1
|
Brookins E, Serrano SE, Hyder Z, Yacu GS, Finer G, Thomson BR. Non-endothelial expression of endomucin in the mouse and human choroid. Exp Eye Res 2024; 247:110054. [PMID: 39153592 PMCID: PMC11440475 DOI: 10.1016/j.exer.2024.110054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Endomucin (EMCN) is a 261 amino acid transmembrane glycoprotein that is highly expressed by venous and capillary endothelial cells where it plays a role in VEGF-mediated angiogenesis and regulation of immune cell recruitment. However, it is better known as a histological marker, where it has become widespread due to the commercial availability of high-quality antibodies that work under a wide range of conditions and in many tissues. The specificity of EMCN staining has been well-validated in retinal vessels, but while it has been used extensively as a marker in other tissues of the eye, including the choroid, the pattern of expression has not been described in detail. Here, in addition to endothelial expression in the choriocapillaris and deeper vascular layers, we characterize a population of EMCN-positive perivascular cells in the mouse choroid that did not co-localize with cells expressing other endothelial markers such as PECAM1 or PODXL. To confirm that these cells represented a new population of EMCN-expressing stromal cells, we then performed single cell RNA sequencing in choroids from adult wild-type mice. Analysis of this new dataset confirmed that, in addition to endothelial cells, Emcn mRNA expression was present in choroidal pericytes and a subset of fibroblasts, but not vascular smooth muscle cells. Besides Emcn, no known endothelial gene expression was detected in these cell populations, confirming that they did not represent endothelial-stromal doublets, a common technical artifact in single cell RNA seq datasets. Instead, choroidal Emcn-expressing fibroblasts exhibited high levels of chemokine and interferon signaling genes, while Emcn-negative fibroblasts were enriched in genes encoding extracellular matrix proteins. Emcn expressing fibroblasts were also detected in published datasets from mouse brain and human choroid, suggesting that stromal Emcn expression was not unique to the choroid and was evolutionarily conserved. Together, these findings highlight unique fibroblast and pericyte populations in the choroid and provide new context for the role of EMCN in the eye.
Collapse
Affiliation(s)
- Elysse Brookins
- Department of Ophthalmology and Feinberg Cardiovascular and Renal Research Inst. Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sophia E Serrano
- Department of Ophthalmology and Feinberg Cardiovascular and Renal Research Inst. Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Zain Hyder
- Department of Ophthalmology and Feinberg Cardiovascular and Renal Research Inst. Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - George S Yacu
- Lurie Children's Hospital Department of Nephrology and Stanley Manne Children's Research Inst., Chicago, IL, USA
| | - Gal Finer
- Lurie Children's Hospital Department of Nephrology and Stanley Manne Children's Research Inst., Chicago, IL, USA
| | - Benjamin R Thomson
- Department of Ophthalmology and Feinberg Cardiovascular and Renal Research Inst. Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
2
|
Upshaw WC, Richey JM, Ravi G, Chen A, Ahmadzadeh S, Shekoohi S, Viswanath O, Kaye AD. An overview of the safety and efficacy of LX-9211 in treating neuropathic pain conditions. Expert Opin Investig Drugs 2024; 33:829-837. [PMID: 38973395 DOI: 10.1080/13543784.2024.2376570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION LX-9211 is a drug designed to treat neuropathic pain conditions. It functions by inhibiting the adaptor-associated kinase 1 (AAK1) enzyme which promotes clathrin-dependent endocytosis. Preclinical studies have shown that LX-9211 does produce a reduction in nociceptive related behaviors and produces no major adverse effects in rats. Thus, LX-9211 has advanced to clinical trials to assess its safety and efficacy in humans. So far, phase 1 and phase 2 clinical trials involving patients with postherpetic neuralgia and diabetic peripheral neuropathic pain have been conducted with phase 3 trials planned in the future. AREAS COVERED This paper highlights preclinical studies involving LX-9211 in rodents. Additionally, phase 1 clinical trials examining the safety of LX-9211 in healthy subjects as well as phase 2 studies looking at the safety and efficacy of LX-9211 compared to placebo in patients with diabetic peripheral neuropathic pain and postherpetic neuralgia are also discussed. EXPERT OPINION In phase 1 and phase 2 clinical trials conducted so far, LX-9211 has been shown to produce few adverse effects as well as cause a significantly greater reduction in pain compared to placebo. However, more clinical studies are needed to further assess its effects in humans to ensure its safety.
Collapse
Affiliation(s)
- William C Upshaw
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, USA
| | - John M Richey
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, USA
| | - Gurjot Ravi
- School of Medicine, Ross University School of Medicine, Miramar, FL, USA
| | - Adrian Chen
- School of Medicine, Louisiana State University Health Sciences Center at Shreveport, Shreveport, LA, USA
| | - Shahab Ahmadzadeh
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - Sahar Shekoohi
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - Omar Viswanath
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
- Valley Pain Consultants, Envision Physician Services, Phoenix, AZ, USA
- Department of Anesthesiology, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
- Department of Anesthesiology, Creighton University School of Medicine, Omaha, NE, USA
| | - Alan D Kaye
- Departments of Anesthesiology and Pharmacology, Toxicology, and Neurosciences, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| |
Collapse
|
3
|
Vassilopoulos S, Montagnac G. Clathrin assemblies at a glance. J Cell Sci 2024; 137:jcs261674. [PMID: 38668719 DOI: 10.1242/jcs.261674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
Clathrin assembles into honeycomb-like lattices at the plasma membrane but also on internal membranes, such as at the Golgi and tubular endosomes. Clathrin assemblies primarily regulate the intracellular trafficking of different cargoes, but clathrin also has non-endocytic functions in cell adhesion through interactions with specific integrins, contributes to intraluminal vesicle formation by forming flat bilayered coats on endosomes and even assembles on kinetochore k-fibers during mitosis. In this Cell Science at a Glance article and the accompanying poster, we review our current knowledge on the different types of canonical and non-canonical membrane-associated clathrin assemblies in mammalian cells, as observed by thin-section or platinum replica electron microscopy in various cell types, and discuss how the structural plasticity of clathrin contributes to its functional diversity.
Collapse
Affiliation(s)
- Stéphane Vassilopoulos
- Sorbonne Université, Inserm U974, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Guillaume Montagnac
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, 94800 Villejuif, France
| |
Collapse
|
4
|
Wang Y, Xiao T, Zhao C, Li G. The Regulation of Exosome Generation and Function in Physiological and Pathological Processes. Int J Mol Sci 2023; 25:255. [PMID: 38203424 PMCID: PMC10779122 DOI: 10.3390/ijms25010255] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/16/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Exosomes, a type of extracellular vesicle with a diameter of approximately 100 nm that is secreted by all cells, regulate the phenotype and function of recipient cells by carrying molecules such as proteins, nucleic acids, and lipids and are important mediators of intercellular communication. Exosomes are involved in various physiological and pathological processes such as immunomodulation, angiogenesis, tumorigenesis, metastasis, and chemoresistance. Due to their excellent properties, exosomes have shown their potential application in the clinical diagnosis and treatment of disease. The functions of exosomes depend on their biogenesis, uptake, and composition. Thus, a deeper understanding of these processes and regulatory mechanisms can help to find new targets for disease diagnosis and therapy. Therefore, this review summarizes and integrates the recent advances in the regulatory mechanisms of the entire biological process of exosomes, starting from the formation of early-sorting endosomes (ESCs) by plasma membrane invagination to the release of exosomes by fusion of multivesicular bodies (MVBs) with the plasma membrane, as well as the regulatory process of the interactions between exosomes and recipient cells. We also describe and discuss the regulatory mechanisms of exosome production in tumor cells and the potential of exosomes used in cancer diagnosis and therapy.
Collapse
Affiliation(s)
| | | | | | - Guiying Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.W.); (T.X.); (C.Z.)
| |
Collapse
|
5
|
Höppner S, Schröder B, Fluhrer R. Structure and function of SPP/SPPL proteases: insights from biochemical evidence and predictive modeling. FEBS J 2023; 290:5456-5474. [PMID: 37786993 DOI: 10.1111/febs.16968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/13/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
More than 20 years ago, signal peptide peptidase (SPP) and its homologues, the signal peptide peptidase-like (SPPL) proteases have been identified based on their sequence similarity to presenilins, a related family of intramembrane aspartyl proteases. Other than those for the presenilins, no high-resolution structures for the SPP/SPPL proteases are available. Despite this limitation, over the years bioinformatical and biochemical data have accumulated, which altogether have provided a picture of the overall structure and topology of these proteases, their localization in the cell, the process of substrate recognition, their cleavage mechanism, and their function. Recently, the artificial intelligence-based structure prediction tool AlphaFold has added high-confidence models of the expected fold of SPP/SPPL proteases. In this review, we summarize known structural aspects of the SPP/SPPL family as well as their substrates. Of particular interest are the emerging substrate recognition and catalytic mechanisms that might lead to the prediction and identification of more potential substrates and deeper insight into physiological and pathophysiological roles of proteolysis.
Collapse
Affiliation(s)
- Sabine Höppner
- Biochemistry and Molecular Biology, Faculty of Medicine, Institute of Theoretical Medicine, University of Augsburg, Germany
| | - Bernd Schröder
- Institute for Physiological Chemistry, Technische Universität Dresden, Germany
| | - Regina Fluhrer
- Biochemistry and Molecular Biology, Faculty of Medicine, Institute of Theoretical Medicine, University of Augsburg, Germany
- Center for Interdisciplinary Health Research, University of Augsburg, Germany
| |
Collapse
|
6
|
Ashby G, Keng KE, Hayden CC, Gollapudi S, Houser JR, Jamal S, Stachowiak JC. Selective Endocytic Uptake of Targeted Liposomes Occurs within a Narrow Range of Liposome Diameters. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49988-50001. [PMID: 37862704 PMCID: PMC11165932 DOI: 10.1021/acsami.3c09399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Cell surface receptors facilitate signaling and nutrient uptake. These processes are dynamic, requiring receptors to be actively recycled by endocytosis. Due to their differential expression in disease states, receptors are often the target of drug-carrier particles, which are adorned with ligands that bind specifically to receptors. These targeted particles are taken into the cell by multiple routes of internalization, where the best-characterized pathway is clathrin-mediated endocytosis. Most studies of particle uptake have utilized bulk assays rather than observing individual endocytic events. As a result, the detailed mechanisms of particle uptake remain obscure. To address this gap, we employed a live-cell imaging approach to study the uptake of individual liposomes as they interact with clathrin-coated structures. By tracking individual internalization events, we find that the size of liposomes rather than the density of the ligands on their surfaces primarily determines their probability of uptake. Interestingly, targeting has the greatest impact on endocytosis of liposomes of intermediate diameters, with the smallest and largest liposomes being internalized or excluded, respectively, regardless of whether they are targeted. These findings, which highlight a previously unexplored limitation of targeted delivery, can be used to design more effective drug carriers.
Collapse
Affiliation(s)
- Grant Ashby
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States of America
| | - Kayla E. Keng
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States of America
| | - Carl C. Hayden
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States of America
| | - Sadhana Gollapudi
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States of America
| | - Justin R. Houser
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States of America
| | - Sabah Jamal
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States of America
| | - Jeanne C. Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States of America
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States of America
| |
Collapse
|
7
|
Kim S, Cho S, Kim JH. CD1-mediated immune responses in mucosal tissues: molecular mechanisms underlying lipid antigen presentation system. Exp Mol Med 2023; 55:1858-1871. [PMID: 37696897 PMCID: PMC10545705 DOI: 10.1038/s12276-023-01053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 09/13/2023] Open
Abstract
The cluster of differentiation 1 (CD1) molecule differs from major histocompatibility complex class I and II because it presents glycolipid/lipid antigens. Moreover, the CD1-restricted T cells that recognize these self and foreign antigens participate in both innate and adaptive immune responses. CD1s are constitutively expressed by professional and nonprofessional antigen-presenting cells in mucosal tissues, namely, the skin, lung, and intestine. This suggests that CD1-reactive T cells are involved in the immune responses of these tissues. Indeed, evidence suggests that these cells play important roles in diverse diseases, such as inflammation, autoimmune disease, and infection. Recent studies elucidating the molecular mechanisms by which CD1 presents lipid antigens suggest that defects in these mechanisms could contribute to the activities of CD1-reactive T cells. Thus, improving our understanding of these mechanisms could lead to new and effective therapeutic approaches to CD1-associated diseases. In this review, we discuss the CD1-mediated antigen presentation system and its roles in mucosal tissue immunity.
Collapse
Affiliation(s)
- Seohyun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sumin Cho
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Hyung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
8
|
Henke W, Kalamvoki M, Stephens EB. The Role of the Tyrosine-Based Sorting Signals of the ORF3a Protein of SARS-CoV-2 on Intracellular Trafficking, Autophagy, and Apoptosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550379. [PMID: 37547007 PMCID: PMC10402054 DOI: 10.1101/2023.07.24.550379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The open reading frame 3a (ORF3a) is an accessory transmembrane protein that is important to the pathogenicity of SARS-CoV-2. The cytoplasmic domain of ORF3a has three canonical tyrosine-based sorting signals (YxxΦ; where x is any amino acid and Φ is a hydrophobic amino acid with a bulky -R group). They have been implicated in the trafficking of membrane proteins to the cell plasma membrane and to intracellular organelles. Previous studies have indicated that mutation of the 160YSNV163 motif abrogated plasma membrane expression and inhibited ORF3a-induced apoptosis. However, two additional canonical tyrosine-based sorting motifs (211YYQL213, 233YNKI236) exist in the cytoplasmic domain of ORF3a that have not been assessed. We removed all three potential tyrosine-based motifs and systematically restored them to assess the importance of each motif or combination of motifs that restored efficient trafficking to the cell surface and lysosomes. Our results indicate that the YxxΦ motif at position 160 was insufficient for the trafficking of ORF3a to the cell surface. Our studies also showed that ORF3a proteins with an intact YxxΦ at position 211 or at 160 and 211 were most important. We found that ORF3a cell surface expression correlated with the co-localization of ORF3a with LAMP-1 near the cell surface. These results suggest that YxxΦ motifs within the cytoplasmic domain may act cooperatively in ORF3a transport to the plasma membrane and endocytosis to lysosomes. Further, our results indicate that certain tyrosine mutants failed to activate caspase 3 and did not correlate with autophagy functions associated with this protein.
Collapse
Affiliation(s)
- Wyatt Henke
- Department of Microbiology, Molecular Genetics, and Immunology, 2000 Hixon Hall, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160
| | - Maria Kalamvoki
- Department of Microbiology, Molecular Genetics, and Immunology, 2000 Hixon Hall, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160
| | - Edward B Stephens
- Department of Microbiology, Molecular Genetics, and Immunology, 2000 Hixon Hall, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, Kansas 66160
| |
Collapse
|
9
|
Ashby G, Keng KE, Hayden CC, Gollapudi S, Houser JR, Jamal S, Stachowiak JC. Selective endocytic uptake of targeted liposomes occurs within a narrow range of liposome diameter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.548000. [PMID: 37461728 PMCID: PMC10350051 DOI: 10.1101/2023.07.06.548000] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Cell surface receptors facilitate signaling and nutrient uptake. These processes are dynamic, requiring receptors to be actively recycled by endocytosis. Due to their differential expression in disease states, receptors are often the target of drug-carrier particles, which are adorned with ligands that bind specifically to receptors. These targeted particles are taken into the cell by multiple routes of internalization, where the best-characterized pathway is clathrin-mediated endocytosis. Most studies of particle uptake have utilized bulk assays, rather than observing individual endocytic events. As a result, the detailed mechanisms of particle uptake remain obscure. To address this gap, we have employed a live-cell imaging approach to study the uptake of individual liposomes as they interact with clathrin-coated structures. By tracking individual internalization events, we find that the size of liposomes, rather than the density of the ligands on their surfaces, primarily determines their probability of uptake. Interestingly, targeting has the greatest impact on endocytosis of liposomes of intermediate diameters, with the smallest and largest liposomes being internalized or excluded, respectively, regardless of whether they are targeted. These findings, which highlight a previously unexplored limitation of targeted delivery, can be used to design more effective drug carriers.
Collapse
Affiliation(s)
- Grant Ashby
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Kayla E Keng
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Carl C Hayden
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Sadhana Gollapudi
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Justin R Houser
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Sabah Jamal
- Department of Biomedical Engineering, The University of Texas at Austin
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin
- Department of Chemical Engineering, The University of Texas at Austin
| |
Collapse
|
10
|
Hayes B, van der Geer P. STS-1 and STS-2, Multi-Enzyme Proteins Equipped to Mediate Protein-Protein Interactions. Int J Mol Sci 2023; 24:ijms24119214. [PMID: 37298164 DOI: 10.3390/ijms24119214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023] Open
Abstract
STS-1 and STS-2 form a small family of proteins that are involved in the regulation of signal transduction by protein-tyrosine kinases. Both proteins are composed of a UBA domain, an esterase domain, an SH3 domain, and a PGM domain. They use their UBA and SH3 domains to modify or rearrange protein-protein interactions and their PGM domain to catalyze protein-tyrosine dephosphorylation. In this manuscript, we discuss the various proteins that have been found to interact with STS-1 or STS-2 and describe the experiments used to uncover their interactions.
Collapse
Affiliation(s)
- Barbara Hayes
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr., San Diego, CA 92105, USA
| | - Peter van der Geer
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr., San Diego, CA 92105, USA
| |
Collapse
|
11
|
Xiao D, Yao J, Gao X, Zhu KY. Clathrin-dependent endocytosis plays a critical role in larval and pupal development, and female oocyte production in the red flour beetle (Tribolium castaneum). PEST MANAGEMENT SCIENCE 2023; 79:1731-1742. [PMID: 36617731 DOI: 10.1002/ps.7348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/14/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Clathrin-dependent endocytosis is a vesicular transport process by which cells take macromolecules from the extracellular space to the intracellular space. It plays important roles in various cellular functions, but its biological significance in insect development and reproduction has not been well studied. RESULTS We characterized and functionally analyzed four major clathrin-dependent endocytic pathway genes (TcChc, TcAP50, TcVhaSFD, TcRab7) in Tribolium castaneum. RNA interference (RNAi) by injecting double-stranded RNA (dsRNA) targeting each gene at three doses (50, 100, or 200 ng per insect) in 20-day-old larvae led to 100% larval mortality. When the expressions of TcChc, TcVhaSFD, and TcRab7 were suppressed by injecting their respective dsRNAs at each dose in 1-day-old pupae, the adults that emerged from the dsRNA-injected pupae were deformed, with the absence of wing development. The deformed adults died within 2 days after eclosion. When the expression of TcAP50 was suppressed by injecting its dsRNA into 1-day-old pupae, although no apparent deformed adults were observed, all the adults died within 35 days after eclosion. In addition, when the expressions of TcChc and TcVhaSFD were suppressed by injecting their respective dsRNAs at a reduced dose (10 ng per insect) in 5-day-old pupae, the ovarian development and oocyte production in the resultant females were completely inhibited. CONCLUSION Our results indicate that clathrin-dependent endocytosis is essential for insect development and reproduction. The results from this study can help researchers identify potential molecular targets for developing novel strategies for insect pest management. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Da Xiao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, Kansas, USA
| | - Jianxiu Yao
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, Kansas, USA
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
12
|
Uchida N, Ryu Y, Takagi Y, Yoshizawa K, Suzuki K, Anraku Y, Ajioka I, Shimokawa N, Takagi M, Hoshino N, Akutagawa T, Matsubara T, Sato T, Higuchi Y, Ito H, Morita M, Muraoka T. Endocytosis-Like Vesicle Fission Mediated by a Membrane-Expanding Molecular Machine Enables Virus Encapsulation for In Vivo Delivery. J Am Chem Soc 2023; 145:6210-6220. [PMID: 36853954 PMCID: PMC10037323 DOI: 10.1021/jacs.2c12348] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Biological membranes are functionalized by membrane-associated protein machinery. Membrane-associated transport processes, such as endocytosis, represent a fundamental and universal function mediated by membrane-deforming protein machines, by which small biomolecules and even micrometer-size substances can be transported via encapsulation into membrane vesicles. Although synthetic molecules that induce dynamic membrane deformation have been reported, a molecular approach enabling membrane transport in which membrane deformation is coupled with substance binding and transport remains critically lacking. Here, we developed an amphiphilic molecular machine containing a photoresponsive diazocine core (AzoMEx) that localizes in a phospholipid membrane. Upon photoirradiation, AzoMEx expands the liposomal membrane to bias vesicles toward outside-in fission in the membrane deformation process. Cargo components, including micrometer-size M13 bacteriophages that interact with AzoMEx, are efficiently incorporated into the vesicles through the outside-in fission. Encapsulated M13 bacteriophages are transiently protected from the external environment and therefore retain biological activity during distribution throughout the body via the blood following administration. This research developed a molecular approach using synthetic molecular machinery for membrane functionalization to transport micrometer-size substances and objects via vesicle encapsulation. The molecular design demonstrated in this study to expand the membrane for deformation and binding to a cargo component can lead to the development of drug delivery materials and chemical tools for controlling cellular activities.
Collapse
Affiliation(s)
- Noriyuki Uchida
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yunosuke Ryu
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yuichiro Takagi
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Ken Yoshizawa
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kotono Suzuki
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Yasutaka Anraku
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Itsuki Ajioka
- Center for Brain Integration Research Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan
| | - Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Norihisa Hoshino
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Tomoyuki Akutagawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Teruhiko Matsubara
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yuji Higuchi
- Institute for Solid State Physics, The University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8581, Japan
| | - Hiroaki Ito
- Department of Physics, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masamune Morita
- National Institute of Advanced Industrial Science and Technology, Center 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo 183-8538, Japan
| |
Collapse
|
13
|
Buser DP, Spang A. Protein sorting from endosomes to the TGN. Front Cell Dev Biol 2023; 11:1140605. [PMID: 36895788 PMCID: PMC9988951 DOI: 10.3389/fcell.2023.1140605] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
Retrograde transport from endosomes to the trans-Golgi network is essential for recycling of protein and lipid cargoes to counterbalance anterograde membrane traffic. Protein cargo subjected to retrograde traffic include lysosomal acid-hydrolase receptors, SNARE proteins, processing enzymes, nutrient transporters, a variety of other transmembrane proteins, and some extracellular non-host proteins such as viral, plant, and bacterial toxins. Efficient delivery of these protein cargo molecules depends on sorting machineries selectively recognizing and concentrating them for their directed retrograde transport from endosomal compartments. In this review, we outline the different retrograde transport pathways governed by various sorting machineries involved in endosome-to-TGN transport. In addition, we discuss how this transport route can be analyzed experimentally.
Collapse
Affiliation(s)
| | - Anne Spang
- *Correspondence: Dominik P. Buser, ; Anne Spang,
| |
Collapse
|
14
|
Sharma P, Sharma BS, Raval H, Singh V. Endocytosis of GABA receptor: Signaling in nervous system. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:125-139. [PMID: 36813355 DOI: 10.1016/bs.pmbts.2022.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
GABA (ᵞ-aminobutyric acid), is the principal neurotransmitter known for its inhibitory role in chemical synapses. Being localized primarily in the central nervous system (CNS) it maintains a balance between excitatory (regulated by another neurotransmitter, glutamate) and inhibitory impulses. GABA acts by binding to their specific receptors GABAA and GABAB when released into the post-synaptic nerve terminal. Both of these receptors are responsible for fast and slow inhibition of neurotransmission, respectively. GABAA is a ligand-gated ionopore receptor which opens the Cl- ion channel and decreases the resting potential of the membrane resulting into inhibition of the synapse. On the other hand, GABAB is a metabotropic receptor which increases the K+ ion levels preventing Ca+ ion release inhibiting the release of other neurotransmitters into the presynaptic membrane. The internalization and trafficking of these receptors is also conducted through distinct pathways and mechanism, discussed in detail in the chapter. Without the desired levels of GABA in the body, the psychological and neurological states of brain get hard to maintain. Various neurodegenerative diseases/disorders have been associated to low levels of GABA, such as anxiety, mood disorders, fear, schizophrenia, hungtington's chorea, seizures, epilepsy, etc. The allosteric sites present on GABA receptors have been proved to be potent drug targets to pacify the pathological states of these brain related disorders to an extent. Further in depth studies focussing on the subtypes of GABA receptors and their comprehensive mechanism are required to explore new drug targets and therapeutic avenues for effectual management of GABA related neurological diseases.
Collapse
Affiliation(s)
- Preeti Sharma
- Shree Vipratech Diagnostics, Dehgam, Gujarat, India.
| | - B Sharan Sharma
- Rivaara Labs, KD Hospital, Vaishnodevi Circle, Ahmedabad, Gujarat, India
| | - Hardik Raval
- Shree Vipratech Diagnostics, Dehgam, Gujarat, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| |
Collapse
|
15
|
Lim HJ, Wubben JM, Garcia CP, Cruz-Gomez S, Deng J, Mak JY, Hachani A, Anderson RJ, Painter GF, Goyette J, Amarasinghe SL, Ritchie ME, Roquilly A, Fairlie DP, Gaus K, Rossjohn J, Villadangos JA, McWilliam HE. A specialized tyrosine-based endocytosis signal in MR1 controls antigen presentation to MAIT cells. J Cell Biol 2022; 221:213489. [PMID: 36129434 PMCID: PMC9499830 DOI: 10.1083/jcb.202110125] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 06/23/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022] Open
Abstract
MR1 is a highly conserved microbial immune-detection system in mammals. It captures vitamin B-related metabolite antigens from diverse microbes and presents them at the cell surface to stimulate MR1-restricted lymphocytes including mucosal-associated invariant T (MAIT) cells. MR1 presentation and MAIT cell recognition mediate homeostasis through host defense and tissue repair. The cellular mechanisms regulating MR1 cell surface expression are critical to its function and MAIT cell recognition, yet they are poorly defined. Here, we report that human MR1 is equipped with a tyrosine-based motif in its cytoplasmic domain that mediates low affinity binding with the endocytic adaptor protein 2 (AP2) complex. This interaction controls the kinetics of MR1 internalization from the cell surface and minimizes recycling. We propose MR1 uses AP2 endocytosis to define the duration of antigen presentation to MAIT cells and the detection of a microbial metabolic signature by the immune system.
Collapse
Affiliation(s)
- Hui Jing Lim
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
| | - Jacinta M. Wubben
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University, Clayton, Victoria, Australia
| | - Cristian Pinero Garcia
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - Sebastian Cruz-Gomez
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
| | - Jieru Deng
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
| | - Jeffrey Y.W. Mak
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Abderrahman Hachani
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
| | - Regan J. Anderson
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Gavin F. Painter
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Jesse Goyette
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - Shanika L. Amarasinghe
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Matthew E. Ritchie
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Antoine Roquilly
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064; F-44000, Nantes, France
| | - David P. Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Jose A. Villadangos
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Jose A. Villadangos:
| | - Hamish E.G. McWilliam
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Correspondence to Hamish E.G. McWilliam:
| |
Collapse
|
16
|
Luo G, Chen L, Kostich WA, Hamman B, Allen J, Easton A, Bourin C, Gulianello M, Lippy J, Nara S, Pattipati SN, Dandapani K, Dokania M, Vattikundala P, Sharma V, Elavazhagan S, Verma MK, Lal Das M, Wagh S, Balakrishnan A, Johnson BM, Santone KS, Thalody G, Denton R, Saminathan H, Holenarsipur VK, Kumar A, Rao A, Putlur SP, Sarvasiddhi SK, Shankar G, Louis JV, Ramarao M, Conway CM, Li YW, Pieschl R, Tian Y, Hong Y, Bristow L, Albright CF, Bronson JJ, Macor JE, Dzierba CD. Discovery and Optimization of Biaryl Alkyl Ethers as a Novel Class of Highly Selective, CNS-Penetrable, and Orally Active Adaptor Protein-2-Associated Kinase 1 (AAK1) Inhibitors for the Potential Treatment of Neuropathic Pain. J Med Chem 2022; 65:4534-4564. [PMID: 35261239 DOI: 10.1021/acs.jmedchem.1c02132] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent mouse knockout studies identified adapter protein-2-associated kinase 1 (AAK1) as a viable target for treating neuropathic pain. BMS-986176/LX-9211 (4), as a highly selective, CNS-penetrable, and potent AAK1 inhibitor, has advanced into phase II human trials. On exploring the structure-activity relationship (SAR) around this biaryl alkyl ether chemotype, several additional compounds were found to be highly selective and potent AAK1 inhibitors with good druglike properties. Among these, compounds 43 and 58 showed very good efficacy in two neuropathic pain rat models and had excellent CNS penetration and spinal cord target engagement. Both compounds also exhibited favorable physicochemical and oral pharmacokinetic (PK) properties. Compound 58, a central pyridine isomer of BMS-986176/LX-9211 (4), was 4-fold more potent than 4 in vitro and showed lower plasma exposure needed to achieve similar efficacy compared to 4 in the CCI rat model. However, both 43 and 58 showed an inferior preclinical toxicity profile compared to 4.
Collapse
Affiliation(s)
- Guanglin Luo
- Department of Neuroscience Chemistry, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Ling Chen
- Department of Neuroscience Chemistry, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Walter A Kostich
- Department of Neuroscience Discovery Biology, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Brian Hamman
- Lexicon Pharmaceuticals, 8800 Technology Forest Place, The Woodlands, Texas 77381, United States
| | - Jason Allen
- Lexicon Pharmaceuticals, 8800 Technology Forest Place, The Woodlands, Texas 77381, United States
| | - Amy Easton
- Department of Neuroscience Discovery Biology, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Clotilde Bourin
- Department of Neuroscience Discovery Biology, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Michael Gulianello
- Department of Neuroscience Discovery Biology, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jonathan Lippy
- Department of Lead Evaluation, Bristol Myers Squibb Company, Route 206 & Province Line Rd, Princeton, New Jersey 08543, United States
| | - Susheel Nara
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Sreenivasulu Naidu Pattipati
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Kumaran Dandapani
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Manoj Dokania
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Pradeep Vattikundala
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Vivek Sharma
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Saravanan Elavazhagan
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Manoj Kumar Verma
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Manish Lal Das
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Santosh Wagh
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Anand Balakrishnan
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Benjamin M Johnson
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Kenneth S Santone
- Department of Pharmaceutical Candidate Optimization, Bristol Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - George Thalody
- Discovery Toxicology, Bristol Myers Squibb Company, Route 206 & Province Line Rd, Princeton, New Jersey 08543, United States
| | - Rex Denton
- Discovery Toxicology, Bristol Myers Squibb Company, Route 206 & Province Line Rd, Princeton, New Jersey 08543, United States
| | - Hariharan Saminathan
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Vinay K Holenarsipur
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Anoop Kumar
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Abhijith Rao
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Siva Prasad Putlur
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Sarat Kumar Sarvasiddhi
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Ganesh Shankar
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Justin V Louis
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Manjunath Ramarao
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Charles M Conway
- Department of Neuroscience Discovery Biology, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Yu-Wen Li
- Department of Neuroscience Discovery Biology, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Rick Pieschl
- Department of Neuroscience Discovery Biology, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Yuan Tian
- Department of Neuroscience Discovery Biology, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Yang Hong
- Department of Neuroscience Discovery Biology, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Linda Bristow
- Department of Neuroscience Discovery Biology, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Charles F Albright
- Department of Neuroscience Discovery Biology, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Joanne J Bronson
- Department of Neuroscience Chemistry, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - John E Macor
- Department of Neuroscience Chemistry, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Carolyn D Dzierba
- Department of Neuroscience Chemistry, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| |
Collapse
|
17
|
Luo G, Chen L, Kostich WA, Hamman B, Allen J, Easton A, Bourin C, Gulianello M, Lippy J, Nara S, Maishal TK, Thiyagarajan K, Jalagam P, Pattipati SN, Dandapani K, Dokania M, Vattikundala P, Sharma V, Elavazhagan S, Verma MK, Das ML, Wagh S, Balakrishnan A, Johnson BM, Santone KS, Thalody G, Denton R, Saminathan H, Holenarsipur VK, Kumar A, Rao A, Putlur SP, Sarvasiddhi SK, Shankar G, Louis JV, Ramarao M, Conway CM, Li YW, Pieschl R, Tian Y, Hong Y, Ditta J, Mathur A, Li J, Smith D, Pawluczyk J, Sun D, Yip S, Wu DR, Vetrichelvan M, Gupta A, Wilson A, Gopinathan S, Wason S, Bristow L, Albright CF, Bronson JJ, Macor JE, Dzierba CD. Discovery of ( S)-1-((2',6-Bis(difluoromethyl)-[2,4'-bipyridin]-5-yl)oxy)-2,4-dimethylpentan-2-amine (BMS-986176/LX-9211): A Highly Selective, CNS Penetrable, and Orally Active Adaptor Protein-2 Associated Kinase 1 Inhibitor in Clinical Trials for the Treatment of Neuropathic Pain. J Med Chem 2022; 65:4457-4480. [PMID: 35257579 DOI: 10.1021/acs.jmedchem.1c02131] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Recent mouse knockout studies identified adapter protein-2 associated kinase 1 (AAK1) as a viable target for treating neuropathic pain. Potent small-molecule inhibitors of AAK1 have been identified and show efficacy in various rodent pain models. (S)-1-((2',6-Bis(difluoromethyl)-[2,4'-bipyridin]-5-yl)oxy)-2,4-dimethylpentan-2-amine (BMS-986176/LX-9211) (34) was identified as a highly selective, CNS penetrant, potent AAK1 inhibitor from a novel class of bi(hetero)aryl ethers. BMS-986176/LX9211 (34) showed excellent efficacy in two rodent neuropathic pain models and excellent central nervous system (CNS) penetration and target engagement at the spinal cord with an average brain to plasma ratio of 20 in rat. The compound exhibited favorable physicochemical and pharmacokinetic properties, had an acceptable preclinical toxicity profile, and was chosen for clinical trials. BMS-986176/LX9211 (34) completed phase I trials with good human pharmacokinetics and minimum adverse events and is currently in phase II clinical trials for diabetic peripheral neuropathic pain (ClinicalTrials.gov identifier: NCT04455633) and postherpetic neuralgia (ClinicalTrials.gov identifier: NCT04662281).
Collapse
Affiliation(s)
- Guanglin Luo
- Department of Neuroscience Chemistry, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Ling Chen
- Department of Neuroscience Chemistry, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Walter A Kostich
- Department of Neuroscience Discovery Biology, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Brian Hamman
- Lexicon Pharmaceuticals, 8800 Technology Forest Place, The Woodlands, Texas 77381, United States
| | - Jason Allen
- Lexicon Pharmaceuticals, 8800 Technology Forest Place, The Woodlands, Texas 77381, United States
| | - Amy Easton
- Department of Neuroscience Discovery Biology, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Clotilde Bourin
- Department of Neuroscience Discovery Biology, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Michael Gulianello
- Department of Neuroscience Discovery Biology, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jonathan Lippy
- Department of Lead Evaluation, Bristol-Myers Squibb Company, Route 206 and Province Line Rd, Princeton, New Jersey 08543, United States
| | - Susheel Nara
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 and 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Tarun Kumar Maishal
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 and 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Kamalraj Thiyagarajan
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 and 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Prasadrao Jalagam
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 and 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Sreenivasulu Naidu Pattipati
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 and 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Kumaran Dandapani
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 and 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Manoj Dokania
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 and 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Pradeep Vattikundala
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 and 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Vivek Sharma
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 and 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Saravanan Elavazhagan
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 and 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Manoj Kumar Verma
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 and 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Manish Lal Das
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 and 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Santosh Wagh
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 and 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Anand Balakrishnan
- Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Benjamin M Johnson
- Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Kenneth S Santone
- Department of Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - George Thalody
- Discovery Toxicology, Bristol-Myers Squibb Company, Route 206 and Province Line Rd, Princeton, New Jersey 08543, United States
| | - Rex Denton
- Discovery Toxicology, Bristol-Myers Squibb Company, Route 206 and Province Line Rd, Princeton, New Jersey 08543, United States
| | - Hariharan Saminathan
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 and 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Vinay K Holenarsipur
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 and 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Anoop Kumar
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 and 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Abhijith Rao
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 and 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Siva Prasad Putlur
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 and 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Sarat Kumar Sarvasiddhi
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 and 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Ganesh Shankar
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 and 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Justin V Louis
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 and 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Manjunath Ramarao
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 and 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Charles M Conway
- Department of Neuroscience Discovery Biology, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Yu-Wen Li
- Department of Neuroscience Discovery Biology, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Rick Pieschl
- Department of Neuroscience Discovery Biology, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Yuan Tian
- Department of Neuroscience Discovery Biology, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Yang Hong
- Department of Neuroscience Discovery Biology, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jonathan Ditta
- Department of Neuroscience Chemistry, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Arvind Mathur
- Department of Discovery Synthesis, Bristol-Myers Squibb Company, Route 206 and Province Line Rd, Princeton, New Jersey 08543, United States
| | - Jianqing Li
- Department of Discovery Synthesis, Bristol-Myers Squibb Company, Route 206 and Province Line Rd, Princeton, New Jersey 08543, United States
| | - Daniel Smith
- Department of Discovery Synthesis, Bristol-Myers Squibb Company, Route 206 and Province Line Rd, Princeton, New Jersey 08543, United States
| | - Joseph Pawluczyk
- Department of Discovery Synthesis, Bristol-Myers Squibb Company, Route 206 and Province Line Rd, Princeton, New Jersey 08543, United States
| | - Dawn Sun
- Department of Discovery Synthesis, Bristol-Myers Squibb Company, Route 206 and Province Line Rd, Princeton, New Jersey 08543, United States
| | - Shiuhang Yip
- Department of Discovery Synthesis, Bristol-Myers Squibb Company, Route 206 and Province Line Rd, Princeton, New Jersey 08543, United States
| | - Dauh-Rurng Wu
- Department of Discovery Synthesis, Bristol-Myers Squibb Company, Route 206 and Province Line Rd, Princeton, New Jersey 08543, United States
| | - Muthalagu Vetrichelvan
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 and 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Anuradha Gupta
- Biocon-Bristol Myers Squibb Research and Development Centre, Biocon Park, Plot No. 2 and 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Alan Wilson
- Lexicon Pharmaceuticals, 8800 Technology Forest Place, The Woodlands, Texas 77381, United States
| | - Suma Gopinathan
- Lexicon Pharmaceuticals, 8800 Technology Forest Place, The Woodlands, Texas 77381, United States
| | - Suman Wason
- Lexicon Pharmaceuticals, 8800 Technology Forest Place, The Woodlands, Texas 77381, United States
| | - Linda Bristow
- Department of Neuroscience Discovery Biology, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Charles F Albright
- Department of Neuroscience Discovery Biology, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Joanne J Bronson
- Department of Neuroscience Chemistry, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - John E Macor
- Department of Neuroscience Chemistry, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Carolyn D Dzierba
- Department of Neuroscience Chemistry, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| |
Collapse
|
18
|
Hartz RA, Ahuja VT, Nara SJ, Kumar CMV, Manepalli RKVLP, Sarvasiddhi SK, Honkhambe S, Patankar V, Dasgupta B, Rajamani R, Muckelbauer JK, Camac DM, Ghosh K, Pokross M, Kiefer SE, Brown JM, Hunihan L, Gulianello M, Lewis M, Lippy JS, Surti N, Hamman BD, Allen J, Kostich WA, Bronson JJ, Macor JE, Dzierba CD. Bicyclic Heterocyclic Replacement of an Aryl Amide Leading to Potent and Kinase-Selective Adaptor Protein 2-Associated Kinase 1 Inhibitors. J Med Chem 2022; 65:4121-4155. [PMID: 35171586 DOI: 10.1021/acs.jmedchem.1c01966] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Adaptor protein 2-associated kinase 1 (AAK1) is a serine/threonine kinase that was identified as a therapeutic target for the potential treatment of neuropathic pain. Inhibition of AAK1 in the central nervous system, particularly within the spinal cord, was found to be the relevant site for achieving an antinociceptive effect. We previously reported that compound 7 is a brain-penetrant, AAK1 inhibitor that showed efficacy in animal models for neuropathic pain. One approach we took to improve upon the potency of 7 involved tying the amide back into the neighboring phenyl ring to form a bicyclic heterocycle. Investigation of the structure-activity relationships (SARs) of substituents on the resultant quinazoline and quinoline ring systems led to the identification of (S)-31, a brain-penetrant, AAK1-selective inhibitor with improved enzyme and cellular potency compared to 7. The synthesis, SAR, and in vivo evaluation of a series of quinazoline and quinoline-based AAK1 inhibitors are described herein.
Collapse
Affiliation(s)
- Richard A Hartz
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Vijay T Ahuja
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Susheel J Nara
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - C M Vijaya Kumar
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Raju K V L P Manepalli
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Sarat Kumar Sarvasiddhi
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Swarnamba Honkhambe
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Vidya Patankar
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Bireshwar Dasgupta
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Ramkumar Rajamani
- Department of Molecular Structure and Design, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jodi K Muckelbauer
- Department of Molecular Structure and Design, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Daniel M Camac
- Department of Molecular Structure and Design, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Kaushik Ghosh
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Matthew Pokross
- Department of Molecular Structure and Design, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Susan E Kiefer
- Department of Protein Science, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Jeffrey M Brown
- Department of Neuroscience Discovery Biology, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Lisa Hunihan
- Department of Neuroscience Discovery Biology, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Michael Gulianello
- Department of Neuroscience Discovery Biology, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Martin Lewis
- Department of Neuroscience Discovery Biology, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jonathan S Lippy
- Department of Lead Evaluation, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Neha Surti
- Department of Lead Evaluation, Bristol Myers Squibb Company, Research and Development, P.O. Box 5400, Princeton, New Jersey 08543, United States
| | - Brian D Hamman
- Lexicon Pharmaceuticals, 8800 Technology Forest Place, The Woodlands, Texas 77381, United States
| | - Jason Allen
- Lexicon Pharmaceuticals, 8800 Technology Forest Place, The Woodlands, Texas 77381, United States
| | - Walter A Kostich
- Department of Neuroscience Discovery Biology, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Joanne J Bronson
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - John E Macor
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Carolyn D Dzierba
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Company, Research and Development, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| |
Collapse
|
19
|
Wang B, Yang R, Tian Y, Yin Q. Reconstituting and Purifying Assembly Intermediates of Clathrin Adaptors AP1 and AP2. Methods Mol Biol 2022; 2473:195-212. [PMID: 35819768 DOI: 10.1007/978-1-0716-2209-4_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Clathrin-coated vesicles mediate membrane cargo transportation from the plasma membrane, the trans-Golgi network, the endosome, and the lysosome. Heterotetrameric adaptor complexes 1 and 2 (AP1 and AP2) are bridges that link cargo-loaded membranes to clathrin coats. Assembly of AP2 was previously considered to be spontaneous; however, a recent study found AP2 assembly is a highly orchestrated process controlled by alpha and gamma adaptin binding protein (AAGAB). Evidence shows that AAGAB controls AP1 assembly in a similar way. Insights into the orchestrated assembly process and three-dimensional structures of assembly intermediates are only emerging. Here, we describe a protocol for reconstitution and purification of the complexes containing AAGAB and AP1 or AP2 subunits, known as AP1 and AP2 hemicomplexes. Our purification routinely yields milligrams of pure complexes suitable for structural analysis by X-ray crystallography and electron microscopy.
Collapse
Affiliation(s)
- Bing Wang
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Rui Yang
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Yuan Tian
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Qian Yin
- Department of Biological Science, Florida State University, Tallahassee, FL, USA.
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
20
|
Zhang J, Jiang Z, Shi A. Rab GTPases: The principal players in crafting the regulatory landscape of endosomal trafficking. Comput Struct Biotechnol J 2022; 20:4464-4472. [PMID: 36051867 PMCID: PMC9418685 DOI: 10.1016/j.csbj.2022.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
After endocytosis, diverse cargos are sorted into endosomes and directed to various destinations, including extracellular macromolecules, membrane lipids, and membrane proteins. Some cargos are returned to the plasma membrane via endocytic recycling. In contrast, others are delivered to the Golgi apparatus through the retrograde pathway, while the rest are transported to late endosomes and eventually to lysosomes for degradation. Rab GTPases are major regulators that ensure cargos are delivered to their proper destinations. Rabs are localized to distinct endosomes and play predominant roles in membrane budding, vesicle formation and motility, vesicle tethering, and vesicle fusion by recruiting effectors. The cascades between Rabs via shared effectors or the recruitment of Rab activators provide an additional layer of spatiotemporal regulation of endocytic trafficking. Notably, several recent studies have indicated that disorders of Rab-mediated endocytic transports are closely associated with diseases such as immunodeficiency, cancer, and neurological disorders.
Collapse
|
21
|
Gong Y, Wu F, Li H, Zhang X, Zhang S. Identification and functional characterization of AP-2 complex subunit mu-A as a new member of antimicrobial protein. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104099. [PMID: 33848529 DOI: 10.1016/j.dci.2021.104099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/19/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
AP-2 complex subunit mu-A (AP2M1A) is a component of the adaptor complexes that link clathrin to receptors in coated vesicles. It has recently been shown to be involved in the resistance to oxidative damage, challenging the conventional role of AP2M1A. Here we demonstrated that AP2M1A was a heparin-binding protein abundantly stored in eggs and embryos of zebrafish, and its gene expression was markedly up-regulated by LPS and LTA treatment. We also showed that recombinant AP2M1A (rAP2M1A) was not only able to interact with Gram-negative and Gram-positive bacteria as well as their signature molecules LPS and LTA, but also able to inhibit the growth of the bacteria. Additionally, we found that AP2M1A354-382 that contained 2 closely positioned heparin-binding motifs could also bind to LPS and LTA, and inhibit the bacterial growth. Both rAP2M1A and AP2M1A354-382 were shown to execute antibacterial activity by a combined action of destabilization/destruction of bacterial cell wall through interaction with LPS and LTA, disturbance of the usually polarized membrane through depolarization, and apoptosis/necrosis through intracellular ROS production. Finally, we showed that AP2M1A could protect zebrafish developing embryos/larvae against attack by the potential pathogen Aeromonas hydrophila. All these demonstrate for the first time that AP2M1A is a maternal antimicrobial protein previously uncharacterized. It also establishes a correlation between antibacterial activity and heparin-binding motifs.
Collapse
Affiliation(s)
- Yi Gong
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Fei Wu
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Haoyi Li
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Xiangmin Zhang
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266003, China.
| |
Collapse
|
22
|
Hartz RA, Ahuja VT, Nara SJ, Kumar CMV, Brown JM, Bristow LJ, Rajamani R, Muckelbauer JK, Camac D, Kiefer SE, Hunihan L, Gulianello M, Lewis M, Easton A, Lippy JS, Surti N, Pattipati SN, Dokania M, Elavazhagan S, Dandapani K, Hamman BD, Allen J, Kostich W, Bronson JJ, Macor JE, Dzierba CD. Discovery, Structure-Activity Relationships, and In Vivo Evaluation of Novel Aryl Amides as Brain Penetrant Adaptor Protein 2-Associated Kinase 1 (AAK1) Inhibitors for the Treatment of Neuropathic Pain. J Med Chem 2021; 64:11090-11128. [PMID: 34270254 DOI: 10.1021/acs.jmedchem.1c00472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Effective treatment of chronic pain, in particular neuropathic pain, without the side effects that often accompany currently available treatment options is an area of significant unmet medical need. A phenotypic screen of mouse gene knockouts led to the discovery that adaptor protein 2-associated kinase 1 (AAK1) is a potential therapeutic target for neuropathic pain. The synthesis and optimization of structure-activity relationships of a series of aryl amide-based AAK1 inhibitors led to the identification of 59, a brain penetrant, AAK1-selective inhibitor that proved to be a valuable tool compound. Compound 59 was evaluated in mice for the inhibition of μ2 phosphorylation. Studies conducted with 59 in pain models demonstrated that this compound was efficacious in the phase II formalin model for persistent pain and the chronic-constriction-injury-induced model for neuropathic pain in rats. These results suggest that AAK1 inhibition is a promising approach for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Richard A Hartz
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Company, Research and Development, Wallingford, Connecticut 06492, United States
| | - Vijay T Ahuja
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Company, Research and Development, Wallingford, Connecticut 06492, United States
| | - Susheel J Nara
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - C M Vijaya Kumar
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Jeffrey M Brown
- Department of Neuroscience Discovery Biology, Bristol Myers Squibb Company, Research and Development, Wallingford, Connecticut 06492, United States
| | - Linda J Bristow
- Department of Neuroscience Discovery Biology, Bristol Myers Squibb Company, Research and Development, Wallingford, Connecticut 06492, United States
| | - Ramkumar Rajamani
- Department of Molecular Structure and Design, Bristol Myers Squibb Company, Research and Development, Wallingford, Connecticut 06492, United States
| | - Jodi K Muckelbauer
- Department of Molecular Structure and Design, Bristol Myers Squibb Company, Research and Development, Princeton, New Jersey 08543, United States
| | - Daniel Camac
- Department of Molecular Structure and Design, Bristol Myers Squibb Company, Research and Development, Princeton, New Jersey 08543, United States
| | - Susan E Kiefer
- Department of Protein Science, Bristol Myers Squibb Company, Research and Development, Princeton, New Jersey 08543, United States
| | - Lisa Hunihan
- Department of Neuroscience Discovery Biology, Bristol Myers Squibb Company, Research and Development, Wallingford, Connecticut 06492, United States
| | - Michael Gulianello
- Department of Neuroscience Discovery Biology, Bristol Myers Squibb Company, Research and Development, Wallingford, Connecticut 06492, United States
| | - Martin Lewis
- Department of Neuroscience Discovery Biology, Bristol Myers Squibb Company, Research and Development, Wallingford, Connecticut 06492, United States
| | - Amy Easton
- Department of Neuroscience Discovery Biology, Bristol Myers Squibb Company, Research and Development, Wallingford, Connecticut 06492, United States
| | - Jonathan S Lippy
- Department of Lead Evaluation, Bristol Myers Squibb Company, Research and Development, Princeton, New Jersey 08543, United States
| | - Neha Surti
- Department of Lead Evaluation, Bristol Myers Squibb Company, Research and Development, Princeton, New Jersey 08543, United States
| | - Sreenivasulu N Pattipati
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Manoj Dokania
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Saravanan Elavazhagan
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Kumaran Dandapani
- Biocon-Bristol Myers Squibb Research and Development Center, Biocon Park, Plot No. 2 & 3, Bommasandra Phase IV, Jigani Link Road, Bangalore 560099, India
| | - Brian D Hamman
- Lexicon Pharmaceuticals, 8800 Technology Forest Place, The Woodlands, Texas 77381, United States
| | - Jason Allen
- Lexicon Pharmaceuticals, 8800 Technology Forest Place, The Woodlands, Texas 77381, United States
| | - Walter Kostich
- Department of Neuroscience Discovery Biology, Bristol Myers Squibb Company, Research and Development, Wallingford, Connecticut 06492, United States
| | - Joanne J Bronson
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Company, Research and Development, Wallingford, Connecticut 06492, United States
| | - John E Macor
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Company, Research and Development, Wallingford, Connecticut 06492, United States
| | - Carolyn D Dzierba
- Department of Small Molecule Drug Discovery, Bristol Myers Squibb Company, Research and Development, Wallingford, Connecticut 06492, United States
| |
Collapse
|
23
|
Tolsma TO, Febvre HP, Olson DM, Di Pietro SM. Cargo-mediated recruitment of the endocytic adaptor protein Sla1 in S. cerevisiae. J Cell Sci 2020; 133:jcs247684. [PMID: 32907853 PMCID: PMC7578355 DOI: 10.1242/jcs.247684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/27/2020] [Indexed: 11/20/2022] Open
Abstract
Endocytosis of plasma membrane proteins is mediated by their interaction with adaptor proteins. Conversely, emerging evidence suggests that adaptor protein recruitment to the plasma membrane may depend on binding to endocytic cargo. To test this idea, we analyzed the yeast adaptor protein Sla1, which binds membrane proteins harboring the endocytic signal NPFxD via the Sla1 SHD1 domain. Consistently, SHD1 domain point mutations that disrupted NPFxD binding caused a proportional reduction in Sla1-GFP recruitment to endocytic sites. Furthermore, simultaneous SHD1 domain point mutation and deletion of the C-terminal LxxQxTG repeat (SR) region linking Sla1 to coat proteins Pan1 and End3 resulted in total loss of Sla1-GFP recruitment to the plasma membrane. These data suggest that multiple interactions are needed for recruitment of Sla1 to the membrane. Interestingly, a Sla1 fragment containing just the third SH3 domain, which binds ubiquitin, and the SHD1 domain displayed broad surface localization, suggesting plasma membrane recruitment is mediated by interaction with both NPFxD-containing and ubiquitylated plasma membrane proteins. Our results also imply that a Sla1 NPF motif adjacent to the SR region might regulate the Sla1-cargo interaction, mechanistically linking Sla1 cargo binding to endocytic site recruitment.
Collapse
Affiliation(s)
- Thomas O Tolsma
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Hallie P Febvre
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Deanna M Olson
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| | - Santiago M Di Pietro
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523-1870, USA
| |
Collapse
|
24
|
Dimou S, Diallinas G. Life and Death of Fungal Transporters under the Challenge of Polarity. Int J Mol Sci 2020; 21:ijms21155376. [PMID: 32751072 PMCID: PMC7432044 DOI: 10.3390/ijms21155376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic plasma membrane (PM) transporters face critical challenges that are not widely present in prokaryotes. The two most important issues are proper subcellular traffic and targeting to the PM, and regulated endocytosis in response to physiological, developmental, or stress signals. Sorting of transporters from their site of synthesis, the endoplasmic reticulum (ER), to the PM has been long thought, but not formally shown, to occur via the conventional Golgi-dependent vesicular secretory pathway. Endocytosis of specific eukaryotic transporters has been studied more systematically and shown to involve ubiquitination, internalization, and sorting to early endosomes, followed by turnover in the multivesicular bodies (MVB)/lysosomes/vacuole system. In specific cases, internalized transporters have been shown to recycle back to the PM. However, the mechanisms of transporter forward trafficking and turnover have been overturned recently through systematic work in the model fungus Aspergillus nidulans. In this review, we present evidence that shows that transporter traffic to the PM takes place through Golgi bypass and transporter endocytosis operates via a mechanism that is distinct from that of recycling membrane cargoes essential for fungal growth. We discuss these findings in relation to adaptation to challenges imposed by cell polarity in fungi as well as in other eukaryotes and provide a rationale of why transporters and possibly other housekeeping membrane proteins ‘avoid’ routes of polar trafficking.
Collapse
|
25
|
Mino RE, Chen Z, Mettlen M, Schmid SL. An internally eGFP-tagged α-adaptin is a fully functional and improved fiduciary marker for clathrin-coated pit dynamics. Traffic 2020; 21:603-616. [PMID: 32657003 PMCID: PMC7495412 DOI: 10.1111/tra.12755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/18/2022]
Abstract
Clathrin mediated endocytosis (CME) has been extensively studied in living cells by quantitative total internal reflection fluorescence microscopy (TIRFM). Fluorescent protein fusions to subunits of the major coat proteins, clathrin light chains or the heterotetrameric adaptor protein (AP2) complexes, have been used as fiduciary markers of clathrin coated pits (CCPs). However, the functionality of these fusion proteins has not been rigorously compared. Here, we generated stable cells lines overexpressing mRuby‐CLCa and/or μ2‐eGFP, σ2‐eGFP, two markers currently in use, or a novel marker generated by inserting eGFP into the unstructured hinge region of the α subunit (α‐eGFP). Using biochemical and TIRFM‐based assays, we compared the functionality of the AP2 markers. All of the eGFP‐tagged subunits were efficiently incorporated into AP2 and displayed greater accuracy in image‐based CCP analyses than mRuby‐CLCa. However, overexpression of either μ2‐eGFP or σ2‐eGFP impaired transferrin receptor uptake. In addition, μ2‐eGFP reduced the rates of CCP initiation and σ2‐eGFP perturbed AP2 incorporation into CCPs and CCP maturation. In contrast, CME and CCP dynamics were unperturbed in cells overexpressing α‐eGFP. Moreover, α‐eGFP was a more sensitive and accurate marker of CCP dynamics than mRuby‐CLCa. Thus, our work establishes α‐eGFP as a robust, fully functional marker for CME.
Collapse
Affiliation(s)
- Rosa E Mino
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Zhiming Chen
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Marcel Mettlen
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sandra L Schmid
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
26
|
Kaźmierczak Z, Szostak-Paluch K, Przybyło M, Langner M, Witkiewicz W, Jędruchniewicz N, Dąbrowska K. Endocytosis in cellular uptake of drug delivery vectors: Molecular aspects in drug development. Bioorg Med Chem 2020; 28:115556. [PMID: 32828419 DOI: 10.1016/j.bmc.2020.115556] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022]
Abstract
Drug delivery vectors are widely applied to increase drug efficacy while reducing the side effects and potential toxicity of a drug. They allow for patient-tailored therapy, dose titration, and therapeutic drug monitoring. A major part of drug delivery systems makes use of large nanocarriers: liposomes or virus-like particles (VLPs). These systems allow for a relatively large amount of cargo with good stability of vectors, and they offer multiple options for targeting vectors in vivo. Here we discuss endocytic pathways that are available for drug delivery by large nanocarriers. We focus on molecular aspects of the process, including an overview of potential molecular targets for studies of drug delivery vectors and for future solutions allowing targeted drug delivery.
Collapse
Affiliation(s)
- Zuzanna Kaźmierczak
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Kamila Szostak-Paluch
- Research and Development Center, Regional Specialized Hospital, Wrocław, Poland; Wrocław University of Science and Technology, Faculty of Fundamental Technical Problems, Department of Biomedical Engineering, Wrocław, Poland
| | - Magdalena Przybyło
- Wrocław University of Science and Technology, Faculty of Fundamental Technical Problems, Department of Biomedical Engineering, Wrocław, Poland; Lipid Systems sp z o.o., Wrocław, Poland
| | - Marek Langner
- Wrocław University of Science and Technology, Faculty of Fundamental Technical Problems, Department of Biomedical Engineering, Wrocław, Poland; Lipid Systems sp z o.o., Wrocław, Poland
| | - Wojciech Witkiewicz
- Research and Development Center, Regional Specialized Hospital, Wrocław, Poland
| | | | - Krystyna Dąbrowska
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland; Research and Development Center, Regional Specialized Hospital, Wrocław, Poland.
| |
Collapse
|
27
|
Abstract
The accessory protein Nef of human immunodeficiency virus (HIV) is a primary determinant of viral pathogenesis. Nef is abundantly expressed during infection and reroutes a variety of cell surface proteins to disrupt host immunity and promote the viral replication cycle. Nef counteracts host defenses by sequestering and/or degrading its targets via the endocytic and secretory pathways. Nef does this by physically engaging a number of host trafficking proteins. Substantial progress has been achieved in identifying the targets of Nef, and a structural and mechanistic understanding of Nef's ability to command the protein trafficking machinery has recently started to coalesce. Comparative analysis of HIV and simian immunodeficiency virus (SIV) Nef proteins in the context of recent structural advances sheds further light on both viral evolution and the mechanisms whereby trafficking is hijacked. This review describes how advances in cell and structural biology are uncovering in growing detail how Nef subverts the host immune system, facilitates virus release, and enhances viral infectivity.
Collapse
|
28
|
Gerth E, Mattner J. The Role of Adaptor Proteins in the Biology of Natural Killer T (NKT) Cells. Front Immunol 2019; 10:1449. [PMID: 31293596 PMCID: PMC6603179 DOI: 10.3389/fimmu.2019.01449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 06/10/2019] [Indexed: 12/31/2022] Open
Abstract
Adaptor proteins contribute to the selection, differentiation and activation of natural killer T (NKT) cells, an innate(-like) lymphocyte population endowed with powerful immunomodulatory properties. Distinct from conventional T lymphocytes NKT cells preferentially home to the liver, undergo a thymic maturation and differentiation process and recognize glycolipid antigens presented by the MHC class I-like molecule CD1d on antigen presenting cells. NKT cells express a semi-invariant T cell receptor (TCR), which combines the Vα14-Jα18 chain with a Vβ2, Vβ7, or Vβ8 chain in mice and the Vα24 chain with the Vβ11 chain in humans. The avidity of interactions between their TCR, the presented glycolipid antigen and CD1d govern the selection and differentiation of NKT cells. Compared to TCR ligation on conventional T cells engagement of the NKT cell TCR delivers substantially stronger signals, which trigger the unique NKT cell developmental program. Furthermore, NKT cells express a panoply of primarily inhibitory NK cell receptors (NKRs) that control their self-reactivity and avoid autoimmune activation. Adaptor proteins influence NKT cell biology through the integration of TCR, NKR and/or SLAM (signaling lymphocyte-activation molecule) receptor signals or the variation of CD1d-restricted antigen presentation. TCR and NKR ligation engage the SH2 domain-containing leukocyte protein of 76kDa slp-76 whereas the SLAM associated protein SAP serves as adaptor for the SLAM receptor family. Indeed, the selection and differentiation of NKT cells selectively requires co-stimulation via SLAM receptors. Furthermore, SAP deficiency causes X-linked lymphoproliferative disease with multiple immune defects including a lack of circulating NKT cells. While a deletion of slp-76 leads to a complete loss of all peripheral T cell populations, mutations in the SH2 domain of slp-76 selectively affect NKT cell biology. Furthermore, adaptor proteins influence the expression and trafficking of CD1d in antigen presenting cells and subsequently selection and activation of NKT cells. Adaptor protein complex 3 (AP-3), for example, is required for the efficient presentation of glycolipid antigens which require internalization and processing. Thus, our review will focus on the complex contribution of adaptor proteins to the delivery of TCR, NKR and SLAM receptor signals in the unique biology of NKT cells and CD1d-restricted antigen presentation.
Collapse
Affiliation(s)
- Evelyn Gerth
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
29
|
The endocytic cargo adaptor complex is required for cell-wall integrity via interacting with the sensor FgWsc2B in Fusarium graminearum. Curr Genet 2019; 65:1071-1080. [DOI: 10.1007/s00294-019-00961-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023]
|
30
|
Mani I, Pandey KN. Emerging concepts of receptor endocytosis and concurrent intracellular signaling: Mechanisms of guanylyl cyclase/natriuretic peptide receptor-A activation and trafficking. Cell Signal 2019; 60:17-30. [PMID: 30951863 DOI: 10.1016/j.cellsig.2019.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022]
Abstract
Endocytosis is a prominent clathrin-mediated mechanism for concentrated uptake and internalization of ligand-receptor complexes, also known as cargo. Internalization of cargo is the fundamental mechanism for receptor-dependent regulation of cell membrane function, intracellular signal transduction, and neurotransmission, as well as other biological and physiological activities. However, the intrinsic mechanisms of receptor endocytosis and contemporaneous intracellular signaling are not well understood. We review emerging concepts of receptor endocytosis with concurrent intracellular signaling, using a typical example of guanylyl cyclase/natriuretic peptide receptor-A (NPRA) internalization, subcellular trafficking, and simultaneous generation of second-messenger cGMP and signaling in intact cells. We highlight the role of short-signal motifs located in the carboxyl-terminal regions of membrane receptors during their internalization and subsequent receptor trafficking in organelles that are not traditionally studied in this context, including nuclei and mitochondria. This review sheds light on the importance of future investigations of receptor endocytosis and trafficking in live cells and intact animals in vivo in physiological context.
Collapse
Affiliation(s)
- Indra Mani
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, United States
| | - Kailash N Pandey
- Department of Physiology, Tulane University Health Sciences Center and School of Medicine, 1430 Tulane Avenue, New Orleans, Louisiana 70112, United States.
| |
Collapse
|
31
|
AP-2-Dependent Endocytic Recycling of the Chitin Synthase Chs3 Regulates Polarized Growth in Candida albicans. mBio 2019; 10:mBio.02421-18. [PMID: 30890602 PMCID: PMC6426607 DOI: 10.1128/mbio.02421-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The human fungal pathogen Candida albicans is known to require endocytosis to enable its adaptation to diverse niches and to maintain its highly polarized hyphal growth phase. While studies have identified changes in transcription leading to the synthesis and secretion of new proteins to facilitate hyphal growth, effective maintenance of hyphae also requires concomitant removal or relocalization of other cell surface molecules. The key molecules which must be removed from the cell surface, and the mechanisms behind this, have, however, remained elusive. In this study, we show that the AP-2 endocytic adaptor complex is required for the internalization of the major cell wall biosynthesis enzyme Chs3. We demonstrate that this interaction is mediated by the AP-2 mu subunit (Apm4) YXXΦ binding domain. We also show that in the absence of Chs3 recycling via AP-2, cells have abnormal cell wall composition, defective polarized cell wall deposition, and morphological defects. The study also highlights key distinctions between endocytic requirements of growth at yeast buds compared to that at hyphal tips and different requirements of AP-2 in maintaining the polarity of mannosylated proteins and ergosterol at hyphal tips. Together, our findings highlight the importance of correct cell wall deposition in cell shape maintenance and polarized growth and the key regulatory role of endocytic recycling via the AP-2 complex.IMPORTANCE Candida albicans is a human commensal yeast that can cause significant morbidity and mortality in immunocompromised individuals. Within humans, C. albicans can adopt different morphologies as yeast or filamentous hyphae and can occupy different niches with distinct temperatures, pHs, CO2 levels, and nutrient availability. Both morphological switching and growth in different environments require cell surface remodelling, which involves both the addition of newly synthesized proteins as well as the removal of other proteins. In our study, we demonstrate the importance of an adaptor complex AP-2 in internalizing and recycling a specific cell surface enzyme to maintain effective polarized hyphal growth. Defects in formation of the complex or in its ability to interact directly with cargo inhibit enzyme uptake and lead to defective cell walls and aberrant hyphal morphology. Our data indicate that the AP-2 adaptor plays a central role in regulating cell surface composition in Candida.
Collapse
|
32
|
Wang H, Yuan X, Sun Y, Mao X, Meng C, Tan L, Song C, Qiu X, Ding C, Liao Y. Infectious bronchitis virus entry mainly depends on clathrin mediated endocytosis and requires classical endosomal/lysosomal system. Virology 2018; 528:118-136. [PMID: 30597347 PMCID: PMC7111473 DOI: 10.1016/j.virol.2018.12.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/27/2022]
Abstract
Although several reports suggest that the entry of infectious bronchitis virus (IBV) depends on lipid rafts and low pH, the endocytic route and intracellular trafficking are unclear. In this study, we aimed to shed greater light on early steps in IBV infection. By using chemical inhibitors, RNA interference, and dominant negative mutants, we observed that lipid rafts and low pH was indeed required for virus entry; IBV mainly utilized the clathrin mediated endocytosis (CME) for entry; GTPase dynamin 1 was involved in virus containing vesicle scission; and the penetration of IBV into cells led to active cytoskeleton rearrangement. By using R18 labeled virus, we found that virus particles moved along with the classical endosome/lysosome track. Functional inactivation of Rab5 and Rab7 significantly inhibited IBV infection. Finally, by using dual R18/DiOC labeled IBV, we observed that membrane fusion was induced after 1 h.p.i. in late endosome/lysosome. Intact lipid rafts is involved in IBV entry. Low pH in intracyplasmic vesicles is required for IBV entry. IBV penetrates cells via clathrin mediated endocytosis. IBV moves along with the classical endosome/lysosome track, finally fuses with late endosome/lysosome.
Collapse
Affiliation(s)
- Huan Wang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Xiao Yuan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Xiang Mao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chunchun Meng
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| | - Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China.
| |
Collapse
|
33
|
Blue RE, Koushik A, Engels NM, Wiedner HJ, Cooper TA, Giudice J. Modulation of alternative splicing of trafficking genes by genome editing reveals functional consequences in muscle biology. Int J Biochem Cell Biol 2018; 105:134-143. [PMID: 30316870 DOI: 10.1016/j.biocel.2018.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/12/2018] [Accepted: 10/09/2018] [Indexed: 01/22/2023]
Abstract
Alternative splicing is a regulatory mechanism by which multiple mRNA isoforms are generated from single genes. Numerous genes that encode membrane trafficking proteins are alternatively spliced. However, there is limited information about the functional consequences that result from these splicing transitions. Here, we developed appropriate tools to study the functional impact of alternative splicing in development within the most in vivo context. Secondly, we provided evidence of the physiological implications of splicing regulation during muscle development. Our previous work in mouse heart development identified three trafficking genes that are regulated by alternative splicing between birth and adulthood: the clathrin heavy chain, the clathrin light chain-a, and the trafficking kinesin binding protein-1. Here, we demonstrated that alternative splicing regulation of these three genes is tissue- and developmental stage-specific. To identify the functional consequences of splicing regulation in vivo, we used genome editing to block the neonatal-to-adult splicing transitions. We characterized the phenotype of one of these mouse lines and demonstrated that when splicing regulation of the clathrin heavy chain gene is prevented mice exhibit an increase in body and muscle weights which is due to an enlargement in myofiber size. The significance of this work has two components. First, we revealed novel roles of the clathrin heavy chain in muscle growth and showed that its regulation by alternative splicing contributes to muscle development. Second, the new mouse lines will provide a useful tool to study how splicing regulation of three trafficking genes affects tissue identity acquisition and maturation in vivo.
Collapse
Affiliation(s)
- R Eric Blue
- Department of Cell Biology & Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Amrita Koushik
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nichlas M Engels
- Department of Cell Biology & Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Hannah J Wiedner
- Department of Cell Biology & Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Curriculum in Genetics & Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas A Cooper
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA; Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Jimena Giudice
- Department of Cell Biology & Physiology, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Curriculum in Genetics & Molecular Biology (GMB), The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; McAllister Heart Institute, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
34
|
Nguyen HH, Lee MH, Song K, Ahn G, Lee J, Hwang I. The A/ENTH Domain-Containing Protein AtECA4 Is an Adaptor Protein Involved in Cargo Recycling from the trans-Golgi Network/Early Endosome to the Plasma Membrane. MOLECULAR PLANT 2018; 11:568-583. [PMID: 29317286 DOI: 10.1016/j.molp.2018.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/03/2017] [Accepted: 01/03/2018] [Indexed: 05/05/2023]
Abstract
Endocytosis and subsequent trafficking pathways are crucial for regulating the activity of plasma membrane-localized proteins. Depending on cellular and physiological conditions, the internalized cargoes are sorted at (and transported from) the trans-Golgi network/early endosome (TGN/EE) to the vacuole for degradation or recycled back to the plasma membrane. How this occurs at the molecular level remains largely elusive. Here, we provide evidence that the ENTH domain-containing protein AtECA4 plays a crucial role in recycling cargoes from the TGN/EE to the plasma membrane in Arabidopsis thaliana. AtECA4:sGFP primarily localized to the TGN/EE and plasma membrane (at low levels). Upon NaCl or mannitol treatment, AtECA4:sGFP accumulated at the TGN/EE at an early time point but was released from the TGN/EE to the cytosol at later time points. The ateca4 mutant showed higher resistance to osmotic stress and more sensitive to exogenous abscisic acid (ABA) than the wild type, as well as increased expression of ABA-inducible genes RD29A and RD29B. Consistently, ABCG25, a plasma membrane-localized ABA exporter, accumulated at the prevacuolar compartment in ateca4, indicating a defect in recycling to the plasma membrane. However, the role of AtECA4 in cargo recycling is not specific to ABCG25, as it also functions in the recycling of BRI1. These results suggest that AtECA4 plays a crucial role in the recycling of endocytosed cargoes from the TGN/EE to the plasma membrane.
Collapse
Affiliation(s)
- Hong Hanh Nguyen
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Myoung Hui Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Kyungyoung Song
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Gyeongik Ahn
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Jihyeong Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Inhwan Hwang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Korea; Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea.
| |
Collapse
|
35
|
Zhang X, Ren J, Wang J, Li S, Zou Q, Gao N. Receptor-mediated endocytosis generates nanomechanical force reflective of ligand identity and cellular property. J Cell Physiol 2018; 233:5908-5919. [PMID: 29243828 DOI: 10.1002/jcp.26400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/12/2017] [Indexed: 01/07/2023]
Abstract
Whether environmental (thermal, chemical, and nutrient) signals generate quantifiable, nanoscale, mechanophysical changes in the cellular plasma membrane has not been well elucidated. Assessment of such mechanophysical properties of plasma membrane may shed lights on fundamental cellular process. Atomic force microscopic (AFM) measurement of the mechanical properties of live cells was hampered by the difficulty in accounting for the effects of the cantilever motion and the associated hydrodynamic force on the mechanical measurement. These challenges have been addressed in our recently developed control-based AFM nanomechanical measurement protocol, which enables a fast, noninvasive, broadband measurement of the real-time changes in plasma membrane elasticity in live cells. Here we show using this newly developed AFM platform that the plasma membrane of live mammalian cells exhibits a constant and quantifiable nanomechanical property, the membrane elasticity. This mechanical property sensitively changes in response to environmental factors, such as the thermal, chemical, and growth factor stimuli. We demonstrate that different chemical inhibitors of endocytosis elicit distinct changes in plasma membrane elastic modulus reflecting their specific molecular actions on the lipid configuration or the endocytic machinery. Interestingly, two different growth factors, EGF and Wnt3a, elicited distinct elastic force profiles revealed by AFM at the plasma membrane during receptor-mediated endocytosis. By applying this platform to genetically modified cells, we uncovered a previously unknown contribution of Cdc42, a key component of the cellular trafficking network, to EGF-stimulated endocytosis at plasma membrane. Together, this nanomechanical AFM study establishes an important foundation that is expandable and adaptable for investigation of cellular membrane evolution in response to various key extracellular signals.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | - Juan Ren
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa
| | - Jingren Wang
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey
| | - Shixie Li
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey
| | - Qingze Zou
- Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, New Jersey
| | - Nan Gao
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| |
Collapse
|
36
|
Cheng C, Nowak RB, Biswas SK, Lo WK, FitzGerald PG, Fowler VM. Tropomodulin 1 Regulation of Actin Is Required for the Formation of Large Paddle Protrusions Between Mature Lens Fiber Cells. Invest Ophthalmol Vis Sci 2017; 57:4084-99. [PMID: 27537257 PMCID: PMC4986768 DOI: 10.1167/iovs.16-19949] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose To elucidate the proteins required for specialized small interlocking protrusions and large paddle domains at lens fiber cell tricellular junctions (vertices), we developed a novel method to immunostain single lens fibers and studied changes in cell morphology due to loss of tropomodulin 1 (Tmod1), an F-actin pointed end–capping protein. Methods We investigated F-actin and F-actin–binding protein localization in interdigitations of Tmod1+/+ and Tmod1−/− single mature lens fibers. Results F-actin–rich small protrusions and large paddles were present along cell vertices of Tmod1+/+ mature fibers. In contrast, Tmod1−/− mature fiber cells lack normal paddle domains, while small protrusions were unaffected. In Tmod1+/+ mature fibers, Tmod1, β2-spectrin, and α-actinin are localized in large puncta in valleys between paddles; but in Tmod1−/− mature fibers, β2-spectrin was dispersed while α-actinin was redistributed at the base of small protrusions and rudimentary paddles. Fimbrin and Arp3 (actin-related protein 3) were located in puncta at the base of small protrusions, while N-cadherin and ezrin outlined the cell membrane in both Tmod1+/+ and Tmod1−/− mature fibers. Conclusions These results suggest that distinct F-actin organizations are present in small protrusions versus large paddles. Formation and/or maintenance of large paddle domains depends on a β2-spectrin–actin network stabilized by Tmod1. α-Actinin–crosslinked F-actin bundles are enhanced in absence of Tmod1, indicating altered cytoskeleton organization. Formation of small protrusions is likely facilitated by Arp3-branched and fimbrin-bundled F-actin networks, which do not depend on Tmod1. This is the first work to reveal the F-actin–associated proteins required for the formation of paddles between lens fibers.
Collapse
Affiliation(s)
- Catherine Cheng
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| | - Roberta B Nowak
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| | - Sondip K Biswas
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States
| | - Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia, United States
| | - Paul G FitzGerald
- Department of Cell Biology and Human Anatomy, University of California, Davis, California, United States
| | - Velia M Fowler
- Department of Cell and Molecular Biology The Scripps Research Institute, La Jolla, California, United States
| |
Collapse
|
37
|
Schmitt D, Funk N, Blum R, Asan E, Andersen L, Rülicke T, Sendtner M, Buchner E. Initial characterization of a Syap1 knock-out mouse and distribution of Syap1 in mouse brain and cultured motoneurons. Histochem Cell Biol 2016; 146:489-512. [PMID: 27344443 PMCID: PMC5037158 DOI: 10.1007/s00418-016-1457-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2016] [Indexed: 02/07/2023]
Abstract
Synapse-associated protein 1 (Syap1/BSTA) is the mammalian homologue of Sap47 (synapse-associated protein of 47 kDa) in Drosophila. Sap47 null mutant larvae show reduced short-term synaptic plasticity and a defect in associative behavioral plasticity. In cultured adipocytes, Syap1 functions as part of a complex that phosphorylates protein kinase Bα/Akt1 (Akt1) at Ser(473) and promotes differentiation. The role of Syap1 in the vertebrate nervous system is unknown. Here, we generated a Syap1 knock-out mouse and show that lack of Syap1 is compatible with viability and fertility. Adult knock-out mice show no overt defects in brain morphology. In wild-type brain, Syap1 is found widely distributed in synaptic neuropil, notably in regions rich in glutamatergic synapses, but also in perinuclear structures associated with the Golgi apparatus of specific groups of neuronal cell bodies. In cultured motoneurons, Syap1 is located in axons and growth cones and is enriched in a perinuclear region partially overlapping with Golgi markers. We studied in detail the influence of Syap1 knockdown and knockout on structure and development of these cells. Importantly, Syap1 knockout does not affect motoneuron survival or axon growth. Unexpectedly, neither knockdown nor knockout of Syap1 in cultured motoneurons is associated with reduced Ser(473) or Thr(308) phosphorylation of Akt. Our findings demonstrate a widespread expression of Syap1 in the mouse central nervous system with regionally specific distribution patterns as illustrated in particular for olfactory bulb, hippocampus, and cerebellum.
Collapse
Affiliation(s)
- Dominique Schmitt
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher Str. 5, 97078, Würzburg, Germany
| | - Natalia Funk
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher Str. 5, 97078, Würzburg, Germany
| | - Robert Blum
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher Str. 5, 97078, Würzburg, Germany
| | - Esther Asan
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070, Würzburg, Germany
| | - Lill Andersen
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher Str. 5, 97078, Würzburg, Germany
| | - Erich Buchner
- Institute of Clinical Neurobiology, University of Würzburg, Versbacher Str. 5, 97078, Würzburg, Germany.
| |
Collapse
|
38
|
de León N, Valdivieso MH. The long life of an endocytic patch that misses AP-2. Curr Genet 2016; 62:765-770. [PMID: 27126383 DOI: 10.1007/s00294-016-0605-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 10/21/2022]
Abstract
Endocytosis is the process by which cells regulate extracellular fluid uptake and internalize molecules bound to their plasma membrane. This process requires the generation of protein-coated vesicles. In clathrin-mediated endocytosis (CME) the assembly polypeptide 2 (AP-2) adaptor facilitates rapid endocytosis of some plasma membrane receptors by mediating clathrin recruitment to the endocytic site and by connecting cargoes to the clathrin coat. While this adaptor is essential for early embryonic development in mammals, initial results suggested that it is dispensable for endocytosis in unicellular eukaryotes. The drastic effect of depleting AP-2 in metazoa and the mild effect of deleting AP-2 subunits in Saccharomyces cerevisiae have prevented a detailed analysis of the dynamics of endocytic patches in the absence of this adaptor. Using live-cell imaging of Schizosaccharomyces pombe endocytic sites we have shown that eliminating AP-2 perturbs the dynamics of endocytic patches beyond the moment of coat assembly. These perturbations affect the cell growth pattern and cell wall synthesis. Our results highlight the importance of using different model organisms to address the study of conserved aspects of CME.
Collapse
Affiliation(s)
- Nagore de León
- Departamento de Microbiología y Genética/Instituto de Biología Funcional y Genómica (IBFG), University of Salamanca/CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain.,Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - M-Henar Valdivieso
- Departamento de Microbiología y Genética/Instituto de Biología Funcional y Genómica (IBFG), University of Salamanca/CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain.
| |
Collapse
|
39
|
|
40
|
Cheng C, Nowak RB, Fowler VM. The lens actin filament cytoskeleton: Diverse structures for complex functions. Exp Eye Res 2016; 156:58-71. [PMID: 26971460 DOI: 10.1016/j.exer.2016.03.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 01/05/2023]
Abstract
The eye lens is a transparent and avascular organ in the front of the eye that is responsible for focusing light onto the retina in order to transmit a clear image. A monolayer of epithelial cells covers the anterior hemisphere of the lens, and the bulk of the lens is made up of elongated and differentiated fiber cells. Lens fiber cells are very long and thin cells that are supported by sophisticated cytoskeletal networks, including actin filaments at cell junctions and the spectrin-actin network of the membrane skeleton. In this review, we highlight the proteins that regulate diverse actin filament networks in the lens and discuss how these actin cytoskeletal structures assemble and function in epithelial and fiber cells. We then discuss methods that have been used to study actin in the lens and unanswered questions that can be addressed with novel techniques.
Collapse
Affiliation(s)
- Catherine Cheng
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Roberta B Nowak
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Velia M Fowler
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
41
|
Endocytic pathways and endosomal trafficking: a primer. Wien Med Wochenschr 2016; 166:196-204. [PMID: 26861668 DOI: 10.1007/s10354-016-0432-7] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/05/2016] [Indexed: 01/05/2023]
Abstract
This brief overview of endocytic trafficking is written in honor of Renate Fuchs, who retires this year. In the mid-1980s, Renate pioneered studies on the ion-conducting properties of the recently discovered early and late endosomes and the mechanisms governing endosomal acidification. As described in this review, after uptake through one of many mechanistically distinct endocytic pathways, internalized proteins merge into a common early/sorting endosome. From there they again diverge along distinct sorting pathways, back to the cell surface, on to the trans-Golgi network or across polarized cells. Other transmembrane receptors are packaged into intraluminal vesicles of late endosomes/multivesicular bodies that eventually fuse with and deliver their content to lysosomes for degradation. Endosomal acidification, in part, determines sorting along this pathway. We describe other sorting machinery and mechanisms, as well as the rab proteins and phosphatidylinositol lipids that serve to dynamically define membrane compartments along the endocytic pathway.
Collapse
|
42
|
Windheim M, Höning S, Leppard KN, Butler L, Seed C, Ponnambalam S, Burgert HG. Sorting Motifs in the Cytoplasmic Tail of the Immunomodulatory E3/49K Protein of Species D Adenoviruses Modulate Cell Surface Expression and Ectodomain Shedding. J Biol Chem 2016; 291:6796-812. [PMID: 26841862 DOI: 10.1074/jbc.m115.684787] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Indexed: 11/06/2022] Open
Abstract
The E3 transcription unit of human species C adenoviruses (Ads) encodes immunomodulatory proteins that mediate direct protection of infected cells. Recently, we described a novel immunomodulatory function for E3/49K, an E3 protein uniquely expressed by species D Ads. E3/49K of Ad19a/Ad64, a serotype that causes epidemic keratokonjunctivitis, is synthesized as a highly glycosylated type I transmembrane protein that is subsequently cleaved, resulting in secretion of its large ectodomain (sec49K). sec49K binds to CD45 on leukocytes, impairing activation and functions of natural killer cells and T cells. E3/49K is localized in the Golgi/trans-Golgi network (TGN), in the early endosomes, and on the plasma membrane, yet the cellular compartment where E3/49K is cleaved and the protease involved remained elusive. Here we show that TGN-localized E3/49K comprises both newly synthesized and recycled molecules. Full-length E3/49K was not detected in late endosomes/lysosomes, but the C-terminal fragment accumulated in this compartment at late times of infection. Inhibitor studies showed that cleavage occurs in a post-TGN compartment and that lysosomotropic agents enhance secretion. Interestingly, the cytoplasmic tail of E3/49K contains two potential sorting motifs, YXXΦ (where Φ represents a bulky hydrophobic amino acid) and LL, that are important for binding the clathrin adaptor proteins AP-1 and AP-2in vitro Surprisingly, mutating the LL motif, either alone or together with YXXΦ, did not prevent proteolytic processing but increased cell surface expression and secretion. Upon brefeldin A treatment, cell surface expression was rapidly lost, even for mutants lacking all known endocytosis motifs. Together with immunofluorescence data, we propose a model for intracellular E3/49K transport whereby cleavage takes place on the cell surface by matrix metalloproteases.
Collapse
Affiliation(s)
- Mark Windheim
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom, the Institute of Biochemistry, Hannover Medical School, 30625 Hannover, Germany
| | - Stefan Höning
- the Institute for Biochemistry I and Center for Molecular Medicine Cologne, 50931 Cologne, Germany, and
| | - Keith N Leppard
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Larissa Butler
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Christina Seed
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Sreenivasan Ponnambalam
- the School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Hans-Gerhard Burgert
- From the School of Life Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom,
| |
Collapse
|
43
|
Hasanagic M, Waheed A, Eissenberg JC. Different Pathways to the Lysosome: Sorting out Alternatives. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 320:75-101. [PMID: 26614872 DOI: 10.1016/bs.ircmb.2015.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Considerable research supports a model in which hydrolytic enzymes of mammalian lysosomes are sorted to their destinations in a receptor-dependent mechanism. The ligand for the mammalian sorting receptors is mannose 6-phosphate (M6P). Two M6P receptors have been defined in mammals. Here, we review the foundational evidence supporting this mechanism and highlight the remaining gaps in our understanding of the mammalian mechanism, including evidence for M6P-independent sorting, and its relevance to lysosomal enzyme sorting in metazoa.
Collapse
Affiliation(s)
- Medina Hasanagic
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Doisy Research Center, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Abdul Waheed
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Doisy Research Center, Saint Louis University School of Medicine, St Louis, MO, USA
| | - Joel C Eissenberg
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Doisy Research Center, Saint Louis University School of Medicine, St Louis, MO, USA
| |
Collapse
|
44
|
Lee LJY, Klute MJ, Herman EK, Read B, Dacks JB. Losses, Expansions, and Novel Subunit Discovery of Adaptor Protein Complexes in Haptophyte Algae. Protist 2015; 166:585-97. [PMID: 26519625 DOI: 10.1016/j.protis.2015.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/09/2015] [Accepted: 07/20/2015] [Indexed: 11/19/2022]
Abstract
The phylum Haptophyta (Diaphoratickes) contains marine algae that perform biomineralization, extruding large, distinctive calcium carbonate scales (coccoliths) that completely cover the cell. Coccolith production is an important part of global carbon cycling; however, the membrane trafficking pathway by which they are secreted has not yet been elucidated. In most eukaryotes, post-Golgi membrane trafficking involves five heterotetrameric adaptor protein (AP) complexes, which impart cargo selection specificity. To better understand coccolith secretion, we performed comparative genomic, phylogenetic, and transcriptomic analyses of the AP complexes in Emiliania huxleyi strains 92A, Van556, EH2, and CCMP1516, and related haptophytes Gephyrocapsa oceanica and Isochrysis galbana; the latter has lost the ability to biomineralize. We show that haptophytes have a modified membrane trafficking system (MTS), as we found both AP subunit losses and duplications. Additionally, we identified a single conserved subunit of the AP-related TSET complex, whose expression suggests a functional role in membrane trafficking. Finally, we detected novel alpha adaptin ear and gamma adaptin ear proteins, the first of their kind to be described outside of opisthokonts. These novel ear proteins and the sculpting of the MTS may support the capacity for biomineralization in haptophytes, enhancing their ability to perform this highly specialized form of secretion.
Collapse
Affiliation(s)
- Laura J Y Lee
- Department of Cell Biology, 5-31 Medical Sciences Building, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Mary J Klute
- Department of Cell Biology, 5-31 Medical Sciences Building, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Emily K Herman
- Department of Cell Biology, 5-31 Medical Sciences Building, University of Alberta, Edmonton, AB, Canada T6G 2H7.
| | - Betsy Read
- Department of Biological Sciences, California State University, San Marcos, California 92096, United States
| | - Joel B Dacks
- Department of Cell Biology, 5-31 Medical Sciences Building, University of Alberta, Edmonton, AB, Canada T6G 2H7
| |
Collapse
|
45
|
Jane-wit D, Surovtseva YV, Qin L, Li G, Liu R, Clark P, Manes TD, Wang C, Kashgarian M, Kirkiles-Smith NC, Tellides G, Pober JS. Complement membrane attack complexes activate noncanonical NF-κB by forming an Akt+ NIK+ signalosome on Rab5+ endosomes. Proc Natl Acad Sci U S A 2015; 112:9686-91. [PMID: 26195760 PMCID: PMC4534258 DOI: 10.1073/pnas.1503535112] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Complement membrane attack complexes (MACs) promote inflammatory functions in endothelial cells (ECs) by stabilizing NF-κB-inducing kinase (NIK) and activating noncanonical NF-κB signaling. Here we report a novel endosome-based signaling complex induced by MACs to stabilize NIK. We found that, in contrast to cytokine-mediated activation, NIK stabilization by MACs did not involve cIAP2 or TRAF3. Informed by a genome-wide siRNA screen, instead this response required internalization of MACs in a clathrin-, AP2-, and dynamin-dependent manner into Rab5(+)endosomes, which recruited activated Akt, stabilized NIK, and led to phosphorylation of IκB kinase (IKK)-α. Active Rab5 was required for recruitment of activated Akt to MAC(+) endosomes, but not for MAC internalization or for Akt activation. Consistent with these in vitro observations, MAC internalization occurred in human coronary ECs in vivo and was similarly required for NIK stabilization and EC activation. We conclude that MACs activate noncanonical NF-κB by forming a novel Akt(+)NIK(+) signalosome on Rab5(+) endosomes.
Collapse
Affiliation(s)
- Dan Jane-wit
- Division of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06520
| | - Yulia V Surovtseva
- Yale Center for Molecular Discovery, Yale University, New Haven, CT 06516
| | - Lingfeng Qin
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520
| | - Guangxin Li
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520
| | - Rebecca Liu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Pamela Clark
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Thomas D Manes
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Chen Wang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Michael Kashgarian
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520
| | | | - George Tellides
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06520
| | - Jordan S Pober
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520; Department of Pathology, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
46
|
Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H. Nanoparticle Uptake: The Phagocyte Problem. NANO TODAY 2015; 10:487-510. [PMID: 26640510 PMCID: PMC4666556 DOI: 10.1016/j.nantod.2015.06.006] [Citation(s) in RCA: 848] [Impact Index Per Article: 94.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Phagocytes are key cellular participants determining important aspects of host exposure to nanomaterials, initiating clearance, biodistribution and the tenuous balance between host tolerance and adverse nanotoxicity. Macrophages in particular are believed to be among the first and primary cell types that process nanoparticles, mediating host inflammatory and immunological biological responses. These processes occur ubiquitously throughout tissues where nanomaterials are present, including the host mononuclear phagocytic system (MPS) residents in dedicated host filtration organs (i.e., liver, kidney spleen, and lung). Thus, to understand nanomaterials exposure risks it is critical to understand how nanomaterials are recognized, internalized, trafficked and distributed within diverse types of host macrophages and how possible cell-based reactions resulting from nanomaterial exposures further inflammatory host responses in vivo. This review focuses on describing macrophage-based initiation of downstream hallmark immunological and inflammatory processes resulting from phagocyte exposure to and internalization of nanomaterials.
Collapse
Affiliation(s)
- Heather Herd Gustafson
- University of Utah, Department of Bioengineering, 36 S. Wasatch Dr, Salt Lake City, Utah 84112 USA ; University of Utah, Utah Center for Nanomedicine, Nano Institute of Utah, 36 S. Wasatch Dr., Salt Lake City, Utah 84112 USA
| | - Dolly Holt-Casper
- University of Utah, Department of Bioengineering, 36 S. Wasatch Dr, Salt Lake City, Utah 84112 USA
| | - David W Grainger
- University of Utah, Department of Bioengineering, 36 S. Wasatch Dr, Salt Lake City, Utah 84112 USA ; University of Utah, Utah Center for Nanomedicine, Nano Institute of Utah, 36 S. Wasatch Dr., Salt Lake City, Utah 84112 USA ; University of Utah, Department of Pharmaceutics and Pharmaceutical Chemistry, 30 South 2000 East, Rm 301, Salt Lake City, UT USA 84112
| | - Hamidreza Ghandehari
- University of Utah, Department of Bioengineering, 36 S. Wasatch Dr, Salt Lake City, Utah 84112 USA ; University of Utah, Utah Center for Nanomedicine, Nano Institute of Utah, 36 S. Wasatch Dr., Salt Lake City, Utah 84112 USA ; University of Utah, Department of Pharmaceutics and Pharmaceutical Chemistry, 30 South 2000 East, Rm 301, Salt Lake City, UT USA 84112
| |
Collapse
|
47
|
Endocytosis and Trafficking of Natriuretic Peptide Receptor-A: Potential Role of Short Sequence Motifs. MEMBRANES 2015; 5:253-87. [PMID: 26151885 PMCID: PMC4584282 DOI: 10.3390/membranes5030253] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 12/19/2022]
Abstract
The targeted endocytosis and redistribution of transmembrane receptors among membrane-bound subcellular organelles are vital for their correct signaling and physiological functions. Membrane receptors committed for internalization and trafficking pathways are sorted into coated vesicles. Cardiac hormones, atrial and brain natriuretic peptides (ANP and BNP) bind to guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) and elicit the generation of intracellular second messenger cyclic guanosine 3',5'-monophosphate (cGMP), which lowers blood pressure and incidence of heart failure. After ligand binding, the receptor is rapidly internalized, sequestrated, and redistributed into intracellular locations. Thus, NPRA is considered a dynamic cellular macromolecule that traverses different subcellular locations through its lifetime. The utilization of pharmacologic and molecular perturbants has helped in delineating the pathways of endocytosis, trafficking, down-regulation, and degradation of membrane receptors in intact cells. This review describes the investigation of the mechanisms of internalization, trafficking, and redistribution of NPRA compared with other cell surface receptors from the plasma membrane into the cell interior. The roles of different short-signal peptide sequence motifs in the internalization and trafficking of other membrane receptors have been briefly reviewed and their potential significance in the internalization and trafficking of NPRA is discussed.
Collapse
|
48
|
Hedrich R, Sauer N, Neuhaus HE. Sugar transport across the plant vacuolar membrane: nature and regulation of carrier proteins. CURRENT OPINION IN PLANT BIOLOGY 2015; 25:63-70. [PMID: 26000864 DOI: 10.1016/j.pbi.2015.04.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/16/2015] [Accepted: 04/30/2015] [Indexed: 05/06/2023]
Abstract
The ability of higher plants to store sugars is of crucial importance for plant development, adaption to endogenous or environmental cues and for the economic value of crop species. Sugar storage and accumulation, and its homeostasis in plant cells are managed by the vacuole. Although transport of sugars across the vacuolar membrane has been monitored for about four decades, the molecular entities of the transporters involved have been identified in the last 10 years only. Thus, it is just recently that our pictures of the transporters that channel the sugar load across the tonoplast have gained real shape. Here we describe the molecular nature and regulation of an important group of tonoplast sugar transporter (TST) allowing accumulation of sugars against large concentration gradients. In addition, we report on proton-driven tonoplast sugar exporters and on facilitators, which are also involved in balancing cytosolic and vacuolar sugar levels.
Collapse
Affiliation(s)
- Rainer Hedrich
- Molecular Plant Physiology and Biophysics, University of Würzburg, Germany
| | - Norbert Sauer
- Molecular Plant Physiology, University of Erlangen-Nuremberg, Germany
| | | |
Collapse
|
49
|
Feng Q, Gao N. Keeping Wnt signalosome in check by vesicular traffic. J Cell Physiol 2015; 230:1170-80. [PMID: 25336320 DOI: 10.1002/jcp.24853] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/17/2014] [Indexed: 01/01/2023]
Abstract
Wg/Wnts are paracrine and autocrine ligands that activate distinct signaling pathways while being internalized through surface receptors. Converging and contrasting views are shaping our understanding of whether, where, and how endocytosis may modulate Wnt signaling. We gather considerable amount of evidences to elaborate the point that signal-receiving cells utilize distinct, flexible, and sophisticated vesicular trafficking mechanisms to keep Wnt signaling activity in check. Same molecules in a highly context-dependent fashion serve as regulatory hub for various signaling purposes: amplification, maintenance, inhibition, and termination. Updates are provided for the regulatory mechanisms related to the three critical cell surface complexes, Wnt-Fzd-LRP6, Dkk1-Kremen-LRP6, and R-spondin-LGR5-RNF43, which potently influence Wnt signaling. We pay particular attentions to how cells achieve sustained and delicate control of Wnt signaling strength by employing comprehensive aspects of vesicular trafficking.
Collapse
Affiliation(s)
- Qiang Feng
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | | |
Collapse
|
50
|
Moffatt JH, Newton P, Newton HJ. Coxiella burnetii: turning hostility into a home. Cell Microbiol 2015; 17:621-31. [PMID: 25728389 DOI: 10.1111/cmi.12432] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/08/2015] [Accepted: 02/24/2015] [Indexed: 01/20/2023]
Abstract
Coxiella burnetii, the causative agent of the human disease Q fever, is a unique intracellular bacterial pathogen. Coxiella replicates to high numbers within a pathogen-derived lysosome-like vacuole, thriving within a low pH, highly proteolytic and oxidative environment. In 2009, researchers developed means to axenically culture Coxiella paving the way for the development of tools to genetically manipulate the organism. These advances have revolutionized our capacity to examine the pathogenesis of Coxiella. In recent years, targeted and random mutant strains have been used to demonstrate that the Dot/Icm type IV secretion system is essential for intracellular replication of Coxiella. Current research is focused towards understanding the unique cohort of over 130 effector proteins that are translocated into the host cell. Mutagenesis screens have been employed to identify effectors that play important roles for the biogenesis of the Coxiella-containing vacuole and intracellular replication of Coxiella. A surprisingly high number of effector mutants demonstrate significant intracellular growth defects, and future studies on the molecular function of these effectors will provide great insight into the pathogenesis of Coxiella. Already, this expanse of new data implicates many eukaryotic processes that are targeted by the arsenal of Coxiella effectors including autophagy, apoptosis and vesicular trafficking.
Collapse
Affiliation(s)
- Jennifer H Moffatt
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Vic., Australia
| | | | | |
Collapse
|