity, volume of the cortical medullar cavity and thickness of the cortical bone in response to the father's diets. Our current study demonstrates that poor paternal diet at the time of mating can influence the patterns of maternal metabolism and gestation-associated adaptations to her physiology.
Collapse
Affiliation(s)
- Afsaneh Khoshkerdar
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.K.); (N.E.); (V.B.); (N.B.); (H.L.M.)
| | - Nader Eid
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.K.); (N.E.); (V.B.); (N.B.); (H.L.M.)
| | - Vipul Batra
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.K.); (N.E.); (V.B.); (N.B.); (H.L.M.)
| | - Nichola Baker
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.K.); (N.E.); (V.B.); (N.B.); (H.L.M.)
| | - Nadine Holmes
- Deep Seq, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (N.H.); (S.H.); (F.S.); (V.W.)
| | - Sonal Henson
- Deep Seq, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (N.H.); (S.H.); (F.S.); (V.W.)
| | - Fei Sang
- Deep Seq, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (N.H.); (S.H.); (F.S.); (V.W.)
| | - Victoria Wright
- Deep Seq, School of Life Sciences, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK; (N.H.); (S.H.); (F.S.); (V.W.)
| | - Jane McLaren
- Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham NG7 2UH, UK; (J.M.)
| | - Kevin Shakesheff
- Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham NG7 2UH, UK; (J.M.)
| | - Kathryn J. Woad
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough LE12 5RD, UK;
| | - Hannah L. Morgan
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.K.); (N.E.); (V.B.); (N.B.); (H.L.M.)
| | - Adam J. Watkins
- Lifespan and Population Health, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK; (A.K.); (N.E.); (V.B.); (N.B.); (H.L.M.)
| |
Collapse
|