1
|
Hasan MZ, Claus M, Krüger N, Reusing S, Gall E, Bade-Döding C, Braun A, Watzl C, Uhrberg M, Walter L. SARS-CoV-2 infection induces adaptive NK cell responses by spike protein-mediated induction of HLA-E expression. Emerg Microbes Infect 2024; 13:2361019. [PMID: 38804979 PMCID: PMC11212573 DOI: 10.1080/22221751.2024.2361019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
HLA-E expression plays a central role for modulation of NK cell function by interaction with inhibitory NKG2A and stimulatory NKG2C receptors on canonical and adaptive NK cells, respectively. Here, we demonstrate that infection of human primary lung tissue with SARS-CoV-2 leads to increased HLA-E expression and show that processing of the peptide YLQPRTFLL from the spike protein is primarily responsible for the strong, dose-dependent increase of HLA-E. Targeting the peptide site within the spike protein revealed that a single point mutation was sufficient to abrogate the increase in HLA-E expression. Spike-mediated induction of HLA-E differentially affected NK cell function: whereas degranulation, IFN-γ production, and target cell cytotoxicity were enhanced in NKG2C+ adaptive NK cells, effector functions were inhibited in NKG2A+ canonical NK cells. Analysis of a cohort of COVID-19 patients in the acute phase of infection revealed that adaptive NK cells were induced irrespective of the HCMV status, challenging the paradigm that adaptive NK cells are only generated during HCMV infection. During the first week of hospitalization, patients exhibited a selective increase of early NKG2C+CD57- adaptive NK cells whereas mature NKG2C+CD57+ cells remained unchanged. Further analysis of recovered patients suggested that the adaptive NK cell response is primarily driven by a wave of early adaptive NK cells during acute infection that wanes once the infection is cleared. Together, this study suggests that NK cell responses to SARS-CoV-2 infection are majorly influenced by the balance between canonical and adaptive NK cells via the HLA-E/NKG2A/C axis.
Collapse
Affiliation(s)
- Mohammad Zahidul Hasan
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
- PhD Program Molecular Biology of Cells, GGNB, Georg August University, Göttingen, Germany
| | - Maren Claus
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Nadine Krüger
- Platform Infection Models, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
| | - Sarah Reusing
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Eline Gall
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | | | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine, Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
- Institute of Immunology, Medical School Hannover, Hannover, Germany
| | - Carsten Watzl
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors (IfADo) at TU Dortmund, Dortmund, Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Walter
- Primate Genetics Laboratory, German Primate Center, Leibniz-Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
2
|
Horsten F, Chou S, Gillemot S, Debaveye Y, Naesens M, Pirenne J, Vanhoutte T, Vanuytsel T, Vos R, Maes P, Snoeck R, Andrei G. Dynamics and Evolution of Donor-derived Cytomegalovirus Infection in 3 Solid Organ Transplant Recipients With the Same Multiorgan Donor. Transplantation 2024:00007890-990000000-00878. [PMID: 39348287 DOI: 10.1097/tp.0000000000005209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
BACKGROUND Cytomegalovirus (CMV) infection poses a significant risk to immunosuppressed transplant recipients, manifesting through primary infection, reinfection, or reactivation. METHODS We analyzed the emergence of drug resistance in CMV infection in 3 patients who were later found to have received an allograft from a shared, deceased donor. The seronegative transplant recipients developed symptomatic CMV infections after bowel/pancreas, kidney, or lung transplantation. Prospective Sanger sequencing was used to identify mutations in the viral DNA polymerase (DP) and protein kinase (PK). DP and PK variants were retrospectively quantified by targeted next-generation sequencing. The impact of the novel DP-A505G substitution on drug susceptibility was assessed using a recombinant virus. Whole-genome sequencing of clinical CMV samples was enabled through target DNA enrichment. RESULTS The DP-A505G substitution was found in all patient samples and could be associated with a natural polymorphism. A subsequent review of the patients' clinical histories revealed that they had all received organs from a single donor. The CMV infection exhibited divergent evolution among the patients: patient 1 developed resistance to ganciclovir and foscarnet because of 2 DP mutations (V715M and V781I), patient 2 showed no genotypic resistance, and patient 3 developed ganciclovir (PK-L595S) and maribavir resistance (PK-T409M). Interpatient variation across the entire CMV genome was minimal, with viral samples clustering in phylogenetic analysis. CONCLUSIONS All 3 transplant recipients were infected with the same donor-derived CMV strain and readily developed different drug susceptibility profiles. This underscores the importance of judicious antiviral drug use and surveillance in preventing antiviral resistance emergence.
Collapse
Affiliation(s)
- Fien Horsten
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, KU Leuven, Leuven, Belgium
| | - Sunwen Chou
- Department of Veterans Affairs Medical Center, Research Service, Portland, OR
| | - Sarah Gillemot
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, KU Leuven, Leuven, Belgium
| | - Yves Debaveye
- Department of Intensive Care, University Hospitals Leuven, Leuven, Belgium
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Jacques Pirenne
- Abdominal Transplant Surgery Unit, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Abdominal Transplant Surgery and Transplant Coordination, University Hospitals Leuven, Leuven, Belgium
- Leuven Intestinal Failure and Transplantation Center (LIFT), University Hospitals Leuven, Leuven, Belgium
| | - Thomas Vanhoutte
- Department of Microbiology, Immunology and Transplantation, Nephrology and Kidney Transplantation Research Group, KU Leuven, Leuven, Belgium
- Department of Nephrology and Kidney Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Department of Chronic Diseases and Metabolism (ChroMetA), KU Leuven, Leuven, Belgium
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
| | - Robin Vos
- Department of Chronic Diseases and Metabolism (ChroMetA), KU Leuven, Leuven, Belgium
- Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Piet Maes
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Robert Snoeck
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, KU Leuven, Leuven, Belgium
| | - Graciela Andrei
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, Rega Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Mihalić A, Železnjak J, Lisnić B, Jonjić S, Juranić Lisnić V, Brizić I. Immune surveillance of cytomegalovirus in tissues. Cell Mol Immunol 2024; 21:959-981. [PMID: 39134803 PMCID: PMC11364667 DOI: 10.1038/s41423-024-01186-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/14/2024] [Indexed: 09/01/2024] Open
Abstract
Cytomegalovirus (CMV), a representative member of the Betaherpesvirinae subfamily of herpesviruses, is common in the human population, but immunocompetent individuals are generally asymptomatic when infected with this virus. However, in immunocompromised individuals and immunologically immature fetuses and newborns, CMV can cause a wide range of often long-lasting morbidities and even death. CMV is not only widespread throughout the population but it is also widespread in its hosts, infecting and establishing latency in nearly all tissues and organs. Thus, understanding the pathogenesis of and immune responses to this virus is a prerequisite for developing effective prevention and treatment strategies. Multiple arms of the immune system are engaged to contain the infection, and general concepts of immune control of CMV are now reasonably well understood. Nonetheless, in recent years, tissue-specific immune responses have emerged as an essential factor for resolving CMV infection. As tissues differ in biology and function, so do immune responses to CMV and pathological processes during infection. This review discusses state-of-the-art knowledge of the immune response to CMV infection in tissues, with particular emphasis on several well-studied and most commonly affected organs.
Collapse
Affiliation(s)
- Andrea Mihalić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jelena Železnjak
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Biomedical Sciences, Croatian Academy of Sciences and Arts, Rijeka, Croatia
| | - Vanda Juranić Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
4
|
Mahmud J, Geiler BW, Biswas J, Miller MJ, Myers JE, Matthews SM, Wass AB, O’Connor CM, Chan GC. Delivery of US28 by incoming HCMV particles rapidly attenuates Akt activity to suppress HCMV lytic replication in monocytes. Sci Signal 2024; 17:eadn8727. [PMID: 39190708 PMCID: PMC11460310 DOI: 10.1126/scisignal.adn8727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Establishing a nonproductive, quiescent infection within monocytes is essential for the spread of human cytomegalovirus (HCMV). We investigated the mechanisms through which HCMV establishes a quiescent infection in monocytes. US28 is a virally encoded G protein-coupled receptor (GPCR) that is essential for silent infections within cells of the myeloid lineage. We found that preformed US28 was rapidly delivered to monocytes by HCMV viral particles, whereas the de novo synthesis of US28 was delayed for several days. A recombinant mutant virus lacking US28 (US28Δ) was unable to establish a quiescent infection, resulting in a fully productive lytic infection able to produce progeny virus. Infection with US28Δ HCMV resulted in the phosphorylation of the serine and threonine kinase Akt at Ser473 and Thr308, in contrast with the phosphorylation of Akt only at Ser473 after WT viral infection. Inhibiting the dual phosphorylation of Akt prevented the lytic replication of US28Δ, and ectopic expression of a constitutively phosphorylated Akt variant triggered lytic replication of wild-type HCMV. Mechanistically, we found that US28 was necessary and sufficient to attenuate epidermal growth factor receptor (EGFR) signaling induced during the entry of WT virus, which led to the site-specific phosphorylation of Akt at Ser473. Thus, particle-delivered US28 fine-tunes Akt activity by limiting HCMV-induced EGFR activation during viral entry, enabling quiescent infection in monocytes.
Collapse
Affiliation(s)
- Jamil Mahmud
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210
| | - Brittany W. Geiler
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210
| | - Juthi Biswas
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210
| | - Michael J. Miller
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210
| | - Julia E. Myers
- Infection Biology, Lerner Research Institute, Sheikha Fatima bint Mubarak Global Center for Pathogen & Human Health Research, Cleveland Clinic, Cleveland, OH 44195
- Case Comprehensive Cancer Center, Cleveland, OH 44106
| | - Stephen M. Matthews
- Infection Biology, Lerner Research Institute, Sheikha Fatima bint Mubarak Global Center for Pathogen & Human Health Research, Cleveland Clinic, Cleveland, OH 44195
- Case Comprehensive Cancer Center, Cleveland, OH 44106
| | - Amanda B. Wass
- Infection Biology, Lerner Research Institute, Sheikha Fatima bint Mubarak Global Center for Pathogen & Human Health Research, Cleveland Clinic, Cleveland, OH 44195
- Case Comprehensive Cancer Center, Cleveland, OH 44106
| | - Christine M. O’Connor
- Infection Biology, Lerner Research Institute, Sheikha Fatima bint Mubarak Global Center for Pathogen & Human Health Research, Cleveland Clinic, Cleveland, OH 44195
- Case Comprehensive Cancer Center, Cleveland, OH 44106
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195
| | - Gary C. Chan
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
5
|
Domma AJ, Henderson LA, Nurdin JA, Kamil JP. Uncloaking the viral glycocalyx: How do viruses exploit glycoimmune checkpoints? Adv Virus Res 2024; 119:63-110. [PMID: 38897709 PMCID: PMC11192240 DOI: 10.1016/bs.aivir.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The surfaces of cells and enveloped viruses alike are coated in carbohydrates that play multifarious roles in infection and immunity. Organisms across all kingdoms of life make use of a diverse set of monosaccharide subunits, glycosidic linkages, and branching patterns to encode information within glycans. Accordingly, sugar-patterning enzymes and glycan binding proteins play integral roles in cell and organismal biology, ranging from glycoprotein quality control within the endoplasmic reticulum to lymphocyte migration, coagulation, inflammation, and tissue homeostasis. Unsurprisingly, genes involved in generating and recognizing oligosaccharide patterns are playgrounds for evolutionary conflicts that abound in cross-species interactions, exemplified by the myriad plant lectins that function as toxins. In vertebrates, glycans bearing acidic nine-carbon sugars called sialic acids are key regulators of immune responses. Various bacterial and fungal pathogens adorn their cells in sialic acids that either mimic their hosts' or are stolen from them. Yet, how viruses commandeer host sugar-patterning enzymes to thwart immune responses remains poorly studied. Here, we review examples of viruses that interact with sialic acid-binding immunoglobulin-like lectins (Siglecs), a family of immune cell receptors that regulate toll-like receptor signaling and govern glycoimmune checkpoints, while highlighting knowledge gaps that merit investigation. Efforts to illuminate how viruses leverage glycan-dependent checkpoints may translate into new clinical treatments that uncloak viral antigens and infected cell surfaces by removing or masking immunosuppressive sialoglycans, or by inhibiting viral gene products that induce their biosynthesis. Such approaches may hold the potential to unleash the immune system to clear long intractable chronic viral infections.
Collapse
Affiliation(s)
- Anthony J Domma
- LSU Health Sciences Center at Shreveport, Shreveport, LA, United States
| | | | - Jeffery A Nurdin
- LSU Health Sciences Center at Shreveport, Shreveport, LA, United States
| | - Jeremy P Kamil
- LSU Health Sciences Center at Shreveport, Shreveport, LA, United States.
| |
Collapse
|
6
|
Mokry RL, Monti CE, Rosas-Rogers S, Schumacher ML, Dash RK, Terhune SS. Replication efficiencies of human cytomegalovirus-infected epithelial cells are dependent on source of virus production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585739. [PMID: 38562837 PMCID: PMC10983881 DOI: 10.1101/2024.03.19.585739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Human cytomegalovirus (HCMV) is a prevalent betaherpesvirus, and infection can lead to a range of symptomatology from mononucleosis to sepsis in immunocompromised individuals. HCMV is also the leading viral cause of congenital birth defects. Lytic replication is supported by many cell types with different kinetics and efficiencies leading to a plethora of pathologies. The goal of these studies was to elucidate HCMV replication efficiencies for viruses produced on different cell types upon infection of epithelial cells by combining experimental approaches with data-driven computational modeling. HCMV was generated from a common genetic background of TB40-BAC4, propagated on fibroblasts (TB40Fb) or epithelial cells (TB40Epi), and used to infect epithelial cells. We quantified cell-associated viral genomes (vDNA), protein levels (pUL44, pp28), and cell-free titers over time for each virus at different multiplicities of infection. We combined experimental quantification with data-driven simulations and determined that parameters describing vDNA synthesis were similar between sources. We found that pUL44 accumulation was higher in TB40Fb than TB40Epi. In contrast, pp28 accumulation was higher in TB40Epi which coincided with a significant increase in titer for TB40Epi over TB40Fb. These differences were most evident during live-cell imaging, which revealed syncytia-like formation during infection by TB40Epi. Simulations of the late lytic replication cycle yielded a larger synthesis constant for pp28 in TB40Epi along with increase in virus output despite similar rates of genome synthesis. By combining experimental and computational modeling approaches, our studies demonstrate that the cellular source of propagated virus impacts viral replication efficiency in target cell types.
Collapse
Affiliation(s)
- Rebekah L. Mokry
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI-53226
| | - Christopher E. Monti
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI-53226
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI-53226
| | - Suzette Rosas-Rogers
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI-53226
| | - Megan L. Schumacher
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI-53226
| | - Ranjan K. Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI-53226
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI-53226
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI-53226
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI-53226
| |
Collapse
|
7
|
Yang X, Zhou S, Chang Z, Xi X, Li J, Miao M, Chen Y, Chen W, Zhang H, Ding R, Hu Z. Nanopore targeted sequencing-based diagnosis of central nervous system infections in HIV-infected patients. Ann Clin Microbiol Antimicrob 2024; 23:22. [PMID: 38424544 PMCID: PMC10905896 DOI: 10.1186/s12941-024-00682-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Early and accurate etiological diagnosis is very important for improving the prognosis of central nervous system (CNS) infections in human immunodeficiency virus (HIV)-infected patients. The goal is not easily achieved by conventional microbiological tests. We developed a nanopore targeted sequencing (NTS) platform and evaluated the diagnostic performance for CNS infections in HIV-infected patients, with special focus on cryptococcal meningitis (CM). We compared the CM diagnostic performance of NTS with conventional methods and cryptococcal polymerase chain reaction (PCR). METHODS This study included 57 hospitalized HIV-infected patients with suspected CNS infections from September 2018 to March 2022. The diagnosis established during hospitalization includes 27 cases of CM, 13 CNS tuberculosis, 5 toxoplasma encephalitis, 2 cytomegalovirus (CMV) encephalitis and 1 Varicella-zoster virus (VZV) encephalitis. The 2 cases of CMV encephalitis also have co-existing CM. Target-specific PCR amplification was used to enrich pathogen sequences before nanopore sequencing. NTS was performed on stored cerebrospinal fluid (CSF) samples and the results were compared with the diagnosis during hospitalization. RESULTS 53 (93.0%) of the patients were male. The median CD4 cell count was 25.0 (IQR: 14.0-63.0) cells/uL. The sensitivities of CSF culture, India ink staining, cryptococcal PCR and NTS for CM were 70.4% (95%CI: 51.5 - 84.1%), 76.0% (95%CI: 56.6 - 88.5%), 77.8% (59.2 - 89.4%) and 85.2% (95%CI: 67.5 - 94.1%), respectively. All those methods had 100% specificity for CM. Our NTS platform could identify Cryptococcus at species level. Moreover, NTS was also able to identify all the 5 cases of toxoplasma encephalitis, 2 cases of CMV encephalitis and 1 VZV encephalitis. However, only 1 of 13 CNS tuberculosis cases was diagnosed by NTS, and so did Xpert MTB/RIF assay. CONCLUSIONS NTS has a good diagnostic performance for CM in HIV-infected patients and may have the ability of simultaneously detecting other pathogens, including mixed infections. With continuing improving of the NTS platform, it may be a promising alterative microbiological test for assisting with the diagnosis of CNS infections.
Collapse
Affiliation(s)
- Xihong Yang
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuilian Zhou
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co.,Ltd, Jiangsu Simcere Diagnostics Co.,Ltd., Nanjing, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Ziwei Chang
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaotong Xi
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co.,Ltd, Jiangsu Simcere Diagnostics Co.,Ltd., Nanjing, China
- Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China
| | - Jiahui Li
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengjiao Miao
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yaling Chen
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Chen
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongying Zhang
- Nanjing Center for Disease Control and Prevention, Nanjing Medical University, Nanjing, China.
| | - Ran Ding
- State Key Laboratory of Neurology and Oncology Drug Development, Jiangsu Simcere Pharmaceutical Co.,Ltd, Jiangsu Simcere Diagnostics Co.,Ltd., Nanjing, China.
- Nanjing Simcere Medical Laboratory Science Co., Ltd., Nanjing, China.
| | - Zhiliang Hu
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China.
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
- Inovention Center for Infectious Disease of Jiangsu Province, Nanjing, China.
| |
Collapse
|
8
|
Holtappels R, Büttner JK, Freitag K, Reddehase MJ, Lemmermann NA. Modulation of cytomegalovirus immune evasion identifies direct antigen presentation as the predominant mode of CD8 T-cell priming during immune reconstitution after hematopoietic cell transplantation. Front Immunol 2024; 15:1355153. [PMID: 38426094 PMCID: PMC10902149 DOI: 10.3389/fimmu.2024.1355153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Cytomegalovirus (CMV) infection is the most critical infectious complication in recipients of hematopoietic cell transplantation (HCT) in the period between a therapeutic hematoablative treatment and the hematopoietic reconstitution of the immune system. Clinical investigation as well as the mouse model of experimental HCT have consistently shown that timely reconstitution of antiviral CD8 T cells is critical for preventing CMV disease in HCT recipients. Reconstitution of cells of the T-cell lineage generates naïve CD8 T cells with random specificities among which CMV-specific cells need to be primed by presentation of viral antigen for antigen-specific clonal expansion and generation of protective antiviral effector CD8 T cells. For CD8 T-cell priming two pathways are discussed: "direct antigen presentation" by infected professional antigen-presenting cells (pAPCs) and "antigen cross-presentation" by uninfected pAPCs that take up antigenic material derived from infected tissue cells. Current view in CMV immunology favors the cross-priming hypothesis with the argument that viral immune evasion proteins, known to interfere with the MHC class-I pathway of direct antigen presentation by infected cells, would inhibit the CD8 T-cell response. While the mode of antigen presentation in the mouse model of CMV infection has been studied in the immunocompetent host under genetic or experimental conditions excluding either pathway of antigen presentation, we are not aware of any study addressing the medically relevant question of how newly generated naïve CD8 T cells become primed in the phase of lympho-hematopoietic reconstitution after HCT. Here we used the well-established mouse model of experimental HCT and infection with murine CMV (mCMV) and pursued the recently described approach of up- or down-modulating direct antigen presentation by using recombinant viruses lacking or overexpressing the central immune evasion protein m152 of mCMV, respectively. Our data reveal that the magnitude of the CD8 T-cell response directly reflects the level of direct antigen presentation.
Collapse
Affiliation(s)
- Rafaela Holtappels
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Julia K. Büttner
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kirsten Freitag
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias J. Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Niels A. Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Sobotka AA, Tempera I. PARP1 as an Epigenetic Modulator: Implications for the Regulation of Host-Viral Dynamics. Pathogens 2024; 13:131. [PMID: 38392869 PMCID: PMC10891851 DOI: 10.3390/pathogens13020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The principal understanding of the Poly(ADP-ribose) polymerase (PARP) regulation of genomes has been focused on its role in DNA repair; however, in the past few years, an additional role for PARPs and PARylation has emerged in regulating viral-host interactions. In particular, in the context of DNA virus infection, PARP1-mediated mechanisms of gene regulations, such as the involvement with cellular protein complexes responsible for the folding of the genome into the nucleus, the formation of chromatin loops connecting distant regulatory genomic regions, and other methods of transcriptional regulation, provide additional ways through which PARPs can modulate the function of both the host and the viral genomes during viral infection. In addition, potential viral amplification of the activity of PARPs on the host genome can contribute to the pathogenic effect of viral infection, such as viral-driven oncogenesis, opening the possibility that PARP inhibition may represent a potential therapeutic approach to target viral infection. This review will focus on the role of PARPs, particularly PARP1, in regulating the infection of DNA viruses.
Collapse
Affiliation(s)
- Asher A. Sobotka
- Wistar Institute, Philadelphia, PA 19104, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
10
|
Müller L, Di Benedetto S. Immunosenescence and Cytomegalovirus: Exploring Their Connection in the Context of Aging, Health, and Disease. Int J Mol Sci 2024; 25:753. [PMID: 38255826 PMCID: PMC10815036 DOI: 10.3390/ijms25020753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Aging induces numerous physiological alterations, with immunosenescence emerging as a pivotal factor. This phenomenon has attracted both researchers and clinicians, prompting profound questions about its implications for health and disease. Among the contributing factors, one intriguing actor in this complex interplay is human cytomegalovirus (CMV), a member of the herpesvirus family. Latent CMV infection exerts a profound influence on the aging immune system, potentially contributing to age-related diseases. This review delves into the intricate relationship between immunosenescence and CMV, revealing how chronic viral infection impacts the aging immune landscape. We explore the mechanisms through which CMV can impact both the composition and functionality of immune cell populations and induce shifts in inflammatory profiles with aging. Moreover, we examine the potential role of CMV in pathologies such as cardiovascular diseases, cancer, neurodegenerative disorders, COVID-19, and Long COVID. This review underlines the importance of understanding the complex interplay between immunosenescence and CMV. It offers insights into the pathophysiology of aging and age-associated diseases, as well as COVID-19 outcomes among the elderly. By unraveling the connections between immunosenescence and CMV, we gain a deeper understanding of aging's remarkable journey and the profound role that viral infections play in transforming the human immune system.
Collapse
Affiliation(s)
- Ludmila Müller
- Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | | |
Collapse
|
11
|
Willard KA, Barry AP, Oduor CI, Ong'echa JM, Bailey JA, Moormann AM, Luftig MA. Viral and host factors drive a type 1 Epstein-Barr virus spontaneous lytic phenotype. mBio 2023; 14:e0220423. [PMID: 37971257 PMCID: PMC10746244 DOI: 10.1128/mbio.02204-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/21/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Epstein-Barr virus (EBV) infects over 95% of adults worldwide. Given its connection to various cancers and autoimmune disorders, it is important to understand the mechanisms by which infection with EBV can lead to these diseases. In this study, we describe an unusual spontaneous lytic phenotype in EBV strains isolated from Kenyan endemic Burkitt lymphoma patients. Because lytic replication of EBV has been linked to the pathogenesis of various diseases, these data could illuminate viral and host factors involved in this process.
Collapse
Affiliation(s)
- Katherine A. Willard
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ashley P. Barry
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Cliff I. Oduor
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Jeffrey A. Bailey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Ann M. Moormann
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Micah A. Luftig
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
12
|
Wang W, Li X, Ye L, Yin J. A novel deep learning model for glioma epilepsy associated with the identification of human cytomegalovirus infection injuries based on head MR. Front Microbiol 2023; 14:1291692. [PMID: 38029188 PMCID: PMC10653318 DOI: 10.3389/fmicb.2023.1291692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose In this study, a deep learning model was established based on head MRI to predict a crucial evaluation parameter in the assessment of injuries resulting from human cytomegalovirus infection: the occurrence of glioma-related epilepsy. The relationship between glioma and epilepsy was investigated, which serves as a significant indicator of labor force impairment. Methods This study enrolled 142 glioma patients, including 127 from Shengjing Hospital of China Medical University, and 15 from the Second Affiliated Hospital of Dalian Medical University. T1 and T2 sequence images of patients' head MRIs were utilized to predict the occurrence of glioma-associated epilepsy. To validate the model's performance, the results of machine learning and deep learning models were compared. The machine learning model employed manually annotated texture features from tumor regions for modeling. On the other hand, the deep learning model utilized fused data consisting of tumor-containing T1 and T2 sequence images for modeling. Results The neural network based on MobileNet_v3 performed the best, achieving an accuracy of 86.96% on the validation set and 75.89% on the test set. The performance of this neural network model significantly surpassed all the machine learning models, both on the validation and test sets. Conclusion In this study, we have developed a neural network utilizing head MRI, which can predict the likelihood of glioma-associated epilepsy in untreated glioma patients based on T1 and T2 sequence images. This advancement provides forensic support for the assessment of injuries related to human cytomegalovirus infection.
Collapse
Affiliation(s)
- Wei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xuanyi Li
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lou Ye
- Department of Hematology, Da Qing Long Nan Hospital, Daqing, Heilongjiang, China
| | - Jian Yin
- Epileptic Center of Liaoning, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
13
|
Domma AJ, Henderson LA, Goodrum FD, Moorman NJ, Kamil JP. Human cytomegalovirus attenuates AKT activity by destabilizing insulin receptor substrate proteins. J Virol 2023; 97:e0056323. [PMID: 37754763 PMCID: PMC10617551 DOI: 10.1128/jvi.00563-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/09/2023] [Indexed: 09/28/2023] Open
Abstract
IMPORTANCE Human cytomegalovirus (HCMV) requires inactivation of AKT to efficiently replicate, yet how AKT is shut off during HCMV infection has remained unclear. We show that UL38, an HCMV protein that activates mTORC1, is necessary and sufficient to destabilize insulin receptor substrate 1 (IRS1), a model insulin receptor substrate (IRS) protein. Degradation of IRS proteins in settings of excessive mTORC1 activity is an important mechanism for insulin resistance. When IRS proteins are destabilized, PI3K cannot be recruited to growth factor receptor complexes, and hence, AKT membrane recruitment, a rate limiting step in its activation, fails to occur. Despite its penchant for remodeling host cell signaling pathways, our results reveal that HCMV relies upon a cell-intrinsic negative regulatory feedback loop to inactivate AKT. Given that pharmacological inhibition of PI3K/AKT potently induces HCMV reactivation from latency, our findings also imply that the expression of UL38 activity must be tightly regulated within latently infected cells to avoid spontaneous reactivation.
Collapse
Affiliation(s)
- Anthony J. Domma
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
| | - Lauren A. Henderson
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
| | - Felicia D. Goodrum
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- Bio5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Nathaniel J. Moorman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jeremy P. Kamil
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, USA
| |
Collapse
|
14
|
Medica S, Crawford LB, Denton M, Min CK, Jones TA, Alexander T, Parkins CJ, Diggins NL, Streblow GJ, Mayo AT, Kreklywich CN, Smith P, Jeng S, McWeeney S, Hancock MH, Yurochko A, Cohen MS, Caposio P, Streblow DN. Proximity-dependent mapping of the HCMV US28 interactome identifies RhoGEF signaling as a requirement for efficient viral reactivation. PLoS Pathog 2023; 19:e1011682. [PMID: 37782657 PMCID: PMC10569644 DOI: 10.1371/journal.ppat.1011682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 10/12/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023] Open
Abstract
Human cytomegalovirus (HCMV) encodes multiple putative G protein-coupled receptors (GPCRs). US28 functions as a viral chemokine receptor and is expressed during both latent and lytic phases of virus infection. US28 actively promotes cellular migration, transformation, and plays a major role in mediating viral latency and reactivation; however, knowledge about the interaction partners involved in these processes is still incomplete. Herein, we utilized a proximity-dependent biotinylating enzyme (TurboID) to characterize the US28 interactome when expressed in isolation, and during both latent (CD34+ hematopoietic progenitor cells) and lytic (fibroblasts) HCMV infection. Our analyses indicate that the US28 signalosome converges with RhoA and EGFR signal transduction pathways, sharing multiple mediators that are major actors in processes such as cellular proliferation and differentiation. Integral members of the US28 signaling complex were validated in functional assays by immunoblot and small-molecule inhibitors. Importantly, we identified RhoGEFs as key US28 signaling intermediaries. In vitro latency and reactivation assays utilizing primary CD34+ hematopoietic progenitor cells (HPCs) treated with the small-molecule inhibitors Rhosin or Y16 indicated that US28 -RhoGEF interactions are required for efficient viral reactivation. These findings were recapitulated in vivo using a humanized mouse model where inhibition of RhoGEFs resulted in a failure of the virus to reactivate. Together, our data identifies multiple new proteins in the US28 interactome that play major roles in viral latency and reactivation, highlights the utility of proximity-sensor labeling to characterize protein interactomes, and provides insight into targets for the development of novel anti-HCMV therapeutics.
Collapse
Affiliation(s)
- Samuel Medica
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Lindsey B. Crawford
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Michael Denton
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Chan-Ki Min
- Department of Microbiology & Immunology, Center for Molecular & Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Taylor A. Jones
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Timothy Alexander
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Christopher J. Parkins
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Nicole L. Diggins
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Gabriel J. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Adam T. Mayo
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Craig N. Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Patricia Smith
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Sophia Jeng
- Department of Bioinformatics and Computational Biology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Shannon McWeeney
- Department of Bioinformatics and Computational Biology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Meaghan H. Hancock
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Andrew Yurochko
- Department of Microbiology & Immunology, Center for Molecular & Tumor Virology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, Louisiana, United States of America
| | - Michael S. Cohen
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Patrizia Caposio
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Beaverton, Oregon, United States of America
| |
Collapse
|
15
|
Bottino P, Pastrone L, Curtoni A, Bondi A, Sidoti F, Zanotto E, Cavallo R, Solidoro P, Costa C. Antiviral Approach to Cytomegalovirus Infection: An Overview of Conventional and Novel Strategies. Microorganisms 2023; 11:2372. [PMID: 37894030 PMCID: PMC10608897 DOI: 10.3390/microorganisms11102372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus capable of establishing a lifelong persistence in the host through a chronic state of infection and remains an essential global concern due to its distinct life cycle, mutations, and latency. It represents a life-threatening pathogen for immunocompromised patients, such as solid organ transplanted patients, HIV-positive individuals, and hematopoietic stem cell recipients. Multiple antiviral approaches are currently available and administered in order to prevent or manage viral infections in the early stages. However, limitations due to side effects and the onset of antidrug resistance are a hurdle to their efficacy, especially for long-term therapies. Novel antiviral molecules, together with innovative approaches (e.g., genetic editing and RNA interference) are currently in study, with promising results performed in vitro and in vivo. Since HCMV is a virus able to establish latent infection, with a consequential risk of reactivation, infection management could benefit from preventive treatment for critical patients, such as immunocompromised individuals and seronegative pregnant women. This review will provide an overview of conventional antiviral clinical approaches and their mechanisms of action. Additionally, an overview of proposed and developing new molecules is provided, including nucleic-acid-based therapies and immune-mediated approaches.
Collapse
Affiliation(s)
- Paolo Bottino
- Microbiology and Virology Unit, A.O.U. “Città della Salute e della Scienza di Torino”, 10126 Turin, Italy; (L.P.); (A.C.); (A.B.); (F.S.); (E.Z.); (R.C.)
| | - Lisa Pastrone
- Microbiology and Virology Unit, A.O.U. “Città della Salute e della Scienza di Torino”, 10126 Turin, Italy; (L.P.); (A.C.); (A.B.); (F.S.); (E.Z.); (R.C.)
| | - Antonio Curtoni
- Microbiology and Virology Unit, A.O.U. “Città della Salute e della Scienza di Torino”, 10126 Turin, Italy; (L.P.); (A.C.); (A.B.); (F.S.); (E.Z.); (R.C.)
| | - Alessandro Bondi
- Microbiology and Virology Unit, A.O.U. “Città della Salute e della Scienza di Torino”, 10126 Turin, Italy; (L.P.); (A.C.); (A.B.); (F.S.); (E.Z.); (R.C.)
| | - Francesca Sidoti
- Microbiology and Virology Unit, A.O.U. “Città della Salute e della Scienza di Torino”, 10126 Turin, Italy; (L.P.); (A.C.); (A.B.); (F.S.); (E.Z.); (R.C.)
| | - Elisa Zanotto
- Microbiology and Virology Unit, A.O.U. “Città della Salute e della Scienza di Torino”, 10126 Turin, Italy; (L.P.); (A.C.); (A.B.); (F.S.); (E.Z.); (R.C.)
| | - Rossana Cavallo
- Microbiology and Virology Unit, A.O.U. “Città della Salute e della Scienza di Torino”, 10126 Turin, Italy; (L.P.); (A.C.); (A.B.); (F.S.); (E.Z.); (R.C.)
| | - Paolo Solidoro
- Pneumology Unit, A.O.U. “Città della Salute e della Scienza di Torino”, 10126 Turin, Italy;
| | - Cristina Costa
- Microbiology and Virology Unit, A.O.U. “Città della Salute e della Scienza di Torino”, 10126 Turin, Italy; (L.P.); (A.C.); (A.B.); (F.S.); (E.Z.); (R.C.)
| |
Collapse
|
16
|
Mahmud J, Geiler BW, Biswas J, Miller MJ, Myers JE, Matthews SM, Wass AB, O'Connor CM, Chan GC. Virion-associated US28 rapidly modulates Akt activity to suppress HCMV lytic replication in monocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.05.556359. [PMID: 37732204 PMCID: PMC10508783 DOI: 10.1101/2023.09.05.556359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Establishing a non-productive quiescent/silent infection within monocytes is essential for spread of human cytomegalovirus (HCMV). Yet, how HCMV establishes a quiescent infection in monocytes remains unclear. US28 is a viral G protein-coupled receptor (GPCR) essential for silent infections within cells of the myeloid lineage. We found virion-associated US28 was rapidly delivered to monocytes, while de novo synthesized US28 was delayed for several days. A recombinant mutant virus lacking US28 (US28Δ) was unable to establish a quiescent infection, resulting in a fully productive lytic replication cycle. Mechanistically, viral entry of US28Δ phosphorylated Akt at both serine 473 (S473) and threonine 308 (T308), which contrasted with the site-specific phosphorylation of Akt at S473 following WT infection. Preventing Akt bi-phosphorylation prevented lytic replication of US28Δ, and ectopic expression of a constitutively phosphorylated Akt variant triggered lytic replication of WT infection. Our data demonstrate that virion-delivered US28 fine-tunes Akt activity to permit HCMV infection to enter a quiescent state following primary infection of monocytes.
Collapse
|
17
|
Parsons AJ, Stein KR, Atanasoff KE, Ophir SI, Casado JP, Tortorella D. The CD46 ectodomain participates in human cytomegalovirus infection of epithelial cells. J Gen Virol 2023; 104:001892. [PMID: 37668349 PMCID: PMC10484303 DOI: 10.1099/jgv.0.001892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
Human cytomegalovirus (HCMV) primary infections are typically asymptomatic in healthy individuals yet can cause increased morbidity and mortality in organ transplant recipients, AIDS patients, neonates, and the elderly. The successful, widespread dissemination of this virus among the population can be attributed in part to its wide cellular tropism and ability to establish life-long latency. HCMV infection is a multi-step process that requires numerous cellular and viral factors. The viral envelope consists of envelope protein complexes that interact with cellular factors; such interactions dictate virus recognition and attachment to different cell types, followed by fusion either at the cell membrane or within an endocytic vesicle. Several HCMV entry factors, including neuropilin-2 (Nrp2), THBD, CD147, OR14I1, and CD46, are characterized as participating in HCMV pentamer-specific entry of non-fibroblast cells such as epithelial, trophoblast, and endothelial cells, respectively. This study focuses on characterizing the structural elements of CD46 that impact HCMV infection. Infectivity studies of wild-type and CD46 knockout epithelial cells demonstrated that levels of CD46 expressed on the cell surface were directly related to HCMV infectivity. Overexpression of CD46 isomers BC1, BC2, and C2 enhanced infection. Further, CD46 knockout epithelial cells expressing CD46 deletion and chimeric molecules identified that the intact ectodomain was critical for rescue of HCMV infection in CD46 knockout cells. Collectively, these data support a model that the extracellular domain of CD46 participates in HCMV infection due to its surface expression.
Collapse
Affiliation(s)
- Andrea J. Parsons
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kathryn R. Stein
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kristina E. Atanasoff
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sabrina I. Ophir
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jailene Paredes Casado
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
18
|
Wang X, Chen J, Cao Z, Yu X. Associations between human cytomegalovirus infection and type 2 diabetes mellitus: a systematic review and meta-analysis. BMJ Open 2023; 13:e071934. [PMID: 37620256 PMCID: PMC10450059 DOI: 10.1136/bmjopen-2023-071934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
OBJECTIVE Multiple studies have reported a potential contribution of human cytomegalovirus (HCMV) to the pathogenesis of type 1 diabetes and post-transplantation diabetes. However, the association between HCMV and type 2 diabetes mellitus (T2DM) remains unclear. In this paper, we employ the meta-analysis approach to investigate the potential correlation between HCMV infection and T2DM. METHOD The data of our study were collected from PubMed, Embase, Web of Science, Cochrane Library, China National Knowledge Infrastructure and WAN FANG databases from inception to November 2022. Using the Review Manager V.5.4 software, the meta-analysis was performed. RESULTS A total of 18 139 patients from 22 studies were included in our analysis. In the Asian subgroup, the patients with T2DM group had a significantly higher frequency of HCMV infection and older age compared with the healthy group. In the European, the frequency of HCMV infection in the T2DM was lower than the healthy group, although this difference was not statistically significant. After adjusting for demographic factors, the adjusted OR of T2DM for risk of by HCMV status was not found to be significant (adjusted OR=1.19, 95% CI=0.88 to 1.62, p>0.05). Additionally, T2DM with vasculopathy had a significantly higher rate of HCMV infection compared with those without vasculopathy (OR=1.87, 95% CI=1.24 to 2.83, p<0.05). Among T2DM with HCMV infection, there were significant increases in fasting blood glucose levels and the proportion of CD8+ T lymphocytes. Conversely, fasting blood insulin levels, the proportion of CD4+ T lymphocyte and the CD4+/CD8+ ratio were significantly decreased compared with the healthy group. CONCLUSION At present, the available evidence does not provide a clear understanding of whether there is a significant association between T2DM and HCMV infection. Additionally, T2DM with HCMV infection exhibited significantly worse blood glucose regulation and immune markers, as well as a higher frequency of vasculopathy. PROSPERO REGISTRATION NUMBER CRD42022342066.
Collapse
Affiliation(s)
- Xiaona Wang
- Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jun Chen
- Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhichao Cao
- Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xuhui Yu
- Key Laboratory of Basic and Clinical Research of Heilongjiang Province, Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
19
|
Zeng J, Cao D, Yang S, Jaijyan DK, Liu X, Wu S, Cruz-Cosme R, Tang Q, Zhu H. Insights into the Transcriptome of Human Cytomegalovirus: A Comprehensive Review. Viruses 2023; 15:1703. [PMID: 37632045 PMCID: PMC10458407 DOI: 10.3390/v15081703] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that poses significant risks to immunocompromised individuals. Its genome spans over 230 kbp and potentially encodes over 200 open-reading frames. The HCMV transcriptome consists of various types of RNAs, including messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), with emerging insights into their biological functions. HCMV mRNAs are involved in crucial viral processes, such as viral replication, transcription, and translation regulation, as well as immune modulation and other effects on host cells. Additionally, four lncRNAs (RNA1.2, RNA2.7, RNA4.9, and RNA5.0) have been identified in HCMV, which play important roles in lytic replication like bypassing acute antiviral responses, promoting cell movement and viral spread, and maintaining HCMV latency. CircRNAs have gained attention for their important and diverse biological functions, including association with different diseases, acting as microRNA sponges, regulating parental gene expression, and serving as translation templates. Remarkably, HCMV encodes miRNAs which play critical roles in silencing human genes and other functions. This review gives an overview of human cytomegalovirus and current research on the HCMV transcriptome during lytic and latent infection.
Collapse
Affiliation(s)
- Janine Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Di Cao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Shaomin Yang
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Xiaolian Liu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Songbin Wu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
20
|
Kutle I, Dittrich A, Wirth D. Mouse Models for Human Herpesviruses. Pathogens 2023; 12:953. [PMID: 37513800 PMCID: PMC10384569 DOI: 10.3390/pathogens12070953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
More than one hundred herpesviruses have been isolated from different species so far, with nine infecting humans. Infections with herpesviruses are characterized by life-long latency and represent a significant challenge for human health. To investigate the consequences of infections and identify novel treatment options, in vivo models are of particular relevance. The mouse has emerged as an economical small animal model to investigate herpesvirus infections. However, except for herpes simplex viruses (HSV-1, HSV-2), human herpesviruses cannot infect mice. Three natural herpesviruses have been identified in mice: mouse-derived cytomegalovirus (MCMV), mouse herpesvirus 68 (MHV-68), and mouse roseolovirus (MRV). These orthologues are broadly used to investigate herpesvirus infections within the natural host. In the last few decades, immunocompromised mouse models have been developed, allowing the functional engraftment of various human cells and tissues. These xenograft mice represent valuable model systems to investigate human-restricted viruses, making them particularly relevant for herpesvirus research. In this review, we describe the various mouse models used to study human herpesviruses, thereby highlighting their potential and limitations. Emphasis is laid on xenograft mouse models, covering the development and refinement of immune-compromised mice and their application in herpesvirus research.
Collapse
Affiliation(s)
- Ivana Kutle
- Research Group Model Systems for Infection, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Anne Dittrich
- Research Group Model Systems for Infection, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- InSCREENeX GmbH, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Dagmar Wirth
- Research Group Model Systems for Infection, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
21
|
Panda K, Parashar D, Viswanathan R. An Update on Current Antiviral Strategies to Combat Human Cytomegalovirus Infection. Viruses 2023; 15:1358. [PMID: 37376657 PMCID: PMC10303229 DOI: 10.3390/v15061358] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Human cytomegalovirus (HCMV) remains an essential global concern due to its distinct life cycle, mutations and latency. As HCMV is a herpesvirus, it establishes a lifelong persistence in the host through a chronic state of infection. Immunocompromised individuals are at risk of significant morbidity and mortality from the virus. Until now, no effective vaccine has been developed to combat HCMV infection. Only a few antivirals targeting the different stages of the virus lifecycle and viral enzymes are licensed to manage the infection. Therefore, there is an urgent need to find alternate strategies to combat the infection and manage drug resistance. This review will provide an insight into the clinical and preclinical antiviral approaches, including HCMV antiviral drugs and nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- Kingshuk Panda
- Dengue-Chikungunya Group, Indian Council of Medical Research-National Institute of Virology, Pune 411001, India
| | - Deepti Parashar
- Dengue-Chikungunya Group, Indian Council of Medical Research-National Institute of Virology, Pune 411001, India
| | - Rajlakshmi Viswanathan
- Bacteriology Group, Indian Council of Medical Research-National Institute of Virology, Pune 411001, India
| |
Collapse
|
22
|
Crawford LB. Hematopoietic stem cells and betaherpesvirus latency. Front Cell Infect Microbiol 2023; 13:1189805. [PMID: 37346032 PMCID: PMC10279960 DOI: 10.3389/fcimb.2023.1189805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/11/2023] [Indexed: 06/23/2023] Open
Abstract
The human betaherpesviruses including human cytomegalovirus (HCMV), human herpesvirus (HHV)-6a and HHV-6b, and HHV-7 infect and establish latency in CD34+ hematopoietic stem and progenitor cells (HPCs). The diverse repertoire of HPCs in humans and the complex interactions between these viruses and host HPCs regulate the viral lifecycle, including latency. Precise manipulation of host and viral factors contribute to preferential maintenance of the viral genome, increased host cell survival, and specific manipulation of the cellular environment including suppression of neighboring cells and immune control. The dynamic control of these processes by the virus regulate inter- and intra-host signals critical to the establishment of chronic infection. Regulation occurs through direct viral protein interactions and cellular signaling, miRNA regulation, and viral mimics of cellular receptors and ligands, all leading to control of cell proliferation, survival, and differentiation. Hematopoietic stem cells have unique biological properties and the tandem control of virus and host make this a unique environment for chronic herpesvirus infection in the bone marrow. This review highlights the elegant complexities of the betaherpesvirus latency and HPC virus-host interactions.
Collapse
Affiliation(s)
- Lindsey B Crawford
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE, United States
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
23
|
Zarrella K, Longmire P, Zeltzer S, Collins-McMillen D, Hancock M, Buehler J, Reitsma JM, Terhune SS, Nelson JA, Goodrum F. Human cytomegalovirus UL138 interaction with USP1 activates STAT1 in infection. PLoS Pathog 2023; 19:e1011185. [PMID: 37289831 PMCID: PMC10284425 DOI: 10.1371/journal.ppat.1011185] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/21/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023] Open
Abstract
Innate immune responses are crucial for limiting virus infection. However, viruses often hijack our best defenses for viral objectives. Human Cytomegalovirus (HCMV) is a beta herpesvirus which establishes a life-long latent infection. Defining the virus-host interactions controlling latency and reactivation is vital to the control of viral disease risk posed by virus reactivation. We defined an interaction between UL138, a pro-latency HCMV gene, and the host deubiquitinating complex, UAF1-USP1. UAF1 is a scaffold protein pivotal for the activity of ubiquitin specific peptidases (USP), including USP1. UAF1-USP1 sustains an innate immune response through the phosphorylation and activation of signal transducer and activator of transcription-1 (pSTAT1), as well as regulates the DNA damage response. After the onset of viral DNA synthesis, pSTAT1 levels are elevated in infection and this depends upon UL138 and USP1. pSTAT1 localizes to viral centers of replication, binds to the viral genome, and influences UL138 expression. Inhibition of USP1 results in a failure to establish latency, marked by increased viral genome replication and production of viral progeny. Inhibition of Jak-STAT signaling also results in increased viral genome synthesis in hematopoietic cells, consistent with a role for USP1-mediated regulation of STAT1 signaling in the establishment of latency. These findings demonstrate the importance of the UL138-UAF1-USP1 virus-host interaction in regulating HCMV latency establishment through the control of innate immune signaling. It will be important going forward to distinguish roles of UAF1-USP1 in regulating pSTAT1 relative to its role in the DNA damage response in HCMV infection.
Collapse
Affiliation(s)
- Kristen Zarrella
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Pierce Longmire
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Sebastian Zeltzer
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | | | - Meaghan Hancock
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Jason Buehler
- Imanis Life Sciences, Rochester, Minnesota, United States of America
| | - Justin M. Reitsma
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- Abbvie, Chicago, Illinois, United States of America
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Jay A. Nelson
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon, United States of America
| | - Felicia Goodrum
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
24
|
Domma AJ, Goodrum FD, Moorman NJ, Kamil JP. Human cytomegalovirus attenuates AKT activity by destabilizing insulin receptor substrate proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537203. [PMID: 37131605 PMCID: PMC10153195 DOI: 10.1101/2023.04.17.537203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The phosphoinositide 3-kinase (PI3K)/AKT pathway plays crucial roles in cell viability and protein synthesis and is frequently co-opted by viruses to support their replication. Although many viruses maintain high levels of AKT activity during infection, other viruses, such as vesicular stomatitis virus and human cytomegalovirus (HCMV), cause AKT to accumulate in an inactive state. To efficiently replicate, HCMV requires FoxO transcription factors to localize to the infected cell nucleus (Zhang et. al. mBio 2022), a process directly antagonized by AKT. Therefore, we sought to investigate how HCMV inactivates AKT to achieve this. Subcellular fractionation and live cell imaging studies indicated that AKT failed to recruit to membranes upon serum-stimulation of infected cells. However, UV-inactivated virions were unable to render AKT non-responsive to serum, indicating a requirement for de novo viral gene expression. Interestingly, we were able to identify that UL38 (pUL38), a viral activator of mTORC1, is required to diminish AKT responsiveness to serum. mTORC1 contributes to insulin resistance by causing proteasomal degradation of insulin receptor substrate (IRS) proteins, such as IRS1, which are necessary for the recruitment of PI3K to growth factor receptors. In cells infected with a recombinant HCMV disrupted for UL38 , AKT responsiveness to serum is retained and IRS1 is not degraded. Furthermore, ectopic expression of UL38 in uninfected cells induces IRS1 degradation, inactivating AKT. These effects of UL38 were reversed by the mTORC1 inhibitor, rapamycin. Collectively, our results demonstrate that HCMV relies upon a cell-intrinsic negative feedback loop to render AKT inactive during productive infection.
Collapse
Affiliation(s)
- Anthony J. Domma
- Department of Microbiology and Immunology, LSU Health Sciences Center Shreveport, Shreveport Louisiana, USA
| | - Felicia D. Goodrum
- Department of Immunobiology, University of Arizona, Tucson, AZ, USA
- Bio5 Institute, University of Arizona, Tucson, AZ, USA
| | - Nathaniel J. Moorman
- Department of Microbiology and Immunology, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Jeremy P. Kamil
- Department of Microbiology and Immunology, LSU Health Sciences Center Shreveport, Shreveport Louisiana, USA
| |
Collapse
|
25
|
Molecular factors shaping whether HCMV infection is productive or latent. Nat Microbiol 2023; 8:373-374. [PMID: 36732472 DOI: 10.1038/s41564-023-01331-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
26
|
Molecular characterization of human cytomegalovirus infection with single-cell transcriptomics. Nat Microbiol 2023; 8:455-468. [PMID: 36732471 DOI: 10.1038/s41564-023-01325-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023]
Abstract
Human cytomegalovirus (HCMV) can result in either productive or non-productive infection, with the latter potentially leading to viral latency. The molecular factors dictating these outcomes are poorly understood. Here we used single-cell transcriptomics to analyse HCMV infection progression in monocytes, which are latently infected, and macrophages, considered to be permissive for productive infection. We show that early viral gene expression levels, specifically of those encoding immediate early proteins IE1 and IE2, are a major factor dictating productive infection. We also revealed that intrinsic, not induced, host cell interferon-stimulated gene expression level is a main determinant of infection outcome. Intrinsic interferon-stimulated gene expression is downregulated with monocyte to macrophage differentiation, partially explaining increased macrophage susceptibility to productive HCMV infection. Furthermore, non-productive macrophages could reactivate, making them potential latent virus reservoirs. Overall, we decipher molecular features underlying HCMV infection outcomes and propose macrophages as a potential HCMV reservoir.
Collapse
|
27
|
Berg C, Rosenkilde MM. Therapeutic targeting of HCMV-encoded chemokine receptor US28: Progress and challenges. Front Immunol 2023; 14:1135280. [PMID: 36860859 PMCID: PMC9968965 DOI: 10.3389/fimmu.2023.1135280] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/25/2023] [Indexed: 02/16/2023] Open
Abstract
The pervasive human cytomegalovirus (HCMV) causes significant morbidity in immunocompromised individuals. Treatment using the current standard-of-care (SOC) is limited by severe toxic adverse effects and anti-viral resistance development. Furthermore, they only affect HCMV in its lytic phase, meaning viral disease is not preventable as latent infection cannot be treated and the viral reservoirs persist. The viral chemokine receptor (vCKR) US28 encoded by HCMV has received much attention in recent years. This broad-spectrum receptor has proven to be a desirable target for development of novel therapeutics through exploitation of its ability to internalize and its role in maintaining latency. Importantly, it is expressed on the surface of infected cells during both lytic and latent infection. US28-targeting small molecules, single-domain antibodies, and fusion toxin proteins have been developed for different treatment strategies, e.g. forcing reactivation of latent virus or using internalization of US28 as a toxin shuttle to kill infected cells. These strategies show promise for providing ways to eliminate latent viral reservoirs and prevent HCMV disease in vulnerable patients. Here, we discuss the progress and challenges of targeting US28 to treat HCMV infection and its associated diseases.
Collapse
|
28
|
Zarrella K, Longmire P, Zeltzer S, Collins-McMillen D, Hancock M, Buehler J, Reitsma JM, Terhune SS, Nelson JA, Goodrum F. Human Cytomegalovirus UL138 Interaction with USP1 Activates STAT1 in infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.07.527452. [PMID: 36798153 PMCID: PMC9934528 DOI: 10.1101/2023.02.07.527452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Innate immune responses are crucial for limiting virus infection. However, viruses often hijack our best defenses for viral objectives. Human Cytomegalovirus (HCMV) is a beta herpesvirus which establishes a life-long latent infection. Defining the virus-host interactions controlling latency and reactivation is vital to the control of viral disease risk posed by virus reactivation. We defined an interaction between UL138, a pro-latency HCMV gene, and the host deubiquintase complex, UAF1-USP1. UAF1 is a scaffold protein pivotal for the activity of ubiquitin specific peptidases (USP), including USP1. UAF1-USP1 sustains an innate immune response through the phosphorylation and activation of signal transducer and activator of transcription-1 (pSTAT1), as well as regulates the DNA damage response. After the onset of viral DNA synthesis, pSTAT1 levels are elevated and this depends upon UL138 and USP1. pSTAT1 localizes to viral centers of replication, binds to the viral genome, and influences UL138 expression. Inhibition of USP1 results in a failure to establish latency, marked by increased viral genome replication and production of viral progeny. Inhibition of Jak-STAT signaling also results in increased viral genome synthesis in hematopoietic cells, consistent with a role for USP1-mediated regulation of STAT1 signaling in the establishment of latency. These findings demonstrate the importance of the UL138-UAF1-USP1 virus-host interaction in regulating HCMV latency establishment through the control of innate immune signaling. It will be important going forward to distinguish roles of UAF1-USP1 in regulating pSTAT1 relative to its role in the DNA damage response in HCMV infection. Importance Human cytomegalovirus (HCMV) is one of nine herpesviruses that infect humans. Following a primary infection, HCMV establishes a life-long latent infection that is marked by sporadic, and likely frequent reactivation events. While these reactivation events are asymptomatic in the immune competent host, they pose important disease risks for the immune compromised, including solid organ or stem cell transplant recipients. Its complex interactions with host biology and deep coding capacity make it an excellent model for defining mechanisms important for viral latency and reactivation. Here we define an interaction with host proteins that commandeer typically antiviral innate immune signaling for the establishment of latency.
Collapse
Affiliation(s)
- Kristen Zarrella
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721
| | - Pierce Longmire
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721
| | | | | | - Meaghan Hancock
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006
| | - Jason Buehler
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006
| | - Justin M Reitsma
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
- Abbvie, 1 N Waukegan Rd, North Chicago, IL 60064
| | - Scott S Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Jay A Nelson
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006
| | - Felicia Goodrum
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721
- BIO5 Institute, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
29
|
Cheng Y, Du Y, Wang Q, Lv Q, Xue Y, Zhou W, Zhang C, Chen X, Wang D. Human cytomegalovirus-encoded microRNAs expression profile in plasma of patients with aortic dissection. J Cardiothorac Surg 2023; 18:39. [PMID: 36653806 PMCID: PMC9848029 DOI: 10.1186/s13019-023-02122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Aortic dissection (AD) is a rare disease with high mortality for which no effective diagnostic biomarkers are available. Human cytomegalovirus (HCMV) infection is an important cause of the occurrence and progression of many diseases, but the relationship between HCMV infection and AD is not clear. METHODS In this study, we first used quantitative reverse transcription polymerase chain reaction (qRT-PCR) to determine the expression profile of 25 HCMV-encoded microRNAs (HCMV miRNAs) in the plasma within a training set consisting of 20 AD patients and 20 healthy controls. Then, abnormal expressed HCMV miRNAs were verified in a validation set of 12 AD patients and 12 healthy controls. In addition, HCMV infection was detected in the third cohort consisting of 20 AD patients and 20 healthy controls. RESULTS The 95% quantile of the expression levels of HCMV miRNAs in the training set was used as the threshold for distinction between AD patients and healthy controls. The proportion of individuals with high level of five types of HCMV miRNAs was significantly different between AD patients and healthy controls. In the validation set, only the proportion of individuals with high levels of hcmv-miR-UL112-5p and hcmv-miR-UL22A-5p, two of the five HCMV miRNAs obtained in the preliminary screening, showed significant difference between AD patients and healthy controls. In the third cohort, there was no significant difference in HCMV DNA levels and anti-HCMV IgG concentrations between AD patients and healthy controls. CONCLUSIONS The HCMV miRNAs levels in plasma differed in AD patients and healthy controls. This finding may contribute to a further understanding of the relationship between HCMV infection and AD and are worthy of future research on the diagnosis and etiology of AD.
Collapse
Affiliation(s)
- Yongqing Cheng
- grid.41156.370000 0001 2314 964XDepartment of Cardio-Thoracic Surgery, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, 210008 Jiangsu China
| | - Yufan Du
- grid.41156.370000 0001 2314 964XPresent Address: State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210033 Jiangsu China
| | - Qi Wang
- grid.41156.370000 0001 2314 964XPresent Address: State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210033 Jiangsu China
| | - Qinghe Lv
- grid.41156.370000 0001 2314 964XPresent Address: State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210033 Jiangsu China
| | - Yunxin Xue
- grid.41156.370000 0001 2314 964XDepartment of Cardio-Thoracic Surgery, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, 210008 Jiangsu China
| | - Weihong Zhou
- grid.41156.370000 0001 2314 964XDepartment of Health Management Centre, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, 210008 Jiangsu China
| | - Chenyu Zhang
- grid.41156.370000 0001 2314 964XPresent Address: State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210033 Jiangsu China
| | - Xi Chen
- grid.41156.370000 0001 2314 964XPresent Address: State Key Laboratory of Pharmaceutical Biotechnology, Collaborative Innovation Center of Chemistry for Life Sciences, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute for Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, 210033 Jiangsu China
| | - Dongjin Wang
- grid.41156.370000 0001 2314 964XDepartment of Cardio-Thoracic Surgery, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, 210008 Jiangsu China
| |
Collapse
|
30
|
Abstract
There is increasingly compelling evidence that microorganisms may play an etiological role in the emergence of mental illness in a subset of the population. Historically, most work has focused on the neurotrophic herpesviruses, herpes simplex virus type 1 (HSV-1), cytomegalovirus (CMV), and Epstein-Barr virus (EBV) as well as the protozoan, Toxoplasma gondii. In this chapter, we provide an umbrella review of this literature and additionally highlight prospective studies that allow more mechanistic conclusions to be drawn. Next, we focus on clinical trials of anti-microbial medications for the treatment of psychiatric disorders. We critically evaluate six trials that tested the impact of anti-herpes medications on inflammatory outcomes in the context of a medical disorder, nine clinical trials utilizing anti-herpetic medications for the treatment of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) or schizophrenia, and four clinical trials utilizing anti-parasitic medications for the treatment of schizophrenia. We then turn our attention to evidence for a gut dysbiosis and altered microbiome in psychiatric disorders, and the potential therapeutic effects of probiotics, including an analysis of more than 10 randomized controlled trials of probiotics in the context of schizophrenia, bipolar disorder (BD), and major depressive disorder (MDD).
Collapse
|
31
|
Turner DL, Mathias RA. The human cytomegalovirus decathlon: Ten critical replication events provide opportunities for restriction. Front Cell Dev Biol 2022; 10:1053139. [PMID: 36506089 PMCID: PMC9732275 DOI: 10.3389/fcell.2022.1053139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous human pathogen that can cause severe disease in immunocompromised individuals, transplant recipients, and to the developing foetus during pregnancy. There is no protective vaccine currently available, and with only a limited number of antiviral drug options, resistant strains are constantly emerging. Successful completion of HCMV replication is an elegant feat from a molecular perspective, with both host and viral processes required at various stages. Remarkably, HCMV and other herpesviruses have protracted replication cycles, large genomes, complex virion structure and complicated nuclear and cytoplasmic replication events. In this review, we outline the 10 essential stages the virus must navigate to successfully complete replication. As each individual event along the replication continuum poses as a potential barrier for restriction, these essential checkpoints represent potential targets for antiviral development.
Collapse
Affiliation(s)
- Declan L. Turner
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Rommel A. Mathias
- Department of Microbiology, Infection and Immunity Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Zhu Y, Zhao W, Yang X, Zhang Y, Lin X, Weng X, Wang Y, Cheng C, Chi Y, Wei H, Peng Z, Hu Z. Metagenomic next-generation sequencing for identification of central nervous system pathogens in HIV-infected patients. Front Microbiol 2022; 13:1055996. [PMID: 36458193 PMCID: PMC9705764 DOI: 10.3389/fmicb.2022.1055996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2023] Open
Abstract
Although considerable interest in metagenomic next-generation sequencing (mNGS) has been attracted in recent years, limited data are available regarding the performance of mNGS in HIV-associated central nervous system (CNS) infection. Here, we conducted a retrospectively analyzing of the cerebrospinal fluid (CSF) mNGS reports and other clinical data from 80 HIV-infected patients admitted to the Second Hospital of Nanjing, China from March, 2018 to March, 2022. In our study, CSF mNGS reported negative result, mono-infection, and mixed infection in 8.8, 36.2, and 55% of the patients, respectively. Epstein-Barr virus (EBV), positive in 52.5% of samples, was the most commonly reported pathogen, followed by cytomegalovirus (CMV), John Cunningham virus (JCV), torque teno virus (TTV), cryptococcus neoformans (CN), toxoplasma Gondii (TE), and mycobacterium tuberculosis (MTB). 76.2% of the EBV identification and 54.2% of the CMV identification were not considered clinically important, and relative less sequence reads were reported in the clinical unimportant identifications. The clinical importance of the presence of TTV in CSF was not clear. Detection of JCV, CN, or TE was 100% suggestive of specific CNS infection, however, 60% of the MTB reports were considered contamination. Moreover, of the 44 (55%) mixed infections reported by mNGS, only 4 (5%) were considered clinical important, and mNGS failed to identify one mixed infection. Additionally, except for MTB, CSF mNGS tended to have high sensitivity to identify the above-mentioned pathogens (almost with 100% sensitivity). Even all the diagnostic strategies were evaluated, the cause of neurological symptoms remained undetermined in 6 (7.5%) patients. Overall, our results suggest that mNGS is a very sensitive tool for detecting common opportunistic CNS pathogen in HIV-infected patients, although its performance in CNS tuberculosis is unsatisfactory. EBV and CMV are commonly detected by CSF mNGS, however, the threshold of a clinical important detection remains to be defined.
Collapse
Affiliation(s)
- Yunqi Zhu
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenxuan Zhao
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xihong Yang
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanyuan Zhang
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoling Lin
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xing Weng
- BGI Infection Pharmaceutical Technology, BGI-Shenzhen, Shenzhen, China
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Yali Wang
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
- Clinical Infectious Disease Center of Nanjing, Nanjing, China
| | - Cong Cheng
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
- Clinical Infectious Disease Center of Nanjing, Nanjing, China
| | - Yun Chi
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
- Clinical Infectious Disease Center of Nanjing, Nanjing, China
| | - Hongxia Wei
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
- Clinical Infectious Disease Center of Nanjing, Nanjing, China
| | - Zhihang Peng
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhiliang Hu
- Department of Infectious Disease, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Clinical Infectious Disease Center of Nanjing, Nanjing, China
| |
Collapse
|
33
|
Monti CE, Mokry RL, Schumacher ML, Dash RK, Terhune SS. Computational modeling of protracted HCMV replication using genome substrates and protein temporal profiles. Proc Natl Acad Sci U S A 2022; 119:e2201787119. [PMID: 35994667 PMCID: PMC9437303 DOI: 10.1073/pnas.2201787119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/07/2022] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a major cause of illness in immunocompromised individuals. The HCMV lytic cycle contributes to the clinical manifestations of infection. The lytic cycle occurs over ∼96 h in diverse cell types and consists of viral DNA (vDNA) genome replication and temporally distinct expression of hundreds of viral proteins. Given its complexity, understanding this elaborate system can be facilitated by the introduction of mechanistic computational modeling of temporal relationships. Therefore, we developed a multiplicity of infection (MOI)-dependent mechanistic computational model that simulates vDNA kinetics and late lytic replication based on in-house experimental data. The predictive capabilities were established by comparison to post hoc experimental data. Computational analysis of combinatorial regulatory mechanisms suggests increasing rates of protein degradation in association with increasing vDNA levels. The model framework also allows expansion to account for additional mechanisms regulating the processes. Simulating vDNA kinetics and the late lytic cycle for a wide range of MOIs yielded several unique observations. These include the presence of saturation behavior at high MOIs, inefficient replication at low MOIs, and a precise range of MOIs in which virus is maximized within a cell type, being 0.382 IU to 0.688 IU per fibroblast. The predicted saturation kinetics at high MOIs are likely related to the physical limitations of cellular machinery, while inefficient replication at low MOIs may indicate a minimum input material required to facilitate infection. In summary, we have developed and demonstrated the utility of a data-driven and expandable computational model simulating lytic HCMV infection.
Collapse
Affiliation(s)
- Christopher E. Monti
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
- Center of Systems and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Rebekah L. Mokry
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Megan L. Schumacher
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Ranjan K. Dash
- Center of Systems and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Scott S. Terhune
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
- Center of Systems and Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
34
|
Cunha LL, Valsecchi VADS, Ward LS. Investigating population-level immunosenescence: From bench to bedside. Front Immunol 2022; 13:949928. [PMID: 36059504 PMCID: PMC9428264 DOI: 10.3389/fimmu.2022.949928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
The immune response is remodeled with aging in a process called immunosenescence. Some immunologists conceive immunosenescence as an adaptation of immunity to the aged immune-environment rather than a merely collapsed reactivity of immune cells against microbes and tumor cells. Others believe on an uninterrupted activation of the innate immune system with aging, leading to a low grade, sterile and chronic proinflammatory state called inflammaging. For instance, it is possible that chronic infection by cytomegalovirus leads to persistent production of viral load. This phenomenon offers periodic stimuli to the immune system that ultimately contribute to the remodeling of the immune response. If investigating immunosenescence at the cellular level is already a difficult task, considering the population level is much more complex. However, by studying immunosenescence at the population level, we can extract valuable results with viable applications. While studies with animal models allow scientists to deepen their understanding of the mechanisms of immunosenescence, studying large populations can bring practical innovations to medicine and the health system. Many researchers and funders have dedicated themselves to producing methods for the evaluation of immunosenescence on a large scale, aiming to elucidate new mechanisms by which diseases are established in the elderly. The description of how the immune response is remodeled with aging emerges as a new tool to identify the subset of subjects in which unhealthy aging is a matter of time, to help better individualize clinical management and select patients who may benefit. of early interventions. This review focuses on functional assays as valuable methods for measuring the remodeling of the immune response with aging and discuss their clinical impact. We also recall fundamental concepts for understanding the aging process of the immune response. In addition, we highlight future prospects for immunosenescence research.
Collapse
Affiliation(s)
- Lucas Leite Cunha
- Laboratory of Molecular and Translational Endocrinology, Division of Endocrinology, Federal University of São Paulo, São Paulo, Brazil
- Discipline of Internal Medicine and Laboratory Medicine, Federal University of São Paulo, São Paulo, Brazil
- *Correspondence: Lucas Leite Cunha,
| | - Victor Alexandre dos Santos Valsecchi
- Laboratory of Molecular and Translational Endocrinology, Division of Endocrinology, Federal University of São Paulo, São Paulo, Brazil
- Discipline of Internal Medicine and Laboratory Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Laura Sterian Ward
- Laboratory of Cancer Molecular Genetics, Faculty of Medical Sciences, University of Campinas (Unicamp), Campinas, Brazil
| |
Collapse
|
35
|
Human Cytomegalovirus Manipulates Syntaxin 6 for Successful Trafficking and Subsequent Infection of Monocytes. J Virol 2022; 96:e0081922. [PMID: 35862696 PMCID: PMC9327712 DOI: 10.1128/jvi.00819-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human cytomegalovirus (HCMV) exhibits a complex host-pathogen interaction with peripheral blood monocytes. We have identified a unique, cell-type specific retrograde-like intracellular trafficking pattern that HCMV utilizes to gain access to the monocyte nucleus and for productive infection. We show that infection of primary human monocytes, epithelial cells, and fibroblasts leads to an increase in the amount of the trafficking protein Syntaxin 6 (Stx6). However, only knockdown (KD) of Stx6 in monocytes inhibited viral trafficking to the trans-Golgi network (TGN), a requisite step for nuclear translocation in monocytes. Conversely, KD of Stx6 in epithelial cells and fibroblasts did not change the kinetics of nuclear translocation and productive infection. Stx6 predominantly functions at the level of the TGN where it facilitates retrograde transport, a trafficking pathway used by only a few cellular proteins and seldom by pathogens. We also newly identify that in monocytes, Stx6 exhibits an irregular vesicular localization rather than being concentrated at the TGN as seen in other cell-types. Lastly, we implicate that viral particles that associate with both Stx6 and EEA1 early in infection are the viral population that successfully traffics to the TGN at later time points and undergo nuclear translocation. Additionally, we show for the first time that HCMV enters the TGN, and that lack of Stx6 prevents viral trafficking to this organelle. We argue that we have identified an essential cell-type specific regulator that controls early steps in efficient productive infection of a cell-type required for viral persistence and disease. IMPORTANCE Human cytomegalovirus (HCMV) infection causes severe and often fatal disease in the immunocompromised. It is one of the leading infectious causes of birth defects and causes severe complications in transplant recipients. By uncovering the unique pathways used by the virus to infect key cells, such as monocytes, responsible for dissemination and persistence, we provide new potential targets for therapeutic intervention.
Collapse
|
36
|
Imbert F, Leavitt G, Langford D. SUMOylation and Viral Infections of the Brain. Pathogens 2022; 11:818. [PMID: 35890062 PMCID: PMC9324588 DOI: 10.3390/pathogens11070818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
The small ubiquitin-like modifier (SUMO) system regulates numerous biological processes, including protein localization, stability and/or activity, transcription, and DNA repair. SUMO also plays critical roles in innate immunity and antiviral defense by mediating interferon (IFN) synthesis and signaling, as well as the expression and function of IFN-stimulated gene products. Viruses including human immunodeficiency virus-1, Zika virus, herpesviruses, and coronaviruses have evolved to exploit the host SUMOylation system to counteract the antiviral activities of SUMO proteins and to modify their own proteins for viral persistence and pathogenesis. Understanding the exploitation of SUMO is necessary for the development of effective antiviral therapies. This review summarizes the interplay between viruses and the host SUMOylation system, with a special emphasis on viruses with neuro-invasive properties that have pathogenic consequences on the central nervous system.
Collapse
Affiliation(s)
| | | | - Dianne Langford
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (F.I.); (G.L.)
| |
Collapse
|
37
|
Design of a US28 ORF Deletion Virus in a Temperature-Sensitive Cytomegalovirus Strain Fails to Promote Lytic Replication in Hematopoietic Cells. Viruses 2022; 14:v14061280. [PMID: 35746751 PMCID: PMC9229150 DOI: 10.3390/v14061280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022] Open
Abstract
Human cytomegalovirus (CMV) is a ubiquitous pathogen that latently resides in hematopoietic cells. Latently infected individuals with dysfunctional immune systems often experience CMV reactivation, which can cause devastating disease and mortality. While factors dictating the balance between latency and reactivation are not completely understood, CMV US28 is required for maintaining latent infection, and viral mutants that alter US28 function result in a lytic-like, rather than latent, infection in hematopoietic cells. In turn, viral lytic factors alter the host cell, making it challenging to characterize the US28-specific changes in the cellular milieu. To circumvent this, we generated a temperature-sensitive TB40/E recombinant virus, TB40/EgfpC510G (tsC510G), into which we engineered an amino acid change at position 510 (C510G) of IE2, as previously described in the CMV Towne strain. Using tsC510G, we then deleted the US28 ORF, termed tsC510G-US28Δ. Consistent with previous findings, tsC510G-US28Δ fails to undergo latency in Kasumi-3 cells at the permissive temperature. However, parallel cultures maintained at the non-permissive temperature showed a significant reduction in infectious center frequency, as measured by limiting dilution assay. Thus, we generated a new US28 mutant virus for use as a tool to study US28-specific changes in latently infected hematopoietic cells in the absence of induced lytic replication.
Collapse
|
38
|
Holtappels R, Podlech J, Freitag K, Lemmermann NA, Reddehase MJ. Memory CD8 T Cells Protect against Cytomegalovirus Disease by Formation of Nodular Inflammatory Foci Preventing Intra-Tissue Virus Spread. Viruses 2022; 14:v14061145. [PMID: 35746617 PMCID: PMC9229300 DOI: 10.3390/v14061145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 12/05/2022] Open
Abstract
Cytomegaloviruses (CMVs) are controlled by innate and adaptive immune responses in an immunocompetent host while causing multiple organ diseases in an immunocompromised host. A risk group of high clinical relevance comprises transiently immunocompromised recipients of hematopoietic cell transplantation (HCT) in the “window of risk” between eradicative therapy of hematopoietic malignancies and complete reconstitution of the immune system. Cellular immunotherapy by adoptive transfer of CMV-specific CD8 T cells is an option to prevent CMV disease by controlling a primary or reactivated infection. While experimental models have revealed a viral epitope-specific antiviral function of cognate CD8 T cells, the site at which control is exerted remained unidentified. The observation that remarkably few transferred cells protect all organs may indicate an early blockade of virus dissemination from a primary site of productive infection to various target organs. Alternatively, it could indicate clonal expansion of a few transferred CD8 T cells for preventing intra-tissue virus spread after successful initial organ colonization. Our data in the mouse model of murine CMV infection provide evidence in support of the second hypothesis. We show that transferred cells vigorously proliferate to prevent virus spread, and thus viral histopathology, by confining and eventually resolving tissue infection within nodular inflammatory foci.
Collapse
|
39
|
Chan S, Godsell J, Horton M, Farchione A, Howson LJ, Margetts M, Jin C, Chatelier J, Yong M, Sasadeusz J, Douglass JA, Slade CA, Bryant VL. Case Report: Cytomegalovirus Disease Is an Under-Recognized Contributor to Morbidity and Mortality in Common Variable Immunodeficiency. Front Immunol 2022; 13:815193. [PMID: 35242131 PMCID: PMC8885594 DOI: 10.3389/fimmu.2022.815193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background Common Variable Immunodeficiency (CVID) is classified as a ‘Predominantly Antibody Deficiency’ (PAD), but there is emerging evidence of cellular immunodeficiency in a subset of patients. This evidence includes CVID patients diagnosed with cytomegalovirus (CMV) infection, a hallmark of ‘combined immunodeficiency’. CMV infection also has the potential to drive immune dysregulation contributing to significant morbidity and mortality in CVID. We aim to determine the extent of cellular immune dysfunction in CVID patients, and whether this correlates with CMV infection status. Methods We conducted a single-center retrospective cohort study of individuals with CVID at the Royal Melbourne Hospital, and identified patients with and without CMV disease or viraemia. We then isolated T-cells from patient and healthy donor blood samples and examined T-cell proliferation and function. Results Six patients (7.6%, 6/79) had either CMV disease (pneumonitis or gastrointestinal disease), or symptomatic CMV viraemia. A high mortality rate in the cohort of patients with CVID and CMV disease was observed, with 4 deaths in the period of analysis (66.6%, 4/6). Individuals with CMV infection showed reduced T-cell division in response to T-cell receptor (TCR) stimulation when compared with CMV-negative patients. Discussion This study demonstrates the morbidity and mortality associated with CMV in CVID, and highlights the need for focused interventions for patients with CVID at risk of CMV disease.
Collapse
Affiliation(s)
- Samantha Chan
- Immunology Division, Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.,Department of Clinical Immunology & Allergy, Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Jack Godsell
- Department of Clinical Immunology & Allergy, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Miles Horton
- Immunology Division, Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Anthony Farchione
- Immunology Division, Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Lauren J Howson
- Immunology Division, Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Mai Margetts
- Immunology Division, Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Celina Jin
- Immunology Division, Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.,Department of Clinical Immunology & Allergy, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Josh Chatelier
- Department of Clinical Immunology & Allergy, Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Michelle Yong
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia.,National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Joseph Sasadeusz
- Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Jo A Douglass
- Department of Clinical Immunology & Allergy, Royal Melbourne Hospital, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Charlotte A Slade
- Immunology Division, Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.,Department of Clinical Immunology & Allergy, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Vanessa L Bryant
- Immunology Division, Walter & Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.,Department of Clinical Immunology & Allergy, Royal Melbourne Hospital, Melbourne, VIC, Australia
| |
Collapse
|
40
|
Xu L, Wang Z, Chen Z, Cui L, Liu Z, Liang Y, Li X, Zhang Y, Liu S, Li H. PFT-α Inhibits Gallid Alpha Herpesvirus 1 Replication by Repressing Host Nucleotide Metabolism and ATP Synthesis. Vet Microbiol 2022; 269:109435. [DOI: 10.1016/j.vetmic.2022.109435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 12/24/2022]
|
41
|
Abstract
Human cytomegalovirus (HCMV) is a highly prevalent beta-herpesvirus and a significant cause of morbidity and mortality following hematopoietic and solid organ transplant, as well as the leading viral cause of congenital abnormalities. A key feature of the pathogenesis of HCMV is the ability of the virus to establish a latent infection in hematopoietic progenitor and myeloid lineage cells. The study of HCMV latency has been hampered by difficulties in obtaining and culturing primary cells, as well as an inability to quantitatively measure reactivating virus, but recent advances in both in vitro and in vivo models of HCMV latency and reactivation have led to a greater understanding of the interplay between host and virus. Key differences in established model systems have also led to controversy surrounding the role of viral gene products in latency establishment, maintenance, and reactivation. This review will discuss the details and challenges of various models including hematopoietic progenitor cells, monocytes, cell lines, and humanized mice. We highlight the utility and functional differences between these models and the necessary experimental design required to define latency and reactivation, which will help to generate a more complete picture of HCMV infection of myeloid-lineage cells.
Collapse
|
42
|
Linthorst J, Welkers MRA, Sistermans EA. Clinically relevant DNA viruses in pregnancy. Prenat Diagn 2022; 43:457-466. [PMID: 35170055 DOI: 10.1002/pd.6116] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 11/10/2022]
Abstract
Infections by DNA viruses during pregnancy are associated with increased health risks to both mother and fetus. Although not all DNA viruses are related to an increased risk of complications during pregnancy, several can directly infect the fetus and/or cause placental dysfunction. During NIPT analysis, the presence of viral DNA can be detected, theoretically allowing screening early in pregnancy. Although treatment options are currently limited, this might rapidly change in the near future. It is therefore important to be aware of the potential impact of these viruses on feto-maternal health. In this manuscript we provide a brief introduction into the most commonly detected DNA viruses in human cell-free DNA sequencing experiments and their pathogenic potential during pregnancy. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jasper Linthorst
- Dept of Human Genetics and Amsterdam Reproduction & Development research institute, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands, van der Boechorststraat 7, 1081, BT Amsterdam, The Netherlands
| | - Matthijs R A Welkers
- Dept of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam, The Netherlands
| | - Erik A Sistermans
- Dept of Human Genetics and Amsterdam Reproduction & Development research institute, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands, van der Boechorststraat 7, 1081, BT Amsterdam, The Netherlands
| |
Collapse
|
43
|
Carlin CR. Role of EGF Receptor Regulatory Networks in the Host Response to Viral Infections. Front Cell Infect Microbiol 2022; 11:820355. [PMID: 35083168 PMCID: PMC8785968 DOI: 10.3389/fcimb.2021.820355] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/17/2021] [Indexed: 12/13/2022] Open
Abstract
In this review article, we will first provide a brief overview of EGF receptor (EGFR) structure and function, and its importance as a therapeutic target in epithelial carcinomas. We will then compare what is currently known about canonical EGFR trafficking pathways that are triggered by ligand binding, versus ligand-independent pathways activated by a variety of intrinsic and environmentally induced cellular stresses. Next, we will review the literature regarding the role of EGFR as a host factor with critical roles facilitating viral cell entry and replication. Here we will focus on pathogens exploiting virus-encoded and endogenous EGFR ligands, as well as EGFR-mediated trafficking and signaling pathways that have been co-opted by wild-type viruses and recombinant gene therapy vectors. We will also provide an overview of a recently discovered pathway regulating non-canonical EGFR trafficking and signaling that may be a common feature of viruses like human adenoviruses which signal through p38-mitogen activated protein kinase. We will conclude by discussing the emerging role of EGFR signaling in innate immunity to viral infections, and how viral evasion mechanisms are contributing to our understanding of fundamental EGFR biology.
Collapse
Affiliation(s)
- Cathleen R. Carlin
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States,Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH, United States,*Correspondence: Cathleen R. Carlin,
| |
Collapse
|
44
|
Alanio C, Verma A, Mathew D, Gouma S, Liang G, Dunn T, Oldridge DA, Weaver J, Kuri-Cervantes L, Pampena MB, Betts MR, Collman RG, Bushman FD, Meyer NJ, Hensley SE, Rader D, Wherry EJ. OUP accepted manuscript. J Infect Dis 2022; 226:463-473. [PMID: 35134186 PMCID: PMC8905965 DOI: 10.1093/infdis/jiac020] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Some risk factors for severe coronavirus disease 2019 (COVID-19) have been identified, including age, race, and obesity. However, 20%–50% of severe cases occur in the absence of these factors. Cytomegalovirus (CMV) is a herpesvirus that infects about 50% of all individuals worldwide and is among the most significant nongenetic determinants of immune system. We hypothesized that latent CMV infection might influence the severity of COVID-19. Our analyses demonstrate that CMV seropositivity is associated with more than twice the risk of hospitalization due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Immune profiling of blood and CMV DNA quantitative polymerase chain reaction in a subset of patients for whom respiratory tract samples were available revealed altered T-cell activation profiles in absence of extensive CMV replication in the upper respiratory tract. These data suggest a potential role for CMV-driven immune perturbations in affecting the outcome of SARS-CoV-2 infection and may have implications for the discrepancies in COVID-19 severity between different human populations.
Collapse
Affiliation(s)
- Cécile Alanio
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Parker Institute of Cancer Immunotherapy, San Francisco, California, USA
- INSERM U932, PSL University, Institut Curie, Paris, France
- Laboratoire d’Immunologie Clinique, Institut Curie, Paris, France
| | | | | | - Sigrid Gouma
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Guanxiang Liang
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Thomas Dunn
- Division of Pulmonary and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Translational Lung Biology, and Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Derek A Oldridge
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - JoEllen Weaver
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Leticia Kuri-Cervantes
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - M Betina Pampena
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael R Betts
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Ronald G Collman
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Pulmonary and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Frederic D Bushman
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Nuala J Meyer
- Division of Pulmonary and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Translational Lung Biology, and Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Scott E Hensley
- Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Daniel Rader
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - E John Wherry
- Correspondence: E. John Wherry, Department of Systems Pharmacology and Translational Therapeutics and Institute for Immunology, University of Pennsylvania Perelman School of Medicine, 357 BRB II/III, 421 Curie Blvd, Philadelphia, PA 19104-6160 ()
| | | |
Collapse
|
45
|
Albright ER, Mickelson CK, Kalejta RF. Human Cytomegalovirus UL138 Protein Inhibits the STING Pathway and Reduces Interferon Beta mRNA Accumulation during Lytic and Latent Infections. mBio 2021; 12:e0226721. [PMID: 34903048 PMCID: PMC8669494 DOI: 10.1128/mbio.02267-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/05/2021] [Indexed: 11/20/2022] Open
Abstract
The cGAS/STING/TBK1 (cyclic guanine monophosphate-AMP synthase/stimulator of interferon genes/Tank-binding kinase 1) innate immunity pathway is activated during human cytomegalovirus (HCMV) productive (lytic) replication in fully differentiated cells and during latency within incompletely differentiated myeloid cells. While multiple lytic-phase HCMV proteins neutralize steps along this pathway, none of them are expressed during latency. Here, we show that the latency-associated protein UL138 inhibits the cGAS/STING/TBK1 innate immunity pathway during transfections and infections, in fully differentiated cells and incompletely differentiated myeloid cells, and with loss of function and restoration of function approaches. UL138 inhibits the pathway downstream of STING but upstream of interferon regulatory factor 3 (IRF3) phosphorylation and NF-κB function and reduces the accumulation of interferon beta mRNA during both lytic and latent infections. IMPORTANCE While a cellular restriction versus viral countermeasure arms race between innate immunity and viral latency is expected, few examples have been documented. Our identification of the first HCMV latency protein that inactivates the cGAS/STING/TBK1 innate immune pathway opens the door to understanding how innate immunity, or its neutralization, impacts long-term persistence by HCMV and other latent viruses.
Collapse
Affiliation(s)
- Emily R. Albright
- Institute for Molecular Virology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Clayton K. Mickelson
- Institute for Molecular Virology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Robert F. Kalejta
- Institute for Molecular Virology, University of Wisconsin—Madison, Madison, Wisconsin, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
46
|
Maple PAC. Multiple Sclerosis, Viruses, and New Vaccines. Neurol Int 2021; 13:712-714. [PMID: 34940754 PMCID: PMC8706313 DOI: 10.3390/neurolint13040068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Peter A. C. Maple
- Nottingham Centre for Multiple Sclerosis and Neuroinflammation, Department of Neurology, Queen’s Medical Centre, Nottingham University Hospitals NHS Trust, Nottingham NG7 2UH, UK;
- Division of Clinical Neuroscience, Queen’s Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
47
|
Smith NA, Chan GC, O’Connor CM. Modulation of host cell signaling during cytomegalovirus latency and reactivation. Virol J 2021. [DOI: 10.1186/s12985-021-01674-1
expr 947873540 + 978833141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
AbstractBackgroundHuman cytomegalovirus (HCMV) resides latently in cells of the myeloid compartment, including CD34+hematopoietic progenitor cells and circulating monocytes. Healthy hosts maintain the virus latently, and this infection is, for the most part, asymptomatic. However, given the proper external cues, HCMV reactivates from latency, at which point the virus disseminates, causing disease. The viral and cellular factors dictating the balance between these phases of infection are incompletely understood, though a large body of literature support a role for viral-mediated manipulation of host cell signaling.Main bodyTo establish and maintain latency, HCMV has evolved various means by which it usurps host cell factors to alter the cellular environment to its own advantage, including altering host cell signaling cascades. As early as virus entry into myeloid cells, HCMV usurps cellular signaling to change the cellular milieu, and this regulation includes upregulation, as well as downregulation, of different signaling cascades. Indeed, given proper reactivation cues, this signaling is again altered to allow for transactivation of viral lytic genes.ConclusionsHCMV modulation of host cell signaling is not binary, and many of the cellular pathways altered are finely regulated, wherein the slightest modification imparts profound changes to the cellular milieu. It is also evident that viral-mediated cell signaling differs not only between these phases of infection, but also is myeloid cell type specific. Nonetheless, understanding the exact pathways and the means by which HCMV mediates them will undoubtedly provide novel targets for therapeutic intervention.
Collapse
|
48
|
Poon MML, Byington E, Meng W, Kubota M, Matsumoto R, Grifoni A, Weiskopf D, Dogra P, Lam N, Szabo PA, Ural BB, Wells SB, Rosenfeld AM, Brusko MA, Brusko TM, Connors TJ, Sette A, Sims PA, Luning Prak ET, Shen Y, Farber DL. Heterogeneity of human anti-viral immunity shaped by virus, tissue, age, and sex. Cell Rep 2021; 37:110071. [PMID: 34852222 PMCID: PMC8719595 DOI: 10.1016/j.celrep.2021.110071] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/21/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
The persistence of anti-viral immunity is essential for protection and exhibits profound heterogeneity across individuals. Here, we elucidate the factors that shape maintenance and function of anti-viral T cell immunity in the body by comprehensive profiling of virus-specific T cells across blood, lymphoid organs, and mucosal tissues of organ donors. We use flow cytometry, T cell receptor sequencing, single-cell transcriptomics, and cytokine analysis to profile virus-specific CD8+ T cells recognizing the ubiquitous pathogens influenza and cytomegalovirus. Our results reveal that virus specificity determines overall magnitude, tissue distribution, differentiation, and clonal repertoire of virus-specific T cells. Age and sex influence T cell differentiation and dissemination in tissues, while T cell tissue residence and functionality are highly correlated with the site. Together, our results demonstrate how the covariates of virus, tissue, age, and sex impact the anti-viral immune response, which is important for targeting, monitoring, and predicting immune responses to existing and emerging viruses.
Collapse
Affiliation(s)
- Maya M L Poon
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eve Byington
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wenzhao Meng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Masaru Kubota
- Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rei Matsumoto
- Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alba Grifoni
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Pranay Dogra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nora Lam
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A Szabo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Basak Burcu Ural
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Steven B Wells
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aaron M Rosenfeld
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maigan A Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Thomas J Connors
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alessandro Sette
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yufeng Shen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
49
|
Tegument Protein pp150 Sequence-Specific Peptide Blocks Cytomegalovirus Infection. Viruses 2021; 13:v13112277. [PMID: 34835083 PMCID: PMC8623180 DOI: 10.3390/v13112277] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) tegument protein pp150 is essential for the completion of the final steps in virion maturation. Earlier studies indicated that three pp150nt (N-terminal one-third of pp150) conformers cluster on each triplex (Tri1, Tri2A and Tri2B), and extend towards small capsid proteins atop nearby major capsid proteins, forming a net-like layer of tegument densities that enmesh and stabilize HCMV capsids. Based on this atomic detail, we designed several peptides targeting pp150nt. Our data show significant reduction in virus growth upon treatment with one of these peptides (pep-CR2) with an IC50 of 1.33 μM and no significant impact on cell viability. Based on 3D modeling, pep-CR2 specifically interferes with the pp150–capsid binding interface. Cells pre-treated with pep-CR2 and infected with HCMV sequester pp150 in the nucleus, indicating a mechanistic disruption of pp150 loading onto capsids and subsequent nuclear egress. Furthermore, pep-CR2 effectively inhibits mouse cytomegalovirus (MCMV) infection in cell culture, paving the way for future animal testing. Combined, these results indicate that CR2 of pp150 is amenable to targeting by a peptide inhibitor, and can be developed into an effective antiviral.
Collapse
|
50
|
Modulation of host cell signaling during cytomegalovirus latency and reactivation. Virol J 2021; 18:207. [PMID: 34663377 PMCID: PMC8524946 DOI: 10.1186/s12985-021-01674-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) resides latently in cells of the myeloid compartment, including CD34+ hematopoietic progenitor cells and circulating monocytes. Healthy hosts maintain the virus latently, and this infection is, for the most part, asymptomatic. However, given the proper external cues, HCMV reactivates from latency, at which point the virus disseminates, causing disease. The viral and cellular factors dictating the balance between these phases of infection are incompletely understood, though a large body of literature support a role for viral-mediated manipulation of host cell signaling. Main body To establish and maintain latency, HCMV has evolved various means by which it usurps host cell factors to alter the cellular environment to its own advantage, including altering host cell signaling cascades. As early as virus entry into myeloid cells, HCMV usurps cellular signaling to change the cellular milieu, and this regulation includes upregulation, as well as downregulation, of different signaling cascades. Indeed, given proper reactivation cues, this signaling is again altered to allow for transactivation of viral lytic genes. Conclusions HCMV modulation of host cell signaling is not binary, and many of the cellular pathways altered are finely regulated, wherein the slightest modification imparts profound changes to the cellular milieu. It is also evident that viral-mediated cell signaling differs not only between these phases of infection, but also is myeloid cell type specific. Nonetheless, understanding the exact pathways and the means by which HCMV mediates them will undoubtedly provide novel targets for therapeutic intervention.
Collapse
|