1
|
Dalrymple KV, Briley AL, Tydeman FAS, Seed PT, Singh CM, Flynn AC, White SL, Poston L. Breastfeeding behaviours in women with obesity; associations with weight retention and the serum metabolome: a secondary analysis of UPBEAT. Int J Obes (Lond) 2024; 48:1472-1480. [PMID: 39048696 PMCID: PMC11420090 DOI: 10.1038/s41366-024-01576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/17/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND/OBJECTIVES Maternal obesity is associated with a decreased intention and initiation of breastfeeding as well as a shortened duration of breastfeeding. This analysis was undertaken to identify breastfeeding behaviours, and relationships with maternal anthropometry and the serum metabolome at 6-months postpartum in an ethnically diverse cohort of women with obesity. SUBJECTS/METHODS A cohort analysis of 715 women from the UK Pregnancies Better Eating and Activity Trial (UPBEAT); a multi-centre randomised controlled trial of an antenatal lifestyle intervention in women with obesity. Maternal data were collected in early pregnancy and included body mass index (BMI), socio-demographic characteristics and anthropometry. At 6-months postpartum, breastfeeding behaviours, anthropometry and 158 maternal metabolic measures from blood samples were recorded. Kaplan-Meier curves of breastfeeding duration were constructed and were stratified by obesity class (I: BMI 30.0-34.9 kg/m2, II: 35.0-39.9 kg/m2, III: ≥40.0 kg/m2). Relationships between breastfeeding behaviours, socio-demographic characteristics, the metabolome, and anthropometry were determined using regression analyses. RESULTS Eighty-two percent (591/715) of the cohort-initiated breastfeeding and at the 6-month follow-up 40% (283/715) were breastfeeding exclusively or partially. Duration of exclusive breastfeeding decreased with increasing BMI: Compared to BMI class I (mean 90.4 ± 64 days) the difference in mean for classes II and III were -15.8 days (95% confidence interval: -28.5, -3.1, p < 0.05) and -16.7 (95% CI: -32.0 to -1.35, p < 0.05), respectively. Compared to no breastfeeding, any breastfeeding at 6-months postpartum was associated with improvements in metabolites towards a healthier profile, reduced weight retention by -1.81 kg (95% CI -0.75, -2.88, p < 0.05 ) and reduced anthropometric measures, including mid-upper arm and hip circumferences. The breastfeeding related changes in anthropometry were not evident in women of Black ethnicity. CONCLUSIONS Greater emphasis on enabling breastfeeding for women with obesity could improve duration, women's weight management and metabolic health. The lack of breastfeeding related anthropometric effects in Black women requires further investigation. CLINICAL TRIAL REGISTRY ISRCTN reference 89971375.
Collapse
Affiliation(s)
- Kathryn V Dalrymple
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, London, UK.
| | - Annette L Briley
- Caring Futures Institute, CHNS, Flinders University, Adelaide, SA, Australia
- Department of Women and Children's Health, School of Life Course and Population Sciences, King's College London, London, UK
| | - Florence A S Tydeman
- Department of Women and Children's Health, School of Life Course and Population Sciences, King's College London, London, UK
| | - Paul T Seed
- Department of Women and Children's Health, School of Life Course and Population Sciences, King's College London, London, UK
| | - Claire M Singh
- School of Population Health, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Angela C Flynn
- Department of Nutritional Sciences, School of Life Course and Population Sciences, King's College London, London, UK
- School of Population Health, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sara L White
- Department of Women and Children's Health, School of Life Course and Population Sciences, King's College London, London, UK
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Lucilla Poston
- Department of Women and Children's Health, School of Life Course and Population Sciences, King's College London, London, UK
| |
Collapse
|
2
|
Scime NV, Turner S, Miliku K, Simons E, Moraes TJ, Field CJ, Turvey SE, Subbarao P, Mandhane PJ, Azad MB. Association of Human Milk Fatty Acid Composition with Maternal Cardiometabolic Diseases: An Exploratory Prospective Cohort Study. Breastfeed Med 2024; 19:357-367. [PMID: 38501380 PMCID: PMC11250837 DOI: 10.1089/bfm.2024.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Background: Human milk fatty acids derive from maternal diet, body stores, and mammary synthesis and may reflect women's underlying cardiometabolic health. We explored whether human milk fatty acid composition was associated with maternal cardiometabolic disease (CMD) during pregnancy and up to 5 years postpartum. Materials and Methods: We analyzed data from the prospective CHILD Cohort Study on 1,018 women with no preexisting CMD who provided breast milk samples at 3-4 months postpartum. Milk fatty acid composition was measured using gas-liquid chromatography. Maternal CMD (diabetes or hypertension) was classified using questionnaires and birth records as no CMD (reference outcome group; 81.1%), perinatal CMD (developed and resolved during the perinatal period; 14.9%), persistent CMD (developed during, and persisted beyond, the perinatal period; 2.9%), and incident CMD (developed after the perinatal period; 1.1%). Multinomial logistic regression was used to model associations between milk fatty acid composition (individual, summary, ratios, and patterns identified using principal component analysis) and maternal CMD, adjusting for pre-pregnancy anthropometry and race/ethnicity. Results: Medium-chain saturated fatty acids (MC-SFA), lauric (C12:0; odds ratio [OR] = 0.73, 95% confidence interval [CI] = 0.60-0.89) and myristic acid (C14:0; OR = 0.80, 95% CI = 0.66-0.97), and the high MC-SFA principal component pattern (OR = 0.86, 95% CI = 0.76-0.96) were inversely associated with perinatal CMD. Long-chain polyunsaturated fatty acids adrenic acid (C22:4n-6) was positively associated with perinatal (OR = 1.21, 95% CI = 1.01-1.44) and persistent CMD (OR = 1.56, 95% CI = 1.08-2.25). The arachidonic (C20:4n-6)-to-docosahexaenoic acid (C22:6n-3) ratio was inversely associated with incident CMD (OR = 0.52, 95% CI = 0.28-0.96). Conclusions: These exploratory findings highlight a potential novel utility of breast milk for understanding women's cardiometabolic health.
Collapse
Affiliation(s)
- Natalie V. Scime
- Department of Health & Society, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Sarah Turner
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kozeta Miliku
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Elinor Simons
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Theo J. Moraes
- Division of Respiratory Medicine, Department of Pediatrics, SickKids Research Institute, Toronto, Ontario, Canada
| | - Catherine J. Field
- Department of Agricultural Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Stuart E. Turvey
- BC Children’s Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Division of Allergy and Immunology, Department of Pediatrics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Padmaja Subbarao
- Division of Respiratory Medicine, Department of Pediatrics, SickKids Research Institute, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Piushkumar J. Mandhane
- Department of Pediatrics, University of Alberta Faculty of Medicine & Dentistry, Edmonton, Alberta, Canada
| | - Meghan B. Azad
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Thangaraj SV, Ghnenis A, Pallas B, Vyas AK, Gregg B, Padmanabhan V. Comparative lipidome study of maternal plasma, milk, and lamb plasma in sheep. Sci Rep 2024; 14:7401. [PMID: 38548847 PMCID: PMC10978966 DOI: 10.1038/s41598-024-58116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/25/2024] [Indexed: 04/01/2024] Open
Abstract
Lipids play a critical role in neonate development and breastmilk is the newborn's major source of lipids. Milk lipids directly influence the neonate plasma lipid profile. The milk lipidome is dynamic, influenced by maternal factors and related to the maternal plasma lipidome. The close inter-relationship between the maternal plasma, milk and neonate plasma lipidomes is critical to understanding maternal-child health and nutrition. In this exploratory study, lipidomes of blood and breast milk from Suffolk sheep and matched lamb blood (n = 13), were profiled on day 34 post birth by untargeted mass spectrometry. Comparative multivariate analysis of the three matrices identified distinct differences in lipids and class of lipids amongst them. Paired analysis identified 346 differential lipids (DL) and 31 correlated lipids (CL) in maternal plasma and milk, 340 DL and 32 CL in lamb plasma and milk and 295 DL and 16 CL in maternal plasma and lamb plasma. Conversion of phosphatidic acid to phosphatidyl inositol was the most active pathway in lamb plasma compared to maternal plasma. This exploratory study illustrates the partitioning of lipids across maternal plasma, milk and lamb plasma and the dynamic relationship between them, reiterating the need to study these three matrices as one biological system.
Collapse
Affiliation(s)
- Soundara Viveka Thangaraj
- Department of Pediatrics, University of Michigan, 7510 MSRB 1, 1500 W. Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Adel Ghnenis
- Department of Pediatrics, University of Michigan, 7510 MSRB 1, 1500 W. Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Brooke Pallas
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Arpita Kalla Vyas
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Brigid Gregg
- Department of Pediatrics, University of Michigan, 7510 MSRB 1, 1500 W. Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Vasantha Padmanabhan
- Department of Pediatrics, University of Michigan, 7510 MSRB 1, 1500 W. Medical Center Drive, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
4
|
Maranesi M, Palmioli E, Dall'Aglio C, Marini D, Anipchenko P, De Felice E, Scocco P, Mercati F. Resistin in endocrine pancreas of sheep: Presence and expression related to different diets. Gen Comp Endocrinol 2024; 348:114452. [PMID: 38246291 DOI: 10.1016/j.ygcen.2024.114452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/30/2023] [Accepted: 01/14/2024] [Indexed: 01/23/2024]
Abstract
Resistin (RETN), a recently discovered adipokine, is a cysteine-rich and secretory protein produced by adipocytes. RETN has been detected in several tissues, including human and laboratory animals' pancreas, wherein impairs glucose tolerance and insulin (INS) action and causes INS resistance. This study aims to evaluate the presence and expression of RETN in the pancreas of 15 adult female sheep reared on Apennine pastures, which show a decrease in their nutritional value due to the drought stress linked to the increasing summer aridity. The sheep were divided into 3 groups according to the diet they were subjected to: maximum pasture flowering (MxF) group, maximum pasture dryness (MxD) group, and experimental (Exp) group which received a feed supplementation in addition to the MxD group feeding. Immunohistochemistry and immunofluorescence were performed on formalin-fixed and paraffin-embedded sections of the pancreas to detect the RETN presence and to evaluate the co-localization of RETN with both glucagon (GCG)- and INS-producing cells. In addition, the expression of the three molecules was evaluated also in relation to different diets. RETN was observed only in the endocrine pancreas, showing a wide distribution throughout the pancreatic islets with few negative cells and the RETN producing cells colocalized with both α cells and ß cells. No differences in distribution and immunostaining intensity of RETN, GCG and INS were observed among the three groups. Quantitative PCR showed the expression of RETN, GCG and INS in all tested samples. No significant differences were observed for RETN and GCG among all three groups of sheep. Instead, a high statistically significant expression of INS was detected in the MxF group with respect to the Exp and MxD groups. These results highlight the localization of RETN in GCG- and INS-secreting cells involved in glucose homeostasis suggesting a modulatory role for RETN. Furthermore, the RETN expression is not influenced by food supplementation and thus is not affected by diet.
Collapse
Affiliation(s)
- Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| | - Elisa Palmioli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy; Department of Philosophy, Social Sciences, and Education, PhD Course in "Ethics of Communication, Scientific Research and Technological Innovation" Medical-Health Curriculum, University of Perugia, Piazza G. Ermini, 1, 06123 Perugia, IT, Italy.
| | - Cecilia Dall'Aglio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| | - Daniele Marini
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy; Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, 752 36 Uppsala, Sweden.
| | - Polina Anipchenko
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| | - Elena De Felice
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, IT, Italy.
| | - Paola Scocco
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, IT, Italy.
| | - Francesca Mercati
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, IT, Italy.
| |
Collapse
|
5
|
Barman M, Gio-Batta M, Andrieux L, Stråvik M, Saalman R, Fristedt R, Rabe H, Sandin A, Wold AE, Sandberg AS. Short-chain fatty acids (SCFA) in infants' plasma and corresponding mother's milk and plasma in relation to subsequent sensitisation and atopic disease. EBioMedicine 2024; 101:104999. [PMID: 38340558 PMCID: PMC10869761 DOI: 10.1016/j.ebiom.2024.104999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Short-chain fatty acids (SCFAs) in intestinal contents may influence immune function, while less is known about SCFAs in blood plasma. The aims were to investigate the relation between infants' and maternal plasma SCFAs, as well as SCFAs in mother's milk, and relate SCFA concentrations in infant plasma to subsequent sensitisation and atopic disease. METHODS Infant plasma (N = 148) and corresponding mother's milk and plasma were collected four months postpartum. Nine SCFA (formic, acetic, propionic, isobutyric, butyric, succinic, valeric, isovaleric, and caproic acid) were analysed by UPLC-MS. At 12 months of age, atopic disease was diagnosed by a pediatric allergologist, and sensitisation was measured by skin prick test. All families participated in the Swedish birth cohort NICE (Nutritional impact on Immunological maturation during Childhood in relation to the Environment). FINDINGS Infants with sensitisation, atopic eczema, or food allergy had significantly lower concentrations of five, three, and two SCFAs, respectively, in plasma at four months. Logistic regressions models showed significant negative associations between formic, succinic, and caproic acid and sensitisation [ORadj (95% CI) per SD: 0.41 (0.19-0.91); 0.19 (0.05-0.75); 0.25 (0.09-0.66)], and between acetic acid and atopic eczema [0.42 (0.18-0.95)], after adjusting for maternal allergy. Infants' and maternal plasma SCFA concentrations correlated strongly, while milk SCFA concentrations were unrelated to both. Butyric and caproic acid concentrations were enriched around 100-fold, and iso-butyric and valeric acid around 3-5-fold in mother's milk, while other SCFAs were less prevalent in milk than in plasma. INTERPRETATION Butyric and caproic acid might be actively transported into breast milk to meet the needs of the infant, although mechanistic studies are needed to confirm this. The negative associations between certain SCFAs on sensitisation and atopic disease adds to prior evidence regarding their immunoregulatory potential. FUNDING Swedish Research Council (Nr. 2013-3145, 2019-0137 and 2023-02217 to A-S.S.), Swedish Research Council for Health, Working Life and Welfare FORTE, Nr 2018-00485 to A.W.), The Swedish Asthma and Allergy Association's Research Fund (2020-0020 to A.S.).
Collapse
Affiliation(s)
- Malin Barman
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, Gothenburg 412 96, Sweden.
| | - Monica Gio-Batta
- Institute of Biomedicine, Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Léna Andrieux
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, Gothenburg 412 96, Sweden; Département de Biologie, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, 69342 Lyon Cedex 07, France
| | - Mia Stråvik
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Robert Saalman
- Institute of Clinical Sciences, Department of Pediatrics, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Rikard Fristedt
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, Gothenburg 412 96, Sweden
| | - Hardis Rabe
- Institute of Biomedicine, Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Anna Sandin
- Department of Clinical Science, Pediatrics, Sunderby Research Unit, Umeå University, Umeå 901 87, Sweden
| | - Agnes E Wold
- Institute of Biomedicine, Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Ann-Sofie Sandberg
- Department of Life Sciences, Food and Nutrition Science, Chalmers University of Technology, Gothenburg 412 96, Sweden
| |
Collapse
|
6
|
Ross MG, Kavasery MP, Cervantes MK, Han G, Horta B, Coca KP, Costa SO, Desai M. High-Fat, High-Calorie Breast Milk in Women with Overweight or Obesity and Its Association with Maternal Serum Insulin Concentration and Triglycerides Levels. CHILDREN (BASEL, SWITZERLAND) 2024; 11:141. [PMID: 38397253 PMCID: PMC10887191 DOI: 10.3390/children11020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024]
Abstract
The childhood obesity epidemic continues to be a challenge. Maternal obesity and excessive infant weight gain are strong predictors of childhood obesity, which itself is a major risk factor for adult obesity. The primary source of nutrition during early life is breast milk, and its composition is impacted by maternal habitus and diet. We thus studied the relationship between maternal BMI, serum lipids and insulin, and breast milk fat and calorie content from foremilk to hindmilk. Women who were exclusively breastfeeding at 7-8 weeks postpartum were BMI classified as Normal (18.5-24.9, n = 9) and women with Overweight/Obese (OW/OB ≥ 25, n = 13). Maternal blood and continuous breast milk samples obtained from foremilk to hindmilk were analyzed, and infant milk intake was assessed. Women with OW/OB had significantly higher milk fat and calorie content in the first foremilk and last hindmilk sample as compared to Normal BMI women. Amongst all women, maternal serum triglycerides, insulin, and HOMA were significantly correlated with foremilk triglyceride concentration, suggesting that maternal serum triglyceride and insulin action contribute to human milk fat content. As the milk fat content of OW/OB women has caloric implications for infant growth and childhood obesity, these results suggest the potential for modulating milk fat content by a reduction in maternal serum lipids or insulin.
Collapse
Affiliation(s)
- Michael G. Ross
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA 90502, USA;
- The Lundquist Institute at Harbor-UCLA Medical Center, 1124 West Carson Street, RB3 Building, Torrance, CA 90502, USA; (M.P.K.); (M.K.C.); (G.H.)
- Department of Obstetrics and Gynecology, Charles R. Drew University, Los Angeles, CA 90059, USA
| | - Manasa P. Kavasery
- The Lundquist Institute at Harbor-UCLA Medical Center, 1124 West Carson Street, RB3 Building, Torrance, CA 90502, USA; (M.P.K.); (M.K.C.); (G.H.)
| | - MacKenzie K. Cervantes
- The Lundquist Institute at Harbor-UCLA Medical Center, 1124 West Carson Street, RB3 Building, Torrance, CA 90502, USA; (M.P.K.); (M.K.C.); (G.H.)
| | - Guang Han
- The Lundquist Institute at Harbor-UCLA Medical Center, 1124 West Carson Street, RB3 Building, Torrance, CA 90502, USA; (M.P.K.); (M.K.C.); (G.H.)
| | - Bernardo Horta
- School of Medicine, Universidade Federal de Pelotas, Pelotas 96010-610, Brazil;
| | - Kelly P. Coca
- Escola Paulista de Enfermagem, Universidade Federal de São Paulo, São Paulo 04023-900, Brazil;
| | - Suleyma O. Costa
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Campinas 13083-970, Brazil;
| | - Mina Desai
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA 90502, USA;
- The Lundquist Institute at Harbor-UCLA Medical Center, 1124 West Carson Street, RB3 Building, Torrance, CA 90502, USA; (M.P.K.); (M.K.C.); (G.H.)
| |
Collapse
|
7
|
Wang J, Cao Y, Long X, Li F, Jiang N, Sun M, Xie Y, Ge Y, Guo W, Liu J, Fu S. Acylated Ghrelin Activates PI3K/mTOR Signaling Pathway by Promoting ThPOK Acetylation to Promote Milk Fat Synthesis in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:390-404. [PMID: 38154091 DOI: 10.1021/acs.jafc.3c06977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Ghrelin regulates diverse physiological activities. However, the effects of this hormone on the milk fat synthesis remain unknown. This study aimed to investigate the effect of acylated ghrelin (AG) on milk fat synthesis by modifying the expression (knockdown or overexpression) of growth hormone secretagogue receptor 1a (GHSR1a) and Th-inducing POK (ThPOK) in primary bovine mammary epithelial cells (BMECs). The results showed that AG significantly increased the triglyceride relative content from 260.83 ± 9.87 to 541.67 ± 8.38 in BMECs via GHSR1a. ThPOK functions as a key regulatory target downstream of AG, activating the PI3K and mTOR signaling pathways to promote milk fat synthesis in BMECs. Moreover, AG-regulated ThPOK by increasing the EP300 activity, which promoted ThPOK acetylation to protect it from proteasomal degradation. In conclusion, AG increases ThPOK acetylation and stabilizes ThPOK through GHSR1a, thereby activating the PI3K/mTOR signaling pathway and ultimately promoting the milk fat synthesis in BMECs.
Collapse
Affiliation(s)
- Jiaxin Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yu Cao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiaoyu Long
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Feng Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Naiyuan Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Mingyang Sun
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yachun Xie
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yusong Ge
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Wenjin Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Juxiong Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shoupeng Fu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
8
|
Gallardo WB, Teixeira IAMA. Associations between Dietary Fatty Acid Profile and Milk Fat Production and Fatty Acid Composition in Dairy Cows: A Meta-Analysis. Animals (Basel) 2023; 13:2063. [PMID: 37443861 DOI: 10.3390/ani13132063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
This meta-analysis aimed to investigate the effect of dietary fatty acid (FA) profile on milk fat production and FA profile in dairy cows. The study also aimed to develop prediction models using a meta-regression approach. The database included 217 peer-reviewed articles on lactating dairy cows (n = 12,892), consisting of 515 treatment means. Effect size was assessed using the raw mean differences between diets with supplementary lipid sources and those without. Subgroup analyses were employed to assess heterogeneity. Diets rich in saturated FA (SFA) increased milk fat production and proportion, while reducing de novo FA in milk. Diets high in monounsaturated FA and polyunsaturated FA decreased mixed FA in milk. Most lipid-supplemented diets increase preformed FA in milk, except those rich in SFA. Prediction models were developed using meta-regression. Key predictors of milk fat production included neutral detergent fiber (NDF), dietary myristic acid, and milk production. Milk fat proportion was best predicted by dietary unsaturated FA, NDF, and forage. De novo FA in milk was predicted by dry matter intake (DMI) and dietary FA, while preformed FA was predicted by DMI, dietary oleic and linoleic acids. In conclusion, this study emphasizes the importance of the dietary FA profile in evaluating the effects of lipids on milk fat production and FA profile. Accurate and precise predictions of milk fat production, proportion, and FA profile can be achieved by considering cow production and dietary characteristics.
Collapse
Affiliation(s)
- Walter B Gallardo
- Department of Animal Science, UNESP-Universidade Estadual Paulista, Via de acesso Paulo Donato Castellane, Km 05, s/n, Jaboticabal 14884-900, SP, Brazil
| | - Izabelle A M A Teixeira
- Department of Animal, Veterinary and Food Sciences, University of Idaho, 315 Falls Avenue, Evergreen Building, Twin Falls, ID 83303-1827, USA
| |
Collapse
|
9
|
Walker RE, Harvatine KJ, Ross AC, Wagner EA, Riddle SW, Gernand AD, Nommsen-Rivers LA. Fatty Acid Transfer from Blood to Milk Is Disrupted in Mothers with Low Milk Production, Obesity, and Inflammation. J Nutr 2023; 152:2716-2726. [PMID: 36208911 PMCID: PMC9840005 DOI: 10.1093/jn/nxac220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/26/2022] [Accepted: 09/22/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Obesity is associated with chronic inflammation and is a risk factor for insufficient milk production. Inflammation-mediated suppression of LPL could inhibit mammary uptake of long-chain fatty acids (LCFAs; >16 carbons). OBJECTIVES In an ancillary case-control analysis, we investigated whether women with low milk production despite regular breast emptying have elevated inflammation and disrupted transfer of LCFAs from plasma into milk. METHODS Data and specimens from a low milk supply study and an exclusively breastfeeding control group were analyzed, with milk production measured by 24-h test-weighing at 2-10 wk postpartum. Low milk supply groups were defined as very low (VL; <300 mL/d; n = 23) or moderate (MOD; ≥300 mL/d; n = 20) milk production, and compared with controls (≥699 mL/d; n = 18). Serum and milk fatty acids (weight% of total) were measured by GC, serum and milk TNF-α by ELISA, and serum high-sensitivity C-reactive protein (hsCRP) by clinical analyzer. Group differences were assessed by linear regression models, chi-square exact tests, and Kruskal-Wallis nonparametric tests. RESULTS VL cases, as compared with MOD cases and controls, had higher prevalence of elevated serum hsCRP (>5 mg/L; 57%, 15%, and 22%, respectively; P = 0.004), detectable milk TNF-α (67%, 32%, and 33%, respectively; P = 0.04), and obesity (78%, 40%, and 22%, respectively; P = 0.003). VL cases had lower mean ± SD LCFAs in milk (60% ± 3%) than MOD cases (65% ± 4%) and controls (66% ± 5%) (P < 0.001). Milk and serum LCFAs were strongly correlated in controls (r = 0.82, P < 0.001), but not in the MOD (r = 0.25, P = 0.30) or VL (r = 0.20, P = 0.41) groups (Pint < 0.001). CONCLUSIONS Mothers with very low milk production have significantly higher obesity and inflammatory biomarkers, lower LCFAs in milk, and disrupted association between plasma and milk LCFAs. These data support the hypothesis that inflammation disrupts normal mammary gland fatty acid uptake. Further research should address impacts of inflammation and obesity on mammary fatty acid uptake for milk production.
Collapse
Affiliation(s)
- Rachel E Walker
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Kevin J Harvatine
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA
| | - A Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Erin A Wagner
- College of Allied Health Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Sarah W Riddle
- Division of Hospital Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Alison D Gernand
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | | |
Collapse
|
10
|
Mariné-Casadó R, Domenech-Coca C, Crescenti A, Rodríguez Gómez MÁ, Del Bas JM, Arola L, Boqué N, Caimari A. Maternal Supplementation with a Cocoa Extract during Lactation Deeply Modulates Dams' Metabolism, Increases Adiponectin Circulating Levels and Improves the Inflammatory Profile in Obese Rat Offspring. Nutrients 2022; 14:nu14235134. [PMID: 36501173 PMCID: PMC9738144 DOI: 10.3390/nu14235134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/07/2022] Open
Abstract
High-flavonoid cocoa consumption has been associated with beneficial properties. However, there are scarce data concerning the effects of maternal cocoa intake on dams and in their progeny. Here, we evaluated in rats whether maternal supplementation with a high-flavan-3-ol cocoa extract (CCX) during lactation (200 mg.kg-1.day-1) produced beneficial effects on dams and in their normoweight (STD-CCX group) and cafeteria-fed obese (CAF-CCX group) adult male offspring. Maternal intake of CCX significantly increased the circulating levels of adiponectin and decreased the mammary gland lipid content of dams. These effects were accompanied by increased energy expenditure and circulating free fatty acids, as well as by a higher expression of lipogenic and adiponectin-related genes in their mammary glands, which could be related to a compensatory mechanism to ensure enough lipid supply to the pups. CCX consumption programmed both offspring groups towards increased plasma total adiponectin levels, and decreased liver weight and lean/fat ratio. Furthermore, CAF-CCX progeny showed an improvement of the inflammatory profile, evidenced by the significant decrease of the monocyte chemoattractant protein-1 (MCP-1) circulating levels and the mRNA levels of the gene encoding the major histocompatibility complex, class II invariant chain (Cd74), a marker of M1 macrophage phenotype, in the epididymal white adipose tissue. Although further studies are needed, these findings can pave the way for using CCX as a nutraceutical supplement during lactation.
Collapse
Affiliation(s)
- Roger Mariné-Casadó
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Cristina Domenech-Coca
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Anna Crescenti
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Miguel Ángel Rodríguez Gómez
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit Universitat Rovira i Virgili-EURECAT, 43204 Reus, Spain
| | - Josep Maria Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain
| | - Lluís Arola
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Noemí Boqué
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain
- Correspondence: (N.B.); (A.C.)
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain
- Correspondence: (N.B.); (A.C.)
| |
Collapse
|
11
|
Fatty acid transfer from blood to milk is disrupted in mothers with low milk production, obesity, and inflammation. J Nutr 2022. [DOI: 10.1016/j.tjnut.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
12
|
Ross MG, Kobayashi K, Han G, Desai M. Modulation of Milk and Lipid Synthesis and Secretion in a3-Dimensional Mouse Mammary Epithelial Cell Culture Model: Effects of Palmitate and Orlistat. Nutrients 2022; 14:4948. [PMID: 36500977 PMCID: PMC9739267 DOI: 10.3390/nu14234948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Human milk synthesis is impacted by maternal diet, serum composition, and substrate uptake and synthesis by mammary epithelial cells (MECs). The milk of obese/high-fat-diet women has an increased fat content, which promote excess infant weight gain and the risk of childhood/adult obesity. Yet, the knowledge of milk synthesis regulation is limited, and there are no established approaches to modulate human milk composition. We established a 3-dimensional mouse MEC primary culture that recreates the milk production pathway and tested the effects of the major saturated fatty acid in human milk (palmitate) and a lipoprotein lipase inhibitor (orlistat) on triglyceride production. Positive immunostaining confirmed the presence of milk protein and intracellular lipid including milk globules in the cytoplasm and extracellular space. The treatment with palmitate activated "milk" production by MECs (β-casein) and the lipid pathway (as evident by increased protein and mRNA expression). Consistent with these cellular changes, there was increased secretion of milk protein and triglyceride in MEC "milk". The treatment with orlistat suppressed milk triglyceride production. Palmitate increased milk and lipid synthesis, partly via lipoprotein lipase activation. These findings demonstrate the ability to examine MEC pathways of milk production via both protein and mRNA and to modulate select pathways regulating milk composition in MEC culture.
Collapse
Affiliation(s)
- Michael G. Ross
- The Lundquist Institute at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA 90502, USA
- Department of Obstetrics and Gynecology, Charles R. Drew University, Los Angeles, CA 90059, USA
| | - Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Guang Han
- The Lundquist Institute at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
| | - Mina Desai
- The Lundquist Institute at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California Los Angeles at Harbor-UCLA, Torrance, CA 90502, USA
| |
Collapse
|
13
|
Oxylipins as Potential Regulators of Inflammatory Conditions of Human Lactation. Metabolites 2022; 12:metabo12100994. [PMID: 36295896 PMCID: PMC9610648 DOI: 10.3390/metabo12100994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic low-grade inflammation can be associated with obesity or subclinical mastitis (SCM), which is associated with poor infant growth in low- to middle-income country settings. It is unknown what physiological mechanisms are involved in low milk supply, but our research group has shown that mothers with low milk supply have higher inflammatory markers. Studies investigating oxylipin signaling have the potential to help explain mechanisms that mediate the impacts of inflammation on milk production. Animal studies have reported various elevated oxylipins during postpartum inflammation, mastitis, and mammary involution in ruminant models. Several investigations have quantified oxylipins in human milk, but very few studies have reported circulating oxylipin concentrations during lactation. In addition, there are technical considerations that must be addressed when reporting oxylipin concentrations in human milk. First, the majority of milk oxylipins are esterified in the triglyceride pool, which is not routinely measured. Second, total milk fat should be considered as a covariate when using milk oxylipins to predict outcomes. Finally, storage and handling conditions of milk samples must be carefully controlled to ensure accurate milk oxylipin quantitation, which may be affected by highly active lipases in human milk.
Collapse
|
14
|
Acetate-Induced Milk Fat Synthesis Is Associated with Activation of the mTOR Signaling Pathway in Bovine Mammary Epithelial Cells. Animals (Basel) 2022; 12:ani12192616. [PMID: 36230357 PMCID: PMC9558539 DOI: 10.3390/ani12192616] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Acetate is a precursor substance for fatty acid synthesis in bovine mammary epithelial cells (BMECs), and the mTOR signaling pathway plays an important role in milk fat synthesis. However, the mechanism of the regulatory effects of acetate on lipogenic genes via the mTOR signaling pathway in BMEC remains unknown. We hypothesized that acetate can enhance the expression of lipogenic genes and triglyceride (TG) production by activating the mTOR signaling pathway in BMECs. Therefore, the aim of this study was to investigate the network of acetate-regulated lipid metabolism by the mTOR signaling pathway in BMECs. These results showed that TG synthesis was elevated (p < 0.01) in BMECs with acetate treatment. The lipid droplets were increased in the acetate-treated groups compared with those in the control group through the Bodipy staining of the lipids. In addition, the fatty acid profile in BMECs treated with acetate was affected, with an elevation in the proportions of C14:0, C16:0, and C18:0. The mRNA levels of the sterol-response-element-binding protein 1 (SREBP1), stearoyl-CoA desaturase 1 (SCD1), and fatty acid synthase (FAS) genes involved in the lipogenesis and transcriptional factors were upregulated (p < 0.05) in BMECs with acetate treatment. Remarkably, the expression of acetyl-CoA carboxylase α (ACCα) and FAS rate-limiting enzymes involved in lipogenesis was upregulated in BMECs with acetate treatment. Moreover, the addition of acetate enhanced the key protein expression of S6K1, which is related to the mTOR signaling pathway. Taken together, our data suggest that TG accumulation and expression of lipogenic genes induced by acetate are associated with the activation of the mTOR signaling pathway, which provides new insights into the understanding of the molecular mechanism in the expression of mTOR-signaling-pathway-regulated lipogenic genes.
Collapse
|
15
|
Anhê GF, Bordin S. The adaptation of maternal energy metabolism to lactation and its underlying mechanisms. Mol Cell Endocrinol 2022; 553:111697. [PMID: 35690287 DOI: 10.1016/j.mce.2022.111697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/15/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
Maternal energy metabolism undergoes a singular adaptation during lactation that allows for the caloric enrichment of milk. Changes in the mammary gland, changes in the white adipose tissue, brown adipose tissue, liver, skeletal muscles and endocrine pancreas are pivotal for this adaptation. The present review details the landmark studies describing the enzymatic modulation and the endocrine signals behind these metabolic changes. We will also update this perspective with data from recent studies showing transcriptional and post-transcriptional mechanisms that mediate the adaptation of the maternal metabolism to lactation. The present text will also bring experimental and observational data that describe the long-term consequences that short periods of lactation impose to maternal metabolism.
Collapse
Affiliation(s)
- Gabriel Forato Anhê
- Department of Translational Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil.
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
16
|
Nommsen-Rivers LA, Wagner EA, Roznowski DM, Riddle SW, Ward LP, Thompson A. Measures of Maternal Metabolic Health as Predictors of Severely Low Milk Production. Breastfeed Med 2022; 17:566-576. [PMID: 35475660 PMCID: PMC9299530 DOI: 10.1089/bfm.2021.0292] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: A comprehensive approach to breastfeeding support requires elucidation of how metabolic health influences milk production. Objective: We compared metabolic health indicators in women with severely low milk output versus those with moderate/normal milk output using a case-control study design, with nested and external control groups. Design: Cases and nested controls were derived from women screened for a low milk supply trial, with cases defined as severely low milk output (<300 mL/24 hours), and nested controls defined as moderate/normal milk output (>300 mL/24 hours). In addition, we included an external control group of exclusively breastfeeding women. All were enrolled at 2-10 weeks postdelivery of a healthy term infant. Milk output and breast emptying frequency were recorded through test-weigh. Metabolic health variables included all components of the metabolic syndrome, homeostatic model assessment of insulin resistance (HOMA-IR), and diagnosis of gestational diabetes mellitus (GDM). Results: Maximum milk output, mL/24 hours, ranged as follows: 30-281 in cases (n = 18), 372-801 in nested controls (n = 12), and 661-915 in external controls (n = 12). Mean breast emptying frequency in cases was not significantly different from nested or external controls. All metabolic syndrome components and HOMA-IR were significantly worse in cases as compared with both nested and external control groups (p < 0.05). There was no significant difference between the nested and external control groups for these variables. GDM prevalence was 39%, 0%, and 8%, across cases, nested control, and external control groups, respectively (chi-square p-value = 0.02). Conclusion: Results from this small case-control study identify class 2+ obesity and poor metabolic health as strong risk factors for severely low milk production. These findings should be further validated in larger prospective cohort studies designed to identify individuals at risk for metabolically driven low milk supply. In addition, clinical and qualitative research studies aimed at improving patient-centered approaches to the management of persistent low milk supply are needed.
Collapse
Affiliation(s)
- Laurie A Nommsen-Rivers
- Department of Rehabilitation, Exercise, and Nutrition, University of Cincinnati College of Allied Health Sciences, Cincinnati, Ohio, USA
| | - Erin A Wagner
- Department of Rehabilitation, Exercise, and Nutrition, University of Cincinnati College of Allied Health Sciences, Cincinnati, Ohio, USA
| | - Dayna M Roznowski
- Department of Rehabilitation, Exercise, and Nutrition, University of Cincinnati College of Allied Health Sciences, Cincinnati, Ohio, USA
| | - Sarah W Riddle
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Laura P Ward
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Amy Thompson
- Department of Obstetrics and Gynecology, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
17
|
Castillo P, Kuda O, Kopecky J, Pomar CA, Palou A, Palou M, Picó C. Reverting to a healthy diet during lactation normalizes maternal milk lipid content of diet-induced obese rats and prevents early alterations in the plasma lipidome of the offspring. Mol Nutr Food Res 2022; 66:e2200204. [PMID: 35772018 PMCID: PMC9541142 DOI: 10.1002/mnfr.202200204] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/25/2022] [Indexed: 11/10/2022]
Abstract
Scope This study aims to assess in rats whether normalizing maternal diet during lactation prevents the harmful effects of western diet (WD) consumption during the whole perinatal period on the lipidomic profile in maternal milk and offspring plasma. Methods and Results Control dams (CON‐dams), fed with standard diet (SD); WD‐dams, fed with WD prior and during gestation and lactation; and reversion dams (REV‐dams), fed as WD‐dams but moved to SD during lactation are followed. Lipidomic analysis is performed in milk and plasma samples from pups. Milk of WD‐dams presents a different triacylglycerol composition and free fatty acid (FA) profile compared to CON‐dams, including an increased ratio of pro‐inflammatory to anti‐inflammatory long‐chain polyunsaturated FA. Such alterations, which are also present in the plasma of their offspring, are widely reversed in the milk of REV‐dams and the plasma of their pups. This is related with the recovery of control adiponectin expression levels in the mammary gland, and the presence of decreased expression of pro‐inflammatory factors. Conclusion Implementing a healthy diet during lactation prevents early alterations in the plasma lipidome of pups associated to the maternal intake of an obesogenic diet, which may be related to the normalization of milk lipid content and the inflammatory state in the mammary gland.
Collapse
Affiliation(s)
- Pedro Castillo
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation) of the University of the Balearic Islands, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Ondrej Kuda
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Jan Kopecky
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, Prague, 14220, Czech Republic
| | - Catalina Amadora Pomar
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation) of the University of the Balearic Islands, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation) of the University of the Balearic Islands, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation) of the University of the Balearic Islands, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Group of Nutrigenomics, Biomarkers and Risk Evaluation) of the University of the Balearic Islands, CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), and Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| |
Collapse
|
18
|
Yuan T, Wang L, Jin J, Mi L, Pang J, Liu Z, Gong J, Sun C, Li J, Wei W, Jin Q, Wang X. Role Medium-Chain Fatty Acids in the Lipid Metabolism of Infants. Front Nutr 2022; 9:804880. [PMID: 35757267 PMCID: PMC9218682 DOI: 10.3389/fnut.2022.804880] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Human breastmilk, the ideal food for healthy infants, naturally contains a high concentration of medium-chain fatty acids (MCFAs, about 15% of total fatty acids). MCFAs are an important energy source for infants due to their unique digestive and metabolic properties. MCFA-enriched oils are widely used in an infant formula, especially the formula produced for preterm infants. Recently, there has been a growing interest in the triglyceride structure of MCFAs in human milk, their metabolism, and their effects on infant health. This study summarized the MCFA composition and structure in both human milk and infant formula. Recent studies on the nutritional effects of MCFAs on infant gut microbiota have been reviewed. Special attention was given to the MCFAs digestion and metabolism in the infants. This paper aims to provide insights into the optimization of formulations to fulfill infant nutritional requirements.
Collapse
Affiliation(s)
- Tinglan Yuan
- Collaborative Innovation Centre of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Lei Wang
- Collaborative Innovation Centre of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jun Jin
- Collaborative Innovation Centre of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lijuan Mi
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Beijing, China
| | - Jinzhu Pang
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Beijing, China
| | - Zhengdong Liu
- Yashili International Group Co., Ltd., Guangzhou, China
| | - Jinyan Gong
- Zhejiang Provincial Key Lab for Biological and Chemical Processing Technologies of Farm Product, School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Cong Sun
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Jufang Li
- Inner Mongolia Mengniu Dairy (Group) Co., Ltd., Beijing, China
| | - Wei Wei
- Collaborative Innovation Centre of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- Collaborative Innovation Centre of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- Collaborative Innovation Centre of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
19
|
Giuffrida F, Fleith M, Goyer A, Samuel TM, Elmelegy-Masserey I, Fontannaz P, Cruz-Hernandez C, Thakkar SK, Monnard C, De Castro CA, Lavalle L, Rakza T, Agosti M, Al-Jashi I, Pereira AB, Costeira MJ, Marchini G, Vanpee M, Stiris T, Stoicescu S, Silva MG, Picaud JC, Martinez-Costa C, Domellöf M, Billeaud C. Human milk fatty acid composition and its association with maternal blood and adipose tissue fatty acid content in a cohort of women from Europe. Eur J Nutr 2022; 61:2167-2182. [PMID: 35072787 PMCID: PMC9106604 DOI: 10.1007/s00394-021-02788-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Human milk (HM) composition is influenced by factors, like maternal diet and body stores, among other factors. For evaluating the influence of maternal fatty acid (FA) status on milk FA composition, the correlation between FA content in HM and in maternal plasma, erythrocytes, and adipose tissue was investigated. METHODS 223 European women who delivered at term, provided HM samples over first four months of lactation. Venous blood and adipose tissue (only from mothers who consented and underwent a C-section delivery) were sampled at delivery. FAs were assessed in plasma, erythrocytes, adipose tissue, and HM. Evolution of HM FAs over lactation and correlations between FA content in milk and tissues and between mother's blood and cord blood were established. RESULTS During lactation, arachidonic acid (ARA) and docosahexaenoic acid (DHA) significantly decreased, while linoleic acid (LA), alpha-linolenic acid (ALA), and eicosapentaenoic acid (EPA) remained stable. Positive correlations were observed between HM and adipose tissue for palmitic, stearic, oleic, and polyunsaturated fatty acids (PUFAs). Correlations were found between milk and plasma for oleic, LA, ARA, ALA, DHA, monounsaturated fatty acids (MUFAs), and PUFAs. No correlation was observed between erythrocytes and HM FAs. LA and ALA were more concentrated in maternal blood than in infant blood, contrary to ARA and DHA, supporting that biomagnification of LCPUFAs may have occurred during pregnancy. CONCLUSIONS These data show that maternal adipose tissue rather than erythrocytes may serve as reservoir of PUFAs and LCPUFAs for human milk. Plasma also supplies PUFAs and LCPUFAs to maternal milk. If both, adipose tissue and plasma PUFAs, are reflection of dietary intake, it is necessary to provide PUFAs and LCPUFAs during pregnancy or even before conception and lactation to ensure availability for mothers and enough supply for the infant via HM.
Collapse
Affiliation(s)
| | - Mathilde Fleith
- Nestlé Research, Vers-chez les-Blanc, 1000 Lausanne 26, Switzerland
| | - Amélie Goyer
- Nestlé Research, Vers-chez les-Blanc, 1000 Lausanne 26, Switzerland
| | - Tinu Mary Samuel
- Nestlé Product Technology Center-Nutrition, Société des Produits Nestlé S.A., 1800 Vevey, Switzerland
| | | | - Patric Fontannaz
- Nestlé Research, Vers-chez les-Blanc, 1000 Lausanne 26, Switzerland
| | | | | | | | | | - Luca Lavalle
- Nestlé Research, Vers-chez les-Blanc, 1000 Lausanne 26, Switzerland
| | - Thameur Rakza
- Centre d’Investigation Clinique de Lille, Hôpital Jeanne de Flandre, 59777 Lille, France
| | | | | | | | | | | | | | | | | | | | - Jean-Charles Picaud
- Hospices Civils de Lyon, Neonatology, Hôpital de La Croix Rousse, Hospices civils de Lyon, 69004 Lyon, France
- Univ. Lyon, Carmen Laboratory, INSERM, INRA, Université Claude Bernard Lyon 1, 69921 Oullins, France
| | | | - Magnus Domellöf
- Department of Clinical Sciences/Pediatrics, Umeå University, Umeå, Sweden
| | - Claude Billeaud
- Neonatology & Nutrition, CIC Pédiatrique 1401 Inserm, CHU de Bordeaux, Bordeaux, France
| |
Collapse
|
20
|
Pomar CA, Castillo P, Palou M, Palou A, Picó C. Implementation of a healthy diet to lactating rats attenuates the early detrimental programming effects in the offspring born to obese dams. Putative relationship with milk hormone levels. J Nutr Biochem 2022; 107:109043. [PMID: 35569798 DOI: 10.1016/j.jnutbio.2022.109043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/27/2021] [Accepted: 03/21/2022] [Indexed: 12/17/2022]
Abstract
Lactation is a critical period of development and alterations in milk composition due to maternal diet or status may affect infant growth. We aimed to evaluate in rats whether improving maternal nutrition during lactation attenuates early imprinted adverse metabolic effects in the offspring born to obese dams. Three groups were studied: Control (C) dams, fed with standard diet; Western diet (WD) dams, fed with WD one month prior to gestation and during gestation and lactation; and Reversion (Rev) dams, fed as WD-dams, but moved to a standard diet during lactation. Macronutrient content, insulin, leptin and adiponectin levels were determined in milk. Phenotypic traits and circulating parameters in dams and their offspring were determined throughout lactation. Results showed that, at weaning, WD-dams displayed lower body weight and greater plasma insulin and non-esterified fatty acids levels than C-dams, and signs of hepatic steatosis. Milk from WD-dams showed lower protein content and insulin, leptin, and adiponectin levels during the entire or the late lactation. Rev-dams retained excess body fat content, but milk composition and most circulating parameters were not different from controls at late lactation and showed higher leptin mRNA levels in mammary gland than WD-dams. The offspring of WD-dams, but not that of Rev-dams, displayed higher body weight, adiposity, and circulating leptin and glucose levels than controls at weaning. In conclusion, dietary improvement during lactation prevents early adverse effects in offspring associated with maternal intake of an obesogenic diet, that may be related with the normalization of milk hormone levels.
Collapse
Affiliation(s)
- Catalina A Pomar
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122, Palma, Spain; Instituto de Investigación Sanitaria Illes Balears, IdISBa, 07010, Palma, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pedro Castillo
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122, Palma, Spain; Instituto de Investigación Sanitaria Illes Balears, IdISBa, 07010, Palma, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Mariona Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122, Palma, Spain; Instituto de Investigación Sanitaria Illes Balears, IdISBa, 07010, Palma, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Andreu Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122, Palma, Spain; Instituto de Investigación Sanitaria Illes Balears, IdISBa, 07010, Palma, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Catalina Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics, Biomarkers and Risk Evaluation), University of the Balearic Islands, 07122, Palma, Spain; Instituto de Investigación Sanitaria Illes Balears, IdISBa, 07010, Palma, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
21
|
Britten FL, Lai CT, Geddes DT, Callaway LK, Duncan EL. Is Secretory Activation Delayed in Women with Type Two Diabetes? A Pilot Study. Nutrients 2022; 14:nu14071323. [PMID: 35405936 PMCID: PMC9002373 DOI: 10.3390/nu14071323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/02/2022] Open
Abstract
(1) Background: Breastfeeding duration may be reduced in women with type 2 diabetes. Delayed secretory activation (SA) is associated with poorer breastfeeding outcomes; however, no prior studies have examined SA in women with type 2 diabetes. This pilot study aimed to assess SA in women with type 2 diabetes by assessing breastmilk constituents. Secondary aims were to assess breastfeeding rates postpartum, and contributory factors. (2) Methods: A prospective cohort of pregnant women with type 2 diabetes (n = 18) and two control groups with age- and parity-matched nondiabetic pregnant women (body mass index (BMI)) matched (n = 18) or normal-range BMI (n = 18)) were recruited. Breastmilk constituents (citrate, lactose, protein, and fat) were measured twice daily for 5 days postpartum and compared between groups. Associations between peripartum variables, breastmilk constituents, and breastfeeding at 4 months postpartum were explored. (3) Results: Women with type 2 diabetes had a slower increase in breastmilk citrate concentration postpartum, indicative of delayed SA, compared to both control groups. Higher predelivery insulin doses in women with type 2 diabetes were associated with increasing time to SA. Both women with type 2 diabetes and BMI-matched controls were less likely to fully breastfeed at 4 months, compared with normal-BMI controls. (4) Conclusion: SA is delayed in women with type 2 diabetes when compared to BMI-matched and normal-BMI women. Women with type 2 diabetes are less likely to fully breastfeed, at hospital discharge and by 4 months postpartum, compared to women with normal-BMI.
Collapse
Affiliation(s)
- Fiona L. Britten
- Department of Obstetric Medicine, Women’s and Newborn Services, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia;
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
- Correspondence: ; Tel.: +(61)736-468-111
| | - Ching T. Lai
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (C.T.L.); (D.T.G.)
| | - Donna T. Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; (C.T.L.); (D.T.G.)
| | - Leonie K. Callaway
- Department of Obstetric Medicine, Women’s and Newborn Services, Royal Brisbane and Women’s Hospital, Brisbane, QLD 4029, Australia;
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
| | - Emma L. Duncan
- Department of Twin Research & Genetic Epidemiology, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 7EH, UK;
- Department of Endocrinology, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
| |
Collapse
|
22
|
Human milk cholesterol is associated with lactation stage and maternal plasma cholesterol in Chinese populations. Pediatr Res 2022; 91:970-976. [PMID: 33846555 DOI: 10.1038/s41390-021-01440-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/23/2020] [Accepted: 12/01/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Milk cholesterol concentrations throughout lactation were analyzed, and the relationship between maternal plasma cholesterol and milk cholesterol in various Chinese populations was examined. METHODS A sub-sample of 1138 lactating women was randomly selected from a large cross-sectional study in China (n = 6481). Milk cholesterol concentrations were determined by HPLC, and concentrations of maternal plasma lipids were determined by an automated biochemical analyzer. RESULTS The mean cholesterol concentrations were 200, 171, and 126 mg/L for colostrum, transitional milk, and mature milk, respectively. Cholesterol concentrations differed significantly between stages of lactation (colostrum vs. transitional milk, colostrum vs. mature milk, transitional milk vs. mature milk, all p < 0.001). Concentrations of maternal plasma total cholesterol (TC) (p = 0.02) and low-density lipoprotein cholesterol (LDL-C) (p = 0.03) were significantly associated with milk cholesterol. Milk cholesterol concentrations varied among different ethnicities (Tibetan vs. Hui: 164 vs. 131 mg/L, p = 0.027) but not among different geographic regions. CONCLUSIONS The concentration of cholesterol in human milk changes dynamically throughout lactation. Milk cholesterol concentrations are significantly associated with maternal plasma concentrations of TC and LDL-C, and milk cholesterol concentrations vary across ethnicities in China. IMPACT Concentrations of milk cholesterol were measured in various Chinese populations. Cholesterol concentrations differ significantly between stages of lactation. Maternal plasma total cholesterol and low-density lipoprotein cholesterol are associated with milk cholesterol. Milk cholesterol concentrations vary across ethnicities in China.
Collapse
|
23
|
Johnson CT, de Abreu GHD, Mackie K, Lu HC, Bradshaw HB. Cannabinoids accumulate in mouse breast milk and differentially regulate lipid composition and lipid signaling molecules involved in infant development. BBA ADVANCES 2022; 2:100054. [PMID: 36643901 PMCID: PMC9835790 DOI: 10.1016/j.bbadva.2022.100054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Maternal cannabis use during lactation may expose developing infants to cannabinoids (CBs) such as Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD). CBs modulate lipid signaling molecules in the central nervous system in age- and cell-dependent ways, but their influence on the lipid composition of breast milk has yet to be established. This study investigates the effects of THC, CBD, or their combination on milk lipids by analyzing the stomach contents of CD1 mouse pups that have been nursed by dams injected with CBs on postnatal days (PND) 1 -10. Stomach contents were collected 2 hours after the last injection on PND10 and HPLC/MS/MS was used to identify and quantify over 80 endogenous lipid species and cannabinoids in the samples. We show that CBs differentially accumulate in milk, lead to widespread decreases in free fatty acids, decreases in N-acyl methionine species, increases N-linoleoyl species, as well as modulate levels of endogenous CBs (eCBs) AEA, 2-AG, and their structural congeners. Our data indicate the passage of CBs to pups through breast milk and that maternal CB exposure alters breast milk lipid compositions.
Collapse
Affiliation(s)
- Clare T Johnson
- Psychological and Brain Sciences, Indiana University, Bloomington IN, United States
| | | | - Ken Mackie
- Psychological and Brain Sciences, Indiana University, Bloomington IN, United States
- Gill Center for Molecular Neuroscience, Indiana University, Bloomington IN, United States
| | - Hui-Chen Lu
- Psychological and Brain Sciences, Indiana University, Bloomington IN, United States
- Gill Center for Molecular Neuroscience, Indiana University, Bloomington IN, United States
| | - Heather B Bradshaw
- Psychological and Brain Sciences, Indiana University, Bloomington IN, United States
- Corresponding author.
| |
Collapse
|
24
|
Che L, Xu M, Gao K, Wang L, Yang X, Wen X, Xiao H, Li M, Jiang Z. Mammary tissue proteomics in a pig model indicates that dietary valine supplementation increases milk fat content via increased de novo synthesis of fatty acid. Food Sci Nutr 2021; 9:6213-6223. [PMID: 34760251 PMCID: PMC8565212 DOI: 10.1002/fsn3.2574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/28/2021] [Indexed: 12/14/2022] Open
Abstract
Milk fat is a major source of energy that determines the growth of neonates. Recently, studies have shown that valine is closely related to lipid metabolism. Therefore, this study was designed to investigate the effects of dietary valine supplementation on milk fat synthesis using a pig model. Thirty gilts were allotted to low (LV, total valine:lysine = 0.63:1), medium (MV, total valine:lysine = 0.73:1), and high (HV, total valine:lysine = 0.93:1) valine feeding levels from Day 75 of gestation till farrowing. The results demonstrated that the concentration of milk fat at Days 1, 3, and 7 of lactation in the HV group was higher than that in the MV and LV groups. The HV group had an increased (p < .05) proportion of total saturated and monounsaturated fatty acids than the other groups. Examination of mammary tissue proteomics in the HV and LV groups revealed 121 differentially expressed proteins (68 upregulated and 53 downregulated in the HV group). The upregulated proteins in the HV group were relevant to some crucial pathways related to milk fat synthesis, including fatty acid biosynthesis and metabolism, the AMPK signaling pathway, and oxidative phosphorylation. Furthermore, the key proteins involved in fatty acid synthesis (ACACA and FASN) were identified, and their expression levels were verified (p < .05) using Western blotting. Our findings revealed that dietary valine supplementation improves milk fat synthesis by modulating the expression of fatty acid synthesis-related proteins in mammary tissues.
Collapse
Affiliation(s)
- Long Che
- College of Animal Science and TechnologyHenan University of Animal Husbandry and EconomyZhengzhouChina
- State Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South ChinaMinistry of Agriculture, Guangdong Public Laboratory of Animal Breeding and NutritionGuangdong Key Laboratory of Animal Breeding and NutritionInstitute of Animal ScienceGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Mengmeng Xu
- College of Animal Science and TechnologyHenan University of Animal Husbandry and EconomyZhengzhouChina
- State Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South ChinaMinistry of Agriculture, Guangdong Public Laboratory of Animal Breeding and NutritionGuangdong Key Laboratory of Animal Breeding and NutritionInstitute of Animal ScienceGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Kaiguo Gao
- State Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South ChinaMinistry of Agriculture, Guangdong Public Laboratory of Animal Breeding and NutritionGuangdong Key Laboratory of Animal Breeding and NutritionInstitute of Animal ScienceGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Li Wang
- State Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South ChinaMinistry of Agriculture, Guangdong Public Laboratory of Animal Breeding and NutritionGuangdong Key Laboratory of Animal Breeding and NutritionInstitute of Animal ScienceGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Xuefen Yang
- State Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South ChinaMinistry of Agriculture, Guangdong Public Laboratory of Animal Breeding and NutritionGuangdong Key Laboratory of Animal Breeding and NutritionInstitute of Animal ScienceGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Xiaolu Wen
- State Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South ChinaMinistry of Agriculture, Guangdong Public Laboratory of Animal Breeding and NutritionGuangdong Key Laboratory of Animal Breeding and NutritionInstitute of Animal ScienceGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Hao Xiao
- State Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South ChinaMinistry of Agriculture, Guangdong Public Laboratory of Animal Breeding and NutritionGuangdong Key Laboratory of Animal Breeding and NutritionInstitute of Animal ScienceGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Mengyun Li
- College of Animal Science and TechnologyHenan University of Animal Husbandry and EconomyZhengzhouChina
| | - Zongyong Jiang
- State Key Laboratory of Livestock and Poultry BreedingKey Laboratory of Animal Nutrition and Feed Science in South ChinaMinistry of Agriculture, Guangdong Public Laboratory of Animal Breeding and NutritionGuangdong Key Laboratory of Animal Breeding and NutritionInstitute of Animal ScienceGuangdong Academy of Agricultural SciencesGuangzhouChina
| |
Collapse
|
25
|
Wen H, Luo H, Yang M, Augustino SMA, Wang D, Mi S, Guo Y, Zhang Y, Xiao W, Wang Y, Yu Y. Genetic parameters and weighted single-step genome-wide association study for supernumerary teats in Holstein cattle. J Dairy Sci 2021; 104:11867-11877. [PMID: 34482976 DOI: 10.3168/jds.2020-19943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/29/2021] [Indexed: 01/22/2023]
Abstract
Supernumerary teats (SNT) are a common epidermal abnormality of udders in mammals. The SNT negatively affect machine milking ability, udder health, and animal welfare and sometimes act as reservoirs for undesirable bacteria, resulting in economic losses on calves and lactating cows due to the cost of SNT removal surgery, early culling, and low milk yield. This study aimed to analyze the incidence and genetic parameter of SNT and detect SNT-related genes in Chinese Holstein cattle. In this study, the incidence of SNT was recorded in 4,670 Chinese Holstein cattle (born between 2008 and 2017) from 2 farms, including 734 genotyped cows with 114,485 SNPs. The SNT had a total frequency of 9.8% and estimated heritability of 0.22 (SE = 0.07), which were obtained using a threshold model in the studied Chinese Holstein population. Furthermore, we calculated approximate genetic correlations between SNT and the following indicator traits: 12 milk production, 28 body conformation, 5 fertility and reproduction, 5 health, and 9 longevity. Generally, the estimated correlations, such as 305-d milk yield for third parity (-0.55; SE = 0.02) and age at first calving in heifer (0.19; SE = 0.03), were low to moderate. A single-step GWAS was implemented, and 10 genes associated with SNT located in BTA4 were identified. The region (112.70-112.90 Mb) on BTA4 showed the highest genetic variance for SNT. The quantitative trait loci on BTA4 was mapped into the RARRES2 gene, which was previously shown to affect adipogenesis and hormone secretion. The WIF1 gene, which was located in BTA5, was also considered as a candidate gene for SNT. Overall, these findings provide useful information for breeders who are interested in reducing SNT.
Collapse
Affiliation(s)
- H Wen
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - H Luo
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - M Yang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - S M A Augustino
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - D Wang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - S Mi
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - Y Guo
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, SLU 75007, Uppsala, Sweden
| | - Y Zhang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China
| | - W Xiao
- Beijing Animal Husbandry Station, No. 15A Anwaibeiyuan Road, 100029, Beijing, China
| | - Y Wang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China.
| | - Y Yu
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
26
|
Suarez-Trujillo A, Luecke SM, Logan L, Bradshaw C, Stewart KR, Minor RC, Ramires Ferreira C, Casey TM. Changes in sow milk lipidome across lactation occur in fatty acyl residues of triacylglycerol and phosphatidylglycerol lipids, but not in plasma membrane phospholipids. Animal 2021; 15:100280. [PMID: 34252722 DOI: 10.1016/j.animal.2021.100280] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/26/2022] Open
Abstract
Milk fats are vital to neonate survival and development, but vary highly by diet, maternal metabolic state and stage of lactation. To gain a better understanding of changes in lipid composition of sow milk across lactation, milk was collected from nine multiparous sows on days 0, 3, 7, and 14, relative to birth and lipids were profiled using multiple reaction monitoring (MRM) profiling. Percent fat was determined by creamatocrit, and found to be different (P < 0.05) between day 0 (12.36 ± 5.90%) and day 3 (16.22 ± 3.65%) but not between day 7 (13.13 ± 2.19%) and day 14 (12.13 ± 2.45%). Fat was extracted from milk (n = 6/day) using the Bligh-Dyer method and profiled using tandem mass spectrometry MRM to determine the abundance of lipids defined by class and fatty acyl residue composition. Lipid species relative concentration was calculated from internal standards, and data analysis was performed using Metaboanalyst 4.0. Concentration of phosphatidyl-choline, -serine, -ethanolamine, -inositol, cholesteryl ester and sphingomyelin did not vary across lactation days, nor did the distribution of associated fatty acyl residues. The total abundance of triacylglycerides (TGs) and phosphatidylglycerols (PGs) increased (P < 0.05) from colostrum (day 0) to transitional (days 3 and 7) and mature milk (day 14). As lactation days increased from day 0 to day 14, the number of carbons and unsaturation within fatty acyl residues decreased (P < 0.05) in both TGs and PGs. The proportion of TGs and PGs increased (P < 0.05) relative to other lipid classes. Changes in composition of milk triglycerides and phosphatidylglycerols likely reflect the metabolic activity of the mammary gland and developmental needs of neonates.
Collapse
Affiliation(s)
- A Suarez-Trujillo
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - S M Luecke
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - L Logan
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - C Bradshaw
- Department of Animal Sciences, North Carolina A&T University, Greensboro, NC 27411, United States
| | - K R Stewart
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, United States
| | - R C Minor
- Department of Animal Sciences, North Carolina A&T University, Greensboro, NC 27411, United States
| | - C Ramires Ferreira
- Metabolomics Core, Bindley Science Center, Purdue University, West Lafayette, IN 47907, United States
| | - T M Casey
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
27
|
Walker RE, Parkhomenko V, Ying Y, Urrutia N, Harvatine KJ. Dietary SFAs and ω-6 Fatty Acids Alter Incorporation of ω-3 Fatty Acids into Milk Fat of Lactating CD-1 Mice and Tissues of Offspring. J Nutr 2021; 151:1834-1843. [PMID: 33982073 DOI: 10.1093/jn/nxab094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/13/2021] [Accepted: 03/15/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Methods to increase the amount of omega-3 (n-3) PUFAs in milk are desirable for neonatal health. The n-3 PUFA, α-linolenic acid (18:3n-3), can be elongated to EPA (20:5n-3) and DHA (22:6n-3). n-6 PUFAs suppress tissue n-3 PUFA incorporation, but the effect of SFAs is not clear. OBJECTIVES In this study, we compared the effects of SFAs and n-6 PUFAs on n-3 PUFA incorporation into milk and tissues of lactating mice and tissues of their offspring. METHODS Female CD-1 mice were bred at 8 wk of age. All experimental diets included 3% flaxseed oil and were begun on day 8 of lactation: low-fat diet (LFD); high-SFA diet (SAT), with an additional 12% saturated oil; or high-linoleic-acid diet (HLA), with 12% high-linoleic-acid oil (% kcal, carbohydrates:fat:protein: LFD, 49:24:27; both SAT and HLA, 35:46:19; n = 5/treatment). After 5 d, pup stomach milk clot FA profiles, tissue FA profiles in dams and pups, and mammary and hepatic expression of lipid metabolism genes in dams were analyzed. Data were analyzed by ANOVA with treatment diet as a fixed effect. RESULTS Dams in all groups had similar total milk fat concentrations, but both SAT and HLA decreased the concentration of n-3 PUFAs (SAT: -23%; HLA: -31%) compared with LFD, and HLA increased milk n-6 FAs by 347% compared with SAT. SAT pups had n-3 PUFA tissue concentrations similar to LFD, but HLA pups had lower n-3 PUFAs than SAT pups in multiple tissues (liver, -32%; kidney, -29%; heart, -28%; muscle, -18%). Mammary expression of lipid metabolism genes was mostly unchanged, but hepatic expression of elongases and desaturases was decreased with SAT compared with LFD [elongation of very-long-chain fatty acid (Elov)5, -42%; Elov6, -64%; fatty acid desaturase (Fads)1, -33%; Fads2, -44%]. CONCLUSIONS HLA decreased n-3 PUFA concentrations across multiple pup tissues compared with SAT. This suggests that high dietary n-6 PUFAs suppress n-3 PUFA incorporation in neonates.
Collapse
Affiliation(s)
- Rachel E Walker
- Department of Animal Sciences, The Pennsylvania State University, University Park, PA, USA.,Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Valentina Parkhomenko
- Department of Animal Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Yun Ying
- Department of Animal Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Natalie Urrutia
- Department of Animal Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Kevin J Harvatine
- Department of Animal Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
28
|
Yuan T, Wei W, Zhang X, Wang L, Dai X, Ren C, Wang X, Jin Q. Medium- and long-chain triacylglycerols composition in preterm and full-term human milk across different lactation stages. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110907] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Kortesniemi M, Slupsky CM, Aatsinki AK, Sinkkonen J, Karlsson L, Linderborg KM, Yang B, Karlsson H, Kailanto HM. Human milk metabolome is associated with symptoms of maternal psychological distress and milk cortisol. Food Chem 2021; 356:129628. [PMID: 33836356 DOI: 10.1016/j.foodchem.2021.129628] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/05/2021] [Accepted: 03/13/2021] [Indexed: 12/18/2022]
Abstract
The composition of human milk is subject to considerable variation, but the effects of maternal stress are largely unknown. We studied differences in human milk metabolome between Finnish mothers (n = 120, secretors) with symptoms of prenatal symptoms of psychological distress and milk cortisol concentrations. Human milk samples acquired at 2.5 months postpartum were analyzed using targeted 1H NMR metabolomics. Self-reported scores for depression (EPDS), overall anxiety (SCL-90), and pregnancy-related anxiety (PRAQ) were used to evaluate psychological distress. Prenatal psychological distress was positively associated with concentrations of short-chain fatty acids, caprate, and hypoxanthine (q < 0.0012). Milk cortisol was positively associated with lactate concentration (q < 0.05). Changes in the human milk metabolome were shown to be associated with maternal psychological distress and concentration of milk cortisol in a dissimilarly, suggesting alterations in bacterial and energy metabolism of the mother, respectively.
Collapse
Affiliation(s)
- Maaria Kortesniemi
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, Finland; Department of Nutrition, University of California Davis, Davis, CA, USA.
| | - Carolyn M Slupsky
- Department of Nutrition, University of California Davis, Davis, CA, USA; Department of Food Science and Technology, University of California Davis, Davis, CA, USA
| | - Anna-Katariina Aatsinki
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Finland
| | - Jari Sinkkonen
- Instrument Centre, Department of Chemistry, University of Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Finland; Department of Psychiatry, Turku University Hospital and University of Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Finland
| | - Kaisa M Linderborg
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Finland; Department of Psychiatry, Turku University Hospital and University of Turku, Finland; Centre for Population Health Research, Turku University Hospital and University of Turku, Finland
| | - Henna-Maria Kailanto
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Department of Clinical Medicine, University of Turku, Finland
| |
Collapse
|
30
|
Lv Y, Chen F, Zhang S, Chen J, Zhang Y, Tian M, Guan W. Metabolic Transition of Milk Triacylglycerol Synthesis in Response to Varying Levels of Three 18-Carbon Fatty Acids in Porcine Mammary Epithelial Cells. Int J Mol Sci 2021; 22:ijms22031294. [PMID: 33525494 PMCID: PMC7866201 DOI: 10.3390/ijms22031294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 12/19/2022] Open
Abstract
This study aimed to examine the effects of increasing levels of three 18-carbon fatty acids (stearate, oleate and linoleate) on mammary lipogenesis, and to evaluate their effects on the milk lipogenic pathway in porcine mammary epithelial cells (pMECs). We found that increasing the three of 18-carbon fatty acids enhanced the cellular lipid synthesis in a dose-dependent manner, as reflected by the increased (triacylglycerol) TAG content and cytosolic lipid droplets in pMECs. The increased lipid synthesis by the three 18-carbon fatty acids was probably caused by the up-regulated expression of major genes associated with milk fat biosynthesis, including CD36 (long chain fatty acid uptake); GPAM, AGPAT6, DGAT1 (TAG synthesis); PLIN2 (lipid droplet formation); and PPARγ (regulation of transcription). Western blot analysis of CD36, DGAT1 and PPARγ proteins confirmed this increase with the increasing incubation of 18-carbon fatty acids. Interestingly, the mRNA expressions of ACSL3 and FABP3 (fatty acids intracellular activation and transport) were differentially affected by the three 18-carbon fatty acids. The cellular mRNA expressions of ACSL3 and FABP3 were increased by stearate, but were decreased by oleate or linoleate. However, the genes involved in fatty acid de novo synthesis (ACACA and FASN) and the regulation of transcription (SREBP1) were decreased by incubation with increasing concentrations of 18-carbon fatty acids. In conclusion, our findings provided evidence that 18-carbon fatty acids (stearate, oleate and linoleate) significantly increased cytosolic TAG accumulation in a dose-dependent manner, probably by promoting lipogenic genes and proteins that regulate the channeling of fatty acids towards milk TAG synthesis in pMECs.
Collapse
Affiliation(s)
- Yantao Lv
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (F.C.); (S.Z.); (J.C.); (Y.Z.); (M.T.)
- Innovative Institute of Animal Healthy Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Fang Chen
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (F.C.); (S.Z.); (J.C.); (Y.Z.); (M.T.)
| | - Shihai Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (F.C.); (S.Z.); (J.C.); (Y.Z.); (M.T.)
| | - Jun Chen
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (F.C.); (S.Z.); (J.C.); (Y.Z.); (M.T.)
| | - Yinzhi Zhang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (F.C.); (S.Z.); (J.C.); (Y.Z.); (M.T.)
| | - Min Tian
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (F.C.); (S.Z.); (J.C.); (Y.Z.); (M.T.)
| | - Wutai Guan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; (Y.L.); (F.C.); (S.Z.); (J.C.); (Y.Z.); (M.T.)
- Correspondence: ; Tel./Fax: +86-020-85284837
| |
Collapse
|
31
|
Neonatal Mouse Gut Metabolites Influence Cryptosporidium parvum Infection in Intestinal Epithelial Cells. mBio 2020; 11:mBio.02582-20. [PMID: 33323514 PMCID: PMC7773987 DOI: 10.1128/mbio.02582-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cryptosporidium sp. occupies a unique intracellular niche that exposes the parasite to both host cell contents and the intestinal lumen, including metabolites from the diet and produced by the microbiota. Both dietary and microbial products change over the course of early development and could contribute to the changes seen in susceptibility to cryptosporidiosis in humans and mice. The protozoan parasite Cryptosporidium sp. is a leading cause of diarrheal disease in those with compromised or underdeveloped immune systems, particularly infants and toddlers in resource-poor localities. As an enteric pathogen, Cryptosporidium sp. invades the apical surface of intestinal epithelial cells, where it resides in close proximity to metabolites in the intestinal lumen. However, the effect of gut metabolites on susceptibility to Cryptosporidium infection remains largely unstudied. Here, we first identified which gut metabolites are prevalent in neonatal mice when they are most susceptible to Cryptosporidium parvum infection and then tested the isolated effects of these metabolites on C. parvum invasion and growth in intestinal epithelial cells. Our findings demonstrate that medium or long-chain saturated fatty acids inhibit C. parvum growth, perhaps by negatively affecting the streamlined metabolism in C. parvum, which is unable to synthesize fatty acids. Conversely, long-chain unsaturated fatty acids enhanced C. parvum invasion, possibly by modulating membrane fluidity. Hence, gut metabolites, either from diet or produced by the microbiota, influence C. parvum growth in vitro and may also contribute to the early susceptibility to cryptosporidiosis seen in young animals.
Collapse
|
32
|
Manoni M, Di Lorenzo C, Ottoboni M, Tretola M, Pinotti L. Comparative Proteomics of Milk Fat Globule Membrane (MFGM) Proteome across Species and Lactation Stages and the Potentials of MFGM Fractions in Infant Formula Preparation. Foods 2020; 9:E1251. [PMID: 32906730 PMCID: PMC7555516 DOI: 10.3390/foods9091251] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022] Open
Abstract
Milk is a lipid-in-water emulsion with a primary role in the nutrition of newborns. Milk fat globules (MFGs) are a mixture of proteins and lipids with nutraceutical properties related to the milk fat globule membrane (MFGM), which protects them, thus preventing their coalescence. Human and bovine MFGM proteomes have been extensively characterized in terms of their formation, maturation, and composition. Here, we review the most recent comparative proteomic analyses of MFGM proteome, above all from humans and bovines, but also from other species. The major MFGM proteins are found in all the MFGM proteomes of the different species, although there are variations in protein expression levels and molecular functions across species and lactation stages. Given the similarities between the human and bovine MFGM and the bioactive properties of MFGM components, several attempts have been made to supplement infant formulas (IFs), mainly with polar lipid fractions of bovine MFGM and to a lesser extent with protein fractions. The aim is thus to narrow the gap between human breast milk and cow-based IFs. Despite the few attempts made to date, supplementation with MFGM proteins seems promising as MFGM lipid supplementation. A deeper understanding of MFGM proteomes should lead to better results.
Collapse
Affiliation(s)
- Michele Manoni
- Department of Health, Animal Science and Food Safety, VESPA, University of Milan, 20134 Milan, Italy; (M.M.); (M.O.)
| | - Chiara Di Lorenzo
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy;
| | - Matteo Ottoboni
- Department of Health, Animal Science and Food Safety, VESPA, University of Milan, 20134 Milan, Italy; (M.M.); (M.O.)
| | - Marco Tretola
- Agroscope, Institute for Livestock Sciences, 1725 Posieux, Switzerland;
| | - Luciano Pinotti
- Department of Health, Animal Science and Food Safety, VESPA, University of Milan, 20134 Milan, Italy; (M.M.); (M.O.)
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20134 Milan, Italy
| |
Collapse
|
33
|
Sodium butyrate promotes milk fat synthesis in bovine mammary epithelial cells via GPR41 and its downstream signalling pathways. Life Sci 2020; 259:118375. [PMID: 32891612 DOI: 10.1016/j.lfs.2020.118375] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Short-chain fatty acids were reported to be the precursors of milk fat and can stimulate the de novo synthesis of fatty acids in bovine mammary epithelial cells (bMECs). However, the mechanism has not been elucidated. The purpose of this study was to investigate the effects of sodium butyrate (NaB) on milk fat synthesis in bMECs and explore its potential mechanism. METHODS Bovine mammary epithelial cells (bMECs) were isolated for subsequent experimental uses. BODIPY staining and triglyceride kit were used to detect the milk fat synthesis in bMECs. Western blotting and RT-PCR assays were performed to detect the expression of related genes in bMECs. Immunoprecipitation was used to detect the acetylation of SREBP1 in bMECs. RESULTS The results showed that NaB significantly promoted milk fat synthesis, promoted the activity of mechanistic target of rapamycin (mTOR) and S6 kinase (S6K), inhibited the activity of AMP-activated protein kinase (AMPK), and promoted the gene expression of G protein-coupled receptor 41 (GPR41). Knockdown of GPR41 and sterol regulatory element binding protein 1 (SREBP1) and overexpression of sirtuin1 (SIRT1), mTOR inhibitor (rapamycin), and AMPK activator (AICIR) eliminated these effects. These results indicated that NaB increased the nuclear translocation of SREBP1 via the GPR41/AMPK/mTOR/S6K signalling pathway, promoted the acetylation of mature SREBP1a via GPR41/AMPK/SIRT1, and then promoted milk fat synthesis. CONCLUSION Taken together, these results demonstrated that NaB increased nuclear translocation and acetylation of SREBP1 to promote milk fat synthesis by activating GPR41 and its downstream signalling pathways.
Collapse
|
34
|
Moderate High Caloric Maternal Diet Impacts Dam Breast Milk Metabotype and Offspring Lipidome in a Sex-Specific Manner. Int J Mol Sci 2020; 21:ijms21155428. [PMID: 32751478 PMCID: PMC7432416 DOI: 10.3390/ijms21155428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 01/29/2023] Open
Abstract
Lactation is a critical period during which maternal sub- or over-nutrition affect milk composition and offspring development that can have lasting health effects. The consequences of moderate high-fat, high-simple carbohydrate diet (WD) consumption by rat dams, during gestation and lactation, on milk composition and offspring blood lipidome and its growth, at weaning, were investigated by using a comprehensive lipidomic study on mass-spectrometric platform combined to targeted fatty- and free amino-acids analysis. This holistic approach allowed clear-cut differences in mature milk-lipidomic signature according to maternal diet with a similar content of protein, lactose and leptin. The lower WD-milk content in total fat and triglycerides (TGs), particularly in TGs-with saturated medium-chain, and higher levels in both sphingolipid (SL) and TG species with unsaturated long-chain were associated to a specific offspring blood-lipidome with decreased levels in TGs-containing saturated fatty acid (FA). The sexual-dimorphism in the FA-distribution in TG (higher TGs-rich in oleic and linoleic acids, specifically in males) and SL species (increased levels in very long-chain ceramides, specifically in females) could be associated with some differences that we observed between males and females like a higher total body weight gain in females and an increased preference for fatty taste in males upon weaning.
Collapse
|
35
|
Floris LM, Stahl B, Abrahamse-Berkeveld M, Teller IC. Human milk fatty acid profile across lactational stages after term and preterm delivery: A pooled data analysis. Prostaglandins Leukot Essent Fatty Acids 2020; 156:102023. [PMID: 31699594 DOI: 10.1016/j.plefa.2019.102023] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/18/2019] [Accepted: 10/15/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Lipids in human milk (HM) provide the majority of energy for developing infants, as well as crucial essential fatty acids (FA). The FA composition of HM is highly variable and influenced by multiple factors. We sought to increase understanding of the variation in HMFA profiles and their development over the course of lactation, and after term and preterm delivery, using a pooled data analysis. OBJECTIVE To review the literature and perform a pooled data analysis to qualitatively describe an extensive FA profile (36 FAs) in term and preterm colostrum, transitional - and mature milk up to 60 days postpartum. DESIGN A Medline search was conducted for HMFA profile data following term or preterm delivery. The search was confined to English language papers published between January 1980 and August 2018. Studies reporting original data, extensive FA profiles in HM from healthy mothers were included. Weighted least squares (WLS) means were calculated from the pooled data using random or fixed effect models. RESULTS Our pooled data analysis included data from 55 studies worldwide, for a total of 4374 term milk samples and 1017 preterm milk samples, providing WLS means for 36 FAs. Patterns in both term and preterm milk were apparent throughout lactation for some FAs: The most abundant FAs (palmitic, linoleic and oleic acid) remained stable over time, whereas several long-chain polyunsaturated FAs (including ARA and DHA) seemed to decrease and short- and medium-chain FAs increased over time. CONCLUSIONS High heterogeneity between individual studies was observed for the reported levels of some FAs, whereas other FAs were remarkably consistent between studies. Our pooled data suggests that specific FA categories fluctuate according to distinct patterns over the course of lactation; many of these patterns are comparable between term and preterm milk.
Collapse
Affiliation(s)
- L M Floris
- Danone Nutricia Research, Utrecht, 3584 CT, the Netherlands
| | - B Stahl
- Danone Nutricia Research, Utrecht, 3584 CT, the Netherlands; Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, the Netherlands.
| | | | - I C Teller
- Danone Nutricia Research, Utrecht, 3584 CT, the Netherlands
| |
Collapse
|
36
|
Karcz K, Królak-Olejnik B. Vegan or vegetarian diet and breast milk composition - a systematic review. Crit Rev Food Sci Nutr 2020; 61:1081-1098. [PMID: 32319307 DOI: 10.1080/10408398.2020.1753650] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
It is known that nutritional composition of breast milk is, to a certain extent, related to maternal diet. The question of nutritional adequacy of mothers' milk is often raised whenever a vegetarian or vegan diet during the lactation process is concerned. For this reason, in some countries, the recruitment of vegan lactating women as milk donors is excluded by milk banks. The purpose of this systematic review is to summarize existing knowledge on variability of specific nutrients in breastmilk of mothers adhering to a plant-based diet. The databases, including MEDLINE (Pubmed) and Scopus, were used to identify relevant publications. Data extraction and analysis were conducted following a PRISMA protocol. Thirteen publications concerning the impact of dietary pattern and levels of animal-origin food intake on breast milk composition were included. The systematic review has shown that all non-vegetarian, vegetarian and vegan mothers produce breast milk of comparable nutritional value. Several differences are primarily attributed to fatty acids and some micro-components, primarily vitamin B12. Regardless of dietary choices, nourishment and adequate nutrition have a significant impact on human milk composition - on the basis of the current evidence, vegetarian and vegan mothers are capable of producing nutritionally valuable milk for their infants, as far as the appropriate supplementation compensating for breastfeeding mother's nutritional requirements is provided. Dietary choices should not be a permanent exclusion criterion for donor candidates in human milk banks.
Collapse
Affiliation(s)
- Karolina Karcz
- Department and Clinic of Neonatology, Wroclaw Medical University, Wroclaw, Poland
| | | |
Collapse
|
37
|
Robblee MM, Boisclair YR, Bauman DE, Harvatine KJ. Dietary Fat Does Not Overcome
trans
‐10,
cis
‐12 Conjugated Linoleic Acid Inhibition of Milk Fat Synthesis in Lactating mice. Lipids 2020; 55:201-212. [DOI: 10.1002/lipd.12228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/11/2020] [Accepted: 01/12/2020] [Indexed: 01/22/2023]
Affiliation(s)
- Megan M. Robblee
- Department of Animal ScienceCornell University Ithaca NY 14853 USA
| | | | - Dale E. Bauman
- Department of Animal ScienceCornell University Ithaca NY 14853 USA
| | - Kevin J. Harvatine
- Department of Animal ScienceCornell University Ithaca NY 14853 USA
- Department of Animal SciencePenn State University University Park PA 16802 USA
| |
Collapse
|
38
|
Triacylglycerol containing medium-chain fatty acids (MCFA-TAG): The gap between human milk and infant formulas. Int Dairy J 2019. [DOI: 10.1016/j.idairyj.2019.104545] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
39
|
Piccinin E, Morgano A, Peres C, Contursi A, Bertrand-Michel J, Arconzo M, Guillou H, Villani G, Moschetta A. PGC-1α induced browning promotes involution and inhibits lactation in mammary glands. Cell Mol Life Sci 2019; 76:5011-5025. [PMID: 31154462 PMCID: PMC11105553 DOI: 10.1007/s00018-019-03160-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 12/17/2022]
Abstract
The PPARγ coactivator 1α (PGC-1α) is a transcriptional regulator of mitochondrial biogenesis and oxidative metabolism. Recent studies have highlighted a fundamental role of PGC-1α in promoting breast cancer progression and metastasis, but the physiological role of this coactivator in the development of mammary glands is still unknown. First, we show that PGC-1α is highly expressed during puberty and involution, but nearly disappeared in pregnancy and lactation. Then, taking advantage of a newly generated transgenic mouse model with a stable and specific overexpression of PGC-1α in mammary glands, we demonstrate that the re-expression of this coactivator during the lactation stage leads to a precocious regression of the mammary glands. Thus, we propose that PGC-1α action is non-essential during pregnancy and lactation, whereas it is indispensable during involution. The rapid preadipocyte-adipocyte transition, together with an increased rate of apoptosis promotes a premature mammary glands involution that cause lactation defects and pup growth retardation. Overall, we provide new insights in the comprehension of female reproductive cycles and lactation deficiency, thus opening new roads for mothers that cannot breastfeed.
Collapse
Affiliation(s)
- Elena Piccinin
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, Bari, Italy
| | - Annalisa Morgano
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, Bari, Italy
| | - Claudia Peres
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, Bari, Italy
- INBB, National Institute for Biostuctures and Biosystems, Rome, Italy
| | - Annalisa Contursi
- Department of Neuroscience, Imaging and Clinical Sciences and Center for Research on Aging and Translational Medicine (CeSI-MeT), "G. d'Annunzio" University of Chieti, Chieti, Italy
| | - Justine Bertrand-Michel
- MetaToul-Lipidomic Facility-MetaboHUB, INSERM UMR1048, Institute of Cardiovascular and Metabolic Diseases, Université Paul Sabatier, Toulouse, France
| | - Maria Arconzo
- INBB, National Institute for Biostuctures and Biosystems, Rome, Italy
| | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, UMR1331 INRA, ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Gaetano Villani
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, "Aldo Moro" University of Bari, Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, "Aldo Moro" University of Bari, Bari, Italy.
- National Cancer Center, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy.
| |
Collapse
|
40
|
Pomar CA, Kuda O, Kopecky J, Rombaldova M, Castro H, Picó C, Sánchez J, Palou A. Maternal diet, rather than obesity itself, has a main influence on milk triacylglycerol profile in dietary obese rats. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158556. [PMID: 31678620 DOI: 10.1016/j.bbalip.2019.158556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 01/31/2023]
Abstract
Triacylglycerols (TG) in milk derive from different sources, and their composition may be influenced by both maternal diet and obesity. We used two rat models to ascertain potential changes in TG composition in milk associated to maternal intake of an obesogenic diet during lactation and to distinguish them from the effects attributable to maternal adiposity. Milk samples were obtained from dams fed a cafeteria diet during lactation (CAF) and from dams made obese by cafeteria diet feeding, with dietary normalization before gestation (PCaf). Levels of specific TG species in milk collected at different time points of lactation were determined by shotgun lipidomics. CAF and PCaf dams presented a greater adiposity than their respective controls. The principal component analysis of TG peaks showed a clear separation between milk from CAF dams and milk from control and Pcaf dams, already evident at 5 days of lactation. Milk from CAF dams was enriched with TG species with greater number of carbons and double bonds and reduced in TG with lower number of carbons. TG composition of milk from Pcaf dams was similar to controls, although specific differences were observed at day 5 of lactation. Thus, the intake of a cafeteria diet during lactation, rather than maternal adiposity, alters milk composition. This effect is avoided with dietary normalization before gestation, although the remaining fat reserves may also influence TG composition at initial stages of lactation. Therefore, normalization of maternal diet prior to pregnancy should be considered as a strategy for achieving optimal milk composition.
Collapse
Affiliation(s)
- C A Pomar
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), Palma de Mallorca, Spain; University of the Balearic Islands and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain; Instituto de Investigación Sanitaria Illes Balears, Palma de Mallorca, Spain
| | - O Kuda
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - J Kopecky
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - M Rombaldova
- Department of Adipose Tissue Biology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - H Castro
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), Palma de Mallorca, Spain; Universidad Autónoma de Nuevo León, Facultad de Salud Pública y Nutrición, Nuevo León, Mexico
| | - C Picó
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), Palma de Mallorca, Spain; University of the Balearic Islands and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain; Instituto de Investigación Sanitaria Illes Balears, Palma de Mallorca, Spain
| | - J Sánchez
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), Palma de Mallorca, Spain; University of the Balearic Islands and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain; Instituto de Investigación Sanitaria Illes Balears, Palma de Mallorca, Spain.
| | - A Palou
- Laboratory of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics and Obesity), Palma de Mallorca, Spain; University of the Balearic Islands and CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Palma de Mallorca, Spain; Instituto de Investigación Sanitaria Illes Balears, Palma de Mallorca, Spain
| |
Collapse
|
41
|
Positive relationship between consumption of specific fish type and n-3 PUFA in milk of Hong Kong lactating mothers. Br J Nutr 2019; 121:1431-1440. [PMID: 30975227 DOI: 10.1017/s0007114519000801] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Residents of Hong Kong have undergone a dietary transition from a traditional Chinese diet that is high in seafood to a more Western diet. This may have affected the nutritional composition of breast milk of Hong Kong mothers. The present study aims to investigate the relationship between the dietary pattern and the fatty acid profile of the breast milk of lactating women in Hong Kong. Seventy-three volunteering healthy Hong Kong lactating mothers participated in the study. Their dietary intakes were assessed by using a 3-d dietary record and FFQ. The mean n-3 fatty acid levels were approximately 0·4 % (EPA) and 0·9 % (DHA) of total fatty acids in the breast milk of lactating mothers who had exclusively breastfed their infants aged 2-6 months. Maternal dietary intakes of n-3 fatty acids were positively associated with their levels in the breast milk. The levels of maternal intakes of freshwater and saltwater fish, especially the consumption of salmon, croaker and mandarin, were significantly correlated with the content of DHA in breast milk. The present study is among the very few in the literature to determine the fatty acid profile of breast milk in Hong Kong populations and verify certain dietary factors that influence this profile. High levels of n-3 PUFA, especially DHA, were observed in the breast milk of Hong Kong lactating women. The findings may serve as a dietary reference for lactating mothers to optimise the fatty acid profile of their breast milk.
Collapse
|
42
|
Xavier JLP, Scomparin DX, Pontes CC, Ribeiro PR, Cordeiro MM, Marcondes JA, Mendonça FO, Silva MTD, Oliveira FBD, Franco GCN, Grassiolli S. Litter Size Reduction Induces Metabolic and Histological Adjustments in Dams throughout Lactation with Early Effects on Offspring. AN ACAD BRAS CIENC 2019; 91:e20170971. [PMID: 30916150 DOI: 10.1590/0001-3765201920170971] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/07/2018] [Indexed: 01/08/2023] Open
Abstract
In the present study we analyzed morphological and metabolic alterations in dams nursing small litters and their consequences to offspring throughout lactation. Offspring sizes were adjusted to Small Litter (SL, 3 pups/ dam) and Normal Litter (NL, 9 pups/ dam). Body weight, food intake, white adipose tissue (WAT) content, histological analysis of the pancreas, mammary gland (MG) and brown adipose tissue (BAT) as well as, plasma parameters and milk composition were measured in dams and pups on the 7th, 14th and 21st days of lactation. In general, SL-dams presented higher body weight and retroperitoneal fat content, elevated fat infiltration in BAT, reduced islets size and hyperglycemia throughout lactation in relation to NL-dams (p<0.05). Moreover, MG from SL-dams had reduced alveoli development and high adipocytes content, resulting in milk with elevated energetic value and fat content in relation to NL-dams (p<0.05). Maternal states influenced offspring anthropometric conditions during lactation, offspring-SL displayed higher body weight and growth, hyperglycemia, augmented lipid deposition in BAT and elevated islet. Thus, maternal histological and metabolic changes are due to modifications to nursing small litters and reinforce the importance of preserving maternal health during lactation avoiding early programming effects on offspring preventing metabolic consequences later in life.
Collapse
Affiliation(s)
- João Lucas P Xavier
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Dionizia X Scomparin
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Catherine C Pontes
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Paulo Roberto Ribeiro
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Maiara M Cordeiro
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Jessica A Marcondes
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Felipe O Mendonça
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Makcine T da Silva
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Fabio B de Oliveira
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Gilson C N Franco
- Departamento de Biologia Geral, Universidade Estadual de Ponta Grossa, Avenida Carlos Cavalcanti, 4748, Uvaranas, 84030-900 Ponta Grossa, PR, Brazil
| | - Sabrina Grassiolli
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Rua Universitária, 2069, Jardim Universitário, 85819-110 Cascavel, PR, Brazil
| |
Collapse
|
43
|
Le Guillou S, Laubier J, Péchoux C, Aujean E, Castille J, Leroux C, Le Provost F. Defects of the endoplasmic reticulum and changes to lipid droplet size in mammary epithelial cells due to miR-30b-5p overexpression are correlated to a reduction in Atlastin 2 expression. Biochem Biophys Res Commun 2019; 512:283-288. [PMID: 30879769 DOI: 10.1016/j.bbrc.2019.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/03/2019] [Indexed: 10/27/2022]
Abstract
During lactation, mammary epithelial cells secrete fat in the form of milk fat globules that originate from intracellular lipid droplets. These droplets may form de novo from the endoplasmic reticulum or be derived from existing lipid droplets; they then either grow because enzymes of triacylglycerol synthesis relocate from the reticulum to their surface, or due to fusion and fission with other droplets. The overexpression of miR-30b-5p in the developing mouse mammary gland impairs lactation, which includes an increase in lipid droplet size. This study was performed to understand the origin of this defect affecting lipid droplets observed in transgenic mice. Electron microscopy analyses revealed a fragmented and discontinued tubular network of endoplasmic reticulum in the mammary epithelial cells of transgenic mice. The milk fatty acid composition was modified, with lower levels of medium-chain saturated fatty acids and a proportional increase in long-chain monounsaturated fatty acids in transgenic versus wild-type mice. Further, investigations of microRNA targets revealed a significant downregulation of ATLASTIN 2 (a GTPase described as playing a key role in lipid droplet formation) due to miR-30b-5p overexpression. Our results suggest that the increase in lipid droplet size observed in the mammary epithelial cells of transgenic mice might result from changes to lipid droplet formation and secretion because of direct modifications to Atl2 expression and indirect changes to endoplasmic reticulum morphology resulting from the overexpression of miR-30b-5p.
Collapse
Affiliation(s)
- Sandrine Le Guillou
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Johann Laubier
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Christine Péchoux
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Etienne Aujean
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Johan Castille
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| | - Christine Leroux
- INRA, UMR1213 Herbivores, F-63122, Saint Genès Champanelle, France; UC Davis, Food Science and Technology Department, Davis, CA, 95616, USA.
| | - Fabienne Le Provost
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
44
|
Wang F, Shi H, Wang S, Wang Y, Cao Z, Li S. Amino Acid Metabolism in Dairy Cows and their Regulation in Milk Synthesis. Curr Drug Metab 2019; 20:36-45. [DOI: 10.2174/1389200219666180611084014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/14/2018] [Accepted: 04/17/2018] [Indexed: 12/24/2022]
Abstract
Background:
Reducing dietary Crude Protein (CP) and supplementing with certain Amino Acids (AAs)
has been known as a potential solution to improve Nitrogen (N) efficiency in dairy production. Thus understanding
how AAs are utilized in various sites along the gut is critical.
Objective:
AA flow from the intestine to Portal-drained Viscera (PDV) and liver then to the mammary gland was
elaborated in this article. Recoveries in individual AA in PDV and liver seem to share similar AA pattern with input:
output ratio in mammary gland, which subdivides essential AA (EAA) into two groups, Lysine (Lys) and Branchedchain
AA (BCAA) in group 1, input: output ratio > 1; Methionine (Met), Histidine (His), Phenylalanine (Phe) etc. in
group 2, input: output ratio close to 1. AAs in the mammary gland are either utilized for milk protein synthesis or
retained as body tissue, or catabolized. The fractional removal of AAs and the number and activity of AA transporters
together contribute to the ability of AAs going through mammary cells. Mammalian Target of Rapamycin
(mTOR) pathway is closely related to milk protein synthesis and provides alternatives for AA regulation of milk
protein synthesis, which connects AA with lactose synthesis via α-lactalbumin (gene: LALBA) and links with milk
fat synthesis via Sterol Regulatory Element-binding Transcription Protein 1 (SREBP1) and Peroxisome Proliferatoractivated
Receptor (PPAR).
Conclusion:
Overall, AA flow across various tissues reveals AA metabolism and utilization in dairy cows on one
hand. While the function of AA in the biosynthesis of milk protein, fat and lactose at both transcriptional and posttranscriptional
level from another angle provides the possibility for us to regulate them for higher efficiency.
Collapse
Affiliation(s)
- Feiran Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Haitao Shi
- Ministry of Education Key Laboratory of Conservation & Utilization of Qinghai-Tibetan Plateau Animal Genetic Resources, Southwest Minzu University, Chengdu, 610041, China
| | - Shuxiang Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
45
|
Yuan T, Qi C, Dai X, Xia Y, Sun C, Sun J, Yu R, Zhou Q, Jin Q, Wei W, Wang X. Triacylglycerol Composition of Breast Milk during Different Lactation Stages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2272-2278. [PMID: 30706708 DOI: 10.1021/acs.jafc.8b06554] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Triacylglycerol (TAG) composition of breast milk plays an important role in improving digestion, absorption, and metabolism when consumed by infants. This study characterized the TAG profile of human colostrum, transitional, and mature milk samples from 103 women. Significant differences in the TAGs composition of breast milk fat from three lactation stages were observed. The TAGs with high molecular weight and unsaturated fatty acid (such as 1,3-olein-2-palmitin (OPO) and 1(3)-olein-2-palmitin-3(1)-linolein (OPL)) were enriched in colostrum, while the TAGs containing medium-chain fatty acids were more abundant in transitional and mature milk than that in colostrum. Of note, OPL was the most common TAG in breast milk of Chinese women while the most common TAG in breast milk of Western women was OPO. This data will promote the development of infant formulas in terms of the TAG composition more suitable for infants.
Collapse
Affiliation(s)
- Tinglan Yuan
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Ce Qi
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Xinyue Dai
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Yuan Xia
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Cong Sun
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
- College of Food Science and Technology , Henan University of Technology , Lianhua Street 100 , Zhengzhou 450001 , P. R. China
| | - Jin Sun
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Renqiang Yu
- Department of Newborn , Wuxi Maternity and Child Health Hospital Affiliated to Nanjing Medical University , Wuxi 214002 , P. R. China
| | - Qin Zhou
- Department of Newborn , Wuxi Maternity and Child Health Hospital Affiliated to Nanjing Medical University , Wuxi 214002 , P. R. China
| | - Qingzhe Jin
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Wei Wei
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| | - Xingguo Wang
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology , Jiangnan University , Wuxi 214122 , P. R. China
| |
Collapse
|
46
|
Tremblay M, Kammer M, Lange H, Plattner S, Baumgartner C, Stegeman J, Duda J, Mansfeld R, Döpfer D. Prediction model optimization using full model selection with regression trees demonstrated with FTIR data from bovine milk. Prev Vet Med 2019; 163:14-23. [DOI: 10.1016/j.prevetmed.2018.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/19/2018] [Accepted: 12/18/2018] [Indexed: 10/27/2022]
|
47
|
Mesilati-Stahy R, Argov-Argaman N. Changes in lipid droplets morphometric features in mammary epithelial cells upon exposure to non-esterified free fatty acids compared with VLDL. PLoS One 2018; 13:e0209565. [PMID: 30596687 PMCID: PMC6312266 DOI: 10.1371/journal.pone.0209565] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/07/2018] [Indexed: 12/28/2022] Open
Abstract
The effects of the macrostructure of long chain fatty acids on the lipid metabolism and biosynthesis of lipid droplets (LD) was studied in mammary epithelial cells (MEC). MEC were exposed to similar compositions and concentrations of fatty acids in the form of either triglycerides (Tg), as part of the very-low-density lipids (VLDL) isolated from lactating cow plasma, or as non-esterified- free fatty acids (FFA). Exposing MEC to FFA resulted in two distinct processes; each independently could increase LD size: an elevation in Tg production and alterations in phospholipid (PL) composition. In particular, the lower PC/PE ratio in the FFA treatment indicated membrane destabilization, which was concomitant with the biosynthesis of larger LD. In addition, 6 fold increase in the cellular concentration of the exogenously added linoleic acid (C18:2) was found in MEC treated with FFA, implying that long chain fatty acids administrated as FFA have higher availability to MEC, enabling greater PL synthesis, more material for the LD envelope, thereby enhancing LD formation. Availability of long chain fatty acids administrated as VLDL-Tg, is dependent on LPL which its activity can be inhibited by the hydrolysis products. Therefore, we used increasing concentrations of albumin, to reduce the allosteric inhibition on LPL by the hydrolysis products. Indeed, a combined treatment of VLDL and albumin, increased LD size and number, similar to the phenotype found in the FFA treatment. These results reveal the role played by the macrostructure of long chain fatty acids in the regulation of LD size in MEC which determine the size of the secreted MFG.
Collapse
Affiliation(s)
- Ronit Mesilati-Stahy
- The Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, The Hebrew University of Jerusalem Israel
| | - Nurit Argov-Argaman
- The Department of Animal Science, The Robert H. Smith Faculty of Agriculture, Food and Environment, Rehovot, The Hebrew University of Jerusalem Israel
| |
Collapse
|
48
|
Giuffrida F, Marmet C, Tavazzi I, Fontannaz P, Sauser J, Lee LY, Destaillats F. Quantification of 1,3-olein-2-palmitin (OPO) and Palmitic Acid in sn-2 Position of Triacylglycerols in Human Milk by Liquid Chromatography Coupled with Mass Spectrometry. Molecules 2018; 24:molecules24010022. [PMID: 30577597 PMCID: PMC6337272 DOI: 10.3390/molecules24010022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 01/28/2023] Open
Abstract
This study describes the identification and quantification of fatty acids in the sn-2 position of triacylglycerols (TAG) and of the most abundant TAG regioisomers in human milk by liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS). Over 300 individual TAG species were observed and 1,3-olein-2-palmitin (OPO) was identified as the most abundant TAG regioisomer. Validation of the HPLC-HRMS method showed repeatability and intermediate reproducibility values ranging from 3.1 to 16.6% and 4.0 to 20.7%, respectively, and accuracy ranging from 75 to 97%. Results obtained by the HPLC-HRMS method were comparable to results from the ISO 6800 method for the quantification of palmitic acid in the sn-2 position of TAG (81.4 and 81.8 g 100 g−1 total palmitic acid, respectively). Processing the data obtained with the HPLC-HRMS method is extremely time consuming and, therefore, a targeted method suitable for the quantification of OPO in human milk samples by ultra-performance (UP) LC coupled with triple quadrupole (QQQ) MS was developed and validated. OPO identification and quantification by UPLC-QQQ were based on nominal mass and a fragmentation pattern obtained by multiple reaction monitoring experiments. The method was validated in terms of accuracy and precision by analyzing different aliquots of the same human milk sample over time and comparing the results with values obtained by HPLC-HRMS. Intermediate reproducibility was <15% and trueness comparable to HPLC-HRMS. Quantification of OPO in human milk samples collected at 30, 60 and 120 days postpartum showed that OPO content varies between 333 ± 11.8 and 383 ± 18.0 mg 100mL−1.
Collapse
Affiliation(s)
| | - Cynthia Marmet
- Nestlé Research, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland.
| | - Isabelle Tavazzi
- Nestlé Research, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland.
| | - Patric Fontannaz
- Nestlé Research, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland.
| | - Julien Sauser
- Nestlé Research, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland.
| | - Le Ye Lee
- The Children's Medical Institute, National University Hospital, Singapore 637551, Singapore.
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 637551, Singapore.
| | | |
Collapse
|
49
|
Garwolińska D, Namieśnik J, Kot-Wasik A, Hewelt-Belka W. Chemistry of Human Breast Milk-A Comprehensive Review of the Composition and Role of Milk Metabolites in Child Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11881-11896. [PMID: 30247884 DOI: 10.1021/acs.jafc.8b04031] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Early nutrition has an enormous influence on a child's physiological function, immune system maturation, and cognitive development. Human breast milk (HBM) is recognized as the gold standard for human infant nutrition. According to a WHO report, breastfeeding is considered as an unequaled way of providing ideal food to the infant, which is required for his healthy growth and development. HBM contains various macronutrients (carbohydrates, proteins, lipids, and vitamins) as well as numerous bioactive compounds and interactive elements (growth factors, hormones, cytokines, chemokines, and antimicrobial compounds. The aim of this review is to summarize and discuss the current knowledge about metabolites, which are the least understood components of HBM, and their potential role in infant development. We focus on small metabolites (<1500 Da) and characterize the chemical structure and biological function of polar metabolites such as human milk oligosaccharides, nonprotein molecules containing nitrogen (creatine, amino acids, nucleotides, polyamines), and nonpolar lipids. We believe that this manuscript will provide a comprehensive insight into a HBM metabolite composition, chemical structure, and their role in a child's early life nutrition.
Collapse
Affiliation(s)
- Dorota Garwolińska
- Department of Analytical Chemistry, Faculty of Chemistry , Gdańsk University of Technology , Gabriela Narutowicza 11/12 , 80-233 Gdańsk , Poland
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry , Gdańsk University of Technology , Gabriela Narutowicza 11/12 , 80-233 Gdańsk , Poland
| | - Agata Kot-Wasik
- Department of Analytical Chemistry, Faculty of Chemistry , Gdańsk University of Technology , Gabriela Narutowicza 11/12 , 80-233 Gdańsk , Poland
| | - Weronika Hewelt-Belka
- Department of Analytical Chemistry, Faculty of Chemistry , Gdańsk University of Technology , Gabriela Narutowicza 11/12 , 80-233 Gdańsk , Poland
| |
Collapse
|
50
|
Yang D, Huynh H, Wan Y. Milk lipid regulation at the maternal-offspring interface. Semin Cell Dev Biol 2018; 81:141-148. [PMID: 29051053 PMCID: PMC5916746 DOI: 10.1016/j.semcdb.2017.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/12/2017] [Indexed: 12/19/2022]
Abstract
Milk lipids provide a large proportion of energy, nutrients, essential fatty acids, and signaling molecules for the newborns, the synthesis of which is a tightly controlled process. Dysregulated milk lipid production and composition may be detrimental to the growth, development, health and survival of the newborns. Many genetically modified animal models have contributed to our understanding of milk lipid regulation in the lactating mammary gland. In this review, we discuss recent advances in our knowledge of the mechanisms that control milk lipid biosynthesis and secretion during lactation, and how maternal genetic and dietary defects impact milk lipid composition and consequently offspring traits.
Collapse
Affiliation(s)
- Dengbao Yang
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - HoangDinh Huynh
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yihong Wan
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|