1
|
Bronstein JL, Sridhar H. Connecting and integrating cooperation within and between species. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230203. [PMID: 39034697 PMCID: PMC11293865 DOI: 10.1098/rstb.2023.0203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 07/23/2024] Open
Abstract
There has long been a fundamental divide in the study of cooperation: researchers focus either on cooperation within species, including but not limited to sociality, or else on cooperation between species, commonly termed mutualism. Here, we explore the ecologically and evolutionarily significant ways in which within- and between-species cooperation interact. We highlight two primary cross-linkages. First, cooperation of one type can change the context in which cooperation of the other type functions, and thus potentially its outcome. We delineate three possibilities: (i) within-species cooperation modulates benefits for a heterospecific partner; (ii) between-species cooperation affects the dynamics of within-species cooperation; and (iii) both processes take place interactively. The second type of cross-linkage emerges when resources or services that cooperation makes available are obtainable either from members of the same species or from different species. This brings cooperation at the two levels into direct interaction, to some extent obscuring the distinction between them. We expand on these intersections between within- and between-species cooperation in a diversity of taxa and interaction types. These interactions have the potential to weave together social networks and trophic dynamics, contributing to the structure and functioning of ecological communities in ways that are just beginning to be explored. This article is part of the theme issue 'Connected interactions: enriching food web research by spatial and social interactions'.
Collapse
Affiliation(s)
- Judith L. Bronstein
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ85721, USA
| | - Hari Sridhar
- Konrad Lorenz Institute for Evolution and Cognition Research, KlosterneuburgA-3400, Austria
| |
Collapse
|
2
|
Ceballos-González AV, da Silva RC, Lima LD, Kaminski LA, Turatti ICC, Lopes NP, do Nascimento FS. Influence of Host Plants and Tending Ants on the Cuticular Hydrocarbon Profile of a Generalist Myrmecophilous Caterpillar. J Chem Ecol 2024; 50:222-236. [PMID: 38748380 DOI: 10.1007/s10886-024-01477-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 07/10/2024]
Abstract
In myrmecophilous organisms, which live in symbiosis with ants, cuticular hydrocarbons (CHCs) play a pivotal role in interspecific communication and defense against chemical-oriented predators. Although these interactions form complex information webs, little is known about the influence of biotic environmental factors on the CHC profiles of myrmecophiles. Here, we analyzed the effect of different host plants and tending ants on the larval CHC profile of Synargis calyce (Lepidoptera: Riodinidae), a polyphagous species with facultative myrmecophily. Groups of caterpillars were fed individually with three host plant species (without tending ants), and with two tending ant species. Through gas chromatography analysis, we compared the cuticular profiles of treatments and found a high similarity between plants and caterpillars (65-82%), but a low similarity between caterpillars and their tending ants (30 - 25%). Cluster analysis showed that caterpillars, ants, and plants form distinct groups, indicating that S. calyce caterpillars have their own chemical profile. These results are similar to those observed for Lycaenidae caterpillars indicating that there is functional convergence in the chemical strategies used by myrmecophilous caterpillar species with similar ecology. Also, the results suggest that the cuticular compounds of S. calyce are primarily influenced by their host plants rather than their tending ants. Thus, we propose that these caterpillars present a trade-off between camouflage and directly informing their presence to ants, maintaining their unique chemical profile, though slightly affected by biotic environmental factors.
Collapse
Affiliation(s)
- Amalia Victoria Ceballos-González
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo - USP, Ribeirão Preto, 14040-901, SP, Brazil.
| | | | - Luan Dias Lima
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo - USP, Ribeirão Preto, 14040-901, SP, Brazil
| | - Lucas Augusto Kaminski
- Núcleo de Ecologia e Biodiversidade, Instituto de Ciências Básicas e da Saúde, Universidade Federal de Alagoas - UFAL, Maceió, 57072-900, AL, Brazil
- Departamento de Zoologia, Universidade Federal do Rio Grande do Sul- UFRGS, Porto Alegre, 91540-000, RS, Brazil
| | - Izabel Cristina Casanova Turatti
- NPPNS, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ciências BioMoleculares, Universidade de São Paulo - USP, Ribeirão Preto, 14040-900, SP, Brazil
| | - Norberto Peporine Lopes
- NPPNS, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ciências BioMoleculares, Universidade de São Paulo - USP, Ribeirão Preto, 14040-900, SP, Brazil
| | - Fábio Santos do Nascimento
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo - USP, Ribeirão Preto, 14040-901, SP, Brazil
| |
Collapse
|
3
|
Agarwal R, Althoff DM. Extreme specificity in obligate mutualism-A role for competition? Ecol Evol 2024; 14:e11628. [PMID: 38911491 PMCID: PMC11190587 DOI: 10.1002/ece3.11628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024] Open
Abstract
Obligate mutualisms, reciprocally obligate beneficial interactions, are some of the most important mutualisms on the planet, providing the basis for the evolution of the eukaryotic cell, the formation and persistence of terrestrial ecosystems and the establishment and expansion of coral reefs. In addition, these mutualisms can also lead to the diversification of interacting partner species. Accompanying this diversification is a general pattern of a high degree of specificity among interacting partner species. A survey of obligate mutualisms demonstrates that greater than half of these systems have only one or two mutualist species on each side of the interaction. This is in stark contrast to facultative mutualisms that can have dozens of interacting mutualist species. We posit that the high degree of specificity in obligate mutualisms is driven by competition within obligate mutualist guilds that limits species richness. Competition may be particularly potent in these mutualisms because mutualistic partners are totally dependent on each other's fitness gains, which may fuel interspecific competition. Theory and the limited number of empirical studies testing for the role of competition in determining specificity suggest that competition may be an important force that fuels the high degree of specificity. Further empirical research is needed to dissect the relative roles of trait complementarity, mutualism regulation, and competition among mutualist guild members in determining mutualism specificity at local scales.
Collapse
Affiliation(s)
- Renuka Agarwal
- Department of BiologySyracuse UniversitySyracuseNew YorkUSA
| | | |
Collapse
|
4
|
Ge S, Sun WH, Yang Y, Ren LL, Hu SJ. First description of the females of Qinorapalaqinlingana Chou & Wang, 1995 (Lepidoptera, Lycaenidae) from Shaanxi and Sichuan Provinces, western China. Biodivers Data J 2024; 12:e117061. [PMID: 38524898 PMCID: PMC10960153 DOI: 10.3897/bdj.12.e117061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/05/2024] [Indexed: 03/26/2024] Open
Abstract
Background The family Lycaenidae is a widely distributed and species-rich group with approximately 5300 described species. The rare genus Qinorapala Chou & Wang, with Q.qinlingana Chou & Wang as its type species was established as monotypic. In the original description, Q.qinlingana was described from a male holotype; the female remained unknown. To date, the genus is only recorded from the Qinling Mountains (Shaanxi and Gansu Provinces). In this study, two female specimens, from Shaanxi Province and western Sichuan Province (bordering Yunnan Province) are described and illustrated for the first time. New information Female specimens of Q.qinlingana from Shaanxi and Sichuan are described for the first time. The species' distribution is updated and a distribution map is provided.
Collapse
Affiliation(s)
- Sixun Ge
- College of Forestry, Beijing Forestry University, Beijing, ChinaCollege of Forestry, Beijing Forestry UniversityBeijingChina
| | - Wen-Hao Sun
- Water Resources Research Institute of Shandong Province, Jinan, ChinaWater Resources Research Institute of Shandong ProvinceJinanChina
- Shandong Province Key Laboratory of Water Resources and Environment, Jinan, ChinaShandong Province Key Laboratory of Water Resources and EnvironmentJinanChina
| | - Yang Yang
- Room 515, No.10 Building, Xiaoguanbei Lane, Anwai Street, Chaoyang District, Beijing, ChinaRoom 515, No.10 Building, Xiaoguanbei Lane, Anwai Street, Chaoyang DistrictBeijingChina
| | - Li-Li Ren
- College of Forestry, Beijing Forestry University, Beijing, ChinaCollege of Forestry, Beijing Forestry UniversityBeijingChina
| | - Shao-Ji Hu
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, ChinaInstitute of International Rivers and Eco-security, Yunnan UniversityKunmingChina
| |
Collapse
|
5
|
Rogers AM, Yong RQY, Holden MH. The house of a thousand species: The untapped potential of comprehensive biodiversity censuses of urban properties. Ecology 2024; 105:e4225. [PMID: 38038234 DOI: 10.1002/ecy.4225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/19/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023]
Affiliation(s)
- Andrew M Rogers
- School of the Environment, The University of Queensland, Brisbane, Queensland, Australia
| | - Russell Q-Y Yong
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Matthew H Holden
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Lima LD, Ceballos-González AV, Prato A, Cavalleri A, Trigo JR, do Nascimento FS. Chemical Camouflage Induced by Diet in a Pest Treehopper on Host Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:216. [PMID: 38256769 PMCID: PMC10820158 DOI: 10.3390/plants13020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Ants patrol foliage and exert a strong selective pressure on herbivorous insects, being their primary predators. As ants are chemically oriented, some organisms that interact with them (myrmecophiles) use chemical strategies mediated by their cuticular hydrocarbons (CHCs) to deal with ants. Thus, a better understanding of the ecology and evolution of the mutualistic interactions between myrmecophiles and ants depends on the accurate recognition of these chemical strategies. Few studies have examined whether treehoppers may use an additional strategy called chemical camouflage to reduce ant aggression, and none considered highly polyphagous pest insects. We analyzed whether the chemical similarity of the CHC profiles of three host plants from three plant families (Fabaceae, Malvaceae, and Moraceae) and the facultative myrmecophilous honeydew-producing treehopper Aetalion reticulatum (Hemiptera: Aetalionidae), a pest of citrus plants, may play a role as a proximate mechanism serving as a protection against ant attacks on plants. We found a high similarity (>80%) between the CHCs of the treehoppers and two of their host plants. The treehoppers acquire CHCs through their diet, and the chemical similarity varies according to host plant. Chemical camouflage on host plants plays a role in the interaction of treehoppers with their ant mutualistic partners.
Collapse
Affiliation(s)
- Luan Dias Lima
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo—USP, Ribeirão Preto 14040-901, SP, Brazil; (A.V.C.-G.); (A.P.); (F.S.d.N.)
| | - Amalia Victoria Ceballos-González
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo—USP, Ribeirão Preto 14040-901, SP, Brazil; (A.V.C.-G.); (A.P.); (F.S.d.N.)
| | - Amanda Prato
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo—USP, Ribeirão Preto 14040-901, SP, Brazil; (A.V.C.-G.); (A.P.); (F.S.d.N.)
| | - Adriano Cavalleri
- Instituto de Ciências Biológicas, Universidade Federal do Rio Grande—FURG, Rio Grande 96203-900, RS, Brazil;
| | - José Roberto Trigo
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas—UNICAMP, Campinas 13083-970, SP, Brazil
| | - Fábio Santos do Nascimento
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo—USP, Ribeirão Preto 14040-901, SP, Brazil; (A.V.C.-G.); (A.P.); (F.S.d.N.)
| |
Collapse
|
7
|
Mizuta H, Morozumi Y, Watanabe M, Ohta S, Ômura H. Role of trisaccharides in larval secretion of Lycaeides argyrognomon butterfly on ant attendance. JOURNAL OF INSECT PHYSIOLOGY 2023; 150:104558. [PMID: 37633410 DOI: 10.1016/j.jinsphys.2023.104558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/09/2023] [Accepted: 08/22/2023] [Indexed: 08/28/2023]
Abstract
Several myrmecophilous insects participate in symbiotic relationships with ants that receive sugar-rich food rewards. For instance, certain aphid species secrete honeydew containing high concentration of melezitose, which acts as a potent feeding-stimulant and attractant for ants. Lycaenid butterfly larvae possess dorsal nectary glands that secrete sugar-rich droplets for tending ants. However, the roles of sugar components in ant foraging and larva-tending activities are unknown. Lycaeides (Plebejus) argyrognomon are larvae that are frequently and facultatively attended by various ant species, including Formica japonica, on the host plant Indigofera pseudotinctoria. The larval secretions of this insect contained small amounts of trisaccharides, melezitose and maltotriose, which were not detected in the host plant's flower nectar, and larval secretions of two sympatric and myrmecophilous lycaenids, Zizeeria maha and Everes argiades. Melezitose and maltotriose, along with sucrose, were preferred by the worker ants. Of the four sugar mixture samples that mimicked I. pseudotinctoria floral nectar and the larval secretions of three lycaenids, respectively, the L. argyrognomon mimic was the most preferred by F. japonica ants. Moreover, the removal of trisaccharides from this mimic significantly reduced its stimulatory activity to ant feedings. These results indicated that the sugar composition of L. argyrognomon larval secretions is suited to the feeding preference of F. japonica ants, and that the trisaccharide components play a key role in increasing their preference. However, only half of the ants responded to the L. argyrognomon mimic even at the concentration corresponding to the maximum total sugar concentration in the collected larval secretions. The fact that the secretions of all L. argyrognomon larvae did not have sufficient sugar levels to stimulate ant feedings suggests that the production of sugar-rich secretions and trisaccharide components is metabolically costly for the larvae and that components other than sugars may be involved in ant attendance.
Collapse
Affiliation(s)
- Hikaru Mizuta
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima 739-8528, Japan
| | - Yutaro Morozumi
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, Hiroshima 739-8528, Japan
| | - Michihito Watanabe
- Mount Fuji Biodiversity Laboratory, Narusawa-mura 3904-2, Minamitsuru-gun, Yamanashi 401-0320, Japan
| | - Shinji Ohta
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima 739-8528, Japan; Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, Hiroshima 739-8528, Japan
| | - Hisashi Ômura
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Hiroshima 739-8528, Japan; Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, Hiroshima 739-8528, Japan.
| |
Collapse
|
8
|
Sless TJL, Danforth BN, Searle JB. Evolutionary Origins and Patterns of Diversification in Animal Brood Parasitism. Am Nat 2023; 202:107-121. [PMID: 37531277 DOI: 10.1086/724839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
AbstractBrood parasitism involves the exploitation of host parental care rather than the extraction of resources directly from hosts. We identify defining characteristics of this strategy and consider its position along continua with adjacent behaviors but focus on canonical brood parasites, where parasitism is obligate and hosts are noneusocial (thereby distinguishing from social parasitism). A systematic literature survey revealed 59 independently derived brood parasitic lineages with most origins (49) in insects, particularly among bees and wasps, and other origins in birds (seven) and fish (three). Insects account for more than 98% of brood parasitic species, with much of that diversity reflecting ancient (≥100-million-year-old) brood parasitic lineages. Brood parasites usually, but not always, evolve from forms that show parental care. In insects, brood parasitism often first evolves through exploitation of a closely related species, following Emery's rule, but this is less typical in birds, which we discuss. We conducted lineage-level comparisons between brood parasitic clades and their sister groups, finding mixed results but an overall neutral to negative effect of brood parasitism on species richness and diversification. Our review of brood parasites reveals many unanswered questions requiring new research, including further modeling of the coevolutionary dynamics of brood parasites and their hosts.
Collapse
|
9
|
Kawahara AY, Storer C, Carvalho APS, Plotkin DM, Condamine FL, Braga MP, Ellis EA, St Laurent RA, Li X, Barve V, Cai L, Earl C, Frandsen PB, Owens HL, Valencia-Montoya WA, Aduse-Poku K, Toussaint EFA, Dexter KM, Doleck T, Markee A, Messcher R, Nguyen YL, Badon JAT, Benítez HA, Braby MF, Buenavente PAC, Chan WP, Collins SC, Rabideau Childers RA, Dankowicz E, Eastwood R, Fric ZF, Gott RJ, Hall JPW, Hallwachs W, Hardy NB, Sipe RLH, Heath A, Hinolan JD, Homziak NT, Hsu YF, Inayoshi Y, Itliong MGA, Janzen DH, Kitching IJ, Kunte K, Lamas G, Landis MJ, Larsen EA, Larsen TB, Leong JV, Lukhtanov V, Maier CA, Martinez JI, Martins DJ, Maruyama K, Maunsell SC, Mega NO, Monastyrskii A, Morais ABB, Müller CJ, Naive MAK, Nielsen G, Padrón PS, Peggie D, Romanowski HP, Sáfián S, Saito M, Schröder S, Shirey V, Soltis D, Soltis P, Sourakov A, Talavera G, Vila R, Vlasanek P, Wang H, Warren AD, Willmott KR, Yago M, Jetz W, Jarzyna MA, Breinholt JW, Espeland M, Ries L, Guralnick RP, Pierce NE, Lohman DJ. A global phylogeny of butterflies reveals their evolutionary history, ancestral hosts and biogeographic origins. Nat Ecol Evol 2023; 7:903-913. [PMID: 37188966 PMCID: PMC10250192 DOI: 10.1038/s41559-023-02041-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 03/16/2023] [Indexed: 05/17/2023]
Abstract
Butterflies are a diverse and charismatic insect group that are thought to have evolved with plants and dispersed throughout the world in response to key geological events. However, these hypotheses have not been extensively tested because a comprehensive phylogenetic framework and datasets for butterfly larval hosts and global distributions are lacking. We sequenced 391 genes from nearly 2,300 butterfly species, sampled from 90 countries and 28 specimen collections, to reconstruct a new phylogenomic tree of butterflies representing 92% of all genera. Our phylogeny has strong support for nearly all nodes and demonstrates that at least 36 butterfly tribes require reclassification. Divergence time analyses imply an origin ~100 million years ago for butterflies and indicate that all but one family were present before the K/Pg extinction event. We aggregated larval host datasets and global distribution records and found that butterflies are likely to have first fed on Fabaceae and originated in what is now the Americas. Soon after the Cretaceous Thermal Maximum, butterflies crossed Beringia and diversified in the Palaeotropics. Our results also reveal that most butterfly species are specialists that feed on only one larval host plant family. However, generalist butterflies that consume two or more plant families usually feed on closely related plants.
Collapse
Affiliation(s)
- Akito Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA.
- Department of Biology, University of Florida, Gainesville, FL, USA.
| | - Caroline Storer
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Ana Paula S Carvalho
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - David M Plotkin
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Fabien L Condamine
- CNRS, Institut des Sciences de l'Evolution de Montpellier (Université de Montpellier), Montpellier, France
| | - Mariana P Braga
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Emily A Ellis
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Ryan A St Laurent
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Xuankun Li
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Center for Biodiversity Research, Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| | - Vijay Barve
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Liming Cai
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | - Chandra Earl
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Paul B Frandsen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA
| | - Hannah L Owens
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Macroecology, Evolution, and Climate, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Wendy A Valencia-Montoya
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Kwaku Aduse-Poku
- Biology Department, City College of New York, City University of New York, New York, NY, USA
- Department of Life and Earth Sciences, Perimeter College, Georgia State University, Decatur, GA, USA
| | - Emmanuel F A Toussaint
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Department of Entomology, Natural History Museum of Geneva, Geneva, Switzerland
| | - Kelly M Dexter
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Tenzing Doleck
- Biology Department, City College of New York, City University of New York, New York, NY, USA
- PhD Program in Biology, Graduate Center, City University of New York, New York, NY, USA
| | - Amanda Markee
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Rebeccah Messcher
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Y-Lan Nguyen
- Biology Department, City College of New York, City University of New York, New York, NY, USA
| | - Jade Aster T Badon
- Animal Biology Division, Institute of Biological Sciences, University of the Philippines Los Baños, Laguna, Philippines
| | - Hugo A Benítez
- Laboratorio de Ecología y Morfometría Evolutiva, Centro de Investigación de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Michael F Braby
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, Canberra, Australian Capital Territory, Australia
- Australian National Insect Collection, Canberra, Australian Capital Territory, Australia
| | | | - Wei-Ping Chan
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | | | - Richard A Rabideau Childers
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Even Dankowicz
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Rod Eastwood
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Zdenek F Fric
- Biology Centre CAS, České Budějovice, Czech Republic
| | - Riley J Gott
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Jason P W Hall
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Winnie Hallwachs
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nate B Hardy
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Rachel L Hawkins Sipe
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Alan Heath
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
- Iziko South African Museum, Cape Town, South Africa
| | - Jomar D Hinolan
- Botany and National Herbarium Division, National Museum of the Philippines, Manila, Philippines
| | - Nicholas T Homziak
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Yu-Feng Hsu
- College of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | | | - Micael G A Itliong
- Biology Department, City College of New York, City University of New York, New York, NY, USA
| | - Daniel H Janzen
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Krushnamegh Kunte
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
| | - Gerardo Lamas
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Michael J Landis
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | - Elise A Larsen
- Department of Biology, Georgetown University, Washington, DC, USA
| | | | - Jing V Leong
- Biology Department, City College of New York, City University of New York, New York, NY, USA
- Biology Centre CAS, České Budějovice, Czech Republic
- Faculty of Science, Department of Zoology, University of South Bohemia, České Budějovice, Czech Republic
| | - Vladimir Lukhtanov
- Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, St. Petersburg, Russia
| | - Crystal A Maier
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Jose I Martinez
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Entomology and Nematology Department, University of Florida, Gainesville, FL, USA
| | - Dino J Martins
- Turkana Basin Institute, Stony Brook University, Stony Brook, NY, USA
| | | | - Sarah C Maunsell
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Nicolás Oliveira Mega
- Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alexander Monastyrskii
- Vietnam Programme, Fauna & Flora International, Hanoi, Vietnam
- Vietnam National Museum of Nature, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ana B B Morais
- Centro de Ciências Naturais e Exatas, Pós-Graduação em Biodiversidade Animal, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | - Mark Arcebal K Naive
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
- University of Chinese Academy of Sciences, Beijing, China
- College of Arts and Sciences, Jose Rizal Memorial State University, Tampilisan, Philippines
| | | | - Pablo Sebastián Padrón
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- Entomology Laboratory, Museo de Zoología, Universidad del Azuay, Cuenca, Ecuador
| | - Djunijanti Peggie
- Research Center for Biosystematics and Evolution, National Research and Innovation Agency (BRIN), Cibinong-Bogor, Indonesia
| | | | - Szabolcs Sáfián
- Institute of Silviculture and Forest Protection, University of West Hungary, Sopron, Hungary
| | - Motoki Saito
- The Research Institute of Evolutionary Biology (Insect Study Division), Setagaya, Japan
| | | | - Vaughn Shirey
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Doug Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Pamela Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Andrei Sourakov
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Gerard Talavera
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), Barcelona, Spain
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), Barcelona, Spain
| | - Petr Vlasanek
- T.G. Masaryk Water Research Institute, Prague, Czech Republic
| | - Houshuai Wang
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Andrew D Warren
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Keith R Willmott
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Masaya Yago
- The University Museum, The University of Tokyo, Tokyo, Japan
| | - Walter Jetz
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
| | - Marta A Jarzyna
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH, USA
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Jesse W Breinholt
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
- RAPiD Genomics, Gainesville, FL, USA
| | - Marianne Espeland
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Bonn, Germany
| | - Leslie Ries
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Robert P Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA.
| | - David J Lohman
- Biology Department, City College of New York, City University of New York, New York, NY, USA.
- PhD Program in Biology, Graduate Center, City University of New York, New York, NY, USA.
- Entomology Section, National Museum of Natural History, Manila, Philippines.
| |
Collapse
|
10
|
Espeland M, Chazot N, Condamine FL, Lemmon AR, Lemmon EM, Pringle E, Heath A, Collins S, Tiren W, Mutiso M, Lees DC, Fisher S, Murphy R, Woodhall S, Tropek R, Ahlborn SS, Cockburn K, Dobson J, Bouyer T, Kaliszewska ZA, Baker CCM, Talavera G, Vila R, Gardiner AJ, Williams M, Martins DJ, Sáfián S, Edge DA, Pierce NE. Rapid radiation of ant parasitic butterflies during the Miocene aridification of Africa. Ecol Evol 2023; 13:e10046. [PMID: 37193112 PMCID: PMC10182571 DOI: 10.1002/ece3.10046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/14/2023] [Indexed: 05/18/2023] Open
Abstract
Africa has undergone a progressive aridification during the last 20 My that presumably impacted organisms and fostered the evolution of life history adaptations. We test the hypothesis that shift to living in ant nests and feeding on ant brood by larvae of phyto-predaceous Lepidochrysops butterflies was an adaptive response to the aridification of Africa that facilitated the subsequent radiation of butterflies in this genus. Using anchored hybrid enrichment we constructed a time-calibrated phylogeny for Lepidochrysops and its closest, non-parasitic relatives in the Euchrysops section (Poloyommatini). We estimated ancestral areas across the phylogeny with process-based biogeographical models and diversification rates relying on time-variable and clade-heterogeneous birth-death models. The Euchrysops section originated with the emerging Miombo woodlands about 22 million years ago (Mya) and spread to drier biomes as they became available in the late Miocene. The diversification of the non-parasitic lineages decreased as aridification intensified around 10 Mya, culminating in diversity decline. In contrast, the diversification of the phyto-predaceous Lepidochrysops lineage proceeded rapidly from about 6.5 Mya when this unusual life history likely first evolved. The Miombo woodlands were the cradle for diversification of the Euchrysops section, and our findings are consistent with the hypothesis that aridification during the Miocene selected for a phyto-predaceous life history in species of Lepidochrysops, with ant nests likely providing caterpillars a safe refuge from fire and a source of food when vegetation was scarce.
Collapse
Affiliation(s)
- Marianne Espeland
- Centre for Taxonomy and MorphologyLeibniz Institute for the Analysis of Evolutionary Change – Museum KoenigBonnGermany
- Department of Organismic and Evolutionary Biology and Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| | - Nicolas Chazot
- Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
| | - Fabien L. Condamine
- CNRSUMR 5554 Institut des Sciences de l'Evolution de MontpellierMontpellierFrance
| | - Alan R. Lemmon
- Department of Scientific ComputingFlorida State UniversityTallahasseeFloridaUSA
| | | | | | - Alan Heath
- Lepidopterists' Society of AfricaKnysnaSouth Africa
| | | | | | | | - David C. Lees
- Department of Life SciencesNatural History MuseumLondonUK
| | | | | | | | - Robert Tropek
- Department of Ecology, Faculty of ScienceCharles UniversityPragueCzechia
- Institute of Entomology, Biology CentreCzech Academy of SciencesCeske BudejoviceCzechia
| | - Svenja S. Ahlborn
- Centre for Taxonomy and MorphologyLeibniz Institute for the Analysis of Evolutionary Change – Museum KoenigBonnGermany
| | | | | | | | - Zofia A. Kaliszewska
- Department of Organismic and Evolutionary Biology and Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| | - Christopher C. M. Baker
- Department of Organismic and Evolutionary Biology and Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB, CSIC‐Ajuntament de Barcelona)BarcelonaSpain
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC‐UPF)BarcelonaSpain
| | | | | | - Dino J. Martins
- Turkana Basin InstituteStony Brook UniversityStony BrookNew YorkUSA
| | - Szabolcs Sáfián
- Institute of Silviculture and Forest ProtectionUniversity of SopronSopronHungary
| | | | - Naomi E. Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| |
Collapse
|
11
|
Sierra‐Botero L, Calonje M, Robbins RK, Rosser N, Pierce NE, López‐Gallego C, Valencia‐Montoya WA. Cycad phylogeny predicts host plant use of Eumaeus butterflies. Ecol Evol 2023; 13:e9978. [PMID: 37056692 PMCID: PMC10085819 DOI: 10.1002/ece3.9978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/15/2023] Open
Abstract
Eumaeus butterflies are obligate herbivores of Zamia, the most diverse neotropical genus of cycads. Eumaeus-Zamia interactions have been characterized mainly for species distributed in North and Central America. However, larval host plant use by the southern Eumaeus clade remains largely unknown, precluding a comprehensive study of co-evolution between the genera. Here, we combine fieldwork with museum and literature surveys to expand herbivory records for Eumaeus from 21 to 38 Zamia species. We inferred a time-calibrated phylogeny of Eumaeus to test for distinct macroevolutionary scenarios of larval host plant conservatism and co-evolution. We found a remarkable coincidence between Eumaeus and Zamia diversification, with the butterfly stem group diverging at the same time as the most recent radiation of Zamia in the Miocene. Cophylogenetic reconciliation analyses show a strong cophylogenetic signal between cycads and their butterfly herbivores. Bipartite model-based approaches indicate that this is because closely related Zamia species are used by the same Eumaeus species, suggesting larval host plant resource tracking by the butterfly herbivores. Our results highlight a case of tight evolution between Eumaeus butterflies and cycads, pointing to the generality of correlated evolution and phylogenetic tracking in plant-herbivore interactions across seed plants.
Collapse
Affiliation(s)
| | | | - Robert K. Robbins
- Department of EntomologySmithsonian InstitutionWashingtonDistrict of Columbia20013‐7012USA
| | - Neil Rosser
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
| | - Naomi E. Pierce
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
- Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| | | | - Wendy A. Valencia‐Montoya
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
- Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| |
Collapse
|
12
|
When Cockroaches Replace Ants in Trophobiosis: A New Major Life-Trait Pattern of Hemiptera Planthoppers Behaviour Disclosed When Synthesizing Photographic Data. DIVERSITY 2023. [DOI: 10.3390/d15030356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The mutualistic interspecific relationships of trophobiosis between trophobiont planthoppers (Hemiptera, Fulgoromorpha) providing food to the host called xenobiont, are reviewed. The degree of interspecific relationships between these symbionts varies from occasional or short time duration (a few hours to a few days) to longer ones, with trophobionts left free to escape (optobiotic type) by the xenobiont, or maintained enclosed in nests or ant shelters (cryptobiotic type). Of 267 collected cases, 126 are new illustrated observations. Occasional trophobiosis is documented in 13 families of planthoppers and appears to be quite general in Fulgoromorpha, although it is reported for the first time for Dictyopharidae, Eurybrachidae, and Nogodinidae. Xenobionts associated with planthoppers are reported from ants and other Hymenoptera, Lepidoptera, and Blattodea, but also from Mollusca and even small gekkonid vertebrates. Tettigometridae appear to be exclusively tended by ants, while Fulgoridae significantly more often by cockroaches (40%) than by ants (27%). Long-time trophobiosis occurs always with ants, cryptobiotic ones reported in Cixiidae, Delphacidae, Tettigometridae, Meenoplidae, Flatidae and Hypochthonellidae, while optobiotic ones remain restricted to tettigometrids. A particular focus on Tettigometridae attended by ants is provided with new etho-ecological observations. of 92 currently described tettigometrids species, 32 different species (35%) are now known to be able to be ant-attended. In Bulgaria, where fourteen species occur, trophobiosis occurs with at least five species of them (36%). In tettigometrids, subsociality, sessility, and underground life appear to be key factors allowing more complex relationships with ants. However, the planthopper size and thus the amount of food (drops of honeydew) is probably also an important factor. This might explain many new observations in large-sized and often isolated fulgorids with cockroaches. Tapping of trophobiont forewings by cockroaches, moths, or of the bark subtrate by geckos has been observed, but antennal palpation behaviours by ants are the most commonly observed with tettigometrids, although not with larger planthoppers. In tettigometrids, specific tegumentary glands secretions (allomones) of the abdomen pleurites might also mediate their long-term mutualistic associations, even possibly completing honeydew kairomones actions mediating planthopper trophobiosis in general.
Collapse
|
13
|
Chen WT, Li M, Hu SY, Wang SH, Yuan ML. Comparative mitogenomic and evolutionary analysis of Lycaenidae (Insecta: Lepidoptera): Potential association with high-altitude adaptation. Front Genet 2023; 14:1137588. [PMID: 37144132 PMCID: PMC10151513 DOI: 10.3389/fgene.2023.1137588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023] Open
Abstract
Harsh environments (e.g., hypoxia and cold temperatures) of the Qinghai-Tibetan Plateau have a substantial influence on adaptive evolution in various species. Some species in Lycaenidae, a large and widely distributed family of butterflies, are adapted to the Qinghai-Tibetan Plateau. Here, we sequenced four mitogenomes of two lycaenid species in the Qinghai-Tibetan Plateau and performed a detailed comparative mitogenomic analysis including nine other lycaenid mitogenomes (nine species) to explore the molecular basis of high-altitude adaptation. Based on mitogenomic data, Bayesian inference, and maximum likelihood methods, we recovered a lycaenid phylogeny of [Curetinae + (Aphnaeinae + (Lycaeninae + (Theclinae + Polyommatinae)))]. The gene content, gene arrangement, base composition, codon usage, and transfer RNA genes (sequence and structure) were highly conserved within Lycaenidae. TrnS1 not only lacked the dihydrouridine arm but also showed anticodon and copy number diversity. The ratios of non-synonymous substitutions to synonymous substitutions of 13 protein-coding genes (PCGs) were less than 1.0, indicating that all PCGs evolved under purifying selection. However, signals of positive selection were detected in cox1 in the two Qinghai-Tibetan Plateau lycaenid species, indicating that this gene may be associated with high-altitude adaptation. Three large non-coding regions, i.e., rrnS-trnM (control region), trnQ-nad2, and trnS2-nad1, were found in the mitogenomes of all lycaenid species. Conserved motifs in three non-coding regions (trnE-trnF, trnS1-trnE, and trnP-nad6) and long sequences in two non-coding regions (nad6-cob and cob-trnS2) were detected in the Qinghai-Tibetan Plateau lycaenid species, suggesting that these non-coding regions were involved in high-altitude adaptation. In addition to the characterization of Lycaenidae mitogenomes, this study highlights the importance of both PCGs and non-coding regions in high-altitude adaptation.
Collapse
Affiliation(s)
- Wen-Ting Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Min Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Shi-Yun Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou, Gansu, China
| | - Su-Hao Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
| | - Ming-Long Yuan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, Gansu, China
- College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou, Gansu, China
- *Correspondence: Ming-Long Yuan,
| |
Collapse
|
14
|
Korenko S, Sýkora J, Kostro-Ambroziak A, Pekár S. Two lines of defense in the pupas of ichneumonid wasp parasitoids associated with spider hosts. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1061700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Insects in the pupal stage are vulnerable to various predators because the pupa is immobile. The pupas of parasitoid ichneumonid wasps (Ichneumonidae) associated with spider hosts have evolved two lines of defense against predators, namely a cocoon spun by the parasitoid larva and a web provided by the spider host. The web is derived from a normal or modified spider web built by the spider under manipulation by the penultimate instar of the parasitoid wasp. In laboratory experiments, we tested the efficacy of these two defensive lines using six potential predators with two different types of mouthparts coming from three foraging guilds. The presence of the cocoon significantly reduced predation. Scavengers with chewing mouthparts, e.g., cockroaches and crickets, attacked and consumed pupas within both sparse and strong cocoon walls. Scavengers with piercing mouthparts were able to attack pupas in cocoons with a sparse wall, but not with a strong wall. Collectors and true predators showed no interest in cocoons. The presence of a web increased pupa protection by up to 80% when the web was on the ground and by up to 95% when the web was in the air. Only scavengers with chewing mouthparts were able to reach and consume pupas sheltered by the web. We provide the first evidence of how the two lines of defense contribute to parasitoid defense during the pupal stage.
Collapse
|
15
|
Hill GM, Trager MD, Lucky A, Daniels JC. Protective Benefits of Tending Ants to a Critically Endangered Butterfly. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:9. [PMID: 36508354 PMCID: PMC9744248 DOI: 10.1093/jisesa/ieac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 06/17/2023]
Abstract
Ants provide protection to various organisms via myrmecophilous relationships. Most notably, ants and several butterfly species are involved in mainly mutualistic interactions. Previous field studies have shown that butterfly larval survival is increased in the presence of tending ants, suggesting that ants are providing protection against insect predation or parasitism. Here, we conducted a series of timed observational trials under laboratory conditions to assess larval survival and ant protection from insect predators for a myrmecophilous lycaenid butterfly. We focused on a critically endangered butterfly, the Miami blue (Cyclargus thomasi bethunebakeri) (Comstock and Huntington) (Lepidoptera: Lycaenidae), and its most common ant associate, the Florida carpenter ant (Camponotus floridanus) (Buckley) (Hymenoptera: Formicidae), to test this assumption of ant protection. We found that ants provide significant protection to Miami blue larvae, with later instar larvae receiving a higher level of protection due to differences in tending frequencies. These results will aid in informing conservation management and future organism reintroductions for this endangered butterfly.
Collapse
Affiliation(s)
| | - Matthew D Trager
- US Forest Service, 325 John Knox Road, STE F-100, Tallahassee, FL 32303, USA
| | - Andrea Lucky
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611-0620, USA
| | - Jaret C Daniels
- Entomology and Nematology Department, University of Florida, 1881 Natural Area Drive, Gainesville, FL 32611-0620, USA
- Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL 32611, USA
| |
Collapse
|
16
|
Dwi Advento A, Yusah KM, Salim H, Naim M, Caliman JP, Fayle TM. The first record of the parasitic myrmecophilous caterpillar Liphyrabrassolis (Lepidoptera, Lycaenidae) inside Asian weaver ant ( Oecophyllasmaragdina) nests in oil palm plantations. Biodivers Data J 2022; 10:e83842. [PMID: 36761604 PMCID: PMC9848595 DOI: 10.3897/bdj.10.e83842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/07/2022] [Indexed: 11/12/2022] Open
Abstract
Asian weaver ants (Oecophyllasmaragdina) are an important biocontrol agent in agricultural habitats. We conducted surveys in oil palm plantations in Riau, Indonesia for an obligate myrmecophilous butterfly larvae, Liphyrabrassolis (Lepidoptera, Lycaenidae), that is known to consume weaver ant larvae in other habitat types. We found L.brassolis larvae in five of the twenty nests surveyed, with larval presence not being related to weaver ant nest size. We also observed L.brassolis larvae in a weaver ant mass rearing facility. This is the first report of L.brassolis from oil palm plantations and may have implications for the use of weaver ants as biological control agents.
Collapse
Affiliation(s)
- Andreas Dwi Advento
- Smart Research Institute, Pekanbaru, IndonesiaSmart Research InstitutePekanbaruIndonesia,Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, MalaysiaInstitute for Tropical Biology and Conservation, Universiti Malaysia SabahKota KinabaluMalaysia
| | - Kalsum M Yusah
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, MalaysiaInstitute for Tropical Biology and Conservation, Universiti Malaysia SabahKota KinabaluMalaysia,Royal Botanic Gardens Kew, London, United KingdomRoyal Botanic Gardens KewLondonUnited Kingdom
| | - Hasber Salim
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden Penang, Penang, MalaysiaSchool of Biological Sciences, Universiti Sains Malaysia, 11800, Minden PenangPenangMalaysia
| | - Mohammad Naim
- Smart Research Institute, Pekanbaru, IndonesiaSmart Research InstitutePekanbaruIndonesia
| | - Jean-Pierre Caliman
- Smart Research Institute, Pekanbaru, IndonesiaSmart Research InstitutePekanbaruIndonesia
| | - Tom Maurice Fayle
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 1160/31, 370 05, České Budějovice, Czech RepublicBiology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 1160/31, 370 05České BudějoviceCzech Republic,School of Biological and Behavioural Sciences, Queen Mary University of London, London, United KingdomSchool of Biological and Behavioural Sciences, Queen Mary University of LondonLondonUnited Kingdom
| |
Collapse
|
17
|
Moore W, Scarparo G, Di Giulio A. Foe to frenemy: predacious ant nest beetles use multiple strategies to fully integrate into ant nests. CURRENT OPINION IN INSECT SCIENCE 2022; 52:100921. [PMID: 35390506 DOI: 10.1016/j.cois.2022.100921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Ant nest beetles (Carabidae, Paussinae, Paussini; Paussus) are renowned myrmecophiles, mostly known for their bizarre and diverse antennal shape. While little is known about their development, behavior and host range, we do know they spend most of their lives inside ant nests, feeding upon the hemolymph of ant brood and teneral workers. Recent findings suggest these beetles use a surprisingly complex strategy for interacting and deceiving ants. They have managed to break into multiple communication channels that ants use to recognize and communicate with one another in order to deceive the ants and profit from the rich resources of the nest. Mounting evidence from structural, chemical, acoustic, and behavioral studies support the hypothesis that Paussus is among the most highly integrated parasite of social insects known to date.
Collapse
Affiliation(s)
- Wendy Moore
- Department of Entomology, University of Arizona, 1140 E. South Campus Dr., Tucson, AZ 85721-0036, USA
| | - Giulia Scarparo
- Department of Entomology, University of California Riverside, 900 University Ave., Riverside, CA 92521, USA
| | - Andrea Di Giulio
- Department of Science, University Roma Tre, Viale G. Marconi 446, 00146 Rome, Italy.
| |
Collapse
|
18
|
Pierce NE, Dankowicz E. Behavioral, ecological and evolutionary mechanisms underlying caterpillar-ant symbioses. CURRENT OPINION IN INSECT SCIENCE 2022; 52:100898. [PMID: 35257969 DOI: 10.1016/j.cois.2022.100898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
At least 30 different groups in seventeen butterfly and moth families (Lepidoptera) include ant-associated caterpillars. The life histories of more than 900 ant-associated species have been documented from the butterfly families Lycaenidae and Riodinidae, with relationships ranging from parasitism to mutualism. Caterpillars that appear to secrete food rewards for ants are not necessarily mutualists, and a number of species are known to manipulate ants with deceptive chemical and vibratory signals. The functional variability of different exocrine glands deployed as 'ant organs' makes them prone to convergence, and it remains unclear whether ant association originated more than once in lycaenids and riodinids. The relative costs and benefits of caterpillar integration with ants is context dependent: both top-down and bottom-up effects influence the evolution of ant associations.
Collapse
Affiliation(s)
- Naomi E Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA.
| | - Even Dankowicz
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
19
|
Hojo MK. Evolution of chemical interactions between ants and their mutualist partners. CURRENT OPINION IN INSECT SCIENCE 2022; 52:100943. [PMID: 35691585 DOI: 10.1016/j.cois.2022.100943] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Mutualism is the reciprocal exploitation of interacting participants and is vulnerable to nonrewarding cheating. Ants are dominant insects in most terrestrial ecosystems, and some aphids and lycaenid butterfly species provide them with nutritional nectar rewards and employ ants as bodyguards. In this review, I discuss how chemical communication based on condition-dependent signaling and recognition plasticity regulate the payoff of interacting participants. I argue that the selfishness of both participants explains the signaling and communication among participants and contributes to the stability of these mutualisms. Uncovering the origin and maintenance of mutualistic association of ants will come from future research on ant collective behavior, the genetic and neural basis of cooperation, and a deeper understanding of the costs and benefits of these interactions.
Collapse
Affiliation(s)
- Masaru K Hojo
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan.
| |
Collapse
|
20
|
Zarka J, De Wint FC, De Bruyn L, Bonte D, Parmentier T. Dissecting the costs of a facultative symbiosis in an isopod living with ants. Oecologia 2022; 199:355-366. [PMID: 35597849 DOI: 10.1007/s00442-022-05186-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/07/2022] [Indexed: 11/26/2022]
Abstract
The balance between costs and benefits is expected to drive associations between species. While these balances are well understood for strict associations, we have no insights to which extent they determine facultative associations between species. Here, we quantified the costs of living in a facultative association, by studying the effects of red wood ants on the facultatively associated isopod Porcellio scaber. Porcellio scaber frequently occurred in and near hostile red wood ant nests and might outnumber obligate nest associates. The facultative association involved different costs for the isopod. We found that the density of the isopod decreases near the nest with higher ant traffic. Individuals in and near the nest were smaller than individuals further away from the nest. Smaller individuals were also found at sites with higher ant traffic. A higher proportion of wounded individuals was found closer to the nest and with higher ant traffic. We recorded pregnant females and juveniles in the nest suggesting that the life cycle can be completed inside the nests. Lab experiments showed that females died sooner and invested less in reproduction in presence of red wood ants. Porcellio scaber rarely provoked an aggression response, but large numbers were carried as prey to the nest. These preyed isopods were mainly dried out corpses. Our results showed that the ant association incurred several costs for a facultative associate. Consequently, red wood ant nests and their surrounding territory act as an alternative habitat where demographic costs are offset by a stable resource provisioning and protection.
Collapse
Affiliation(s)
- Jens Zarka
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Frederik C De Wint
- Evolutionary Ecology Group, Department of Biology, Universiteit Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Luc De Bruyn
- Evolutionary Ecology Group, Department of Biology, Universiteit Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
- Research Institute for Nature and Forest (INBO), Havenlaan 88 bus 73, 1000, Brussels, Belgium
| | - Dries Bonte
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Thomas Parmentier
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium.
- Research Unit of Environmental and Evolutionary Biology, Institute of Life, Earth, and the Environment, Namur Institute of Complex Systems, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium.
| |
Collapse
|
21
|
Merwin AC, Hilliard J, Larsen A, Lasken AG, Johnson I. Oh, the places you will grow: Intraspecific latitudinal clines in butterfly size suggest a phylogenetic signal. Ecol Evol 2022; 12:e8913. [PMID: 35600686 PMCID: PMC9120895 DOI: 10.1002/ece3.8913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/01/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022] Open
Abstract
Within an animal species, the body sizes of individuals at higher latitudes are often different from individuals at lower latitudes. For homeothermic species that maintain a relatively constant body temperature, such as mammals and birds, individuals at higher latitudes tend to be larger. For ectothermic species, such as insects, that do not retain their own body heat and which often do not maintain a relatively constant body temperature, patterns of body size with latitude are highly variable. This has led some authors to contend that patterns in even closely related species cannot be expected to be similar. Indeed, to our knowledge, no studies of invertebrates have found that more closely related species have more similar relationships between body size and latitude. Further, no studies have investigated the potential influence of diet quality on interspecific differences in these clines. We measured wing lengths of specimens (N = 1753) in eight lycaenid butterfly species and one species of the sister family, Riodinidae to determine if more closely related species have similar latitudinal trends. We also estimated the mean nitrogen content of caterpillars’ hosts to investigate whether this often‐limiting nutrient influences the strength and direction of latitudinal clines in body size. We found that four species are significantly smaller at higher latitudes, an additional species is marginally smaller at higher latitudes (p < .06), and four species had no significant relationship with latitude. We also found a strong phylogenetic signal for latitudinal clines in body size among our species, which indicates that some closely related species may have similar clines. However, the strength and direction of these clines did not depend on the estimated nitrogen content of caterpillars’ hosts. Our results indicate that mean nitrogen content of hosts may not be an important driver in latitudinal clines but that phylogenetic relationships among species should be accounted for when exploring other potential drivers of body‐size clines in invertebrate species.
Collapse
Affiliation(s)
- Andrew C. Merwin
- Department of Biology and Geology Baldwin Wallace University Berea Ohio USA
| | - Justin Hilliard
- Department of Biology and Geology Baldwin Wallace University Berea Ohio USA
| | - Ashley Larsen
- Department of Biology and Geology Baldwin Wallace University Berea Ohio USA
| | | | - Icesstrená Johnson
- Department of Biology and Geology Baldwin Wallace University Berea Ohio USA
| |
Collapse
|
22
|
Kanwal JK, Parker J. The neural basis of interspecies interactions in insects. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100891. [PMID: 35218937 DOI: 10.1016/j.cois.2022.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
As insects move through the world, they continuously engage in behavioral interactions with other species. These interactions take on a spectrum of forms, from inconsequential encounters to predation, defense, and specialized symbiotic partnerships. All such interactions rely on sensorimotor pathways that carry out efficient categorization of different organisms and enact behaviors that cross species boundaries. Despite the universality of interspecies interactions, how insect brains perceive and process salient features of other species remains unexplored. Here, we present an overview of major questions concerning the neurobiology and evolution of behavioral interactions between species, providing a framework for future research on this critical role of the insect nervous system.
Collapse
Affiliation(s)
- Jessleen K Kanwal
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA, USA.
| | - Joseph Parker
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA, USA.
| |
Collapse
|
23
|
Potapov AM, Beaulieu F, Birkhofer K, Bluhm SL, Degtyarev MI, Devetter M, Goncharov AA, Gongalsky KB, Klarner B, Korobushkin DI, Liebke DF, Maraun M, Mc Donnell RJ, Pollierer MM, Schaefer I, Shrubovych J, Semenyuk II, Sendra A, Tuma J, Tůmová M, Vassilieva AB, Chen T, Geisen S, Schmidt O, Tiunov AV, Scheu S. Feeding habits and multifunctional classification of soil‐associated consumers from protists to vertebrates. Biol Rev Camb Philos Soc 2022; 97:1057-1117. [DOI: 10.1111/brv.12832] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Anton M. Potapov
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Frédéric Beaulieu
- Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri‐Food Canada Ottawa ON K1A 0C6 Canada
| | - Klaus Birkhofer
- Department of Ecology Brandenburg University of Technology Karl‐Wachsmann‐Allee 6 03046 Cottbus Germany
| | - Sarah L. Bluhm
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Maxim I. Degtyarev
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Miloslav Devetter
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
| | - Anton A. Goncharov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Konstantin B. Gongalsky
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Bernhard Klarner
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Daniil I. Korobushkin
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Dana F. Liebke
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Mark Maraun
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Rory J. Mc Donnell
- Department of Crop and Soil Science Oregon State University Corvallis OR 97331 U.S.A
| | - Melanie M. Pollierer
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Ina Schaefer
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Julia Shrubovych
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
- Institute of Systematics and Evolution of Animals PAS Slawkowska 17 Pl 31‐016 Krakow Poland
- State Museum Natural History of NAS of Ukraine Teatralna 18 79008 Lviv Ukraine
| | - Irina I. Semenyuk
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
- Joint Russian‐Vietnamese Tropical Center №3 Street 3 Thang 2, Q10 Ho Chi Minh City Vietnam
| | - Alberto Sendra
- Colecciones Entomológicas Torres‐Sala, Servei de Patrimoni Històric, Ajuntament de València València Spain
- Departament de Didàctica de les Cièncias Experimentals i Socials, Facultat de Magisteri Universitat de València València Spain
| | - Jiri Tuma
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
- Biology Centre CAS, Institute of Entomology Branisovska 1160/31 370 05 Ceske Budejovice Czech Republic
| | - Michala Tůmová
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
| | - Anna B. Vassilieva
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Ting‐Wen Chen
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
| | - Stefan Geisen
- Department of Nematology Wageningen University & Research 6700ES Wageningen The Netherlands
| | - Olaf Schmidt
- UCD School of Agriculture and Food Science University College Dublin Belfield Dublin 4 Ireland
| | - Alexei V. Tiunov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
- Centre of Biodiversity and Sustainable Land Use Büsgenweg 1 37077 Göttingen Germany
| |
Collapse
|
24
|
Vorburger C. Defensive Symbionts and the Evolution of Parasitoid Host Specialization. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:329-346. [PMID: 34614366 DOI: 10.1146/annurev-ento-072621-062042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Insect host-parasitoid interactions abound in nature and are characterized by a high degree of host specialization. In addition to their behavioral and immune defenses, many host species rely on heritable bacterial endosymbionts for defense against parasitoids. Studies on aphids and flies show that resistance conferred by symbionts can be very strong and highly specific, possibly as a result of variation in symbiont-produced toxins. I argue that defensive symbionts are therefore an important source of diversifying selection, promoting the evolution of host specialization by parasitoids. This is likely to affect the structure of host-parasitoid food webs. I consider potential changes in terms of food web complexity, although the nature of these effects will also be influenced by whether maternally transmitted symbionts have some capacity for lateral transfer. This is discussed in the light of available evidence for horizontal transmission routes. Finally, I propose that defensive mutualisms other than microbial endosymbionts may also exert diversifying selection on insect parasitoids.
Collapse
Affiliation(s)
- Christoph Vorburger
- Department of Aquatic Ecology, Eawag, 8600 Dübendorf, Switzerland;
- Institute of Integrative Biology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
25
|
Shimoji H, Itoh H, Matsuura Y, Yamashita R, Hori T, Hojo MK, Kikuchi Y. Worker-dependent gut symbiosis in an ant. ISME COMMUNICATIONS 2021; 1:60. [PMID: 37938661 PMCID: PMC9723695 DOI: 10.1038/s43705-021-00061-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 04/27/2023]
Abstract
The hallmark of eusocial insects, honeybees, ants, and termites, is division of labor between reproductive and non-reproductive worker castes. In addition, environmental adaption and ecological dominance are also underpinned by symbiotic associations with beneficial microorganisms. Microbial symbionts are generally considered to be maintained in an insect colony in two alternative ways: shared among all colony members or inherited only by a specific caste. Especially in ants, the reproductive caste plays a crucial role in transmission of the symbionts shared among colony members over generations. Here, we report an exceptional case, the worker-dependent microbiota in an ant, Diacamma cf. indicum from Japan. By collecting almost all the individuals from 22 colonies in the field, we revealed that microbiota of workers is characterized by a single dominant bacterium localized at the hindgut. The bacterium belonging to an unclassified member within the phylum Firmicutes, which is scarce or mostly absent in the reproductive castes. Furthermore, we show that the gut symbiont is acquired at the adult stage. Collectively, our findings strongly suggest that the specific symbiont is maintained by only workers, demonstrating a novel pattern of ant-associated bacterial symbiosis, and thus further our understanding of host-microbe interactions in the light of sociobiology.
Collapse
Affiliation(s)
- Hiroyuki Shimoji
- Shool of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo Hyogo, 669-1337, Japan.
| | - Hideomi Itoh
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido, Sapporo, Hokkaido, 062-8517, Japan.
| | - Yu Matsuura
- Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan.
| | - Rio Yamashita
- Shool of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo Hyogo, 669-1337, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced IndustrialScience and Technology (AIST) Tsukuba West, Tsukuba, Ibaraki, 305-8569, Japan
| | - Masaru K Hojo
- Shool of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo Hyogo, 669-1337, Japan
| | - Yoshitomo Kikuchi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) Hokkaido, Sapporo, Hokkaido, 062-8517, Japan.
| |
Collapse
|
26
|
Pérez-Lachaud G, Rocha FH, Pozo C, Kaminski LA, Seraphim N, Lachaud JP. A new ant-butterfly symbiosis in the forest canopy fills an evolutionary gap. Sci Rep 2021; 11:20770. [PMID: 34675260 PMCID: PMC8531015 DOI: 10.1038/s41598-021-00274-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/07/2021] [Indexed: 11/30/2022] Open
Abstract
Myrmecophilous butterflies can establish complex symbiotic relationships with ants. A caterpillar wandering among the brood of the aggressive ponerine ant Neoponera villosa was found inside the core of a nest built in the myrmecophytic bromeliad Aechmea bracteata. This is the first caterpillar found living inside a ponerine ant nest. Its DNA barcode was sequenced, and an integrative approach was used to identify it as Pseudonymphidia agave, a poorly known member of the subtribe Pachythonina in the riodinid tribe Nymphidiini. The cuticle of the tank-like caterpillar lacks projections or tubercles and is covered dorsally by specialized flat setae that form an armor of small plates. Ant-organs potentially related to caterpillar-ant signaling, such as perforated cupola organs and tentacle nectary organs, are present. These morphological traits, together with evidence of social integration (direct contact with host brood, protective morphology, slow movement, no host aggressiveness), suggest that P. agave is a symbiotic, social parasite of N. villosa, preying on its host brood. However, several knowledge gaps remain, including oviposition site, dependence on bromeliad association, steps to colony integration, and larval diet through development. Carnivory has been reported in all known members of the subtribe Pachythonina (caterpillars prey on honeydew-producing hemipterans) suggesting a shift to myrmecophagy inside the ant nests as a possible evolutionary transition.
Collapse
Affiliation(s)
- Gabriela Pérez-Lachaud
- Departamento de Conservación de La Biodiversidad, El Colegio de la Frontera Sur, Avenida Centenario Km 5.5, 77014, Chetumal, Quintana Roo, Mexico.
| | - Franklin H Rocha
- Departamento de Conservación de La Biodiversidad, El Colegio de la Frontera Sur, Avenida Centenario Km 5.5, 77014, Chetumal, Quintana Roo, Mexico
- Departamento de Apicultura, Universidad Autónoma de Yucatán, Campus de Ciencias Biológicas y Agropecuarias, Mérida, Yucatán, Mexico
| | - Carmen Pozo
- Departamento de Conservación de La Biodiversidad, El Colegio de la Frontera Sur, Avenida Centenario Km 5.5, 77014, Chetumal, Quintana Roo, Mexico
| | - Lucas A Kaminski
- Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Noemy Seraphim
- Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, São Paulo, Brazil
| | - Jean-Paul Lachaud
- Departamento de Conservación de La Biodiversidad, El Colegio de la Frontera Sur, Avenida Centenario Km 5.5, 77014, Chetumal, Quintana Roo, Mexico.
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
27
|
Abstract
In between Earth's poles, ants exert impacts on other biota that are unmatched by most animal clades. Through their interactions with animals, plants, fungi and microbes, ants have cultivated - or succumbed to - relationships ranging from metabolic mutualisms to exploitation by social parasites. The diversity of these relationships implies that ants are keystone taxa in many habitats, directly or indirectly supporting a menagerie of other species. Yet, beyond these interactions is a less obvious but arguably as significant impact: through their collective ecological pressure, ants have imposed survivorship bias on the species that we observe inhabiting terrestrial environments. If life on land has passed through an ant-shaped selective filter, it is imperative we understand how these insects have sculpted ecological communities and are enmeshed within them. Here, we describe how ants have shaped biodiversity, and the often-devastating consequences of humanity's impact on these social insects.
Collapse
|
28
|
Hill GM, Kawahara AY, Daniels JC, Bateman CC, Scheffers BR. Climate change effects on animal ecology: butterflies and moths as a case study. Biol Rev Camb Philos Soc 2021; 96:2113-2126. [PMID: 34056827 PMCID: PMC8518917 DOI: 10.1111/brv.12746] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/10/2023]
Abstract
Butterflies and moths (Lepidoptera) are one of the most studied, diverse, and widespread animal groups, making them an ideal model for climate change research. They are a particularly informative model for studying the effects of climate change on species ecology because they are ectotherms that thermoregulate with a suite of physiological, behavioural, and phenotypic traits. While some species have been negatively impacted by climatic disturbances, others have prospered, largely in accordance with their diversity in life-history traits. Here we take advantage of a large repertoire of studies on butterflies and moths to provide a review of the many ways in which climate change is impacting insects, animals, and ecosystems. By studying these climate-based impacts on ecological processes of Lepidoptera, we propose appropriate strategies for species conservation and habitat management broadly across animals.
Collapse
Affiliation(s)
- Geena M. Hill
- Florida Natural Areas InventoryFlorida State University1018 Thomasville Rd., #200‐CTallahasseeFL323303U.S.A.
| | - Akito Y. Kawahara
- Florida Museum of Natural HistoryUniversity of Florida3215 Hull RdGainesvilleFL32611U.S.A.
- Department of BiologyUniversity of Florida876 Newell Dr.GainesvilleFL32611U.S.A.
| | - Jaret C. Daniels
- Florida Museum of Natural HistoryUniversity of Florida3215 Hull RdGainesvilleFL32611U.S.A.
- Department of Entomology and NematologyUniversity of Florida1881 Natural Area Dr.GainesvilleFL32608U.S.A.
| | - Craig C. Bateman
- Florida Museum of Natural HistoryUniversity of Florida3215 Hull RdGainesvilleFL32611U.S.A.
| | - Brett R. Scheffers
- Department of Wildlife Ecology and ConservationUniversity of Florida110 Newins‐Ziegler Hall, P.O. Box 110430GainesvilleFL32611U.S.A.
| |
Collapse
|
29
|
McPeek SJ, Bronstein JL, McPeek MA. The Evolution of Resource Provisioning in Pollination Mutualisms. Am Nat 2021; 198:441-459. [PMID: 34559615 DOI: 10.1086/715746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractResource dynamics influence the contemporary ecology of consumer-resource mutualisms. Suites of resource traits, such as floral nectar components, also evolve in response to different selective pressures, changing the ecological dynamics of the interacting species at the evolutionary equilibrium. Here we explore the evolution of resource-provisioning traits in a biotically pollinated plant that produces nectar as a resource for beneficial consumers. We develop a mathematical model describing natural selection on two quantitative nectar traits: maximum nectar production rate and maximum nectar reservoir volume. We use this model to examine how nectar production dynamics evolve under different ecological conditions that impose varying cost-benefit regimes on resource provisioning. The model results predict that natural selection favors higher nectar production when ecological factors limit the plant or pollinator's abundance (e.g., a lower productivity environment or a higher pollinator conversion efficiency). We also find that nectar traits evolve as a suite in which higher costs of producing one trait select for a compensatory increase in investment in the other trait. This empirically explicit approach to studying the evolution of consumer-resource mutualisms illustrates how natural selection acting via direct and indirect pathways of species interactions generates patterns of resource provisioning seen in natural systems.
Collapse
|
30
|
von Beeren C, Brückner A, Hoenle PO, Ospina-Jara B, Kronauer DJC, Blüthgen N. Multiple phenotypic traits as triggers of host attacks towards ant symbionts: body size, morphological gestalt, and chemical mimicry accuracy. Front Zool 2021; 18:46. [PMID: 34538256 PMCID: PMC8451089 DOI: 10.1186/s12983-021-00427-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/19/2021] [Indexed: 03/24/2023] Open
Abstract
Background Ant colonies are plagued by a diversity of arthropod guests, which adopt various strategies to avoid or to withstand host attacks. Chemical mimicry of host recognition cues is, for example, a common integration strategy of ant guests. The morphological gestalt and body size of ant guests have long been argued to also affect host hostility, but quantitative studies testing these predictions are largely missing. We here evaluated three guest traits as triggers of host aggression—body size, morphological gestalt, and accuracy in chemical mimicry—in a community of six Eciton army ant species and 29 guest species. We quantified ant aggression towards 314 guests in behavioral assays and, for the same individuals, determined their body size and their accuracy in mimicking ant cuticular hydrocarbon (CHC) profiles. We classified guests into the following gestalts: protective, myrmecoid, staphylinid-like, phorid-like, and larval-shaped. We expected that (1) guests with lower CHC mimicry accuracy are more frequently attacked; (2) larger guests are more frequently attacked; (3) guests of different morphological gestalt receive differing host aggression levels. Results Army ant species had distinct CHC profiles and accuracy of mimicking these profiles was variable among guests, with many species showing high mimicry accuracy. Unexpectedly, we did not find a clear relationship between chemical host similarity and host aggression, suggesting that other symbiont traits need to be considered. We detected a relationship between the guests’ body size and the received host aggression, in that diminutive forms were rarely attacked. Our data also indicated that morphological gestalt might be a valuable predictor of host aggression. While most ant-guest encounters remained peaceful, host behavior still differed towards guests in that ant aggression was primarily directed towards those guests possessing a protective or a staphylinid-like gestalt. Conclusion We demonstrate that CHC mimicry accuracy does not necessarily predict host aggression towards ant symbionts. Exploitation mechanisms are diverse, and we conclude that, besides chemical mimicry, other factors such as the guests’ morphological gestalt and especially their body size might be important, yet underrated traits shaping the level of host hostility against social insect symbionts. Supplementary Information The online version contains supplementary material available at 10.1186/s12983-021-00427-8.
Collapse
Affiliation(s)
- Christoph von Beeren
- Ecological Networks, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany.
| | - Adrian Brückner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Philipp O Hoenle
- Ecological Networks, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| | | | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York City, USA
| | - Nico Blüthgen
- Ecological Networks, Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
31
|
Camacho LF, Avilés L. Resource exchange and partner recognition mediate mutualistic interactions between prey and their would-be predators. Biol Lett 2021; 17:20210316. [PMID: 34376075 DOI: 10.1098/rsbl.2021.0316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Animals may develop mutualistic associations with other species, whereby prey offer resources or services in exchange for protection from predators. Alternatively, prey may offer resources or services directly to their would-be predators in exchange for their lives. The latter may be the case of hemipterans that engage in mutualistic interactions with ants by offering a honeydew reward. We test the extent to which a honeydew offering versus partner recognition may play a role as proximate mechanisms deterring ants from predating upon their hemipteran partners. We showed that, when presented with a choice between a hemipteran partner and an alternative prey type, mutualist ants were less likely to attack and more likely to remain probing their hemipteran partners. This occurred even in the absence of an immediate sugary reward, suggesting either an evolved or learned partner recognition response. To a similar extent, however, ants were also less likely to attack the alternative prey type when laced with honey as a proxy for a honeydew reward. This was the case even after the honey had been depleted, suggesting an ability of ants to recognize new potential sources of sugars. Either possibility suggests a degree of innate or learned partner recognition.
Collapse
Affiliation(s)
- Luis F Camacho
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| | - Leticia Avilés
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
32
|
Ge S, Jiang Z, Ren L, Hu S. New records of two lycaenid butterfly species (Lepidoptera: Lycaenidae) in China, with the description of a new subspecies. Biodivers Data J 2021; 9:e69073. [PMID: 34177313 PMCID: PMC8222198 DOI: 10.3897/bdj.9.e69073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/09/2021] [Indexed: 11/25/2022] Open
Abstract
Background The family Lycaenidae is the second-largest group of butterflies which contains about one third of the known species of Papilionoidea. The genera Tajuria Moore, [1881] and Drupadia Moore, 1884 are both mainly found in the Oriental and Australian realms. In a very recent expedition to south-west China in Xishuangbanna (Yunnan Province), specimens of T.sekii Saito, 2005 and D.scaeva (Hewitson, 1869) were collected for the first time, a new subspecies of the former: T.sekiisisyphus ssp. nov., is described and illustrated and the latter species comprises the first record of the genus Drupadia in China. New information A new subspecies of T.sekii Saito, 2005, T.sekiisisyphus ssp. nov., is described and illustrated. The species T.sekii Saito, 2005 and D.scaeva (Hewitson, 1869) are first recorded in China and the latter comprises the first record of the genus Drupadia in China. Relevant details are presented for the species.
Collapse
Affiliation(s)
- Sixun Ge
- College of Forestry, Beijing Forestry University, Beijing, China College of Forestry, Beijing Forestry University Beijing China
| | - Zhuoheng Jiang
- School of Science, Westlake University, Hangzhou, China School of Science, Westlake University Hangzhou China
| | - Lili Ren
- College of Forestry, Beijing Forestry University, Beijing, China College of Forestry, Beijing Forestry University Beijing China
| | - Shaoji Hu
- Institute of International Rivers and Eco-security, Yunnan University, Kunming, China Institute of International Rivers and Eco-security, Yunnan University Kunming China
| |
Collapse
|
33
|
Valencia-Montoya WA, Quental TB, Tonini JFR, Talavera G, Crall JD, Lamas G, Busby RC, Carvalho APS, Morais AB, Oliveira Mega N, Romanowski HP, Liénard MA, Salzman S, Whitaker MRL, Kawahara AY, Lohman DJ, Robbins RK, Pierce NE. Evolutionary trade-offs between male secondary sexual traits revealed by a phylogeny of the hyperdiverse tribe Eumaeini (Lepidoptera: Lycaenidae). Proc Biol Sci 2021; 288:20202512. [PMID: 33975481 PMCID: PMC8113907 DOI: 10.1098/rspb.2020.2512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/19/2021] [Indexed: 11/30/2022] Open
Abstract
Male butterflies in the hyperdiverse tribe Eumaeini possess an unusually complex and diverse repertoire of secondary sexual characteristics involved in pheromone production and dissemination. Maintaining multiple sexually selected traits is likely to be metabolically costly, potentially resulting in trade-offs in the evolution of male signals. However, a phylogenetic framework to test hypotheses regarding the evolution and maintenance of male sexual traits in Eumaeini has been lacking. Here, we infer a comprehensive, time-calibrated phylogeny from 379 loci for 187 species representing 91% of the 87 described genera. Eumaeini is a monophyletic group that originated in the late Oligocene and underwent rapid radiation in the Neotropics. We examined specimens of 818 of the 1096 described species (75%) and found that secondary sexual traits are present in males of 91% of the surveyed species. Scent pads and scent patches on the wings and brush organs associated with the genitalia were probably present in the common ancestor of Eumaeini and are widespread throughout the tribe. Brush organs and scent pads are negatively correlated across the phylogeny, exhibiting a trade-off in which lineages with brush organs are unlikely to regain scent pads and vice versa. In contrast, scent patches seem to facilitate the evolution of scent pads, although they are readily lost once scent pads have evolved. Our results illustrate the complex interplay between natural and sexual selection in the origin and maintenance of multiple male secondary sexual characteristics and highlight the potential role of sexual selection spurring diversification in this lineage.
Collapse
Affiliation(s)
- Wendy A. Valencia-Montoya
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Tiago B. Quental
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
- Instituto de Biociências, Universidade de São Paulo, Brazil
| | - João Filipe R. Tonini
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Gerard Talavera
- Institut Botànic de Barcelona (IBB, CSIC-Ajuntament de Barcelona), 08038 Barcelona, Catalonia, Spain
| | - James D. Crall
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Gerardo Lamas
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | | | - Ana Paula S. Carvalho
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Ana B. Morais
- Departamento de Ecologia e Evolução, CCNE, Universidade Federal de Santa Maria, Santa Maria, RS, Brasil
| | - Nicolás Oliveira Mega
- Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501970, Brazil
| | - Helena Piccoli Romanowski
- Departamento de Zoologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501970, Brazil
| | | | - Shayla Salzman
- School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Melissa R. L. Whitaker
- Entomological Collection, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Akito Y. Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - David J. Lohman
- Biology Department, City College of New York, City University of New York, New York, NY 10031, USA
- PhD Program in Biology, Graduate Center, City University of New York, New York, NY 10016, USA
- Entomology Section, Zoology Division, Philippine National Museum of Natural History, Manila 1000, Philippines
| | - Robert K. Robbins
- Department of Entomology, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Naomi E. Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
34
|
Low ML, Naranjo M, Yack JE. Survival Sounds in Insects: Diversity, Function, and Evolution. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.641740] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Insect defense sounds have been reported for centuries. Yet, aside from the well-studied anti-bat sounds of tiger moths, little is understood about the occurrence, function, and evolution of these sounds. We define a defense sound as an acoustic signal (air- or solid-borne vibration) produced in response to attack or threat of attack by a predator or parasitoid and that promotes survival. Defense sounds have been described in 12 insect orders, across different developmental stages, and between sexes. The mechanisms of defensive sound production include stridulation, percussion, tymbalation, tremulation, and forced air. Signal characteristics vary between species, and we discuss how morphology, the intended receiver, and specific functions of the sounds could explain this variation. Sounds can be directed at predators or non-predators, and proposed functions include startle, aposematism, jamming, and alarm, although experimental evidence for these hypotheses remains scant for many insects. The evolutionary origins of defense sounds in insects have not been rigorously investigated using phylogenetic methodology, but in most cases it is hypothesized that they evolved from incidental sounds associated with non-signaling behaviors such as flight or ventilatory movements. Compared to our understanding of visual defenses in insects, sonic defenses are poorly understood. We recommend that future investigations focus on testing hypotheses explaining the functions and evolution of these survival sounds using predator-prey experiments and comparative phylogenetics.
Collapse
|
35
|
The first known riodinid ‘cuckoo’ butterfly reveals deep-time convergence and parallelism in ant social parasites. Zool J Linn Soc 2020. [DOI: 10.1093/zoolinnean/zlaa150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Mutualistic interactions between butterflies and ants can evolve into complex social parasitism. ‘Cuckoo’ caterpillars, known only in the Lycaenidae, use multimodal mimetic traits to achieve social integration into ant societies. Here, we present the first known ‘cuckoo’ butterfly in the family Riodinidae. Aricoris arenarum remained in taxonomic limbo for > 80 years, relegated to nomen dubium and misidentified as Aricoris gauchoana. We located lost type material, designated lectotypes and documented the morphology and natural history of the immature stages. The multifaceted life cycle of A. arenarum can be summarized in three phases: (1) females lay eggs close to honeydew-producing hemipterans tended by specific Camponotus ants; (2) free-living caterpillars feed on liquids (honeydew and ant regurgitations); and (3) from the third instar onward, the caterpillars are fed and tended by ants as ‘cuckoos’ inside the ant nest. This life cycle is remarkably similar to that of the Asian lycaenid Niphanda fusca, despite divergence 90 Mya. Comparable eco-evolutionary pathways resulted in a suite of ecomorphological homoplasies through the ontogeny. This study shows that convergent interactions can be more important than phylogenetic proximity in shaping functional traits of social parasites.
Collapse
|
36
|
Hugo H, Hermes MG, Garcete‐Barrett BR, Couzin ID. First evidence of wasp brood development inside active nests of a termite with the description of a previously unknown potter wasp species. Ecol Evol 2020; 10:12663-12674. [PMID: 33304483 PMCID: PMC7713954 DOI: 10.1002/ece3.6872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/02/2020] [Accepted: 09/09/2020] [Indexed: 11/17/2022] Open
Abstract
Potter wasps (Vespidae: Eumeninae) are known to exhibit not only sophisticated preying strategies but also a remarkable ability to manipulate clay during nest building. Due to a mixture of plasticity in building behavior and flexibility in substrate preferences during nest building, the group has been reported nesting in a variety of places, including decaying nests abandoned by termite species. Yet, evidence of wasps nesting inside senescent termite mounds is poorly reported, and to date, accounts confirming their presence inside active colonies of termites are absent. Here, we address a novel intriguing association between two species from the Brazilian Cerrado: a previously unknown potter wasp (nest invader) and a termite species (nest builder). Besides scientifically describing Montezumia termitophila sp. nov. (Vespidae: Eumeninae), named after its association with the termite Constrictotermes cyphergaster (Silvestri, 1901) (Termitidae: Nasutitermitinae), we provide preliminary information about the new species' bionomics by including (a) a hypothetical life cycle based on the evidence we collected and (b) a footage showing the first interaction between a recently ecloded wasp and a group of termites. In doing so, we attempt to provoke relevant discussions in the field and, perhaps, motivate further studies with the group. Finally, we describe a solution to efficiently detect and sample termitophilous species from termite nests, an intrinsic yet challenging task of any studies dealing with such a cryptic biological system.
Collapse
Affiliation(s)
- Helder Hugo
- Centre for the Advanced Study of Collective BehaviourUniversity of KonstanzKonstanzGermany
- Department of Collective BehaviourMax Planck Institute of Animal BehaviorKonstanzGermany
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | | | - Bolívar R. Garcete‐Barrett
- Museo Nacional de Historia Natural del ParaguaySan LorenzoParaguay
- Department of BiologyUniversidad Nacional de AsunciónSan LorenzoParaguay
| | - Iain D. Couzin
- Centre for the Advanced Study of Collective BehaviourUniversity of KonstanzKonstanzGermany
- Department of Collective BehaviourMax Planck Institute of Animal BehaviorKonstanzGermany
- Department of BiologyUniversity of KonstanzKonstanzGermany
| |
Collapse
|
37
|
Forister ML, Philbin CS, Marion ZH, Buerkle CA, Dodson CD, Fordyce JA, Forister GW, Lebeis SL, Lucas LK, Nice CC, Gompert Z. Predicting patch occupancy reveals the complexity of host range expansion. SCIENCE ADVANCES 2020; 6:6/48/eabc6852. [PMID: 33246956 PMCID: PMC7695468 DOI: 10.1126/sciadv.abc6852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/06/2020] [Indexed: 05/03/2023]
Abstract
Specialized plant-insect interactions are a defining feature of life on earth, yet we are only beginning to understand the factors that set limits on host ranges in herbivorous insects. To better understand the recent adoption of alfalfa as a host plant by the Melissa blue butterfly, we quantified arthropod assemblages and plant metabolites across a wide geographic region while controlling for climate and dispersal inferred from population genomic variation. The presence of the butterfly is successfully predicted by direct and indirect effects of plant traits and interactions with other species. Results are consistent with the predictions of a theoretical model of parasite host range in which specialization is an epiphenomenon of the many barriers to be overcome rather than a consequence of trade-offs in developmental physiology.
Collapse
Affiliation(s)
- M L Forister
- Department of Biology, University of Nevada, Reno, NV 89557, USA.
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV 89557, USA
| | - C S Philbin
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV 89557, USA
- Department of Chemistry, University of Nevada, Reno, NV 89557, USA
| | - Z H Marion
- Bio-protection Research Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - C A Buerkle
- Department of Botany and Program in Ecology, University of Wyoming, Laramie, WY 82071, USA
| | - C D Dodson
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno, NV 89557, USA
- Department of Chemistry, University of Nevada, Reno, NV 89557, USA
| | - J A Fordyce
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - G W Forister
- Bohart Museum of Entomology, University of California, Davis, Davis, CA 95616, USA
| | - S L Lebeis
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| | - L K Lucas
- Department of Biology, Utah State University, Logan, UT 84322, USA
| | - C C Nice
- Population and Conservation Biology, Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | - Z Gompert
- Department of Biology, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
38
|
Whitaker MRL, Salzman S. Ecology and evolution of cycad-feeding Lepidoptera. Ecol Lett 2020; 23:1862-1877. [PMID: 32969575 DOI: 10.1111/ele.13581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 11/30/2022]
Abstract
Cycads are an ancient group of tropical gymnosperms that are toxic to most animals - including humans - though the larvae of many moths and butterflies (order: Lepidoptera) feed on cycads with apparent immunity. These insects belong to distinct lineages with varying degrees of specialisation and diverse feeding ecologies, presenting numerous opportunities for comparative studies of chemically mediated eco-evolutionary dynamics. This review presents the first evolutionary evaluation of cycad-feeding among Lepidoptera along with a comprehensive review of their ecology. Our analysis suggests that multiple lineages have independently colonised cycads from angiosperm hosts, yet only a few clades appear to have radiated following their transitions to cycads. Defensive traits are likely important for diversification, as many cycad specialists are warningly coloured and sequester cycad toxins. The butterfly family Lycaenidae appears to be particularly predisposed to cycad-feeding and several cycadivorous lycaenids are warningly coloured and chemically defended. Cycad-herbivore interactions provide a promising but underutilised study system for investigating plant-insect coevolution, convergent and divergent adaptations, and the multi-trophic significance of defensive traits; therefore the review ends by suggesting specific research gaps that would be fruitfully addressed in Lepidoptera and other cycad-feeding insects.
Collapse
Affiliation(s)
- Melissa R L Whitaker
- Entomological Collection, Department of Environmental Systems Science, ETH Zürich, Weinbergstrasse 56/58, Zürich, 8092, Switzerland.,Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Shayla Salzman
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA.,School of Integrative Plant Science, Cornell University, 502 Mann Library, Ithaca, NY, 14853, USA
| |
Collapse
|
39
|
Hugo H, Cristaldo PF, DeSouza O. Nonaggressive behavior: A strategy employed by an obligate nest invader to avoid conflict with its host species. Ecol Evol 2020; 10:8741-8754. [PMID: 32884654 PMCID: PMC7452783 DOI: 10.1002/ece3.6572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 11/11/2022] Open
Abstract
In addition to its builders, termite nests are known to house a variety of secondary opportunistic termite species so-called inquilines, but little is known about the mechanisms governing the maintenance of these symbioses. In a single nest, host and inquiline colonies are likely to engage in conflict due to nestmate discrimination, and an intriguing question is how both species cope with each other in the long term. Evasive behaviour has been suggested as one of the mechanisms reducing the frequency of host-inquiline encounters, yet, the confinement imposed by the nests' physical boundaries suggests that cohabiting species would eventually come across each other. Under these circumstances, it is plausible that inquilines would be required to behave accordingly to secure their housing. Here, we show that once inevitably exposed to hosts individuals, inquilines exhibit nonthreatening behaviours, displaying hence a less threatening profile and preventing conflict escalation with their hosts. By exploring the behavioural dynamics of the encounter between both cohabitants, we find empirical evidence for a lack of aggressiveness by inquilines towards their hosts. Such a nonaggressive behaviour, somewhat uncommon among termites, is characterised by evasive manoeuvres that include reversing direction, bypassing and a defensive mechanism using defecation to repel the host. The behavioural adaptations we describe may play an important role in the stability of cohabitations between host and inquiline termite species: by preventing conflict escalation, inquilines may improve considerably their chances of establishing a stable cohabitation with their hosts.
Collapse
Affiliation(s)
- Helder Hugo
- Centre for the Advanced Study of Collective BehaviourUniversity of KonstanzKonstanzGermany
- Department of Collective BehaviourMax Planck Institute of Animal BehaviorRadolfzellGermany
- Department of BiologyUniversity of KonstanzKonstanzGermany
- Lab of TermitologyFederal University of ViçosaViçosaBrazil
| | - Paulo F. Cristaldo
- Department of AgronomyFederal Rural University of PernambucoRecifeBrazil
| | - Og DeSouza
- Lab of TermitologyFederal University of ViçosaViçosaBrazil
| |
Collapse
|
40
|
Mota LL, Kaminski LA, Freitas AVL. The tortoise caterpillar: carnivory and armoured larval morphology of the metalmark butterfly Pachythone xanthe (Lepidoptera: Riodinidae). J NAT HIST 2020. [DOI: 10.1080/00222933.2020.1759720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Luísa L. Mota
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - Lucas A. Kaminski
- Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - André V. L. Freitas
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
- Museu de Zoologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| |
Collapse
|
41
|
Basu DN, Kunte K. Tools of the trade: MicroCT reveals native structure and functional morphology of organs that drive caterpillar-ant interactions. Sci Rep 2020; 10:10593. [PMID: 32601351 PMCID: PMC7324400 DOI: 10.1038/s41598-020-67486-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 06/04/2020] [Indexed: 11/24/2022] Open
Abstract
Caterpillars of many lycaenid butterflies are tended by ants that offer protection from predators and parasitoids. Specialized structures such as glands, ciliary organs and chitinous ornamentation in caterpillars play key roles in the underlying tactile, acoustic, and chemical communication between caterpillars and ants. Although the ecological, evolutionary, and behavioural aspects of these interactions are well studied, the mechanisms (i.e., the functional morphology) that drive the specialized interactive organs are poorly characterized. We used advanced X-ray microtomography (MicroCT) to delineate internal, native morphology of specialized larval dew patches, nectar glands, and tactile ciliary organs that mediate interactions between Crematogaster ants and caterpillars of the obligate myrmecophilous Apharitis lilacinus butterfly. Our non-destructive MicroCT analysis provided novel 3-D insights into the native structure and positions of these specialized organs in unmatched detail. This analysis also suggested a functional relationship between organ structures and surrounding muscles and nervation that operate the glands and tactile organs, including a ‘lasso bag’ control mechanism for dew patches and muscle control for other organs. This provided a holistic understanding of the organs that drive very close caterpillar–ant interactions. Our MicroCT analysis opens a door for similar structural and functional analysis of adaptive insect morphology.
Collapse
Affiliation(s)
- Dipendra Nath Basu
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore, 560065, India. .,SASTRA University, Thanjavur, Tamil Nadu, 613401, India.
| | - Krushnamegh Kunte
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore, 560065, India.
| |
Collapse
|
42
|
Talavera G, Kaliszewska ZA, Heath A, Pierce NE. Recent diversification of Chrysoritis butterflies in the South African Cape (Lepidoptera: Lycaenidae). Mol Phylogenet Evol 2020; 148:106817. [PMID: 32289447 DOI: 10.1016/j.ympev.2020.106817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
Abstract
Although best known for its extraordinary radiations of endemic plant species, the South African fynbos is home to a great diversity of phytophagous insects, including butterflies in the genus Chrysoritis (Lepidoptera: Lycaenidae). These butterflies are remarkably uniform morphologically; nevertheless, they comprise 43 currently accepted species and 68 currently valid taxonomic names. While many species have highly restricted, dot-like distributions, others are widespread. Here, we investigate the phylogenetic and biogeographic history underlying their diversification by analyzing molecular markers from 406 representatives of all described species throughout their respective ranges. We recover monophyletic clades for both C. chrysaor and C. thysbe species-groups, and identify a set of lineages that fall between them. The estimated age of divergence for the genus is 32 Mya, and we document significantly rapid diversification of the thysbe species-group in the Pleistocene (~2 Mya). Using ancestral geographic range reconstruction, we show that West Fynbos is the most likely region of origin for the radiation of the thysbe species-group. The colonization of this region occurred 9 Mya and appears to have been followed by a long period of relative stasis before a recent increase in diversification. Thus, the thysbe radiation does not appear to have resulted from the colonization of new biogeographic areas. Rather, the impact of species interactions (with ants and plants), the appearance of key innovations, and/or the opening of new ecological niche space in the region might explain the sudden burst of speciation that occurred in this group 2 Mya. The biogeographic model suggests two different diversification processes with few historical cross-colonisations, one in eastern South Africa for the C. chrysaor group and the other in western South Africa for the remaining taxa. Distributional range assessments and ecological niche models for each species show important niche overlap, and in a few cases, complete overlap. However, these shared traits are not explained by phylogenetic history. Chrysoritis taxa frequently fly in sympatry and gene tree reticulation appears to be widespread at the species level, suggesting that several episodes of range shifts might have led to secondary sympatries, allowing limited gene flow that challenges species delimitation efforts. In addition, the unusually high diversification rate for the thysbe clade of 1.35 [0.91-1.81] lineages per million years also suggests the possibility of taxonomic oversplitting. The phylogeny presented here provides a framework for a taxonomic revision of the genus. We highlight cases of potential synonymy both in allopatry and sympatry, and stress the importance of dedicated studies to assess potential pre- and post-zygotic barriers giving rise to species delimitations of the thysbe group.
Collapse
Affiliation(s)
- Gerard Talavera
- Institut de Biologia Evolutiva (CSIC-UPF), Passeig Marítim de la Barceloneta 37, 08003 Barcelona, Catalonia, Spain; Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, United States.
| | - Zofia A Kaliszewska
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, United States; Department of Biology, University of Washington, Seattle, WA 98195, United States
| | - Alan Heath
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, United States; Iziko South African Museum, Cape Town, South Africa
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, United States.
| |
Collapse
|
43
|
Roosting Site Usage, Gregarious Roosting and Behavioral Interactions During Roost-assembly of Two Lycaenidae Butterflies. Zool Stud 2020; 59:e10. [PMID: 32760456 DOI: 10.6620/zs.2020.59-10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 03/09/2020] [Indexed: 11/18/2022]
Abstract
Lycaenidae is one of the larger of the world's butterfly families, based on number and diversity of species, but knowledge of roosting in this group is sparse. Zizina otis riukuensis and Zizeeria maha okinawana are two small lycaenids that are commonly found in urban settings and widely distributed across much of Asia. We conducted experiments on a university campus to determine the plant species and plant structures commonly used by these two blues when roosting. We also tested the hypothesis that gregarious roosting exists in these two blues by demonstrating the non-random distribution of roosting blues and the tight mapping of their roosts to the spatial distribution of specific plant species and/or specific plant structures, as well as by demonstrating behavioral interactions among individuals during roosting-assembly. We found that both Z. otis and Z. maha roosted primarily on flowers and fruits of Tridax procumbens and Vernonia cinerea. We also found that these blues formed conspicuous roosting aggregations with significant positive associations between the flowers and fruits of both T. procumbens and V. cinerea and the blues. Moreover, our behavioral observations showed that these blues expressed various levels of interaction during roosting gatherings. Based on these findings, we conclude that gregarious roosting exists in both Z. otis and Z. maha. To our knowledge, this paper represents one of the first demonstration of nocturnal gregarious roosting in lycaenids. This study also highlights the importance of institutional estates in providing roosting resources for butterflies in urban ecosystems.
Collapse
|
44
|
Zhou Y, Wang S, Wang N, Liang Z, Zhong H, Liu Y, Liang B. Phylogenetic inference of Plebejus argus (Lepidoptera: Lycaenidae) using its complete mitochondrial genome with an extra copy of tRNASer. MITOCHONDRIAL DNA PART B 2020. [DOI: 10.1080/23802359.2020.1742615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yan Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China/College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Shaoquan Wang
- Co-Innovation Center for Sustainable Forestry in Southern China/College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Ning Wang
- Department of Ornithology, American Museum of Natural History, New York, NY, USA
| | - Zhuoying Liang
- Co-Innovation Center for Sustainable Forestry in Southern China/College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Huahan Zhong
- Co-Innovation Center for Sustainable Forestry in Southern China/College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Yanlin Liu
- Chinese Felid Conservation Alliance (CFCA), Beijing, China
| | - Bin Liang
- Hainan Academy of Forestry, Haikou, China
| |
Collapse
|
45
|
Yamamoto T, Hattori M, Matsumoto Y, Ueda S, Itino T. Evolutionary diversification of Japanese Stomaphis aphids (Aphididae, Lachninae) in relation to their host plant use and ant association. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2020; 107:14. [PMID: 32193687 PMCID: PMC7217810 DOI: 10.1007/s00114-020-1671-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 11/01/2022]
Abstract
Phytophagous insects are among the most diverse of the earth's organisms, and their diversification patterns and the driving forces behind these have attracted considerable research interest. Host shifting to closely related plant species is thought to play an important role in phytophagous insect diversification, but the extent to which other interactions such as mutualistic associations affect diversification is not yet known. In this study, we reconstructed the molecular phylogeny of Japanese Stomaphis aphids and determined whether host shifting or mutualistic association with different ant species could explain diversification in this aphid genus. We analyzed 12 species of Stomaphis and grouped them into ten well-supported DNA lineages. Species in each lineage used a single or a few host plant species, but were mutualistically associated with many ant species of the genus Lasius. This result suggests that Stomaphis evolutionarily diversified primarily through host plant shifts. Interestingly, the reconstructed phylogeny suggests that Stomaphis host shifts occasionally occurred between very distantly related host plant taxa (spanning up to five plant orders). The dependence of Stomaphis on long-lasting Lasius ant colonies situated in temperate deciduous forests where Lasius is the dominant ant genus may have led the aphids to shift to distantly related but spatially adjacent host tree species.
Collapse
Affiliation(s)
- Tetsuya Yamamoto
- Interdisciplinary Graduate School of Science and Technology, Shinshu University, Nagano, Japan.
| | - Mitsuru Hattori
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Yoshiyuki Matsumoto
- Shibaura Institute of Technology Kashiwa Junior and Senior High School, Chiba, Japan
| | - Shouhei Ueda
- Graduate School of Life and Environmental Science, Osaka Prefecture University, Osaka, Japan
| | - Takao Itino
- Department of Biology, Faculty of Science, Shinshu University, Nagano, Japan
| |
Collapse
|
46
|
Towards conservation of Apefly (Spalgis lemolea. Druce) for managing papaya mealybug (Paracoccus marginatus Williams and Granara de Willink) in Sub Saharan Africa. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2019.e00236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
47
|
Martins J, Moreira A, Assunção M, Oliveira A, Almeida J. Trade-off in plant-ant interactions: seasonal variations. BRAZ J BIOL 2020; 80:921-933. [PMID: 31967280 DOI: 10.1590/1519-6984.229848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/20/2019] [Indexed: 11/21/2022] Open
Abstract
This work evaluated the effect of seasonality on ant-plant interaction in a Seasonally Dry Tropical Forests, using as an ecological model the species Ipomoea carnea subs. fistulosa (Convolvulaceae). We performed systematic collection of ants, herbivores and leaves in marked plants, evaluated the efficiency of herbivorous capture by ants, and the effects of ant presence over the pollinator behavior and plant fitness in dry and rainy seasons. The presence of ants in the plants reduced the number of herbivores (dry season: F2.27=4.7617, p=0.0166; rainy season: F2.27=5.8655, p=0.0078). However, the capture efficiency was negatively affected by the presence of myrmecophilous larvae, so that the average of ants recruited on termite leaves was 2.06 ants per termite, the average recruitment of ants on larval leaves was 22.4 larva ants. In addition, the presence of ants reduced pollinator visits and promoted fruit reduction during the dry season (ANOVA: F = 3.44; p = 0.0653). In conclusion, the association with ants can result in a balance not always favorable to the host plant, and this result actually depends on abiotic (e.g. precipitation) and biotic factors (e.g. ant species composition and abundance, influence of other trophic levels and identity of associated herbivores).
Collapse
Affiliation(s)
- J Martins
- Departamento de Botânica, Universidade Federal de Pernambuco - UFPE, Av. Professor Morais Rego, 1235, Cidade Universitária, CEP 50670-901, Recife, PE, Brasil
| | - A Moreira
- Departamento de Ciências Biológicas, Universidade Federal de Campina Grande - UFCG, Campus Patos, Av. Universitária, s/n, Santa Cecília, CEP 58708-110, Patos, PB, Brasil
| | - M Assunção
- Departamento de Botânica, Universidade Federal de Pernambuco - UFPE, Av. Professor Morais Rego, 1235, Cidade Universitária, CEP 50670-901, Recife, PE, Brasil
| | - A Oliveira
- Departamento de Botânica, Universidade Federal de Pernambuco - UFPE, Av. Professor Morais Rego, 1235, Cidade Universitária, CEP 50670-901, Recife, PE, Brasil
| | - J Almeida
- Departamento de Botânica, Universidade Federal de Pernambuco - UFPE, Av. Professor Morais Rego, 1235, Cidade Universitária, CEP 50670-901, Recife, PE, Brasil
| |
Collapse
|
48
|
Salam A, Ray S, Zaid MA, Kumar D, Khan T. Total syntheses of several iridolactones and the putative structure of noriridoid scholarein A: an intramolecular Pauson-Khand reaction based one-stop synthetic solution. Org Biomol Chem 2020; 17:6831-6842. [PMID: 31250873 DOI: 10.1039/c9ob00855a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and general approach towards the total syntheses of several iridolactones such as (±)-boschnialactone, (±)-7-epi-boschnialactone, (±)-teucriumlactone, (±)-iridomyrmecin, (±)-isoboonein, (±)-7-epi-argyol, (±)-scabrol A, (±)-7-epi-scabrol A, and (±)-patriscabrol as well as the putative structure of scholarein A is delineated. The synthetic strategy features a diastereoselective intramolecular Pauson-Khand reaction (IPKR) to construct the iridoid framework followed by some strategic synthetic manipulations to access the targeted monoterpenes including those having diverse oxy-functionalization patterns and with 3-5 contiguous stereogenic centres in a highly stereocontrolled manner. Also, the present endeavour includes the first total synthesis of scabrol A.
Collapse
Affiliation(s)
- Abdus Salam
- Organic Synthesis Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Khurdha-752050, Odisha, India.
| | - Sayan Ray
- Organic Synthesis Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Khurdha-752050, Odisha, India.
| | - Md Abu Zaid
- Organic Synthesis Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Khurdha-752050, Odisha, India.
| | - Dileep Kumar
- Organic Synthesis Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Khurdha-752050, Odisha, India.
| | - Tabrez Khan
- Organic Synthesis Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Khurdha-752050, Odisha, India.
| |
Collapse
|
49
|
Batt MAEG, Hassan GM, El-Aassar MR. A Study on Infestation Factors of Cycas and Zamia Palms with Butterfly, <i>Chilades pandava</i> and its Control in Egypt. Pak J Biol Sci 2020; 22:477-485. [PMID: 31930837 DOI: 10.3923/pjbs.2019.477.485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Cycas revoluta and Zamia encephalartoides were commercially ornamental palms. Butterfly, Chilades pandava was an important pest of ornamental palms either cycas or zamia. Impact factors on C. pandava infestations on cycas and zamia palms were studied. MATERIALS AND METHOD Two field experiments were carried out during the period from 1st January-15th December, 2018 in a private palm nursery at Abu-Ghaleb village, Giza, Egypt to study the infestation of C. pandava on cycas and zamia palms and also, provided its control strategies. RESULTS The infested percent of C. pandava was recorded the highest values at 1st week of May and September, 2018 with 63.89 % on cycas palms. Whereas, the high value of the infestation percent was 66.67% on zamia palms. A positive effect was reported with maximum and minimum temperatures but a negative effect was recorded with average RH% on C. pandava infestations. The increasing of the C. pandava infestations decreased these 2 plant enzymes, peroxidase and phenoloxidase. The average reduction percentages of the tested 9 pesticides against C. pandava infestations on cycas palms were markedly higher in case of sulfur 70% SC and fipronil 80% WG being 69.88 and 61.30% reductions than other treatments after 3 sequential applications throughout 3 months, respectively. CONCLUSION Chilades pandava infestation was higher on cycas palms than zamia palms. Sulfur and Fipronil were more efficacy pesticides against this pest.
Collapse
|
50
|
Kaczmarczyk-Ziemba A, Zagaja M, Wagner GK, Pietrykowska-Tudruj E, Staniec B. The microbiota of the Lasius fuliginosus – Pella laticollis myrmecophilous interaction. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1844322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- A. Kaczmarczyk-Ziemba
- Department of Genetics and Biosystematics, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - M. Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
| | - G. K. Wagner
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Lublin, Poland
| | - E. Pietrykowska-Tudruj
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Lublin, Poland
| | - B. Staniec
- Department of Zoology and Nature Protection, Maria Curie-Sklodowska University, Lublin, Poland
| |
Collapse
|