1
|
Qian Y, Tong J, Liu N, Wang B, Wu Z. Genome-Wide Identification and Expression Analysis of ACA/ ECAs in Capsicum annuum L. Int J Mol Sci 2024; 25:12822. [PMID: 39684533 DOI: 10.3390/ijms252312822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Pepper (Capsicum annuum L.) is a popular vegetable in people's daily lives. During pepper growth, calcium (Ca) is an essential macronutrient, and calcium-transporting ATPase (ACA/ECA) is a vital protein for calcium transport. However, reports on the ACA/ECA gene family in the pepper genome are lacking. Hence, we used various bioinformatics methods to identify the ACA/ECA gene family in pepper. We identified eleven CaACA/ECA-family genes in pepper. The chromosomal distribution, phylogenetic evolution, characteristics, gene collinearity, gene and protein structures, cis-acting elements, and specific expression patterns of CaACA/ECAs were analyzed, revealing evolutionary relationships and correlations between CaACA/ECAs and other species (Arabidopsis, rice, and tomato). The experimental results indicate that CaACA/ECAs are stable and hydrophobic proteins, with each of the eleven CaACA/ECA proteins containing all ten motifs. Eleven CaACA/ECA genes are unevenly distributed on the eight chromosomes, and they substantially differ in the number of exons. We found a close correlation between the ACA/ECAs of pepper, Arabidopsis, and tomato. The CaACA/ECA genes contain various plant-hormone-, growth-, and stress-related cis-acting elements. The qRT-PCR results indicate that the expression levels of the eleven CaACA/ECAs exhibit differential temporal expression patterns under various exogenous Ca2+ concentrations. These results provide a theoretical basis for further studying the function of the pepper ACA/ECA gene family and valuable information for identifying and screening genes for pepper stress tolerance breeding.
Collapse
Affiliation(s)
- Yuxuan Qian
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture and Rural Affairs, Beijing 100097, China
- National Key Laboratory of Biological Breeding, Beijing 100097, China
| | - Jing Tong
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture and Rural Affairs, Beijing 100097, China
- National Key Laboratory of Biological Breeding, Beijing 100097, China
| | - Ning Liu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture and Rural Affairs, Beijing 100097, China
- National Key Laboratory of Biological Breeding, Beijing 100097, China
| | - Baoju Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture and Rural Affairs, Beijing 100097, China
- National Key Laboratory of Biological Breeding, Beijing 100097, China
| | - Zhanhui Wu
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture and Rural Affairs, Beijing 100097, China
- National Vegetable Engineering Technology Research Center, Beijing 100097, China
| |
Collapse
|
2
|
Bosch M, Franklin-Tong V. Regulating programmed cell death in plant cells: Intracellular acidification plays a pivotal role together with calcium signaling. THE PLANT CELL 2024; 36:4692-4702. [PMID: 39197046 PMCID: PMC11530775 DOI: 10.1093/plcell/koae245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/03/2024] [Accepted: 08/22/2024] [Indexed: 08/30/2024]
Abstract
Programmed cell death (PCD) occurs in different tissues in response to a number of different signals in plant cells. Drawing from work in several different contexts, including root-cap cell differentiation, plant response to biotic and abiotic stress, and some self-incompatibility (SI) systems, the data suggest that, despite differences, there are underlying commonalities in the early decision-making stages of PCD. Here, we focus on how 2 cellular events, increased [Ca2+]cyt levels and cytosolic acidification, appear to act as early signals involved in regulating both developmental and stimulus-induced PCD in plant cells.
Collapse
Affiliation(s)
- Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth SY23 3EE, UK
| | - Vernonica Franklin-Tong
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
3
|
Zheng S, Wang F, Liu Z, Zhang H, Zhang L, Chen D. The Role of Female and Male Genes in Regulating Pollen Tube Guidance in Flowering Plants. Genes (Basel) 2024; 15:1367. [PMID: 39596567 PMCID: PMC11593715 DOI: 10.3390/genes15111367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
In flowering plants, fertilization is a complex process governed by precise communication between the male and female gametophytes. This review focuses on the roles of various female gametophyte cells-synergid, central, and egg cells-in facilitating pollen tube guidance and ensuring successful fertilization. Synergid cells play a crucial role in attracting the pollen tube, while the central cell influences the direction of pollen tube growth, and the egg cell is responsible for preventing polyspermy, ensuring correct fertilization. The review also examines the role of the pollen tube in this communication, highlighting the mechanisms involved in its growth regulation, including the importance of pollen tube receptors, signal transduction pathways, cell wall dynamics, and ion homeostasis. The Ca2+ concentration gradient is identified as a key factor in guiding pollen tube growth toward the ovule. Moreover, the review briefly compares these communication processes in angiosperms with those in non-flowering plants, such as mosses, ferns, and early gymnosperms, providing evolutionary insights into gametophytic signaling. Overall, this review synthesizes the current understanding of male-female gametophyte interactions and outlines future directions for research in plant reproductive biology.
Collapse
Affiliation(s)
- Siyuan Zheng
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Feng Wang
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Zehui Liu
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
| | - Hongbin Zhang
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China;
| | - Liangsheng Zhang
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Yazhouwan National Laboratory, Sanya 572025, China
| | - Dan Chen
- Hainan Institute, Zhejiang University, Sanya 572025, China; (S.Z.); (F.W.); (Z.L.)
| |
Collapse
|
4
|
Xu YJ, Luo T, Zhou PM, Wang WQ, Yang WC, Li HJ. Pollen-expressed RLCKs control pollen tube burst. PLANT COMMUNICATIONS 2024; 5:100934. [PMID: 38689493 PMCID: PMC11369774 DOI: 10.1016/j.xplc.2024.100934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/13/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
In angiosperms, the pollen tube enters the receptive synergid cell, where it ruptures to release its cytoplasm along with two sperm cells. This interaction is complex, and the exact signal transducers that trigger the bursting of pollen tubes are not well understood. In this study, we identify three homologous receptor-like cytoplasmic kinases (RLCKs) expressed in pollen tubes of Arabidopsis, Delayed Burst 1/2/3 (DEB1/2/3), which play a crucial role in this process. These genes produce proteins localized on the plasma membrane, and their knockout causes delayed pollen tube burst and entrance of additional pollen tubes into the embryo sac due to fertilization recovery. We show that DEBs interact with the Ca2+ pump ACA9, influencing the dynamics of cytoplasmic Ca2+ in pollen tubes through phosphorylation. These results highlight the importance of DEBs as key signal transducers and the critical function of the DEB-ACA9 axis in timely pollen tube burst in synergids.
Collapse
Affiliation(s)
- Yin-Jiao Xu
- Center for Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ting Luo
- Center for Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng-Min Zhou
- Center for Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei-Qi Wang
- Center for Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei-Cai Yang
- Center for Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong-Ju Li
- Center for Molecular Agrobiology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Wdowiak A, Kryzheuskaya K, Podgórska A, Paterczyk B, Zebrowski J, Archacki R, Szal B. Ammonium nutrition modifies cellular calcium distribution influencing ammonium-induced growth inhibition. JOURNAL OF PLANT PHYSIOLOGY 2024; 298:154264. [PMID: 38744182 DOI: 10.1016/j.jplph.2024.154264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
Proper plant growth requires balanced nutrient levels. In this study, we analyzed the relationship between ammonium (NH4+) nutrition and calcium (Ca2+) homeostasis in the leaf tissues of wild-type and mutant Arabidopsis specimens provided with different nitrogen sources (NH4+ and nitrate, NO3-). Providing plants with NH4+ as the sole nitrogen source disrupts Ca2+ homeostasis, which is essential for activating signaling pathways and maintaining the cell wall structure. The results revealed that the lower Ca2+ content in Arabidopsis leaves under NH4+ stress might result from reduced transpiration pull, which could impair root-to-shoot Ca2+ transport. Moreover, NH4+ nutrition increased the expression of genes encoding proteins responsible for exporting Ca2+ from the cytosol of leaf cells. Furthermore, overexpression of the Ca2+/H+ antiporter 1 (CAX1) gene alleviates the effects of NH4+ syndrome, including stunted growth. The oeCAX1 plants, characterized by a lower apoplastic Ca2+ level, grew better under NH4+ stress than wild-type plants. Evaluation of the mechanical properties of the leaf blades, including stiffness, strength, toughness, and extensibility, showed that the wild-type and oeCAX1 plants responded differently to the nitrogen source, highlighting the role of cell wall metabolism in inhibiting the growth of NH4+-stressed plants.
Collapse
Affiliation(s)
- Agata Wdowiak
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Katsiaryna Kryzheuskaya
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Anna Podgórska
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Bohdan Paterczyk
- Imaging Laboratory, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Jacek Zebrowski
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1 St, 35-310, Rzeszow, Poland
| | - Rafał Archacki
- Department of Systems Biology, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Bożena Szal
- Department of Plant Bioenergetics, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
6
|
Chandan K, Gupta M, Ahmad A, Sarwat M. P-type calcium ATPases play important roles in biotic and abiotic stress signaling. PLANTA 2024; 260:37. [PMID: 38922354 DOI: 10.1007/s00425-024-04462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/09/2024] [Indexed: 06/27/2024]
Abstract
MAIN CONCLUSION Knowledge of Ca2+-ATPases is imperative for improving crop quality/ food security, highly threatened due to global warming. Ca2+-ATPases modulates calcium, essential for stress signaling and modulating growth, development, and immune activities. Calcium is considered a versatile secondary messenger and essential for short- and long-term responses to biotic and abiotic stresses in plants. Coordinated transport activities from both calcium influx and efflux channels are required to generate cellular calcium signals. Various extracellular stimuli cause an induction in cytosolic calcium levels. To cope with such stresses, it is important to maintain intracellular Ca2+ levels. Plants need to evolve efficient efflux mechanisms to maintain Ca2+ ion homeostasis. Plant Ca2+-ATPases are members of the P-type ATPase superfamily and localized in the plasma membrane and endoplasmic reticulum (ER). They are required for various cellular processes, including plant growth, development, calcium signaling, and even retorts to environmental stress. These ATPases play an essential role in Ca2+ homeostasis and are actively involved in Ca2+ transport. Plant Ca2+-ATPases are categorized into two major classes: type IIA and type IIB. Although these two classes of ATPases share similarities in protein sequence, they differ in their structure, cellular localization, and sensitivity to inhibitors. Due to the emerging role of Ca2+-ATPase in abiotic and biotic plant stress, members of this family may help promote agricultural improvement under stress conditions. This review provides a comprehensive overview of P-type Ca2+-ATPase, and their role in Ca2+ transport, stress signaling, and cellular homeostasis focusing on their classification, evolution, ion specificities, and catalytic mechanisms. It also describes the main aspects of the role of Ca2+-ATPase in transducing signals during plant biotic and abiotic stress responses and its role in plant development and physiology.
Collapse
Affiliation(s)
- Kumari Chandan
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Meenakshi Gupta
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, 201313, India
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
7
|
Mathew IE, Rhein HS, Yang J, Gradogna A, Carpaneto A, Guo Q, Tappero R, Scholz-Starke J, Barkla BJ, Hirschi KD, Punshon T. Sequential removal of cation/H + exchangers reveals their additive role in elemental distribution, calcium depletion and anoxia tolerance. PLANT, CELL & ENVIRONMENT 2024; 47:557-573. [PMID: 37916653 DOI: 10.1111/pce.14756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/21/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
Multiple Arabidopsis H+ /Cation exchangers (CAXs) participate in high-capacity transport into the vacuole. Previous studies have analysed single and double mutants that marginally reduced transport; however, assessing phenotypes caused by transport loss has proven enigmatic. Here, we generated quadruple mutants (cax1-4: qKO) that exhibited growth inhibition, an 85% reduction in tonoplast-localised H+ /Ca transport, and enhanced tolerance to anoxic conditions compared to CAX1 mutants. Leveraging inductively coupled plasma mass spectrometry (ICP-MS) and synchrotron X-ray fluorescence (SXRF), we demonstrate CAX transporters work together to regulate leaf elemental content: ICP-MS analysis showed that the elemental concentrations in leaves strongly correlated with the number of CAX mutations; SXRF imaging showed changes in element partitioning not present in single CAX mutants and qKO had a 40% reduction in calcium (Ca) abundance. Reduced endogenous Ca may promote anoxia tolerance; wild-type plants grown in Ca-limited conditions were anoxia tolerant. Sequential reduction of CAXs increased mRNA expression and protein abundance changes associated with reactive oxygen species and stress signalling pathways. Multiple CAXs participate in postanoxia recovery as their concerted removal heightened changes in postanoxia Ca signalling. This work showcases the integrated and diverse function of H+ /Cation transporters and demonstrates the ability to improve anoxia tolerance through diminishing endogenous Ca levels.
Collapse
Affiliation(s)
- Iny Elizebeth Mathew
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, USA
| | - Hormat Shadgou Rhein
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, USA
| | - Jian Yang
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, USA
| | - Antonella Gradogna
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genova, Italy
| | - Armando Carpaneto
- Institute of Biophysics, Consiglio Nazionale delle Ricerche, Genova, Italy
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Genova, Italy
| | - Qi Guo
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Ryan Tappero
- Brookhaven National Laboratory, Photon Sciences Department, Upton, New York, USA
| | | | - Bronwyn J Barkla
- Faculty of Science and Engineering, Southern Cross University, Lismore, New South Wales, Australia
| | - Kendal D Hirschi
- Pediatrics-Nutrition, Children's Nutrition Research, Baylor College of Medicine, Houston, Texas, USA
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
8
|
Zhang Y, Qiao D, Zhang Z, Li Y, Shi S, Yang Y. Calcium signal regulated carbohydrate metabolism in wheat seedlings under salinity stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:123-136. [PMID: 38435855 PMCID: PMC10902238 DOI: 10.1007/s12298-024-01413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/19/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024]
Abstract
This study aimed to explore the mechanism by which calcium (Ca) signal regulated carbohydrate metabolism and exogenous Ca alleviated salinity toxicity. Wheat seedlings were treated with sodium chloride (NaCl, 150 mM) alone or combined with 500 μM calcium chloride (CaCl2), lanthanum chloride (LaCl3) and/or ethylene glycol tetraacetic acid (EGTA) to primarily analyse carbohydrate starch and sucrose metabolism, as well as Ca signaling components. Treatment with NaCl, EGTA, or LaCl3 alone retarded wheat-seedling growth and decreased starch content accompanied by weakened ribulose-1,5-bisphosphate carboxylation/oxygenase (Rubisco) and Rubisco activase activities, as well as enhanced glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase, alpha-amylase, and beta-amylase activities. However, it increased the sucrose level, up-regulated the sucrose phosphate synthase (SPS) and sucrose synthase (SuSy) activities and TaSPS and TaSuSy expression together, but down-regulated the acid invertase (SA-Inv) and alkaline/neutral invertase (A/N-Inv) activities and TaSA-Inv and TaA/N-Inv expression. Except for unchanged A/N-Inv activities and TaA/N-Inv expression, adding CaCl2 effectively blocked the sodium salt-induced changes of these parameters, which was partially eliminated by EGTA or LaCl3 presence. Furthermore, NaCl treatment also significantly inhibited Ca-dependent protein kinases and Ca2+-ATPase activities and their gene expression in wheat leaves, which was effectively relieved by adding CaCl2. Taken together, CaCl2 application effectively alleviated the sodium salt-induced retardation of wheat-seedling growth by enhancing starch anabolism and sucrose catabolism, and intracellular Ca signal regulated the enzyme activities and gene expression of starch and sucrose metabolism in the leaves of sodium salt-stressed wheat seedlings.
Collapse
Affiliation(s)
- Ya Zhang
- School of Life Science, College of Life Science, Northwest Normal University, Lanzhou, 730070 Gansu People’s Republic of China
| | - Dan Qiao
- School of Life Science, College of Life Science, Northwest Normal University, Lanzhou, 730070 Gansu People’s Republic of China
| | - Zhe Zhang
- School of Life Science, College of Life Science, Northwest Normal University, Lanzhou, 730070 Gansu People’s Republic of China
| | - Yaping Li
- School of Life Science, College of Life Science, Northwest Normal University, Lanzhou, 730070 Gansu People’s Republic of China
| | - Shuqian Shi
- School of Life Science, College of Life Science, Northwest Normal University, Lanzhou, 730070 Gansu People’s Republic of China
| | - Yingli Yang
- School of Life Science, College of Life Science, Northwest Normal University, Lanzhou, 730070 Gansu People’s Republic of China
| |
Collapse
|
9
|
Dong XY. Calcium Ion Channels in Saccharomyces cerevisiae. J Fungi (Basel) 2023; 9:jof9050524. [PMID: 37233235 DOI: 10.3390/jof9050524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Regulating calcium ion (Ca2+) channels to improve the cell cycle and metabolism is a promising technology, ensuring increased cell growth, differentiation, and/or productivity. In this regard, the composition and structure of Ca2+ channels play a vital role in controlling the gating states. In this review, Saccharomyces cerevisiae, as a model eukaryotic organism and an essential industrial microorganism, was used to discuss the effect of its type, composition, structure, and gating mechanism on the activity of Ca2+ channels. Furthermore, the advances in the application of Ca2+ channels in pharmacology, tissue engineering, and biochemical engineering are summarized, with a special focus on exploring the receptor site of Ca2+ channels for new drug design strategies and different therapeutic uses, targeting Ca2+ channels to produce functional replacement tissues, creating favorable conditions for tissue regeneration, and regulating Ca2+ channels to enhance biotransformation efficiency.
Collapse
Affiliation(s)
- Xiao-Yu Dong
- College of Life and Health, Dalian University, Dalian 116622, China
| |
Collapse
|
10
|
Li Z, Harper JF, Weigand C, Hua J. Resting cytosol Ca2+ level maintained by Ca2+ pumps affects environmental responses in Arabidopsis. PLANT PHYSIOLOGY 2023; 191:2534-2550. [PMID: 36715402 PMCID: PMC10069881 DOI: 10.1093/plphys/kiad047] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/26/2022] [Indexed: 06/10/2023]
Abstract
Calcium ion transporting systems control cytosol Ca2+ levels ([Ca2+]cyt) and generate transient calcium (Ca2+) signatures that are key to environmental responses. Here, we report an impact of resting [Ca2+]cyt on plants from the functional study of calmodulin-regulated Ca2+ pumps or Ca2+-ATPases in Arabidopsis (Arabidopsis thaliana). The plasma membrane-localized pumps ACA8 (autoinhibited Ca2+-ATPase) and ACA10, as well as the vacuole-localized pumps ACA4 and ACA11, were critical in maintaining low resting [Ca2+]cyt and essential for plant survival under chilling and heat-stress conditions. Their loss-of-function mutants aca8 aca10 and aca4 aca11 had autoimmunity at normal temperatures, and this deregulated immune activation was enhanced by low temperature, leading to chilling lethality. Furthermore, these mutants showed an elevated resting [Ca2+]cyt, and a reduction of external Ca2+ lowered [Ca2+]cyt and repressed their autoimmunity and cold susceptibility. The aca8 aca10 and the aca4 aca11 mutants were also susceptible to heat, likely resulting from more closed stomata and higher leaf surface temperature than the wild type. These observations support a model in which the regulation of resting [Ca2+]cyt is critical to how plants regulate biotic and abiotic responses.
Collapse
Affiliation(s)
- Zhan Li
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY 14853, USA
| | - Jeffrey F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Chrystle Weigand
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Jian Hua
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Park CJ, Shin R. Calcium channels and transporters: Roles in response to biotic and abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:964059. [PMID: 36161014 PMCID: PMC9493244 DOI: 10.3389/fpls.2022.964059] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Calcium (Ca2+) serves as a ubiquitous second messenger by mediating various signaling pathways and responding to numerous environmental conditions in eukaryotes. Therefore, plant cells have developed complex mechanisms of Ca2+ communication across the membrane, receiving the message from their surroundings and transducing the information into cells and organelles. A wide range of biotic and abiotic stresses cause the increase in [Ca2+]cyt as a result of the Ca2+ influx permitted by membrane-localized Ca2+ permeable cation channels such as CYCLIC NUCLEOTIDE-GATE CHANNELs (CNGCs), and voltage-dependent HYPERPOLARIZATION-ACTIVATED CALCIUM2+ PERMEABLE CHANNELs (HACCs), as well as GLUTAMATE RECEPTOR-LIKE RECEPTORs (GLRs) and TWO-PORE CHANNELs (TPCs). Recently, resistosomes formed by some NUCLEOTIDE-BINDING LEUCINE-RICH REPEAT RECEPTORs (NLRs) are also proposed as a new type of Ca2+ permeable cation channels. On the contrary, some Ca2+ transporting membrane proteins, mainly Ca2+-ATPase and Ca2+/H+ exchangers, are involved in Ca2+ efflux for removal of the excessive [Ca2+]cyt in order to maintain the Ca2+ homeostasis in cells. The Ca2+ efflux mechanisms mediate the wide ranges of cellular activities responding to external and internal stimuli. In this review, we will summarize and discuss the recent discoveries of various membrane proteins involved in Ca2+ influx and efflux which play an essential role in fine-tuning the processing of information for plant responses to abiotic and biotic stresses.
Collapse
Affiliation(s)
- Chang-Jin Park
- Department of Bioresources Engineering, Sejong University, Seoul, South Korea
| | - Ryoung Shin
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| |
Collapse
|
12
|
Wang J, Fu X, Zhang S, Chen G, Li S, Shangguan T, Zheng Y, Xu F, Chen ZH, Xu S. Evolutionary and Regulatory Pattern Analysis of Soybean Ca 2+ ATPases for Abiotic Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:898256. [PMID: 35665149 PMCID: PMC9161174 DOI: 10.3389/fpls.2022.898256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
P2-type Ca2+ ATPases are responsible for cellular Ca2+ transport, which plays an important role in plant development and tolerance to biotic and abiotic stresses. However, the role of P2-type Ca2+ ATPases in stress response and stomatal regulation is still elusive in soybean. In this study, a total of 12 P2-type Ca2+ ATPases genes (GmACAs and GmECAs) were identified from the genome of Glycine max. We analyzed the evolutionary relationship, conserved motif, functional domain, gene structure and location, and promoter elements of the family. Chlorophyll fluorescence imaging analysis showed that vegetable soybean leaves are damaged to different extents under salt, drought, cold, and shade stresses. Real-time quantitative PCR (RT-qPCR) analysis demonstrated that most of the GmACAs and GmECAs are up-regulated after drought, cold, and NaCl treatment, but are down-regulated after shading stress. Microscopic observation showed that different stresses caused significant stomatal closure. Spatial location and temporal expression analysis suggested that GmACA8, GmACA9, GmACA10, GmACA12, GmACA13, and GmACA11 might promote stomatal closure under drought, cold, and salt stress. GmECA1 might regulate stomatal closure in shading stress. GmACA1 and GmECA3 might have a negative function on cold stress. The results laid an important foundation for further study on the function of P2-type Ca2+ ATPase genes GmACAs and GmECAs for breeding abiotic stress-tolerant vegetable soybean.
Collapse
Affiliation(s)
- Jian Wang
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xujun Fu
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Sheng Zhang
- Taizhou Seed Administration Station, Taizhou, China
| | - Guang Chen
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Sujuan Li
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tengwei Shangguan
- College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yuanting Zheng
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fei Xu
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Shengchun Xu
- Central Laboratory, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
13
|
Shi X, Zhou Z, Li W, Qin M, Yang P, Hou J, Huang F, Lei Z, Wu Z, Wang J. Genome-wide association study reveals the genetic architecture for calcium accumulation in grains of hexaploid wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2022; 22:229. [PMID: 35508960 PMCID: PMC9066855 DOI: 10.1186/s12870-022-03602-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/15/2022] [Indexed: 05/31/2023]
Abstract
BACKGROUND Hexaploid wheat (Triticum aestivum L.) is a leading cereal crop worldwide. Understanding the mechanism of calcium (Ca) accumulation in wheat is important to reduce the risk of human micronutrient deficiencies. However, the mechanisms of Ca accumulation in wheat grain are only partly understood. RESULTS Here, a genome-wide association study (GWAS) was performed to dissect the genetic basis of Ca accumulation in wheat grain using an association population consisting of 207 varieties, with phenotypic data from three locations. In total, 11 non-redundant genetic loci associated with Ca concentration were identified and they explained, on average, 9.61-26.93% of the phenotypic variation. Cultivars containing more superior alleles had increased grain Ca concentrations. Notably, four non-redundant loci were mutually verified by different statistical models in at least two environments, indicating their stability across different environments. Four putative candidate genes linked to Ca accumulation were revealed from the stable genetic loci. Among them, two genes, associated with the stable genetic loci on chromosomes 4A (AX-108912427) and 3B (AX-110922471), encode the subunits of V-type Proton ATPase (TraesCS4A02G428900 and TraesCS3B02G241000), which annotated as the typical generators of a proton gradient that might be involved in Ca homeostasis in wheat grain. CONCLUSION To identify genetic loci associated with Ca accumulation, we conducted GWAS on Ca concentrations and detected 11 genetic loci; whereas four genetic loci were stable across different environments. A genetic loci hot spot exists at the end of chromosome 4A and associated with the putative candidate gene TraesCS4A02G428900. The candidate gene TraesCS4A02G428900 encodes V-type proton ATPase subunit e and highly expressed in wheat grains, and it possibly involved in Ca accumulation. This study increases our understanding of the genetic architecture of Ca accumulation in wheat grains, which is potentially helpful for wheat Ca biofortification pyramid breeding.
Collapse
Affiliation(s)
- Xia Shi
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Zhengfu Zhou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Wenxu Li
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Maomao Qin
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Pan Yang
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Jinna Hou
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Fangfang Huang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhensheng Lei
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China.
- College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan, 467000, China.
| | - Zhengqing Wu
- Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
| | - Jiansheng Wang
- College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan, 467000, China.
| |
Collapse
|
14
|
Fuglsang AT, Palmgren M. Proton and calcium pumping P-type ATPases and their regulation of plant responses to the environment. PLANT PHYSIOLOGY 2021; 187:1856-1875. [PMID: 35235671 PMCID: PMC8644242 DOI: 10.1093/plphys/kiab330] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/23/2021] [Indexed: 05/10/2023]
Abstract
Plant plasma membrane H+-ATPases and Ca2+-ATPases maintain low cytoplasmic concentrations of H+ and Ca2+, respectively, and are essential for plant growth and development. These low concentrations allow plasma membrane H+-ATPases to function as electrogenic voltage stats, and Ca2+-ATPases as "off" mechanisms in Ca2+-based signal transduction. Although these pumps are autoregulated by cytoplasmic concentrations of H+ and Ca2+, respectively, they are also subject to exquisite regulation in response to biotic and abiotic events in the environment. A common paradigm for both types of pumps is the presence of terminal regulatory (R) domains that function as autoinhibitors that can be neutralized by multiple means, including phosphorylation. A picture is emerging in which some of the phosphosites in these R domains appear to be highly, nearly constantly phosphorylated, whereas others seem to be subject to dynamic phosphorylation. Thus, some sites might function as major switches, whereas others might simply reduce activity. Here, we provide an overview of the relevant transport systems and discuss recent advances that address their relation to external stimuli and physiological adaptations.
Collapse
Affiliation(s)
- Anja T Fuglsang
- Department for Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Michael Palmgren
- Department for Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Author for communication:
| |
Collapse
|
15
|
Doménech-Carbó A. Electrochemistry of plants: basic theoretical research and applications in plant science. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-05046-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Ren Z, Wang X, Feng C, Pan Y, Tian W, Zhang Q, Liu L, Hou C, Kong D, Li L. The diversity of ion channel-assembled molecular switches empowers the flexibility and specificity of Ca 2+ language. PLANT SIGNALING & BEHAVIOR 2021; 16:1924503. [PMID: 33975516 PMCID: PMC8281060 DOI: 10.1080/15592324.2021.1924503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Zhijie Ren
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, China
| | - Xiaohan Wang
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, China
| | - Changxin Feng
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, China
| | - Yajun Pan
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, China
| | - Wang Tian
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, China
| | - Qian Zhang
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, China
| | - Liangyu Liu
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, China
| | - Congcong Hou
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, China
| | - Dongdong Kong
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, China
| | - Legong Li
- Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing Municipal Government, and College of Life Sciences, Capital Normal University, Beijing, China
| |
Collapse
|
17
|
Abstract
Calcium (Ca2+) is a unique mineral that serves as both a nutrient and a signal in all eukaryotes. To maintain Ca2+ homeostasis for both nutrition and signaling purposes, the toolkit for Ca2+ transport has expanded across kingdoms of eukaryotes to encode specific Ca2+ signals referred to as Ca2+ signatures. In parallel, a large array of Ca2+-binding proteins has evolved as specific sensors to decode Ca2+ signatures. By comparing these coding and decoding mechanisms in fungi, animals, and plants, both unified and divergent themes have emerged, and the underlying complexity will challenge researchers for years to come. Considering the scale and breadth of the subject, instead of a literature survey, in this review we focus on a conceptual framework that aims to introduce to readers to the principles and mechanisms of Ca2+ signaling. We finish with several examples of Ca2+-signaling pathways, including polarized cell growth, immunity and symbiosis, and systemic signaling, to piece together specific coding and decoding mechanisms in plants versus animals. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| | - Chao Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA;
| |
Collapse
|
18
|
Maharajan T, Antony Ceasar S, Ajeesh Krishna TP, Ignacimuthu S. Finger Millet [Eleusine coracana (L.) Gaertn]: An Orphan Crop With a Potential to Alleviate the Calcium Deficiency in the Semi-arid Tropics of Asia and Africa. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.684447] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Finger millet plays a vital role in the food and nutritional security of many people in developing countries particularly in Asia and Africa. It is a staple food for poor people in many regions of Asian (India, China, Nepal, and Sri Lanka etc.) and African (South Africa, Ethiopia, Kenya, Uganda, and Nigeria etc.) countries. Finger millet contains nutrient rich components such as dietary fibers, minerals, vitamins, and phytochemicals that include phenolic compounds with several potential health benefits. Calcium (Ca) is an important macronutrient for healthy life of plants, humans and animals. It plays an indispensable role in structure and signaling and its deficiency causes low bone density, osteoporosis, colon cancer etc. Finger millet grains contain exceptionally higher amount of Ca (>300 mg/100 g) when compared to other major cereals. Ca transporter and sensor family genes are involved in the uptake, transport and accumulation of Ca. Understanding the molecular mechanisms of Ca transporter and sensor family genes is important for growth, development and seed fortification in finger millet. Expression analysis of Ca transporter and sensor family genes has been carried out in various tissues of finger millet. Only a very little research work has been done to understand the Ca accumulation in the grains of finger millet. In this review, we discuss the nutritional importance and health benefits of finger millet. We discuss the studies on Ca sensor, accumulation and transport genes that help to improve the grains of finger millet with special reference to Ca. Improved Ca content in finger millet may help to alleviate the Ca deficiency throughout the world particularly in the semi-arid tropics of Asia and Africa.
Collapse
|
19
|
Li J, Zhao Y, Chang C, Liu X, Jiang J. Identification and Expression Profiling Analysis of the Cation/Ca 2+ Exchanger (CCX) Gene Family: Overexpression of SlCCX1-LIKE Regulates the Leaf Senescence in Tomato Flowering Phase. Front Genet 2021; 12:683904. [PMID: 34249100 PMCID: PMC8270643 DOI: 10.3389/fgene.2021.683904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/14/2021] [Indexed: 11/14/2022] Open
Abstract
Cation gradients in plant cellular compartments are maintained by the synergistic actions of various ion exchangers, pumps, and channels. Cation/Ca2+ exchanger (CCX) is one of the clades of the Ca2+/cation antiporter super family. Here, five SlCCX genes were identified in tomato. Sequence analysis indicated that SlCCXs have the conserved motifs as the CCX domain. Analysis of the expression level of each member of tomato CCX gene family under cation (Mg2+, Mn2+, Na+, and Ca2+) treatment was determined by qRT-PCR. Tomato CCX demonstrated different degrees of responding to cation treatment. Changes in SlCCX1-LIKE expression was induced by Mg2+ and Mn2+ treatment. Analysis of the expression of SlCCX genes in different tissues demonstrated that constitutive high expression of a few genes, including SlCCX1-LIKE and SlCCX5, indicated their role in tomato organ growth and development. Overexpression of SlCCX1-LIKE dramatically induced leaf senescence. Transcriptome analysis showed that genes related to ROS and several IAA signaling pathways were significantly downregulated, whereas ETH and ABA signaling pathway-related genes were upregulated in overexpression of SlCCX1-LIKE (OE-SlCCX1-LIKE) plants, compared with the wild type (WT). Moreover, overexpression of SlCCX1-LIKE plants accumulated more ROS content but less Mg2+ content. Collectively, the findings of this study provide insights into the base mechanism through which CCXs regulate leaf senescence in tomato.
Collapse
Affiliation(s)
- Jiao Li
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yaran Zhao
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Chenliang Chang
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xin Liu
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Jing Jiang
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, China
| |
Collapse
|
20
|
Bellaloui N, Turley RB, Stetina SR. Cottonseed Protein, Oil, and Minerals in Cotton ( Gossypium hirsutum L.) Lines Differing in Curly Leaf Morphology. PLANTS 2021; 10:plants10030525. [PMID: 33799866 PMCID: PMC7998471 DOI: 10.3390/plants10030525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/01/2021] [Accepted: 03/08/2021] [Indexed: 11/16/2022]
Abstract
Cottonseed is an important source of protein, oil, and minerals for human health and livestock feed. Therefore, understanding the physiological and genetic traits influencing the nutrient content is critical. To our knowledge, there is no information available on the effects of leaf shape—curly leaf (CRL)—on cottonseed protein, oil, and minerals. Therefore, the objective of the current research was to investigate the effect of the curly leaf trait on cottonseed protein, oil, and minerals in cotton lines differing in leaf shape. Our hypothesis was that since leaf shape is known to be associated with nutrient uptake, assimilation, and photosynthesis process, leaf shape can influence seed protein, oil, and minerals. A two-year field experiment using two curly leaf lines (Uzbek CRL and DP 5690 CRL) and one normal leaf (DP 5690 wild type) line was conducted in 2014 and 2015 in Stoneville, MS, USA. The experiment was a randomized complete block design with three replicates. The results showed that both Uzbek CRL and DP 5690 wild type lines had higher seed oil, and nutrients N, P, K, and Mg than DP 5690 CRL. Calcium was higher in DP 5690 CRL for two years and protein was only higher than the parents in 2015. Consistent significant positive and negative correlations between some nutrients were observed, which may be due to environmental conditions, especially heat. This indicates that curly leaf trait may partially regulate the accumulation of these nutrients in seeds. The results demonstrated that leaf shape trait—curly leaf—can affect cottonseed nutritional qualities. This research is important to breeders for cotton selection for high seed oil or protein, and to other researchers to further understand the genetic impact of leaf shapes on seed nutritional quality. It is also important for scientists to use leaf shape as a tool for physiological, biochemical, and morphological research related to leaf development.
Collapse
|
21
|
Abstract
Calcium (Ca2+) is a universal signalling molecule of life. The Ca2+ signalling is an evolutionarily conserved process from prokaryotes to eukaryotes. Ca2+ at high concentration is deleterious to the cell; therefore, cell maintains a low resting level of intracellular free Ca2+ concentration ([Ca2+]c). The resting [Ca2+]c is tightly regulated, and a transient increase of the [Ca2+]c initiates a signalling cascade in the cell. Ca2+ signalling plays an essential role in various processes, including growth, development, reproduction, tolerance to stress conditions, and virulence in fungi. In this review, we describe the evolutionary aspects of Ca2+ signalling and cell functions of major Ca2+ signalling proteins in different fungi.
Collapse
Affiliation(s)
- Avishek Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Ajeet Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Darshana Baruah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Ranjan Tamuli
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
22
|
García Bossi J, Kumar K, Barberini ML, Domínguez GD, Rondón Guerrero YDC, Marino-Buslje C, Obertello M, Muschietti JP, Estevez JM. The role of P-type IIA and P-type IIB Ca2+-ATPases in plant development and growth. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1239-1248. [PMID: 31740935 DOI: 10.1093/jxb/erz521] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
As sessile organisms, plants have evolved mechanisms to adapt to variable and rapidly fluctuating environmental conditions. Calcium (Ca2+) in plant cells is a versatile intracellular second messenger that is essential for stimulating short- and long-term responses to environmental stresses through changes in its concentration in the cytosol ([Ca2+]cyt). Increases in [Ca2+]cyt direct the strength and length of these stimuli. In order to terminate them, the cells must then remove the cytosolic Ca2+ against a concentration gradient, either taking it away from the cell or storing it in organelles such as the endoplasmic reticulum (ER) and/or vacuoles. Here, we review current knowledge about the biological roles of plant P-type Ca2+-ATPases as potential actors in the regulation of this cytosolic Ca2+ efflux, with a focus the IIA ER-type Ca2+-ATPases (ECAs) and the IIB autoinhibited Ca2+-ATPases (ACAs). While ECAs are analogous proteins to animal sarcoplasmic-endoplasmic reticulum Ca2+-ATPases (SERCAs), ACAs are equivalent to animal plasma membrane-type ATPases (PMCAs). We examine their expression patterns in cells exhibiting polar growth and consider their appearance during the evolution of the plant lineage. Full details of the functions and coordination of ECAs and ACAs during plant growth and development have not yet been elucidated. Our current understanding of the regulation of fluctuations in Ca2+ gradients in the cytoplasm and organelles during growth is in its infancy, but recent technological advances in Ca2+ imaging are expected to shed light on this subject.
Collapse
Affiliation(s)
- Julián García Bossi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Buenos Aires, Argentina
| | - Krishna Kumar
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina
- Molecular Plant Biology and Biotechnology Laboratory, CSIR-Central Institute of Medicinal and Aromatic Plants Research Centre, GKVK Post, Bengaluru, India
| | - María Laura Barberini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Buenos Aires, Argentina
| | - Gabriela Díaz Domínguez
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina
| | | | - Cristina Marino-Buslje
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina
| | - Mariana Obertello
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Buenos Aires, Argentina
| | - Jorge P Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Güiraldes, Ciudad Universitaria, Pabellón II, Buenos Aires, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina
- Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
23
|
Aliniaeifard S, Shomali A, Seifikalhor M, Lastochkina O. Calcium Signaling in Plants Under Drought. SALT AND DROUGHT STRESS TOLERANCE IN PLANTS 2020:259-298. [DOI: 10.1007/978-3-030-40277-8_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
|
24
|
Seifikalhor M, Aliniaeifard S, Shomali A, Azad N, Hassani B, Lastochkina O, Li T. Calcium signaling and salt tolerance are diversely entwined in plants. PLANT SIGNALING & BEHAVIOR 2019; 14:1665455. [PMID: 31564206 PMCID: PMC6804723 DOI: 10.1080/15592324.2019.1665455] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 05/11/2023]
Abstract
In plants dehydration imposed by salinity can invoke physical changes at the interface of the plasma membrane and cell wall. Changes in hydrostatic pressure activate ion channels and cause depolarization of the plasma membrane due to disturbance in ion transport. During the initial phases of salinity stress, the relatively high osmotic potential of the rhizosphere enforces the plant to use a diverse spectrum of strategies to optimize water and nutrient uptake. Signals of salt stress are recognized by specific root receptors that activate an osmosensing network. Plant response to hyperosmotic tension is closely linked to the calcium (Ca2+) channels and interacting proteins such as calmodulin. A rapid rise in cytosolic Ca2+ levels occurs within seconds of exposure to salt stress. Plants employ multiple sensors and signaling components to sense and respond to salinity stress, of which most are closely related to Ca2+ sensing and signaling. Several tolerance strategies such as osmoprotectant accumulation, antioxidant boosting, polyaminses and nitric oxide (NO) machineries are also coordinated by Ca2+ signaling. Substantial research has been done to discover the salt stress pathway and tolerance mechanism in plants, resulting in new insights into the perception of salt stress and the downstream signaling that happens in response. Nevertheless, the role of multifunctional components such as Ca2+ has not been sufficiently addressed in the context of salt stress. In this review, we elaborate that the salt tolerance signaling pathway converges with Ca2+ signaling in diverse pathways. We summarize knowledge related to different dimensions of salt stress signaling pathways in the cell by emphasizing the administrative role of Ca2+ signaling on salt perception, signaling, gene expression, ion homeostasis and adaptive responses.
Collapse
Affiliation(s)
- Maryam Seifikalhor
- Department of Plant Biology, College of Science, University of Tehran, Tehran, Iran
| | - Sasan Aliniaeifard
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Aida Shomali
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Nikoo Azad
- Department of Plant Biology, College of Science, University of Tehran, Tehran, Iran
| | - Batool Hassani
- Department of Plant Sciences, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Oksana Lastochkina
- Ufa Federal Research Centre, Russian Academy of Sciences, Bashkir Research Institute of Agriculture, Ufa, Russia
- Ufa Federal Research Centre, Russian Academy of Sciences, Institute of Biochemistry and Genetics, Ufa, Russia
| | - Tao Li
- Chinese Academy of Agricultural Science, Institute of Environment and Sustainable Development in Agriculture, Beijing, China
| |
Collapse
|
25
|
Paiva EAS. Are calcium oxalate crystals a dynamic calcium store in plants? THE NEW PHYTOLOGIST 2019; 223:1707-1711. [PMID: 31081933 DOI: 10.1111/nph.15912] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
Calcium oxalate (CaOx) crystals occur as intravacuolar deposits in most angiosperm species. Different functions have been attributed to these crystals, some of which are very speculative, until now. Calcium regulation and homeostasis seem to be the most widespread function of CaOx crystals. Being rich in calcium, these crystals constitute a reserve of calcium for plants. However, despite being bioavailable, this reserve is functional in just a few situations due to the low mobility of calcium for phloem translocation. Therefore, CaOx crystals as a calcium reserve is a paradox because in most cases the reserve cannot be used. However, in most plants, these crystals occur in organs or tissues that will be discarded, which allows the elimination of excess calcium. This suggests that CaOx crystals have a functional role in excess calcium excretion. There is some evidence that, for calcium, this excretory function is relevant for plants since they lack an excretory system dedicated to discarding solid wastes, such as calcium salts.
Collapse
Affiliation(s)
- Elder Antônio Sousa Paiva
- Plant Secretion & Reproduction (PlantSeR) Lab, Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
26
|
van Bel AJE, Musetti R. Sieve element biology provides leads for research on phytoplasma lifestyle in plant hosts. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3737-3755. [PMID: 30972422 DOI: 10.1093/jxb/erz172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Phytoplasmas reside exclusively in sieve tubes, tubular arrays of sieve element-companion cell complexes. Hence, the cell biology of sieve elements may reveal (ultra)structural and functional conditions that are of significance for survival, propagation, colonization, and effector spread of phytoplasmas. Electron microscopic images suggest that sieve elements offer facilities for mobile and stationary stages in phytoplasma movement. Stationary stages may enable phytoplasmas to interact closely with diverse sieve element compartments. The unique, reduced sieve element outfit requires permanent support by companion cells. This notion implies a future focus on the molecular biology of companion cells to understand the sieve element-phytoplasma inter-relationship. Supply of macromolecules by companion cells is channelled via specialized symplasmic connections. Ca2+-mediated gating of symplasmic corridors is decisive for the communication within and beyond the sieve element-companion cell complex and for the dissemination of phytoplasma effectors. Thus, Ca2+ homeostasis, which affects sieve element Ca2+ signatures and induces a range of modifications, is a key issue during phytoplasma infection. The exceptional physical and chemical environment in sieve elements seems an essential, though not the only factor for phytoplasma survival.
Collapse
Affiliation(s)
- Aart J E van Bel
- Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus-Liebig University, Giessen, Germany
| | - Rita Musetti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
27
|
Boron Deficiency Increases Cytosolic Ca 2+ Levels Mainly via Ca 2+ Influx from the Apoplast in Arabidopsis thaliana Roots. Int J Mol Sci 2019; 20:ijms20092297. [PMID: 31075903 PMCID: PMC6540140 DOI: 10.3390/ijms20092297] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/03/2019] [Accepted: 05/07/2019] [Indexed: 11/17/2022] Open
Abstract
Boron (B) is a micronutrient for plant development, and its deficiency alters many physiological processes. However, the current knowledge on how plants are able to sense the B-starvation signal is still very limited. Recently, it has been reported that B deprivation induces an increase in cytosolic calcium concentration ([Ca2+]cyt) in Arabidopsis thaliana roots. The aim of this work was to research in Arabidopsis whether [Ca2+]cyt is restored to initial levels when B is resupplied and elucidate whether apoplastic Ca2+ is the major source for B-deficiency-induced rise in [Ca2+]cyt. The use of chemical compounds affecting Ca2+ homeostasis showed that the rise in root [Ca2+]cyt induced by B deficiency was predominantly owed to Ca2+ influx from the apoplast through plasma membrane Ca2+ channels in an IP3-independent manner. Furthermore, B resupply restored the root [Ca2+]cyt. Interestingly, expression levels of genes encoding Ca2+ transporters (ACA10, plasma membrane PIIB-type Ca2+-ATPase; and CAX3, vacuolar cation/proton exchanger) were upregulated by ethylene glycol tetraacetic acid (EGTA) and abscisic acid (ABA). The results pointed out that ACA10, and especially CAX3, would play a major role in the restoration of Ca2+ homeostasis after 24 h of B deficiency.
Collapse
|
28
|
Demidchik V, Shabala S, Isayenkov S, Cuin TA, Pottosin I. Calcium transport across plant membranes: mechanisms and functions. THE NEW PHYTOLOGIST 2018; 220:49-69. [PMID: 29916203 DOI: 10.1111/nph.15266] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/21/2018] [Indexed: 05/20/2023]
Abstract
Contents Summary 49 I. Introduction 49 II. Physiological and structural characteristics of plant Ca2+ -permeable ion channels 50 III. Ca2+ extrusion systems 61 IV. Concluding remarks 64 Acknowledgements 64 References 64 SUMMARY: Calcium is an essential structural, metabolic and signalling element. The physiological functions of Ca2+ are enabled by its orchestrated transport across cell membranes, mediated by Ca2+ -permeable ion channels, Ca2+ -ATPases and Ca2+ /H+ exchangers. Bioinformatics analysis has not determined any Ca2+ -selective filters in plant ion channels, but electrophysiological tests do reveal Ca2+ conductances in plant membranes. The biophysical characteristics of plant Ca2+ conductances have been studied in detail and were recently complemented by molecular genetic approaches. Plant Ca2+ conductances are mediated by several families of ion channels, including cyclic nucleotide-gated channels (CNGCs), ionotropic glutamate receptors, two-pore channel 1 (TPC1), annexins and several types of mechanosensitive channels. Key Ca2+ -mediated reactions (e.g. sensing of temperature, gravity, touch and hormones, and cell elongation and guard cell closure) have now been associated with the activities of specific subunits from these families. Structural studies have demonstrated a unique selectivity filter in TPC1, which is passable for hydrated divalent cations. The hypothesis of a ROS-Ca2+ hub is discussed, linking Ca2+ transport to ROS generation. CNGC inactivation by cytosolic Ca2+ , leading to the termination of Ca2+ signals, is now mechanistically explained. The structure-function relationships of Ca2+ -ATPases and Ca2+ /H+ exchangers, and their regulation and physiological roles are analysed.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Horticulture, Foshan University, Foshan, 528000, China
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Avenue, Minsk, 220030, Belarus
- Komarov Botanical Institute, Russian Academy of Sciences, 2 Professora Popova Street, St Petersburg, 197376, Russia
| | - Sergey Shabala
- Department of Horticulture, Foshan University, Foshan, 528000, China
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas, 7001, Australia
| | - Stanislav Isayenkov
- Institute of Food Biotechnology and Genomics, National Academy of Science of Ukraine, 2a Osipovskogo Street, Kyiv, 04123, Ukraine
| | - Tracey A Cuin
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tas, 7001, Australia
| | - Igor Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Avenida 25 de julio 965, Colima, 28045, Mexico
| |
Collapse
|
29
|
Unraveling Field Crops Sensitivity to Heat Stress:Mechanisms, Approaches, and Future Prospects. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8070128] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The astonishing increase in temperature presents an alarming threat to crop production worldwide. As evident by huge yield decline in various crops, the escalating drastic impacts of heat stress (HS) are putting global food production as well as nutritional security at high risk. HS is a major abiotic stress that influences plant morphology, physiology, reproduction, and productivity worldwide. The physiological and molecular responses to HS are dynamic research areas, and molecular techniques are being adopted for producing heat tolerant crop plants. In this article, we reviewed recent findings, impacts, adoption, and tolerance at the cellular, organellar, and whole plant level and reported several approaches that are used to improve HS tolerance in crop plants. Omics approaches unravel various mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward HS. Our review about physiological and molecular mechanisms may enlighten ways to develop thermo-tolerant cultivars and to produce crop plants that are agriculturally important in adverse climatic conditions.
Collapse
|
30
|
Li Y, Guo J, Yang Z, Yang DL. Plasma Membrane-Localized Calcium Pumps and Copines Coordinately Regulate Pollen Germination and Fertility in Arabidopsis. Int J Mol Sci 2018; 19:ijms19061774. [PMID: 29914054 PMCID: PMC6032332 DOI: 10.3390/ijms19061774] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/07/2018] [Accepted: 06/13/2018] [Indexed: 11/22/2022] Open
Abstract
Calcium plays an important role in plant growth, development, and response to environmental stimuli. Copines are conserved plasma membrane-localized calcium-binding proteins which regulate plant immune responses and development. In this study, we found that copine proteins BON2 and BON3, the paralogs of BON1, physically interact with calcium pumps ACA8 and ACA10 in Arabidopsis. Notably, ACA9, the closest homologue of ACA8 and ACA10 functioning in pollen tube growth, interacts with all three copines. This is consistent with the protein–protein interactions between the two protein families, the aca8, aca10, aca8/aca10, bon1/2/3 mutants as well as aca9 mutant exhibited defects on pollen germination and seed production. Taken together, plasma membrane-localized interacting calcium pumps and copines coordinately control pollen tube growth, likely through manipulating calcium efflux.
Collapse
Affiliation(s)
- Yun Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jinping Guo
- Department of Anatomy, The Second Military Medical University, Shanghai 200433, China.
| | - Ziyuan Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Dong-Lei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
31
|
Barberini ML, Sigaut L, Huang W, Mangano S, Juarez SPD, Marzol E, Estevez J, Obertello M, Pietrasanta L, Tang W, Muschietti J. Calcium dynamics in tomato pollen tubes using the Yellow Cameleon 3.6 sensor. PLANT REPRODUCTION 2018; 31:159-169. [PMID: 29236154 DOI: 10.1007/s00497-017-0317-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 12/04/2017] [Indexed: 06/07/2023]
Abstract
In vitro tomato pollen tubes show a cytoplasmic calcium gradient that oscillates with the same period as growth. Pollen tube growth requires coordination between the tip-focused cytoplasmic calcium concentration ([Ca2+]cyt) gradient and the actin cytoskeleton. This [Ca2+]cyt gradient is necessary for exocytosis of small vesicles, which contributes to the delivery of new membrane and cell wall at the pollen tube tip. The mechanisms that generate and maintain this [Ca2+]cyt gradient are not completely understood. Here, we studied calcium dynamics in tomato (Solanum lycopersicum) pollen tubes using transgenic tomato plants expressing the Yellow Cameleon 3.6 gene under the pollen-specific promoter LAT52. We use tomato as an experimental model because tomato is a Solanaceous plant that is easy to transform, and has an excellent genomic database and genetic stock center, and unlike Arabidopsis, tomato pollen is a good system to do biochemistry. We found that tomato pollen tubes showed an oscillating tip-focused [Ca2+]cyt gradient with the same period as growth. Then, we used a pharmacological approach to disturb the intracellular Ca2+ homeostasis, evaluating how the [Ca2+]cyt gradient, pollen germination and in vitro pollen tube growth were affected. We found that cyclopiazonic acid (CPA), a drug that inhibits plant PIIA-type Ca2+-ATPases, increased [Ca2+]cyt in the subapical zone, leading to the disappearance of the Ca2+ oscillations and inhibition of pollen tube growth. In contrast, 2-aminoethoxydiphenyl borate (2-APB), an inhibitor of Ca2+ released from the endoplasmic reticulum to the cytoplasm in animals cells, completely reduced [Ca2+]cyt at the tip of the tube, blocked the gradient and arrested pollen tube growth. Although both drugs have antagonistic effects on [Ca2+]cyt, both inhibited pollen tube growth triggering the disappearance of the [Ca2+]cyt gradient. When CPA and 2-APB were combined, their individual inhibitory effects on pollen tube growth were partially compensated. Finally, we found that GsMTx-4, a peptide from spider venom that blocks stretch-activated Ca2+ channels, inhibited tomato pollen germination and had a heterogeneous effect on pollen tube growth, suggesting that these channels are also involved in the maintenance of the [Ca2+]cyt gradient. All these results indicate that tomato pollen tube is an excellent model to study calcium dynamics.
Collapse
Affiliation(s)
- María Laura Barberini
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Lorena Sigaut
- Instituto de Física de Buenos Aires (IFIBA-CONICET), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón I, C1428EHA, Buenos Aires, Argentina
| | - Weijie Huang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Silvina Mangano
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Av. Patricias Argentinas 435, CP C1405BWE, Buenos Aires, Argentina
| | - Silvina Paola Denita Juarez
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Av. Patricias Argentinas 435, CP C1405BWE, Buenos Aires, Argentina
| | - Eliana Marzol
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Av. Patricias Argentinas 435, CP C1405BWE, Buenos Aires, Argentina
| | - José Estevez
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Av. Patricias Argentinas 435, CP C1405BWE, Buenos Aires, Argentina
| | - Mariana Obertello
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina
| | - Lía Pietrasanta
- Instituto de Física de Buenos Aires (IFIBA-CONICET), Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón I, C1428EHA, Buenos Aires, Argentina
- Centro de Microscopías Avanzadas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón I, C1428EHA, Buenos Aires, Argentina
| | - Weihua Tang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Jorge Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, "Dr. Héctor Torres" (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN, Buenos Aires, Argentina.
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
32
|
Taneja M, Upadhyay SK. Molecular characterization and differential expression suggested diverse functions of P-type II Ca 2+ATPases in Triticum aestivum L. BMC Genomics 2018; 19:389. [PMID: 29792165 PMCID: PMC5966885 DOI: 10.1186/s12864-018-4792-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022] Open
Abstract
Background Plant P-type II Ca2+ATPases are formed by two distinct groups of proteins (ACAs and ECAs) that perform pumping of Ca2+ outside the cytoplasm during homeostasis, and play vital functions during development and stress management. In the present study, we have performed identification and characterisation of P-type II Ca2+ATPase gene family in an important crop plant Triticum aestivum. Results Herein, a total of 33 TaACA and 9 TaECA proteins were identified from the various chromosomes and sub-genomes of Triticum aestivum. Phylogenetic analysis revealed clustering of the homoeologous TaACA and TaECA proteins into 11 and 3 distinct groups that exhibited high sequence homology and comparable structural organization as well. Both TaACA and TaECA group proteins consisted of eight to ten transmembrane regions, and their respective domains and motifs. Prediction of sub-cellular localization was found variable for most of the proteins; moreover, it was consistent with the evolutionarily related proteins from rice and Arabidopsis in certain cases. The occurrence of assorted sets of cis-regulatory elements indicated their diverse functions. The differential expression of various TaACA and TaECA genes during developmental stages suggested their roles in growth and development. The modulated expression during heat, drought, salt and biotic stresses along with the occurrence of various stress specific cis-regulatory elements suggested their association with stress response. Interaction of these genes with numerous development and stress related genes indicated their decisive role in various biological processes and signaling. Conclusion T. aestivum genome consisted of a maximum of 42 P-type II Ca2+ATPase genes, derived from each A, B and D sub-genome. These genes may play diverse functions during plant growth and development. They may also be involved in signalling during abiotic and biotic stresses. The present study provides a comprehensive insight into the role of P-type II Ca2+ATPase genes in T. aestivum. However, the specific function of each gene needs to be established, which could be utilized in future crop improvement programs. Electronic supplementary material The online version of this article (10.1186/s12864-018-4792-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mehak Taneja
- Department of Botany, Panjab University, Chandigarh, 160014, India
| | | |
Collapse
|
33
|
De Vriese K, Costa A, Beeckman T, Vanneste S. Pharmacological Strategies for Manipulating Plant Ca 2+ Signalling. Int J Mol Sci 2018; 19:E1506. [PMID: 29783646 PMCID: PMC5983822 DOI: 10.3390/ijms19051506] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/10/2018] [Accepted: 05/12/2018] [Indexed: 11/20/2022] Open
Abstract
Calcium is one of the most pleiotropic second messengers in all living organisms. However, signalling specificity is encoded via spatio-temporally regulated signatures that act with surgical precision to elicit highly specific cellular responses. How this is brought about remains a big challenge in the plant field, in part due to a lack of specific tools to manipulate/interrogate the plant Ca2+ toolkit. In many cases, researchers resort to tools that were optimized in animal cells. However, the obviously large evolutionary distance between plants and animals implies that there is a good chance observed effects may not be specific to the intended plant target. Here, we provide an overview of pharmacological strategies that are commonly used to activate or inhibit plant Ca2+ signalling. We focus on highlighting modes of action where possible, and warn for potential pitfalls. Together, this review aims at guiding plant researchers through the Ca2+ pharmacology swamp.
Collapse
Affiliation(s)
- Kjell De Vriese
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Alex Costa
- Department of Biosciences, University of Milan, 20133 Milan, Italy.
- Instititute of Biophysics, Consiglio Nazionale delle Ricerche, 20133 Milan, Italy.
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium.
- VIB Center for Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium.
- Lab of Plant Growth Analysis, Ghent University Global Campus, Songdomunhwa-Ro, 119, Yeonsu-gu, Incheon 21985, Korea.
| |
Collapse
|
34
|
Yu H, Yan J, Du X, Hua J. Overlapping and differential roles of plasma membrane calcium ATPases in Arabidopsis growth and environmental responses. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2693-2703. [PMID: 29506225 PMCID: PMC5920303 DOI: 10.1093/jxb/ery073] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/13/2018] [Indexed: 05/21/2023]
Abstract
Plant cells have multiple plasma membrane (PM)-localized calcium ATPases (ACAs) pumping calcium ions out of the cytosol. Although the involvement of some of these ACAs in plant growth and immunity has been reported, their individual and combined functions have not been fully examined. Here, we analysed the effects of single and combined mutations of four ACA genes, ACA8, ACA10, ACA12, and ACA13, in a number of processes. We found that these four genes had both overlapping and differential involvements in vegetative growth, inflorescence growth, seeds setting, disease resistance and stomatal movement. Disruption of any of these four genes reduces seed setting, indicating their contribution to the overall fitness of the plants. While ACA10 and ACA8 play major roles in vegetative growth and immunity, ACA13 and ACA12 are also involved in these processes especially when the function of ACA10 and/or ACA8 is compromised. The loss of ACA13 and ACA10 function in combination with a reduction in function of ACA8 leads to seedling death at bolting, revealing the essential role of their collective function in plant growth. Taken together, this study indicates a highly tuned calcium system involving these PM-localized calcium pumps in plant growth and environmental responses.
Collapse
Affiliation(s)
- Huiyun Yu
- Research Center of Organic Agriculture Technology, College of Plant Protection, China Agricultural University, Beijing, PR China
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Jiapei Yan
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, USA
| | - Xiangge Du
- Research Center of Organic Agriculture Technology, College of Plant Protection, China Agricultural University, Beijing, PR China
- Correspondence: ,
| | - Jian Hua
- School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, USA
- Correspondence: ,
| |
Collapse
|
35
|
Selvarajan D, Mohan C, Dhandapani V, Nerkar G, Jayanarayanan AN, Vadakkancherry Mohanan M, Murugan N, Kaur L, Chennappa M, Kumar R, Meena M, Ram B, Chinnaswamy A. Differential gene expression profiling through transcriptome approach of Saccharum spontaneum L. under low temperature stress reveals genes potentially involved in cold acclimation. 3 Biotech 2018; 8:195. [PMID: 29581927 DOI: 10.1007/s13205-018-1194-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/02/2018] [Indexed: 11/28/2022] Open
Abstract
Sugarcane (Saccharum sp.) is predominantly grown in both tropics and subtropics in India, and the subtropics alone contribute more than half of sugarcane production. Sugarcane active growth period in subtropics is restricted to 8-9 months mainly due to winter's low temperature stress prevailing during November to February every year. Being a commercial crop, tolerance to low temperature is important in sugarcane improvement programs. Development of cold tolerant sugarcane varieties require a deep knowledge on molecular mechanism naturally adapted by cold tolerant genotypes during low temperature stress. To understand gene regulation under low temperature stress, control and stressed (10 °C, 24 h) leaf samples of cold tolerant S. spontaneum IND 00-1037 collected from high altitude region in Arunachal Pradesh were used for transcriptome analysis using the Illumina NextSeq 500 platform with paired-end sequencing method. Raw reads of 5.1 GB (control) and 5.3 GB (stressed) obtained were assembled using trinity and annotated with UNIPROT, KEGG, GO, COG and SUCEST databases, and transcriptome was validated using qRT-PCR. The differential gene expression (DGE) analysis showed that 2583 genes were upregulated and 3302 genes were down-regulated upon low temperature stress. A total of 170 cold responsive transcriptional factors belonging to 30 families were differentially regulated. CBF6 (C-binding factor), a DNA binding transcriptional activation protein associated with cold acclimation and freezing tolerance was differentially upregulated. Many low temperature responsive genes involved in various metabolic pathways, viz. cold sensing through membrane fluidity, calcium and lipid signaling genes, MAP kinases, phytohormone signaling and biosynthetic genes, antioxidative enzymes, membrane and cellular stabilizing genes, genes involved in biosynthesis of polyunsaturated fatty acids, chaperones, LEA proteins, soluble sugars, osmoprotectants, lignin and pectin biosynthetic genes were also differentially upregulated. Potential cold responsive genes and transcriptional factors involved in cold tolerance mechanism in cold tolerant S. spontaneum IND 00-1037 were identified. Together, this study provides insights into the cold tolerance to low temperature stress in S. spontaneum, thus opening applications in the genetic improvement of cold stress tolerance in sugarcane.
Collapse
Affiliation(s)
- Dharshini Selvarajan
- 1Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - Chakravarthi Mohan
- 1Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - Vignesh Dhandapani
- 3Molecular Genetics and Genomics Laboratory, Department of Horticulture, Chungnam National University, Daejeon, 305764 South Korea
| | - Gauri Nerkar
- 1Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | | | | | - Naveenarani Murugan
- 1Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - Lovejot Kaur
- 1Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | | | - Ravinder Kumar
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute Regional Centre, Karnal, India
| | - Minturam Meena
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute Regional Centre, Karnal, India
| | - Bakshi Ram
- 1Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India
| | - Appunu Chinnaswamy
- 1Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, India
| |
Collapse
|
36
|
Demidchik V, Shabala S. Mechanisms of cytosolic calcium elevation in plants: the role of ion channels, calcium extrusion systems and NADPH oxidase-mediated 'ROS-Ca 2+ Hub'. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:9-27. [PMID: 32291018 DOI: 10.1071/fp16420] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 05/22/2023]
Abstract
Elevation in the cytosolic free calcium is crucial for plant growth, development and adaptation. Calcium influx into plant cells is mediated by Ca2+ depolarisation-activated, hyperpolarisation-activated and voltage-independent Ca2+-permeable channels (DACCs, HACCs and VICCs respectively). These channels are encoded by the following gene families: (1) cyclic nucleotide-gated channels (CNGCs), (2) ionotropic glutamate receptors (GLRs), (3) annexins, (4) 'mechanosensitive channels of small (MscS) conductance'-like channels (MSLs), (5) 'mid1-complementing activity' channels (MCAs), Piezo channels, and hyperosmolality-induced [Ca2+]cyt. channel 1 (OSCA1). Also, a 'tandem-pore channel1' (TPC1) catalyses Ca2+ efflux from the vacuole in response to the plasma membrane-mediated Ca2+ elevation. Recent experimental data demonstrated that Arabidopsis thaliana (L.) Heynh. CNGCs 2, 5-10, 14, 16 and 18, GLRs 1.2, 3.3, 3.4, 3.6 and 3.7, TPC1, ANNEXIN1, MSL9 and MSL10,MCA1 and MCA2, OSCA1, and some their homologues counterparts in other species, are responsible for Ca2+ currents and/or cytosolic Ca2+ elevation. Extrusion of Ca2+ from the cytosol is mediated by Ca2+-ATPases and Ca2+/H+ exchangers which were recently examined at the level of high resolution crystal structure. Calcium-activated NADPH oxidases and reactive oxygen species (ROS)-activated Ca2+ conductances form a self-amplifying 'ROS-Ca2+hub', enhancing and transducing Ca2+ and redox signals. The ROS-Ca2+ hub contributes to physiological reactions controlled by ROS and Ca2+, demonstrating synergism and unity of Ca2+ and ROS signalling mechanisms.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Avenue, Minsk, 220030, Belarus
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas. 7001, Australia
| |
Collapse
|
37
|
Aslam R, Williams LE, Bhatti MF, Virk N. Genome-wide analysis of wheat calcium ATPases and potential role of selected ACAs and ECAs in calcium stress. BMC PLANT BIOLOGY 2017; 17:174. [PMID: 29078753 PMCID: PMC5658947 DOI: 10.1186/s12870-017-1112-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 10/09/2017] [Indexed: 05/02/2023]
Abstract
BACKGROUND P2- type calcium ATPases (ACAs-auto inhibited calcium ATPases and ECAs-endoplasmic reticulum calcium ATPases) belong to the P- type ATPase family of active membrane transporters and are significantly involved in maintaining accurate levels of Ca2+, Mn2+ and Zn2+ in the cytosol as well as playing a very important role in stress signaling, stomatal opening and closing and pollen tube growth. Here we report the identification and possible role of some of these ATPases from wheat. RESULTS In this study, ACA and ECA sequences of six species (belonging to Poaceae) were retrieved from different databases and a phylogenetic tree was constructed. A high degree of evolutionary relatedness was observed among P2 sequences characterized in this study. Members of the respective groups from different plant species were observed to fall under the same clade. This pattern highlights the common ancestry of P2- type calcium ATPases. Furthermore, qRT-PCR was used to analyse the expression of selected ACAs and ECAs from Triticum aestivum (wheat) under calcium toxicity and calcium deficiency. The data indicated that expression of ECAs is enhanced under calcium stress, suggesting possible roles of these ATPases in calcium homeostasis in wheat. Similarly, the expression of ACAs was significantly different in plants grown under calcium stress as compared to plants grown under control conditions. This gives clues to the role of ACAs in signal transduction during calcium stress in wheat. CONCLUSION Here we concluded that wheat genome consists of nine P2B and three P2A -type calcium ATPases. Moreover, gene loss events in wheat ancestors lead to the loss of a particular homoeolog of a gene in wheat. To elaborate the role of these wheat ATPases, qRT-PCR was performed. The results indicated that when plants are exposed to calcium stress, both P2A and P2B gene expression get enhanced. This further gives clues about the possible role of these ATPases in wheat in calcium management. These findings can be useful in future for genetic manipulations as well as in wheat genome annotation process.
Collapse
Affiliation(s)
- Roohi Aslam
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000 Pakistan
| | | | - Muhammad Faraz Bhatti
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000 Pakistan
| | - Nasar Virk
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000 Pakistan
| |
Collapse
|
38
|
Tang RJ, Luan S. Regulation of calcium and magnesium homeostasis in plants: from transporters to signaling network. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:97-105. [PMID: 28709026 DOI: 10.1016/j.pbi.2017.06.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 05/26/2023]
Abstract
Calcium (Ca2+) and magnesium (Mg2+) are the most abundant divalent cations in plants. As a nutrient and a signaling ion, Ca2+ levels in the cell are tightly controlled by an array of channels and carriers that provide mechanistic basis for Ca2+ homeostasis and the generation of Ca2+ signals. Although a family of CorA-type Mg2+ transporters plays a key role in controlling Mg2+ homeostasis in plants, more components are yet to be identified. Ca2+ and Mg2+ appear to have antagonistic interactions in plant cells, and therefore plants depend on a homeostatic balance between Ca2+ and Mg2+ for optimal growth and development. Maintenance of such a balance in response to changing nutrient status in the soil emerges as a critical feature of plant mineral nutrition. Studies have uncovered signaling mechanisms that perceive nutrient status as a signal and regulate transport activities as adaptive responses. This 'nutrient sensing' network is exemplified by the Ca2+-dependent CBL (calcineurin B-like)-CIPK (CBL-interacting protein kinase) pathway that serves as a major link between environmental nutrient status and transport activities. In this review, we analyze the recent literature on Ca2+ and Mg2+ transport systems and their regulation and provide our perspectives on future research.
Collapse
Affiliation(s)
- Ren-Jie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, United States
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, United States.
| |
Collapse
|
39
|
Li Y, Jin F, Chao Q, Wang BC. Proteomics analysis reveals the molecular mechanism underlying the transition from primary to secondary growth of poplar. JOURNAL OF PLANT PHYSIOLOGY 2017; 213:1-15. [PMID: 28284108 DOI: 10.1016/j.jplph.2017.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 05/21/2023]
Abstract
Wood is the most important natural source of energy and also provides fuel and fiber. Considering the significant role of wood, it is critical to understand how wood is formed. Integration of knowledge about wood development at the cellular and molecular levels will allow more comprehensive understanding of this complex process. In the present study, we used a comparative proteomic approach to investigate the differences in protein profiles between primary and secondary growth in young poplar stems using tandem mass tag (TMT)-labeling. More than 10,816 proteins were identified, and, among these, 3106 proteins were differentially expressed during primary to secondary growth. Proteomic data were validated using a combination of histochemical staining, enzyme activity assays, and quantitative real-time PCR. Bioinformatics analysis revealed that these differentially expressed proteins are related to various metabolic pathways, mainly including signaling, phytohormones, cell cycle, cell wall, secondary metabolism, carbohydrate and energy metabolism, and protein metabolism as well as redox and stress pathways. This large proteomics dataset will be valuable for uncovering the molecular changes occurring during the transition from primary to secondary growth. Further, it provides new and accurate information for tree breeding to modify wood properties.
Collapse
Affiliation(s)
- Yuan Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China.
| | - Feng Jin
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing 100093, China.
| | - Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing 100093, China.
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No. 20 Nanxincun, Xiangshan, Beijing 100093, China.
| |
Collapse
|
40
|
Wang J, Zhu XG, Ying SH, Feng MG. Differential Roles for Six P-Type Calcium ATPases in Sustaining Intracellular Ca 2+ Homeostasis, Asexual Cycle and Environmental Fitness of Beauveria bassiana. Sci Rep 2017; 7:1420. [PMID: 28469160 PMCID: PMC5431182 DOI: 10.1038/s41598-017-01570-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 03/31/2017] [Indexed: 12/18/2022] Open
Abstract
A global insight into the roles of multiple P-type calcium ATPase (CA) pumps in sustaining the life of a filamentous fungal pathogen is lacking. Here we elucidated the functions of five CA pumps (Eca1, Spf1 and PmcA/B/C) following previous characterization of Pmr1 in Beauveria bassiana, a fungal insect pathogen. The fungal CA pumps interacted at transcriptional level, at which singular deletions of five CA genes depressed eca1 expression by 76–98% and deletion of spf1 resulted in drastic upregulation of four CA genes by 36–50-fold. Intracellular Ca2+ concentration increased differentially in most deletion mutants exposed to the stresses of Ca2+, EDTA chelator, and/or endoplasmic reticulum and calcineurin inhibitors, accompanied with their changed sensitivities to not only the mentioned agents but also Fe2+, Cu2+ and Zn2+. Liquid culture acidification was delayed in the Δspf1, Δpmr1 and ΔpmcA mutants, coinciding well with altered levels of their extracellular lactic and oxalic acids. Moreover, all deletion mutants showed differential defects in conidial germination, vegetative growth, conidiation capacity, antioxidant activity, cell wall integrity, conidial UV-B resistance and/or virulence. Our results provide the first global insight into differential roles for six CA pumps in sustaining intracellular Ca2+ level, asexual cycle and environmental fitness of B. bassiana.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.,College of Food Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xiao-Guan Zhu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Sheng-Hua Ying
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Ming-Guang Feng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
41
|
Abraham PE, Yin H, Borland AM, Weighill D, Lim SD, De Paoli HC, Engle N, Jones PC, Agh R, Weston DJ, Wullschleger SD, Tschaplinski T, Jacobson D, Cushman JC, Hettich RL, Tuskan GA, Yang X. Transcript, protein and metabolite temporal dynamics in the CAM plant Agave. NATURE PLANTS 2016; 2:16178. [PMID: 27869799 DOI: 10.1038/nplants.2016.178] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 10/20/2016] [Indexed: 05/19/2023]
Abstract
Already a proven mechanism for drought resilience, crassulacean acid metabolism (CAM) is a specialized type of photosynthesis that maximizes water-use efficiency by means of an inverse (compared to C3 and C4 photosynthesis) day/night pattern of stomatal closure/opening to shift CO2 uptake to the night, when evapotranspiration rates are low. A systems-level understanding of temporal molecular and metabolic controls is needed to define the cellular behaviour underpinning CAM. Here, we report high-resolution temporal behaviours of transcript, protein and metabolite abundances across a CAM diel cycle and, where applicable, compare the observations to the well-established C3 model plant Arabidopsis. A mechanistic finding that emerged is that CAM operates with a diel redox poise that is shifted relative to that in Arabidopsis. Moreover, we identify widespread rescheduled expression of genes associated with signal transduction mechanisms that regulate stomatal opening/closing. Controlled production and degradation of transcripts and proteins represents a timing mechanism by which to regulate cellular function, yet knowledge of how this molecular timekeeping regulates CAM is unknown. Here, we provide new insights into complex post-transcriptional and -translational hierarchies that govern CAM in Agave. These data sets provide a resource to inform efforts to engineer more efficient CAM traits into economically valuable C3 crops.
Collapse
Affiliation(s)
- Paul E Abraham
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Hengfu Yin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Anne M Borland
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- School of Biology, University of Newcastle, Newcastle upon Tyne NE1 7RU, UK
| | - Deborah Weighill
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Sung Don Lim
- Department of Biochemistry and Molecular Biology, University of Nevada, MS330, Reno, Nevada 89557-0330, USA
| | | | - Nancy Engle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Piet C Jones
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Ryan Agh
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Stan D Wullschleger
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Timothy Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Daniel Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, MS330, Reno, Nevada 89557-0330, USA
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|
42
|
Calì T, Frizzarin M, Luoni L, Zonta F, Pantano S, Cruz C, Bonza MC, Bertipaglia I, Ruzzene M, De Michelis MI, Damiano N, Marin O, Zanni G, Zanotti G, Brini M, Lopreiato R, Carafoli E. The ataxia related G1107D mutation of the plasma membrane Ca 2+ ATPase isoform 3 affects its interplay with calmodulin and the autoinhibition process. Biochim Biophys Acta Mol Basis Dis 2016; 1863:165-173. [PMID: 27632770 DOI: 10.1016/j.bbadis.2016.09.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/05/2016] [Accepted: 09/09/2016] [Indexed: 11/20/2022]
Abstract
The plasma membrane Ca2+ ATPases (PMCA pumps) have a long, cytosolic C-terminal regulatory region where a calmodulin-binding domain (CaM-BD) is located. Under basal conditions (low Ca2+), the C-terminal tail of the pump interacts with autoinhibitory sites proximal to the active center of the enzyme. In activating conditions (i.e., high Ca2+), Ca2+-bound CaM displaces the C-terminal tail from the autoinhibitory sites, restoring activity. We have recently identified a G1107D replacement within the CaM-BD of isoform 3 of the PMCA pump in a family affected by X-linked congenital cerebellar ataxia. Here, we investigate the effects of the G1107D replacement on the interplay of the mutated CaM-BD with both CaM and the pump core, by combining computational, biochemical and functional approaches. We provide evidence that the affinity of the isolated mutated CaM-BD for CaM is significantly reduced with respect to the wild type (wt) counterpart, and that the ability of CaM to activate the pump in vitro is thus decreased. Multiscale simulations support the conclusions on the detrimental effect of the mutation, indicating reduced stability of the CaM binding. We further show that the G1107D replacement impairs the autoinhibition mechanism of the PMCA3 pump as well, as the introduction of a negative charge perturbs the contacts between the CaM-BD and the pump core. Thus, the mutation affects both the ability of the pump to optimally transport Ca2+ in the activated state, and the autoinhibition mechanism in its resting state.
Collapse
Affiliation(s)
- Tito Calì
- Department of Biomedical Sciences, University of Padova, Italy
| | | | - Laura Luoni
- Department of Biosciences, University of Milano, Italy
| | - Francesco Zonta
- Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | | | - Carlos Cruz
- Aggeu Magalhães Research Center - CpqAM, Oswaldo Cruz Foundation - FioCruz, Rio de Janeiro, Brazil; Institut Pasteur de Montevideo, Uruguay
| | | | | | - Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, Italy
| | | | - Nunzio Damiano
- Department of Biomedical Sciences, University of Padova, Italy
| | - Oriano Marin
- Department of Biomedical Sciences, University of Padova, Italy
| | - Ginevra Zanni
- Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Marisa Brini
- Department of Biology, University of Padova, Italy
| | | | | |
Collapse
|
43
|
Wang F, Chen ZH, Liu X, Colmer TD, Zhou M, Shabala S. Tissue-specific root ion profiling reveals essential roles of the CAX and ACA calcium transport systems in response to hypoxia in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3747-62. [PMID: 26889007 PMCID: PMC4896357 DOI: 10.1093/jxb/erw034] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Waterlogging is a major abiotic stress that limits the growth of plants. The crucial role of Ca(2+) as a second messenger in response to abiotic and biotic stimuli has been widely recognized in plants. However, the physiological and molecular mechanisms of Ca(2+) distribution within specific cell types in different root zones under hypoxia is poorly understood. In this work, whole-plant physiological and tissue-specific Ca(2+) changes were studied using several ACA (Ca(2+)-ATPase) and CAX (Ca(2+)/proton exchanger) knock-out Arabidopsis mutants subjected to waterlogging treatment. In the wild-type (WT) plants, several days of hypoxia decreased the expression of ACA8, CAX4, and CAX11 by 33% and 50% compared with the control. The hypoxic treatment also resulted in an up to 11-fold tissue-dependent increase in Ca(2+) accumulation in root tissues as revealed by confocal microscopy. The increase was much higher in stelar cells in the mature zone of Arabidopsis mutants with loss of function for ACA8, ACA11, CAX4, and CAX11 In addition, a significantly increased Ca(2+) concentration was found in the cytosol of stelar cells in the mature zone after hypoxic treatment. Three weeks of waterlogging resulted in dramatic loss of shoot biomass in cax11 plants (67% loss in shoot dry weight), while in the WT and other transport mutants this decline was only 14-22%. These results were also consistent with a decline in leaf chlorophyll fluorescence (F v/F m). It is suggested that CAX11 plays a key role in maintaining cytosolic Ca(2+) homeostasis and/or signalling in root cells under hypoxic conditions.
Collapse
Affiliation(s)
- Feifei Wang
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Zhong-Hua Chen
- School of Science and Health, Western Sydney University, Penrith NSW2751, Australia
| | - Xiaohui Liu
- School of Science and Health, Western Sydney University, Penrith NSW2751, Australia School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Timothy David Colmer
- School of Plant Biology and Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| | - Meixue Zhou
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Sergey Shabala
- School of Land and Food, University of Tasmania, Hobart, Tasmania 7001, Australia
| |
Collapse
|
44
|
Shabala S, Bose J, Fuglsang AT, Pottosin I. On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1015-31. [PMID: 26507891 DOI: 10.1093/jxb/erv465] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Abiotic stresses such as salinity, drought, and flooding severely limit food and fibre production and result in penalties of in excess of US$100 billion per annum to the agricultural sector. Improved abiotic stress tolerance to these environmental constraints via traditional or molecular breeding practices requires a good understanding of the physiological and molecular mechanisms behind roots sensing of hostile soils, as well as downstream signalling cascades to effectors mediating plant adaptive responses to the environment. In this review, we discuss some common mechanisms conferring plant tolerance to these three major abiotic stresses. Central to our discussion are: (i) the essentiality of membrane potential maintenance and ATP production/availability and its use for metabolic versus adaptive responses; (ii) reactive oxygen species and Ca(2+) 'signatures' mediating stress signalling; and (iii) cytosolic K(+) as the common denominator of plant adaptive responses. We discuss in detail how key plasma membrane and tonoplast transporters are regulated by various signalling molecules and processes observed in plants under stress conditions (e.g. changes in membrane potential; cytosolic pH and Ca(2+); reactive oxygen species; polyamines; abscisic acid) and how these stress-induced changes are related to expression and activity of specific ion transporters. The reported results are then discussed in the context of strategies for breeding crops with improved abiotic stress tolerance. We also discuss a classical trade-off between tolerance and yield, and possible avenues for resolving this dilemma.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
| | - Jayakumar Bose
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, PMB 1, Glen Osmond, SA 5064, Australia
| | - Anja Thoe Fuglsang
- Department of Plant and Environmental Science, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Igor Pottosin
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 28045 Colima, México
| |
Collapse
|
45
|
Li P, Zhang G, Gonzales N, Guo Y, Hu H, Park S, Zhao J. Ca(2+) -regulated and diurnal rhythm-regulated Na(+) /Ca(2+) exchanger AtNCL affects flowering time and auxin signalling in Arabidopsis. PLANT, CELL & ENVIRONMENT 2016; 39:377-92. [PMID: 26296956 DOI: 10.1111/pce.12620] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 07/09/2015] [Accepted: 07/30/2015] [Indexed: 05/21/2023]
Abstract
Calcium (Ca(2+) ) is vital for plant growth, development, hormone response and adaptation to environmental stresses, yet the mechanisms regulating plant cytosolic Ca(2+) homeostasis are not fully understood. Here, we characterize an Arabidopsis Ca(2+) -regulated Na(+) /Ca(2+) exchanger AtNCL that regulates Ca(2+) and multiple physiological processes. AtNCL was localized to the tonoplast in yeast and plant cells. AtNCL appeared to mediate sodium (Na(+) ) vacuolar sequestration and meanwhile Ca(2+) release. The EF-hand domains within AtNCL regulated Ca(2+) binding and transport of Ca(2+) and Na(+) . Plants with diminished AtNCL expression were more tolerant to high CaCl2 but more sensitive to both NaCl and auxin; heightened expression of AtNCL rendered plants more sensitive to CaCl2 but tolerant to NaCl. AtNCL expression appeared to be regulated by the diurnal rhythm and suppressed by auxin. DR5::GUS expression and root responses to auxin were altered in AtNCL mutants. The auxin-induced suppression of AtNCL was attenuated in SLR/IAA14 and ARF6/8 mutants. The mutants with altered AtNCL expression also altered flowering time and FT and CO expression; FT may mediate AtNCL-regulated flowering time change. Therefore, AtNCL is a vacuolar Ca(2+) -regulated Na(+) /Ca(2+) exchanger that regulates auxin responses and flowering time.
Collapse
Affiliation(s)
- Penghui Li
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Gaoyang Zhang
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Naomi Gonzales
- Children's Nutrition Research Center, USDA/ARS, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yingqing Guo
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430075, China
- Children's Nutrition Research Center, USDA/ARS, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Honghong Hu
- College of Life Science and technology, Huazhong Agricultural University, Wuhan, 430075, China
| | - Sunghun Park
- Department of Horticulture, Forestry and Recreation Resources, Kansas State University, Manhattan, KS, 66506, USA
| | - Jian Zhao
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430075, China
- Children's Nutrition Research Center, USDA/ARS, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
46
|
Zhang P, Zhu Y, Wang L, Chen L, Zhou S. Mining candidate genes associated with powdery mildew resistance in cucumber via super-BSA by specific length amplified fragment (SLAF) sequencing. BMC Genomics 2015; 16:1058. [PMID: 26668009 PMCID: PMC4677437 DOI: 10.1186/s12864-015-2041-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 10/08/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Powdery mildew (PM) is the most common fungal disease of cucumber and other cucurbit crops, while breeding the PM-resistant materials is the effective way to defense this disease, and the recent development of modern genetics and genomics make us aware of that studying the resistance genes is the essential way to breed the PM high-resistance plant. With the ever increasing throughput of next-generation sequencing (NGS), the development of specific length amplified fragment sequencing (SLAF-seq) as a high-resolution strategy for large-scale de novo SNP discovery is gradually applied for functional gene mining. Here we combined the bulked segregant analysis (BSA) with SLAF-seq to identify candidate genes associated with PM resistance in cucumber. METHODS A segregating population comprising 251 F2 individuals was developed using H136 (female parent) as susceptible parent and BK2 (male parent) as resistance donor. After PMR test, total genomic DNA was prepared from each plant. Systemic genomic analysis of the GC content, repeat sequence, etc. was carried out by prediction software SLAF_Predict to establish condition to ensure the uniformity and density of the molecular markers. After samples were gel purified, SLAFs were generated at Biomarker Technologies Corporation in Beijing. Based on SLAF tags and the PMR test result, the hot region were annotated. RESULTS A total of 73,100 high-quality SLAF tags with an average depth of 99.11× were sequenced. Among these, 5,355 polymorphic tags were identified with a polymorphism rate of 7.34 %, including 7.09 % SNPs and other polymorphism types. Finally, 140 associated SLAFs were identified, and two main Hot Regions were detected on chromosome 1 and 6, which contained five genes invovled in defense response, toxin metabolism, cell stress response, and injury response in cucumber. CONCLUSIONS Associated markers identified by super-BSA in this study, could not only speed up the study of the PMR genes, but also provide a feasible solution for breeding the marker-assisted PMR cucumber. Moreover, this study could also be extended to any other species with reference genome.
Collapse
Affiliation(s)
- Peng Zhang
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, 310021, China.
| | - Yuqiang Zhu
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, 310021, China.
| | - Lili Wang
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, 310021, China.
| | - Liping Chen
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, 310021, China.
| | - Shengjun Zhou
- Institute of Vegetable, Zhejiang Academy of Agriculture Sciences, Hangzhou, 310021, China.
| |
Collapse
|
47
|
Yadav AK, Shankar A, Jha SK, Kanwar P, Pandey A, Pandey GK. A rice tonoplastic calcium exchanger, OsCCX2 mediates Ca2+/cation transport in yeast. Sci Rep 2015; 5:17117. [PMID: 26607171 PMCID: PMC4660821 DOI: 10.1038/srep17117] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022] Open
Abstract
In plant cell, cations gradient in cellular compartments is maintained by synergistic action of various exchangers, pumps and channels. The Arabidopsis exchanger family members (AtCCX3 and AtCCX5) were previously studied and belong to CaCA (calcium cation exchangers) superfamily while none of the rice CCXs has been functionally characterized for their cation transport activities till date. Rice genome encode four CCXs and only OsCCX2 transcript showed differential expression under abiotic stresses and Ca(2+) starvation conditions. The OsCCX2 localized to tonoplast and suppresses the Ca(2+) sensitivity of K667 (low affinity Ca(2+) uptake deficient) yeast mutant under excess CaCl2 conditions. In contrast to AtCCXs, OsCCX2 expressing K667 yeast cells show tolerance towards excess Na(+), Li(+), Fe(2+), Zn(2+) and Co(2+) and suggest its ability to transport both mono as well as divalent cations in yeast. Additionally, in contrast to previously characterized AtCCXs, OsCCX2 is unable to complement yeast trk1trk2 double mutant suggesting inability to transport K(+) in yeast system. These finding suggest that OsCCX2 having distinct metal transport properties than previously characterized plant CCXs. OsCCX2 can be used as potential candidate for enhancing the abiotic stress tolerance in plants as well as for phytoremediation of heavy metal polluted soil.
Collapse
Affiliation(s)
- Akhilesh K. Yadav
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Alka Shankar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Saroj K. Jha
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Poonam Kanwar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Amita Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi-110021, India
| |
Collapse
|
48
|
Živanović BD, Shabala LI, Elzenga TJM, Shabala SN. Dissecting blue light signal transduction pathway in leaf epidermis using a pharmacological approach. PLANTA 2015; 242:813-827. [PMID: 25968467 DOI: 10.1007/s00425-015-2316-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
Blue light signalling pathway in broad bean leaf epidermal cells includes key membrane transporters: plasma- and endomembrane channels and pumps of H (+) , Ca (2+) and K (+) ions, and plasma membrane redox system. Blue light signalling pathway in epidermal tissue isolated from the abaxial side of fully developed Vicia faba leaves was dissected by measuring the effect of inhibitors of second messengers on net K(+), Ca(2+) and H(+) fluxes using non-invasive ion-selective microelectrodes (the MIFE system). Switching the blue light on-off caused transient changes of the ion fluxes. The effects of seven groups of inhibitors were tested in this study: CaM antagonists, ATPase inhibitors, Ca(2+) anatagonists or chelators, agents affecting IP3 formation, redox system inhibitors, inhibitors of endomembrane Ca(2+) transport systems and an inhibitor of plasma membrane Ca(2+)-permeable channels. Most of the inhibitors had a significant effect on steady-state (basal) net fluxes, as well as on the magnitude of the transient ion flux responses to blue light fluctuations. The data presented in this study suggest that redox signalling and, specifically, plasma membrane NADPH oxidase and coupled Ca(2+) and K(+) fluxes play an essential role in blue light signal transduction.
Collapse
Affiliation(s)
- Branka D Živanović
- School of Land and Food, University of Tasmania, Private Bag 54, Hobart, TAS, 7001, Australia,
| | | | | | | |
Collapse
|
49
|
Janmohammadi M, Zolla L, Rinalducci S. Low temperature tolerance in plants: Changes at the protein level. PHYTOCHEMISTRY 2015; 117:76-89. [PMID: 26068669 DOI: 10.1016/j.phytochem.2015.06.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 05/29/2015] [Accepted: 06/02/2015] [Indexed: 05/19/2023]
Abstract
Low temperature (LT) is one of several important environmental stresses influencing plant performance and distribution. Adaptation to LT is a highly dynamic stress-response phenomenon and involves complex cross-talk between different regulatory levels. Although plants differ in their sensitivity to LT, in temperate species low nonfreezing temperatures cause noticeable alterations in various biochemical and physiological processes that can potentially improve freezing tolerance. This adaptation is associated with changes in the expression pattern of genes and their protein products. Proteins are the major players in most cellular events and are directly involved in plant LT responses, thereby proteome analysis could help uncover additional novel proteins associated with LT tolerance. Proteomics is recommended as an appropriate strategy for complementing transcriptome level changes and characterizing translational and post-translational regulations. In this review, we considered alterations in the expression and accumulation of proteins in response to LT stress in the three major cereal crops produced worldwide (wheat, barley, and rice). LT stress down-regulates many photosynthesis-related proteins. On the contrary, pathways/protein sets that are up-regulated by LT include carbohydrate metabolism (ATP formation), ROS scavenging, redox adjustment, cell wall remodelling, cytoskeletal rearrangements, cryoprotection, defence/detoxification. These modifications are common adaptation reactions also observed in the plant model Arabidopsis, thus representing key potential biomarkers and critical intervention points for improving LT tolerance of crop plants in cold regions with short summers. We believe that an assessment of the proteome within a broad time frame and during the different phenological stages may disclose the molecular mechanisms related to the developmental regulation of LT tolerance and facilitate the progress of genetically engineered stress-resistant plant varieties.
Collapse
Affiliation(s)
- Mohsen Janmohammadi
- Department of Agronomy and Plant Breeding, Agriculture College, University of Maragheh, Iran
| | - Lello Zolla
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell'Università snc, 01100 Viterbo, Italy.
| |
Collapse
|
50
|
Britto DT, Kronzucker HJ. Sodium efflux in plant roots: what do we really know? JOURNAL OF PLANT PHYSIOLOGY 2015; 186-187:1-12. [PMID: 26318642 DOI: 10.1016/j.jplph.2015.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 05/27/2023]
Abstract
The efflux of sodium (Na(+)) ions across the plasma membrane of plant root cells into the external medium is surprisingly poorly understood. Nevertheless, Na(+) efflux is widely regarded as a major mechanism by which plants restrain the rise of Na(+) concentrations in the cytosolic compartments of root cells and, thus, achieve a degree of tolerance to saline environments. In this review, several key ideas and bodies of evidence concerning root Na(+) efflux are summarized with a critical eye. Findings from decades past are brought to bear on current thinking, and pivotal studies are discussed, both "purely physiological", and also with regard to the SOS1 protein, the only major Na(+) efflux transporter that has, to date, been genetically characterized. We find that the current model of rapid transmembrane sodium cycling (RTSC), across the plasma membrane of root cells, is not adequately supported by evidence from the majority of efflux studies. An alternative hypothesis cannot be ruled out, that most Na(+) tracer efflux from the root in the salinity range does not proceed across the plasma membrane, but through the apoplast. Support for this idea comes from studies showing that Na(+) efflux, when measured with tracers, is rarely affected by the presence of inhibitors or the ionic composition in saline rooting media. We conclude that the actual efflux of Na(+) across the plasma membrane of root cells may be much more modest than what is often reported in studies using tracers, and may predominantly occur in the root tips, where SOS1 expression has been localized.
Collapse
Affiliation(s)
- D T Britto
- University of Toronto, Canadian Centre for World Hunger Research, Canada
| | - H J Kronzucker
- University of Toronto, Canadian Centre for World Hunger Research, Canada.
| |
Collapse
|