1
|
Hao Y, Fan R, Zhao Y, Nie K, Wang L, Zhao T, Zhang Z, Tao X, Wu H, Pan J, Hao C, Guan X. Intra species dissection of phytophthora capsici resistance in black pepper. J Adv Res 2024:S2090-1232(24)00469-7. [PMID: 39442874 DOI: 10.1016/j.jare.2024.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
INTRODUCTION Black pepper, a financially significant tropical crop, assumes a pivotal role in global agriculture for the major source of specie flavor. Nonetheless, the growth and productivity of black pepper face severe impediments due to the destructive pathogen Phytophthora capsici, ultimately resulting in black pepper blight. The dissecting for the genetic source of pathogen resistance for black pepper is beneficial for its global production. The genetic sources include the variations on gene coding sequences, transcription capabilities and epigenetic modifications, which exerts hierarchy of influences on plant defense against pathogen. However, the understanding of genetic source of disease resistance in black pepper remains limited. METHODS The wild species Piper flaviflorum (P. flaviflorum, Pf) is known for blight resistance, while the cultivated species P. nigrum is susceptible. To dissecting the genetic sources of pathogen resistance for black pepper, the chromatin modification on H3K4me3 and transcriptome of black pepper species were profiled for genome wide comparative studies, applied with CUT&Tag and RNA sequencing technologies. RESULTS The intraspecies difference between P. flaviflorum and P. nigrum on gene body region led to coding variations on 5137 genes, including 359 gene with biotic stress responses and regulation. P. flaviflorum exhibited a more comprehensive resistance response to Phytophthora capsica in terms of transcriptome features. The pathogen responsive transcribing was significant associated with histone modification mark of H3K4me3 in black pepper. The collective data on variations of sequence, transcription activity and chromatin structure lead to an exclusive jasmonic acid-responsive pathway for disease resistance in P. flaviflorum was revealed. This research provides a comprehensive frame work to identify the fine genetic source for pathogen resistance from wild species of black pepper.
Collapse
Affiliation(s)
- Yupeng Hao
- Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China; China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Rui Fan
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, China
| | - Yongyan Zhao
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ke Nie
- Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China; China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Luyao Wang
- Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China; China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ting Zhao
- Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China; China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhiyuan Zhang
- Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China; China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | | | - Hongyu Wu
- China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jiaying Pan
- Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China; China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chaoyun Hao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Wanning, China.
| | - Xueying Guan
- Hainan Institute of Zhejiang University, Building 11, Yonyou Industrial Park, Yazhou Bay Science and Technology City, Yazhou District, Sanya, Hainan 572025, China; China Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Chomicki G, Walker-Hale N, Etchells JP, Ritter EJ, Weber MG. Diversity and development of domatia: Symbiotic plant structures to host mutualistic ants or mites. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102647. [PMID: 39353261 DOI: 10.1016/j.pbi.2024.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/17/2024] [Accepted: 09/06/2024] [Indexed: 10/04/2024]
Abstract
Across the tree of life, specialized structures that offer nesting sites to ants or mites - known as domatia - have evolved independently hundreds of times, facilitating ecologically important defence and/or nutritional mutualisms. Domatia show remarkable diversity in morphology and developmental origin. Here we review the morpho-anatomical diversity of domatia, aiming to unveil the primary mechanisms governing their development. We propose hypotheses to explain the formation of these structures, based on anatomical studies of domatia and developmental genetic analyses in model species. While genes involved in domatium formation are so far unknown, domatia appear to originate via spatiotemporal shifts in the expression of common developmental genetic pathways. Our review paves the way to the genetic dissection of domatium development.
Collapse
Affiliation(s)
- Guillaume Chomicki
- Department of Biosciences, Durham University, South Rd, Durham, DH1 3LE, UK.
| | | | - J Peter Etchells
- Department of Biosciences, Durham University, South Rd, Durham, DH1 3LE, UK
| | - Eleanore J Ritter
- Department of Plant Biology, Michigan State University, Wilson Rd, East Lansing, MI, 48824-6406, USA
| | - Marjorie G Weber
- Department of Ecology and Evolutionary Biology, University of Michigan, 3034 Biological Sciences Building 1105 North University Ave., Ann Arbor, MI, 48109-1085, USA
| |
Collapse
|
3
|
Wu J, Bu M, Zong Y, Tu Z, Cheng Y, Li H. Overexpression of the Liriodendron tulipifera TPS32 gene in tobacco enhances terpenoid compounds synthesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1445103. [PMID: 39354939 PMCID: PMC11442295 DOI: 10.3389/fpls.2024.1445103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/21/2024] [Indexed: 10/03/2024]
Abstract
Liriodendron, a relic genus from the Magnoliaceae family, comprises two species, L. tulipifera and L. chinense. L. tulipifera is distinguished by its extensive natural distribution in Eastern North America. Conversely, L. chinense is nearing endangerment due to its low regeneration rate. A pivotal aspect in the difference of these species involves terpenoids, which play crucial roles in plant growth and attracting pollinators. However, the complex molecular mechanisms underlying terpenoid roles in Liriodendron are not well understood. Terpene Synthases (TPS) genes are widely reported to play a role in terpenoid biosynthesis, hence, this study centers on TPS genes in Liriodendron spp. Employing multiple bioinformatics methods, a differential expression gene in L. tulipifera, LtuTPS32, was discerned for further functional analysis. Subcellular localization results reveal the involvement of LtuTPS32 in chloroplast-associated processes, hence participate in terpenoid biosynthesis within chloroplasts. Heterologous transformation of the LtuTPS32 gene into tobacco significantly elevates the levels of common terpenoid compounds, including chlorophyll, gibberellin, and carotenoids. Collectively, these findings not only underscore the role of the LtuTPS32 gene in the biosynthesis of terpenoids but also lay a foundation for future research on interspecific differences in Liriodendron.
Collapse
Affiliation(s)
- Junpeng Wu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Manli Bu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yaxian Zong
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Zhonghua Tu
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yanli Cheng
- College of architecture, Anhui Science and Technology University, Bengbu, Anhui, China
| | - Huogen Li
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
4
|
Nisa WU, Sandhu S, Nair SK, Kaur H, Kumar A, Rashid Z, Saykhedkar G, Vikal Y. Insights into maydis leaf blight resistance in maize: a comprehensive genome-wide association study in sub-tropics of India. BMC Genomics 2024; 25:760. [PMID: 39103778 DOI: 10.1186/s12864-024-10655-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND In the face of contemporary climatic vulnerabilities and escalating global temperatures, the prevalence of maydis leaf blight (MLB) poses a potential threat to maize production. This study endeavours to discern marker-trait associations and elucidate the candidate genes that underlie resistance to MLB in maize by employing a diverse panel comprising 336 lines. The panel was screening for MLB across four environments, employing standard artificial inoculation techniques. Genome-wide association studies (GWAS) and haplotype analysis were conducted utilizing a total of 128,490 SNPs obtained from genotyping-by-sequencing (GBS). RESULTS GWAS identified 26 highly significant SNPs associated with MLB resistance, among the markers examined. Seven of these SNPs, reported in novel chromosomal bins (9.06, 5.01, 9.01, 7.04, 4.06, 1.04, and 6.05) were associated with genes: bzip23, NAGS1, CDPK7, aspartic proteinase NEP-2, VQ4, and Wun1, which were characterized for their roles in diminishing fungal activity, fortifying defence mechanisms against necrotrophic pathogens, modulating phyto-hormone signalling, and orchestrating oxidative burst responses. Gene mining approach identified 22 potential candidate genes associated with SNPs due to their functional relevance to resistance against necrotrophic pathogens. Notably, bin 8.06, which hosts five SNPs, showed a connection to defense-regulating genes against MLB, indicating the potential formation of a functional gene cluster that triggers a cascade of reactions against MLB. In silico studies revealed gene expression levels exceeding ten fragments per kilobase million (FPKM) for most genes and demonstrated coexpression among all candidate genes in the coexpression network. Haplotype regression analysis revealed the association of 13 common significant haplotypes at Bonferroni ≤ 0.05. The phenotypic variance explained by these significant haplotypes ranged from low to moderate, suggesting a breeding strategy that combines multiple resistance alleles to enhance resistance to MLB. Additionally, one particular haplotype block (Hap_8.3) was found to consist of two SNPs (S8_152715134, S8_152460815) identified in GWAS with 9.45% variation explained (PVE). CONCLUSION The identified SNPs/ haplotypes associated with the trait of interest contribute to the enrichment of allelic diversity and hold direct applicability in Genomics Assisted Breeding for enhancing MLB resistance in maize.
Collapse
Affiliation(s)
- Wajhat- Un- Nisa
- Dept. of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Surinder Sandhu
- Dept. of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India.
| | | | - Harleen Kaur
- Dept. of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Ashok Kumar
- Regional Research Station, Punjab Agricultural University, Gurdaspur, Ludhiana, India
| | - Zerka Rashid
- International Maize and Wheat Improvement Centre (CIMMYT), Hyderabad, India
| | - Gajanan Saykhedkar
- International Maize and Wheat Improvement Centre (CIMMYT), Hyderabad, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
5
|
Zhu Y, Zeng X, Zhu T, Jiang H, Lei P, Zhang H, Chen H. Plant Hormone Pathway Is Involved in Regulating the Embryo Development Mechanism of the Hydrangea macrophylla Hybrid. Int J Mol Sci 2024; 25:7812. [PMID: 39063054 PMCID: PMC11276702 DOI: 10.3390/ijms25147812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
The research is aimed to elucidate the role of plant hormones in regulating the development of hybrid embryos in Hydrangea macrophylla. Fruits from the intraspecific cross of H. macrophylla 'Otaksa' × 'Coerulea' were selected at the globular, heart, and torpedo stages of embryo development. Transcriptome sequencing and differential gene expression analysis were conducted. The results showed that fruit growth followed a single "S-shaped growth curve, with globular, heart, and torpedo embryos appearing at 30, 40, and 50 d post-pollination, respectively, and the embryo maintaining the torpedo shape from 60 to 90 d. A total of 12,933 genes was quantified across the three developmental stages, with 3359, 3803, and 3106 DEGs in the S1_vs_S2, S1_vs_S3, and S2_vs_S3 comparisons, respectively. Among these, 133 genes related to plant hormone biosynthesis and metabolism were differentially expressed, regulating the synthesis and metabolism of eight types of plant hormones, including cytokinin, auxin, gibberellin, abscisic acid, and jasmonic acid. The pathways with the most differentially expressed genes were cytokinin, auxin, and gibberellin, suggesting these hormones may play crucial roles in embryo development. In the cytokinin pathway, CKX (Hma1.2p1_0579F.1_g182670.gene, Hma1.2p1_1194F.1_g265700.gene, and NewGene_12164) genes were highly expressed during the globular embryo stage, promoting rapid cell division in the embryo. In the auxin pathway, YUC (Hma1.2p1_0271F.1_g109005.gene and Hma1.2p1_0271F.1_g109020.gene) genes were progressively up-regulated during embryo growth; the early response factor AUX/IAA (Hma1.2p1_0760F.1_g214260.gene) was down-regulated, while the later transcriptional activator ARF (NewGene_21460, NewGene_21461, and Hma1.2p1_0209F.1_g089090.gene) was up-regulated, sustaining auxin synthesis and possibly preventing the embryo from transitioning to maturity. In the gibberellin pathway, GA3ox (Hma1.2p1_0129F.1_g060100.gene) expression peaked during the heart embryo stage and then declined, while the negative regulator GA2ox (Hma1.2p1_0020F.1_g013915.gene) showed the opposite trend; and the gibberellin signaling repressor DELLA (Hma1.2p1_1054F.1_g252590.gene) increased over time, potentially inhibiting embryo development and maintaining the torpedo shape until fruit maturity. These findings preliminarily uncover the factors affecting the development of hybrid H. macrophylla embryos, laying a foundation for further research into the regulatory mechanisms of H. macrophylla hybrid embryo development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haixia Chen
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (X.Z.); (T.Z.); (H.J.); (P.L.); (H.Z.)
| |
Collapse
|
6
|
Sommer A, Wenig M, Knappe C, Kublik S, Foesel BU, Schloter M, Vlot AC. A salicylic acid-associated plant-microbe interaction attracts beneficial Flavobacterium sp. to the Arabidopsis thaliana phyllosphere. PHYSIOLOGIA PLANTARUM 2024; 176:e14483. [PMID: 39169536 DOI: 10.1111/ppl.14483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 08/23/2024]
Abstract
Both above- and below-ground parts of plants are constantly challenged with microbes and interact closely with them. Many plant-growth-promoting rhizobacteria, mostly interacting with the plant's root system, enhance the immunity of plants in a process described as induced systemic resistance (ISR). Here, we characterized local induced resistance (IR) triggered by the model PGPR Pseudomonas simiae WCS417r (WCS417) in Arabidopsis thaliana. Hydroponic application of WCS417 to Arabidopsis roots resulted in propagation of WCS417 in/on leaves and the establishment of local IR. WCS417-triggered local IR was dependent on salicylic acid (SA) biosynthesis and signalling and on functional biosynthesis of pipecolic acid and monoterpenes, which are classically associated with systemic acquired resistance (SAR). WCS417-triggered local IR was further associated with a priming of gene expression changes related to SA signalling and SAR. A metabarcoding approach applied to the leaf microbiome revealed a significant local IR-associated enrichment of Flavobacterium sp.. Co-inoculation experiments using WCS417 and At-LSPHERE Flavobacterium sp. Leaf82 suggest that the proliferation of these bacteria is influenced by both microbial and immunity-related, plant-derived factors. Furthermore, application of Flavobacterium Leaf82 to Arabidopsis leaves induced SAR in an NPR1-dependent manner, suggesting that recruitment of this bacterium to the phyllosphere resulted in propagation of IR. Together, the data highlight the importance of plant-microbe-microbe interactions in the phyllosphere and reveal Flavobacterium sp. Leaf82 as a new beneficial promoter of plant health.
Collapse
Affiliation(s)
- Anna Sommer
- Faculty of Life Sciences: Food, Nutrition and Health, Chair of Crop Plant Genetics, University of Bayreuth, Kulmbach, Germany
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Marion Wenig
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Claudia Knappe
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Susanne Kublik
- Helmholtz Zentrum Muenchen, Institute for Comparative Microbiome Analysis, Neuherberg, Germany
| | - Bärbel U Foesel
- Helmholtz Zentrum Muenchen, Institute for Comparative Microbiome Analysis, Neuherberg, Germany
| | - Michael Schloter
- Helmholtz Zentrum Muenchen, Institute for Comparative Microbiome Analysis, Neuherberg, Germany
- Chair for Environmental Microbiology, Technische Universität München, Freising, Germany
| | - A Corina Vlot
- Faculty of Life Sciences: Food, Nutrition and Health, Chair of Crop Plant Genetics, University of Bayreuth, Kulmbach, Germany
- Helmholtz Zentrum Muenchen, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| |
Collapse
|
7
|
Sobhy SE, Al-Huqail AA, Khan F, Abd-Allah Ragab G, El-sheikh MA, Ahmed AR, Saleh AA, Hafez EE. Elicitation of salicylic acid and methyl jasmonate provides molecular and physiological evidence for potato susceptibility to infection by Erwinia carotovora subsp. carotovora. Heliyon 2024; 10:e30929. [PMID: 38765047 PMCID: PMC11097070 DOI: 10.1016/j.heliyon.2024.e30929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/21/2024] Open
Abstract
Among the range of severe plant diseases, bacterial soft rot caused by Erwinia carotovora is a significant threat to crops. This study aimed to examine the varying response patterns of distinct potato cultivars to the influence of E. carotovora. Furthermore, it seeks to highlight the potential role of salicylic acid (SA) and methyl jasmonate (MeJA) in stimulating the antioxidant defence system. We collected eight bacterial isolates from diseased and rotted tubers which were morphologically and physiologically identified as E. carotovora subsp. carotovora. We conducted a greenhouse experiment to analyse the antioxidant responses of three different potato cultivars (Diamont, Kara, and Karros) at various time intervals (2, 4, 6, 8, 12, and 24 h) after bacterial infection (hpi). We assessed the extent of disease damage by applying a foliar spray of 0.9 mM salicylic acid (SA) and 70 μM methyl jasmonate (MeJA). Inoculating with Ecc led to an increase in total phenolic levels, as well as the activities and gene expression of phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO) and peroxidase (POX) as time progressed. Additionally, the application of SA and MeJA resulted in a further increase relative to the diseased treatments. The Karros cultivar, unlike the Diamont and Kara cultivars, demonstrated the highest expression levels of PAL, PPO and POX through inoculation, reflecting its higher levels of activity and resistance. Furthermore, the genetic response of potato cultivars to infection at 0 hpi varied depending on their susceptibility. The examination of the rate of PAL activity upregulation following SA or MeJA stimulation clarifies the cultivars' susceptibility over time. In conclusion, the study identified E. carotovora subsp. carotovora as the most virulent isolate causing soft rot disease in potato tubers. It further revealed that the Karros cultivar displayed superior resistance with high activities and gene expression of PAL, PPO and POX, while the cv. Diamont exhibited sensitivity. Additionally, foliar exposure to SA and MeJA induced antioxidant responses, enhancing the potato plants' resistance against Ecc pathogenesis and overall plant defence.
Collapse
Affiliation(s)
- Sherien E. Sobhy
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab, 21934, Egypt
| | - Asma A. Al-Huqail
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Faheema Khan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | | | | | - Asia R. Ahmed
- Plant Pathology Department, Faculty of Agriculture, Damanhour University, Egypt
| | - Ahmed A. Saleh
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
- Animal and Fish Production Department, Faculty of Agriculture (Al-Shatby), Alexandria University, Alexandria City, 11865, Egypt
| | - Elsayed E. Hafez
- Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab, 21934, Egypt
| |
Collapse
|
8
|
Ding X, Wang B, Gong Y, Yan X, Chen X, Zhong Y, Zhao Z. Exogenous Methyl Jasmonate (MeJA) Improves 'Ruixue' Apple Fruit Quality by Regulating Cell Wall Metabolism. Foods 2024; 13:1594. [PMID: 38890824 PMCID: PMC11171686 DOI: 10.3390/foods13111594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
'Ruixue' apples were used as the test material to study the effect of 10 μM methyl jasmonate (MeJA) on the quality and cell wall metabolism of apples after 18 d of storage. The results showed that MeJA significantly decreased the respiratory rate, reduced the titratable acid content and maintained a high soluble solids content. MeJA has been shown to suppress the activities and gene expressions of WSP, CSP, ISP, and cellulose in contrast to the control group, thereby maintaining a lower cell permeability and higher exocarp firmness. MeJA significantly decreased the expression of MdACS, MdACO, MdPL, Mdgal, and MdPG genes in the apple exocarp when compared to the control group. In addition, the overexpression of MdPL18 increased the content of cell wall polysaccharides such as WSP and CSP, enhanced cell wall-degrading enzyme activities, and accelerated fruit ripening and softening, whereas silencing MdPL18 did the opposite. Together, these results demonstrate that exogenous MeJA maintains the Ruixue apple fruit quality by regulating the metabolism of cell wall substances.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhengyang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Xianyang 712100, China; (X.D.); (B.W.)
| |
Collapse
|
9
|
Ma Y, Jie H, Zhao L, He P, Lv X, Xu Y, Zhang Y, Xing H, Jie Y. BnXTH1 regulates cadmium tolerance by modulating vacuolar compartmentalization and the cadmium binding capacity of cell walls in ramie (Boehmeria nivea). JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134172. [PMID: 38569340 DOI: 10.1016/j.jhazmat.2024.134172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Xyloglucan endotransglucosylase/hydrolases (XTH) are cell wall-modifying enzymes important in plant response to abiotic stress. However, the role of XTH in cadmium (Cd) tolerance in ramie remains largely unknown. Here, we identified and cloned BnXTH1, a member of the XTH family, in response to Cd stress in ramie. The BnXTH1 promoter (BnXTH1p) demonstrated that MeJA induces the response of BnXTH1p to Cd stress. Moreover, overexpressing BnXTH1 in Boehmeria nivea increased Cd tolerance by significantly increasing the Cd content in the cell wall and decreasing Cd inside ramie cells. Cadmium stress induced BnXTH1-expression and consequently increased xyloglucan endotransglucosylase (XET) activity, leading to high xyloglucan contents and increased hemicellulose contents in ramie. The elevated hemicellulose content increased Cd chelation onto the cell walls and reduced the level of intracellular Cd. Interestingly, overexpressing BnXTH1 significantly increased the content of Cd in vacuoles of ramie and vacuolar compartmentalization genes. Altogether, these results evidence that Cd stress induced MeJA accumulation in ramie, thus, activating BnXTH1 expression and increasing the content of xyloglucan to enhance the hemicellulose binding capacity and increase Cd chelation onto cell walls. BnXTH1 also enhances the vacuolar Cd compartmentalization and reduces the level of Cd entering the organelles and soluble solution.
Collapse
Affiliation(s)
- Yushen Ma
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; Hunan Academy of Forestry, Changsha 410004, Hunan, China
| | - Hongdong Jie
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Long Zhao
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Pengliang He
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Xueying Lv
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Yan Xu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Ying Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Hucheng Xing
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Changsha 410128, China
| | - Yucheng Jie
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China; Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Changsha 410128, China.
| |
Collapse
|
10
|
Hurrah IM, Kumar A, Abbas N. Functional characterisation of Artemisia annua jasmonic acid carboxyl methyltransferase: a key enzyme enhancing artemisinin biosynthesis. PLANTA 2024; 259:152. [PMID: 38735012 DOI: 10.1007/s00425-024-04433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
MAIN CONCLUSION Overexpression of Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT) leads to enhanced artemisinin content in Artemisia annua. Artemisinin-based combination therapies remain the sole deterrent against deadly disease malaria and Artemisia annua remains the only natural producer of artemisinin. In this study, the 1101 bp gene S-adenosyl-L-methionine (SAM): Artemisia annua jasmonic acid carboxyl methyltransferase (AaJMT), was characterised from A. annua, which converts jasmonic acid (JA) to methyl jasmonate (MeJA). From phylogenetic analysis, we confirmed that AaJMT shares a common ancestor with Arabidopsis thaliana, Eutrema japonica and has a close homology with JMT of Camellia sinensis. Further, the Clustal Omega depicted that the conserved motif I, motif III and motif SSSS (serine) required to bind SAM and JA, respectively, are present in AaJMT. The relative expression of AaJMT was induced by wounding, MeJA and salicylic acid (SA) treatments. Additionally, we found that the recombinant AaJMT protein catalyses the synthesis of MeJA from JA with a Km value of 37.16 µM. Moreover, site-directed mutagenesis of serine-151 in motif SSSS to tyrosine, asparagine-10 to threonine and glutamine-25 to histidine abolished the enzyme activity of AaJMT, thus indicating their determining role in JA substrate binding. The GC-MS analysis validated that mutant proteins of AaJMT were unable to convert JA into MeJA. Finally, the artemisinin biosynthetic and trichome developmental genes were upregulated in AaJMT overexpression transgenic lines, which in turn increased the artemisinin content.
Collapse
Affiliation(s)
- Ishfaq Majid Hurrah
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, Jammu and Kashmir, 190005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Amit Kumar
- Instrumentation Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Nazia Abbas
- Plant Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Sanat Nagar, Srinagar, Jammu and Kashmir, 190005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
11
|
Gasperini D, Howe GA. Phytohormones in a universe of regulatory metabolites: lessons from jasmonate. PLANT PHYSIOLOGY 2024; 195:135-154. [PMID: 38290050 PMCID: PMC11060663 DOI: 10.1093/plphys/kiae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024]
Abstract
Small-molecule phytohormones exert control over plant growth, development, and stress responses by coordinating the patterns of gene expression within and between cells. Increasing evidence indicates that currently recognized plant hormones are part of a larger group of regulatory metabolites that have acquired signaling properties during the evolution of land plants. This rich assortment of chemical signals reflects the tremendous diversity of plant secondary metabolism, which offers evolutionary solutions to the daunting challenges of sessility and other unique aspects of plant biology. A major gap in our current understanding of plant regulatory metabolites is the lack of insight into the direct targets of these compounds. Here, we illustrate the blurred distinction between classical phytohormones and other bioactive metabolites by highlighting the major scientific advances that transformed the view of jasmonate from an interesting floral scent to a potent transcriptional regulator. Lessons from jasmonate research generally apply to other phytohormones and thus may help provide a broad understanding of regulatory metabolite-protein interactions. In providing a framework that links small-molecule diversity to transcriptional plasticity, we hope to stimulate future research to explore the evolution, functions, and mechanisms of perception of a broad range of plant regulatory metabolites.
Collapse
Affiliation(s)
- Debora Gasperini
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle 06120, Germany
| | - Gregg A Howe
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 42284, USA
| |
Collapse
|
12
|
Shi A, Xu J, Guo Y, Rensing C, Chang J, Zhang T, Zhang L, Xing S, Ni W, Yang W. Jasmonic acid's impact on Sedum alfredii growth and cadmium tolerance: A physiological and transcriptomic study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169939. [PMID: 38211868 DOI: 10.1016/j.scitotenv.2024.169939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Soil cadmium (Cd) pollution is escalating, necessitating effective remediation strategies. This study investigated the effects of exogenous jasmonic acid (JA) on Sedum alfredii Hance under Cd stress, aiming to enhance its phytoextraction efficiency. Initially, experiments were conducted to assess the impact of various concentrations of JA added to environments with Cd concentrations of 100, 300, and 500 μmol/L. The results determined that a concentration of 1 μmol/L JA was optimal. This concentration effectively mitigated the level of ROS products by enhancing the activity of antioxidant enzymes. Additionally, JA fostered Cd absorption and accumulation, while markedly improving plant biomass and photosynthetic performance. In further experiments, treatment with 1 μmol/L JA under 300 μmol/L Cd stress was performed and transcriptomic analysis unveiled a series of differentially expressed genes (DEGs) instrumental in the JA-mediated Cd stress response. These DEGs encompass not only pathways of JA biosynthesis and signaling but also genes encoding functions that influence antioxidant systems and photosynthesis, alongside genes pertinent to cell wall synthesis, and metal chelation and transport. This study highlights that JA treatment significantly enhances S. alfredii's Cd tolerance and accumulation, offering a promising strategy for plant remediation and deepening our understanding of plant responses to heavy metal stress.
Collapse
Affiliation(s)
- An Shi
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junlong Xu
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yingmin Guo
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Christopher Rensing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinqing Chang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Taoxiang Zhang
- College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liming Zhang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihe Xing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wuzhong Ni
- College of Environment and Resources, Zhejiang University, Hangzhou 310058, China
| | - Wenhao Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
13
|
El-Mogy MM, Rashed NM, AlTurki SM, Chen T. Effect of pre- and postharvest treatments on the quality and storage ability of fresh artichoke heads: opinion article. FRONTIERS IN PLANT SCIENCE 2024; 15:1368901. [PMID: 38434441 PMCID: PMC10904587 DOI: 10.3389/fpls.2024.1368901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Affiliation(s)
- Mohamed M. El-Mogy
- Department of Arid Land Agriculture, College of Agricultural and Food Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Department of Vegetable Crops, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Nahed M. Rashed
- Department of Arid Land Agriculture, College of Agricultural and Food Science, King Faisal University, Al-Ahsa, Saudi Arabia
- Horticulture Department, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Saleh M. AlTurki
- Department of Arid Land Agriculture, College of Agricultural and Food Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Zhang X, Zhang L, Yu T, Gao Y, Zhai T, Zhao T, Xing Z. Genetic response analysis of Beauveria bassiana Z1 under high concentration Cd(II) stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132984. [PMID: 37995637 DOI: 10.1016/j.jhazmat.2023.132984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/27/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Cadmium (Cd(II)) has carcinogenic and teratogenic toxicity, which can be accumulated in the human body through the food chain, endangering human health and life. In this study, a highly Cd(II)-tolerant fungus named Beauveria bassiana Z1 was studied, and its Cd(Ⅱ) removal efficiency was 71.2% when the Cd(II) concentration was 10 mM. Through bioanalysis and experimental verification of the transcriptome data, it was found that cadmium entered the cells through calcium ion channels, and then complexed with intracellular glutathione (GSH) and stored in vacuoles or excluded extracellular by ABC transporters. Cytochrome P450 was significantly upregulated in many pathways and actively participated in detoxification related reactions. The addition of cytochrome inhibitor taxifolin reduced the removal efficiency of Cd(II) by 45%. In the analysis, it demonstrated that ACOX1 gene and OPR gene of jasmonic acid (JA) synthesis pathway were significantly up-regulated, and were correlated with bZIP family transcription factors cpc-1_0 and pa p1_0. The results showed that exogenous JA could improve the removal efficiency of Cd(II) by strain Z1.
Collapse
Affiliation(s)
- Xiaoping Zhang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Lijie Zhang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Tiantian Yu
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Yanhui Gao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Tianrui Zhai
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Tiantao Zhao
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Zhilin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
15
|
Demiwal P, Nabi SU, Mir JI, Verma MK, Yadav SR, Roy P, Sircar D. Methyl jasmonate improves resistance in scab-susceptible Red Delicious apple by altering ROS homeostasis and enhancing phenylpropanoid biosynthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108371. [PMID: 38271863 DOI: 10.1016/j.plaphy.2024.108371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/18/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
Apple (Malus domestica) is an economically important rosaceous fruit crop grown at temperate climate zones. Nevertheless, its production is severely affected by scab disease caused by the ascomycetous fungus Venturia inaequalis (VI). Methyl jasmonate (MeJA) is a stress induced plant hormone, shown to induce resistance against wide range of pathogens. The current study investigated the role of MeJA in promoting scab tolerance in susceptible apple varieties through exogenous application of optimized (100 μM) MeJA concentration, followed by VI infection. According to our analysis, applying MeJA exogenously onto leaf surfaces resulted in increased membrane stability and decreased malondialdehyde levels in Red Delicious, suggesting that MeJA is capable of protecting tissues against oxidative damage through its role in restoring membrane stability. In addition, the changes in the levels of key antioxidative enzymes and reactive oxygen species (ROS) showed that exogenous MeJA maintains ROS homeostasis as well. Higher phenylalanine ammonia-lyase activity and increased accumulation of phenylpropanoids in MeJA-treated VI-infected plants indicated the MeJA reprogrammed phenylpropanoid biosynthesis pathway for scab tolerance. Our study of scab tolerance in apples induced by MeJA provides new insights into its physiological and biochemical mechanisms.
Collapse
Affiliation(s)
- Pratibha Demiwal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Sajad Un Nabi
- Central Institute of Temperate Horticulture (ICAR-CITH), Srinagar, 190 005, J&K, India
| | - Javid Iqbal Mir
- Central Institute of Temperate Horticulture (ICAR-CITH), Srinagar, 190 005, J&K, India
| | - Mahendra K Verma
- Central Institute of Temperate Horticulture (ICAR-CITH), Srinagar, 190 005, J&K, India
| | - Shri Ram Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Debabrata Sircar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India.
| |
Collapse
|
16
|
Liu M, Sui Y, Yu C, Wang X, Zhang W, Wang B, Yan J, Duan L. Coronatine-Induced Maize Defense against Gibberella Stalk Rot by Activating Antioxidants and Phytohormone Signaling. J Fungi (Basel) 2023; 9:1155. [PMID: 38132756 PMCID: PMC10744721 DOI: 10.3390/jof9121155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/25/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
One of the most destructive diseases, Gibberella stalk rot (GSR), caused by Fusarium graminearum, reduces maize yields significantly. An induced resistance response is a potent and cost-effective plant defense against pathogen attack. The functional counterpart of JAs, coronatine (COR), has attracted a lot of interest recently due to its ability to control plant growth and stimulate secondary metabolism. Although several studies have focused on COR as a plant immune elicitor to improve plant resistance to pathogens, the effectiveness and underlying mechanisms of the suppressive ability against COR to F. graminearum in maize have been limited. We investigated the potential physiological and molecular mechanisms of COR in modulating maize resistance to F. graminearum. COR treatment strongly enhanced disease resistance and promoted stomatal closure with H2O2 accumulation, and 10 μg/mL was confirmed as the best concentration. COR treatment increased defense-related enzyme activity and decreased the malondialdehyde content with enhanced antioxidant enzyme activity. To identify candidate resistance genes and gain insight into the molecular mechanism of GSR resistance associated with COR, we integrated transcriptomic and metabolomic data to systemically explore the defense mechanisms of COR, and multiple hub genes were pinpointed using weighted gene correlation network analysis (WGCNA). We discovered 6 significant modules containing 10 candidate genes: WRKY transcription factor (LOC100279570), calcium-binding protein (LOC100382070), NBR1-like protein (LOC100275089), amino acid permease (LOC100382244), glutathione S-transferase (LOC541830), HXXXD-type acyl-transferase (LOC100191608), prolin-rich extensin-like receptor protein kinase (LOC100501564), AP2-like ethylene-responsive transcription factor (LOC100384380), basic leucine zipper (LOC100275351), and glycosyltransferase (LOC606486), which are highly correlated with the jasmonic acid-ethylene signaling pathway and antioxidants. In addition, a core set of metabolites, including alpha-linolenic acid metabolism and flavonoids biosynthesis linked to the hub genes, were identified. Taken together, our research revealed differentially expressed key genes and metabolites, as well as co-expression networks, associated with COR treatment of maize stems after F. graminearum infection. In addition, COR-treated maize had higher JA (JA-Ile and Me-JA) levels. We postulated that COR plays a positive role in maize resistance to F. graminearum by regulating antioxidant levels and the JA signaling pathway, and the flavonoid biosynthesis pathway is also involved in the resistance response against GSR.
Collapse
Affiliation(s)
- Mei Liu
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy, China Agricultural University, Beijing 100193, China
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yiping Sui
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy, China Agricultural University, Beijing 100193, China
| | - Chunxin Yu
- Beijing Key Laboratory of New Technology in Agricultural Application, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Xuncheng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wei Zhang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Baomin Wang
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy, China Agricultural University, Beijing 100193, China
| | - Jiye Yan
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Liusheng Duan
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy, China Agricultural University, Beijing 100193, China
| |
Collapse
|
17
|
Teng D, Jing W, Lv B, Huang X, Zhao D, Kou J, Liu X, Dhiloo KH, Zhang Y. Two jasmonic acid carboxyl methyltransferases in Gossypium hirsutum involved in MeJA biosynthesis may contribute to plant defense. FRONTIERS IN PLANT SCIENCE 2023; 14:1249226. [PMID: 37731981 PMCID: PMC10508841 DOI: 10.3389/fpls.2023.1249226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023]
Abstract
Jasmonic acid (JA) and methyl jasmonate (MeJA), the crucial plant hormones, can induce the emission of plant volatiles and regulate the behavioral responses of insect pests or their natural enemies. In this study, two jasmonic acid carboxyl methyltransferases (JMTs), GhJMT1 and GhJMT2, involved in MeJA biosynthesis in Gossypium. hirsutum were identified and further functionally confirmed. In vitro, recombinant GhJMT1 and GhJMT2 were both responsible for the conversion of JA to MeJA. Quantitative real-time PCR (qPCR) measurement indicated that GhJMT1 and GhJMT2 were obviously up-regulated in leaves and stems of G. hirsutum after being treated with MeJA. In gas chromatography-mass spectrometry (GC-MS) analysis, MeJA treatment significantly induced plant volatiles emission such as (E)-β-ocimene, (Z)-3-hexenyl acetate, linalool and (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), which play vital roles in direct and indirect plant defenses. Moreover, antennae of parasitoid wasps Microplitis mediator showed electrophysiological responses to MeJA, β-ocimene, (Z)-3-hexenyl acetate and linalool at a dose dependent manner, while our previous research revealed that DMNT excites electrophysiological responses and behavioral tendencies. These findings provide a better understanding of MeJA biosynthesis and defense regulation in upland cotton, which lay a foundation to JA and MeJA employment in agricultural pest control.
Collapse
Affiliation(s)
- Dong Teng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Weixia Jing
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Beibei Lv
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinzheng Huang
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Danyang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, China
| | - Junfeng Kou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Plant Protection, Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou, China
| | - Xiaohe Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Khalid Hussain Dhiloo
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam, Pakistan
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
18
|
Kuzmitskaya P, Koroleva E, Urbanovich O. Genome-wide identification of trihelix transcription factors in the apple genome in silico. J Appl Genet 2023; 64:445-458. [PMID: 37454028 DOI: 10.1007/s13353-023-00770-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Trihelix transcription factors are involved in the growth and development of plants, as well as various stress responses. In the study presented, we identified 37 trihelix family genes in the apple genome (MdTH). The trihelix genes were located on 13 chromosomes. Phylogenetic analysis of these MdTH and the trihelix genes of other species divided them into six subfamilies: GT-1, GT-2, SH4, SIP1, GTγ, and GTδ. The genes of different groups significantly diverged in their gene structure and conserved functional domains. Cis-element analysis showed that promoter sequences of MdTH genes contained light response elements, phytohormone response elements, and stress-related cis-elements. The expression pattern analysis results demonstrated that MdTH were regulated by drought, salinity, as well as high and low temperatures. MdTH4 and MdTH24 were highly regulated by soil salinity, MdTH4-by drought. MdTH30 showed high expression under low temperature; MdTH8, MdTH20, and MdTH36-under high temperature.
Collapse
Affiliation(s)
- Polina Kuzmitskaya
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus.
| | - Ekaterina Koroleva
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Oksana Urbanovich
- Institute of Genetics and Cytology of the National Academy of Sciences of Belarus, Minsk, Belarus
| |
Collapse
|
19
|
Al-Khayri JM, Rashmi R, Toppo V, Chole PB, Banadka A, Sudheer WN, Nagella P, Shehata WF, Al-Mssallem MQ, Alessa FM, Almaghasla MI, Rezk AAS. Plant Secondary Metabolites: The Weapons for Biotic Stress Management. Metabolites 2023; 13:716. [PMID: 37367873 DOI: 10.3390/metabo13060716] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
The rise in global temperature also favors the multiplication of pests and pathogens, which calls into question global food security. Plants have developed special coping mechanisms since they are sessile and lack an immune system. These mechanisms use a variety of secondary metabolites as weapons to avoid obstacles, adapt to their changing environment, and survive in less-than-ideal circumstances. Plant secondary metabolites include phenolic compounds, alkaloids, glycosides, and terpenoids, which are stored in specialized structures such as latex, trichomes, resin ducts, etc. Secondary metabolites help the plants to be safe from biotic stressors, either by repelling them or attracting their enemies, or exerting toxic effects on them. Modern omics technologies enable the elucidation of the structural and functional properties of these metabolites along with their biosynthesis. A better understanding of the enzymatic regulations and molecular mechanisms aids in the exploitation of secondary metabolites in modern pest management approaches such as biopesticides and integrated pest management. The current review provides an overview of the major plant secondary metabolites that play significant roles in enhancing biotic stress tolerance. It examines their involvement in both indirect and direct defense mechanisms, as well as their storage within plant tissues. Additionally, this review explores the importance of metabolomics approaches in elucidating the significance of secondary metabolites in biotic stress tolerance. The application of metabolic engineering in breeding for biotic stress resistance is discussed, along with the exploitation of secondary metabolites for sustainable pest management.
Collapse
Affiliation(s)
- Jameel M Al-Khayri
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ramakrishnan Rashmi
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Varsha Toppo
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Pranjali Bajrang Chole
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Akshatha Banadka
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Wudali Narasimha Sudheer
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Praveen Nagella
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560 029, Karnataka, India
| | - Wael Fathi Shehata
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Muneera Qassim Al-Mssallem
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fatima Mohammed Alessa
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mustafa Ibrahim Almaghasla
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Plant Pests, and Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Adel Abdel-Sabour Rezk
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Virus and Phytoplasma, Plant Pathology Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
20
|
Maghoumi M, Amodio ML, Cisneros-Zevallos L, Colelli G. Prevention of Chilling Injury in Pomegranates Revisited: Pre- and Post-Harvest Factors, Mode of Actions, and Technologies Involved. Foods 2023; 12:foods12071462. [PMID: 37048282 PMCID: PMC10093716 DOI: 10.3390/foods12071462] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
The storage life of pomegranate fruit (Punica granatum L.) is limited by decay, chilling injury, weight loss, and husk scald. In particular, chilling injury (CI) limits pomegranate long-term storage at chilling temperatures. CI manifests as skin browning that expands randomly with surface spots, albedo brown discoloration, and changes in aril colors from red to brown discoloration during handling or storage (6-8 weeks) at <5-7 °C. Since CI symptoms affect external and internal appearance, it significantly reduces pomegranate fruit marketability. Several postharvest treatments have been proposed to prevent CI, including atmospheric modifications (MA), heat treatments (HT), coatings, use of polyamines (PAs), salicylic acid (SA), jasmonates (JA), melatonin and glycine betaine (GB), among others. There is no complete understanding of the etiology and biochemistry of CI, however, a hypothetical model proposed herein indicates that oxidative stress plays a key role, which alters cell membrane functionality and integrity and alters protein/enzyme biosynthesis associated with chilling injury symptoms. This review discusses the hypothesized mechanism of CI based on recent research, its association to postharvest treatments, and their possible targets. It also indicates that the proposed mode of action model can be used to combine treatments in a hurdle synergistic or additive approach or as the basis for novel technological developments.
Collapse
Affiliation(s)
- Mahshad Maghoumi
- Dipartimento di Scienze Agrarie, Degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Maria Luisa Amodio
- Dipartimento di Scienze Agrarie, Degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Luis Cisneros-Zevallos
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Giancarlo Colelli
- Dipartimento di Scienze Agrarie, Degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy
| |
Collapse
|
21
|
Zheng L, Abe F, Nonogaki M, Kanno Y, Seo M, Nonogaki H, Kawakami N. Modulation of wheat grain dormancy by introducing the recombinant abscisic acid-stimulated abscisic acid biosynthesis gene. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:31-41. [PMID: 38213923 PMCID: PMC10777133 DOI: 10.5511/plantbiotechnology.22.1219b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2024]
Abstract
Pre-harvest sprouting of cereals greatly reduces yield and quality of the grains. Abscisic acid (ABA) is an essential phytohormone for the induction and maintenance of seed dormancy. In this study, the ABA responsive promoter-driven ABA biosynthesis gene system was introduced to common wheat (Triticum aestivum L.) to enhance ABA production in the embryos and pre-harvest sprouting tolerance of the grains. This system consists of a wheat ABA responsive element containing Early-Methionine-labelled (EM) promoter and a sorghum 9-cis-epoxycarotenoid dioxygenase (SbNCED) gene which encodes an ABA biosynthesis rate-limiting enzyme. Twenty-three independent single-insertion lines were obtained, from which five homozygous lines showing various SbNCED expression levels were selected. Correlations were observed between SbNCED expression, ABA accumulation in the embryos and enhanced dormancy levels of the grains. The engineered wheat grains exhibited a few day-delay in germination, which should be effective in reducing pre-harvest sprouting damage. However, the increase in ABA levels in the recombinant grains was moderate, which explains why germination was not completely suppressed. Further analysis indicated a concomitant increase in the expression of the ABA catabolic enzyme gene TaABA8'OH1 and in the levels of isoleucine-conjugated jasmonic acid, implying the presence of possible negative feedback regulation in the innate system, which should be overcome for future technology development. These findings advance an understanding of the regulatory mechanisms of hormone metabolism in seeds and facilitate the development of pre-harvest sprouting tolerance in cereal grains.
Collapse
Affiliation(s)
- Lipeng Zheng
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| | - Fumitaka Abe
- Institute of Crop Science, NARO, Tsukuba, Ibaraki 305-8666, Japan
| | - Mariko Nonogaki
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroyuki Nonogaki
- Department of Horticulture, Oregon State University, Corvallis, OR, USA
| | - Naoto Kawakami
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
22
|
Shah HMS, Khan AS, Singh Z, Ayyub S. Postharvest Biology and Technology of Loquat ( Eriobotrya japonica Lindl.). Foods 2023; 12:foods12061329. [PMID: 36981255 PMCID: PMC10048680 DOI: 10.3390/foods12061329] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Loquat (Eriobotrya japonica Lindl.) fruit is a rich source of carotenoids, flavonoids, phenolics, sugars, and organic acids. Although it is classified as a non-climacteric fruit, susceptibility to mechanical and physical bruising causes its rapid deterioration by moisture loss and postharvest decay caused by pathogens. Anthracnose, canker, and purple spot are the most prevalent postharvest diseases of loquat fruit. Cold storage has been used for quality management of loquat fruit, but the susceptibility of some cultivars to chilling injury (CI) consequently leads to browning and other disorders. Various techniques, including cold storage, controlled atmosphere storage, hypobaric storage, modified atmosphere packaging, low-temperature conditioning, heat treatment, edible coatings, and postharvest chemical application, have been tested to extend shelf life, mitigate chilling injury, and quality preservation. This review comprehensively focuses on the recent advances in the postharvest physiology and technology of loquat fruit, such as harvest maturity, fruit ripening physiology, postharvest storage techniques, and physiological disorders and diseases.
Collapse
Affiliation(s)
| | - Ahmad Sattar Khan
- Postharvest Research and Training Centre, Institute of Horticultural Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Zora Singh
- Horticulture, School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup 6027, Australia
| | - Saqib Ayyub
- Postharvest Research and Training Centre, Institute of Horticultural Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| |
Collapse
|
23
|
Wang F, Xu H, Zhang L, Shi Y, Song Y, Wang X, Cai Q, He W, Xie H, Zhang J. The lipoxygenase OsLOX10 affects seed longevity and resistance to saline-alkaline stress during rice seedlings. PLANT MOLECULAR BIOLOGY 2023; 111:415-428. [PMID: 36867321 PMCID: PMC10089987 DOI: 10.1007/s11103-023-01334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/15/2023] [Indexed: 06/19/2023]
Abstract
Prolonged storage of rice seeds can lead to a decrease in seed vigor and seedling quality. The Lipoxygenase (LOX) gene family is widely distributed in plants, and LOX activity is closely related to seed viability and stress tolerance. In this study, the lipoxygenase OsLOX10 gene from the 9-lipoxygenase metabolic pathway was cloned from rice, and its roles in determining seed longevity and tolerance to saline-alkaline stress caused by Na2CO3 in rice seedlings were mainly investigated. CRISPR/Cas9 knockout of OsLOX10 increased seed longevity compared with the wild-type and OsLOX10 overexpression lines in response to artificial aging. The expression levels of other 9-lipoxygenase metabolic pathway related genes, such as LOX1, LOX2 and LOX3, were increased in the LOX10 overexpression lines. Quantitative real-time PCR and histochemical staining analysis showed that the expression of LOX10 was highest in seed hulls, anthers and the early germinating seeds. KI-I2 staining of starch showed that LOX10 could catalyze the degradation of linoleic acid. Furthermore, we found that the transgenic lines overexpressing LOX10 showed better tolerance to saline-alkaline stress than the wild-type and knockout mutant lines. Overall, our study demonstrated that the knockout LOX10 mutant increased seed longevity, whereas overexpression of LOX10 enhanced tolerance to saline-alkaline stress in rice seedlings.
Collapse
Affiliation(s)
- Fuxiang Wang
- College of Agriculture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350018, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Ministry of Agriculture and Affairs, 350003, Fuzhou, China
| | - Huibin Xu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350018, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Ministry of Agriculture and Affairs, 350003, Fuzhou, China
| | - Ling Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350018, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Ministry of Agriculture and Affairs, 350003, Fuzhou, China
| | - Yunrui Shi
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350018, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Ministry of Agriculture and Affairs, 350003, Fuzhou, China
| | - Yu Song
- College of Agriculture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350018, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Ministry of Agriculture and Affairs, 350003, Fuzhou, China
| | - Xinyue Wang
- College of Agriculture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350018, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Ministry of Agriculture and Affairs, 350003, Fuzhou, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350018, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Ministry of Agriculture and Affairs, 350003, Fuzhou, China
| | - Wei He
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350018, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Ministry of Agriculture and Affairs, 350003, Fuzhou, China
| | - Huaan Xie
- College of Agriculture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350018, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Ministry of Agriculture and Affairs, 350003, Fuzhou, China
| | - Jianfu Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China.
- Rice Research Institute, Fujian Academy of Agricultural Sciences, 350018, Fuzhou, China.
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Ministry of Agriculture and Affairs, 350003, Fuzhou, China.
| |
Collapse
|
24
|
Yang R, Li X, Yang Q, Zhao M, Bai W, Liang Y, Liu X, Gao B, Zhang D. Transcriptional profiling analysis providing insights into desiccation tolerance mechanisms of the desert moss Syntrichia caninervis. FRONTIERS IN PLANT SCIENCE 2023; 14:1127541. [PMID: 36909421 PMCID: PMC9995853 DOI: 10.3389/fpls.2023.1127541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Syntrichia caninervis is a desiccation tolerant moss and is the dominant bryophyte found in biological soil crusts in the Gurbantunggut desert. In this study, we assessed the transcriptome profiles of S. caninervis gametophytes during the dehydration-rehydration (D-R) process (across 9 time points) using Illumina sequencing. In total, 22489 transcripts were identified, including 5337 novel transcripts, that mapped to the reference genome. A total of 12548 transcripts exhibited significant alterations in the D-R samples compared with the control samples. The differentially expressed transcripts (DETs) possessed several enriched Gene Ontology terms, such as "water stress response", "oxidation-reduction process", "membrane metabolism", "photosynthesis", and "transcription factor activity". Moreover, during early dehydration stress, the DETs were significantly enriched in stress-related pathways from the Kyoto Encyclopedia of Genes and Genomes, such as "phenylpropanoid biosynthesis", "alpha-linolenic acid metabolism", and "fructose and mannose metabolism". Photosynthesis-related transcripts (e.g., ScPsa H, ScRubisco, and ScLhcb1) were inhibited during the dehydration treatment and significantly accumulated during the late rehydration period. Most transcripts from the late embryogenesis abundant proteins (LEA) and early light-inducible protein (ELIP) families strongly accumulated at the late dehydration stage. These pathways were positively correlated with the content changes of absolute water content and Fv/Fm values, alongside peroxidase and superoxide dismutase activities. Seven transcription factor families, including AP2-ERF, bHLH, G2-like, MYB, NAC, WRKY, and bZIP, were enriched in DETs during D-R treatment. This study is the first transcriptome analysis using the S. caninervis genome for gene annotation and multigroup D-R treatment points. Our results demonstrated the detailed dynamic changes in the transcriptome of S. caninervis during the D-R process. These results also improve understanding of desiccation tolerant plants' adaptations to desiccation stress at the transcription level and provide promising gene resources for transgenic crop breeding.
Collapse
Affiliation(s)
- Ruirui Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoshuang Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Qilin Yang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Mingqi Zhao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Wenwan Bai
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuqing Liang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Xiujin Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Bei Gao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Xinjiang Key Lab of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Turpan Eremophytes Botanical Garden, Chinese Academy of Sciences, Turpan, China
| |
Collapse
|
25
|
Enhanced Production of Active Photosynthetic and Biochemical Molecules in Silybum marianum L. Using Biotic and Abiotic Elicitors in Hydroponic Culture. Molecules 2023; 28:molecules28041716. [PMID: 36838704 PMCID: PMC9967248 DOI: 10.3390/molecules28041716] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Elicitors are stressors that activate secondary pathways that lead to the increased production of bioactive molecules in plants. Different elicitors including the fungus Aspergillus niger (0.2 g/L), methyl jasmonate (MeJA, 100 µM/L), and silver nanoparticles (1 µg/L) were added, individually and in combination, in a hydroponic medium. The application of these elicitors in hydroponic culture significantly increased the concentration of photosynthetic pigments and total phenolic contents. The treatment with MeJA (methyl jasmonate) (100 µM/L) and the co-treatment of MeJA and AgNPs (silver nanoparticles) (100 µM/L + 1 µg/L) exhibited the highest chlorophyll a (29 µg g-1 FW) and chlorophyll b (33.6 µg g-1 FW) contents, respectively. The elicitor MeJA (100 µM/L) gave a substantial rise in chlorophyll a and b and total chlorophyll contents. Likewise, a significant rise in carotenoid contents (9 µg/g FW) was also observed when subjected to meJA (100 µM/L). For the phenolic content, the treatment with meJA (100 µM/L) proved to be very effective. Nevertheless, the highest production (431 µg/g FW) was observed when treated with AgNPs (1 µg/L). The treatments with various elicitors in this study had a significant effect on flavonoid and lignin content. The highest concentration of flavonoids and lignin was observed when MeJA (100 mM) was used as an elicitor, following a 72-h treatment period. Hence, for different plant metabolites, the treatment with meJA (100 µM/L) and a co-treatment of MeJA and AgNPs (100 µM/L + 1 µg/L) under prolonged exposure times of 120-144 h proved to be the most promising in the accretion of valuable bioactive molecules. The study opens new insights into the use of these elicitors, individually or in combination, by using different concentrations and compositions.
Collapse
|
26
|
Sahraei F, Solgi M, Taghizadeh M. The application of methyl jasmonate in combination with ascorbic acid on morphological traits and some biochemical parameters in red willow. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:185-193. [PMID: 36875731 PMCID: PMC9981849 DOI: 10.1007/s12298-023-01284-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/21/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Red willow, an economically important ornamental shrub in Iran, is characterized mainly by its red stems, making it a valuable ornamental plant in flower markets. This study aimed to investigate the effect of foliar application of methyl jasmonate (MeJA) and ascorbic acid on the morphological and biochemical characteristics of red willow. The experiment was conducted as a completely randomized design with two factors and three replications. Juvenile willow shrubs (3 to 4-year-old red) were cultivated in Hossein Abad village, Markazi province, Iran. The experimental treatments consisted of MeJA (0, 100 and 200 mgL-1) and ascorbic acid (0, 100 and 200 mgL-1). Several traits were evaluated such as the longest branch and two nearest heights, total shrub diameter, the longest branch diameter (at lower, middle and upper parts), total anthocyanin content of the longest branch, salicin content, leaf chlorophyll (a, b and a + b) content, and carotenoid content. In addition, the number, length and width of leaves from the longest branch, fresh and dry weight of branches were analyzed. Results revealed that the application of MeJA and ascorbic acid significantly increased growth characteristics (height, leaf number, total shrub diameter, branch diameter, fresh and dry weight and total anthocyanin content) of red willow shrubs. Furthermore, it was found that 200 mgL-1 treatments of these two substances produced the best results. Red willow shrub growth parameters and yield were also improved by the interaction of these two factors. Additionally, a significant correlation was found between total anthocyanin content and leaf number of the longest branch, total shrub diameter, the height of nearest branch 2 and the plant fresh weight.
Collapse
Affiliation(s)
- Fatemeh Sahraei
- Department of Horticultural Science and Engineering, Faculty of Agriculture and Envrionmental Sciences, Arak University, Arak, 38156-8-8349 Iran
| | - Mousa Solgi
- Department of Horticultural Science and Engineering, Faculty of Agriculture and Envrionmental Sciences, Arak University, Arak, 38156-8-8349 Iran
| | - Mina Taghizadeh
- Department of Horticultural Science and Engineering, Faculty of Agriculture and Envrionmental Sciences, Arak University, Arak, 38156-8-8349 Iran
| |
Collapse
|
27
|
Distinct Mechanistic Behaviour of Tomato CYP74C3 and Maize CYP74A19 Allene Oxide Synthases: Insights from Trapping Experiments and Allene Oxide Isolation. Int J Mol Sci 2023; 24:ijms24032230. [PMID: 36768554 PMCID: PMC9916873 DOI: 10.3390/ijms24032230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
The product specificity and mechanistic peculiarities of two allene oxide synthases, tomato LeAOS3 (CYP74C3) and maize ZmAOS (CYP74A19), were studied. Enzymes were vortexed with linoleic acid 9-hydroperoxide in a hexane-water biphasic system (20-60 s, 0 °C). Synthesized allene oxide (9,10-epoxy-10,12-octadecadienoic acid; 9,10-EOD) was trapped with ethanol. Incubations with ZmAOS produced predominantly 9,10-EOD, which was converted into an ethanolysis product, (12Z)-9-ethoxy-10-oxo-12-octadecenoic acid. LeAOS3 produced the same trapping product and 9(R)-α-ketol at nearly equimolar yields. Thus, both α-ketol and 9,10-EOD appeared to be kinetically controlled LeAOS3 products. NMR data for 9,10-EOD (Me) preparations revealed that ZmAOS specifically synthesized 10(E)-9,10-EOD, whereas LeAOS3 produced a roughly 4:1 mixture of 10(E) and 10(Z) isomers. The cyclopentenone cis-10-oxo-11-phytoenoic acid (10-oxo-PEA) and the Favorskii-type product yields were appreciable with LeAOS3, but dramatically lower with ZmAOS. The 9,10-EOD (free acid) kept in hexane transformed into macrolactones but did not cyclize. LeAOS3 catalysis is supposed to produce a higher proportion of oxyallyl diradical (a valence tautomer of allene oxide), which is a direct precursor of both cyclopentenone and cyclopropanone. This may explain the substantial yields of cis-10-oxo-PEA and the Favorskii-type product (via cyclopropanone) with LeAOS3. Furthermore, 10(Z)-9,10-EOD may be produced via the reverse formation of allene oxide from oxyallyl diradical.
Collapse
|
28
|
Ahmed B, Hasan F, Tabassum A, Ahmed R, Hassan R, Amin MR, Alam M. Genome-wide investigation of SnRK2 gene family in two jute species: Corchorus olitorius and Corchorus capsularis. J Genet Eng Biotechnol 2023; 21:5. [PMID: 36652035 PMCID: PMC9849630 DOI: 10.1186/s43141-022-00453-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Sucrose non-fermenting-1 (SNF1)-related protein kinase 2 (SnRK2), a plant-specific serine/threonine kinase family, is associated with metabolic responses, including abscisic acid signaling under biotic and abiotic stresses. So far, no information on a genome-wide investigation and stress-mediated expression profiling of jute SnRK2 is available. Recent whole-genome sequencing of two Corchorus species prompted to identify and characterize this SnRK2 gene family. RESULT We identified seven SnRK2 genes of each of Corchorus olitorius (Co) and C. capsularis (Cc) genomes, with similar physico-molecular properties and sub-group patterns of other models and related crops. In both species, the SnRK2 gene family showed an evolutionarily distinct trend. Highly variable C-terminal and conserved N-terminal regions were observed. Co- and CcSnRK2.3, Co- and CcSnRk2.5, Co- and CcSnRk2.7, and Co- and CcSnRK2.8 were upregulated in response to drought and salinity stresses. In waterlogging conditions, Co- and CcSnRk2.6 and Co- and CcSnRK2.8 showed higher activity when exposed to hypoxic conditions. Expression analysis in different plant parts showed that SnRK2.5 in both Corchorus species is highly expressed in fiber cells providing evidence of the role of fiber formation. CONCLUSION This is the first comprehensive study of SnRK2 genes in both Corchorus species. All seven genes identified in this study showed an almost similar pattern of gene structures and molecular properties. Gene expression patterns of these genes varied depending on the plant parts and in response to abiotic stresses.
Collapse
Affiliation(s)
- Borhan Ahmed
- grid.482525.c0000 0001 0699 8850Basic and Applied Research On Jute Project, Bangladesh Jute Research Institute, Dhaka, 1207 Bangladesh
| | - Fakhrul Hasan
- grid.443108.a0000 0000 8550 5526Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur, 1706 Bangladesh
| | - Anika Tabassum
- grid.442972.e0000 0001 2218 5390American International University of Bangladesh, Dhaka, 1229 Bangladesh
| | - Rasel Ahmed
- grid.482525.c0000 0001 0699 8850Basic and Applied Research On Jute Project, Bangladesh Jute Research Institute, Dhaka, 1207 Bangladesh
| | - Rajnee Hassan
- grid.24434.350000 0004 1937 0060Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE USA
| | - Md. Ruhul Amin
- grid.482525.c0000 0001 0699 8850Basic and Applied Research On Jute Project, Bangladesh Jute Research Institute, Dhaka, 1207 Bangladesh
| | - Mobashwer Alam
- grid.1003.20000 0000 9320 7537Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, 47 Mayers Rd, Nambour, QLD 4560 Australia
| |
Collapse
|
29
|
New plant immunity elicitors from a sugar beet byproduct protect wheat against Zymoseptoria tritici. Sci Rep 2023; 13:90. [PMID: 36596821 PMCID: PMC9810720 DOI: 10.1038/s41598-022-26800-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 12/20/2022] [Indexed: 01/04/2023] Open
Abstract
The current worldwide context promoting agroecology and green agriculture require the discovery of new ecofriendly and sustainable plant protection tools. Plant resistance inducers, called also elicitors, are one of the most promising alternatives fitting with such requirements. We produced here a set of 30 molecules from pyroglutamic acid, bio-sourced from sugar beet byproducts, and examined for their biological activity on the major agro-economically pathosystem wheat-Zymoseptoria tritici. Foliar application of the molecules provided significant protection rates (up to 63% disease severity reduction) for 16 among them. Structure-activity relationship analysis highlighted the importance of all chemical groups of the pharmacophore in the bioactivity of the molecules. Further investigations using in vitro and in planta antifungal bioassays as well as plant molecular biomarkers revealed that the activity of the molecules did not rely on direct biocide activity towards the pathogen, but rather on the activation of plant defense mechanisms dependent on lipoxygenase, phenylalanine ammonia-lyase, peroxidase, and pathogenesis-related protein pathways. This study reports a new family of bio-sourced resistance inducers and provides new insights into the valorization of agro-resources to develop the sustainable agriculture of tomorrow.
Collapse
|
30
|
Xu Z, Zeng T, Li J, Zhou L, Li J, Luo J, Zheng R, Wang Y, Hu H, Wang C. TcbZIP60 positively regulates pyrethrins biosynthesis in Tanacetum cinerariifolium. FRONTIERS IN PLANT SCIENCE 2023; 14:1133912. [PMID: 36890888 PMCID: PMC9986458 DOI: 10.3389/fpls.2023.1133912] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/06/2023] [Indexed: 05/13/2023]
Abstract
Pyrethrins, synthesized in the perennial plant Tanacetum cinerariifolium, are a class of terpene mixtures with high insecticidal activity and low human toxicity, which are widely used in plant-derived pesticides. Numerous studies have identified multiple pyrethrins biosynthesis enzymes, which can be enhanced by exogenous hormones such as methyl jasmonate (MeJA). However, the mechanism by which hormone signaling regulates pyrethrins biosynthesis and the potential involvement of certain transcription factors (TFs) remain unclear. In this study, we found that the expression level of a TF in T. cinerariifolium was significantly increased after treatment with plant hormones (MeJA, abscisic acid). Subsequent analysis identified this TF as a member of the basic region/leucine zipper (bZIP) family and was thus named TcbZIP60. TcbZIP60 was localized in the nucleus, suggesting that it is involved in the transcription process. The expression profiles of TcbZIP60 were similar to those of pyrethrins synthesis genes in different flower organs and at different flowering stages. Furthermore, TcbZIP60 could directly bind to the E-box/G-box motifs in the promoters of the pyrethrins synthesis genes TcCHS and TcAOC to activate their expression. Transient overexpression of TcbZIP60 increased the expression levels of pyrethrins biosynthesis genes, leading to the significant accumulation of pyrethrins. Silencing of TcbZIP60 significantly downregulated pyrethrins accumulation and the expression of related genes. Overall, our results reveal a novel TF, TcbZIP60, that regulates both the terpenoid and jasmonic acid pathways of pyrethrins biosynthesis in T. cinerariifolium.
Collapse
Affiliation(s)
- Zhizhuo Xu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Tuo Zeng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Jiawen Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Li Zhou
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jinjin Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Jing Luo
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Riru Zheng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Yuanyuan Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Hao Hu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Hao Hu, ; Caiyun Wang,
| | - Caiyun Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Hao Hu, ; Caiyun Wang,
| |
Collapse
|
31
|
Zhang S, Sun H, Wang J, Shen J, He F, Chen D, Wang Y. The Regulatory Mechanisms and Control Technologies of Chilling Injury and Fungal Diseases of Postharvest Loquat Fruit. PLANTS (BASEL, SWITZERLAND) 2022; 11:3472. [PMID: 36559584 PMCID: PMC9784782 DOI: 10.3390/plants11243472] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Loquat is a popular fruit widely cultivated all over the world. It is rich in minerals and carotenoids and has high commercial value. At room temperature, loquat fruit is impressionable to water and nutritional losses, physical damage, and microbial decay, resulting in a short postharvest life. Low-temperature storage is routinely used to prolong the shelf life of loquat fruit; however, cold storage can also lead to lignification of flesh tissue, which is one of the major symptoms of chilling injury (CI), reducing the quality and economic value of the fruit. In addition, fruit decay caused by microbial infection is another important reason for postharvest losses of loquat. To reduce quality deterioration and optimize the postharvest storage strategies of loquat fruit, considerable progress has been made in the physiological and molecular biological studies of CI, microbial decay, and preservation technologies of loquat fruit during the postharvest phase in recent decades. This review summarizes the current research progress and provides a reference for the improvement of loquat fruit quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ying Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| |
Collapse
|
32
|
Hu Y, Zhang H, Gu B, Zhang J. The transcription factor VaMYC2 from Chinese wild Vitis amurensis enhances cold tolerance of grape (V. vinifera) by up-regulating VaCBF1 and VaP5CS. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:218-229. [PMID: 36272189 DOI: 10.1016/j.plaphy.2022.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/26/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Cultivated grapes, one of the most important fruit crops in the world, are sensitive to low temperature. Since Chinese wild grape Vitis amurensis is highly tolerant to cold, it is imperative to study and utilize its cold-tolerance genes for molecular breeding. Here, a VaMYC2 gene from V. amurensis was cloned, and its function was investigated by expressing VaMYC2 in the cold-sensitive V. vinifera cultivar 'Thompson Seedless'. The expression of VaMYC2 could be induced by cold stress, methyl jasmonate and ethylene treatment, but was inhibited by abscisic acid in leaves of V. amurensis. When transgenic grape lines expressing VaMYC2 were subjected to cold stress (-1 °C) for 41 h, the transgenic lines showed less freezing injury and lower electrolyte leakage and malondialdehyde content, but higher contents of soluble sugars, soluble proteins and proline, and antioxidant enzyme activities compared with wild-type. Moreover, the expression of some cold-tolerance related genes increased in transgenic lines. Besides, the interactions of VaMYC2 with VaJAZ1 and VaJAZ7B were confirmed by yeast two-hybrid and bimolecular fluorescence complementation assays. Yeast one-hybrid and dual luciferase assays showed that VaMYC2 can bind to the promoters of VaCBF1 and VaP5CS and activate their expressions. In conclusion, expression of VaMYC2 in V. vinifera enhances cold tolerance of transgenic grapes which is attributed to enhanced accumulation of osmotic regulatory substances, cell membrane stability, antioxidant enzyme activity, and expression of cold tolerance-related genes. Also, VaMYC2 interacts with VaJAZ1 and VaJAZ7, and activates the expression of VaCBF1 and VaP5CS to mediate cold tolerance in grapes.
Collapse
Affiliation(s)
- Yafan Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Hongjuan Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Bao Gu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
33
|
Jimenez Aleman GH, Thirumalaikumar VP, Jander G, Fernie AR, Skirycz A. OPDA, more than just a jasmonate precursor. PHYTOCHEMISTRY 2022; 204:113432. [PMID: 36115386 DOI: 10.1016/j.phytochem.2022.113432] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
The oxylipin 12-oxo-phytodienoic acid (OPDA) is known as a biosynthetic precursor of the important plant hormone jasmonic acid. However, OPDA is also a signaling molecule with functions independent of jasmonates. OPDA involvement in diverse biological processes, from plant defense and stress responses to growth regulation and development, has been documented across plant species. OPDA is synthesized in the plastids from alpha-linolenic acid, and OPDA binding to plastidial cyclophilins activates TGA transcription factors upstream of genes associated with stress responses. Here, we summarize what is known about OPDA metabolism and signaling while briefly discussing its jasmonate dependent and independent roles. We also describe open questions, such as the OPDA protein interactome and biological roles of OPDA conjugates.
Collapse
Affiliation(s)
| | | | - Georg Jander
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany.
| | | |
Collapse
|
34
|
Dürr L, Reinhardt JK, Dobrzyński M, Hell T, Smieško M, Pertz O, Hamburger M, Garo E. A Dimerosesquiterpene and Sesquiterpene Lactones from Artemisia argyi Inhibiting Oncogenic PI3K/AKT Signaling in Melanoma Cells. JOURNAL OF NATURAL PRODUCTS 2022; 85:2557-2569. [PMID: 36351173 DOI: 10.1021/acs.jnatprod.2c00471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A library of more than 2500 plant extracts was screened for activity on oncogenic signaling in melanoma cells. The ethyl acetate extract from the aerial parts of Artemisia argyi displayed pronounced inhibition of the PI3K/AKT pathway. Active compounds were tracked with the aid of HPLC-based activity profiling, and altogether 21 active compounds were isolated, including one novel dimerosequiterpenoid (1), one new disesquiterpenoid (2), three new guaianolides (3-5), 12 known sesquiterpenoids (6-17), and four known flavonoids (19-22). A new eudesmanolide derivative (13b) was isolated as an artifact formed by methanolysis. Compound 1 is the first adduct comprising a sesquiterpene lactone and a methyl jasmonate moiety. The absolute configurations of compounds 1 and 3-18 were established by comparison of their experimental and calculated ECD spectra. The absolute configuration for 2 was determined by X-ray diffraction analysis. Guaianolide 8 was the most potent sesquiterpene lactone, inhibiting the PI3K/AKT pathway with an IC50 value of 8.9 ± 0.9 μM.
Collapse
Affiliation(s)
- Lara Dürr
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Jakob K Reinhardt
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Maciej Dobrzyński
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Tanja Hell
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Martin Smieško
- Division of Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Olivier Pertz
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Matthias Hamburger
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Eliane Garo
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
35
|
Tian F, Wu C, Kou X, Fan G, Li T. Postharvest methyl jasmonate treatment inhibits blue mold decay in Ginkgo biloba seeds by inducing antioxidant and defense systems. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
36
|
Zhou L, Li J, Zeng T, Xu Z, Luo J, Zheng R, Wang Y, Wang C. TcMYB8, a R3-MYB Transcription Factor, Positively Regulates Pyrethrin Biosynthesis in Tanacetum cinerariifolium. Int J Mol Sci 2022; 23:12186. [PMID: 36293043 PMCID: PMC9602545 DOI: 10.3390/ijms232012186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Pyrethrins are a mixture of terpenes, with insecticidal properties, that accumulate in the aboveground parts of the pyrethrum (Tanacetum cinerariifolium). Numerous studies have been published on the positive role of MYB transcription factors (TFs) in terpenoid biosynthesis; however, the role of MYB TFs in pyrethrin biosynthesis remains unknown. Here, we report the isolation and characterization of a T. cinerariifolium MYB gene encoding a R3-MYB protein, TcMYB8, containing a large number of hormone-responsive elements in its promoter. The expression of the TcMYB8 gene showed a downward trend during the development stage of flowers and leaves, and was induced by methyl jasmonate (MeJA), salicylic acid (SA), and abscisic acid (ABA). Transient overexpression of TcMYB8 enhanced the expression of key enzyme-encoding genes, TcCHS and TcGLIP, and increased the content of pyrethrins. By contrast, transient silencing of TcMYB8 decreased pyrethrin contents and downregulated TcCHS and TcGLIP expression. Further analysis indicated that TcMYB8 directly binds to cis-elements in proTcCHS and proTcGLIP to activate their expression, thus regulating pyrethrin biosynthesis. Together, these results highlight the potential application of TcMYB8 for improving the T. cinerariifolium germplasm, and provide insight into the pyrethrin biosynthesis regulation network.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiawen Li
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Tuo Zeng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Zhizhuo Xu
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Luo
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Riru Zheng
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanyuan Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Caiyun Wang
- Key Laboratory for Biology of Horticultural Plants, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
37
|
Tang B, Tan T, Chen Y, Hu Z, Xie Q, Yu X, Chen G. SlJAZ10 and SlJAZ11 mediate dark-induced leaf senescence and regeneration. PLoS Genet 2022; 18:e1010285. [PMID: 35830385 PMCID: PMC9278786 DOI: 10.1371/journal.pgen.1010285] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022] Open
Abstract
During evolutionary adaptation, the mechanisms for self-regulation are established between the normal growth and development of plants and environmental stress. The phytohormone jasmonate (JA) is a key tie of plant defence and development, and JASMONATE-ZIM DOMAIN (JAZ) repressor proteins are key components in JA signalling pathways. Here, we show that JAZ expression was affected by leaf senescence from the transcriptomic data. Further investigation revealed that SlJAZ10 and SlJAZ11 positively regulate leaf senescence and that SlJAZ11 can also promote plant regeneration. Moreover, we reveal that the SlJAV1-SlWRKY51 (JW) complex could suppress JA biosynthesis under normal growth conditions. Immediately after injury, SlJAZ10 and SlJAZ11 can regulate the activity of the JW complex through the effects of electrical signals and Ca2+ waves, which in turn affect JA biosynthesis, causing a difference in the regeneration phenotype between SlJAZ10-OE and SlJAZ11-OE transgenic plants. In addition, SlRbcs-3B could maintain the protein stability of SlJAZ11 to protect it from degradation. Together, SlJAZ10 and SlJAZ11 not only act as repressors of JA signalling to leaf senescence, but also regulate plant regeneration through coordinated electrical signals, Ca2+ waves, hormones and transcriptional regulation. Our study provides critical insights into the mechanisms by which SlJAZ11 can induce regeneration. In plants, senescence is the final stage of development, but regeneration can help them beyond the stage. Plants regeneration is essential for propagation, and in cultivated crops to maintain excellent traits as close as possible. JA signaling can sense environmental signals and integrate various regulatory mechanisms to ensure plants regeneration occurs under optimal conditions. In this work, the JAZ-JAV1-WRKY51 complexes with reported was further optimized, the function of SlJAZ10 and SlJAZ11 was identified to promote inhibitory activity of SlJAV1-SlWRKY51 complex which negatively regulated JA biosynthesis by direct binding of the W-box of the SlAOC promoter. The results of further investigation suggest that the differences in regulation of electrical signals, Ca2+ waves, hormones and transcriptional regulation are responsible for the regeneration between SlJAZ10 and SlJAZ11. In addition, we have found that SlRbcs-3B could maintain the protein stability of SlJAZ11 to protect it from degradation. In summary, despite both SlJAZ10 and SlJAZ11 can function as senescence, only SlJAZ11 has an important promoting function for regeneration.
Collapse
Affiliation(s)
- Boyan Tang
- Key Laboratory of Bioengineering Science and Technology, Chongqing University, Ministry of Education, Chongqing, China
- Bioengineering College, Campus B, Chongqing University, Chongqing, People’s Republic of China
| | - Tingting Tan
- Key Laboratory of Bioengineering Science and Technology, Chongqing University, Ministry of Education, Chongqing, China
- Bioengineering College, Campus B, Chongqing University, Chongqing, People’s Republic of China
| | - Yating Chen
- Key Laboratory of Bioengineering Science and Technology, Chongqing University, Ministry of Education, Chongqing, China
- Bioengineering College, Campus B, Chongqing University, Chongqing, People’s Republic of China
| | - Zongli Hu
- Key Laboratory of Bioengineering Science and Technology, Chongqing University, Ministry of Education, Chongqing, China
- Bioengineering College, Campus B, Chongqing University, Chongqing, People’s Republic of China
| | - Qiaoli Xie
- Key Laboratory of Bioengineering Science and Technology, Chongqing University, Ministry of Education, Chongqing, China
- Bioengineering College, Campus B, Chongqing University, Chongqing, People’s Republic of China
| | - Xiaohui Yu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, People’s Republic of China
- * E-mail: (XY); (GC)
| | - Guoping Chen
- Key Laboratory of Bioengineering Science and Technology, Chongqing University, Ministry of Education, Chongqing, China
- Bioengineering College, Campus B, Chongqing University, Chongqing, People’s Republic of China
- * E-mail: (XY); (GC)
| |
Collapse
|
38
|
Zhao Y, Cartabia A, Lalaymia I, Declerck S. Arbuscular mycorrhizal fungi and production of secondary metabolites in medicinal plants. MYCORRHIZA 2022; 32:221-256. [PMID: 35556179 PMCID: PMC9184413 DOI: 10.1007/s00572-022-01079-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/28/2022] [Indexed: 05/27/2023]
Abstract
Medicinal plants are an important source of therapeutic compounds used in the treatment of many diseases since ancient times. Interestingly, they form associations with numerous microorganisms developing as endophytes or symbionts in different parts of the plants. Within the soil, arbuscular mycorrhizal fungi (AMF) are the most prevalent symbiotic microorganisms forming associations with more than 70% of vascular plants. In the last decade, a number of studies have reported the positive effects of AMF on improving the production and accumulation of important active compounds in medicinal plants.In this work, we reviewed the literature on the effects of AMF on the production of secondary metabolites in medicinal plants. The major findings are as follows: AMF impact the production of secondary metabolites either directly by increasing plant biomass or indirectly by stimulating secondary metabolite biosynthetic pathways. The magnitude of the impact differs depending on the plant genotype, the AMF strain, and the environmental context (e.g., light, time of harvesting). Different methods of cultivation are used for the production of secondary metabolites by medicinal plants (e.g., greenhouse, aeroponics, hydroponics, in vitro and hairy root cultures) which also are compatible with AMF. In conclusion, the inoculation of medicinal plants with AMF is a real avenue for increasing the quantity and quality of secondary metabolites of pharmacological, medical, and cosmetic interest.
Collapse
Affiliation(s)
- YanYan Zhao
- Université catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Annalisa Cartabia
- Université catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Ismahen Lalaymia
- Université catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium
| | - Stéphane Declerck
- Université catholique de Louvain, Earth and Life Institute, Mycology, Croix du Sud 2, box L7.05.06, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
39
|
Zheng X, Gong M, Zhang Q, Tan H, Li L, Tang Y, Li Z, Peng M, Deng W. Metabolism and Regulation of Ascorbic Acid in Fruits. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11121602. [PMID: 35736753 PMCID: PMC9228137 DOI: 10.3390/plants11121602] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/26/2022] [Accepted: 06/14/2022] [Indexed: 05/17/2023]
Abstract
Ascorbic acid, also known as vitamin C, is a vital antioxidant widely found in plants. Plant fruits are rich in ascorbic acid and are the primary source of human intake of ascorbic acid. Ascorbic acid affects fruit ripening and stress resistance and plays an essential regulatory role in fruit development and postharvest storage. The ascorbic acid metabolic pathway in plants has been extensively studied. Ascorbic acid accumulation in fruits can be effectively regulated by genetic engineering technology. The accumulation of ascorbic acid in fruits is regulated by transcription factors, protein interactions, phytohormones, and environmental factors, but the research on the regulatory mechanism is still relatively weak. This paper systematically reviews the regulation mechanism of ascorbic acid metabolism in fruits in recent decades. It provides a rich theoretical basis for an in-depth study of the critical role of ascorbic acid in fruits and the cultivation of fruits rich in ascorbic acid.
Collapse
Affiliation(s)
- Xianzhe Zheng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China; (X.Z.); (M.G.); (Q.Z.); (Z.L.)
| | - Min Gong
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China; (X.Z.); (M.G.); (Q.Z.); (Z.L.)
| | - Qiongdan Zhang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China; (X.Z.); (M.G.); (Q.Z.); (Z.L.)
| | - Huaqiang Tan
- Institute of Horticulture, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (H.T.); (L.L.); (Y.T.)
| | - Liping Li
- Institute of Horticulture, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (H.T.); (L.L.); (Y.T.)
| | - Youwan Tang
- Institute of Horticulture, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (H.T.); (L.L.); (Y.T.)
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China; (X.Z.); (M.G.); (Q.Z.); (Z.L.)
| | - Mingchao Peng
- Institute of Horticulture, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu 611130, China; (H.T.); (L.L.); (Y.T.)
- Correspondence: (M.P.); (W.D.); Tel.: +86-19981296016 (M.P.); +86-18623127580 (W.D.)
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China; (X.Z.); (M.G.); (Q.Z.); (Z.L.)
- Correspondence: (M.P.); (W.D.); Tel.: +86-19981296016 (M.P.); +86-18623127580 (W.D.)
| |
Collapse
|
40
|
Fan D, Wang W, Hao Q, Jia W. Do Non-climacteric Fruits Share a Common Ripening Mechanism of Hormonal Regulation? FRONTIERS IN PLANT SCIENCE 2022; 13:923484. [PMID: 35755638 PMCID: PMC9218805 DOI: 10.3389/fpls.2022.923484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Fleshy fruits have been traditionally categorized into climacteric (CL) and non-climacteric (NC) groups. CL fruits share a common ripening mechanism of hormonal regulation, i.e., the ethylene regulation, whereas whether NC fruits share a common mechanism remains controversial. Abscisic acid (ABA) has been commonly thought to be a key regulator in NC fruit ripening; however, besides ABA, many other hormones have been increasingly suggested to play crucial roles in NC fruit ripening. NC fruits vary greatly in their organ origin, constitution, and structure. Development of different organs may be different in the pattern of hormonal regulation. It has been well demonstrated that the growth and development of strawberry, the model of NC fruits, is largely controlled by a hormonal communication between the achenes and receptacle; however, not all NC fruits contain achenes. Accordingly, it is particularly important to understand whether strawberry is indeed able to represent a universal mechanism for the hormonal regulation of NC fruit ripening. In this mini-review, we summarized the recent research advance on the hormone regulation of NC ripening in relation to fruit organ origination, constitution, and structure, whereby analyzing and discussing whether NC fruits may share a common mechanism of hormonal regulation.
Collapse
Affiliation(s)
- Dingyu Fan
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Wei Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Qing Hao
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Wensuo Jia
- College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
41
|
Kumari P, Khan S, Wani IA, Gupta R, Verma S, Alam P, Alaklabi A. Unravelling the Role of Epigenetic Modifications in Development and Reproduction of Angiosperms: A Critical Appraisal. Front Genet 2022; 13:819941. [PMID: 35664328 PMCID: PMC9157814 DOI: 10.3389/fgene.2022.819941] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 12/28/2022] Open
Abstract
Epigenetics are the heritable changes in gene expression patterns which occur without altering DNA sequence. These changes are reversible and do not change the sequence of the DNA but can alter the way in which the DNA sequences are read. Epigenetic modifications are induced by DNA methylation, histone modification, and RNA-mediated mechanisms which alter the gene expression, primarily at the transcriptional level. Such alterations do control genome activity through transcriptional silencing of transposable elements thereby contributing toward genome stability. Plants being sessile in nature are highly susceptible to the extremes of changing environmental conditions. This increases the likelihood of epigenetic modifications within the composite network of genes that affect the developmental changes of a plant species. Genetic and epigenetic reprogramming enhances the growth and development, imparts phenotypic plasticity, and also ensures flowering under stress conditions without changing the genotype for several generations. Epigenetic modifications hold an immense significance during the development of male and female gametophytes, fertilization, embryogenesis, fruit formation, and seed germination. In this review, we focus on the mechanism of epigenetic modifications and their dynamic role in maintaining the genomic integrity during plant development and reproduction.
Collapse
Affiliation(s)
- Priyanka Kumari
- Conservation and Molecular Biology Lab., Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Sajid Khan
- Conservation and Molecular Biology Lab., Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Ishfaq Ahmad Wani
- Conservation and Molecular Biology Lab., Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Renu Gupta
- Division of Soil Sciences & Agricultural Chemistry, Faculty of Agriculture Sher e Kashmir University of Agricultural Sciences and Technology, Chatha, India
| | - Susheel Verma
- Department of Botany, University of Jammu, Jammu, India
- *Correspondence: Susheel Verma,
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University (PSAU), Alkharj, Saudi Arabia
| | - Abdullah Alaklabi
- Department of Biology, College of Science, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
42
|
Delfin JC, Kanno Y, Seo M, Kitaoka N, Matsuura H, Tohge T, Shimizu T. AtGH3.10 is another jasmonic acid-amido synthetase in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1082-1096. [PMID: 35247019 DOI: 10.1111/tpj.15724] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Jasmonoyl-isoleucine (JA-Ile) is a key signaling molecule that activates jasmonate-regulated flower development and the wound stress response. For years, JASMONATE RESISTANT1 (JAR1) has been the sole jasmonoyl-amino acid synthetase known to conjugate jasmonic acid (JA) to isoleucine, and the source of persisting JA-Ile in jar1 knockout mutants has remained elusive until now. Here we demonstrate through recombinant enzyme assays and loss-of-function mutant analyses that AtGH3.10 functions as a JA-amido synthetase. Recombinant AtGH3.10 could conjugate JA to isoleucine, alanine, leucine, methionine, and valine. The JA-Ile accumulation in the gh3.10-2 jar1-11 double mutant was nearly eliminated in the leaves and flower buds while its catabolism derivative 12OH-JA-Ile was undetected in the flower buds and unwounded leaves. Residual levels of JA-Ile, JA-Ala, and JA-Val were nonetheless detected in gh3.10-2 jar1-11, suggesting the activities of similar promiscuous enzymes. Upon wounding, the accumulation of JA-Ile and 12OH-JA-Ile and the expression of JA-responsive genes OXOPHYTODIENOIC ACID REDUCTASE3 and JASMONATE ZIM-DOMAIN1 observed in WT, gh3.10-1, and jar1-11 leaves were effectively abolished in gh3.10-2 jar1-11. Additionally, an increased proportion of undeveloped siliques associated with retarded stamen development was observed in gh3.10-2 jar1-11. These findings conclusively show that AtGH3.10 contributes to JA-amino acid biosynthesis and functions partially redundantly with AtJAR1 in sustaining flower development and the wound stress response in Arabidopsis.
Collapse
Affiliation(s)
- Jay C Delfin
- Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma, Japan, 630-0192
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan, 230-0045
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan, 230-0045
| | - Naoki Kitaoka
- Division of Fundamental AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan, 060-8589
| | - Hideyuki Matsuura
- Division of Fundamental AgriScience Research, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan, 060-8589
| | - Takayuki Tohge
- Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma, Japan, 630-0192
| | - Takafumi Shimizu
- Division of Biological Science, Nara Institute of Science and Technology (NAIST), Ikoma, Japan, 630-0192
| |
Collapse
|
43
|
Ghai D, Kaur A, Kahlon PS, Pawar SV, Sembi JK. A Walk Through the Maze of Secondary Metabolism in Orchids: A Transcriptomic Approach. FRONTIERS IN PLANT SCIENCE 2022; 13:837563. [PMID: 35574139 PMCID: PMC9100589 DOI: 10.3389/fpls.2022.837563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Orchids have a huge reservoir of secondary metabolites making these plants of immense therapeutic importance. Their potential as curatives has been realized since times immemorial and are extensively studied for their medicinal properties. Secondary metabolism is under stringent genetic control in plants and several molecular factors are involved in regulating the production of the metabolites. However, due to the complex molecular networks, a complete understanding of the specific molecular cues is lacking. High-throughput omics technologies have the potential to fill up this lacuna. The present study deals with comparative analysis of high-throughput transcript data involving gene identification, functional annotation, and differential expression in more than 30 orchid transcriptome data sets, with a focus to elucidate the role of various factors in alkaloid and flavonoid biosynthesis. Comprehensive analysis of the mevalonate (MVA) pathway, methyl-d-erythritol 4-phosphate (MEP) pathway, and phenylpropanoid pathway provide specific insights to the potential gene targets for drug discovery. It is envisaged that a positive stimulation of these pathways through regulation of pivotal genes and alteration of specific gene expression, could facilitate the production of secondary metabolites and enable efficient tapping of the therapeutic potential of orchids. This further would lay the foundation for developing strategies for genetic and epigenetic improvement of these plants for development of therapeutic products.
Collapse
Affiliation(s)
- Devina Ghai
- Department of Botany, Panjab University, Chandigarh, India
| | - Arshpreet Kaur
- Department of Botany, Panjab University, Chandigarh, India
| | - Parvinderdeep S. Kahlon
- Chair of Phytopathology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Sandip V. Pawar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | |
Collapse
|
44
|
Singh P, Arif Y, Miszczuk E, Bajguz A, Hayat S. Specific Roles of Lipoxygenases in Development and Responses to Stress in Plants. PLANTS (BASEL, SWITZERLAND) 2022; 11:979. [PMID: 35406959 PMCID: PMC9002551 DOI: 10.3390/plants11070979] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 05/24/2023]
Abstract
Lipoxygenases (LOXs), naturally occurring enzymes, are widely distributed in plants and animals. LOXs can be non-sulfur iron, non-heme iron, or manganese-containing dioxygenase redox enzymes. LOXs catalyze the oxidation of polyunsaturated fatty acids into fatty acid hydroperoxides. Linolenic acid, a precursor in the jasmonic acid (JA) biosynthesis, is converted to 12-oxo-phytodienoic acid through oxygenation with LOX, allene oxide synthase, and allene oxide cyclase. Moreover, JA participates in seed germination, fruit ripening, senescence, and many other physio-biochemical processes. LOXs also play crucial roles in defense responses against biotic stress, i.e., insects, pests, pathogenic attacks, and abiotic stress, such as wounding, UV-rays, extreme temperature, oxidative stress, and drought.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India; (P.S.); (Y.A.); (S.H.)
| | - Yamshi Arif
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India; (P.S.); (Y.A.); (S.H.)
| | - Edyta Miszczuk
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
| | - Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland;
| | - Shamsul Hayat
- Department of Botany, Plant Physiology Section, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India; (P.S.); (Y.A.); (S.H.)
| |
Collapse
|
45
|
Zeng L, Chen H, Wang Y, Hicks D, Ke H, Pruneda-Paz J, Dehesh K. ORA47 is a transcriptional regulator of a general stress response hub. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:562-571. [PMID: 35092704 DOI: 10.1111/tpj.15688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Transcriptional regulators of the general stress response (GSR) reprogram the expression of selected genes to transduce informational signals into cellular events, ultimately manifested in a plant's ability to cope with environmental challenges. Identification of the core GSR regulatory proteins will uncover the principal modules and their mode of action in the establishment of adaptive responses. To define the GSR regulatory components, we employed a yeast-one-hybrid assay to identify the protein(s) binding to the previously established functional GSR motif, termed the rapid stress response element (RSRE). This led to the isolation of octadecanoid-responsive AP2/ERF-domain transcription factor 47 (ORA47), a methyl jasmonate inducible protein. Subsequently, ORA47 transcriptional activity was confirmed using the RSRE-driven luciferase (LUC) activity assay performed in the ORA47 loss- and gain-of-function lines introgressed into the 4xRSRE::Luc background. In addition, the prime contribution of CALMODULIN-BINDING TRANSCRIPTIONAL ACTIVATOR3 (CAMTA3) protein in the induction of RSRE was reaffirmed by genetic studies. Moreover, exogenous application of methyl jasmonate led to enhanced levels of ORA47 and CAMTA3 transcripts, as well as the induction of RSRE::LUC activity. Metabolic analyses illustrated the reciprocal functional inputs of ORA47 and CAMTA3 in increasing JA levels. Lastly, transient assays identified JASMONATE ZIM-domain1 (JAZ1) as a repressor of RSRE::LUC activity. Collectively, the present study provides fresh insight into the initial features of the mechanism that transduces informational signals into adaptive responses. This mechanism involves the functional interplay between the JA biosynthesis/signaling cascade and the transcriptional reprogramming that potentiates GSR. Furthermore, these findings offer a window into the role of intraorganellar communication in the establishment of adaptive responses.
Collapse
Affiliation(s)
- Liping Zeng
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Hao Chen
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92521, USA
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yaqi Wang
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Derrick Hicks
- Department of Plant Biology, University of California, Davis, CA, 95616, USA
| | - Haiyan Ke
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Jose Pruneda-Paz
- Section of Cell and Developmental Biology, University of California, La Jolla, CA, 92093, USA
| | - Katayoon Dehesh
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92521, USA
| |
Collapse
|
46
|
Compatible interaction of Brachypodium distachyon and endophytic fungus Microdochium bolleyi. PLoS One 2022; 17:e0265357. [PMID: 35286339 PMCID: PMC8920291 DOI: 10.1371/journal.pone.0265357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 03/01/2022] [Indexed: 11/19/2022] Open
Abstract
Brachypodium distachyon is a useful model organism for studying interaction of cereals with phytopathogenic fungi. The present study tested the possibility of a compatible interaction of B. distachyon with the endophytic fungus Microdochium bolleyi originated from wheat roots. There was evaluated the effect of this endophytic fungus on the intensity of the attack by pathogen Fusarium culmorum in B. distachyon and wheat, and also changes in expression of genes (in B. distachyon: BdChitinase1, BdPR1-5, BdLOX3, BdPAL, BdEIN3, and BdAOS; and in wheat: TaB2H2(chitinase), TaPR1.1, TaLOX, TaPAL, TaEIN2, and TaAOS) involved in defence against pathogens. Using light microscopy and newly developed specific primers was found to be root colonization of B. distachyon by the endophyte M. bolleyi. B. distachyon plants, as well as wheat inoculated with M. bolleyi showed significantly weaker symptoms on leaves from infection by fungus F. culmorum than did plants without the endophyte. Expression of genes BdPR1-5, BdChitinase1, and BdLOX3 in B. distachyon and of TaPR1.1 and TaB2H2 in wheat was upregulated after infection with F. culmorum. M. bolleyi-mediated resistance in B. distachyon was independent of the expression of the most tested genes. Taken together, the results of the present study show that B. distachyon can be used as a model host system for endophytic fungus M. bolleyi.
Collapse
|
47
|
Nehra A, Kumar A, Ahlawat S, Kumar V, Singh KP. Substrate-Free Untagged Detection of miR393a Using an Ultrasensitive Electrochemical Biosensor. ACS OMEGA 2022; 7:5176-5189. [PMID: 35187333 PMCID: PMC8851637 DOI: 10.1021/acsomega.1c06098] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/13/2022] [Indexed: 05/15/2023]
Abstract
Rapid and sensitive detection of numerous regulatory pathways in growth and development processes and defensive responses in plant-pathogen interactions caused by miRNA has been the current interest of agricultural scientists. Herein, an uncomplicated ultrasensitive electrochemical biosensor was fabricated to detect miR393a, as its detection is of vital importance for plant diseases. A streptavidin-coated screen-printed carbon electrode (SPCE) was fabricated and characterized by scanning electrochemical microscopy, scanning electron microscopy, surface plasmon resonance, and cyclic voltammetry. The two-dimensional (2D) structure and chemical functionality of the streptavidin-coated SPCE render it a superior platform for loading a modified probe via a 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide-N-hydroxysuccinimide linker. This biorecognition platform is capable of efficiently using its excellent conductivity, greater surface area, and effective electrochemical execution due to its synergistic effect between streptavidin and carbon electrodes. The biosensor showed a good linear response (R 2 = 0.96) to miR393a concentrations ranging from 100 nM to 100 fM. This streptavidin-based biosensor is highly sensitive to the minimum concentration of miR393a, lowest detection limit, and ultrasensitivity under optimized conditions, i.e., 100 fM, 0.33 fM, and 33.72 μA fM-1 cm-2, respectively. In addition, remarkable recoveries could be obtained to confirm the feasibility of this assay in plant disease samples. The fabricated technology could offer a selective, adaptable, and farmer-friendly strategy for the timely detection of miRNA of plant samples.
Collapse
Affiliation(s)
- Anuj Nehra
- Centre
for Bio-Nanotechnology, and Department of Nematology, College of Agriculture, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004, India
| | - Anil Kumar
- Department
of Nematology, College of Agriculture, Chaudhary
Charan Singh Haryana Agricultural University, Hisar 125004, India
| | - Sweeti Ahlawat
- Bio-Nanotechnology
Research Laboratory, Biophysics Unit, College of Basic Sciences &
Humanities, G.B. Pant University of Agriculture
& Technology, U.S. Nagar, Pantnagar 263145, Uttarakhand, India
| | - Vinay Kumar
- Department
of Physics, College of Basic Science & Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar 125004, India
| | - Krishna Pal Singh
- Bio-Nanotechnology
Research Laboratory, Biophysics Unit, College of Basic Sciences &
Humanities, G.B. Pant University of Agriculture
& Technology, U.S. Nagar, Pantnagar 263145, Uttarakhand, India
- Department
of Molecular Biology, Biotechnology and Bioinformatics, College of
Basic Science & Humanities, Chaudhary
Charan Singh Haryana Agricultural University, Hisar 125004, Haryana, India
- . Phone: +91-0581-2527282
| |
Collapse
|
48
|
Pigmentation and Flavonoid Metabolite Diversity in Immature 'Fuji' Apple Fruits in Response to Lights and Methyl Jasmonate. Int J Mol Sci 2022; 23:ijms23031722. [PMID: 35163642 PMCID: PMC8836130 DOI: 10.3390/ijms23031722] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
Artificial pigmentation of apple fruits has been intensely evaluated to generate less pigmented red apples, which are profitable because of the changes in fruit quality. In this study, we analyzed the diversity of flavonoids and the patterns of flavonoid metabolic gene expression under light irradiation with or without methyl jasmonate (MeJA) treatment in immature (S1) and color-turning (S2) staged ‘Fuji’ apples. Further, we assessed the metabolic regulation at the gene level between anthocyanin and flavonol in light-responsive apple skins. UV-B exposure within 3 days was found to significantly stimulate anthocyanin accumulation in apple skin compared to other light exposure. S1 skin was more sensitive to UV-B and MeJA treatment, in the aspect of indaein accumulation. The enhancement of apple pigmentation following treatment with adequate levels of UV-B and MeJA was maximized at approximately 72 h. Red (range from 4.25 to 17.96 µg·g−1 DW), blue (range from 4.59 to 9.17 µg·g−1 DW) and UV-A (range from 3.98 to 19.12 µg·g−1 DW) lights contributed to the induction of idaein content. Most genes related to the flavonoid pathways increased their expression under UV-B exposure, including the gene expression of the transcription factor, MdMYB10, a well-known upstream factor of flavonoid biosynthesis in apples. The boosted upregulation of MdMYB10, MdCHS, MdF3H MdLDOX, and MdUFGT genes due to MeJA in UV-B was found and may contribute the increase of idaein. UV-A and UV-B caused higher quercetin glycoside content in both S1 and S2 apple skins than longer wavelengths, resulting in significant increases in quercetin-3-O-galactoside and quercetin-3-O-glucoside. These results suggest that the application of adequate UV-B with MeJA in less-pigmented postharvest apples will improve apple color quality within a short period.
Collapse
|
49
|
Pathak AK, Singh SP, Sharma R, Nath V, Tuli R. Transcriptome analysis at mid-stage seed development in litchi with contrasting seed size. 3 Biotech 2022; 12:47. [PMID: 35127302 PMCID: PMC8783947 DOI: 10.1007/s13205-021-03098-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/18/2021] [Indexed: 02/03/2023] Open
Abstract
Litchi is a sub-tropical fruit crop with genotypes that bear fruits with variable seed size. Small seed size is a desirable trait in litchi, as it improves consumers' preference and facilitates fruit processing. Seed specific transcriptome analysis was performed in two litchi genotypes with contrasting seed size to identify the genes associated with seed development. The transcriptomic sequence data from seeds at mid-development stages (16-28 days after anthesis) were de-novo assembled into 1,39,608 Trinity transcripts. Out of these, 6325 transcripts expressed differentially between the two contrasting genotypes. Several putative genes for salicylic acid, jasmonic acid and brassinosteriod pathways were down-regulated in seeds of the small-seeded litchi. The putative regulators of seed maturation and seed storage were down-regulated in the small-seeded genotype. Embryogenesis, cell expansion, seed size and stress related Trinity transcripts exhibited differential expression. Further studies on gene characterization will reveal the early regulators of seed size in litchi. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-03098-8.
Collapse
Affiliation(s)
- Ashish K. Pathak
- grid.452674.60000 0004 1757 6145National Agri-Food Biotechnology Institute (DBT-NABI), Sector 81, SAS Nagar, Mohali, India ,grid.261674.00000 0001 2174 5640Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Sudhir P. Singh
- grid.452674.60000 0004 1757 6145National Agri-Food Biotechnology Institute (DBT-NABI), Sector 81, SAS Nagar, Mohali, India ,grid.454774.1Center of Innovative and Applied Bioprocessing (DBT-CIAB), Sector 81, SAS Nagar, Mohali, India
| | - Ritika Sharma
- grid.473732.6Sardar Swaran Singh National Institute of Bioenergy, Jalandhar, India
| | - Vishal Nath
- grid.506047.0ICAR-National Research Centre of Litchi, Muzaffarpur, India
| | - Rakesh Tuli
- grid.452674.60000 0004 1757 6145National Agri-Food Biotechnology Institute (DBT-NABI), Sector 81, SAS Nagar, Mohali, India ,grid.261674.00000 0001 2174 5640Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| |
Collapse
|
50
|
Zi X, Zhou S, Wu B. Alpha-Linolenic Acid Mediates Diverse Drought Responses in Maize ( Zea mays L.) at Seedling and Flowering Stages. Molecules 2022; 27:molecules27030771. [PMID: 35164035 PMCID: PMC8839722 DOI: 10.3390/molecules27030771] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Water shortage caused by long-term drought is one of the most serious abiotic stress factors in maize. Different drought conditions lead to differences in growth, development, and metabolism of maize. In previous studies, proteomics and genomics methods have been widely used to explain the response mechanism of maize to long-term drought, but there are only a few articles related to metabolomics. In this study, we used transcriptome and metabolomics analysis to characterize the differential effects of drought stress imposed at seedling or flowering stages on maize. Through the association analysis of genes and metabolites, we found that maize leaves had 61 and 54 enriched pathways under seedling drought and flowering drought, respectively, of which 13 and 11 were significant key pathways, mostly related to the biosynthesis of flavonoids and phenylpropanes, glutathione metabolism and purine metabolism. Interestingly, we found that the α-linolenic acid metabolic pathway differed significantly between the two treatments, and a total of 10 differentially expressed genes and five differentially abundant metabolites have been identified in this pathway. Some differential accumulation of metabolites (DAMs) was related to synthesis of jasmonic acid, which may be one of the key pathways underpinning maize response to different types of long-term drought. In general, metabolomics provides a new method for the study of water stress in maize and lays a theoretical foundation for drought-resistant cultivation of silage maize.
Collapse
|