1
|
Ahmed SH, Chowdhury TA, Hussain S, Syed A, Karamat A, Helmy A, Waqar S, Ali S, Dabhad A, Seal ST, Hodgkinson A, Azmi S, Ghouri N. Ramadan and Diabetes: A Narrative Review and Practice Update. Diabetes Ther 2020; 11:2477-2520. [PMID: 32909192 PMCID: PMC7480213 DOI: 10.1007/s13300-020-00886-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Fasting in the Islamic month of Ramadan is obligatory for all sane, healthy adult Muslims. The length of the day varies significantly in temperate regions-typically lasting ≥ 18 h during peak summer in the UK. The synodic nature of the Islamic calendar means that Ramadan migrates across all four seasons over an approximately 33-year cycle. Despite valid exemptions, there is an intense desire to fast during this month, even among those who are considered to be at high risk, including many individuals with diabetes mellitus. In this review we explore the current scientific and clinical evidence on fasting in patients with diabetes mellitus, focussing on type 2 diabetes mellitus and type 1 diabetes mellitus, with brief reviews on pregnancy, pancreatic diabetes, bariatric surgery, the elderly population and current practice guidelines. We also make recommendations on the management of diabetes patients during the month of Ramadan. Many patients admit to a do-it-yourself approach to diabetes mellitus management during Ramadan, largely due to an under-appreciation of the risks and implications of the rigors of fasting on their health. Part of the issue may also lie with a healthcare professional's perceived inability to grasp the religious sensitivities of Muslims in relation to disease management. Thus, the pre-Ramadan assessment is crucial to ensure a safe Ramadan experience. Diabetes patients can be risk-stratified from low, medium to high or very high risk during the pre-Ramadan assessment and counselled accordingly. Those who are assessed to be at high to very high risk are advised not to fast. The current COVID-19 pandemic upgrades those in the high-risk category to very high risk; hence a significant number of diabetes patients may fall under the penumbra of the 'not to fast' advisory. We recognize that fasting is a personal choice and if a person chooses to fast despite advice to the contrary, he/she should be adequately supported and monitored closely during Ramadan and for a brief period thereafter. Current advancements in insulin delivery and glucose monitoring technologies are useful adjuncts to strategies for supporting type 1 diabetes patients considered to be high risk as well as 'high-risk' type 2 patients manage their diabetes during Ramadan. Although there is a lack of formal trial data, there is sufficient evidence across the different classes of therapeutic hypoglycaemic agents in terms of safety and efficacy to enable informed decision-making and provide a breadth of therapeutic options for the patient and the healthcare professional, even if the professional advice is to abstain. Thus, Ramadan provides an excellent opportunity for patient engagement to discuss important aspects of management, to improve control in the short term during Ramadan and to help the observants understand that the metabolic gains achieved during Ramadan are also sustainable in the other months of the year by maintaining a dietary and behavioural discipline. The application of this understanding can potentially prevent long-term complications.
Collapse
Affiliation(s)
- Syed H Ahmed
- Department of Endocrinology and Metabolic Medicine, Countess of Chester Hospital NHS Foundation Trust, Chester, UK.
- School of Medicine, University of Liverpool, Liverpool, UK.
| | | | - Sufyan Hussain
- Department of Diabetes and Endocrinology, Guy's & St Thomas' NHS Foundation Trust, London, UK
- Department of Diabetes, School of Life Course Sciences, King's College London, London, UK
- Institute of Diabetes, Endocrinology and Obesity, King's Health Partners, London, UK
| | - Ateeq Syed
- Department of Diabetes and Endocrinology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Ali Karamat
- Department of Diabetes and Endocrinology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Ahmed Helmy
- Department of Diabetes and Endocrinology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Salman Waqar
- Nuffield Department of Primary Care Health Sciences, University Oxford, Oxford, UK
| | - Samina Ali
- NHS Greater Glasgow and Clyde, Glasgow, UK
| | | | - Susan T Seal
- Department of Endocrinology and Metabolic Medicine, Countess of Chester Hospital NHS Foundation Trust, Chester, UK
| | - Anna Hodgkinson
- Department of Diabetes and Endocrinology, Guy's & St Thomas' NHS Foundation Trust, London, UK
- NHS South East London Clinical Commissioning Group, London, UK
| | - Shazli Azmi
- Institute of Cardiovascular Science, University of Manchester, Manchester, UK
- Manchester Diabetes Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Nazim Ghouri
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Department of Diabetes and Endocrinology, Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|
2
|
Abstract
Insulin resistance is a component of several health disorders, most notably impaired glucose tolerance and type 2 diabetes mellitus. Insulin-resistant individuals have an impaired biological response to the usual action of insulin; that is, they have reduced insulin sensitivity. Various methods are used to assess insulin sensitivity both in individuals and in study populations. Validity, reproducibility, cost, and degree of subject burden are important factors for both clinicians and researchers to consider when weighing the merits of a particular method. This article describes several in vivo methods used to assess insulin sensitivity and presents the advantages and disadvantages of each.
Collapse
Affiliation(s)
- Kimberly K Trout
- Villanova University College of Nursing, Villanova, Pennsylvania 19085, USA.
| | | | | |
Collapse
|
3
|
Douillet C, Currier J, Saunders J, Bodnar WM, Matoušek T, Stýblo M. Methylated trivalent arsenicals are potent inhibitors of glucose stimulated insulin secretion by murine pancreatic islets. Toxicol Appl Pharmacol 2012; 267:11-5. [PMID: 23261974 DOI: 10.1016/j.taap.2012.12.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/19/2012] [Accepted: 12/11/2012] [Indexed: 01/14/2023]
Abstract
Epidemiologic evidence has linked chronic exposure to inorganic arsenic (iAs) with an increased prevalence of diabetes mellitus. Laboratory studies have identified several mechanisms by which iAs can impair glucose homeostasis. We have previously shown that micromolar concentrations of arsenite (iAs(III)) or its methylated trivalent metabolites, methylarsonite (MAs(III)) and dimethylarsinite (DMAs(III)), inhibit the insulin-activated signal transduction pathway, resulting in insulin resistance in adipocytes. Our present study examined effects of the trivalent arsenicals on insulin secretion by intact pancreatic islets isolated from C57BL/6 mice. We found that 48-hour exposures to low subtoxic concentrations of iAs(III), MAs(III) or DMAs(III) inhibited glucose-stimulated insulin secretion (GSIS), but not basal insulin secretion. MAs(III) and DMAs(III) were more potent than iAs(III) as GSIS inhibitors with estimated IC(50)≤0.1 μM. The exposures had little or no effects on insulin content of the islets or on insulin expression, suggesting that trivalent arsenicals interfere with mechanisms regulating packaging of the insulin transport vesicles or with translocation of these vesicles to the plasma membrane. Notably, the inhibition of GSIS by iAs(III), MAs(III) or DMAs(III) could be reversed by a 24-hour incubation of the islets in arsenic-free medium. These results suggest that the insulin producing pancreatic β-cells are among the targets for iAs exposure and that the inhibition of GSIS by low concentrations of the methylated metabolites of iAs may be the key mechanism of iAs-induced diabetes.
Collapse
Affiliation(s)
- Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, 2302 MHRC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | | | | | | | | | | |
Collapse
|
4
|
Flowers MT, Ntambi JM. Stearoyl-CoA desaturase and its relation to high-carbohydrate diets and obesity. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:85-91. [PMID: 19166967 DOI: 10.1016/j.bbalip.2008.12.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 12/15/2008] [Accepted: 12/17/2008] [Indexed: 01/03/2023]
Abstract
Obesity is currently a worldwide epidemic and public health burden that increases the risk for developing insulin resistance and several chronic diseases such as diabetes, cardiovascular diseases and non-alcoholic fatty liver disease. The multifactorial causes of obesity include several genetic, dietary and lifestyle variables that together result in an imbalance between energy intake and energy expenditure. Dietary approaches to limit fat intake are commonly prescribed to achieve the hypocaloric conditions necessary for weight loss. But dietary fat restriction is often accompanied by increased carbohydrate intake, which can dramatically increase endogenous fatty acid synthesis depending upon carbohydrate composition. Since both dietary and endogenously synthesized fatty acids contribute to the whole-body fatty acid pool, obesity can therefore result from excessive fat or carbohydrate consumption. Stearoyl-Coenzyme A desaturase-1 (SCD1) is a delta-9 fatty acid desaturase that converts saturated fatty acids into monounsaturated fatty acids (MUFA) and this activity is elevated by dietary carbohydrate. Mice lacking Scd1 are protected from obesity and insulin resistance and are characterized by decreased fatty acid synthesis and increased fatty acid oxidation. In this review, we address the association of high-carbohydrate diets with increased SCD activity and summarize the current literature on the subject of SCD1 and body weight regulation.
Collapse
Affiliation(s)
- Matthew T Flowers
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
5
|
Abstract
Type 1 diabetes is characterized by the selective destruction of pancreatic β-cells caused by an autoimmune attack. Type 2 diabetes is a more complex pathology which, in addition to β-cell loss caused by apoptotic programs, includes β-cell dedifferentiation and peripheric insulin resistance. β-Cells are responsible for insulin production, storage and secretion in accordance to the demanding concentrations of glucose and fatty acids. The absence of insulin results in death and therefore diabetic patients require daily injections of the hormone for survival. However, they cannot avoid the appearance of secondary complications affecting the peripheral nerves as well as the eyes, kidneys and cardiovascular system. These afflictions are caused by the fact that external insulin injection does not mimic the tight control that pancreaticderived insulin secretion exerts on the body’s glycemia. Restoration of damaged β-cells by transplantation from exogenous sources or by endocrine pancreas regeneration would be ideal therapeutic options. In this context, stem cells of both embryonic and adult origin (including β-cell/islet progenitors) offer some interesting alternatives, taking into account the recent data indicating that these cells could be the building blocks from which insulin secreting cells could be generated in vitro under appropriate culture conditions. Although in many cases insulin-producing cells derived from stem cells have been shown to reverse experimentally induced diabetes in animal models, several concerns need to be solved before finding a definite medical application. These refer mainly to the obtainment of a cell population as similar as possible to pancreatic β-cells, and to the problems related with the immune compatibility and tumor formation. This review will summarize the different approaches that have been used to obtain insulin-producing cells from embryonic and adult stem cells, and the main problems that hamper the clinical applications of this technology.
Collapse
|
6
|
Santana A, Enseñat - Waser R, Arribas MI, Reig JA, Roche E. Insulin - producing cells derived from stem cells: recent progress and future directions. J Cell Mol Med 2006. [DOI: 10.1111/j.1582-4934.2006.tb00444.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
7
|
Santana A, Enseñat-Waser R, Arribas MI, Reig JA, Roche E. Insulin - producing cells derived from stem cells: recent progress and future directions. J Cell Mol Med 2006; 10:866-83. [PMID: 17125591 DOI: 10.1111/j.1582-4934.2006.tb00531.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Type 1 diabetes is characterized by the selective destruction of pancreatic beta-cells caused by an autoimmune attack. Type 2 diabetes is a more complex pathology which, in addition to beta-cell loss caused by apoptotic programs, includes beta-cell dedifferentiation and peripheric insulin resistance. beta-Cells are responsible for insulin production, storage and secretion in accordance to the demanding concentrations of glucose and fatty acids. The absence of insulin results in death and therefore diabetic patients require daily injections of the hormone for survival. However, they cannot avoid the appearance of secondary complications affecting the peripheral nerves as well as the eyes, kidneys and cardiovascular system. These afflictions are caused by the fact that external insulin injection does not mimic the tight control that pancreatic-derived insulin secretion exerts on the body's glycemia. Restoration of damaged beta-cells by transplantation from exogenous sources or by endocrine pancreas regeneration would be ideal therapeutic options. In this context, stem cells of both embryonic and adult origin (including beta-cell/islet progenitors) offer some interesting alternatives, taking into account the recent data indicating that these cells could be the building blocks from which insulin secreting cells could be generated in vitro under appropriate culture conditions. Although in many cases insulin-producing cells derived from stem cells have been shown to reverse experimentally induced diabetes in animal models, several concerns need to be solved before finding a definite medical application. These refer mainly to the obtainment of a cell population as similar as possible to pancreatic beta-cells, and to the problems related with the immune compatibility and tumor formation. This review will summarize the different approaches that have been used to obtain insulin-producing cells from embryonic and adult stem cells, and the main problems that hamper the clinical applications of this technology.
Collapse
Affiliation(s)
- A Santana
- Genetic and Cytogenetic Unit, Childhood Hospital of Canary Islands, Las Palmas, Spain
| | | | | | | | | |
Collapse
|
8
|
Abstract
Stimulus-secretion coupling is an essential process in secretory cells in which regulated exocytosis occurs, including neuronal, neuroendocrine, endocrine, and exocrine cells. While an increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) is the principal signal, other intracellular signals also are important in regulated exocytosis. In particular, the cAMP signaling system is well known to regulate and modulate exocytosis in a variety of secretory cells. Until recently, it was generally thought that the effects of cAMP in regulated exocytosis are mediated by activation of cAMP-dependent protein kinase (PKA), a major cAMP target, followed by phosphorylation of the relevant proteins. Although the involvement of PKA-independent mechanisms has been suggested in cAMP-regulated exocytosis by pharmacological approaches, the molecular mechanisms are unknown. Newly discovered cAMP-GEF/Epac, which belongs to the cAMP-binding protein family, exhibits guanine nucleotide exchange factor activities and exerts diverse effects on cellular functions including hormone/transmitter secretion, cell adhesion, and intracellular Ca(2+) mobilization. cAMP-GEF/Epac mediates the PKA-independent effects on cAMP-regulated exocytosis. Thus cAMP regulates and modulates exocytosis by coordinating both PKA-dependent and PKA-independent mechanisms. Localization of cAMP within intracellular compartments (cAMP compartmentation or compartmentalization) may be a key mechanism underlying the distinct effects of cAMP in different domains of the cell.
Collapse
Affiliation(s)
- Susumu Seino
- Division of Cellular and Molecular Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | | |
Collapse
|
9
|
Roche E, Reig JA, Campos A, Paredes B, Isaac JR, Lim S, Calne RY, Soria B. Insulin-secreting cells derived from stem cells: clinical perspectives, hypes and hopes. Transpl Immunol 2005; 15:113-29. [PMID: 16412956 DOI: 10.1016/j.trim.2005.09.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Accepted: 09/09/2005] [Indexed: 01/10/2023]
Abstract
Diabetes is a degenerative disease that results from the selective destruction of pancreatic beta-cells. These cells are responsible for insulin production and secretion in response to increases in circulating concentrations of nutrients, such as glucose, fatty acids and amino acids. This degenerative disease can be treated by the transplantation of differentiated islets obtained from cadaveric donors, according to a new surgical intervention developed as Edmonton protocol. Compared to the classical double transplant kidney-pancreas, this new protocol presents several advantages, concerning to the nature of the implant, immunosuppressive drug regime and the surgical procedure itself. However, the main problem to face in any islet transplantation program is the scarcity of donor pancreases and the low yield of islets isolated (very often around 50%) from each pancreas. Nevertheless, transplanted patients presented no adverse effects and no progression of diabetic complications. In the search of new cell sources for replacement trials, stem cells from embryonic and adult origins represent a key alternative. In order to become a realistic clinical issue transplantation of insulin-producing cells derived from stem cells, it needs to overcome multiple experimental obstacles. The first one is to develop a protocol that may allow obtaining a pure population of functional insulin-secreting cells as close as possible to the pancreatic beta-cell. The second problem should concern to the transplantation itself, considering issues related to immune rejection, tumour formation, site for implant, implant survival, and biosafety mechanisms. Although transplantation of bioengineered cells is still far in time, experience accumulated in islet transplantation protocols and in experiments with appropriate animal models will give more likely the clues to address this question in the future.
Collapse
Affiliation(s)
- Enrique Roche
- Institute of Bioengineering, University Miguel Hernández, San Juan, Alicante, Spain
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Type 2 diabetes mellitus is increasing worldwide with a trend of declining age of onset. It is characterized by insulin resistance and a progressive loss of beta-cell function. The ability to secrete adequate amounts of insulin is determined by the functional integrity of beta-cells and their overall mass. Glucose, the main regulator of insulin secretion and production, exerts negative effects on beta-cell function when present in excessive amounts over a prolonged period. The multiple metabolic aberrations induced by chronic hyperglycemia in the beta-cell include increased sensitivity to glucose, increased basal insulin release, reduced response to stimulus to secrete insulin, and a gradual depletion of insulin stores. Inadequate insulin production during chronic hyperglycemia results from decreased insulin gene transcription due to hyperglycemia-induced changes in the activity of beta-cell specific transcription factors. Hyperglycemia may negatively affect beta-cell mass by inducing apoptosis without a compensatory increase in beta-cell proliferation and neogenesis. The detrimental effect of excessive glucose concentrations is referred to as 'glucotoxicity'. The present review discusses the role of glucotoxicity in beta-cell dysfunction in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Nurit Kaiser
- Endocrinology and Metabolism Service, Department of Medicine and The Hadassah Diabetes Center, Hebrew University-Hadassah Medical Center, Jerusalem, Israel.
| | | | | |
Collapse
|
11
|
Hoenig M, Alexander S, Holson J, Ferguson D. Influence of Glucose Dosage on Interpretation of Intravenous Glucose Tolerance Tests in Lean and Obese Cats. J Vet Intern Med 2002. [DOI: 10.1111/j.1939-1676.2002.tb02382.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
12
|
Liang Y, Cincotta AH. Increased responsiveness to the hyperglycemic, hyperglucagonemic and hyperinsulinemic effects of circulating norepinephrine in ob/ob mice. Int J Obes (Lond) 2001; 25:698-704. [PMID: 11360153 DOI: 10.1038/sj.ijo.0801614] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2000] [Revised: 12/11/2000] [Accepted: 12/20/2000] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Several studies have implicated increased sympathetic tone as a contributing factor to the hyperglycemia and hyperglucagonemia of ob/ob mice. However, the responsiveness of plasma glucose, insulin and glucagon to circulating norepinephrine (NE) in ob/ob vs normal lean mice has never been described. Therefore, the present study investigated the effect of a 15 min intravenous NE infusion (1 pmol/min/g) on plasma glucose, insulin and glucagon in anesthetized lean, ob/ob, ob/ob-concurrent yohimbine (alpha(2) antagonist) treated, and ob/ob-chronically sympatholytic dopamine agonist treated (for 14 days prior to infusion) mice. In an effort to gain insight into a possible relation between norepinephrine, hyperglucagonemia and hyperinsulinemia in ob/ob mice, this study also examined the isolated islet responses to NE and glucagon in lean, ob/ob and ob/ob-sympatholytic dopamine agonist treated mice. RESULTS Basal humoral values of glucose, insulin and glucagon were all elevated in ob/ob vs lean mice (by 63, 1900 and 63%, respectively, P<0.01). However, NE infusion further increased levels of glucose, insulin and glucagon in ob/ob (by 80, 90 and 60%, respectively, P<0.05) but not in lean mice (between group difference for all parameters P<0.05). Acute concurrent yohimbine treatment as well as chronic prior sympatholytic dopamine agonist treatment (bromocriptine plus SKF38393) simultaneously strongly aborgated or abolished all these humoral hypersensitivity responses to intravenous NE in ob/ob mice (P<0.05). Clamping the plasma glucose level in untreated ob/ob mice at a high level (30 mM) established by NE infusion did not significantly alter the plasma insulin level, suggesting that some other influence of NE was responsible for this insulin effect. Direct NE administration at 1 microM to islets from lean and ob/ob mice inhibited 15 mM glucose-stimulated insulin secretion in both groups, but at 0.1 microM it was inhibitory only in islets from ob/ob mice. However, glucagon (10 nM) increased 15 mM glucose-stimulated insulin secretion in ob/ob (by 170%, P<0.05) but not lean mice (between group difference P<0.05). CONCLUSION These findings suggest that hypersensitivity to circulating NE may potentiate hyperglycemia and hyperglucagonemia in ob/ob mice, and the subsequent hyperglucagonemia coupled with increased islet beta-cell insulin secretory responsiveness to glucagon in ob/ob mice may support hyperinsulinemia, thus explaining the increased plasma insulin level response to intravenous NE in these animals. These findings further support a role for increased peripheral noradrenergic activities in the development and maintenance of the hyperglycemic, hyperglucagonemic and hyperinsulinemic state, characteristic of type 2 diabetes.
Collapse
Affiliation(s)
- Y Liang
- Ergo Science Corp., N. Andover, Massachusetts, USA
| | | |
Collapse
|
13
|
|
14
|
Magnan C, Cruciani C, Clément L, Adnot P, Vincent M, Kergoat M, Girard A, Elghozi JL, Velho G, Beressi N, Bresson JL, Ktorza A. Glucose-induced insulin hypersecretion in lipid-infused healthy subjects is associated with a decrease in plasma norepinephrine concentration and urinary excretion. J Clin Endocrinol Metab 2001; 86:4901-7. [PMID: 11600560 DOI: 10.1210/jcem.86.10.7958] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
We investigated the effect of a 48 h triglyceride infusion on the subsequent insulin secretion in response to glucose in healthy men. We measured the variations in plasma concentration and urinary excretion of catecholamines as an indirect estimation of sympathetic tone. For 48 h, 20 volunteers received a triglyceride/heparin or a saline solution, separated by a 1-month interval. At time 48 h, insulin secretion in response to glucose was investigated by a single iv glucose injection (0.5 g/kg(-1)) followed by an hyperglycemic clamp (10 mg.kg(-1).min(-1), during 50 min). The triglyceride infusion resulted in a 3-fold elevation in plasma free fatty acids and an increase in insulin and C-peptide plasma concentrations (1.5- and 2.5-fold, respectively, P < 0.05), compared with saline. At time 48 h of lipid infusion, plasma norepinephrine (NE) concentration and urinary excretion levels were lowered compared with saline (plasma NE: 0.65 +/- 0.08 vs. 0.42 +/- 0.06 ng/ml, P < 0.05; urinary excretion: 800 +/- 70 vs. 620 +/- 25 nmol/24 h, P < 0.05). In response to glucose loading, insulin and C-peptide plasma concentrations were higher in lipid compared with saline infusion (plasma insulin: 600 +/- 98 vs. 310 +/- 45 pM, P < 0.05; plasma C-peptide 3.5 +/- 0.2 vs. 1.7 +/- 0.2 nM, P < 0.05). In conclusion, in healthy subjects, a 48-h lipid infusion induces basal hyperinsulinemia and exaggerated insulin secretion in response to glucose which may be partly related to a decrease in sympathetic tone.
Collapse
Affiliation(s)
- C Magnan
- Université Paris 7, Centre National de la Recherche Scientifique ESA 7059, 2 place Jussieu, 75251 Paris cedex 05, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Aalinkeel R, Srinivasan M, Kalhan SC, Laychock SG, Patel MS. A dietary intervention (high carbohydrate) during the neonatal period causes islet dysfunction in rats. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:E1061-9. [PMID: 10600796 DOI: 10.1152/ajpendo.1999.277.6.e1061] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Artificial rearing of 4-day-old rat pups on a high-carbohydrate (HC) milk formula results in the immediate onset of hyperinsulinemia. To evaluate these early changes, studies on pancreatic function were carried out on 12-day-old HC rats and compared with age-matched mother-fed (MF) pups. The plasma insulin and glucagon contents were increased sixfold and twofold, respectively, in HC rats compared with MF rats. There was a distinct leftward shift in the glucose-stimulated insulin secretory pattern for HC islets. HC islets secreted insulin in the absence of any added glucose and in the presence of Ca(2+) channel inhibitors. The activities of glucokinase, hexokinase, glyceraldehyde-3-phosphate dehydrogenase, and pyruvate dehydrogenase complex were significantly increased in HC islets compared with MF islets. The protein contents of GLUT-2 and hexokinase were significantly increased in HC islets. These findings indicate that a nutritional intervention in the form of a HC formula only during the suckling period has a profound influence on pancreatic function, causing the onset of hyperinsulinemia.
Collapse
Affiliation(s)
- R Aalinkeel
- Departments of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | | | | | |
Collapse
|
16
|
Han P, Werber J, Surana M, Fleischer N, Michaeli T. The calcium/calmodulin-dependent phosphodiesterase PDE1C down-regulates glucose-induced insulin secretion. J Biol Chem 1999; 274:22337-44. [PMID: 10428803 DOI: 10.1074/jbc.274.32.22337] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the role cAMP phosphodiesterases (PDEs) play in the regulation of insulin secretion, we analyzed cyclic nucleotide PDEs of a pancreatic beta-cell line and used family and isozyme-specific PDE inhibitors to identify the PDEs that counteract glucose-stimulated insulin secretion. We demonstrate the presence of soluble PDE1C, PDE4A and 4D, a cGMP-specific PDE, and of particulate PDE3, activities in betaTC3 insulinoma cells. Selective inhibition of PDE1C, but not of PDE4, augmented glucose-stimulated insulin secretion in a dose-dependent fashion thus demonstrating that PDE1C is the major PDE counteracting glucose-dependent insulin secretion from betaTC3 cells. In pancreatic islets, inhibition of both PDE1C and PDE3 augmented glucose-dependent insulin secretion. The PDE1C of betaTC3 cells is a novel isozyme possessing a K(m) of 0.47 microM for cAMP and 0.25 microM for cGMP. The PDE1C isozyme of betaTC3 cells is sensitive to 8-methoxymethyl isobutylmethylxanthine and zaprinast (IC(50) = 7.5 and 4.5 microM, respectively) and resistant to vinpocetine (IC(50) > 100 microM). Increased responsiveness of PDE1C activity to calcium/calmodulin is evident upon exposure of cells to glucose. Enhanced cAMP degradation by PDE1C, due to increases in its responsiveness to calcium/calmodulin and in intracellular calcium, constitutes a glucose-dependent feedback mechanism for the control of insulin secretion.
Collapse
Affiliation(s)
- P Han
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
17
|
Xue BZ, Wilkison WO, Mynatt RL, Moustaid N, Goldman M, Zemel MB. The agouti gene product stimulates pancreatic [beta]-cell Ca2+ signaling and insulin release. Physiol Genomics 1999; 1:11-9. [PMID: 11015556 DOI: 10.1152/physiolgenomics.1999.1.1.11] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ubiquitous expression of the mouse agouti gene results in obesity and hyperinsulinemia. Human agouti is expressed in adipose tissue, and we found recombinant agouti protein to stimulate lipogenesis in adipocytes in a Ca(2+)-dependent fashion. However, adipocyte-specific agouti transgenic mice only became obese in the presence of hyperinsulinemia. Because intracellular Ca(2+) concentration ([Ca(2+)](i)) is a primary signal for insulin release, and we have shown agouti protein to increase [Ca(2+)](i) in several cell types, we examined the effects of agouti on [Ca(2+)](i) and insulin release. We demonstrated the expression of agouti in human pancreas and generated recombinant agouti to study its effects on Ca(2+) signaling and insulin release. Agouti (100 nM) stimulated Ca(2+) influx, [Ca(2+)](i) increase, and a marked stimulation of insulin release in two beta-cell lines (RIN-5F and HIT-T15; P < 0. 05). Agouti exerted comparable effects in isolated human pancreatic islets and beta-cells, with a 5-fold increase in Ca(2+) influx (P < 0.001) and a 2.2-fold increase in insulin release (P < 0.01). These data suggest a potential role for agouti in the development of hyperinsulinemia in humans.
Collapse
Affiliation(s)
- B Z Xue
- Department of Nutrition, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | | | |
Collapse
|
18
|
Papas KK, Long RC, Sambanis A, Constantinidis I. Development of a bioartificial pancreas: I. Long-term propagation and basal and induced secretion from entrapped ?TC3 cell cultures. Biotechnol Bioeng 1999. [DOI: 10.1002/(sici)1097-0290(1999)66:4<219::aid-bit3>3.0.co;2-b] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
|
20
|
Abstract
In normal animals, the extracellular concentration of glucose is maintained within a very narrow range by the matching of glucose flux into and out of the extracellular space through the tightly coordinated secretion of insulin and glucagon. Functional alterations in beta-cells, liver, or skeletal muscle and adipose tissue may disrupt glucose homeostasis and lead to the development of non-insulin-dependent diabetes mellitus (type 2 diabetes). This review outlines the contribution of these organs and tissues to the control of glucose homeostasis. We discuss new insights obtained through studies of transgenic mice that overexpress or show decreased expression of putative key genes in the regulation of pancreatic beta-cell function, in the control of hepatic glucose uptake and output, and in the regulation of glucose uptake and utilization by skeletal muscle and adipose tissue.
Collapse
Affiliation(s)
- F Bosch
- Department of Biochemistry and Molecular Biology, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | | | | |
Collapse
|
21
|
Sato Y, Nenquin M, Henquin JC. Relative contribution of Ca2+-dependent and Ca2+-independent mechanisms to the regulation of insulin secretion by glucose. FEBS Lett 1998; 421:115-9. [PMID: 9468290 DOI: 10.1016/s0014-5793(97)01547-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although insulin secretion is usually regarded as a Ca2+-dependent mechanism, recent studies have suggested the existence of a Ca2+-independent pathway of regulation by glucose. Here, mouse islets were used to compare the contribution of Ca2+-dependent and -independent pathways. Glucose increased insulin release in a concentration-dependent manner both in a control medium, when it depolarizes beta cells and raises [Ca2+]i (triggering signal), and in the presence of 30 mM K+ and diazoxide, when it does not further raise [Ca2+]i but increases its efficacy on exocytosis. Both Ca2+-dependent responses were amplified by glucagon-like peptide-1+acetylcholine, and were strongly potentiated by forskolin+PMA. Under conditions of mild or stringent Ca2+ deprivation, glucose had no effect either alone or with GLP-1 and acetylcholine, and was poorly effective even during pharmacological activation of protein kinases A and C. Similar results were obtained with rat islets. It is concluded that physiological regulation of insulin release by glucose is essentially achieved through the two Ca2+-dependent pathways without significant contribution of a Ca2+-independent mechanism.
Collapse
Affiliation(s)
- Y Sato
- Unité d'Endocrinologie et Métabolisme, University of Louvain Faculty of Medicine, UCL 55.30, Brussels, Belgium
| | | | | |
Collapse
|
22
|
Sato Y, Mariot P, Detimary P, Gilon P, Henquin JC. Okadaic acid-induced decrease in the magnitude and efficacy of the Ca2+ signal in pancreatic beta cells and inhibition of insulin secretion. Br J Pharmacol 1998; 123:97-105. [PMID: 9484859 PMCID: PMC1565136 DOI: 10.1038/sj.bjp.0701578] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. Phosphorylation by kinases and dephosphorylation by phosphatases markedly affect the biological activity of proteins involved in stimulus-response coupling. In this study, we have characterized the effects of okadaic acid, an inhibitor of protein phosphatases 1 and 2A, on insulin secretion. Mouse pancreatic islets were preincubated for 60 min in the presence of okadaic acid before their function was studied. 2. Okadaic acid dose-dependently (IC50 approximately 200 nM) inhibited insulin secretion induced by 15 mM glucose. At 0.5 microM, okadaic acid also inhibited insulin secretion induced by tolbutamide, ketoisocaproate and high K+, and its effects were not reversed by activation of protein kinases A or C. 3. The inhibition of insulin secretion did not result from an alteration of glucose metabolism (estimated by the fluorescence of endogenous pyridine nucleotides) or a lowering of the ATP/ADP ratio in the islets. 4. Okadaic acid treatment slightly inhibited voltage-dependent Ca2+ currents in beta cells (perforated patch technique), which diminished the rise in cytoplasmic Ca2+ (fura-2 method) that glucose and high K+ produce in islets. However, this decrease (25%), was insufficient to explain the corresponding inhibition of insulin secretion (90%). Moreover, mobilization of intracellular Ca2+ by acetylcholine was barely affected by okadaic acid, whereas the concomitant insulin response was decreased by 85%. 5. Calyculin A, another inhibitor of protein phosphatases 1 and 2A largely mimicked the effects of okadaic acid, whereas 1-norokadaone, an inactive analogue of okadaic acid on phosphatases, did not alter beta cell function. 6. In conclusion, okadaic acid inhibits insulin secretion by decreasing the magnitude of the Ca2+ signal in beta cells and its efficacy on exocytosis. The results suggest that, contrary to current concepts, both phosphorylation and dephosphorylation of certain beta cell proteins may be involved in the regulation of insulin secretion.
Collapse
Affiliation(s)
- Y Sato
- Unité d'Endocrinologie et Métabolisme, University of Louvain Faculty of Medicine, Brussels, Belgium
| | | | | | | | | |
Collapse
|
23
|
Papas KK, Long RC, Constantinidis I, Sambanis A. Role of ATP and Pi in the mechanism of insulin secretion in the mouse insulinoma betaTC3 cell line. Biochem J 1997; 326 ( Pt 3):807-14. [PMID: 9307031 PMCID: PMC1218736 DOI: 10.1042/bj3260807] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Understanding the biochemical events associated with glucose-stimulated insulin secretion by pancreatic beta cells is of importance in gaining insight into both the pathophysiology of diabetes and the development of tissue-engineered bioartificial pancreatic substitutes. We have investigated the effects of glucose concentration on the bioenergetic status and on the metabolic and secretory functions exhibited by mouse insulinoma betaTC3 cells entrapped in calcium alginate/poly-L-lysine/alginate (APA) beads. Cells entrapped in APA beads constitute a possible implantable bioartificial pancreas for the long-term treatment of insulin-dependent diabetes mellitus. Our results show that, in entrapped betaTC3 cells, the oxygen consumption rate and the intracellular nucleotide triphosphate levels are unaffected by a step change in glucose concentration from 16 mM to 0 mM for 4.5 h and then back to 16 mM. The intracellular Pi level and the ammonia production rate were doubled, while insulin secretion was decreased 10-fold, upon switching from 16 mM to 0 mM glucose. The implications of these findings in the context of pancreatic beta cell biochemistry and the mechanism of the 'Fuel Hypothesis' are discussed.
Collapse
Affiliation(s)
- K K Papas
- School of Chemical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | |
Collapse
|
24
|
Matschinsky FM, Collins HW. Essential biochemical design features of the fuel-sensing system in pancreatic beta-cells. CHEMISTRY & BIOLOGY 1997; 4:249-57. [PMID: 9235288 DOI: 10.1016/s1074-5521(97)90068-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The beta-cells of the pancreas control the blood levels of glucose and other nutrients by secreting insulin. They sense blood nutrient levels not by using a classical receptor-signaling system, but by detecting the products of nutrient metabolism. Mutations in this pathway can cause diabetes or hypoglycemia.
Collapse
Affiliation(s)
- F M Matschinsky
- Diabetes Research Center, University of Pennsylvania School of Medicine, 501 Stemmler Hall, 36th and Hamilton Walk, Philadelphia, PA 19104-6015, USA
| | | |
Collapse
|
25
|
Dou C, Xu DP, Wells WW. Studies on the essential role of ascorbic acid in the energy dependent release of insulin from pancreatic islets. Biochem Biophys Res Commun 1997; 231:820-2. [PMID: 9070901 DOI: 10.1006/bbrc.1997.6106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pancreatic islets from young normal and scorbutic male guinea pigs were examined for their ability to release insulin when stimulated with depolarizing levels of KCl (45 mM) and by 20 mM D-glyceraldehyde. Islets from normal guinea pigs released insulin in a K+ and D-glyceraldehyde dependent manner showing a rapid initial secretion phase followed by secondary waves of insulin release during a 120 min period. Islets from scorbutic guinea pigs were able to respond to elevated K+ in a manner identical to that of the control islets. In contrast, insulin release from ascorbic acid deficient islets in response to the secretagogue, D-glyceraldehyde, was significantly delayed and decreased responses were observed during the 120 min period after D-glyceraldehyde stimulation. The results are consistent with the site of action of ascorbic acid on energy-dependent insulin release lying between the triose-phosphate level of glycolysis and the generation of ATP by oxidative phosphorylation.
Collapse
Affiliation(s)
- C Dou
- Department of Biochemistry, Michigan State University, East Lansing 48824, USA
| | | | | |
Collapse
|
26
|
Roche E, Assimacopoulos-Jeannet F, Witters LA, Perruchoud B, Yaney G, Corkey B, Asfari M, Prentki M. Induction by glucose of genes coding for glycolytic enzymes in a pancreatic beta-cell line (INS-1). J Biol Chem 1997; 272:3091-8. [PMID: 9006960 DOI: 10.1074/jbc.272.5.3091] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Chronic elevation in glucose has pleiotropic effects on the pancreatic beta-cell including a high rate of insulin secretion at low glucose, beta-cell hypertrophy, and hyperplasia. These actions of glucose are expected to be associated with the modulation of the expression of a number of glucose-regulated genes that need to be identified. To further investigate the molecular mechanisms implicated in these adaptation processes to hyperglycemia, we have studied the regulation of genes encoding key glycolytic enzymes in the glucose-responsive beta-cell line INS-1. Glucose (from 5 to 25 mM) induced phosphofructokinase-1 (PFK-1) isoform C, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (4-fold), and L-pyruvate kinase (L-PK) (7-fold) mRNAs. In contrast the expression level of the glucokinase (Gk) and 6-phosphofructo-2-kinase transcripts remained unchanged. Following a 3-day exposure to elevated glucose, a similar induction was observed at the protein level for PFK-1 (isoforms C, M, and L), GAPDH, and L-PK, whereas M-PK expression only increased slightly. The study of the mechanism of GAPDH induction indicated that glucose increased the transcriptional rate of the GAPDH gene but that both transcriptional and post transcriptional effects contributed to GAPDH mRNA accumulation. 2-Deoxyglucose did not mimic the inductive effect of glucose, suggesting that increased glucose metabolism is involved in GAPDH gene induction. These changes in glycolytic enzyme expression were associated with a 2-3-fold increase in insulin secretion at low (2-5 mM) glucose. The metabolic activity of the cells was also elevated, as indicated by the reduction of the artificial electron acceptor 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium. A marked deposition of glycogen, which was readily mobilized upon lowering of the ambient glucose, and increased DNA replication were also observed in cells exposed to elevated glucose. The results suggest that a coordinated induction of key glycolytic enzymes as well as massive glycogen deposition are implicated in the adaptation process of the beta-cell to hyperglycemia to allow for chronically elevated glucose metabolism, which, in this particular fuel-sensitive cell, is linked to metabolic coupling factor production and cell activation.
Collapse
Affiliation(s)
- E Roche
- Molecular Nutrition Unit, Department of Nutrition, University of Montreal, H3C 3J7 Montréal, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Gresores A, Anderson S, Hood D, Zerbe GO, Hay WW. Separate and joint effects of arginine and glucose on ovine fetal insulin secretion. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 272:E68-73. [PMID: 9038853 DOI: 10.1152/ajpendo.1997.272.1.e68] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To determine separate and joint effects of increases (delta) in fetal plasma concentrations of arginine (Af) and glucose (Gf) on fetal insulin (If) secretion (delta If), 15 late-gestation fetal sheep were given 5-min arginine bolus infusions (40, 86, 144, 201, and 402 mumol/kg estimated fetal wt) at 90 min of 120 min steady-state glucose clamps (basal Gf, basal + 0.6 mM Gf, and basal + 1.1 mM Gr), producing absolute and percent increases above basal Af of 25.8 +/- 1.3 microM (+33%), 50.9 +/- 6.3 microM (+66%), 83.8 +/- 7.1 microM (+108%), 122.1 +/- 9.4 microM (+156%), and 302.2 +/- 28.2 microM (+386%), respectively. Acute hyperglycemia alone produced an increase above basal If of 9 +/- I microU/ml (+80%) and 19 +/- 2 microU/ml (+170%) after basal + 0.6 mM Gf and basal + 1.1 mM Gf, respectively. Increasing values of delta Af showed separate but lesser effects on delta If, which were significant only at very high values of Af (> 100% above mean normal Af) unless marked hyperglycemia (1.5- to 2-fold normal) was also present, demonstrating joint effects of delta Af and delta Gf on delta If according to a best-fit inverse polynomial response surface. We conclude that physiological increases in Af at normal glucose concentrations are not a potent-stimulus to insulin secretion in fetal sheep.
Collapse
Affiliation(s)
- A Gresores
- Department of Pediatrics, University of Colorado Health Sciences Center, Denver 80262, USA
| | | | | | | | | |
Collapse
|
28
|
Carver TD, Anderson SM, Aldoretta PW, Hay WW. Effect of low-level basal plus marked "pulsatile" hyperglycemia on insulin secretion in fetal sheep. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 271:E865-71. [PMID: 8944673 DOI: 10.1152/ajpendo.1996.271.5.e865] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We compared fetal glucose- and arginine-stimulated insulin secretion (delta I, pM) among four groups of pregnant sheep after 10-11 days of different maternal glycemic patterns: 1) control, euglycemic; 2) low-level basal plus "pulsatile" hyperglycemic (PHG group); 3) markedly hyperglycemic (HG) group); 4) markedly hypoglycemic (LG group). Mean delta I during a hyperglycemic clamp was greatest in the PHG group (190 +/- 28 pM, P < 0.01) and least in the HG (64 +/- 13 pM, P < 0.05) and LG groups (68 +/- 15 pM, P < 0.05) compared with the control group (126 +/- 18 pM). After an arginine bolus, insulin concentration was greater in the PHG group at two of four sampling times over 30 min compared with the control group and at all times compared with the HG and LG groups. The trend in mean delta I over the postarginine sampling period (PHG 1,092 +/- 114 pM; control 921 +/- 86 pM; HG897 +/- 117 pM; LG831 +/- 57 pM) was in the same direction as for glucose and was significant (P < 0.05). Thus glucose-stimulated fetal insulin secretion is regulated by the duration and pattern, as well as the magnitude, of maternal and fetal hyperglycemia; this regulation may also extend to insulin-secretion capacity.
Collapse
Affiliation(s)
- T D Carver
- Division of Perinatal Medicine, University of Colorado School of Medicine, Denver 80262, USA
| | | | | | | |
Collapse
|