1
|
Dai Y, Li J, Wang Z, Yang S, Xiao Q, Gao Z, Zhang F, Zhao C, Yang L, Chen S, Ding W. Effect of tobacco-radish rotation for different years on bacterial wilt and rhizosphere microbial communities. AMB Express 2024; 14:116. [PMID: 39419902 PMCID: PMC11486869 DOI: 10.1186/s13568-024-01760-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/27/2024] [Indexed: 10/19/2024] Open
Abstract
Tobacco bacterial wilt is a major limiting factor for tobacco production and development, and it is more likely to occur under perennial single cropping of tobacco. In recent years, the rotation of tobacco-radish has gradually become popular. Therefore, we studied the effects of years of tobacco-radish rotation on tobacco bacterial wilt occurrence and rhizosphere microorganisms. The results indicated that both SY and TY could significantly reduce the risk of tobacco bacterial wilt occurrence, and SY had the lowest disease index. The rotation of radish plants significantly increased the soil pH but decreased the contents of alkali-hydrolysed nitrogen and organic matter in the soil. Alkali-hydrolysed nitrogen and pH are the key factors affecting the composition of the bacterial community. Furthermore, radish rotation changed the composition of the soil microbial community, increased the diversity of the bacterial community, and significantly altered the bacterial community structure. At the genus level, the abundance of Sphingomonas species negatively correlated with Ralstonia increased significantly, while the relative abundance of Rhodanobacter species positively correlated with Ralstonia decreased significantly. Disease index, pH and available phosphorus were the main factors affecting the variation in different bacterial genera. The network analysis results showed that Ralstonia was less connected in the network than in the CK group, and the SY treatment group had a more complex bacterial network structure. Overall, 2 years of tobacco and radish rotation improved the bacterial community structure of the rhizosphere soil and alleviated the harm caused by tobacco bacterial wilt, which is highly important for the stability and health of the rhizosphere soil ecosystem.
Collapse
Affiliation(s)
- Yuhao Dai
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Jixiu Li
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Zhenzhen Wang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Shaoqi Yang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Qingju Xiao
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Zipeng Gao
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Fengjing Zhang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Chenran Zhao
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Liang Yang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, 400715, China
| | - Shaopeng Chen
- China Tobacco Corporation Chongqing Tobacco Company, Chongqing, 400000, China.
| | - Wei Ding
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, 400715, China.
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University , Beibei, Chongqing, 400716, China.
| |
Collapse
|
2
|
Khokhar MK, Kumar R, Kumar A, Sehgal M, Singh SP, Meena PN, Singh N, Acharya LK, Birah A, Singh K, Bana RS, Gurjar MS, Chander S, Choudhary M. Impact of IPM practices on microbial population and disease development in transplanted and direct-seeded rice. Front Microbiol 2024; 15:1388754. [PMID: 39144223 PMCID: PMC11323746 DOI: 10.3389/fmicb.2024.1388754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/07/2024] [Indexed: 08/16/2024] Open
Abstract
Integrated pest management (IPM) is a comprehensive approach to managing diseases, focusing on combining various strategies to reduce pathogen populations effectively and in an environmentally conscious way. We investigated the effects of IPM on beneficial microbial populations and its relationship with pathogen populations in both direct-seeded rice (DSR) and transplanted rice (TR) systems. This study demonstrates that IPM practices have significantly higher populations of beneficial microbes, such as Trichoderma harzianum and Pseudomonas fluorescens, and lower level of the pathogen Fusarium verticillioides compared to non-IPM (farmer practices). The average mean population of T. harzianum was 6.38 × 103 CFU/g in IPM compared to 3.22 × 103 CFU/g in non-IPM during 2019 in TR at Bambawad. P. fluorescens mean population in 2019 was significantly higher in IPM (4.67 × 103 CFU/g) than in non-IPM (3.82 × 103 CFU/g) at the Karnal location in DSR. The F. verticillioides populations were significantly lower in IPM fields (9.46 × 103 CFU/g) compared to non-IPM fields (11.48 × 103 CFU/g) during 2017 at Haridwar in TR. Over three years, a significant increase in the populations of beneficial microbes in IPM plots was observed in all three locations of both TR and DSR, highlighting the sustainable impact of IPM practices. Disease dynamics analysis revealed that IPM effectively managed key diseases in both DSR and TR systems, with significant correlations between microbial density and disease severity. A significant positive correlation was recorded between F. verticillioides population and bakanae incidence at all three locations. Sheath blight incidence was negatively correlated with P. fluorescens population in both TR and DSR. In DSR, bacterial blight and brown spot diseases are reduced with the increased population of T. harzianum. Bioagents T. harzianum and P. fluorescens reduced disease incidence, underscoring the role of beneficial microbes in disease suppression and their importance for sustainable production using IPM practices.
Collapse
Affiliation(s)
- M. K. Khokhar
- ICAR-National Research Centre for Integrated Pest Management, New Delhi, India
| | - Rakesh Kumar
- ICAR-National Research Centre for Integrated Pest Management, New Delhi, India
| | - Anoop Kumar
- ICAR-National Research Centre for Integrated Pest Management, New Delhi, India
| | - Mukesh Sehgal
- ICAR-National Research Centre for Integrated Pest Management, New Delhi, India
| | - S. P. Singh
- ICAR-National Research Centre for Integrated Pest Management, New Delhi, India
| | - P. N. Meena
- ICAR-National Research Centre for Integrated Pest Management, New Delhi, India
| | - Niranjan Singh
- ICAR-National Research Centre for Integrated Pest Management, New Delhi, India
| | - L. K. Acharya
- ICAR-National Research Centre for Integrated Pest Management, New Delhi, India
| | - Ajanta Birah
- ICAR-National Research Centre for Integrated Pest Management, New Delhi, India
| | | | - R. S. Bana
- ICAR-Indian Agriculture Research Institute, New Delhi, India
| | - M. S. Gurjar
- ICAR-Indian Agriculture Research Institute, New Delhi, India
| | - Subhash Chander
- ICAR-National Research Centre for Integrated Pest Management, New Delhi, India
| | - Manoj Choudhary
- ICAR-National Research Centre for Integrated Pest Management, New Delhi, India
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Nivetha N, Shukla PS, Nori SS, Kumar S, Suryanarayan S. A red seaweed Kappaphycus alvarezii-based biostimulant (AgroGain ®) improves the growth of Zea mays and impacts agricultural sustainability by beneficially priming rhizosphere soil microbial community. Front Microbiol 2024; 15:1330237. [PMID: 38646629 PMCID: PMC11027899 DOI: 10.3389/fmicb.2024.1330237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/08/2024] [Indexed: 04/23/2024] Open
Abstract
The overuse of chemical-based agricultural inputs has led to the degradation of soil with associated adverse effects on soil attributes and microbial population. This scenario leads to poor soil health and is reportedly on the rise globally. Additionally, chemical fertilizers pose serious risks to the ecosystem and human health. In this study, foliar sprays of biostimulant (AgroGain/LBS6) prepared from the cultivated, tropical red seaweed Kappaphycus alvarezii increased the phenotypic growth of Zea mays in terms of greater leaf area, total plant height, and shoot fresh and dry weights. In addition, LBS6 improved the accumulation of chlorophyll a and b, total carotenoids, total soluble sugars, amino acids, flavonoids, and phenolics in the treated plants. LBS6 applications also improved the total bacterial and fungal count in rhizospheric soil. The V3-V4 region of 16S rRNA gene from the soil metagenome was analyzed to study the abundance of bacterial communities which were increased in the rhizosphere of LBS6-treated plants. Treatments were found to enrich beneficial soil bacteria, i.e., Proteobacteria, especially the classes Alphaproteobacteria, Cyanobacteria, Firmicutes, Actinobacteriota, Verrucomicrobiota, Chloroflexi, and Acidobacteriota and several other phyla related to plant growth promotion. A metagenomic study of those soil samples from LBS6-sprayed plants was correlated with functional potential of soil microbiota. Enrichment of metabolisms such as nitrogen, sulfur, phosphorous, plant defense, amino acid, co-factors, and vitamins was observed in soils grown with LBS6-sprayed plants. These results were further confirmed by a significant increase in the activity of soil enzymes such as urease, acid phosphatase, FDAse, dehydrogenase, catalase, and biological index of fertility in the rhizosphere of LBS6-treated corn plant. These findings conclude that the foliar application of LBS6 on Z. mays improves and recruits beneficial microbes and alters soil ecology in a sustainable manner.
Collapse
Affiliation(s)
| | - Pushp Sheel Shukla
- Research and Development Division, Sea6 Energy Private Limited, Centre for Cellular and Molecular Platforms, NCBS-TIFR Campus, Bengaluru, India
| | | | | | | |
Collapse
|
4
|
Kenmotsu H, Masuma T, Murakami J, Hirose Y, Eki T. Distinct prokaryotic and eukaryotic communities and networks in two agricultural fields of central Japan with different histories of maize-cabbage rotation. Sci Rep 2023; 13:15435. [PMID: 37723228 PMCID: PMC10507100 DOI: 10.1038/s41598-023-42291-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/07/2023] [Indexed: 09/20/2023] Open
Abstract
Crop rotation is an important agricultural practice for homeostatic crop cultivation. Here, we applied high-throughput sequencing of ribosomal RNA gene amplicons to investigate soil biota in two fields of central Japan with different histories of maize-cabbage rotation. We identified 3086 eukaryotic and 17,069 prokaryotic sequence variants (SVs) from soil samples from two fields rotating two crops at three different growth stages. The eukaryotic and prokaryotic communities in the four sample groups of two crops and two fields were clearly distinguished using β-diversity analysis. Redundancy analysis showed the relationships of the communities in the fields to pH and nutrient, humus, and/or water content. The complexity of eukaryotic and prokaryotic networks was apparently higher in the cabbage-cultivated soils than those in the maize-cultivated soils. The node SVs (nSVs) of the networks were mainly derived from two eukaryotic phyla: Ascomycota and Cercozoa, and four prokaryotic phyla: Pseudomonadota, Acidobacteriota, Actinomycetota, and Gemmatimonadota. The networks were complexed by cropping from maize to cabbage, suggesting the formation of a flexible network under crop rotation. Ten out of the 16 eukaryotic nSVs were specifically found in the cabbage-cultivated soils were derived from protists, indicating the potential contribution of protists to the formation of complex eukaryotic networks.
Collapse
Affiliation(s)
- Harutaro Kenmotsu
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan
| | - Tomoro Masuma
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan
| | - Junya Murakami
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan
- Research Center for Agrotechnology and Biotechnology, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan
| | - Toshihiko Eki
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan.
- Research Center for Agrotechnology and Biotechnology, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi, 441-8580, Japan.
| |
Collapse
|
5
|
Alaryan MM, Zeng Y, Fulladolsa AC, Charkowski AO. Brassica Cover Crops and Natural Spongospora subterranea Infestation of Peat-Based Potting Mix May Increase Powdery Scab Risk on Potato. PLANT DISEASE 2023; 107:2769-2777. [PMID: 36724102 DOI: 10.1094/pdis-04-22-0863-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Spongospora subterranea is a soilborne plasmodiophorid that causes powdery scab and root gall formation in potato. In this study, 18 cover crops suitable for use in dry, high-altitude potato production regions were assessed in potting mix trials to determine whether these cover crops altered S. subterranea population levels. Although S. subterranea appeared to invade roots of all plant species tested, the pathogen was unable to complete its life cycle on 11 of 18 cover crops based on postharvest qPCR and microscopy results. Buckwheat, legumes, and scarlet barley do not appear to support pathogen replication, but the pathogen may be able to complete its life cycle in some mustards. High variability occurred in the experiments and part of this may be due to the natural infestations of peat-based potting mix with S. subterranea. A tomato bioassay was used to confirm that commercial sources of peat-based potting mix were infested with S. subterranea. Dry heat and autoclaving were tested as sanitation methods and multiple rounds of autoclaving were required to reduce viable S. subterranea in potting mix. A second cover crop experiment with autoclaved potting mix was conducted and it confirmed that buckwheat, legumes, and barley do not support S. subterranea replication but that some brassica crops may be hosts of this pathogen. The results suggest that buckwheat, legumes, and barley pose the least risk as cover crops in S. subterranea infested fields and show that peat-based potting mix should not be used in seed potato production.
Collapse
Affiliation(s)
- Maryam M Alaryan
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523
| | - Yuan Zeng
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061
- Southern Piedmont Agricultural Research and Extension Center, Virginia Tech, Blackstone, VA 23824
| | | | - Amy O Charkowski
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523
| |
Collapse
|
6
|
Wang B, Liu J, Liu Q, Sun J, Zhao Y, Liu J, Gao W, Chen Y, Sui P. Knowledge domain and research progress in the field of crop rotation from 2000 to 2020: a scientometric review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86598-86617. [PMID: 37421528 DOI: 10.1007/s11356-023-28266-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 06/10/2023] [Indexed: 07/10/2023]
Abstract
As one of the most fundamental and prevalent agronomic practices, crop rotation is of great significance for the optimization of regional planting structure and sustainable agricultural development. Therefore, crop rotation has attracted continuous attention from both researchers and producers worldwide. In recent years, many review articles have been published in the field of crop rotation. However, since most reviews usually focus on specialized directions and topics, only few systematic quantitative reviews and comprehensive analysis can fully determine the state of research. To address this knowledge gap, we present a scientometric review to determine the current research status of crop rotation by using CiteSpace software. The main findings were as follows: (1) From 2000 to 2020, five knowledge domains were identified as representing the intellectual base of crop rotation: (a) synergism and comparison of conservation agriculture measures or other management measures; (b) soil microecology, pest control, weed control, and plant disease control; (c) soil carbon sequestration and greenhouse gases (GHGs) emissions; (d) organic crop rotation and double cropping patterns; and (e) soil properties and crop productivity. (2) Six notable research fronts were identified: (a) plant-soil microbial interactions under crop rotation; (b) integrated effect with minimum soil disturbance and crop retention; (c) carbon sequestration and GHG emission reduction; (d) impact on weed control; (e) heterogeneity of rotation effects under different weather and soil conditions; and (f) comparison between long-term and short-term rotation. Overall, this study provides a comprehensive overview of crop rotation and proposes some future development trends for the researchers.
Collapse
Affiliation(s)
- Biao Wang
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Jing Liu
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Qing Liu
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Jingbo Sun
- Cofco Trading Corporation, Tower A, COFCO Plaza, No. 8 Jianguomennei Avenue, Dongcheng District, Beijing, 100005, China
| | - Yingxing Zhao
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Jin Liu
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Wangsheng Gao
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Yuanquan Chen
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Peng Sui
- College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
7
|
Hong S, Yuan X, Yang J, Yang Y, Jv H, Li R, Jia Z, Ruan Y. Selection of rhizosphere communities of diverse rotation crops reveals unique core microbiome associated with reduced banana Fusarium wilt disease. THE NEW PHYTOLOGIST 2023; 238:2194-2209. [PMID: 36797661 DOI: 10.1111/nph.18816] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/10/2023] [Indexed: 05/04/2023]
Abstract
Crop rotation can assemble distinct core microbiota as functionally specific barriers against the invasion of banana Fusarium oxysporum pathogens. However, the taxonomic identity of rotation-unique core taxa and their legacy effects are poorly understood under field conditions. Pepper and eggplant rotations were employed to reveal rotation crop- and banana-unique antagonistic core taxa by in situ tracking of the soil microbiome assembly patterns for 2 yr. The rotation crop-unique antagonistic taxa were isolated and functionally verified by culture-dependent techniques, high-throughput sequencing, and pot experiments. Pepper and eggplant rotations resulted in eight and one rotation-unique antagonistic core taxa out of 12 507 microbial taxa, respectively. These nine antagonistic taxa were retained the following year and significantly decreased banana wilt disease incidence via legacy effects, although the cultivated strains were exclusively of the genera Bacillus and Pseudomonas. The fermentation broth and volatiles of these two taxa showed strong antagonistic activity, and pot experiments demonstrated high suppression of wilt disease and significant promotion of banana growth. Our study provides a mechanistic understanding of the identification of rotation crop-unique antagonistic taxa and highlights the importance of targeted cultivation of beneficial microorganisms for optimizing crop rotation-based scenarios in support of banana agriculture sustainability.
Collapse
Affiliation(s)
- Shan Hong
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, Hainan Province, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 570228, China
- Hainan Key Laboratory of Vegetable Biology, The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou, 570228, China
| | - Xianfu Yuan
- College of Resource and Environment, Anhui Science and Technology University, Chuzhou, Anhui Province, 239000, China
| | - Jinming Yang
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yue Yang
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Hongling Jv
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving Fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China
| | - Zhongjun Jia
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, Hainan Province, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 570228, China
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province, 210008, China
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, Jilin Province, 130000, China
| | - Yunze Ruan
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya, Hainan Province, 572025, China
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| |
Collapse
|
8
|
Ngoya ZJ, Mkindi AG, Vanek SJ, Ndakidemi PA, Stevenson PC, Belmain SR. Understanding farmer knowledge and site factors in relation to soil-borne pests and pathogens to support agroecological intensification of smallholder bean production systems. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2023.1094739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
IntroductionPests and diseases limit common bean (Phaseolus vulgaris) production in intensifying smallholder farming systems of sub-Saharan Africa. Soil-borne pests and diseases (SPD) are particularly challenging for farmers to distinguish and manage in cropping systems that vary in terms of soils, farmer knowledge, and management factors. Few studies have examined soil drivers of SPD in smallholder systems, integrated with farmers' perceptions and management practices.MethodsIn Kilimanjaro, Tanzania, we assessed farmer knowledge and SPD management for common bean alongside soil type and soil quality. Focus group discussions and field survey findings including farmer observations and soil nutrient balances were integrated with soil analyses of farmers' fields. Multiple correspondence analysis (MCA) and principal component analysis (PCA) assessed relationships among farmer demographics, pests and diseases, soil characteristics, and management practices.Results and discussionSurveys revealed that 100% of farmers knew of the bean foliage beetle (Ootheca bennigseni) but few recognized the soilborne pest Ophiomyia spp. or bean fly despite it being more destructive. About a third of farmers knew of root rot diseases caused by Pythium spp. and Fusarium spp. Synthetic pesticides were used by 72% of farmers to control pests, while about half that (37%) used pesticidal plants, particularly Tephrosia vogelii extracts sprayed on foliage. Regarding SPD, 90% of farmers reported that their management practices were ineffective. Meanwhile, synthetic fertilizers were used by nearly all farmers in beans intercropped with maize (Zea mays), whilst very few farmers used manure or compost. Soil available phosphorus was lowbut showed a balance between inputs and outputs regardless of whether fields were owned. Field nitrogen balances were more negative when fields were owned by farmers. An MCA showed that older farmers employed a greater number of pest control practices. The PCA showed that field variability was dominated by soil organic matter, elevation, and soil pH. Higher organic matter levels were also associated with less stunting and wilting of beans observed by farmers. Our results suggest that research and farmer learning about SPD ecology are key gaps, alongside recycling of organic residues to soils. Cost-effective and sustainable practices to manage bean SPDs for smallholders are also needed.
Collapse
|
9
|
Jamil FN, Hashim AM, Yusof MT, Saidi NB. Association of soil fungal community composition with incidence of Fusarium wilt of banana in Malaysia. Mycologia 2023; 115:178-186. [PMID: 36893072 DOI: 10.1080/00275514.2023.2180975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Banana (Musa spp.), an important food crop in many parts of the world, is threatened by a deadly wilt disease caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (TR4). Increasing evidence indicates that plant actively recruits beneficial microbes in the rhizosphere to suppress soil-borne pathogens. Hence, studies on the composition and diversity of the root-associated microbial communities are important for banana health. Research on beneficial microbial communities has focused on bacteria, although fungi can also influence soil-borne disease. Here, high-throughput sequencing targeting the fungal internal transcribed spacer (ITS) was employed to systematically characterize the difference in the soil fungal community associated with Fusarium wilt (FW) of banana. The community structure of fungi in the healthy and TR4-infected rhizospheres was significantly different compared with that of bulk soil within the same farm. The rhizosphere soils of infected plants exhibited higher richness and diversity compared with healthy plants, with significant abundance of Fusarium genus at 14%. In the healthy rhizosphere soil, Penicillium spp. were more abundant at 7% and positively correlated with magnesium. This study produced a detailed description of fungal community structure in healthy and TR4-infected banana soils in Malaysia and identified candidate biomarker taxa that may be associated with FW disease promotion and suppression. The findings also expand the global inventory of fungal communities associated with the components of asymptomatic and symptomatic banana plants infected by TR4.
Collapse
Affiliation(s)
- Fatin Nadiah Jamil
- Institute of Biosciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Amalia Mohd Hashim
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Mohd Termizi Yusof
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Noor Baity Saidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
- Laboratory of Sustainable Agronomy and Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| |
Collapse
|
10
|
Bi YM, Zhang XM, Jiao XL, Li JF, Peng N, Tian GL, Wang Y, Gao WW. The relationship between shifts in the rhizosphere microbial community and root rot disease in a continuous cropping American ginseng system. Front Microbiol 2023; 14:1097742. [PMID: 36865777 PMCID: PMC9971623 DOI: 10.3389/fmicb.2023.1097742] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/09/2023] [Indexed: 02/16/2023] Open
Abstract
The root rot disease causes a great economic loss, and the disease severity usually increases as ginseng ages. However, it is still unclear whether the disease severity is related to changes in microorganisms during the entire growing stage of American ginseng. The present study examined the microbial community in the rhizosphere and the chemical properties of the soil in 1-4-year-old ginseng plants grown in different seasons at two different sites. Additionally, the study investigated ginseng plants' root rot disease index (DI). The results showed that the DI of ginseng increased 2.2 times in one sampling site and 4.7 times in another during the 4 years. With respect to the microbial community, the bacterial diversity increased with the seasons in the first, third, and fourth years but remained steady in the second year. The seasonal changing of relative abundances of bacteria and fungi showed the same trend in the first, third, and fourth years but not in the second year. Linear models revealed that the relative abundances of Blastococcus, Symbiobacterium, Goffeauzyma, Entoloma, Staphylotrichum, Gymnomyces, Hirsutella, Penicillium and Suillus spp. were negatively correlated with DI, while the relative abundance of Pandoraea, Rhizomicrobium, Hebeloma, Elaphomyces, Pseudeurotium, Fusarium, Geomyces, Polyscytalum, Remersonia, Rhizopus, Acremonium, Paraphaeosphaeria, Mortierella, and Metarhizium spp. were positively correlated with DI (P < 0.05). The Mantel test showed that soil chemical properties, including available nitrogen, phosphorus, potassium, calcium, magnesium, organic matter, and pH, were significantly correlated to microbial composition. The contents of available potassium and nitrogen were positively correlated with DI, while pH and organic matter were negatively correlated with DI. In summary, we can deduce that the second year is the key period for the shift of the American ginseng rhizosphere microbial community. Disease aggravation after the third year is related to the deterioration of the rhizosphere microecosystem.
Collapse
Affiliation(s)
- Yan-Meng Bi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, China
| | - Xi-Mei Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- School of Biology and Brewing Engineering, Taishan University, Tai'an, Shandong, China
| | - Xiao-Lin Jiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Biomedicine School, Beijing City University, Beijing, China
| | - Jun-Fei Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na Peng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gei-Lin Tian
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Agricultural and Biological Engineering, Heze University, Heze, Shandong, China
| | - Yi Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei-Wei Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
11
|
Abdelmoneim TK, Mohamed MSM, Abdelhamid IA, Wahdan SFM, Atia MAM. Development of rapid and precise approach for quantification of bacterial taxa correlated with soil health. Front Microbiol 2023; 13:1095045. [PMID: 36713193 PMCID: PMC9878287 DOI: 10.3389/fmicb.2022.1095045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
The structure and dynamic of soil bacterial community play a crucial role in soil health and plant productivity. However, there is a gap in studying the un-/or reclaimed soil bacteriome and its impact on future plant performance. The 16S metagenomic analysis is expensive and utilize sophisticated pipelines, making it unfavorable for researchers. Here, we aim to perform (1) in silico and in vitro validation of taxon-specific qPCR primer-panel in the detection of the beneficial soil bacterial community, to ensure its specificity and precision, and (2) multidimensional analysis of three soils/locations in Egypt ('Q', 'B', and 'G' soils) in terms of their physicochemical properties, bacteriome composition, and wheat productivity as a model crop. The in silico results disclosed that almost all tested primers showed high specificity and precision toward the target taxa. Among 17 measured soil properties, the electrical conductivity (EC) value (up to 5 dS/m) of 'Q' soil provided an efficient indicator for soil health among the tested soils. The 16S NGS analysis showed that the soil bacteriome significantly drives future plant performance, especially the abundance of Proteobacteria and Actinobacteria as key indicators. The functional prediction analysis results disclosed a high percentage of N-fixing bacterial taxa in 'Q' soil compared to other soils, which reflects their positive impact on wheat productivity. The taxon-specific qPCR primer-panel results revealed a precise quantification of the targeted taxa compared to the 16S NGS analysis. Moreover, 12 agro-morphological parameters were determined for grown wheat plants, and their results showed a high yield in the 'Q' soil compared to other soils; this could be attributed to the increased abundance of Proteobacteria and Actinobacteria, high enrichment in nutrients (N and K), or increased EC/nutrient availability. Ultimately, the potential use of a taxon-specific qPCR primer-panel as an alternative approach to NGS provides a cheaper, user-friendly setup with high accuracy.
Collapse
Affiliation(s)
- Taghreed Khaled Abdelmoneim
- Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt,Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Mahmoud S. M. Mohamed
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, Egypt
| | | | | | - Mohamed A. M. Atia
- Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt,*Correspondence: Mohamed A. M. Atia, ✉
| |
Collapse
|
12
|
The Effects of Differentiated Organic Fertilization on Tomato Production and Phenolic Content in Traditional and High-Yielding Varieties. Antioxidants (Basel) 2022; 11:antiox11112127. [DOI: 10.3390/antiox11112127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
The challenge of sustainable agriculture is to increase yields and obtain higher quality products. Increased antioxidant compounds such as polyphenols in harvest products may be an added value for sustainable agriculture. The aim of the present study was to investigate whether three organic fertilization treatments with different levels of carbon and nitrogen, i.e., N-rich, N-rich+C, and N-poor+C, affected the phenolic content of different tomato varieties. The examined parameters were productivity, plant nutritional status, δ13C, and tomato phenolic content as an indication of the antioxidant capacity. The best production was obtained with ‘Cornabel’, a high-yielding Pebroter variety. The total phenolic content was highest in the traditional ‘Cuban Pepper’ variety regardless of treatment, while naringenin levels were high in all the Pebroter varieties. In N-poor+C fertilized plants, a lower N-NO3 content in leaves was correlated with higher levels of total polyphenols in the fruit. The high-water stress suffered by Montserrat varieties coincided with a low total phenolic content in the tomatoes. In conclusion, organic fertilization with reduced N did not influence the tomato yield but positively affected phenolic compound levels in varieties less sensitive to water stress.
Collapse
|
13
|
Lopez-Nuñez R, Suarez-Fernandez M, Lopez-Moya F, Lopez-Llorca LV. Chitosan and nematophagous fungi for sustainable management of nematode pests. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:980341. [PMID: 37746197 PMCID: PMC10512356 DOI: 10.3389/ffunb.2022.980341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/30/2022] [Indexed: 09/26/2023]
Abstract
Plants are exposed to large number of threats caused by herbivores and pathogens which cause important losses on crops. Plant pathogens such as nematodes can cause severe damage and losses in food security crops worldwide. Chemical pesticides were extendedly used for nematode management. However, due to their adverse effects on human health and the environment, they are now facing strong limitations by regulatory organisations such as EFSA (European Food Safety Authority). Therefore, there is an urgent need for alternative and efficient control measures, such as biological control agents or bio-based plant protection compounds. In this scenario, chitosan, a non-toxic polymer obtained from seafood waste mainly, is becoming increasingly important. Chitosan is the N-deacetylated form of chitin. Chitosan is effective in the control of plant pests and diseases. It also induces plants defence mechanisms. Chitosan is also compatible with some biocontrol microorganisms mainly entomopathogenic and nematophagous fungi. Some of them are antagonists of nematode pests of plants and animals. The nematophagous biocontrol fungus Pochonia chlamydosporia has been widely studied for sustainable management of nematodes affecting economically important crops and for its capability to grow with chitosan as only nutrient source. This fungus infects nematode eggs using hyphal tips and appressoria. Pochonia chlamydosporia also colonizes plant roots endophytically, stimulating plant defences by induction of salicylic and jasmonic acid biosynthesis and favours plant growth and development. Therefore, the combined use of chitosan and nematophagous fungi could be a novel strategy for the biological control of nematodes and other root pathogens of food security crops.
Collapse
Affiliation(s)
- Raquel Lopez-Nuñez
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
| | - Marta Suarez-Fernandez
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM)—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| | - Federico Lopez-Moya
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
| | - Luis Vicente Lopez-Llorca
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, University of Alicante, Alicante, Spain
| |
Collapse
|
14
|
Kasiviswanathan P, Swanner ED, Halverson LJ, Vijayapalani P. Farming on Mars: Treatment of basaltic regolith soil and briny water simulants sustains plant growth. PLoS One 2022; 17:e0272209. [PMID: 35976812 PMCID: PMC9385024 DOI: 10.1371/journal.pone.0272209] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/14/2022] [Indexed: 11/18/2022] Open
Abstract
A fundamental challenge in human missions to Mars is producing consumable foods efficiently with the in situ resources such as soil, water, nutrients and solar radiation available on Mars. The low nutrient content of martian soil and high salinity of water render them unfit for direct use for propagating food crops on Mars. It is therefore essential to develop strategies to enhance nutrient content in Mars soil and to desalinate briny water for long-term missions on Mars. We report simple and efficient strategies for treating basaltic regolith simulant soil and briny water simulant for suitable resources for growing plants. We show that alfalfa plants grow well in a nutrient-limited basaltic regolith simulant soil and that the alfalfa biomass can be used as a biofertilizer to sustain growth and production of turnip, radish and lettuce in the basaltic regolith simulant soil. Moreover, we show that marine cyanobacterium Synechococcus sp. PCC 7002 effectively desalinates the briny water simulant, and that desalination can be further enhanced by filtration through basalt-type volcanic rocks. Our findings indicate that it is possible to grow food crops with alfalfa treated basaltic regolith martian soil as a substratum watered with biodesalinated water.
Collapse
Affiliation(s)
| | - Elizabeth D. Swanner
- Department of Geological & Atmospheric Sciences, Ames, Iowa, United States of America
| | - Larry J. Halverson
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Paramasivan Vijayapalani
- Department of Plant Pathology & Microbiology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
15
|
Li X, Kong P, Daughtrey M, Kosta K, Schirmer S, Howle M, Likins M, Hong C. Characterization of the Soil Bacterial Community from Selected Boxwood Gardens across the United States. Microorganisms 2022; 10:1514. [PMID: 35893572 PMCID: PMC9330173 DOI: 10.3390/microorganisms10081514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
In a recent study, we observed a rapid decline of the boxwood blight pathogen Calonectria pseudonaviculata (Cps) soil population in all surveyed gardens across the United States, and we speculated that these garden soils might be suppressive to Cps. This study aimed to characterize the soil bacterial community in these boxwood gardens. Soil samples were taken from one garden in California, Illinois, South Carolina, and Virginia and two in New York in early summer and late fall of 2017 and 2018. Soil DNA was extracted and its 16S rRNA amplicons were sequenced using the Nanopore MinION® platform. These garden soils were consistently dominated by Rhizobiales and Burkholderiales, regardless of garden location and sampling time. These two orders contain many species or strains capable of pathogen suppression and plant fitness improvement. Overall, 66 bacterial taxa were identified in this study that are known to have strains with biological control activity (BCA) against plant pathogens. Among the most abundant were Pseudomonas spp. and Bacillus spp., which may have contributed to the Cps decline in these garden soils. This study highlights the importance of soil microorganisms in plant health and provides a new perspective on garden disease management using the soil microbiome.
Collapse
Affiliation(s)
- Xiaoping Li
- Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA 23455, USA; (P.K.); (C.H.)
| | - Ping Kong
- Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA 23455, USA; (P.K.); (C.H.)
| | - Margery Daughtrey
- Long Island Horticultural Research and Extension Center, Cornell University, Riverhead, NY 11901, USA;
| | - Kathleen Kosta
- California Department of Food and Agriculture, Sacramento, CA 95814, USA;
| | - Scott Schirmer
- Bureau of Environmental Programs, Illinois Department of Agriculture, Dekalb, IL 60115, USA;
| | - Matthew Howle
- Department of Plant Industry, Clemson University, Florence, SC 29506, USA;
| | - Michael Likins
- Chesterfield Cooperative Extension, Chesterfield County, VA 23832, USA;
| | - Chuanxue Hong
- Hampton Roads Agricultural Research and Extension Center, Virginia Tech, Virginia Beach, VA 23455, USA; (P.K.); (C.H.)
| |
Collapse
|
16
|
Gullino ML, Garibaldi A, Gamliel A, Katan J. Soil Disinfestation: From Soil Treatment to Soil and Plant Health. PLANT DISEASE 2022; 106:1541-1554. [PMID: 34978872 DOI: 10.1094/pdis-09-21-2023-fe] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This feature article tracks 100 years of soil disinfestation, from the goal of eradicating soilborne pathogens and pests to much milder approaches, aimed at establishing a healthier soil, by favoring or enhancing the beneficial soil microflora and introducing biological control agents. Restrictions on the use of many chemical fumigants is favoring the adoption of nonchemical strategies, from soilless cultivation to the use of physical or biological control measures, with more focus on maintaining soil microbial diversity, thus enhancing soil and plant health. Such approaches are described and discussed, with special focus on their integrated use.
Collapse
Affiliation(s)
- M Lodovica Gullino
- AgroInnova, Center of Competence for Innovation in the Agro-Environmental Sector, University of Torino, Largo Braccini 2, Grugliasco 10095, Italy
| | - Angelo Garibaldi
- AgroInnova, Center of Competence for Innovation in the Agro-Environmental Sector, University of Torino, Largo Braccini 2, Grugliasco 10095, Italy
| | - Abraham Gamliel
- Institute of Agricultural Engineering, Agricultural Research Organization, Agricultural Research Organization, Volcani Institute, HaMaccabim Rd 68, Rishon LeZion 7528809, Israel
| | - Jaacov Katan
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| |
Collapse
|
17
|
Ferrarezi RS, Lin X, Gonzalez Neira AC, Tabay Zambon F, Hu H, Wang X, Huang JH, Fan G. Substrate pH Influences the Nutrient Absorption and Rhizosphere Microbiome of Huanglongbing-Affected Grapefruit Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:856937. [PMID: 35646029 PMCID: PMC9141052 DOI: 10.3389/fpls.2022.856937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
The substrate pH directly affects nutrient availability in the rhizosphere and nutrient uptake by plants. Macronutrients such as nitrogen, potassium, calcium, magnesium, and sulfur are highly available at pH 6.0-6.5, while micronutrients become less available at higher, alkaline pH (pH > 7.0). Recent research has indicated that low pHs can enhance nutrient uptake and improve sweet orange (Citrus sinensis) tree health. We designed a study to understand the influence of a wide range of substrate pH values on plant size and biomass, nutrient availability, leaf gas exchange, and rhizosphere microbiome of grapefruit (Citrus paradisi) affected by Huanglongbing (HLB). Two-year-old "Ray Ruby" grapefruit plants grafted on sour orange (Citrus aurantium) rootstock were cultivated indoors in 10-cm wide × 40-cm tall pots with peat:perlite commercial substrate (80:20 v/v). We tested two disease statuses [HLB-free or healthy (negative, HLB-) and HLB-affected (positive, HLB+)] and six substrate pH values (4, 5, 6, 7, 8, 9) in a 2 × 6 factorial arranged on a complete randomized design with four replications. The canopy volume of HLB+ plants was 20% lower than healthy plants, with pHs 7 and 9 resulting in 44% less canopy volume. The root and shoot ratio of dry weight was 25.8% lower in HLB+ than in healthy plants. Poor root growth and a decrease in fibrous roots were found, especially in pH 5 and 6 treatments in HLB+ plants (p < 0.0001). The disease status and the substrate pHs influenced the leaf nutrient concentration (p < 0.05). High substrate pH affects nutrient availability for root uptake, influencing the nutrient balance throughout the plant system. pH values did not affect plant photosynthesis, indicating that pH does not recover HLB+ plants to the photosynthetic levels of healthy plants-even though high pH positively influenced internal CO2. There were collectively over 200 rhizobacterial identified by the 16S rRNA gene sequencing in individual phylogenetic trees. Most rhizobacteria reads were identified in pH 9. Our results indicated no effect of substrate pHs on the plant disease status induced by enhanced nutrient uptake.
Collapse
Affiliation(s)
- Rhuanito Soranz Ferrarezi
- Department of Horticulture, University of Georgia, Athens, GA, United States
- Horticultural Sciences Department, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, United States
| | - Xiongjie Lin
- Fruit Research Institute, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou, China
| | - Andres C. Gonzalez Neira
- Horticultural Sciences Department, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, United States
| | - Flavia Tabay Zambon
- Horticultural Sciences Department, Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, United States
| | - Hanqing Hu
- Fruit Research Institute, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou, China
| | - Xianda Wang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou, China
| | - Jing-Hao Huang
- Fruit Research Institute, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Plant Nutrition and Fertilizer, Fuzhou, China
| | - Guocheng Fan
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
18
|
Russell L, Whyte P, Zintl A, Gordon SV, Markey B, de Waal T, Nolan S, O'Flaherty V, Abram F, Richards K, Fenton O, Bolton D. The Survival of Salmonella Senftenberg, Escherichia coli O157:H7, Listeria monocytogenes, Enterococcus faecalis and Clostridium sporogenes in Sandy and Clay Loam Textured Soils When Applied in Bovine Slurry or Unpasteurised Digestate and the Run-Off Rate for a Test Bacterium, Listeria innocua, When Applied to Grass in Slurry and Digestate. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.806920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study investigated the survival of Salmonella Senftenberg, Escherichia coli O157:H7, Listeria monocytogenes, Enterococcus faecalis and Clostridium sporogenes in sandy and clay loam textured soils when applied in bovine slurry or unpasteurised digestate, using laboratory based inoculation studies. The run-off rate for a test bacterium, Listeria innocua, when applied to grass in slurry and digestate, was also examined using field studies. Bovine slurry and digestate were inoculated with the target bacteria to a final concentration of 106 log10 cfu/g or spores/g, thoroughly mixed into soil samples and incubated at 4°C or 14°C. Samples were removed periodically and the surviving cells enumerated using AOAC or equivalent methods. The loss of viability/culturability phase followed first order kinetics and T90 values ranged from 11.9 to 166.7 d at 4°C and from 6.0 to 156 d at 14°C. With the exception of E. coli O157:H7 and E. faecalis in sandy loam textured soil at 14°C (T90 values were significantly (P < 0.05) higher in slurry) the type of soil texture or application material (slurry or digestate) did not affect survival rates. In the field study, 12 grass covered micro-plots were prepared. L. innocua was applied in digestate and bovine slurry and rainfall was simulated at a target rate of ~11 mm per plot per h−1. Rainfall simulation (30 min) took place after 24, 48 h, 14 d and 30 d. Run-off samples were tested for the L. innocua strain using Brilliance Listeria agar supplemented with streptomycin sulphate (1,000 μg/ml) at 37°C for 48 h, as were soil samples after 30, 58, 86 and 112 d. Significantly (P < 0.05) lower counts were obtained in the run-off from digestate after 1, 2 and 30 d as compared to slurry. It was concluded that the type of organic fertiliser does not affect the bacterial survival rates in sandy and clay soils, with the exception of E. coli O157:H7 and E. faecalis in sandy loam textured soil at 14°C. Furthermore, bacteria may be retained better in the soil-digestate matrices during rainfall although additional research is required to further validate and provide the scientific basis for this observation.
Collapse
|
19
|
Mathematical modelling of the interaction of winter wheat (Triticum aestivum) and Fusarium species (Fusarium spp.). Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2021.109856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Bio-Based Waste’ Substrates for Degraded Soil Improvement—Advantages and Challenges in European Context. ENERGIES 2022. [DOI: 10.3390/en15010385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The area of degraded sites in the world is constantly expanding and has been a serious environmental problem for years. Such terrains are not only polluted, but also due to erosion, devoid of plant cover and organic matter. The degradation trends can be reversed by supporting remediation/reclamation processes. One of the possibilities is the introduction of biodegradable waste/biowaste substrates into the soil. The additives can be the waste itself or preformed substrates, such composts, mineral-organic fertilizers or biochar. In EU countries average value of compost used for land restoration and landfill cover was equal 4.9%. The transformation of waste in valuable products require the fulfillment of a number of conditions (waste quality, process conditions, law, local circumstances). Application on degraded land surface bio-based waste substrates has several advantages: increase soil organic matter (SOM) and nutrient content, biodiversity and activity of microbial soil communities and change of several others physical and chemical factors including degradation/immobilization of contaminants. The additives improve the water ratio and availability to plants and restore aboveground ecosystem. Due to organic additives degraded terrains are able to sequestrate carbon and climate mitigate. However, we identified some challenges. The application of waste to soil must comply with the legal requirements and meet the end of use criteria. Moreover, shorter or long-term use of bio-waste based substrate lead to even greater soil chemical or microbial contamination. Among pollutants, “emerging contaminants” appear more frequently, such microplastics, nanoparticles or active compounds of pharmaceuticals. That is why a holistic approach is necessary for use the bio-waste based substrate for rehabilitation of soil degraded ecosystems.
Collapse
|
21
|
Li B, Wang Y, Hu T, Qiu D, Francis F, Wang S, Wang S. Root-Associated Microbiota Response to Ecological Factors: Role of Soil Acidity in Enhancing Citrus Tolerance to Huanglongbing. FRONTIERS IN PLANT SCIENCE 2022; 13:937414. [PMID: 35909738 PMCID: PMC9335078 DOI: 10.3389/fpls.2022.937414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/20/2022] [Indexed: 05/14/2023]
Abstract
The citrus orchards in southern China are widely threatened by low soil pH and Huanglongbing (HLB) prevalence. Notably, the lime application has been used to optimize soil pH, which is propitious to maintain root health and enhance HLB tolerance of citrus; however, little is known about the interactive effects of soil acidity on the soil properties and root-associated (rhizoplane and endosphere) microbial community of HLB-infected citrus orchard. In this study, the differences in microbial community structures and functions between the acidified and amended soils in the Gannan citrus orchard were investigated, which may represent the response of the host-associated microbiome in diseased roots and rhizoplane to dynamic soil acidity. Our findings demonstrated that the severity of soil acidification and aluminum toxicity was mitigated after soil improvement, accompanied by the increase in root activity and the decrease of HLB pathogen concentration in citrus roots. Additionally, the Illumina sequencing-based community analysis showed that the application of soil amendment enriched functional categories involved in host-microbe interactions and nitrogen and sulfur metabolisms in the HLB-infected citrus rhizoplane; and it also strongly altered root endophytic microbial community diversity and structure, which represented by the enrichment of beneficial microorganisms in diseased roots. These changes in rhizoplane-enriched functional properties and microbial composition may subsequently benefit the plant's health and tolerance to HLB disease. Overall, this study advances our understanding of the important role of root-associated microbiota changes and ecological factors, such as soil acidity, in delaying and alleviating HLB disease.
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
- Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Yanan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Tongle Hu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Dewen Qiu
- The State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Frédéric Francis
- Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Shuangchao Wang
- The State Key Laboratory of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Shuangchao Wang
| | - Shutong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
- Shutong Wang
| |
Collapse
|
22
|
López-Pérez JA, Sánchez-Moreno S. Soil response to root-knot nematode management with wine vinasse in a solarised horticultural soil under glasshouse conditions. NEMATOLOGY 2021. [DOI: 10.1163/15685411-bja10140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Summary
The increasing interest in agroecological practices and the current consideration of agrarian soils as a sustainable resource are driving the development of new strategies to manage soil parasites and diseases. The application of organic matter from different sources to reduce plant parasites contributes to circular economy by applying by-products as soil organic amendments that reduce wastes. Wine vinasse (WV) is a by-product generated to obtain alcohol from wine by physical methods in distilleries. The aim of this study was to determine the potential of WV and its combination with animal manure (WV+M) as soil biodisinfestation products. For this, it was compared with a plastic-covered control to distinguish the biodisinfestation from solarisation effect. The crops tested consisted of a tomato-Swiss chard rotation under glasshouse conditions. Their effects on Meloidogyne incognita, soil fertility, nematode community and crop yield were assessed. The results obtained after two seasons showed a reduction of M. incognita galling in the root system of both crops. The immediate effect after the treatment application was a reduction in the abundance of nematodes and changes in the nematode-based indices that affected all plots, including the control, most likely related to the tillage effect for the treatments application and the plastic cover. Soil fertility was improved by the application of WV (NO3−, Bioav. P) and WV+M (C, Ntotal, K), which reduced herbivore nematode metabolic footprints and enhanced bacterivore footprints. Our results indicate that the combination WV+M was effective reducing M. incognita infection, and improved crop yield. Use of by-products such as WV is a helpful tool for managing horticultural soils.
Collapse
Affiliation(s)
- Jose A. López-Pérez
- Regional Institute of Agri-Food and Forestry Research and Development of Castilla-La Mancha (IRIAF), CIAPA de Marchamalo, Guadalajara, Spain
| | - Sara Sánchez-Moreno
- Department of the Environment and Agronomy, National Institute for Agricultural and Food Research and Technology (INIA_CSIC), Crta Coruña km 7.5, 28040 Madrid, Spain
| |
Collapse
|
23
|
El-Baky NA, Amara AAAF. Recent Approaches towards Control of Fungal Diseases in Plants: An Updated Review. J Fungi (Basel) 2021; 7:jof7110900. [PMID: 34829188 PMCID: PMC8621679 DOI: 10.3390/jof7110900] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Recent research demonstrates that the number of virulent phytopathogenic fungi continually grows, which leads to significant economic losses worldwide. Various procedures are currently available for the rapid detection and control of phytopathogenic fungi. Since 1940, chemical and synthetic fungicides were typically used to control phytopathogenic fungi. However, the substantial increase in development of fungal resistance to these fungicides in addition to negative effects caused by synthetic fungicides on the health of animals, human beings, and the environment results in the exploration of various new approaches and green strategies of fungal control by scientists from all over the world. In this review, the development of new approaches for controlling fungal diseases in plants is discussed. We argue that an effort should be made to bring these recent technologies to the farmer level.
Collapse
|
24
|
Yuan X, Hong S, Xiong W, Raza W, Shen Z, Wang B, Li R, Ruan Y, Shen Q, Dini-Andreote F. Development of fungal-mediated soil suppressiveness against Fusarium wilt disease via plant residue manipulation. MICROBIOME 2021; 9:200. [PMID: 34635164 PMCID: PMC8507339 DOI: 10.1186/s40168-021-01133-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/13/2021] [Indexed: 05/27/2023]
Abstract
BACKGROUND The development of suppressive soils is a promising strategy to protect plants against soil-borne diseases in a sustainable and viable manner. The use of crop rotation and the incorporation of plant residues into the soil are known to alleviate the stress imposed by soil pathogens through dynamics changes in soil biological and physicochemical properties. However, relatively little is known about the extent to which specific soil amendments of plant residues trigger the development of plant-protective microbiomes. Here, we investigated how the incorporation of pineapple residues in soils highly infested with the banana Fusarium wilt disease alleviates the pathogen pressure via changes in soil microbiomes. RESULTS The addition of above- and below-ground pineapple residues in highly infested soils significantly reduced the number of pathogens in the soil, thus resulting in a lower disease incidence. The development of suppressive soils was mostly related to trackable changes in specific fungal taxa affiliated with Aspergillus fumigatus and Fusarium solani, both of which displayed inhibitory effects against the pathogen. These antagonistic effects were further validated using an in vitro assay in which the pathogen control was related to growth inhibition via directly secreted antimicrobial substances and indirect interspecific competition for nutrients. The disease suppressive potential of these fungal strains was later validated using microbial inoculation in a well-controlled pot experiment. CONCLUSIONS These results mechanistically demonstrated how the incorporation of specific plant residues into the soil induces trackable changes in the soil microbiome with direct implications for disease suppression. The incorporation of pineapple residues in the soil alleviated the pathogen pressure by increasing the relative abundance of antagonistic fungal taxa causing a negative effect on pathogen growth and disease incidence. Taken together, this study provides a successful example of how specific agricultural management strategies can be used to manipulate the soil microbiome towards the development of suppressive soils against economically important soil-borne diseases. Video Abstract.
Collapse
Affiliation(s)
- Xianfu Yuan
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Shan Hong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bio-resources, College of Tropical Crops, Hainan University, Haikou, 570228, People's Republic of China
| | - Wu Xiong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Waseem Raza
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Zongzhuan Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Beibei Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bio-resources, College of Tropical Crops, Hainan University, Haikou, 570228, People's Republic of China
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| | - Yunze Ruan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bio-resources, College of Tropical Crops, Hainan University, Haikou, 570228, People's Republic of China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Francisco Dini-Andreote
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
25
|
Hoang SA, Sarkar B, Seshadri B, Lamb D, Wijesekara H, Vithanage M, Liyanage C, Kolivabandara PA, Rinklebe J, Lam SS, Vinu A, Wang H, Kirkham MB, Bolan NS. Mitigation of petroleum-hydrocarbon-contaminated hazardous soils using organic amendments: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125702. [PMID: 33866291 DOI: 10.1016/j.jhazmat.2021.125702] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
The term "Total petroleum hydrocarbons" (TPH) is used to describe a complex mixture of petroleum-based hydrocarbons primarily derived from crude oil. Those compounds are considered as persistent organic pollutants in the terrestrial environment. A wide array of organic amendments is increasingly used for the remediation of TPH-contaminated soils. Organic amendments not only supply a source of carbon and nutrients but also add exogenous beneficial microorganisms to enhance the TPH degradation rate, thereby improving the soil health. Two fundamental approaches can be contemplated within the context of remediation of TPH-contaminated soils using organic amendments: (i) enhanced TPH sorption to the exogenous organic matter (immobilization) as it reduces the bioavailability of the contaminants, and (ii) increasing the solubility of the contaminants by supplying desorbing agents (mobilization) for enhancing the subsequent biodegradation. Net immobilization and mobilization of TPH have both been observed following the application of organic amendments to contaminated soils. This review examines the mechanisms for the enhanced remediation of TPH-contaminated soils by organic amendments and discusses the influencing factors in relation to sequestration, bioavailability, and subsequent biodegradation of TPH in soils. The uncertainty of mechanisms for various organic amendments in TPH remediation processes remains a critical area of future research.
Collapse
Affiliation(s)
- Son A Hoang
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, NSW 2308, Australia; Division of Urban Infrastructural Engineering, Mien Trung University of Civil Engineering, Phu Yen 56000, Vietnam
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Balaji Seshadri
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Dane Lamb
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Hasintha Wijesekara
- Department of Natural Resources, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, P.O. Box 02, Belihuloya 70140, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Chathuri Liyanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Pabasari A Kolivabandara
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP) & Institute of Tropical Biodiversity and Sustainable Development (Bio-D Tropika), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, Faculty of Engineering and Built Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - M B Kirkham
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| | - Nanthi S Bolan
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
26
|
Samaddar S, Karp DS, Schmidt R, Devarajan N, McGarvey JA, Pires AFA, Scow K. Role of soil in the regulation of human and plant pathogens: soils' contributions to people. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200179. [PMID: 34365819 DOI: 10.1098/rstb.2020.0179] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Soil and soil biodiversity play critical roles in Nature's Contributions to People (NCP) # 10, defined as Nature's ability to regulate direct detrimental effects on humans, and on human-important plants and animals, through the control or regulation of particular organisms considered to be harmful. We provide an overview of pathogens in soil, focusing on human and crop pathogens, and discuss general strategies, and examples, of how soils' extraordinarily diverse microbial communities regulate soil-borne pathogens. We review the ecological principles underpinning the regulation of soil pathogens, as well as relationships between pathogen suppression and soil health. Mechanisms and specific examples are presented of how soil and soil biota are involved in regulating pathogens of humans and plants. We evaluate how specific agricultural management practices can either promote or interfere with soil's ability to regulate pathogens. Finally, we conclude with how integrating soil, plant, animal and human health through a 'One Health' framework could lead to more integrated, efficient and multifunctional strategies for regulating detrimental organisms and processes. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.
Collapse
Affiliation(s)
- Sandipan Samaddar
- Department of Land, Air and Water Resources, University of California, Davis, Davis, CA, USA
| | - Daniel S Karp
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA, USA
| | - Radomir Schmidt
- Department of Land, Air and Water Resources, University of California, Davis, Davis, CA, USA
| | - Naresh Devarajan
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA, USA
| | - Jeffery A McGarvey
- Agricultural Research Service, US Department of Agriculture, Albany, CA, USA
| | - Alda F A Pires
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Kate Scow
- Department of Land, Air and Water Resources, University of California, Davis, Davis, CA, USA
| |
Collapse
|
27
|
Babin D, Leoni C, Neal AL, Sessitsch A, Smalla K. Editorial to the Thematic Topic "Towards a more sustainable agriculture through managing soil microbiomes". FEMS Microbiol Ecol 2021; 97:6321563. [PMID: 34263312 DOI: 10.1093/femsec/fiab094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 11/15/2022] Open
Affiliation(s)
- Doreen Babin
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Carolina Leoni
- Instituto Nacional de Investigación Agropecuaria (INIA), Programa de Producción y Sustentabilidad Ambiental, Estación Experimental INIA Las Brujas, Ruta 48 Km 10, 90200 Rincón del Colorado, Canelones, Uruguay
| | - Andrew L Neal
- Department of Sustainable Agriculture Sciences, Rothamsted Research, North Wyke, Devon EX20 2SB, United Kingdom
| | - Angela Sessitsch
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Kornelia Smalla
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| |
Collapse
|
28
|
Wylie AC, Punja ZK. Assessing Aerated Vermicompost Tea Combined with Microbial Biological Control Agents for Suppression of Fusarium and Rhizoctonia. PHYTOPATHOLOGY 2021; 111:1137-1151. [PMID: 33174819 DOI: 10.1094/phyto-05-20-0156-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Biological control of plant diseases is important in organic greenhouse vegetable production, where fungicide use is limited. Organic producers use microbially diverse substrates, including composts, as media for plant growth. Previous research into the impact of vermicompost on the efficacy of applied biocontrol agents is limited. An in vitro assay was developed to test the efficacy of two biological control agents in a competitive microbial background. Suppression of the pathogen Fusarium oxysporum f. sp. radicis-cucumerinum by Clonostachys rosea f. catenulata (Gliocladium catenulatum strain J1446 [Prestop]) and Bacillus subtilis strain QST 713 (Rhapsody), was assessed on agar media amended with aerated vermicompost tea (ACT). Pathogen growth was reduced more by C. rosea than ACT alone, and C. rosea was equally effective when combined with ACT. In contrast, B. subtilis reduced pathogen growth less than ACT and, when combined, reduced pathogen growth no more than ACT alone. Both biocontrol agents were similarly tested with ACT against F. oxysporum f. sp. radicis-cucumerinum and Rhizoctonia solani on cucumber and radish. Additive, neutral, and antagonistic responses, depending on host, pathogen, and biocontrol agent, were observed. ACT alone provided more consistent disease suppression on cucumber compared with B. subtilis or C. rosea. In combination, disease suppression was most often better than each biocontrol alone but not better than ACT alone. ACT had antagonistic or additive interactions with C. rosea in the radish/R. solani pathosystem, depending on the experiment. The specific and general suppression of plant diseases by biological control agents in microbially rich environments is variable and warrants further study.
Collapse
Affiliation(s)
- Andrew C Wylie
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Zamir K Punja
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
29
|
Dissecting Disease-Suppressive Rhizosphere Microbiomes by Functional Amplicon Sequencing and 10× Metagenomics. mSystems 2021; 6:e0111620. [PMID: 34100635 PMCID: PMC8269251 DOI: 10.1128/msystems.01116-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Disease-suppressive soils protect plants against soilborne fungal pathogens that would otherwise cause root infections. Soil suppressiveness is, in most cases, mediated by the antagonistic activity of the microbial community associated with the plant roots. Considering the enormous taxonomic and functional diversity of the root-associated microbiome, identification of the microbial genera and mechanisms underlying this phenotype is challenging. One approach to unravel the underlying mechanisms is to identify metabolic pathways enriched in the disease-suppressive microbial community, in particular, pathways that harbor natural products with antifungal properties. An important class of these natural products includes peptides produced by nonribosomal peptide synthetases (NRPSs). Here, we applied functional amplicon sequencing of NRPS-associated adenylation domains (A domains) to a collection of eight soils that are suppressive or nonsuppressive (i.e., conducive) to Fusarium culmorum, a fungal root pathogen of wheat. To identify functional elements in the root-associated bacterial community, we developed an open-source pipeline, referred to as dom2BGC, for amplicon annotation and putative gene cluster reconstruction through analyzing A domain co-occurrence across samples. We applied this pipeline to rhizosphere communities from four disease-suppressive and four conducive soils and found significant similarities in NRPS repertoires between suppressive soils. Specifically, several siderophore biosynthetic gene clusters were consistently associated with suppressive soils, hinting at competition for iron as a potential mechanism of suppression. Finally, to validate dom2BGC and to allow more unbiased functional metagenomics, we performed 10× metagenomic sequencing of one suppressive soil, leading to the identification of multiple gene clusters potentially associated with the disease-suppressive phenotype. IMPORTANCE Soil-borne plant-pathogenic fungi continue to be a major threat to agriculture and horticulture. The genus Fusarium in particular is one of the most devastating groups of soilborne fungal pathogens for a wide range of crops. Our approach to develop novel sustainable strategies to control this fungal root pathogen is to explore and exploit an effective, yet poorly understood naturally occurring protection, i.e., disease-suppressive soils. After screening 28 agricultural soils, we recently identified four soils that were suppressive to root disease of wheat caused by Fusarium culmorum. We also confirmed, via sterilization and transplantation, that the microbiomes of these soils play a significant role in the suppressive phenotype. By adopting nonribosomal peptide synthetase (NRPS) functional amplicon screening of suppressive and conducive soils, we here show how computationally driven comparative analysis of combined functional amplicon and metagenomic data can unravel putative mechanisms underlying microbiome-associated plant phenotypes.
Collapse
|
30
|
Xi H, Zhang X, Qu Z, Yang D, Alariqi M, Yang Z, Nie X, Zhu L. Effects of cotton-maize rotation on soil microbiome structure. MOLECULAR PLANT PATHOLOGY 2021; 22:673-682. [PMID: 33774915 PMCID: PMC8126184 DOI: 10.1111/mpp.13053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/08/2020] [Accepted: 02/25/2021] [Indexed: 05/13/2023]
Abstract
Verticillium wilt is a disastrous disease in cotton-growing regions in China. As a common management method, cotton rotation with cereal crops is used to minimize the loss caused by Verticillium dahliae. However, the correlation between soil microbiome and the control of Verticillium wilt under a crop rotation system is unclear. Therefore, three cropping systems (fallow, cotton continuous cropping, and cotton-maize rotation) were designed and applied for three generations under greenhouse conditions to investigate the different responses of the soil microbial community. The soil used in this study was taken from a long-term cotton continuous cropping field and inoculated with V. dahliae before use. Our results showed that the diversity of the soil bacterial community was increased under cotton-maize rotation, while the diversity of the fungal community was obviously decreased. Meanwhile, the structure and composition of the bacterial communities were similar even under the different cropping systems, but they differed in the soil fungal communities. Through microbial network interaction analysis, we found that Verticillium interacted with 17 bacterial genera, among which Terrabacter had the highest correlation with Verticillium. Furthermore, eight fungal and eight bacterial species were significantly correlated with V. dahliae. Collectively, this work aimed to study the interactions among V. dahliae, the soil microbiome, and plant hosts, and elucidate the relationship between crop rotation and soil microbiome, providing a new theoretical basis to screen the biological agents that may contribute to Verticillium wilt control.
Collapse
Affiliation(s)
- Hui Xi
- College of AgricultureShihezi UniversityShiheziChina
| | - Xuekun Zhang
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
| | - Zheng Qu
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
| | - Dingyi Yang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Muna Alariqi
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | | | - Xinhui Nie
- College of AgricultureShihezi UniversityShiheziChina
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
31
|
Chitin- and Keratin-Rich Soil Amendments Suppress Rhizoctonia solani Disease via Changes to the Soil Microbial Community. Appl Environ Microbiol 2021; 87:AEM.00318-21. [PMID: 33771785 PMCID: PMC8208141 DOI: 10.1128/aem.00318-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
Our results highlight the importance of soil microorganisms in plant disease suppression and the possibility to steer soil microbial community composition by applying organic amendments to the soil. Enhancing soil suppressiveness against plant pathogens or pests is a promising alternative strategy to chemical pesticides. Organic amendments have been shown to reduce crop diseases and pests, with chitin products the most efficient against fungal pathogens. To study which characteristics of organic products are correlated with disease suppression, an experiment was designed in which 10 types of organic amendments with different physicochemical properties were tested against the soilborne pathogen Rhizoctonia solani in sugar beet seedlings. Organic amendments rich in keratin or chitin reduced Rhizoctonia solani disease symptoms in sugar beet plants. The bacterial and fungal microbial communities in amended soils were distinct from the microbial communities in nonamended soil, as well as those in soils that received other nonsuppressive treatments. The Rhizoctonia-suppressive amended soils were rich in saprophytic bacteria and fungi that are known for their keratinolytic and chitinolytic properties (i.e., Oxalobacteraceae and Mortierellaceae). The microbial community in keratin- and chitin-amended soils was associated with higher zinc, copper, and selenium, respectively. IMPORTANCE Our results highlight the importance of soil microorganisms in plant disease suppression and the possibility to steer soil microbial community composition by applying organic amendments to the soil.
Collapse
|
32
|
Cerecetto V, Smalla K, Nesme J, Garaycochea S, Fresia P, Sørensen SJ, Babin D, Leoni C. Reduced tillage, cover crops and organic amendments affect soil microbiota and improve soil health in Uruguayan vegetable farming systems. FEMS Microbiol Ecol 2021; 97:6129805. [PMID: 33547893 DOI: 10.1093/femsec/fiab023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Conventional tillage and mineral fertilization (CTMF) jeopardize soil health in conventional vegetable production systems. Using a field experiment established in Uruguay in 2012, we aimed to compare the soil restoration potential of organic fertilization (compost and poultry manure) combined with conventional tillage and cover crop incorporated into the soil (CTOF) or with reduced tillage and the use of cover crop as mulch (RTOF). In 2017, table beet was cultivated under CTMF, CTOF and RTOF, and yields, soil aggregate composition and nutrients, as well as soil and table beet rhizosphere microbiota (here: bacteria and archaea) were evaluated. Microbiota was studied by high-throughput sequencing of 16S rRNA gene fragments amplified from total community DNA. RTOF exhibited higher soil aggregation, soil organic C, nutrient availability and microbial alpha-diversity than CTMF, and became more similar to an adjacent natural undisturbed site. The soil microbiota was strongly shaped by the fertilization source which was conveyed to the rhizosphere and resulted in differentially abundant taxa. However, 229 amplicon sequencing variants were found to form the core table beet rhizosphere microbiota shared among managements. In conclusion, our study shows that after only 5 years of implementation, RTOF improves soil health under intensive vegetable farming systems.
Collapse
Affiliation(s)
- Victoria Cerecetto
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany.,Instituto Nacional de Investigación Agropecuaria (INIA), Programa de Producción y Sustentabilidad Ambiental, Estación Experimental INIA Las Brujas, Ruta 48 Km 10, 90200 Rincón del Colorado, Canelones, Uruguay
| | - Kornelia Smalla
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Joseph Nesme
- University of Copenhagen, Department of Biology, Section of Microbiology, Nørregade 10, 1165 Copenhagen, Denmark
| | - Silvia Garaycochea
- Instituto Nacional de Investigación Agropecuaria (INIA), Programa de Producción y Sustentabilidad Ambiental, Estación Experimental INIA Las Brujas, Ruta 48 Km 10, 90200 Rincón del Colorado, Canelones, Uruguay
| | - Pablo Fresia
- Unidad Mixta Institut Pasteur de Montevideo + Instituto Nacional de Investigación Agropecuaria INIA (UMPI), Mataojo 2020, 11400 Montevideo, Uruguay
| | - Søren Johannes Sørensen
- University of Copenhagen, Department of Biology, Section of Microbiology, Nørregade 10, 1165 Copenhagen, Denmark
| | - Doreen Babin
- Julius Kühn Institute (JKI)-Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Carolina Leoni
- Instituto Nacional de Investigación Agropecuaria (INIA), Programa de Producción y Sustentabilidad Ambiental, Estación Experimental INIA Las Brujas, Ruta 48 Km 10, 90200 Rincón del Colorado, Canelones, Uruguay
| |
Collapse
|
33
|
Devarajan N, McGarvey JA, Scow K, Jones MS, Lee S, Samaddar S, Schmidt R, Tran TD, Karp DS. Cascading effects of composts and cover crops on soil chemistry, bacterial communities and the survival of foodborne pathogens. J Appl Microbiol 2021; 131:1564-1577. [PMID: 33825272 PMCID: PMC8519115 DOI: 10.1111/jam.15054] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023]
Abstract
AIMS Recent foodborne disease outbreaks have caused farmers to re-evaluate their practices. In particular, concern that soil amendments could introduce foodborne pathogens onto farms and promote their survival in soils has led farmers to reduce or eliminate the application of animal-based composts. However, organic amendments (such as composts and cover crops) could bolster food safety by increasing soil microbial diversity and activity, which can act as competitors or antagonists and reduce pathogen survival. METHODS AND RESULTS Leveraging a study of a 27-year experiment comparing organic and conventional soil management, we evaluate the impacts of composted poultry litter and cover crops on soil chemistry, bacterial communities and survival of Salmonella enterica and Listeria monocytogenes. We found that bacterial community composition strongly affected pathogen survival in soils. Specifically, organic soils managed with cover crops and composts hosted more macronutrients and bacterial communities that were better able to suppress Salmonella and Listeria. For example, after incubating soils for 10 days at 20°C, soils without composts retained fourfold to fivefold more Salmonella compared to compost-amended soils. However, treatment effects dissipated as bacterial communities converged over the growing season. CONCLUSIONS Our results suggest that composts and cover crops may be used to build healthy soils without increasing foodborne pathogen survival. SIGNIFICANCE AND IMPACT OF THE STUDY Our work suggests that animal-based composts do not promote pathogen survival and may even promote bacterial communities that suppress pathogens. Critically, proper composting techniques are known to reduce pathogen populations in biological soil amendments of animal origin, which can reduce the risks of introducing pathogens to farm fields in soil amendments. Thus, animal-based composts and cover crops may be a safe alternative to conventional fertilizers, both because of the known benefits of composts for soil health and because it may be possible to apply amendments in such a way that food-safety risks are mitigated rather than exacerbated.
Collapse
Affiliation(s)
- N Devarajan
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA, USA
| | - J A McGarvey
- Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, USA
| | - K Scow
- Department of Land, Air and Water Resources, University of California, Davis, Davis, CA, USA
| | - M S Jones
- Department of Entomology, Washington State University, Pullman, WA, USA.,Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA, USA
| | - S Lee
- Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, USA
| | - S Samaddar
- Department of Land, Air and Water Resources, University of California, Davis, Davis, CA, USA
| | - R Schmidt
- Department of Land, Air and Water Resources, University of California, Davis, Davis, CA, USA
| | - T D Tran
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA, USA
| | - D S Karp
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, CA, USA
| |
Collapse
|
34
|
da Silva VB, Bomfim CSG, Sena PTS, Santos JCS, Mattos WDS, Gava CAT, de Souza AP, Fernandes-Júnior PI. Vigna spp. Root-Nodules Harbor Potentially Pathogenic Fungi Controlled By Co-habiting Bacteria. Curr Microbiol 2021; 78:1835-1845. [PMID: 33772620 DOI: 10.1007/s00284-021-02455-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
This study aimed to isolate, identify, and evaluate the pathogenicity of nodule-borne fungi of asymptomatic Vigna spp. plants, grown in soils from preserved tropical dry forests (Caatinga) areas and identify the occurrence of co-habiting bacteria from these plants, and which have potential to control the co-occurring pathogenic fungi. Fungi and bacteria were isolated from three Vigna species (V. unguiculata, V. radiata, and V. mungo), grown in soil samples collected in five preserved Caatinga areas (Northeastern, Brazil). All fungi and selected bacteria were phylogenetically characterized by the sequencing of ITS1-5.8S-ITS2, and the 16S rRNA gene, respectively. The pathogenicity of fungi in cowpea seeds germination was evaluated throughout the inoculation experiment in Petri dishes and pots containing sterile substrate. The potential of nodule-borne bacteria to control pathogenic fungi in cowpea was assessed in a pot experiment with a sterilized substrate by the co-inoculation of fungi and bacteria isolated from the respective individual plants and soils. The 23 fungal isolates recovered were classified within the genera Fusarium, Macrophomina, Aspergillus, Cladosporium, and Nigrospora. The inoculation of fungi in cowpea seeds reduced the emergence of seeds in Petri dishes and pots. Twenty-four bacteria (Agrobacterium sp., Bradyrhizobium sp., Bacillus sp., Enterobacter sp., Pseudomonas sp., Paraburkholderia sp., and Rhizobium sp.) inhibited the harmful effects of Macrophomina sp. and Fusarium sp., increasing the germination and emergency of potted cowpea plants, highlighting the strains Agrobacterium sp. ESA 686 and Pseudomonas sp. ESA 732 that controlled, respectively, the Fusarium sp. ESA 771 and Macrophomina sp. ESA 786 by 100 and 84.6% of efficiency.
Collapse
Affiliation(s)
- Valéria Borges da Silva
- Programa de Pós-Graduação em Ciência do Solo, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, PB, Brazil.,Instituto Federal do Piauí, Campus Paulistana, Paulistana, PI, Brazil
| | - Cláudia Silva Gomes Bomfim
- Programa de Pós-Graduação em Biociências, Colegiado de Farmácia, Universidade Federal do Vale do São Francisco, Petrolina, PE, Brazil
| | - Pâmella Thalita Souza Sena
- Programa de Pós-Graduação em Horticultura Irrigada, Departamento de Tecnologia e Ciências Sociais, Universidade do Estado da Bahia, Juazeiro, BA, Brazil
| | | | | | | | - Adailson Pereira de Souza
- Programa de Pós-Graduação em Ciência do Solo, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, PB, Brazil
| | | |
Collapse
|
35
|
Ma W, Yang Z, Hou S, Ma Q, Liang L, Wang G, Liang C, Zhao T. Effects of Living Cover on the Soil Microbial Communities and Ecosystem Functions of Hazelnut Orchards. FRONTIERS IN PLANT SCIENCE 2021; 12:652493. [PMID: 33841481 PMCID: PMC8033216 DOI: 10.3389/fpls.2021.652493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Living cover is an important management measure for orchards in China, and has certain influences on soil properties, microorganisms, and the micro-ecological environment. However, there are few studies on the effects of living cover on the soil changes in hazelnut orchards. In this study, we compared the soils of living cover treatments with Vulpia myuros and the soils of no cover treatments, and analyzed the observed changes in soil properties, microorganisms, and microbial functions by using high-throughput ITS rDNA and 16S rRNA gene Illumina sequencing. The results demonstrated that the total organic carbon content in the 20-40 cm deep soils under the living cover treatments increased by 32.87 and 14.82% in May and July, respectively, compared with those under the no cover treatments. The living cover treatment with V. myuros also significantly increased the contents of total phosphorus (TP), total nitrogen (TN), available phosphorus (AP), and available potassium (AK) in the soil samples. Moreover, the influence of seasons was not as significant as that of soil depth. The living cover treatment also significantly improved the soil enzyme activity levels. The results demonstrated that Ascomycota, Mortierellomycota and Basidiomycota were the dominant fungal phyla in all samples, while Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes, and Chloroflexi were the dominant bacterial phyla, but the different treatments impacted the compositions of fungal and bacterial communities. Principal component analysis (PCA) showed that living cover with V. myuros significantly changed the soil fungal community structures whereas the bacterial community structures may be more sensitive to seasonal changes. At the microbial functional level, the living cover treatment increased the fungal operational taxonomic units (OTUs) of symbiotrophs and decreased that of pathotrophs. According to this study, we believe that the application of a living cover with V. myuros has a favorable regulating influence on soil properties, microbial communities and microbial function. This treatment can also reduce the use of herbicides, reduce the cost of orchard management, and store more carbon underground to achieve sustainable intensification of production in hazelnut orchards, so it can be considered as a management measure for hazelnut orchards.
Collapse
Affiliation(s)
- Wenxu Ma
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, China
- National Hazelnut Industry Innovation Alliance, Beijing, China
| | - Zhen Yang
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, China
- National Hazelnut Industry Innovation Alliance, Beijing, China
| | - Sihao Hou
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, China
- National Hazelnut Industry Innovation Alliance, Beijing, China
| | - Qinghua Ma
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, China
- National Hazelnut Industry Innovation Alliance, Beijing, China
| | - Lisong Liang
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, China
- National Hazelnut Industry Innovation Alliance, Beijing, China
| | - Guixi Wang
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, China
- National Hazelnut Industry Innovation Alliance, Beijing, China
| | - Chunli Liang
- Liaoning Agricultural Technical College, Yingkou, China
| | - Tiantian Zhao
- Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Hazelnut Engineering and Technical Research Center of the State Forestry and Grassland Administration, Beijing, China
- National Hazelnut Industry Innovation Alliance, Beijing, China
| |
Collapse
|
36
|
Vandecasteele B, Pot S, Maenhout K, Delcour I, Vancampenhout K, Debode J. Acidification of composts versus woody management residues: Optimizing biological and chemical characteristics for a better fit in growing media. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111444. [PMID: 33059323 DOI: 10.1016/j.jenvman.2020.111444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/24/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Previous research has demonstrated that composts (COM) and woody residues from nature management (MR) are potential peat replacers for growing media, but their compositions are highly variable. Our goal is to make growing media more sustainable by optimizing the selection of local and sustainable alternatives for peat. Different batches of COM and MR were incubated to assess the microbial activity based on (1) the N drawdown risk, (2) the C mineralization and (3) the inoculation efficiency of a commercially available biocontrol fungus. The various batches were characterized based on biochemical, chemical (pH, available and total nutrients) and microbiological biomass analysis. COM and MR were scored based on chemical or stability characteristics to assess their suitability to replace peat, lime and fertilizers in growing media. This score allowed for a clear differentiation between the materials; MR received higher scores on average than COM. Five composts were further tested for the effect of storage after blending with an acidic MR, acidification with elemental S, or removal of the finer fraction. One batch of chopped soft rush was acidified with elemental S. Blending and acidification were the most effective treatments as they resulted in a clear increase of the suitability score.
Collapse
Affiliation(s)
- Bart Vandecasteele
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium.
| | | | - Kristof Maenhout
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| | - Ilse Delcour
- PCS Ornamental Plant Research, Destelbergen, Belgium
| | | | - Jane Debode
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| |
Collapse
|
37
|
Affiliation(s)
- Marina Semchenko
- School of Natural Sciences, University of Manchester, Manchester, UK. .,Department of Botany, University of Tartu, Tartu, Estonia
| |
Collapse
|
38
|
Nolan S, Thorn CE, Ashekuzzaman SM, Kavanagh I, Nag R, Bolton D, Cummins E, O'Flaherty V, Abram F, Richards K, Fenton O. Landspreading with co-digested cattle slurry, with or without pasteurisation, as a mitigation strategy against pathogen, nutrient and metal contamination associated with untreated slurry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140841. [PMID: 32755776 DOI: 10.1016/j.scitotenv.2020.140841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
North Atlantic European grassland systems have a low nutrient use efficiency and high rainfall. This grassland is typically amended with unprocessed slurry, which counteracts soil organic matter depletion and provides essential plant micronutrients but can be mobilised during rainfall events thereby contributing to pathogen, nutrient and metal incidental losses. Co-digesting slurry with waste from food processing mitigates agriculture-associated environmental impacts but may alter microbial, nutrient and metal profiles and their transmission to watercourses, and/or soil persistence, grass yield and uptake. The impact of EU and alternative pasteurisation regimes on transmission potential of these various pollutants is not clearly understood, particularly in pasture-based agricultural systems. This study utilized simulated rainfall (Amsterdam drip-type) at a high intensity indicative of a worst-case scenario of ~11 mm hr-1 applied to plots 1, 2, 15 and 30 days after grassland application of slurry, unpasteurised digestate, pasteurised digestate (two conditions) and untreated controls. Runoff and soil samples were collected and analysed for a suite of potential pollutants including bacteria, nutrients and metals following rainfall simulation. Grass samples were collected for three months following application to assess yield as well as nutrient and metal uptake. For each environmental parameter tested: microbial, nutrient and metal runoff losses; accumulation in soil and uptake in grass, digestate from anaerobic co-digestion of slurry with food processing waste resulted in lower pollution potential than traditional landspreading of slurry without treatment. Reduced microbial runoff from digestate was the most prominent advantage of digestate application. Pasteurisation of the digestate further augmented those environmental benefits, without impacting grass output. Anaerobic co-digestion of slurry is therefore a multi-beneficial circular approach to reducing impacts of livestock production on the environment.
Collapse
Affiliation(s)
- S Nolan
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Co. Galway, Ireland; Teagasc, Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - C E Thorn
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Co. Galway, Ireland
| | - S M Ashekuzzaman
- Teagasc, Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - I Kavanagh
- Teagasc, Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - R Nag
- School of Biosystems and Food Engineering, UCD, Dublin, Ireland
| | - D Bolton
- Teagasc, Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| | - E Cummins
- School of Biosystems and Food Engineering, UCD, Dublin, Ireland
| | - V O'Flaherty
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Co. Galway, Ireland
| | - F Abram
- Microbiology, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, University Road, Co. Galway, Ireland
| | - K Richards
- Teagasc, Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland
| | - O Fenton
- Teagasc, Environmental Research Centre, Johnstown Castle, Co. Wexford, Ireland.
| |
Collapse
|
39
|
Yin C, McLaughlin K, Paulitz TC, Kroese DR, Hagerty CH. Population Dynamics of Wheat Root Pathogens Under Different Tillage Systems in Northeast Oregon. PLANT DISEASE 2020; 104:2649-2657. [PMID: 32749926 DOI: 10.1094/pdis-03-19-0621-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
No-till or direct seeding can be described as seeding directly into the crop stubble from the previous season without use of tillage. A reduction in tillage can result in many benefits, including increased soil organic matter, increased water holding capacity, and reduced fuel costs. However, the effect of no-till and reduced tillage on crop root disease profiles is poorly understood. To study the effect of tillage on disease dynamics, soil samples were collected from commercial wheat fields representing a wide range of tillage strategies in fall 2016 and fall 2017. Because precipitation might affect soilborne diseases, wheat fields located across a diverse gradient of precipitation zones of the dryland Pacific Northwest were selected. Fusarium spp., Pythium spp., and Rhizoctonia spp. were quantified from soil samples using soil dilution plating and quantitative PCR (qPCR) assays. Results of dilution plating showed that the colony counts of Fusarium, Pythium, and Rhizoctonia at the genus level were negatively associated with tillage. However, the same patterns were not observed when specific causal agents of Fusarium, Pythium, and Rhizoctonia that are known to be pathogenic on wheat were quantified with qPCR. Furthermore, precipitation affected the population density of some fungal pathogens (F. culmorum, P. ultimum, and R. solani AG 8). Within the scope of inference of this study, results of this study indicate that the benefits of adopting reduced tillage likely outweigh potential risk for increased root disease.
Collapse
Affiliation(s)
- Chuntao Yin
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430
| | | | - Timothy C Paulitz
- USDA-ARS, Wheat Health, Genetics and Quality Research Unit, Washington State University, Pullman, WA 99164-6430
| | - Duncan R Kroese
- Columbia Basin Agricultural Research Center, Oregon State University, Adams, OR 97810
| | - Christina H Hagerty
- Columbia Basin Agricultural Research Center, Oregon State University, Adams, OR 97810
| |
Collapse
|
40
|
Crandall SG, Gold KM, Jiménez-Gasco MDM, Filgueiras CC, Willett DS. A multi-omics approach to solving problems in plant disease ecology. PLoS One 2020; 15:e0237975. [PMID: 32960892 PMCID: PMC7508392 DOI: 10.1371/journal.pone.0237975] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
The swift rise of omics-approaches allows for investigating microbial diversity and plant-microbe interactions across diverse ecological communities and spatio-temporal scales. The environment, however, is rapidly changing. The introduction of invasive species and the effects of climate change have particular impact on emerging plant diseases and managing current epidemics. It is critical, therefore, to take a holistic approach to understand how and why pathogenesis occurs in order to effectively manage for diseases given the synergies of changing environmental conditions. A multi-omics approach allows for a detailed picture of plant-microbial interactions and can ultimately allow us to build predictive models for how microbes and plants will respond to stress under environmental change. This article is designed as a primer for those interested in integrating -omic approaches into their plant disease research. We review -omics technologies salient to pathology including metabolomics, genomics, metagenomics, volatilomics, and spectranomics, and present cases where multi-omics have been successfully used for plant disease ecology. We then discuss additional limitations and pitfalls to be wary of prior to conducting an integrated research project as well as provide information about promising future directions.
Collapse
Affiliation(s)
- Sharifa G. Crandall
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, United States of America
| | - Kaitlin M. Gold
- Plant Pathology & Plant Microbe Biology Section, Cornell AgriTech, Cornell University, Geneva, NY, United States of America
| | - María del Mar Jiménez-Gasco
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, United States of America
| | - Camila C. Filgueiras
- Applied Chemical Ecology Technology, Cornell AgriTech, Cornell University, Geneva, NY, United States of America
| | - Denis S. Willett
- Applied Chemical Ecology Technology, Cornell AgriTech, Cornell University, Geneva, NY, United States of America
| |
Collapse
|
41
|
Zhao M, Yuan J, Shen Z, Dong M, Liu H, Wen T, Li R, Shen Q. Predominance of soil vs root effect in rhizosphere microbiota reassembly. FEMS Microbiol Ecol 2020; 95:5558233. [PMID: 31504451 DOI: 10.1093/femsec/fiz139] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/01/2019] [Indexed: 11/14/2022] Open
Abstract
Rhizosphere community assembly is simultaneously affected by both plants and bulk soils and is vital for plant health. However, it is still unclear how and to what extent disease-suppressive rhizosphere microbiota can be constructed from bulk soil, and the underlying agents involved in the process that render the rhizosphere suppressive against pathogenic microbes remain elusive. In this study, the evolutionary processes of the rhizosphere microbiome were explored based on transplanting plants previously growing in distinct disease-incidence soils to one disease-suppressive soil. Our results showed that distinct rhizoplane bacterial communities were assembled on account of the original bulk soil communities with different disease incidences. Furthermore, the bacterial communities in the transplanted rhizosphere were noticeably influenced by the second disease-suppressive microbial pool, rather than that of original formed rhizoplane microbiota and homogenous nontransplanted rhizosphere microbiome, contributing to a significant decrease in the pathogen population. In addition, Spearman's correlations between relative abundances of bacterial taxa and the abundance of Ralstonia solanacearum indicated Anoxybacillus, Flavobacterium, Permianibacter and Pseudomonas were predicted to be associated with disease-suppressive function formation. Altogether, our results showed that bulk soil played an important role in the process of assembling and reassembling the rhizosphere microbiome of plants.
Collapse
Affiliation(s)
- Mengli Zhao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Jun Yuan
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Zongzhuan Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Menghui Dong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Hongjun Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Tao Wen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| |
Collapse
|
42
|
de Boer W, Li X, Meisner A, Garbeva P. Pathogen suppression by microbial volatile organic compounds in soils. FEMS Microbiol Ecol 2020; 95:5527321. [PMID: 31265069 DOI: 10.1093/femsec/fiz105] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/30/2019] [Indexed: 12/15/2022] Open
Abstract
There is increasing evidence that microbial volatile organic compounds (mVOCs) play an important role in interactions between microbes in soils. In this minireview, we zoom in on the possible role of mVOCs in the suppression of plant-pathogenic soil fungi. In particular, we have screened the literature to see what the actual evidence is that mVOCs in soil atmospheres can contribute to pathogen suppression. Furthermore, we discuss biotic and abiotic factors that influence the production of suppressive mVOCs in soils. Since microbes producing mVOCs in soils are part of microbial communities, community ecological aspects such as diversity and assembly play an important role in the composition of produced mVOC blends. These aspects have not received much attention so far. In addition, the fluctuating abiotic conditions in soils, such as changing moisture contents, influence mVOC production and activity. The biotic and abiotic complexity of the soil environment hampers the extrapolation of the production and suppressing activity of mVOCs by microbial isolates on artificial growth media. Yet, several pathogen suppressive mVOCs produced by pure cultures do also occur in soil atmospheres. Therefore, an integration of lab and field studies on the production of mVOCs is needed to understand and predict the composition and dynamics of mVOCs in soil atmospheres. This knowledge, together with the knowledge of the chemistry and physical behaviour of mVOCs in soils, forms the basis for the development of sustainable management strategies to enhance the natural control of soil-borne pathogens with mVOCs. Possibilities for the mVOC-based control of soil-borne pathogens are discussed.
Collapse
Affiliation(s)
- Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, Droevendaalsesteeg 10, 6708PB Wageningen, The Netherlands.,Soil Biology Group, Wageningen University, Droevendaalsesteeg 3, 6708PB Wageningen, The Netherlands
| | - Xiaogang Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, 210037 Nanjing, China
| | - Annelein Meisner
- Department of Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, Droevendaalsesteeg 10, 6708PB Wageningen, The Netherlands.,Microbial Ecology, Department of Biology, Lund University, Ecology Building, Sölvegatan 37, SE-22363 Lund, Sweden
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, Droevendaalsesteeg 10, 6708PB Wageningen, The Netherlands
| |
Collapse
|
43
|
Acid Soil Improvement Enhances Disease Tolerance in Citrus Infected by Candidatus Liberibacter asiaticus. Int J Mol Sci 2020; 21:ijms21103614. [PMID: 32443846 PMCID: PMC7279377 DOI: 10.3390/ijms21103614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/20/2022] Open
Abstract
Huanglongbing (HLB) is a devastating citrus disease that has caused massive economic losses to the citrus industry worldwide. The disease is endemic in most citrus-producing areas of southern China, especially in the sweet orange orchards where soil acidification has intensified. In this work, we used lime as soil pH amendment to optimize soil pH and enhance the endurance capacity of citrus against Candidatus Liberibacter asiaticus (CLas). The results showed that regulation of soil acidity is effective to reduce the occurrence of new infections and mitigate disease severity in the presence of HLB disease. We also studied the associated molecular mechanism and found that acid soil improvement can (i) increase the root metabolic activity and up-regulate the expression of ion transporter-related genes in HLB-infected roots, (ii) alleviate the physiological disorders of sieve tube blockage of HLB-infected leaves, (iii) strengthen the citrus immune response by increasing the expression of genes involved in SAR and activating the salicylic acid signal pathway, (iv) up-regulate 55 proteins related to stress/defence response and secondary metabolism. This study contributes to a better understanding of the correlation between environment factors and HLB disease outbreaks and also suggests that acid soil improvement is of potential value for the management of HLB disease in southern China.
Collapse
|
44
|
Ullah H, Yasmin H, Mumtaz S, Jabeen Z, Naz R, Nosheen A, Hassan MN. Multitrait Pseudomonas spp. Isolated from Monocropped Wheat ( Triticum aestivum) Suppress Fusarium Root and Crown Rot. PHYTOPATHOLOGY 2020; 110:582-592. [PMID: 31799901 DOI: 10.1094/phyto-10-19-0383-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fusarium root and crown rot is the most common disease of wheat, especially wheat grown in arid zones where drought is a common issue. The development of environmentally safe approaches to manage diseases of food crops is important for humans. The monocropping system recruits beneficial bacteria that promote plant growth through nutrient solubilization and pathogen suppression. In this study, a field where wheat was monocropped for 5 successive years under rainfed conditions was identified. A total of 29 bacterial isolates were obtained from the rhizosphere, endosphere, and phyllosphere of wheat at its harvesting stage. The Gram-negative bacteria were less prevalent (41%) but the majority (75%) exhibited plant growth-promoting traits. The ability of strains to solubilize nutrients (solubilization index = 2.3 to 4), inhibit pathogenic fungi (25 to 56%), and produce antifungal compounds was highly variable. The rhizobacteria significantly promoted the growth and disease resistance of wheat varieties such as Pirsbak-2015 and Galaxy-2013 by inducing antioxidant enzyme activity (0.2- to 2.1-fold). The bacterial strains were identified as Ochrobactrum spp., Acinetobacter spp., and Pseudomonas mediterranea by 16S rRNA and rpoD sequence analysis. The endophytic bacterium P. mediterranea HU-9 exhibited maximum biocontrol efficacy against wheat root and crown rot diseases with a disease score/disease index from 1.8 to 3.1. The monocropping systems of rainfed agriculture are an ideal source of beneficial bacteria to use as bioinoculants for different crops.
Collapse
Affiliation(s)
- Habib Ullah
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Humaira Yasmin
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Saqib Mumtaz
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Zahra Jabeen
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Rabia Naz
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Asia Nosheen
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | |
Collapse
|
45
|
Dundore-Arias JP, Castle SC, Felice L, Dill-Macky R, Kinkel LL. Carbon Amendments Influence Composition and Functional Capacities of Indigenous Soil Microbiomes. Front Mol Biosci 2020; 6:151. [PMID: 31993439 PMCID: PMC6964746 DOI: 10.3389/fmolb.2019.00151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/10/2019] [Indexed: 02/01/2023] Open
Abstract
Soil nutrient amendments are recognized for their potential to improve microbial activity and biomass in the soil. However, the specific selective impacts of carbon amendments on indigenous microbiomes and their metabolic functions in agricultural soils remain poorly understood. We investigated the changes in soil chemical characteristics and phenotypes of Streptomyces communities following carbon amendments to soil. Mesocosms were established with soil from two field sites varying in soil organic matter content (low organic matter, LOM; high organic matter, HOM), that were amended at intervals over nine months with low or high dose solutions of glucose, fructose, malic acid, a mixture of these compounds, or water only (non-amended control). Significant shifts in soil chemical characteristics and antibiotic inhibitory capacities of indigenous Streptomyces were observed in response to carbon additions. All high dose carbon amendments consistently increased soil total carbon, while amendments with malic acid decreased soil pH. In LOM soils, higher frequencies of Streptomyces inhibitory phenotypes of the two plant pathogens, Streptomyces scabies and Fusarium oxysporum, were observed in response to soil carbon additions. Additionally, to determine if shifts in Streptomyces functional characteristics correlated with microbiome composition, we investigated whether shifts in functional characteristics of soil Streptomyces correlated with composition of soil bacterial communities, analyzed using 16S rRNA gene sequencing. Regardless of dose, community composition differed significantly among carbon-amended and non-amended soils from both sites. Carbon type and dose had significant effects on bacterial community composition in both LOM and HOM soils. Relationships among microbial community richness (observed species number), diversity, and soil characteristics varied among soils from different sites. These results suggest that manipulation of soil resource availability has the potential to selectively modify the functional capacities of soil microbiomes, and specifically to enhance pathogen inhibitory populations of high value to agricultural systems.
Collapse
Affiliation(s)
- José Pablo Dundore-Arias
- Department of Biology and Chemistry, California State University, Monterey Bay, Seaside, CA, United States.,Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| | - Sarah C Castle
- Plant Science Research Unit, USDA-ARS, Saint Paul, MN, United States
| | - Laura Felice
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| | - Ruth Dill-Macky
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| | - Linda L Kinkel
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
46
|
Noel ZA, Sang H, Roth MG, Chilvers MI. Convergent Evolution of C239S Mutation in Pythium spp. β-Tubulin Coincides with Inherent Insensitivity to Ethaboxam and Implications for Other Peronosporalean Oomycetes. PHYTOPATHOLOGY 2019; 109:2087-2095. [PMID: 31070989 DOI: 10.1094/phyto-01-19-0022-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ethaboxam is a benzamide antioomycete chemical (oomicide) used in corn and soybean seed treatments. Benzamides are hypothesized to bind to β-tubulin, thus disrupting microtubule assembly. Recently, there have been reports of corn- and soybean-associated oomycetes that are insensitive to ethaboxam despite never having been exposed. Here, we investigate the evolutionary history and molecular mechanism of ethaboxam insensitivity. We tested the sensitivity of 194 isolates representing 83 species across four oomycete genera in the Peronosporalean lineage that were never exposed to ethaboxam. In all, 84% of isolates were sensitive to ethaboxam (effective concentration to reduce optical density at 600 nm by 50% when compared with the nonamended control [EC50] < 5 μg ml-1), whereas 16% were insensitive (EC50 > 11 μg ml-1). Of the insensitive isolates, two different transversion mutations were present in the 239th codon in β-tubulin within three monophyletic groups of Pythium spp. The transversion mutations lead to the same amino acid change from an ancestral cysteine to serine (C239S), which coincides with ethaboxam insensitivity. In a treated soybean seed virulence assay, disease severity was not reduced on ethaboxam-treated seed for an isolate of Pythium aphanidermatum containing a S239 but was reduced for an isolate of P. irregulare containing a C239. We queried publicly available β-tubulin sequences from other oomycetes in the Peronosporalean lineage to search for C239S mutations from other species not represented in our collection. This search resulted in other taxa that were either homozygous or heterozygous for C239S, including all available species within the genus Peronospora. Evidence presented herein supports the hypothesis that the convergent evolution of C239S within Peronosporalean oomycetes occurred without selection from ethaboxam yet confers insensitivity. We propose several evolutionary hypotheses for the repeated evolution of the C239S mutation.
Collapse
Affiliation(s)
- Zachary A Noel
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan
| | - Hyunkyu Sang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan
- Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan
| | - Mitchell G Roth
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan
- Genetics Program, Michigan State University, East Lansing, Michigan
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan
- Program in Ecology, Evolutionary Biology and Behavior, Michigan State University, East Lansing, Michigan
- Genetics Program, Michigan State University, East Lansing, Michigan
| |
Collapse
|
47
|
Rolfe SA, Griffiths J, Ton J. Crying out for help with root exudates: adaptive mechanisms by which stressed plants assemble health-promoting soil microbiomes. Curr Opin Microbiol 2019; 49:73-82. [PMID: 31731229 DOI: 10.1016/j.mib.2019.10.003] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/29/2019] [Accepted: 10/03/2019] [Indexed: 01/13/2023]
Abstract
Plants employ immunological and ecological strategies to resist biotic stress. Recent evidence suggests that plants adapt to biotic stress by changing their root exudation chemistry to assemble health-promoting microbiomes. This so-called 'cry-for-help' hypothesis provides a mechanistic explanation for previously characterized soil feedback responses to plant disease, such as the development of disease-suppressing soils upon successive cultivations of take all-infected wheat. Here, we divide the hypothesis into individual stages and evaluate the evidence for each component. We review how plant immune responses modify root exudation chemistry, as well as what impact this has on microbial activities, and the subsequent plant responses to these activities. Finally, we review the ecological relevance of the interaction, along with its translational potential for future crop protection strategies.
Collapse
Affiliation(s)
- Stephen A Rolfe
- Plant Production and Protection (P(3)), Institute for Sustainable Food, The University of Sheffield, S10 2TN, UK; Department of Animal and Plant Sciences, The University of Sheffield, S10 2TN, UK
| | - Joseph Griffiths
- Department of Animal and Plant Sciences, The University of Sheffield, S10 2TN, UK
| | - Jurriaan Ton
- Plant Production and Protection (P(3)), Institute for Sustainable Food, The University of Sheffield, S10 2TN, UK; Department of Animal and Plant Sciences, The University of Sheffield, S10 2TN, UK.
| |
Collapse
|
48
|
Potential Benefits and Risks for Soil Health Derived From the Use of Organic Amendments in Agriculture. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9090542] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of organic amendments in agriculture is a common practice due to their potential to increase crop productivity and enhance soil health. Indeed, organic amendments of different origin and composition (e.g., animal slurry, manure, compost, sewage sludge, etc.) can supply valuable nutrients to the soil, as well as increase its organic matter content, with concomitant benefits for soil health. However, the application of organic amendments to agricultural soil entails a variety of risks for environmental and human health. Organic amendments often contain a range of pollutants, including heavy metals, persistent organic pollutants, potential human pathogens, and emerging pollutants. Regarding emerging pollutants, the presence of antibiotic residues, antibiotic-resistant bacteria, and antibiotic-resistance genes in agricultural amendments is currently a matter of much concern, due to the concomitant risks for human health. Similarly, currently, the introduction of microplastics to agricultural soil, via the application of organic amendments (mainly, sewage sludge), is a topic of much relevance, owing to its magnitude and potential adverse effects for environmental health. There is, currently, much interest in the development of efficient strategies to mitigate the risks associated to the application of organic amendments to agricultural soil, while benefiting from their numerous advantages.
Collapse
|
49
|
Zhou D, Jing T, Chen Y, Wang F, Qi D, Feng R, Xie J, Li H. Deciphering microbial diversity associated with Fusarium wilt-diseased and disease-free banana rhizosphere soil. BMC Microbiol 2019; 19:161. [PMID: 31299891 PMCID: PMC6626388 DOI: 10.1186/s12866-019-1531-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 06/26/2019] [Indexed: 11/18/2022] Open
Abstract
Background Fusarium wilt of banana (Musa spp.) caused by the fungal pathogen Fusarium oxysporum f. sp. cubense (Foc) is a typical soilborne disease, that severely devastates the banana industry worldwide, and soil microbial diversity is closely related to the spread of Fusarium wilt. To understand the relationship between microbial species and Fusarium wilt, it is important to understand the microbial diversity of the Fusarium wilt-diseased and disease-free soils from banana fields. Results Based on sequencing analysis of the bacterial 16S rRNA genes and fungal internal transcribed spacer (ITS) sequences, Foc abundance, fungal or bacterial richness and diversity were higher in the diseased soils than in the disease-free soils. Although Ascomycota and Zygomycota were the most abundant fungi phyla in all soil samples, Ascomycota abundance was significantly reduced in the disease-free soils. Mortierella (36.64%) was predominant in the disease-free soils. Regarding bacterial phyla, Proteobacteria, Acidobacteria, Chloroflexi, Firmicutes, Actinobacteria, Gemmatimonadetes, Bacteroidetes, Nitrospirae, Verrucomicrobia and Planctomycetes were dominant phyla in all soil samples. In particular, Firmicutes contributed 16.20% of the total abundance of disease-free soils. At the bacterial genus level, Bacillus, Lactococcus and Pseudomonas were abundant in disease-free soils with abundances of 8.20, 5.81 and 2.71%, respectively; lower abundances, of 4.12, 2.35 and 1.36%, respectively, were found in diseased soils. The distribution characteristics of fungal and bacterial genera may contribute to the abundance decrease of Foc in the disease-free soils. Conclusion Unique distributions of bacteria and fungi were observed in the diseased and disease-free soil samples from banana fields. These specific genera are useful for constructing a healthy microbial community structure of soil.
Collapse
Affiliation(s)
- Dengbo Zhou
- Institute of Tropical Bioscience and Biotechnology, China Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Tao Jing
- Haikou Experimental Station, China Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Yufeng Chen
- Institute of Tropical Bioscience and Biotechnology, China Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Fei Wang
- Institute of Tropical Bioscience and Biotechnology, China Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Dengfeng Qi
- Institute of Tropical Bioscience and Biotechnology, China Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Renjun Feng
- Institute of Tropical Bioscience and Biotechnology, China Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Jianghui Xie
- Institute of Tropical Bioscience and Biotechnology, China Academy of Tropical Agricultural Sciences, Haikou, Hainan, China.
| | - Huaping Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
50
|
Graham DW, Bergeron G, Bourassa MW, Dickson J, Gomes F, Howe A, Kahn LH, Morley PS, Scott HM, Simjee S, Singer RS, Smith TC, Storrs C, Wittum TE. Complexities in understanding antimicrobial resistance across domesticated animal, human, and environmental systems. Ann N Y Acad Sci 2019; 1441:17-30. [PMID: 30924539 PMCID: PMC6850694 DOI: 10.1111/nyas.14036] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/31/2022]
Abstract
Antimicrobial resistance (AMR) is a significant threat to both human and animal health. The spread of AMR bacteria and genes across systems can occur through a myriad of pathways, both related and unrelated to agriculture, including via wastewater, soils, manure applications, direct exchange between humans and animals, and food exposure. Tracing origins and drivers of AMR bacteria and genes is challenging due to the array of contexts and the complexity of interactions overlapping health practice, microbiology, genetics, applied science and engineering, as well as social and human factors. Critically assessing the diverse and sometimes contradictory AMR literature is a valuable step in identifying tractable mitigation options to stem AMR spread. In this article we review research on the nonfoodborne spread of AMR, with a focus on domesticated animals and the environment and possible exposures to humans. Attention is especially placed on delineating possible sources and causes of AMR bacterial phenotypes, including underpinning the genetics important to human and animal health.
Collapse
Affiliation(s)
| | | | | | - James Dickson
- Department of Animal ScienceIowa State UniversityAmesIowa
| | | | - Adina Howe
- The New York Academy of SciencesNew YorkNew York
| | - Laura H. Kahn
- Woodrow Wilson School of Public International AffairsPrinceton UniversityPrincetonNew Jersey
| | - Paul S. Morley
- Department of Large Animal Clinical ScienceTexas A&M UniversityCanyonTexasUSA
| | - H. Morgan Scott
- Department of Veterinary PathobiologyTexas A&M UniversityCollege StationTexas
| | | | - Randall S. Singer
- Department of Veterinary and Biomedical SciencesUniversity of MinnesotaSt. PaulMinnesota
| | - Tara C. Smith
- College of Public HealthKent State UniversityKentOhio
| | | | - Thomas E. Wittum
- Department of Veterinary Preventive MedicineOhio State UniversityColumbusOhio
| |
Collapse
|