1
|
Rajčić MV, Šircelj H, Matić NA, Pavkov SD, Poponessi S, Tosti TB, Sabovljević AD, Sabovljević MS, Vujičić MM. Effects of the Salt Stress Duration and Intensity on Developmental and Physiological Features of the Moss Polytrichum formosum. PLANTS (BASEL, SWITZERLAND) 2024; 13:1438. [PMID: 38891247 PMCID: PMC11174806 DOI: 10.3390/plants13111438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024]
Abstract
The two accessions of the polytrichaceous moss species Polytrichum formosum, namely German and Serbian genotypes, were subjected to salt stress, aiming to study the species' developmental and physiological features. Various concentrations of sodium chloride were applied to an axenic in vitro culture of the two moss genotypes, and the growth parameters as well as physiological feature changes were followed. As inferred by the morpho-developmental parameters and survival index, the Serbian genotype showed higher resistance to salt stress as compared to the German one. However, both moss genotypes survived the highest applied concentration (500 mM). As expected, short exposures to salt were rather easily overcome. No clear patterns in sugar content and changes were observed during the stress, but they are surely included in salt stress response and tolerance in P. formosum. Longer stress increased total chlorophyll content in both genotypes. In short-term applied salt stress, the Serbian genotype had a higher total chlorophyll concentration to control unstressed plants, while the German genotype decreased the total amount of chlorophyll. Similarly, carotenoids were shown to be significantly higher in the Serbian genotype, both in unstressed and treated plants, compared to the German one. The contents of tocopherols were higher in the Serbian genotype in controlled unstressed and subsequently short- and long-stressed plantlets compared to the German accession. In general, we can assume that P. formosum is unexpectedly tolerant to salt stress and that there are differences within various accessions of overall European populations, as referred by two randomly selected genotypes, which is most probably a consequence of different genetic structure.
Collapse
Affiliation(s)
- Marija V. Rajčić
- Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, RS-11000 Belgrade, Serbia; (N.A.M.); (A.D.S.); (M.S.S.); (M.M.V.)
| | - Helena Šircelj
- Agronomy Department, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Nikolina A. Matić
- Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, RS-11000 Belgrade, Serbia; (N.A.M.); (A.D.S.); (M.S.S.); (M.M.V.)
| | - Sara D. Pavkov
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, RS-21000 Novi Sad, Serbia
| | - Silvia Poponessi
- Department of Life and Environmental Sciences, Botany Section, University of Cagliari, IT-09123 Cagliari, Italy
| | - Tomislav B. Tosti
- Faculty of Chemistry, University of BelgradSe, Studentski trg 12–16, RS-11158 Belgrade, Serbia;
| | - Aneta D. Sabovljević
- Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, RS-11000 Belgrade, Serbia; (N.A.M.); (A.D.S.); (M.S.S.); (M.M.V.)
- Center of Plant Biotechnology and Conservation (CPBC), Takovska 43, RS-11000 Belgrade, Serbia
| | - Marko S. Sabovljević
- Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, RS-11000 Belgrade, Serbia; (N.A.M.); (A.D.S.); (M.S.S.); (M.M.V.)
- Center of Plant Biotechnology and Conservation (CPBC), Takovska 43, RS-11000 Belgrade, Serbia
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Kosice, Mánesova 23, SK-040 01 Košice, Slovakia
| | - Milorad M. Vujičić
- Institute of Botany and Botanical Garden, Faculty of Biology, University of Belgrade, Takovska 43, RS-11000 Belgrade, Serbia; (N.A.M.); (A.D.S.); (M.S.S.); (M.M.V.)
- Center of Plant Biotechnology and Conservation (CPBC), Takovska 43, RS-11000 Belgrade, Serbia
| |
Collapse
|
2
|
Rates ADB, Cesarino I. Pour some sugar on me: The diverse functions of phenylpropanoid glycosylation. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154138. [PMID: 38006622 DOI: 10.1016/j.jplph.2023.154138] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
The phenylpropanoid metabolism is the source of a vast array of specialized metabolites that play diverse functions in plant growth and development and contribute to all aspects of plant interactions with their surrounding environment. These compounds protect plants from damaging ultraviolet radiation and reactive oxygen species, provide mechanical support for the plants to stand upright, and mediate plant-plant and plant-microorganism communications. The enormous metabolic diversity of phenylpropanoids is further expanded by chemical modifications known as "decorative reactions", including hydroxylation, methylation, glycosylation, and acylation. Among these modifications, glycosylation is the major driving force of phenylpropanoid structural diversification, also contributing to the expansion of their properties. Phenylpropanoid glycosylation is catalyzed by regioselective uridine diphosphate (UDP)-dependent glycosyltransferases (UGTs), whereas glycosyl hydrolases known as β-glucosidases are the major players in deglycosylation. In this article, we review how the glycosylation process affects key physicochemical properties of phenylpropanoids, such as molecular stability and solubility, as well as metabolite compartmentalization/storage and biological activity/toxicity. We also summarize the recent knowledge on the functional implications of glycosylation of different classes of phenylpropanoid compounds. A balance of glycosylation/deglycosylation might represent an essential molecular mechanism to regulate phenylpropanoid homeostasis, allowing plants to dynamically respond to diverse environmental signals.
Collapse
Affiliation(s)
- Arthur de Barros Rates
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil
| | - Igor Cesarino
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090, São Paulo, Brazil; Synthetic and Systems Biology Center, InovaUSP, Avenida Professor Lucio Martins Rodrigues 370, 05508-020, São Paulo, Brazil.
| |
Collapse
|
3
|
Xue JS, Qiu S, Jia XL, Shen SY, Shen CW, Wang S, Xu P, Tong Q, Lou YX, Yang NY, Cao JG, Hu JF, Shen H, Zhu RL, Murray JD, Chen WS, Yang ZN. Stepwise changes in flavonoids in spores/pollen contributed to terrestrial adaptation of plants. PLANT PHYSIOLOGY 2023; 193:627-642. [PMID: 37233029 DOI: 10.1093/plphys/kiad313] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/27/2023]
Abstract
Protecting haploid pollen and spores against UV-B light and high temperature, 2 major stresses inherent to the terrestrial environment, is critical for plant reproduction and dispersal. Here, we show flavonoids play an indispensable role in this process. First, we identified the flavanone naringenin, which serves to defend against UV-B damage, in the sporopollenin wall of all vascular plants tested. Second, we found that flavonols are present in the spore/pollen protoplasm of all euphyllophyte plants tested and that these flavonols scavenge reactive oxygen species to protect against environmental stresses, particularly heat. Genetic and biochemical analyses showed that these flavonoids are sequentially synthesized in both the tapetum and microspores during pollen ontogeny in Arabidopsis (Arabidopsis thaliana). We show that stepwise increases in the complexity of flavonoids in spores/pollen during plant evolution mirror their progressive adaptation to terrestrial environments. The close relationship between flavonoid complexity and phylogeny and its strong association with pollen survival phenotypes suggest that flavonoids played a central role in the progression of plants from aquatic environments into progressively dry land habitats.
Collapse
Affiliation(s)
- Jing-Shi Xue
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shi Qiu
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin-Lei Jia
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shi-Yi Shen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Chong-Wen Shen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Shui Wang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Ping Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qi Tong
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Xia Lou
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Nai-Ying Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jian-Guo Cao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jin-Feng Hu
- Institute of Natural Medicine and Health Products, School of Pharmaceutical Sciences, Zhejiang Provincial Key Laboratory of Plant Ecology and Conservation, Taizhou University, Zhejiang 318000, PR China
| | - Hui Shen
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Rui-Liang Zhu
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jeremy D Murray
- National Key Laboratory of Plant Molecular Genetics, CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), CAS Center for Excellence in Molecular and Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wan-Sheng Chen
- Research and Development Center of Chinese Medicine Resources and Biotechnology, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhong-Nan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
4
|
Bhunjun CS, Phukhamsakda C, Hyde KD, McKenzie EHC, Saxena RK, Li Q. Do all fungi have ancestors with endophytic lifestyles? FUNGAL DIVERS 2023. [DOI: 10.1007/s13225-023-00516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
5
|
Wikström N, Larsén E, Khodabandeh A, Rydin C. No phylogenomic support for a Cenozoic origin of the "living fossil" Isoetes. AMERICAN JOURNAL OF BOTANY 2023; 110:e16108. [PMID: 36401556 PMCID: PMC10108322 DOI: 10.1002/ajb2.16108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
PREMISE The isoetalean lineage has a rich fossil record that extends to the Devonian, but the age of the living clade is unclear. Recent results indicate that it is young, from the Cenozoic, whereas earlier work based on less data from a denser taxon sampling yielded Mesozoic median ages. METHODS We analyzed node ages in Isoetes using two genomic data sets (plastome and nuclear ribosomal cistron), three clock models implemented in MrBayes (ILN, WN, and TK02 models), and a conservative approach to calibration. RESULTS While topological results were consistently resolved in Isoetes estimated crown group ages range from the latest Paleozoic (mid-Permian) to the Mesozoic depending on data type and clock model. The oldest estimates were retrieved using the autocorrelated TK02 clock model. An (early) Cenozoic age was only obtained under one specific condition (plastome data analyzed with the uncorrelated ILN clock model). That same plastome data set also yielded the oldest (mid-Permian) age estimate when analyzed with the autocorrelated TK02 clock model. Adding the highly divergent, recently established sister species Isoetes wormaldii to the data set approximately doubled the average median node depth to the Isoetes crown group. CONCLUSIONS There is no consistent support for a Cenozoic origin of the living clade Isoetes. We obtained seemingly well-founded, yet strongly deviating results depending on data type and clock model. The single most important future improvement is probably to add calibration points, which requires an improved understanding of the isoetalean fossil record or alternative bases for calibration.
Collapse
Affiliation(s)
- Niklas Wikström
- Bergius Foundation, The Royal Swedish Academy of Sciences Box 50005SE‐104 05StockholmSweden
- Department of Ecology, Environment, and Plant SciencesStockholm UniversitySE‐106 91StockholmSweden
| | - Eva Larsén
- Department of Ecology, Environment, and Plant SciencesStockholm UniversitySE‐106 91StockholmSweden
| | - Anbar Khodabandeh
- Bergius Foundation, The Royal Swedish Academy of Sciences Box 50005SE‐104 05StockholmSweden
- Department of Ecology, Environment, and Plant SciencesStockholm UniversitySE‐106 91StockholmSweden
| | - Catarina Rydin
- Bergius Foundation, The Royal Swedish Academy of Sciences Box 50005SE‐104 05StockholmSweden
- Department of Ecology, Environment, and Plant SciencesStockholm UniversitySE‐106 91StockholmSweden
| |
Collapse
|
6
|
Bowman JL. The origin of a land flora. NATURE PLANTS 2022; 8:1352-1369. [PMID: 36550365 DOI: 10.1038/s41477-022-01283-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/19/2022] [Indexed: 05/12/2023]
Abstract
The origin of a land flora fundamentally shifted the course of evolution of life on earth, facilitating terrestrialization of other eukaryotic lineages and altering the planet's geology, from changing atmospheric and hydrological cycles to transforming continental erosion processes. Despite algal lineages inhabiting the terrestrial environment for a considerable preceding period, they failed to evolve complex multicellularity necessary to conquer the land. About 470 million years ago, one lineage of charophycean alga evolved complex multicellularity via developmental innovations in both haploid and diploid generations and became land plants (embryophytes), which rapidly diversified to dominate most terrestrial habitats. Genome sequences have provided unprecedented insights into the genetic and genomic bases for embryophyte origins, with some embryophyte-specific genes being associated with the evolution of key developmental or physiological attributes, such as meristems, rhizoids and the ability to form mycorrhizal associations. However, based on the fossil record, the evolution of the defining feature of embryophytes, the embryo, and consequently the sporangium that provided a reproductive advantage, may have been most critical in their rise to dominance. The long timeframe and singularity of a land flora were perhaps due to the stepwise assembly of a large constellation of genetic innovations required to conquer the terrestrial environment.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
7
|
Rivera BK, Sáez PL, Cavieres LA, Capó-Bauçà S, Iñiguez C, Sanfuentes von Stowasser E, Fuentes F, Ramírez CF, Vallejos V, Galmés J. Anatomical and biochemical evolutionary ancient traits of Araucaria araucana (Molina) K. Koch and their effects on carbon assimilation. TREE PHYSIOLOGY 2022; 42:1957-1974. [PMID: 35604362 DOI: 10.1093/treephys/tpac057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The study of ancient species provides valuable information concerning the evolution of specific adaptations to past and current environmental conditions. Araucaria araucana (Molina) K. Koch belongs to one of the oldest families of conifers in the world, but despite this, there are few studies focused on its physiology and responses to changes in environmental conditions. We used an integrated approach aimed at comprehensively characterizing the ecophysiology of this poorly known species, focusing in its stomatal, mesophyll and biochemical traits, hypothesizing that these traits govern the carbon assimilation of A. araucana under past and present levels of atmospheric CO2. Results indicated that A. araucana presents the typical traits of an ancient species, such as large stomata and low stomatal density, which trigger low stomatal conductance and slow stomatal responsiveness to changing environmental conditions. Interestingly, the quantitative analysis showed that photosynthetic rates were equally limited by both diffusive and biochemical components. The Rubisco catalytic properties proved to have a low Rubisco affinity for CO2 and O2, similar to other ancient species. This affinity for CO2, together with the low carboxylation turnover rate, are responsible for the low Rubisco catalytic efficiency of carboxylation. These traits could be the result of the diverse environmental selective pressures that A. araucana was exposed during its diversification. The increase in measured temperatures induced an increase in stomatal and biochemical limitations, which together with a lower Rubisco affinity for CO2 could explain the low photosynthetic capacity of A. araucana in warmer conditions.
Collapse
Affiliation(s)
- Betsy K Rivera
- Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4030000, Chile
| | - Patricia L Sáez
- Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4030000, Chile
- Instituto de Ecología y Biodiversidad (IEB), Santiago 8320000, Chile
| | - Lohengrin A Cavieres
- Instituto de Ecología y Biodiversidad (IEB), Santiago 8320000, Chile
- ECOBIOSIS, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción 4030000, Chile
| | - Sebastià Capó-Bauçà
- Research Group on Plant Biology under Mediterranean Conditions, INAGEA-Universitat de les Illes Balears, Balearic Islands 07122, Spain
| | - Concepción Iñiguez
- Research Group on Plant Biology under Mediterranean Conditions, INAGEA-Universitat de les Illes Balears, Balearic Islands 07122, Spain
| | - Eugenio Sanfuentes von Stowasser
- Laboratorio de Patología Forestal, Facultad Ciencias Forestales y Centro de Biotecnología, Universidad de Concepción, Concepción 4030000, Chile
| | - Francisca Fuentes
- Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4030000, Chile
| | - Constanza F Ramírez
- Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4030000, Chile
| | - Valentina Vallejos
- Laboratorio Cultivo de Tejidos Vegetales, Centro de Biotecnología, Departamento de Silvicultura, Facultad de Ciencias Forestales, Universidad de Concepción, Concepción 4030000, Chile
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, INAGEA-Universitat de les Illes Balears, Balearic Islands 07122, Spain
| |
Collapse
|
8
|
Chmielewski MW, Eppley SM. Species-specific interactions in avian-bryophyte dispersal networks. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211230. [PMID: 35116150 PMCID: PMC8767201 DOI: 10.1098/rsos.211230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Studies from seed plants have shown that animal dispersal fundamentally alters the success of plant dispersal, shaping community composition through time. Our understanding of this phenomenon in spore plants is comparatively limited. Though little is known about species-specific dispersal relationships between passerine birds and bryophytes, birds are particularly attractive as a potential bryophyte dispersal vector given their highly vagile nature as well as their association with bryophytes when foraging and building nests. We captured birds in Gifford Pinchot National Forest to sample their legs and tails for bryophyte propagules. We found 24 bryophyte species across 34 bird species. We examined the level of interaction specificity: (i) within the overall network to assess community level patterns; and (ii) at the plant species level to determine the effect of bird behaviour on network structure. We found that avian-bryophyte associations are constrained within the network, with species-specific and foraging guild effects on the variety of bryophytes found on bird species. Our findings suggest that diffuse bird-bryophyte dispersal networks are likely to be common in habitats where birds readily encounter bryophytes and that further work aimed at understanding individual bird-bryophyte species relationships may prove valuable in determining nuance within this newly described dispersal mechanism.
Collapse
Affiliation(s)
- Matthew W. Chmielewski
- Department of Biology, Portland State University, 1719 SW 10th Avenue, SRTC rm 246, Portland, OR 97201, USA
| | - Sarah M. Eppley
- Department of Biology, Portland State University, 1719 SW 10th Avenue, SRTC rm 246, Portland, OR 97201, USA
| |
Collapse
|
9
|
van Bel AJE. The plant axis as the command centre for (re)distribution of sucrose and amino acids. JOURNAL OF PLANT PHYSIOLOGY 2021; 265:153488. [PMID: 34416599 DOI: 10.1016/j.jplph.2021.153488] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/13/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Along with the increase in size required for optimal colonization of terrestrial niches, channels for bidirectional bulk transport of materials in land plants evolved during a period of about 100 million years. These transport systems are essentially still in operation - though perfected over the following 400 million years - and make use of hydrostatic differentials. Substances are accumulated or released at the loading and unloading ends, respectively, of the transport channels. The intermediate stretch between the channel termini is bifunctional and executes orchestrated release and retrieval of solutes. Analyses of anatomical and physiological data demonstrate that the release/retrieval zone extends deeper into sources and sinks than is commonly thought and covers usually much more than 99% of the translocation stretch. This review sketches the significance of events in the intermediate stretch for distribution of organic materials over the plant body. Net leakage from the channels does not only serve maintenance and growth of tissues along the pathway, but also diurnal, short-term or seasonal storage of reserve materials, and balanced distribution of organic C- and N-compounds over axial and terminal sinks. Release and retrieval are controlled by plasma-membrane transporters at the vessel/parenchyma interface in the contact pits along xylem vessels and by plasma-membrane transporters at the interface between companion cells and phloem parenchyma along sieve tubes. The xylem-to-phloem pathway vice versa is a bifacial, radially oriented system comprising a symplasmic pathway, of which entrance and exit are controlled at specific membrane checkpoints, and a parallel apoplasmic pathway. A broad range of specific sucrose and amino-acid transporters are deployed at the checkpoint plasma membranes. SUCs, SUTs, STPs, SWEETs, and AAPs, LTHs, CATs are localized to the plasma membranes in question, both in monocots and eudicots. Presence of Umamits in monocots is uncertain. There is some evidence for endo- and exocytosis at the vessel/parenchyma interface supplementary to the transporter-mediated uptake and release. Actions of transporters at the checkpoints are equally decisive for storage and distribution of amino acids and sucrose in monocots and eudicots, but storage and distribution patterns may differ between both taxa. While the majority of reserves is sequestered in vascular parenchyma cells in dicots, lack of space in monocot vasculature urges "outsourcing" of storage in ground parenchyma around the translocation path. In perennial dicots, specialized radial pathways (rays) include the sites for seasonal alternation of storage and mobilization. In dicots, apoplasmic phloem loading and a correlated low rate of release along the path would favour supply with photoassimilates of terminal sinks, while symplasmic phloem loading and a correlated higher rate of release along the path favours supply of axial sinks and transfer to the xylem. The balance between the resource acquisition by terminal and axial sinks is an important determinant of relative growth rate and, hence, for the fitness of plants in various habitats. Body enlargement as the evolutionary drive for emergence of vascular systems and mass transport propelled by hydrostatic differentials.
Collapse
Affiliation(s)
- Aart J E van Bel
- Institute of Phythopathology, Centre for BioSystems, Land Use and Nutrition, Justus-Liebig University, Heinrich-Buff-Ring 26-32, D-35392, Giessen, Germany.
| |
Collapse
|
10
|
Toledo S, Bippus AC, Atkinson BA, Bronson AW, Tomescu AMF. Taxon sampling and alternative hypotheses of relationships in the euphyllophyte plexus that gave rise to seed plants: insights from an Early Devonian radiatopsid. THE NEW PHYTOLOGIST 2021; 232:914-927. [PMID: 34031894 DOI: 10.1111/nph.17511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
An abrupt transition in the fossil record separates Early Devonian euphyllophytes with a simple structure from a broad diversity of structurally complex Middle-Late Devonian plants. Morphological evolution and phylogeny across this transition are poorly understood due to incomplete sampling of the fossil record. We document a new Early Devonian radiatopsid and integrate it in analyses addressing euphyllophyte relationships. Anatomically preserved Emsian fossils (402-394 Ma) from the Battery Point Formation (Gaspé, Quebec, Canada) are studied in serial sections. The phylogenetic analysis is based on a matrix of 31 taxa and 50 characters emphasising vegetative morphology (41 discrete, nine continuous). The new plant, Kenrickia bivena gen. et sp. nov., is one of very few structurally complex euphyllophytes documented in the Early Devonian. Inclusion of Kenrickia overturns previously established phylogenetic relationships among Radiatopses, reiterating the need for increased density of Early Devonian taxon sampling. Kenrickia is recovered as the sister lineage to all other radiatopsids, a clade in which paraphyletic Stenokoleales led to a lignophyte clade where archaeopterids and seed plants fall into sister clades. Our results shed light on early euphyllophyte relationships and evolution, indicating early exploration of structural complexity by multiple lineages and reiterating the potential of a single origin of secondary growth in euphyllophytes.
Collapse
Affiliation(s)
- Selin Toledo
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA
| | - Alexander C Bippus
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Brian A Atkinson
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS, 66045, USA
| | - Allison W Bronson
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA
| | - Alexandru M F Tomescu
- Department of Biological Sciences, Humboldt State University, Arcata, CA, 95521, USA
| |
Collapse
|
11
|
Furumizu C, Krabberød AK, Hammerstad M, Alling RM, Wildhagen M, Sawa S, Aalen RB. The sequenced genomes of non-flowering land plants reveal the innovative evolutionary history of peptide signaling. THE PLANT CELL 2021; 33:2915-2934. [PMID: 34240188 PMCID: PMC8462819 DOI: 10.1093/plcell/koab173] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022]
Abstract
An understanding of land plant evolution is a prerequisite for in-depth knowledge of plant biology. Here we extract and explore information hidden in the increasing number of sequenced plant genomes, from bryophytes to angiosperms, to elucidate a specific biological question - how peptide signaling evolved. To conquer land and cope with changing environmental conditions, plants have gone through transformations that must have required innovations in cell-to-cell communication. We discuss peptides mediating endogenous and exogenous changes by interaction with receptors activating intracellular molecular signaling. Signaling peptides were discovered in angiosperms and operate in tissues and organs such as flowers, seeds, vasculature, and 3D meristems that are not universally conserved across land plants. Nevertheless, orthologs of angiosperm peptides and receptors have been identified in non-angiosperms. These discoveries provoke questions regarding co-evolution of ligands and their receptors, and whether de novo interactions in peptide signaling pathways may have contributed to generate novel traits in land plants. The answers to such questions will have profound implications for the understanding of the evolution of cell-to-cell communication and the wealth of diversified terrestrial plants. Under this perspective we have generated, analyzed, and reviewed phylogenetic, genomic, structural, and functional data to elucidate the evolution of peptide signaling.
Collapse
Affiliation(s)
- Chihiro Furumizu
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Anders K Krabberød
- Section for Evolutionary Biology and Genetics, Department of Biosciences, University of Oslo, Norway
| | - Marta Hammerstad
- Section for Biochemistry and Molecular Biology, Department of Biosciences, University of Oslo, Norway
| | - Renate M Alling
- Section for Evolutionary Biology and Genetics, Department of Biosciences, University of Oslo, Norway
| | - Mari Wildhagen
- Section for Evolutionary Biology and Genetics, Department of Biosciences, University of Oslo, Norway
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Reidunn B Aalen
- Section for Evolutionary Biology and Genetics, Department of Biosciences, University of Oslo, Norway
| |
Collapse
|
12
|
The Coevolution of Plants and Microbes Underpins Sustainable Agriculture. Microorganisms 2021; 9:microorganisms9051036. [PMID: 34065848 PMCID: PMC8151373 DOI: 10.3390/microorganisms9051036] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022] Open
Abstract
Terrestrial plants evolution occurred in the presence of microbes, the phytomicrobiome. The rhizosphere microbial community is the most abundant and diverse subset of the phytomicrobiome and can include both beneficial and parasitic/pathogenic microbes. Prokaryotes of the phytomicrobiome have evolved relationships with plants that range from non-dependent interactions to dependent endosymbionts. The most extreme endosymbiotic examples are the chloroplasts and mitochondria, which have become organelles and integral parts of the plant, leading to some similarity in DNA sequence between plant tissues and cyanobacteria, the prokaryotic symbiont of ancestral plants. Microbes were associated with the precursors of land plants, green algae, and helped algae transition from aquatic to terrestrial environments. In the terrestrial setting the phytomicrobiome contributes to plant growth and development by (1) establishing symbiotic relationships between plant growth-promoting microbes, including rhizobacteria and mycorrhizal fungi, (2) conferring biotic stress resistance by producing antibiotic compounds, and (3) secreting microbe-to-plant signal compounds, such as phytohormones or their analogues, that regulate aspects of plant physiology, including stress resistance. As plants have evolved, they recruited microbes to assist in the adaptation to available growing environments. Microbes serve themselves by promoting plant growth, which in turn provides microbes with nutrition (root exudates, a source of reduced carbon) and a desirable habitat (the rhizosphere or within plant tissues). The outcome of this coevolution is the diverse and metabolically rich microbial community that now exists in the rhizosphere of terrestrial plants. The holobiont, the unit made up of the phytomicrobiome and the plant host, results from this wide range of coevolved relationships. We are just beginning to appreciate the many ways in which this complex and subtle coevolution acts in agricultural systems.
Collapse
|
13
|
Naake T, Maeda HA, Proost S, Tohge T, Fernie AR. Kingdom-wide analysis of the evolution of the plant type III polyketide synthase superfamily. PLANT PHYSIOLOGY 2021; 185:857-875. [PMID: 33793871 PMCID: PMC8133574 DOI: 10.1093/plphys/kiaa086] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/07/2020] [Indexed: 05/19/2023]
Abstract
The emergence of type III polyketide synthases (PKSs) was a prerequisite for the conquest of land by the green lineage. Within the PKS superfamily, chalcone synthases (CHSs) provide the entry point reaction to the flavonoid pathway, while LESS ADHESIVE POLLEN 5 and 6 (LAP5/6) provide constituents of the outer exine pollen wall. To study the deep evolutionary history of this key family, we conducted phylogenomic synteny network and phylogenetic analyses of whole-genome data from 126 species spanning the green lineage including Arabidopsis thaliana, tomato (Solanum lycopersicum), and maize (Zea mays). This study thereby combined study of genomic location and context with changes in gene sequences. We found that the two major clades, CHS and LAP5/6 homologs, evolved early by a segmental duplication event prior to the divergence of Bryophytes and Tracheophytes. We propose that the macroevolution of the type III PKS superfamily is governed by whole-genome duplications and triplications. The combined phylogenetic and synteny analyses in this study provide insights into changes in the genomic location and context that are retained for a longer time scale with more recent functional divergence captured by gene sequence alterations.
Collapse
Affiliation(s)
- Thomas Naake
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin–Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Sebastian Proost
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Herestraat, 3000 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Campus Gasthuisberg, Rega Instituut, Herestraat, 3000 Leuven, Belgium
| | - Takayuki Tohge
- Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
- Author for communication:
| |
Collapse
|
14
|
Lee SW, Kwon YJ, Baek I, Choi HI, Ahn JW, Kim JB, Kang SY, Kim SH, Jo YD. Mutagenic Effect of Proton Beams Characterized by Phenotypic Analysis and Whole Genome Sequencing in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:752108. [PMID: 34777430 PMCID: PMC8581144 DOI: 10.3389/fpls.2021.752108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/05/2021] [Indexed: 05/19/2023]
Abstract
Protons may have contributed to the evolution of plants as a major component of cosmic-rays and also have been used for mutagenesis in plants. Although the mutagenic effect of protons has been well-characterized in animals, no comprehensive phenotypic and genomic analyses has been reported in plants. Here, we investigated the phenotypes and whole genome sequences of Arabidopsis M2 lines derived by irradiation with proton beams and gamma-rays, to determine unique characteristics of proton beams in mutagenesis. We found that mutation frequency was dependent on the irradiation doses of both proton beams and gamma-rays. On the basis of the relationship between survival and mutation rates, we hypothesized that there may be a mutation rate threshold for survived individuals after irradiation. There were no significant differences between the total mutation rates in groups derived using proton beam or gamma-ray irradiation at doses that had similar impacts on survival rate. However, proton beam irradiation resulted in a broader mutant phenotype spectrum than gamma-ray irradiation, and proton beams generated more DNA structural variations (SVs) than gamma-rays. The most frequent SV was inversion. Most of the inversion junctions contained sequences with microhomology and were associated with the deletion of only a few nucleotides, which implies that preferential use of microhomology in non-homologous end joining was likely to be responsible for the SVs. These results show that protons, as particles with low linear energy transfer (LET), have unique characteristics in mutagenesis that partially overlap with those of low-LET gamma-rays and high-LET heavy ions in different respects.
Collapse
Affiliation(s)
- Sang Woo Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Yu-Jeong Kwon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
- Department of Horticulture, Chonbuk National University, Jeonju-si, South Korea
| | - Inwoo Baek
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
| | - Hong-Il Choi
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
| | - Joon-Woo Ahn
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
| | - Si-Yong Kang
- Department of Horticulture, College of Industrial Sciences, Kongju National University, Yesan-gun, South Korea
| | - Sang Hoon Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
| | - Yeong Deuk Jo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, South Korea
- *Correspondence: Yeong Deuk Jo,
| |
Collapse
|
15
|
Lozano-Fernandez J, Tanner AR, Puttick MN, Vinther J, Edgecombe GD, Pisani D. A Cambrian-Ordovician Terrestrialization of Arachnids. Front Genet 2020; 11:182. [PMID: 32218802 PMCID: PMC7078165 DOI: 10.3389/fgene.2020.00182] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/14/2020] [Indexed: 12/13/2022] Open
Abstract
Understanding the temporal context of terrestrialization in chelicerates depends on whether terrestrial groups, the traditional Arachnida, have a single origin and whether or not horseshoe crabs are primitively or secondarily marine. Molecular dating on a phylogenomic tree that recovers arachnid monophyly, constrained by 27 rigorously vetted fossil calibrations, estimates that Arachnida originated during the Cambrian or Ordovician. After the common ancestor colonized the land, the main lineages appear to have rapidly radiated in the Cambrian-Ordovician boundary interval, coinciding with high rates of molecular evolution. The highest rates of arachnid diversification are detected between the Permian and Early Cretaceous. A pattern of ancient divergence estimates for terrestrial arthropod groups in the Cambrian while the oldest fossils are Silurian (seen in both myriapods and arachnids) is mirrored in the molecular and fossil records of land plants. We suggest the discrepancy between molecular and fossil evidence for terrestrialization is likely driven by the extreme sparseness of terrestrial sediments in the rock record before the late Silurian.
Collapse
Affiliation(s)
- Jesus Lozano-Fernandez
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
- School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Alastair R. Tanner
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Mark N. Puttick
- Department of Biology and Biochemistry, Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| | - Jakob Vinther
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
- School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | | | - Davide Pisani
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
- School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
16
|
Melo JP, Kalyna M, Duque P. Current Challenges in Studying Alternative Splicing in Plants: The Case of Physcomitrella patens SR Proteins. FRONTIERS IN PLANT SCIENCE 2020; 11:286. [PMID: 32265953 PMCID: PMC7105729 DOI: 10.3389/fpls.2020.00286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/26/2020] [Indexed: 05/04/2023]
Abstract
To colonize different terrestrial habitats, early land plants had to overcome the challenge of coping with harsh new environments. Alternative splicing - an RNA processing mechanism through which splice sites are differentially recognized, originating multiple transcripts and potentially different proteins from the same gene - can be key for plant stress tolerance. Serine/arginine-rich (SR) proteins constitute an evolutionarily conserved family of major alternative splicing regulators that in plants subdivides into six subfamilies. Despite being well studied in animals and a few plant species, such as the model angiosperm Arabidopsis thaliana and the crop Oryza sativa, little is known of these splicing factors in early land plants. Establishing the whole complement of SR proteins in different species is essential to understand the functional and evolutionary significance of alternative splicing. An in silico search for SR proteins in the extant moss Physcomitrella patens revealed inconsistencies both in the published data and available databases, likely arising from automatic annotation lacking adequate manual curation. These misannotations interfere with the description not only of the number and subfamily classification of Physcomitrella SR proteins but also of their domain architecture, potentially hindering the elucidation of their molecular functions. We therefore advise caution when looking into P. patens genomic resources. Our systematic survey nonetheless confidently identified 16 P. patens SR proteins that fall into the six described subfamilies and represent counterparts of well-established members in Arabidopsis and rice. Intensified research efforts should disclose whether SR proteins were already determining alternative splicing modulation and stress tolerance in early land plants.
Collapse
Affiliation(s)
| | - Maria Kalyna
- Department of Applied Genetics and Cell Biology, BOKU – University of Natural Resources and Life Sciences, Vienna, Austria
- *Correspondence: Maria Kalyna,
| | - Paula Duque
- Instituto Gulbenkian de Ciência (IGC), Oeiras, Portugal
- Paula Duque,
| |
Collapse
|
17
|
Bell D, Lin Q, Gerelle WK, Joya S, Chang Y, Taylor ZN, Rothfels CJ, Larsson A, Villarreal JC, Li FW, Pokorny L, Szövényi P, Crandall-Stotler B, DeGironimo L, Floyd SK, Beerling DJ, Deyholos MK, von Konrat M, Ellis S, Shaw AJ, Chen T, Wong GKS, Stevenson DW, Palmer JD, Graham SW. Organellomic data sets confirm a cryptic consensus on (unrooted) land-plant relationships and provide new insights into bryophyte molecular evolution. AMERICAN JOURNAL OF BOTANY 2020; 107:91-115. [PMID: 31814117 DOI: 10.1002/ajb2.1397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Phylogenetic trees of bryophytes provide important evolutionary context for land plants. However, published inferences of overall embryophyte relationships vary considerably. We performed phylogenomic analyses of bryophytes and relatives using both mitochondrial and plastid gene sets, and investigated bryophyte plastome evolution. METHODS We employed diverse likelihood-based analyses to infer large-scale bryophyte phylogeny for mitochondrial and plastid data sets. We tested for changes in purifying selection in plastid genes of a mycoheterotrophic liverwort (Aneura mirabilis) and a putatively mycoheterotrophic moss (Buxbaumia), and compared 15 bryophyte plastomes for major structural rearrangements. RESULTS Overall land-plant relationships conflict across analyses, generally weakly. However, an underlying (unrooted) four-taxon tree is consistent across most analyses and published studies. Despite gene coverage patchiness, relationships within mosses, liverworts, and hornworts are largely congruent with previous studies, with plastid results generally better supported. Exclusion of RNA edit sites restores cases of unexpected non-monophyly to monophyly for Takakia and two hornwort genera. Relaxed purifying selection affects multiple plastid genes in mycoheterotrophic Aneura but not Buxbaumia. Plastid genome structure is nearly invariant across bryophytes, but the tufA locus, presumed lost in embryophytes, is unexpectedly retained in several mosses. CONCLUSIONS A common unrooted tree underlies embryophyte phylogeny, [(liverworts, mosses), (hornworts, vascular plants)]; rooting inconsistency across studies likely reflects substantial distance to algal outgroups. Analyses combining genomic and transcriptomic data may be misled locally for heavily RNA-edited taxa. The Buxbaumia plastome lacks hallmarks of relaxed selection found in mycoheterotrophic Aneura. Autotrophic bryophyte plastomes, including Buxbaumia, hardly vary in overall structure.
Collapse
Affiliation(s)
- David Bell
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
- UBC Botanical Garden and Centre for Plant Research, University of British Columbia, 6804 Marine Drive SW, Vancouver, British Columbia, V6T 1Z4, Canada
- Royal Botanic Garden, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
| | - Qianshi Lin
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
- UBC Botanical Garden and Centre for Plant Research, University of British Columbia, 6804 Marine Drive SW, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Wesley K Gerelle
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
- UBC Botanical Garden and Centre for Plant Research, University of British Columbia, 6804 Marine Drive SW, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Steve Joya
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Ying Chang
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, USA
| | - Z Nathan Taylor
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| | - Carl J Rothfels
- University Herbarium and Department of Integrative Biology, University of California Berkeley, Berkeley, California, 94702, USA
| | - Anders Larsson
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Juan Carlos Villarreal
- Department of Biology, Université Laval, Québec, G1V 0A6, Canada
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Fay-Wei Li
- Boyce Thompson Institute, Ithaca, New York, 14853, USA
- Plant Biology Section, Cornell University, Ithaca, New York, 14853, USA
| | - Lisa Pokorny
- Royal Botanic Gardens, Kew, Richmond, TW9 3DS, Surrey, UK
- Centre for Plant Biotechnology and Genomics (CBGP, UPM-INIA), 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | | | - Lisa DeGironimo
- Department of Biology, College of Arts and Science, New York University, New York, New York, 10003, USA
| | - Sandra K Floyd
- School of Biological Sciences, Monash University, Melbourne, Victoria, 3800, Australia
| | - David J Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Michael K Deyholos
- Department of Biology, University of British Columbia, Kelowna, British Columbia, V1V 1V7, Canada
| | - Matt von Konrat
- Field Museum of Natural History, Chicago, Illinois, 60605, USA
| | - Shona Ellis
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
| | - A Jonathan Shaw
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| | - Tao Chen
- Shenzhen Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, Guangdong, 518004, China
| | - Gane K-S Wong
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada
- Department of Medicine, University of Alberta, Edmonton, Alberta, T6G 2E1, Canada
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
| | | | - Jeffrey D Palmer
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| | - Sean W Graham
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada
- UBC Botanical Garden and Centre for Plant Research, University of British Columbia, 6804 Marine Drive SW, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
18
|
Nelsen MP, Lücking R, Boyce CK, Lumbsch HT, Ree RH. No support for the emergence of lichens prior to the evolution of vascular plants. GEOBIOLOGY 2020; 18:3-13. [PMID: 31729136 DOI: 10.1111/gbi.12369] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/28/2019] [Accepted: 10/05/2019] [Indexed: 06/10/2023]
Abstract
The early-successional status of lichens in modern terrestrial ecosystems, together with the role lichen-mediated weathering plays in the carbon cycle, have contributed to the long and widely held assumption that lichens occupied early terrestrial ecosystems prior to the evolution of vascular plants and drove global change during this time. Their poor preservation potential and the classification of ambiguous fossils as lichens or other fungal-algal associations have further reinforced this view. As unambiguous fossil data are lacking to demonstrate the presence of lichens prior to vascular plants, we utilize an alternate approach to assess their historic presence in early terrestrial ecosystems. Here, we analyze new time-calibrated phylogenies of ascomycete fungi and chlorophytan algae, that intensively sample lineages with lichen symbionts. Age estimates for several interacting clades show broad congruence and demonstrate that fungal origins of lichenization postdate the earliest tracheophytes. Coupled with the absence of unambiguous fossil data, our work finds no support for lichens having mediated global change during the Neoproterozoic-early Paleozoic prior to vascular plants. We conclude by discussing our findings in the context of Neoproterozoic-Paleozoic terrestrial ecosystem evolution and the paleoecological context in which vascular plants evolved.
Collapse
Affiliation(s)
- Matthew P Nelsen
- Department of Science and Education, The Field Museum, Integrative Research Center, Chicago, IL, USA
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL, USA
| | - Robert Lücking
- Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Berlin, Germany
| | - C Kevin Boyce
- Department of Geological Sciences, Stanford University, Stanford, California, USA
| | - H Thorsten Lumbsch
- Department of Science and Education, The Field Museum, Integrative Research Center, Chicago, IL, USA
| | - Richard H Ree
- Department of Science and Education, The Field Museum, Integrative Research Center, Chicago, IL, USA
| |
Collapse
|
19
|
Desiderio A, Salzano AM, Scaloni A, Massa S, Pimpinella M, De Coste V, Pioli C, Nardi L, Benvenuto E, Villani ME. Effects of Simulated Space Radiations on the Tomato Root Proteome. FRONTIERS IN PLANT SCIENCE 2019; 10:1334. [PMID: 31708949 PMCID: PMC6821793 DOI: 10.3389/fpls.2019.01334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/25/2019] [Indexed: 05/27/2023]
Abstract
Plant cultivation on spacecraft or planetary outposts is a promising and actual perspective both for food and bioactive molecules production. To this aim, plant response to ionizing radiations, as an important component of space radiation, must be assessed through on-ground experiments due to the potentially fatal effects on living systems. Hereby, we investigated the effects of X-rays and γ-rays exposure on tomato "hairy root" cultures (HRCs), which represent a solid platform for the production of pharmaceutically relevant molecules, including metabolites and recombinant proteins. In a space application perspective, we used an HRC system previously fortified through the accumulation of anthocyanins, which are known for their anti-oxidant properties. Roots were independently exposed to different photon radiations, namely X-rays (250 kV) and γ-rays (Co60, 1.25 MeV), both at the absorbed dose levels of 0.5, 5, and 10 Gy. Molecular changes induced in the proteome of HRCs were investigated by a comparative approach based on two-dimensional difference in-gel electrophoresis (2D-DIGE) technology, which allowed to highlight dynamic processes activated by these environmental stresses. Results revealed a comparable response to both photon treatments. In particular, the presence of differentially represented proteins were observed only when roots were exposed to 5 or 10 Gy of X-rays or γ-rays, while no variations were appreciated at 0.5 Gy of both radiations, when compared with unexposed control. Differentially represented proteins were identified by mass spectrometry procedures and their functional interactions were analyzed, revealing variations in the activation of stress response integrated mechanisms as well as in carbon/energy and protein metabolism. Specific results from above-mentioned procedures were validated by immunoblotting. Finally, a morphometric analysis verified the absence of significant alterations in the development of HRCs, allowing to ascribe the observed variations of protein expression to processes of acclimation to ionizing radiations. Overall results contribute to a meaningful risk evaluation for biological systems exposed to extra-terrestrial environments, in the perspective of manned interplanetary missions planned for the near future.
Collapse
Affiliation(s)
- Angiola Desiderio
- Division Biotechnologies and Agroindustry, National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), Rome, Italy
| | - Anna Maria Salzano
- Proteomics and Mass Spectrometry Laboratory, ISPAAM-National Research Council, Naples, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM-National Research Council, Naples, Italy
| | - Silvia Massa
- Division Biotechnologies and Agroindustry, National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), Rome, Italy
| | - Maria Pimpinella
- National Institute of Ionizing Radiation Metrology, ENEA-INMRI, Rome, Italy
| | - Vanessa De Coste
- National Institute of Ionizing Radiation Metrology, ENEA-INMRI, Rome, Italy
| | - Claudio Pioli
- Division Health Protection Technologies, ENEA, Rome, Italy
| | - Luca Nardi
- Division Biotechnologies and Agroindustry, National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), Rome, Italy
| | - Eugenio Benvenuto
- Division Biotechnologies and Agroindustry, National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), Rome, Italy
| | - Maria Elena Villani
- Division Biotechnologies and Agroindustry, National Agency for Energy, New Technologies and Sustainable Economic Development (ENEA), Rome, Italy
| |
Collapse
|
20
|
Chmielewski MW, Eppley SM. Forest passerines as a novel dispersal vector of viable bryophyte propagules. Proc Biol Sci 2019; 286:20182253. [PMID: 30963825 PMCID: PMC6408877 DOI: 10.1098/rspb.2018.2253] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/04/2018] [Indexed: 11/12/2022] Open
Abstract
Animal dispersal influences the community structure and diversity of a wide variety of plant taxa, yet the potential effects of animal dispersal in bryophytes (hornworts, liverworts, and mosses) is poorly understood. In many communities, birds use bryophyte-abundant niche space for foraging and gathering nest material, suggesting that birds may play a role in bryophyte dispersal. As highly motile animals with long migratory routes, birds potentially provide a means for both local and long-distance bryophyte dispersal in a manner that differs greatly from passive, aerial spore dispersal. To examine this phenomenon, we collected and germinated bryophyte propagules from the legs, feet and tails of 224 birds from 34 species within a temperate forest community. In total we found 1512 spores, and were able to germinate 242 bryophyte propagules. In addition, we provide evidence that topical (externally-carried) spore load varies by bird species and behaviour. Tail feather spore abundance is highest in bark and foliage gleaning species and is positively correlated with tarsal length. Together, these data suggest that a variety of forest birds exhibit the potential to act as dispersal vectors for bryophyte propagules, including an abundance of spores, and that understanding the effects of animal behaviour on bryophyte dispersal will be key to further understanding this interaction.
Collapse
|
21
|
|
22
|
Cavalier-Smith T, Chao EE, Lewis R. Multigene phylogeny and cell evolution of chromist infrakingdom Rhizaria: contrasting cell organisation of sister phyla Cercozoa and Retaria. PROTOPLASMA 2018; 255:1517-1574. [PMID: 29666938 PMCID: PMC6133090 DOI: 10.1007/s00709-018-1241-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/12/2018] [Indexed: 05/18/2023]
Abstract
Infrakingdom Rhizaria is one of four major subgroups with distinct cell body plans that comprise eukaryotic kingdom Chromista. Unlike other chromists, Rhizaria are mostly heterotrophic flagellates, amoebae or amoeboflagellates, commonly with reticulose (net-like) or filose (thread-like) feeding pseudopodia; uniquely for eukaryotes, cilia have proximal ciliary transition-zone hub-lattices. They comprise predominantly flagellate phylum Cercozoa and reticulopodial phylum Retaria, whose exact phylogenetic relationship has been uncertain. Given even less clear relationships amongst cercozoan classes, we sequenced partial transcriptomes of seven Cercozoa representing five classes and endomyxan retarian Filoreta marina to establish 187-gene multiprotein phylogenies. Ectoreta (retarian infraphyla Foraminifera, Radiozoa) branch within classical Cercozoa as sister to reticulose Endomyxa. This supports recent transfer of subphylum Endomyxa from Cercozoa to Retaria alongside subphylum Ectoreta which embraces classical retarians where capsules or tests subdivide cells into organelle-containing endoplasm and anastomosing pseudopodial net-like ectoplasm. Cercozoa are more homogeneously filose, often with filose pseudopodia and/or posterior ciliary gliding motility: zooflagellate Helkesimastix and amoeboid Guttulinopsis form a strongly supported clade, order Helkesida. Cercomonads are polyphyletic (Cercomonadida sister to glissomonads; Paracercomonadida deeper). Thecofilosea are a clade, whereas Imbricatea may not be; Sarcomonadea may be paraphyletic. Helkesea and Metromonadea are successively deeper outgroups within cercozoan subphylum Monadofilosa; subphylum Reticulofilosa (paraphyletic on site-heterogeneous trees) branches earliest, Granofilosea before Chlorarachnea. Our multiprotein trees confirm that Rhizaria are sisters of infrakingdom Halvaria (Alveolata, Heterokonta) within chromist subkingdom Harosa (= SAR); they further support holophyly of chromist subkingdom Hacrobia, and are consistent with holophyly of Chromista as sister of kingdom Plantae. Site-heterogeneous rDNA trees group Kraken with environmental DNA clade 'eSarcomonad', not Paracercomonadida. Ectoretan fossil dates evidence ultrarapid episodic stem sequence evolution. We discuss early rhizarian cell evolution and multigene tree coevolutionary patterns, gene-paralogue evidence for chromist monophyly, and integrate this with fossil evidence for the age of Rhizaria and eukaryote cells, and revise rhizarian classification.
Collapse
Affiliation(s)
| | - Ema E Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Rhodri Lewis
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
23
|
Jiang T, Yang X, Zhong Y, Tang Q, Liu Y, Su Z. Species composition and diversity of ground bryophytes across a forest edge-to-interior gradient. Sci Rep 2018; 8:11868. [PMID: 30089787 PMCID: PMC6082881 DOI: 10.1038/s41598-018-30400-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 07/19/2018] [Indexed: 11/09/2022] Open
Abstract
Understanding diversity patterns and community structure of bryophytes will help integrate nature conservation at multiple biotic-group levels. We conducted a survey of ground bryophytes in a subtropical forest along an edge-to-interior gradient in South China. We recorded 11 liverwort species from 10 genera of seven families, and 26 moss species from 23 genera of 16 families in three transects. A two-way cluster analysis detected the environmental gradient between the forest edge and forest interior for bryophytes with habitat specificity. Functional diversity of bryophytes differed significantly across an edge-to-interior gradient. The range and median in both structural and functional diversity decreased remarkably from the forest edge to the interior. Multi-response permutation procedures showed significant differences in species composition between the forest-edge and forest-interior, and between the intermediate and forest-interior transects. Seven species were detected with a significant indicator value for indicating environmental conditions in the forest edge, while only one such species was found indicative of the intermediate transect. Our results demonstrate that remarkable edge effects exist for species composition and functional diversity patterns, and the forest edge is a marginal habitat with high biotic heterogeneity. Furthermore, functional diversity metrics are more sensitive to the edge effect than species diversity.
Collapse
Affiliation(s)
- Tiantian Jiang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xuecheng Yang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yonglin Zhong
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Qiming Tang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Ying Liu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiyao Su
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
24
|
Caplin N, Willey N. Ionizing Radiation, Higher Plants, and Radioprotection: From Acute High Doses to Chronic Low Doses. FRONTIERS IN PLANT SCIENCE 2018; 9:847. [PMID: 29997637 PMCID: PMC6028737 DOI: 10.3389/fpls.2018.00847] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/31/2018] [Indexed: 05/09/2023]
Abstract
Understanding the effects of ionizing radiation (IR) on plants is important for environmental protection, for agriculture and horticulture, and for space science but plants have significant biological differences to the animals from which much relevant knowledge is derived. The effects of IR on plants are understood best at acute high doses because there have been; (a) controlled experiments in the field using point sources, (b) field studies in the immediate aftermath of nuclear accidents, and (c) controlled laboratory experiments. A compilation of studies of the effects of IR on plants reveals that although there are numerous field studies of the effects of chronic low doses on plants, there are few controlled experiments that used chronic low doses. Using the Bradford-Hill criteria widely used in epidemiological studies we suggest that a new phase of chronic low-level radiation research on plants is desirable if its effects are to be properly elucidated. We emphasize the plant biological contexts that should direct such research. We review previously reported effects from the molecular to community level and, using a plant stress biology context, discuss a variety of acute high- and chronic low-dose data against Derived Consideration Reference Levels (DCRLs) used for environmental protection. We suggest that chronic low-level IR can sometimes have effects at the molecular and cytogenetic level at DCRL dose rates (and perhaps below) but that there are unlikely to be environmentally significant effects at higher levels of biological organization. We conclude that, although current data meets only some of the Bradford-Hill criteria, current DCRLs for plants are very likely to be appropriate at biological scales relevant to environmental protection (and for which they were intended) but that research designed with an appropriate biological context and with more of the Bradford-Hill criteria in mind would strengthen this assertion. We note that the effects of IR have been investigated on only a small proportion of plant species and that research with a wider range of species might improve not only the understanding of the biological effects of radiation but also that of the response of plants to environmental stress.
Collapse
Affiliation(s)
| | - Neil Willey
- Centre for Research in Biosciences, University of the West of England, Bristol, Bristol, United Kingdom
| |
Collapse
|
25
|
de Vries J, Archibald JM. Plant evolution: landmarks on the path to terrestrial life. THE NEW PHYTOLOGIST 2018; 217:1428-1434. [PMID: 29318635 DOI: 10.1111/nph.14975] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/28/2017] [Indexed: 05/20/2023]
Abstract
UNLABELLED Contents Summary 1428 I. The singularity of plant terrestrialization 1428 II. Adaptation vs exaptation - what shaped the land plant toolkit? 1430 III. Trait mosaicism in (higher-branching) streptophyte algae 1431 IV. CONCLUSIONS a streptophyte algal perspective on land plant trait evolution 1432 Acknowledgements 1432 ORCID 1433 References 1433 SUMMARY: Photosynthetic eukaryotes thrive anywhere there is sunlight and water. But while such organisms are exceptionally diverse in form and function, only one phototrophic lineage succeeded in rising above its substrate: the land plants (embryophytes). Molecular phylogenetic data show that land plants evolved from streptophyte algae most closely related to extant Zygnematophyceae, and one of the principal aims of plant evolutionary biology is to uncover the key features of such algae that enabled this important transition. At the present time, however, mosaic and reductive evolution blur our picture of the closest algal ancestors of plants. Here we discuss recent progress and problems in inferring the biology of the algal progenitor of the terrestrial photosynthetic macrobiome.
Collapse
Affiliation(s)
- Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
26
|
Puttick MN, Morris JL, Williams TA, Cox CJ, Edwards D, Kenrick P, Pressel S, Wellman CH, Schneider H, Pisani D, Donoghue PCJ. The Interrelationships of Land Plants and the Nature of the Ancestral Embryophyte. Curr Biol 2018; 28:733-745.e2. [PMID: 29456145 DOI: 10.1016/j.cub.2018.01.063] [Citation(s) in RCA: 261] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/15/2018] [Accepted: 01/22/2018] [Indexed: 11/28/2022]
Abstract
The evolutionary emergence of land plant body plans transformed the planet. However, our understanding of this formative episode is mired in the uncertainty associated with the phylogenetic relationships among bryophytes (hornworts, liverworts, and mosses) and tracheophytes (vascular plants). Here we attempt to clarify this problem by analyzing a large transcriptomic dataset with models that allow for compositional heterogeneity between sites. Zygnematophyceae is resolved as sister to land plants, but we obtain several distinct relationships between bryophytes and tracheophytes. Concatenated sequence analyses that can explicitly accommodate site-specific compositional heterogeneity give more support for a mosses-liverworts clade, "Setaphyta," as the sister to all other land plants, and weak support for hornworts as the sister to all other land plants. Bryophyte monophyly is supported by gene concatenation analyses using models explicitly accommodating lineage-specific compositional heterogeneity and analyses of gene trees. Both maximum-likelihood analyses that compare the fit of each gene tree to proposed species trees and Bayesian supertree estimation based on gene trees support bryophyte monophyly. Of the 15 distinct rooted relationships for embryophytes, we reject all but three hypotheses, which differ only in the position of hornworts. Our results imply that the ancestral embryophyte was more complex than has been envisaged based on topologies recognizing liverworts as the sister lineage to all other embryophytes. This requires many phenotypic character losses and transformations in the liverwort lineage, diminishes inconsistency between phylogeny and the fossil record, and prompts re-evaluation of the phylogenetic affinity of early land plant fossils, the majority of which are considered stem tracheophytes.
Collapse
Affiliation(s)
- Mark N Puttick
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK; School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK; Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Jennifer L Morris
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK; School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Cymon J Cox
- Centro de Ciências do Mar, Universidade do Algarve, Gambelas, 8005-319 Faro, Portugal
| | - Dianne Edwards
- School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Paul Kenrick
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Silvia Pressel
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Charles H Wellman
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - Harald Schneider
- Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Center of Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, China.
| | - Davide Pisani
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK; Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | - Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
| |
Collapse
|
27
|
The Exceptional Preservation of Plant Fossils: A Review of Taphonomic Pathways and Biases in the Fossil Record. ACTA ACUST UNITED AC 2017. [DOI: 10.1017/s1089332600002874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The exceptional preservation of plant fossils falls into two categories: whole plant preservation and anatomical detail. Whole plant preservation is controlled primarily by transport and event preservation (e.g., ash falls), whereas anatomical preservation can occur through one of several taphonomic pathways: compression-impression, silicification, coal-ball formation, pyritization, and charcoalification. This review focuses on these taphonomic pathways, highlighting important factors and controls on the exceptional preservation of plants. Special emphasis is given to data garnered from experimental and actualistic approaches.
Collapse
|
28
|
Lehtonen S, Silvestro D, Karger DN, Scotese C, Tuomisto H, Kessler M, Peña C, Wahlberg N, Antonelli A. Environmentally driven extinction and opportunistic origination explain fern diversification patterns. Sci Rep 2017; 7:4831. [PMID: 28684788 PMCID: PMC5500532 DOI: 10.1038/s41598-017-05263-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/25/2017] [Indexed: 01/16/2023] Open
Abstract
Combining palaeontological and neontological data offers a unique opportunity to investigate the relative roles of biotic and abiotic controls of species diversification, and the importance of origination versus extinction in driving evolutionary dynamics. Ferns comprise a major terrestrial plant radiation with an extensive evolutionary history providing a wealth of modern and fossil data for modelling environmental drivers of diversification. Here we develop a novel Bayesian model to simultaneously estimate correlations between diversification dynamics and multiple environmental trajectories. We estimate the impact of different factors on fern diversification over the past 400 million years by analysing a comprehensive dataset of fossil occurrences and complement these findings by analysing a large molecular phylogeny. We show that origination and extinction rates are governed by fundamentally different processes: originations depend on within-group diversity but are largely unaffected by environmental changes, whereas extinctions are strongly affected by external factors such as climate and geology. Our results indicate that the prime driver of fern diversity dynamics is environmentally driven extinction, with origination being an opportunistic response to diminishing ecospace occupancy.
Collapse
Affiliation(s)
- Samuli Lehtonen
- Herbarium, Biodiversity Unit, University of Turku, 20014, Turku, Finland.
- Department of Biology, University of Turku, 20014, Turku, Finland.
| | - Daniele Silvestro
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, Gothenburg, 413 19, Sweden.
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Gothenburg, Sweden.
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics, Quartier Sorge, 1015, Lausanne, Switzerland.
| | - Dirk Nikolaus Karger
- Department of Biology, University of Turku, 20014, Turku, Finland
- Department of Systematic and Evolutionary Botany, University of Zurich, 8008, Zurich, Switzerland
| | | | - Hanna Tuomisto
- Department of Biology, University of Turku, 20014, Turku, Finland
| | - Michael Kessler
- Department of Systematic and Evolutionary Botany, University of Zurich, 8008, Zurich, Switzerland
| | - Carlos Peña
- Department of Biology, University of Turku, 20014, Turku, Finland
| | - Niklas Wahlberg
- Department of Biology, University of Turku, 20014, Turku, Finland
- Department of Biology, Lund University, Lund, Sweden
| | - Alexandre Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, Gothenburg, 413 19, Sweden
- Gothenburg Global Biodiversity Centre, Box 461, SE-405 30, Gothenburg, Sweden
- Gothenburg Botanical Garden, Carl Skottsbergs gata 22 A, Gothenburg, 413 19, Sweden
| |
Collapse
|
29
|
Knoll AH, Nowak MA. The timetable of evolution. SCIENCE ADVANCES 2017; 3:e1603076. [PMID: 28560344 PMCID: PMC5435417 DOI: 10.1126/sciadv.1603076] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/21/2017] [Indexed: 05/06/2023]
Abstract
The integration of fossils, phylogeny, and geochronology has resulted in an increasingly well-resolved timetable of evolution. Life appears to have taken root before the earliest known minimally metamorphosed sedimentary rocks were deposited, but for a billion years or more, evolution played out beneath an essentially anoxic atmosphere. Oxygen concentrations in the atmosphere and surface oceans first rose in the Great Oxygenation Event (GOE) 2.4 billion years ago, and a second increase beginning in the later Neoproterozoic Era [Neoproterozoic Oxygenation Event (NOE)] established the redox profile of modern oceans. The GOE facilitated the emergence of eukaryotes, whereas the NOE is associated with large and complex multicellular organisms. Thus, the GOE and NOE are fundamental pacemakers for evolution. On the time scale of Earth's entire 4 billion-year history, the evolutionary dynamics of the planet's biosphere appears to be fast, and the pace of evolution is largely determined by physical changes of the planet. However, in Phanerozoic ecosystems, interactions between new functions enabled by the accumulation of characters in a complex regulatory environment and changing biological components of effective environments appear to have an important influence on the timing of evolutionary innovations. On the much shorter time scale of transient environmental perturbations, such as those associated with mass extinctions, rates of genetic accommodation may have been limiting for life.
Collapse
Affiliation(s)
- Andrew H. Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Martin A. Nowak
- Program for Evolutionary Dynamics, Department of Organismic and Evolutionary Biology, Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
30
|
Ishizaki K. Evolution of land plants: insights from molecular studies on basal lineages. Biosci Biotechnol Biochem 2017; 81:73-80. [DOI: 10.1080/09168451.2016.1224641] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
The invasion of the land by plants, or terrestrialization, was one of the most critical events in the history of the Earth. The evolution of land plants included significant transformations in body plans: the emergence of a multicellular diploid sporophyte, transition from gametophyte-dominant to sporophyte-dominant life histories, and development of many specialized tissues and organs, such as stomata, vascular tissues, roots, leaves, seeds, and flowers. Recent advances in molecular genetics in two model basal plants, bryophytes Physcomitrella patens and Marchantia polymorpha, have begun to provide answers to several key questions regarding land plant evolution. This paper discusses the evolution of the genes and regulatory mechanisms that helped drive such significant morphological innovations among land-based plants.
Collapse
Affiliation(s)
- Kimitsune Ishizaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Japan
| |
Collapse
|
31
|
Lehti-Shiu MD, Panchy N, Wang P, Uygun S, Shiu SH. Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:3-20. [PMID: 27522016 DOI: 10.1016/j.bbagrm.2016.08.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/21/2016] [Accepted: 08/06/2016] [Indexed: 12/19/2022]
Abstract
Plant transcription factors (TFs) that interact with specific sequences via DNA-binding domains are crucial for regulating transcriptional initiation and are fundamental to plant development and environmental response. In addition, expansion of TF families has allowed functional divergence of duplicate copies, which has contributed to novel, and in some cases adaptive, traits in plants. Thus, TFs are central to the generation of the diverse plant species that we see today. Major plant agronomic traits, including those relevant to domestication, have also frequently arisen through changes in TF coding sequence or expression patterns. Here our goal is to provide an overview of plant TF evolution by first comparing the diversity of DNA-binding domains and the sizes of these domain families in plants and other eukaryotes. Because TFs are among the most highly expanded gene families in plants, the birth and death process of TFs as well as the mechanisms contributing to their retention are discussed. We also provide recent examples of how TFs have contributed to novel traits that are important in plant evolution and in agriculture.This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
| | - Nicholas Panchy
- The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA
| | - Peipei Wang
- Department of Plant Biology, East Lansing, MI 48824, USA
| | - Sahra Uygun
- The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA
| | - Shin-Han Shiu
- Department of Plant Biology, East Lansing, MI 48824, USA; The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
32
|
Song L, Lu HZ, Xu XL, Li S, Shi XM, Chen X, Wu Y, Huang JB, Chen Q, Liu S, Wu CS, Liu WY. Organic nitrogen uptake is a significant contributor to nitrogen economy of subtropical epiphytic bryophytes. Sci Rep 2016; 6:30408. [PMID: 27460310 PMCID: PMC4961951 DOI: 10.1038/srep30408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 07/05/2016] [Indexed: 11/20/2022] Open
Abstract
Without any root contact with the soil, epiphytic bryophytes must experience and explore poor, patchy, and heterogeneous habitats; while, the nitrogen (N) uptake and use strategies of these organisms remain uncharacterized, which obscures their roles in the N cycle. To investigate the N sources, N preferences, and responses to enhanced N deposition in epiphytic bryophytes, we carried out an in situ manipulation experiment via the (15)N labelling technique in an Asian cloud forest. Epiphytic bryophytes obtained more N from air deposition than from the bark, but the contribution of N from the bark was non-negligible. Glycine accounted for 28.4% to 44.5% of the total N in bryophyte tissue, which implies that organic N might serve as an important N source. Increased N deposition increased the total N uptake, but did not alter the N preference of the epiphytic bryophytes. This study provides sound evidence that epiphytic bryophytes could take up N from the bark and wet deposition in both organic and inorganic N forms. It is thus important to consider organic N and bark N sources, which were usually neglected, when estimating the role of epiphytic bryophytes in N cycling and the impacts of N deposition on epiphytic bryophytes in cloud forests.
Collapse
Affiliation(s)
- Liang Song
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China
| | - Hua-Zheng Lu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xing-Liang Xu
- Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Su Li
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China
| | - Xian-Meng Shi
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xi Chen
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yi Wu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jun-Biao Huang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Quan Chen
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuai Liu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chuan-Sheng Wu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Jingdong 676209, P. R. China
| | - Wen-Yao Liu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, P. R. China
| |
Collapse
|
33
|
Lo JC, Tsednee M, Lo YC, Yang SC, Hu JM, Ishizaki K, Kohchi T, Lee DC, Yeh KC. Evolutionary analysis of iron (Fe) acquisition system in Marchantia polymorpha. THE NEW PHYTOLOGIST 2016; 211:569-83. [PMID: 26948158 DOI: 10.1111/nph.13922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/02/2016] [Indexed: 05/18/2023]
Abstract
To acquire appropriate iron (Fe), vascular plants have developed two unique strategies, the reduction-based strategy I of nongraminaceous plants for Fe(2+) and the chelation-based strategy II of graminaceous plants for Fe(3+) . However, the mechanism of Fe uptake in bryophytes, the earliest diverging branch of land plants and dominant in gametophyte generation is less clear. Fe isotope fractionation analysis demonstrated that the liverwort Marchantia polymorpha uses reduction-based Fe acquisition. Enhanced activities of ferric chelate reductase and proton ATPase were detected under Fe-deficient conditions. However, M. polymorpha did not show mugineic acid family phytosiderophores, the key components of strategy II, or the precursor nicotianamine. Five ZIP (ZRT/IRT-like protein) homologs were identified and speculated to be involved in Fe uptake in M. polymorpha. MpZIP3 knockdown conferred reduced growth under Fe-deficient conditions, and MpZIP3 overexpression increased Fe content under excess Fe. Thus, a nonvascular liverwort, M. polymorpha, uses strategy I for Fe acquisition. This system may have been acquired in the common ancestor of land plants and coopted from the gametophyte to sporophyte generation in the evolution of land plants.
Collapse
Affiliation(s)
- Jing-Chi Lo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Munkhtsetseg Tsednee
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Ying-Chu Lo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Shun-Chung Yang
- Institute of Earth Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jer-Ming Hu
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Kimitsune Ishizaki
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Der-Chuen Lee
- Institute of Earth Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
34
|
Lemieux C, Otis C, Turmel M. Comparative Chloroplast Genome Analyses of Streptophyte Green Algae Uncover Major Structural Alterations in the Klebsormidiophyceae, Coleochaetophyceae and Zygnematophyceae. FRONTIERS IN PLANT SCIENCE 2016; 7:697. [PMID: 27252715 PMCID: PMC4877394 DOI: 10.3389/fpls.2016.00697] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/06/2016] [Indexed: 05/18/2023]
Abstract
The Streptophyta comprises all land plants and six main lineages of freshwater green algae: Mesostigmatophyceae, Chlorokybophyceae, Klebsormidiophyceae, Charophyceae, Coleochaetophyceae and Zygnematophyceae. Previous comparisons of the chloroplast genome from nine streptophyte algae (including four zygnematophyceans) revealed that, although land plant chloroplast DNAs (cpDNAs) inherited most of their highly conserved structural features from green algal ancestors, considerable cpDNA changes took place during the evolution of the Zygnematophyceae, the sister group of land plants. To gain deeper insights into the evolutionary dynamics of the chloroplast genome in streptophyte algae, we sequenced the cpDNAs of nine additional taxa: two klebsormidiophyceans (Entransia fimbriata and Klebsormidium sp. SAG 51.86), one coleocheatophycean (Coleochaete scutata) and six zygnematophyceans (Cylindrocystis brebissonii, Netrium digitus, Roya obtusa, Spirogyra maxima, Cosmarium botrytis and Closterium baillyanum). Our comparative analyses of these genomes with their streptophyte algal counterparts indicate that the large inverted repeat (IR) encoding the rDNA operon experienced loss or expansion/contraction in all three sampled classes and that genes were extensively shuffled in both the Klebsormidiophyceae and Zygnematophyceae. The klebsormidiophycean genomes boast greatly expanded IRs, with the Entransia 60,590-bp IR being the largest known among green algae. The 206,025-bp Entransia cpDNA, which is one of the largest genome among streptophytes, encodes 118 standard genes, i.e., four additional genes compared to its Klebsormidium flaccidum homolog. We inferred that seven of the 21 group II introns usually found in land plants were already present in the common ancestor of the Klebsormidiophyceae and its sister lineages. At 107,236 bp and with 117 standard genes, the Coleochaete IR-less genome is both the smallest and most compact among the streptophyte algal cpDNAs analyzed thus far; it lacks eight genes relative to its Chaetosphaeridium globosum homolog, four of which represent unique events in the evolutionary scenario of gene losses we reconstructed for streptophyte algae. The 10 compared zygnematophycean cpDNAs display tremendous variations at all levels, except gene content. During zygnematophycean evolution, the IR disappeared a minimum of five times, the rDNA operon was broken at four distinct sites, group II introns were lost on at least 43 occasions, and putative foreign genes, mainly of phage/viral origin, were gained.
Collapse
Affiliation(s)
- Claude Lemieux
- Institut de Biologie Intégrative et des Systèmes, Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, QuébecQC, Canada
| | | | | |
Collapse
|
35
|
Lin PC, Lu CW, Shen BN, Lee GZ, Bowman JL, Arteaga-Vazquez MA, Liu LYD, Hong SF, Lo CF, Su GM, Kohchi T, Ishizaki K, Zachgo S, Althoff F, Takenaka M, Yamato KT, Lin SS. Identification of miRNAs and Their Targets in the Liverwort Marchantia polymorpha by Integrating RNA-Seq and Degradome Analyses. PLANT & CELL PHYSIOLOGY 2016; 57:339-58. [PMID: 26861787 PMCID: PMC4788410 DOI: 10.1093/pcp/pcw020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/22/2015] [Indexed: 05/04/2023]
Abstract
Bryophytes (liverworts, hornworts and mosses) comprise the three earliest diverging lineages of land plants (embryophytes). Marchantia polymorpha, a complex thalloid Marchantiopsida liverwort that has been developed into a model genetic system, occupies a key phylogenetic position. Therefore, M. polymorpha is useful in studies aiming to elucidate the evolution of gene regulation mechanisms in plants. In this study, we used computational, transcriptomic, small RNA and degradome analyses to characterize microRNA (miRNA)-mediated pathways of gene regulation in M. polymorpha. The data have been integrated into the open access ContigViews-miRNA platform for further reference. In addition to core components of the miRNA pathway, 129 unique miRNA sequences, 11 of which could be classified into seven miRNA families that are conserved in embryophytes (miR166a, miR390, miR529c, miR171-3p, miR408a, miR160 and miR319a), were identified. A combination of computational and degradome analyses allowed us to identify and experimentally validate 249 targets. In some cases, the target genes are orthologous to those of other embryophytes, but in other cases, the conserved miRNAs target either paralogs or members of different gene families. In addition, the newly discovered Mpo-miR11707.1 and Mpo-miR11707.2 are generated from a common precursor and target MpARGONAUTE1 (LW1759). Two other newly discovered miRNAs, Mpo-miR11687.1 and Mpo-miR11681.1, target the MADS-box transcription factors MpMADS1 and MpMADS2, respectively. Interestingly, one of the pentatricopeptide repeat (PPR) gene family members, MpPPR_66 (LW9825), the protein products of which are generally involved in various steps of RNA metabolism, has a long stem-loop transcript that can generate Mpo-miR11692.1 to autoregulate MpPPR_66 (LW9825) mRNA. This study provides a foundation for further investigations of the RNA-mediated silencing mechanism in M. polymorpha as well as of the evolution of this gene silencing pathway in embryophytes.
Collapse
Affiliation(s)
- Pin-Chun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106 These authors contributed equally to this work
| | - Chia-Wei Lu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106 These authors contributed equally to this work
| | - Bing-Nan Shen
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106
| | - Guan-Zong Lee
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106
| | - John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Mario A Arteaga-Vazquez
- Instituto de Biotecnologia y Ecologia Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa Veracruz, Mexico
| | - Li-Yu Daisy Liu
- Department of Agronomy, National Taiwan University, 1 Sec. 4, Roosevelt Rd. Taipei, Taiwan 106
| | - Syuan-Fei Hong
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106
| | - Chu-Fang Lo
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Taiwan 701
| | - Gong-Min Su
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | | | - Sabine Zachgo
- University of Osnabrück, Botany Department, D-49076 Osnabrück, Germany
| | - Felix Althoff
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106
| | - Mizuki Takenaka
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106
| | - Katsuyuki T Yamato
- Faculty of Biology-Oriented Science and Technology, Kinki University, Nishimitani, Kinokawa, Wakayama, 649-6493 Japan
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan 106 Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan 115 Center of Biotechnology, National Taiwan University, Taipei, Taiwan 106
| |
Collapse
|
36
|
Terrestrial Ecosystems in the Precambrian. BIOLOGICAL SOIL CRUSTS: AN ORGANIZING PRINCIPLE IN DRYLANDS 2016. [DOI: 10.1007/978-3-319-30214-0_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
37
|
Minter NJ, Buatois LA, Mángano MG, Davies NS, Gibling MR, Labandeira C. The Establishment of Continental Ecosystems. TOPICS IN GEOBIOLOGY 2016. [DOI: 10.1007/978-94-017-9600-2_6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
38
|
de Vries J, Fischer AM, Roettger M, Rommel S, Schluepmann H, Bräutigam A, Carlsbecker A, Gould SB. Cytokinin-induced promotion of root meristem size in the fern Azolla supports a shoot-like origin of euphyllophyte roots. THE NEW PHYTOLOGIST 2016; 209:705-20. [PMID: 26358624 PMCID: PMC5049668 DOI: 10.1111/nph.13630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/04/2015] [Indexed: 05/10/2023]
Abstract
The phytohormones cytokinin and auxin orchestrate the root meristem development in angiosperms by determining embryonic bipolarity. Ferns, having the most basal euphyllophyte root, form neither bipolar embryos nor permanent embryonic primary roots but rather an adventitious root system. This raises the questions of how auxin and cytokinin govern fern root system architecture and whether this can tell us something about the origin of that root. Using Azolla filiculoides, we characterized the influence of IAA and zeatin on adventitious fern root meristems and vasculature by Nomarski microscopy. Simultaneously, RNAseq analyses, yielding 36,091 contigs, were used to uncover how the phytohormones affect root tip gene expression. We show that auxin restricts Azolla root meristem development, while cytokinin promotes it; it is the opposite effect of what is observed in Arabidopsis. Global gene expression profiling uncovered 145 genes significantly regulated by cytokinin or auxin, including cell wall modulators, cell division regulators and lateral root formation coordinators. Our data illuminate both evolution and development of fern roots. Promotion of meristem size through cytokinin supports the idea that root meristems of euphyllophytes evolved from shoot meristems. The foundation of these roots was laid in a postembryonically branching shoot system.
Collapse
Affiliation(s)
- Jan de Vries
- Molecular EvolutionHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Angela Melanie Fischer
- Molecular EvolutionHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Mayo Roettger
- Molecular EvolutionHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Sophie Rommel
- Population GeneticsHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Henriette Schluepmann
- Molecular Plant PhysiologyUtrecht UniversityPadualaan 83584CH Utrechtthe Netherlands
| | - Andrea Bräutigam
- Plant BiochemistryHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Annelie Carlsbecker
- Department of Organismal Biology, Physiological BotanyUppsala BioCenterLinnean Centre for Plant BiologyUppsala UniversityUlls väg 24ESE‐756 51UppsalaSweden
| | - Sven Bernhard Gould
- Molecular EvolutionHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| |
Collapse
|
39
|
Huang L, Schiefelbein J. Conserved Gene Expression Programs in Developing Roots from Diverse Plants. THE PLANT CELL 2015; 27:2119-32. [PMID: 26265761 PMCID: PMC4568505 DOI: 10.1105/tpc.15.00328] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/13/2015] [Accepted: 07/26/2015] [Indexed: 05/20/2023]
Abstract
The molecular basis for the origin and diversification of morphological adaptations is a central issue in evolutionary developmental biology. Here, we defined temporal transcript accumulation in developing roots from seven vascular plants, permitting a genome-wide comparative analysis of the molecular programs used by a single organ across diverse species. The resulting gene expression maps uncover significant similarity in the genes employed in roots and their developmental expression profiles. The detailed analysis of a subset of 133 genes known to be associated with root development in Arabidopsis thaliana indicates that most of these are used in all plant species. Strikingly, this was also true for root development in a lycophyte (Selaginella moellendorffii), which forms morphologically different roots and is thought to have evolved roots independently. Thus, despite vast differences in size and anatomy of roots from diverse plants, the basic molecular mechanisms employed during root formation appear to be conserved. This suggests that roots evolved in the two major vascular plant lineages either by parallel recruitment of largely the same developmental program or by elaboration of an existing root program in the common ancestor of vascular plants.
Collapse
Affiliation(s)
- Ling Huang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
40
|
Zhong B, Sun L, Penny D. The Origin of Land Plants: A Phylogenomic Perspective. Evol Bioinform Online 2015; 11:137-41. [PMID: 26244002 PMCID: PMC4498653 DOI: 10.4137/ebo.s29089] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/04/2015] [Accepted: 06/08/2015] [Indexed: 11/16/2022] Open
Abstract
Land plants are a natural group, and Charophyte algae are the closest lineages of land plants and have six morphologically diverged groups. The conjugating green algae (Zygnematales) are now suggested to be the extant sister group to land plants, providing the novel understanding for character evolution and early multicellular innovations in land plants. We review recent molecular phylogenetic work on the origin of land plants and discuss some future directions in phylogenomic analyses.
Collapse
Affiliation(s)
- Bojian Zhong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Linhua Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - David Penny
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
41
|
Szövényi P, Frangedakis E, Ricca M, Quandt D, Wicke S, Langdale JA. Establishment of Anthoceros agrestis as a model species for studying the biology of hornworts. BMC PLANT BIOLOGY 2015; 15:98. [PMID: 25886741 PMCID: PMC4393856 DOI: 10.1186/s12870-015-0481-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/24/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plants colonized terrestrial environments approximately 480 million years ago and have contributed significantly to the diversification of life on Earth. Phylogenetic analyses position a subset of charophyte algae as the sister group to land plants, and distinguish two land plant groups that diverged around 450 million years ago - the bryophytes and the vascular plants. Relationships between liverworts, mosses hornworts and vascular plants have proven difficult to resolve, and as such it is not clear which bryophyte lineage is the sister group to all other land plants and which is the sister to vascular plants. The lack of comparative molecular studies in representatives of all three lineages exacerbates this uncertainty. Such comparisons can be made between mosses and liverworts because representative model organisms are well established in these two bryophyte lineages. To date, however, a model hornwort species has not been available. RESULTS Here we report the establishment of Anthoceros agrestis as a model hornwort species for laboratory experiments. Axenic culture conditions for maintenance and vegetative propagation have been determined, and treatments for the induction of sexual reproduction and sporophyte development have been established. In addition, protocols have been developed for the extraction of DNA and RNA that is of a quality suitable for molecular analyses. Analysis of haploid-derived genome sequence data of two A. agrestis isolates revealed single nucleotide polymorphisms at multiple loci, and thus these two strains are suitable starting material for classical genetic and mapping experiments. CONCLUSIONS Methods and resources have been developed to enable A. agrestis to be used as a model species for developmental, molecular, genomic, and genetic studies. This advance provides an unprecedented opportunity to investigate the biology of hornworts.
Collapse
Affiliation(s)
- Péter Szövényi
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
- Institute of Systematic Botany, University of Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland.
- MTA-ELTE-MTM Ecology Research Group, ELTE, Biological Institute, Budapest, Hungary.
| | - Eftychios Frangedakis
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford, UK.
- Current Address: Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113 0033, Japan.
| | - Mariana Ricca
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
- Swiss Institute of Bioinformatics, Quartier Sorge-Batiment Genopode, Lausanne, Switzerland.
| | - Dietmar Quandt
- Nees-Institut für Biodiversität der Pflanzen, University of Bonn, Meckenheimer Allee 170, D - 53115, Bonn, Germany.
| | - Susann Wicke
- Nees-Institut für Biodiversität der Pflanzen, University of Bonn, Meckenheimer Allee 170, D - 53115, Bonn, Germany.
- Institute for Evolution and Biodiversity, University of Muenster, Huefferstr. 1, 48149, Muenster, Germany.
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, South Parks Rd, Oxford, UK.
| |
Collapse
|
42
|
Bennett TA, Liu MM, Aoyama T, Bierfreund NM, Braun M, Coudert Y, Dennis RJ, O'Connor D, Wang XY, White CD, Decker EL, Reski R, Harrison CJ. Plasma membrane-targeted PIN proteins drive shoot development in a moss. Curr Biol 2014; 24:2776-85. [PMID: 25448003 PMCID: PMC4251699 DOI: 10.1016/j.cub.2014.09.054] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 09/03/2014] [Accepted: 09/22/2014] [Indexed: 11/19/2022]
Abstract
Background Plant body plans arise by the activity of meristematic growing tips during development and radiated independently in the gametophyte (n) and sporophyte (2n) stages of the life cycle during evolution. Although auxin and its intercellular transport by PIN family efflux carriers are primary regulators of sporophytic shoot development in flowering plants, the extent of conservation in PIN function within the land plants and the mechanisms regulating bryophyte gametophytic shoot development are largely unknown. Results We have found that treating gametophytic shoots of the moss Physcomitrella patens with exogenous auxins and auxin transport inhibitors disrupts apical function and leaf development. Two plasma membrane-targeted PIN proteins are expressed in leafy shoots, and pin mutants resemble plants treated with auxins or auxin transport inhibitors. PIN-mediated auxin transport regulates apical cell function, leaf initiation, leaf shape, and shoot tropisms in moss gametophytes. pin mutant sporophytes are sometimes branched, reproducing a phenotype only previously seen in the fossil record and in rare natural moss variants. Conclusions Our results show that PIN-mediated auxin transport is an ancient, conserved regulator of shoot development. PIN proteins have polar plasma membrane localizations in the moss Physcomitrella PIN-mediated auxin transport drives gametophytic shoot development in Physcomitrella PIN-mediated auxin transport suppresses branching in Physcomitrella sporophytes
Collapse
Affiliation(s)
- Tom A Bennett
- Plant Sciences Department, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK; Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Maureen M Liu
- Plant Sciences Department, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Tsuyoshi Aoyama
- Plant Sciences Department, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Nicole M Bierfreund
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Marion Braun
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Yoan Coudert
- Plant Sciences Department, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Ross J Dennis
- Plant Sciences Department, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Devin O'Connor
- Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Xiao Y Wang
- Plant Sciences Department, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Chris D White
- Plant Sciences Department, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Eva L Decker
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Ralf Reski
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, 79104 Freiburg, Germany; Freiburg Institute for Advanced Studies (FRIAS), 79104 Freiburg, Germany
| | - C Jill Harrison
- Plant Sciences Department, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| |
Collapse
|
43
|
Frank MH, Scanlon MJ. Transcriptomic evidence for the evolution of shoot meristem function in sporophyte-dominant land plants through concerted selection of ancestral gametophytic and sporophytic genetic programs. Mol Biol Evol 2014; 32:355-67. [PMID: 25371433 DOI: 10.1093/molbev/msu303] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Alternation of generations, in which the haploid and diploid stages of the life cycle are each represented by multicellular forms that differ in their morphology, is a defining feature of the land plants (embryophytes). Anciently derived lineages of embryophytes grow predominately in the haploid gametophytic generation from apical cells that give rise to the photosynthetic body of the plant. More recently evolved plant lineages have multicellular shoot apical meristems (SAMs), and photosynthetic shoot development is restricted to the sporophyte generation. The molecular genetic basis for this evolutionary shift from gametophyte-dominant to sporophyte-dominant life cycles remains a major question in the study of land plant evolution. We used laser microdissection and next generation RNA sequencing to address whether angiosperm meristem patterning genes expressed in the sporophytic SAM of Zea mays are expressed in the gametophytic apical cells, or in the determinate sporophytes, of the model bryophytes Marchantia polymorpha and Physcomitrella patens. A wealth of upregulated genes involved in stem cell maintenance and organogenesis are identified in the maize SAM and in both the gametophytic apical cell and sporophyte of moss, but not in Marchantia. Significantly, meiosis-specific genetic programs are expressed in bryophyte sporophytes, long before the onset of sporogenesis. Our data suggest that this upregulated accumulation of meiotic gene transcripts suppresses indeterminate cell fate in the Physcomitrella sporophyte, and overrides the observed accumulation of meristem patterning genes. A model for the evolution of indeterminate growth in the sporophytic generation through the concerted selection of ancestral meristem gene programs from gametophyte-dominant lineages is proposed.
Collapse
|
44
|
The largest Silurian vertebrate and its palaeoecological implications. Sci Rep 2014; 4:5242. [PMID: 24921626 PMCID: PMC4054400 DOI: 10.1038/srep05242] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/23/2014] [Indexed: 12/03/2022] Open
Abstract
An apparent absence of Silurian fishes more than half-a-metre in length has been viewed as evidence that gnathostomes were restricted in size and diversity prior to the Devonian. Here we describe the largest pre-Devonian vertebrate (Megamastax amblyodus gen. et sp. nov.), a predatory marine osteichthyan from the Silurian Kuanti Formation (late Ludlow, ~423 million years ago) of Yunnan, China, with an estimated length of about 1 meter. The unusual dentition of the new form suggests a durophagous diet which, combined with its large size, indicates a considerable degree of trophic specialisation among early osteichthyans. The lack of large Silurian vertebrates has recently been used as constraint in palaeoatmospheric modelling, with purported lower oxygen levels imposing a physiological size limit. Regardless of the exact causal relationship between oxygen availability and evolutionary success, this finding refutes the assumption that pre-Emsian vertebrates were restricted to small body sizes.
Collapse
|
45
|
Bennett T, Brockington SF, Rothfels C, Graham SW, Stevenson D, Kutchan T, Rolf M, Thomas P, Wong GKS, Leyser O, Glover BJ, Harrison CJ. Paralogous radiations of PIN proteins with multiple origins of noncanonical PIN structure. Mol Biol Evol 2014; 31:2042-60. [PMID: 24758777 PMCID: PMC4104312 DOI: 10.1093/molbev/msu147] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The plant hormone auxin is a conserved regulator of development which has been implicated in the generation of morphological novelty. PIN-FORMED1 (PIN) auxin efflux carriers are central to auxin function by regulating its distribution. PIN family members have divergent structures and cellular localizations, but the origin and evolutionary significance of this variation is unresolved. To characterize PIN family evolution, we have undertaken phylogenetic and structural analyses with a massive increase in taxon sampling over previous studies. Our phylogeny shows that following the divergence of the bryophyte and lycophyte lineages, two deep duplication events gave rise to three distinct lineages of PIN proteins in euphyllophytes. Subsequent independent radiations within each of these lineages were taxonomically asymmetric, giving rise to at least 21 clades of PIN proteins, of which 15 are revealed here for the first time. Although most PIN protein clades share a conserved canonical structure with a modular central loop domain, a small number of noncanonical clades dispersed across the phylogeny have highly divergent protein structure. We propose that PIN proteins underwent sub- and neofunctionalization with substantial modification to protein structure throughout plant evolution. Our results have important implications for plant evolution as they suggest that structurally divergent PIN proteins that arose in paralogous radiations contributed to the convergent evolution of organ systems in different land plant lineages.
Collapse
Affiliation(s)
- Tom Bennett
- Department of Plant Sciences, University of Cambridge, Cambridge, United KingdomSainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Samuel F Brockington
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Carl Rothfels
- Department of Zoology, University of British Columbia, Vancouver, British Colombia, Canada
| | - Sean W Graham
- UBC Botanical Garden Campbell Building, Vancouver, British Colombia, Canada
| | | | | | | | - Philip Thomas
- Royal Botanic Gardens Edinburgh, 20A Inverleith Row, Edinburgh, United Kingdom
| | - Gane Ka-Shu Wong
- Department of Medicine, University of Alberta, Edmonton, Alberta, CanadaDepartment of Biological Sciences, University of Alberta, Edmonton, Alberta, CanadaBGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, China
| | - Ottoline Leyser
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - C Jill Harrison
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
46
|
Civáň P, Foster PG, Embley MT, Séneca A, Cox CJ. Analyses of charophyte chloroplast genomes help characterize the ancestral chloroplast genome of land plants. Genome Biol Evol 2014; 6:897-911. [PMID: 24682153 PMCID: PMC4007539 DOI: 10.1093/gbe/evu061] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2014] [Indexed: 11/23/2022] Open
Abstract
Despite the significance of the relationships between embryophytes and their charophyte algal ancestors in deciphering the origin and evolutionary success of land plants, few chloroplast genomes of the charophyte algae have been reconstructed to date. Here, we present new data for three chloroplast genomes of the freshwater charophytes Klebsormidium flaccidum (Klebsormidiophyceae), Mesotaenium endlicherianum (Zygnematophyceae), and Roya anglica (Zygnematophyceae). The chloroplast genome of Klebsormidium has a quadripartite organization with exceptionally large inverted repeat (IR) regions and, uniquely among streptophytes, has lost the rrn5 and rrn4.5 genes from the ribosomal RNA (rRNA) gene cluster operon. The chloroplast genome of Roya differs from other zygnematophycean chloroplasts, including the newly sequenced Mesotaenium, by having a quadripartite structure that is typical of other streptophytes. On the basis of the improbability of the novel gain of IR regions, we infer that the quadripartite structure has likely been lost independently in at least three zygnematophycean lineages, although the absence of the usual rRNA operonic synteny in the IR regions of Roya may indicate their de novo origin. Significantly, all zygnematophycean chloroplast genomes have undergone substantial genomic rearrangement, which may be the result of ancient retroelement activity evidenced by the presence of integrase-like and reverse transcriptase-like elements in the Roya chloroplast genome. Our results corroborate the close phylogenetic relationship between Zygnematophyceae and land plants and identify 89 protein-coding genes and 22 introns present in the chloroplast genome at the time of the evolutionary transition of plants to land, all of which can be found in the chloroplast genomes of extant charophytes.
Collapse
Affiliation(s)
- Peter Civáň
- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| | - Peter G. Foster
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Martin T. Embley
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Ana Séneca
- Department of Biology, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
- Department of Biology, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| | - Cymon J. Cox
- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
47
|
Valmonte GR, Arthur K, Higgins CM, MacDiarmid RM. Calcium-dependent protein kinases in plants: evolution, expression and function. PLANT & CELL PHYSIOLOGY 2014; 55:551-69. [PMID: 24363288 DOI: 10.1093/pcp/pct200] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in metabolism, osmosis, hormone response and stress signaling pathways. CPKs are a large multigene family of proteins that are present in all plants studied to date, as well as in protists, oomycetes and green algae, but are not found in animals and fungi. Despite the increasing evidence of the importance of CPKs in developmental and stress responses from various plants, a comprehensive genome-wide analysis of CPKs from algae to higher plants has not been undertaken. This paper describes the evolution of CPKs from green algae to plants using a broadly sampled phylogenetic analysis and demonstrates the functional diversification of CPKs based on expression and functional studies in different plant species. Our findings reveal that CPK sequence diversification into four major groups occurred in parallel with the terrestrial transition of plants. Despite significant expansion of the CPK gene family during evolution from green algae to higher plants, there is a high level of sequence conservation among CPKs in all plant species. This sequence conservation results in very little correlation between CPK evolutionary groupings and functional diversity, making the search for CPK functional orthologs a challenge.
Collapse
Affiliation(s)
- Gardette R Valmonte
- Institute for Applied Ecology New Zealand, School of Applied Sciences, Auckland University of Technology, New Zealand
| | | | | | | |
Collapse
|
48
|
Hamel LP, Sheen J, Séguin A. Ancient signals: comparative genomics of green plant CDPKs. TRENDS IN PLANT SCIENCE 2014; 19:79-89. [PMID: 24342084 PMCID: PMC3932502 DOI: 10.1016/j.tplants.2013.10.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/23/2013] [Accepted: 10/26/2013] [Indexed: 05/18/2023]
Abstract
Calcium-dependent protein kinases (CDPKs) are multifunctional proteins that combine calcium-binding and signaling capabilities within a single gene product. This unique versatility enables multiple plant biological processes to be controlled, including developmental programs and stress responses. The genome of flowering plants typically encodes around 30 CDPK homologs that cluster in four conserved clades. In this review, we take advantage of the recent availability of genome sequences from green algae and early land plants to examine how well the previously described CDPK family from angiosperms compares to the broader evolutionary states associated with early diverging green plant lineages. Our analysis suggests that the current architecture of the CDPK family was shaped during the colonization of the land by plants, whereas CDPKs from ancestor green algae have continued to evolve independently.
Collapse
Affiliation(s)
- Louis-Philippe Hamel
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| | - Jen Sheen
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 rue du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, QC G1V 4C7, Canada.
| |
Collapse
|
49
|
Tomescu AMF, Wyatt SE, Hasebe M, Rothwell GW. Early evolution of the vascular plant body plan - the missing mechanisms. CURRENT OPINION IN PLANT BIOLOGY 2014; 17:126-36. [PMID: 24507504 DOI: 10.1016/j.pbi.2013.11.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/12/2013] [Accepted: 11/27/2013] [Indexed: 05/03/2023]
Abstract
The complex body plan of modern vascular plants evolved by modification of simple systems of branching axes which originated from the determinate vegetative axis of a bryophyte-grade ancestor. Understanding body plan evolution and homologies has implications for land plant phylogeny and requires resolution of the specific developmental changes and their evolutionary sequence. The branched sporophyte may have evolved from a sterilized bryophyte sporangium, but prolongation of embryonic vegetative growth is a more parsimonious explanation. Research in the bryophyte model system Physcomitrella points to mechanisms regulating sporophyte meristem maintenance, indeterminacy, branching and the transition to reproductive development. These results can form the basis for hypotheses to identify and refine the nature and sequence of changes in development that occurred during the evolution of the indeterminate branched sporophyte from an unbranched bryophyte-grade sporophyte.
Collapse
Affiliation(s)
- Alexandru M F Tomescu
- Department of Biological Sciences, Humboldt State University, Arcata, CA 95521, USA.
| | - Sarah E Wyatt
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
| | - Mitsuyasu Hasebe
- National Institute for Basic Biology and Department of Basic Biology, School of Life Science, The Graduate School for Advanced Studies, Okazaki 444-8585, Japan
| | - Gar W Rothwell
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA; Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
50
|
Raven JA, Edwards D. Photosynthesis in Early Land Plants: Adapting to the Terrestrial Environment. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2014. [DOI: 10.1007/978-94-007-6988-5_3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|