1
|
Transcriptome analysis of gills reveals novel insights into the molecular response of stinging catfish (Heteropneustes fossilis) to environmental hypertonicity. Gene 2022; 851:147044. [DOI: 10.1016/j.gene.2022.147044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022]
|
2
|
Takvam M, Wood CM, Kryvi H, Nilsen TO. Ion Transporters and Osmoregulation in the Kidney of Teleost Fishes as a Function of Salinity. Front Physiol 2021; 12:664588. [PMID: 33967835 PMCID: PMC8098666 DOI: 10.3389/fphys.2021.664588] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Euryhaline teleosts exhibit major changes in renal function as they move between freshwater (FW) and seawater (SW) environments, thus tolerating large fluctuations in salinity. In FW, the kidney excretes large volumes of water through high glomerular filtration rates (GFR) and low tubular reabsorption rates, while actively reabsorbing most ions at high rates. The excreted product has a high urine flow rate (UFR) with a dilute composition. In SW, GFR is greatly reduced, and the tubules reabsorb as much water as possible, while actively secreting divalent ions. The excreted product has a low UFR, and is almost isosmotic to the blood plasma, with Mg2+, SO42–, and Cl– as the major ionic components. Early studies at the organismal level have described these basic patterns, while in the last two decades, studies of regulation at the cell and molecular level have been implemented, though only in a few euryhaline groups (salmonids, eels, tilapias, and fugus). There have been few studies combining the two approaches. The aim of the review is to integrate known aspects of renal physiology (reabsorption and secretion) with more recent advances in molecular water and solute physiology (gene and protein function of transporters). The renal transporters addressed include the subunits of the Na+, K+- ATPase (NKA) enzyme, monovalent ion transporters for Na+, Cl–, and K+ (NKCC1, NKCC2, CLC-K, NCC, ROMK2), water transport pathways [aquaporins (AQP), claudins (CLDN)], and divalent ion transporters for SO42–, Mg2+, and Ca2+ (SLC26A6, SLC26A1, SLC13A1, SLC41A1, CNNM2, CNNM3, NCX1, NCX2, PMCA). For each transport category, we address the current understanding at the molecular level, try to synthesize it with classical knowledge of overall renal function, and highlight knowledge gaps. Future research on the kidney of euryhaline fishes should focus on integrating changes in kidney reabsorption and secretion of ions with changes in transporter function at the cellular and molecular level (gene and protein verification) in different regions of the nephrons. An increased focus on the kidney individually and its functional integration with the other osmoregulatory organs (gills, skin and intestine) in maintaining overall homeostasis will have applied relevance for aquaculture.
Collapse
Affiliation(s)
- Marius Takvam
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,NORCE, Norwegian Research Centre, NORCE Environment, Bergen, Norway
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Harald Kryvi
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Tom O Nilsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway.,NORCE, Norwegian Research Centre, NORCE Environment, Bergen, Norway
| |
Collapse
|
3
|
Zhang S, Zhou J, Zhang Y, Liu T, Friedel P, Zhuo W, Somasekharan S, Roy K, Zhang L, Liu Y, Meng X, Deng H, Zeng W, Li G, Forbush B, Yang M. The structural basis of function and regulation of neuronal cotransporters NKCC1 and KCC2. Commun Biol 2021; 4:226. [PMID: 33597714 PMCID: PMC7889885 DOI: 10.1038/s42003-021-01750-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/22/2021] [Indexed: 11/08/2022] Open
Abstract
NKCC and KCC transporters mediate coupled transport of Na++K++Cl- and K++Cl- across the plasma membrane, thus regulating cell Cl- concentration and cell volume and playing critical roles in transepithelial salt and water transport and in neuronal excitability. The function of these transporters has been intensively studied, but a mechanistic understanding has awaited structural studies of the transporters. Here, we present the cryo-electron microscopy (cryo-EM) structures of the two neuronal cation-chloride cotransporters human NKCC1 (SLC12A2) and mouse KCC2 (SLC12A5), along with computational analysis and functional characterization. These structures highlight essential residues in ion transport and allow us to propose mechanisms by which phosphorylation regulates transport activity.
Collapse
Affiliation(s)
- Sensen Zhang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jun Zhou
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuebin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Tianya Liu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Perrine Friedel
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Wei Zhuo
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Suma Somasekharan
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kasturi Roy
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Laixing Zhang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yang Liu
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xianbin Meng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenwen Zeng
- Center for Life Sciences, Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Guohui Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Biff Forbush
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| | - Maojun Yang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Saba M, Davoodabadi A, Ghaffari A, Gilasi H, Haghpanah B. Combination adjunctive nebulized furosemide and salbutamol versus single agent therapy in COPD patients: A randomized controlled trial. Ann Med Surg (Lond) 2020; 57:85-90. [PMID: 32728436 PMCID: PMC7381425 DOI: 10.1016/j.amsu.2020.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 11/02/2022] Open
Abstract
Background COPD patients often require multiple therapies to enhance their lung function and reduce their symptoms in exacerbations. This study aimed to investigate the relative effects of combination adjunctive nebulized furosemide and salbutamol therapy versus single agent treatment in COPD patients. Methods Sixty-nine COPD patients were randomly divided into two groups. The first group (G1, 34 cases) received salbutamol in their first episode. The second group (G2, 35 cases) received furosemide in their first episode. Spirometry indices (FEV1, FVC, and FEV1/FVC), mMRC and BORG (COPD assessment) were assessed and recorded for all patients.To study the efficacy of combination adjunctive therapy, in 2nd episodes, the nebulized furosemide was added to nebulized salbutamol in the G1, and nebulized salbutamol was added to nebulized furosemide in G2. The aforementioned indices were then re-assessed. Results The mean age was (64.92 ± 11.71 years, 55% males. The use of nebulized furosemide and salbutamol as single agents slightly improved the spirometeric parameters, but it was not noteworthy compared to the significant improvement of the FEV1, FVC, FEV1/FVC, mMRC, and Borg parameters with combination therapy (p-value< 0.001). In the first episode, there was no difference in spirometeric indices, between groups (p-value > 0.1), so furosemide is considered as effective as nebulized salbutamol. Also, the results of sequential drugs administration, in the two groups was similar. Conclusion Conjunction of nebulized furosemide and salbutamol is more effective than single therapy and can be considered as preferred drug regimen without any reported side effect in the treatment of COPD.
Collapse
Affiliation(s)
| | | | - Azin Ghaffari
- Internal Medicine, Shahid Beheshti Hospital, Kashan, Iran
| | - Hamidreza Gilasi
- Departments of Epidemiology & Biostatistics, Kashan University of Medical Sciences, Kashan, Iran
| | - Babak Haghpanah
- Orthopedic Surgery, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
Lykke K, Assentoft M, Hørlyck S, Helms HC, Stoica A, Toft-Bertelsen TL, Tritsaris K, Vilhardt F, Brodin B, MacAulay N. Evaluating the involvement of cerebral microvascular endothelial Na +/K +-ATPase and Na +-K +-2Cl - co-transporter in electrolyte fluxes in an in vitro blood-brain barrier model of dehydration. J Cereb Blood Flow Metab 2019; 39:497-512. [PMID: 28994331 PMCID: PMC6421245 DOI: 10.1177/0271678x17736715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The blood-brain barrier (BBB) is involved in brain water and salt homeostasis. Blood osmolarity increases during dehydration and water is osmotically extracted from the brain. The loss of water is less than expected from pure osmotic forces, due to brain electrolyte accumulation. Although the underlying molecular mechanisms are unresolved, the current model suggests the luminally expressed Na+-K+-2Cl- co-transporter 1 (NKCC1) as a key component, while the role of the Na+/K+-ATPase remains uninvestigated. To test the involvement of these proteins in brain electrolyte flux under mimicked dehydration, we employed a tight in vitro co-culture BBB model with primary cultures of brain endothelial cells and astrocytes. The Na+/K+-ATPase and the NKCC1 were both functionally dominant in the abluminal membrane. Exposure of the in vitro BBB model to conditions mimicking systemic dehydration, i.e. hyperosmotic conditions, vasopressin, or increased [K+]o illustrated that NKCC1 activity was unaffected by exposure to vasopressin and to hyperosmotic conditions. Hyperosmotic conditions and increased K+ concentrations enhanced the Na+/K+-ATPase activity, here determined to consist of the α1 β1 and α1 β3 isozymes. Abluminally expressed endothelial Na+/K+-ATPase, and not NKCC1, may therefore counteract osmotic brain water loss during systemic dehydration by promoting brain Na+ accumulation.
Collapse
Affiliation(s)
- Kasper Lykke
- 1 Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Assentoft
- 1 Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofie Hørlyck
- 2 Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans Cc Helms
- 2 Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anca Stoica
- 1 Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine L Toft-Bertelsen
- 1 Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katerina Tritsaris
- 3 Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederik Vilhardt
- 3 Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birger Brodin
- 2 Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nanna MacAulay
- 1 Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Petrou T, Olsen HL, Thrasivoulou C, Masters JR, Ashmore JF, Ahmed A. Intracellular Calcium Mobilization in Response to Ion Channel Regulators via a Calcium-Induced Calcium Release Mechanism. J Pharmacol Exp Ther 2016; 360:378-387. [PMID: 27980039 PMCID: PMC5267512 DOI: 10.1124/jpet.116.236695] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/14/2016] [Indexed: 01/19/2023] Open
Abstract
Free intracellular calcium ([Ca2+]i), in addition to being an important second messenger, is a key regulator of many cellular processes including cell membrane potential, proliferation, and apoptosis. In many cases, the mobilization of [Ca2+]i is controlled by intracellular store activation and calcium influx. We have investigated the effect of several ion channel modulators, which have been used to treat a range of human diseases, on [Ca2+]i release, by ratiometric calcium imaging. We show that six such modulators [amiodarone (Ami), dofetilide, furosemide (Fur), minoxidil (Min), loxapine (Lox), and Nicorandil] initiate release of [Ca2+]i in prostate and breast cancer cell lines, PC3 and MCF7, respectively. Whole-cell currents in PC3 cells were inhibited by the compounds tested in patch-clamp experiments in a concentration-dependent manner. In all cases [Ca2+]i was increased by modulator concentrations comparable to those used clinically. The increase in [Ca2+]i in response to Ami, Fur, Lox, and Min was reduced significantly (P < 0.01) when the external calcium was reduced to nM concentration by chelation with EGTA. The data suggest that many ion channel regulators mobilize [Ca2+]i. We suggest a mechanism whereby calcium-induced calcium release is implicated; such a mechanism may be important for understanding the action of these compounds.
Collapse
Affiliation(s)
- Terry Petrou
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| | - Hervør L Olsen
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| | - Christopher Thrasivoulou
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| | - John R Masters
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| | - Jonathan F Ashmore
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| | - Aamir Ahmed
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| |
Collapse
|
7
|
Ruiz-Jarabo I, Barany A, Jerez-Cepa I, Mancera JM, Fuentes J. Intestinal response to salinity challenge in the Senegalese sole (Solea senegalensis). Comp Biochem Physiol A Mol Integr Physiol 2016; 204:57-64. [PMID: 27865855 DOI: 10.1016/j.cbpa.2016.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 09/08/2016] [Accepted: 11/14/2016] [Indexed: 12/27/2022]
Abstract
Fish are continuously forced to actively absorb or expel water and ions through epithelia. Most studies have focused on the gill due to its role in Na+ and Cl- trafficking. However, comparatively few studies have focused on the changing function of the intestine in response to external salinity. Therefore, the present study investigated the main intestinal changes of long-term acclimation of the Senegalese sole (Solea senegalensis) to 5, 15, 38 and 55ppt. Through the measurement of short-circuit current (Isc) in Ussing chambers and biochemical approaches, we described a clear anterior/posterior functional regionalization of the intestine in response to salinity. The use of specific inhibitors in Ussing chamber experiments, revealed that the bumetanide-sensitive Na+/K+/Cl- co-transporters are the main effectors of Cl- uptake in both anterior intestine and rectum. Additionally, the use of the anion exchanger specific inhibitor, DIDS, showed a salinity/region dependency of anion exchanger function. Moreover, we also described ouabain-sensitive Na+/K+-ATPase (NKA) and Bafilomycin A1-sensitive H+-ATPase activities (HA), which displayed changes related to salinity and intestinal region. However, the most striking result of the present study is the description of an omeprazole-sensitive H+/K+-ATPase (HKA) in the rectum of Senegalese sole. Its activity was consistently measurable and increased at lower salinities, reaching rates even higher than those of the NKA. Together our results provide new insights into the changing role of the intestine in response to external salinity in teleost fish. The rectal activity of HKA offers an alternative/cooperative mechanism with the HA in the final processing of intestinal water absorption by apical titration of secreted bicarbonate.
Collapse
Affiliation(s)
- I Ruiz-Jarabo
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - A Barany
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - I Jerez-Cepa
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - J M Mancera
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, 11510, Puerto Real, Cádiz, Spain
| | - J Fuentes
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences (CCMar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
8
|
Kondo Y, Nakamoto T, Jaramillo Y, Choi S, Catalan MA, Melvin JE. Functional differences in the acinar cells of the murine major salivary glands. J Dent Res 2015; 94:715-21. [PMID: 25680367 DOI: 10.1177/0022034515570943] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In humans, approximately 90% of saliva is secreted by the 3 major salivary glands: the parotid (PG), the submandibular (SMG), and the sublingual glands (SLG). Even though it is known that all 3 major salivary glands secrete saliva by a Cl(-)-dependent mechanism, salivary secretion rates differ greatly among these glands. The goal of this study was to gain insight into the properties of the ion-transporting pathways in acinar cells that might account for the differences among the major salivary glands. Pilocarpine-induced saliva was simultaneously collected in vivo from the 3 major salivary glands of mice. When normalized by gland weight, the amount of saliva secreted by the PG was more than 2-fold larger than that obtained from the SMG and SLG. At the cellular level, carbachol induced an increase in the intracellular [Ca(2+)] that was more than 2-fold larger in PG and SMG than in SLG acinar cells. Carbachol-stimulated Cl(-) efflux and the protein levels of the Ca(2+)-activated Cl(-) channel TMEM16A, the major apical Cl(-) efflux pathway in salivary acinar cells, were significantly greater in PG compared with SMG and SLG. In addition, we evaluated the transporter activity of the Na(+)-K(+)-2Cl(-) cotransporters (NKCC1) and anion exchangers (AE), the 2 primary basolateral Cl(-) uptake mechanisms in acinar cells. The SMG NKCC1 activity was about twice that of the PG and more than 12-fold greater than that of the SLG. AE activity was similar in PG and SLG, and both PG and SLG AE activity was about 2-fold larger than that of SMG. In summary, the salivation kinetics of the 3 major glands are distinct, and these differences can be explained by the unique functional properties of each gland related to Cl(-) movement, including the transporter activities of the Cl(-) uptake and efflux pathways, and intracellular Ca(2+) mobilization.
Collapse
Affiliation(s)
- Y Kondo
- Secretory Mechanisms and Dysfunction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA Department of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - T Nakamoto
- Department of Oral Reconstruction and Rehabilitation, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Y Jaramillo
- Secretory Mechanisms and Dysfunction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - S Choi
- Secretory Mechanisms and Dysfunction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - M A Catalan
- Secretory Mechanisms and Dysfunction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - J E Melvin
- Secretory Mechanisms and Dysfunction Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Development of a functional cell-based HTS assay for identification of NKCC1-negative modulators. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-013-0083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Shabala S. Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. ANNALS OF BOTANY 2013; 112:1209-21. [PMID: 24085482 PMCID: PMC3806534 DOI: 10.1093/aob/mct205] [Citation(s) in RCA: 354] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 07/22/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND Global annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant amount of arable land is becoming lost to urban sprawl, forcing agricultural production into marginal areas. Consequently, there is a need for a major breakthrough in crop breeding for salinity tolerance. Given the limited range of genetic diversity in this trait within traditional crops, stress tolerance genes and mechanisms must be identified in extremophiles and then introduced into traditional crops. SCOPE AND CONCLUSIONS This review argues that learning from halophytes may be a promising way of achieving this goal. The paper is focused around two central questions: what are the key physiological mechanisms conferring salinity tolerance in halophytes that can be introduced into non-halophyte crop species to improve their performance under saline conditions and what specific genes need to be targeted to achieve this goal? The specific traits that are discussed and advocated include: manipulation of trichome shape, size and density to enable their use for external Na(+) sequestration; increasing the efficiency of internal Na(+) sequestration in vacuoles by the orchestrated regulation of tonoplast NHX exchangers and slow and fast vacuolar channels, combined with greater cytosolic K(+) retention; controlling stomata aperture and optimizing water use efficiency by reducing stomatal density; and efficient control of xylem ion loading, enabling rapid shoot osmotic adjustment while preventing prolonged Na(+) transport to the shoot.
Collapse
Affiliation(s)
- Sergey Shabala
- School of Agricultural Science, University of Tasmania, Private Bag 54, Hobart, Tas 7001, Australia
| |
Collapse
|
11
|
Coast GM. Intracellular Na+, K+ and Cl- activities in Acheta domesticus Malpighian tubules and the response to a diuretic kinin neuropeptide. ACTA ACUST UNITED AC 2012; 215:2774-85. [PMID: 22837449 DOI: 10.1242/jeb.072223] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mechanism of primary urine production and the activity of a diuretic kinin, Achdo-KII, were investigated in malpighian tubules of Acheta domesticus by measuring intracellular Na(+), K(+) and Cl(-) activities, basolateral membrane voltage (V(b)), fluid secretion and transepithelial ion transport. Calculated electrochemical gradients for K(+) and Cl(-) across the basolateral membrane show they are actively transported into principal cells, and basolateral Ba(2+)-sensitive K(+) channels do not contribute to net transepithelial K(+) transport and fluid secretion. A basolateral Cl(-) conductance was revealed after the blockade of K(+) channels with Ba(2+), and a current carried by the passive outward movement of Cl(-) accounts for the hyperpolarization of V(b) in response to Ba(2+). Ion uptake via Na(+)/K(+)/2Cl(-) cotransport, driven by the inwardly directed Na(+) electrochemical gradient, is thermodynamically feasible, and is consistent with the actions of bumetanide, which reduces fluid secretion and both Na(+) and K(+) transport. The Na(+) gradient is maintained by its extrusion across the apical membrane and by a basolateral ouabain-sensitive Na(+)/K(+)-ATPase. Achdo-KII has no significant effect on the intracellular ion activities or V(b). Electrochemical gradients across the apical membrane were estimated from previously published values for the levels of Na(+), K(+) and Cl(-) in the secreted fluid. The electrochemical gradient for Cl(-) favours passive movement into the lumen, but falls towards zero after stimulation by Achdo-KII. This coincides with a twofold increase in Cl(-) transport, which is attributed to the opening of an apical Cl(-) conductance, which depolarises the apical membrane voltage.
Collapse
|
12
|
Kunz PA, Burette AC, Weinberg RJ, Philpot BD. Glycine receptors support excitatory neurotransmitter release in developing mouse visual cortex. J Physiol 2012; 590:5749-64. [PMID: 22988142 DOI: 10.1113/jphysiol.2012.241299] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Glycine receptors (GlyRs) are found in most areas of the brain, and their dysfunction can cause severe neurological disorders. While traditionally thought of as inhibitory receptors, presynaptic-acting GlyRs (preGlyRs) can also facilitate glutamate release under certain circumstances, although the underlying molecular mechanisms are unknown. In the current study, we sought to better understand the role of GlyRs in the facilitation of excitatory neurotransmitter release in mouse visual cortex. Using whole-cell recordings, we found that preGlyRs facilitate glutamate release in developing, but not adult, visual cortex. The glycinergic enhancement of neurotransmitter release in early development depends on the high intracellular to extracellular Cl(-) gradient maintained by the Na(+)-K(+)-2Cl(-) cotransporter and requires Ca(2+) entry through voltage-gated Ca(2+) channels. The glycine transporter 1, localized to glial cells, regulates extracellular glycine concentration and the activation of these preGlyRs. Our findings demonstrate a developmentally regulated mechanism for controlling excitatory neurotransmitter release in the neocortex.
Collapse
Affiliation(s)
- Portia A Kunz
- Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Campus Box 7545, 115 Mason Farm Rd, Chapel Hill, NC 27599-7545, USA
| | | | | | | |
Collapse
|
13
|
Kim BG, Cho JH, Choi IS, Lee MG, Jang IS. Modulation of presynaptic GABA(A) receptors by endogenous neurosteroids. Br J Pharmacol 2012; 164:1698-710. [PMID: 21585348 DOI: 10.1111/j.1476-5381.2011.01491.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Although 3α-hydroxy, 5α-reduced pregnane steroids, such as allopregnanolone (AlloP) and tetrahydrodeoxycorticosterone, are endogenous positive modulators of postsynaptic GABA(A) receptors, the functional roles of endogenous neurosteroids in synaptic transmission are still largely unknown. EXPERIMENTAL APPROACH In this study, the effect of AlloP on spontaneous glutamate release was examined in mechanically isolated dentate gyrus hilar neurons by use of the conventional whole-cell patch-clamp technique. KEY RESULTS AlloP increased the frequency of glutamatergic spontaneous excitatory postsynaptic currents (sEPSCs) in a dose-dependent manner. The AlloP-induced increase in sEPSC frequency was completely blocked by a non-competitive GABA(A) receptor blocker, tetrodotoxin or Cd(2+) , suggesting that AlloP acts on presynaptic GABA(A) receptors to depolarize presynaptic nerve terminals to increase the probability of spontaneous glutamate release. On the other hand, γ-cyclodextrin (γ-CD) significantly decreased the basal frequency of sEPSCs. However, γ-CD failed to decrease the basal frequency of sEPSCs in the presence of a non-competitive GABA(A) receptor antagonist or tetrodotoxin. In addition, γ-CD failed to decrease the basal frequency of sEPSCs after blocking the synthesis of endogenous 5α-reduced pregnane steroids. Furthermore, γ-CD decreased the extent of muscimol-induced increase in sEPSC frequency, suggesting that endogenous neurosteroids can directly activate and/or potentiate presynaptic GABA(A) receptors to affect spontaneous glutamate release onto hilar neurons. CONCLUSIONS AND IMPLICATIONS The modulation of presynaptic GABA(A) receptors by endogenous neurosteroids might affect the excitability of the dentate gyrus-hilus-CA3 network, and thus contribute, at least in part, to some pathological conditions, such as catamenial epilepsy and premenstrual dysphoric disorder.
Collapse
Affiliation(s)
- B-G Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea
| | | | | | | | | |
Collapse
|
14
|
Different effects of α-chloralose on spontaneous and evoked GABA release in rat hippocampal CA1 neurons. Brain Res Bull 2011; 85:180-8. [DOI: 10.1016/j.brainresbull.2011.03.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/18/2011] [Accepted: 03/22/2011] [Indexed: 01/02/2023]
|
15
|
|
16
|
Hattori T, Wang PL. INVOLVEMENT OF Na+-K+-2Cl−COTRANSPORTERS IN HYPERTONICITY-INDUCED RISE IN INTRACELLULAR CALCIUM CONCENTRATION. Int J Neurosci 2009; 116:1501-7. [PMID: 17145684 DOI: 10.1080/00207450600553000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A hypertonic saline containing propylene glycol facilitates calcium (Ca(2+)) influx through voltage-dependent Ca(2+) channels. The present study performed experiments to elucidate the mechanism by which Na(+)-K(+)-2Cl(-) cotransporters participate in the rise in the intracellular calcium concentration ([Ca(2+)]i) under the hypertonic condition. Both furosemide and ethacryonic acid significantly decreased the [Ca(2+)]i raised by hypertonicity. Similarly, Na(+)-, K(+)-, or Cl(-)-free saline also reduced it. Both norepinephrine and dopamine significantly enhanced the rise in [Ca(2+)]i. In conclusion, the findings obtained indicate that the Na+-K+-2Cl- cotransporters evoke cell depolarization and that this depolarization raises the [Ca(2+)]i by activating voltage-dependent Ca(2+) channels.
Collapse
Affiliation(s)
- Toshimi Hattori
- Department of Dental Pharmacology, Matsumoto Dental University, Shiojiri, Japan.
| | | |
Collapse
|
17
|
Lee EA, Cho JH, Choi IS, Nakamura M, Park HM, Lee JJ, Lee MG, Choi BJ, Jang IS. Presynaptic glycine receptors facilitate spontaneous glutamate release onto hilar neurons in the rat hippocampus. J Neurochem 2009; 109:275-86. [PMID: 19200346 DOI: 10.1111/j.1471-4159.2009.05960.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although glycine receptors are found in most areas of the brain, including the hippocampus, their functional significance remains largely unknown. In the present study, we have investigated the role of presynaptic glycine receptors on excitatory nerve terminals in spontaneous glutamatergic transmission. Spontaneous EPSCs (sEPSCs) were recorded in mechanically dissociated rat dentate hilar neurons attached with native presynaptic nerve terminals using a conventional whole-cell patch recording technique under voltage-clamp conditions. Exogenously applied glycine or taurine significantly increased the frequency of sEPSCs in a concentration-dependent manner. This facilitatory effect of glycine was blocked by 1 microM strychnine, a specific glycine receptor antagonist, but was not affected by 30 microM picrotoxin. In addition, Zn(2+) (10 microM) potentiated the glycine action on sEPSC frequency. Pharmacological data suggested that the activation of presynaptic glycine receptors directly depolarizes glutamatergic terminals resulting in the facilitation of spontaneous glutamate release. Bumetanide (10 microM), a specific Na-K-2C co-transporter blocker, gradually attenuated the glycine-induced sEPSC facilitation, suggesting that the depolarizing action of presynaptic glycine receptors was due to a higher intraterminal Cl(-) concentration. The present results suggest that presynaptic glycine receptors on excitatory nerve terminals might play an important role in the excitability of the dentate gyrus-hilus-CA3 network in physiological and/or pathological conditions.
Collapse
Affiliation(s)
- Eun-Ah Lee
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Katoh F, Cozzi RRF, Marshall WS, Goss GG. Distinct Na+/K+/2Cl- cotransporter localization in kidneys and gills of two euryhaline species, rainbow trout and killifish. Cell Tissue Res 2008; 334:265-81. [DOI: 10.1007/s00441-008-0679-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
|
19
|
Kakigi A, Nishimura M, Takeda T, Taguchi D, Nishioka R. Expression of aquaporin1, 3, and 4, NKCC1, and NKCC2 in the human endolymphatic sac. Auris Nasus Larynx 2008; 36:135-9. [PMID: 18606512 DOI: 10.1016/j.anl.2008.04.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 03/21/2008] [Accepted: 04/13/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To locate aquaporin (AQP) 1, 3, and 4, Na-K-2Cl cotransporter (NKCC) 1 and 2 in the human endolymphatic sac (ES). METHODS A sample of human ES was harvested during the removal of vestibular schwannoma via the translabyrinthine approach. The sample was immediately fixed in 4% paraformaldehyde and embedded in OCT compound. Immunohistochemistry was performed with AQP1, 3, and 4, NKCC1, and NKCC2 polyclonal antibodies. RESULTS AQP1, AQP3, and NKCC2 were strongly expressed in the epithelial layer of the ES. AQP4 and NKCC1 were weakly expressed in the epithelial layer of the ES. CONCLUSIONS As it is impossible to perform quantitative analysis based on the fluorescence intensity of each immunoreactivity, we have presented the existence of AQP1, 3, and 4, NKCC1, and NKCC2 in the ES. The expression of NKCC1 and 2 indicated that the ES may have both secretory and adsorptive functions to maintain the homeostasis of endolymph.
Collapse
Affiliation(s)
- Akinobu Kakigi
- Department of Otolaryngology, Kochi Medical School, Nankoku, Japan.
| | | | | | | | | |
Collapse
|
20
|
Brillault J, Lam TI, Rutkowsky JM, Foroutan S, O'Donnell ME. Hypoxia effects on cell volume and ion uptake of cerebral microvascular endothelial cells. Am J Physiol Cell Physiol 2007; 294:C88-96. [PMID: 17942640 DOI: 10.1152/ajpcell.00148.2007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Increased transport of Na across an intact blood-brain barrier (BBB) contributes to cerebral edema formation in ischemic stroke. Our previous studies have shown that ischemic factors stimulate activity of a luminal BBB Na-K-Cl cotransporter, and we have hypothesized that during ischemia, the cotransporter together with the abluminal Na/K pump mediates increased transport of Na from blood into the brain. However, it is possible that elevated Na-K-Cl cotransporter activity could also cause cell swelling if it outpaces ion efflux pathways. The present study was conducted to evaluate the effects of hypoxia on intracellular volume of BBB cells. Cerebral microvascular endothelial cell (CMEC) monolayers were exposed to varying levels of hypoxia for 1 to 5 h in an O(2)-controlled glove box, and cell volume was assessed using 3-O-methyl-D-[(3)H]glucose and [(14)C]sucrose as markers of total and extracellular water space, respectively. Cells exposed to either 7.5%, 3%, or 1% O(2) showed gradual increases in volume (compared with 19% O(2) normoxic controls) that became significant after 3 or more hours. By ion chromatography methods, we also found that a 30-min exposure to 7.5% O(2) caused an increase in bumetanide-sensitive net Na uptake by the cells without increasing cell Na content. CMEC Na content was significantly increased, however, following 3 or more hours of exposure to 7.5% O(2). These findings are consistent with the hypothesis that during cerebral ischemia, the BBB Na-K-Cl cotransporter is stimulated to mediate transendothelial uptake of Na into the brain and that increased cotransporter activity also contributes to gradual swelling of the cells.
Collapse
Affiliation(s)
- Julien Brillault
- Department of Physiology and Membrane Biology, University of California, Davis, CA 95616, USA
| | | | | | | | | |
Collapse
|
21
|
Koga H, Ishibashi H, Shimada H, Jang IS, Nakamura TY, Nabekura J. Activation of presynaptic GABAA receptors increases spontaneous glutamate release onto noradrenergic neurons of the rat locus coeruleus. Brain Res 2005; 1046:24-31. [PMID: 15896724 DOI: 10.1016/j.brainres.2005.03.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 03/10/2005] [Accepted: 03/15/2005] [Indexed: 10/25/2022]
Abstract
In order to further explore how GABA can modulate the excitability of noradrenergic neurons of the locus coeruleus (LC), we investigated the presence of GABA(A) receptors on glutamatergic nerve terminals and the functional consequences of their activation. We used mechanically dissociated immature rat LC neurons with adherent nerve terminals and patch-clamp recordings of spontaneous excitatory postsynaptic currents. Activation of presynaptic GABA(A) receptors by muscimol facilitated spontaneous glutamate release by activating tetrodotoxin-sensitive Na(+) channels and high-threshold Ca(2+) channels. Bumetanide (10 microM), a potent blocker of Na(+)-K(+)-Cl(-) cotransporter, diminished the muscimol-induced facilitatory action of glutamate release. Our results indicate that the Na(+)-K(+)-Cl(-) cotransporter accumulates Cl(-) inside the nerve terminals so that activation of presynaptic GABA(A) receptors causes depolarization. This GABA(A)-receptor-mediated modulation of spontaneous glutamatergic transmission is another mechanism by which GABA and its analogues can regulate the excitability and activity of noradrenergic neurons in the LC.
Collapse
Affiliation(s)
- Hitoshi Koga
- Cellular and System Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Celedon G, Venegas F, Campos AM, Lanio ME, Martinez D, Soto C, Alvarez C, Lissi E. Role of endogenous channels in red blood cells response to their exposure to the pore forming toxin Sticholysin II. Toxicon 2005; 46:297-307. [PMID: 15990142 DOI: 10.1016/j.toxicon.2005.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Accepted: 04/15/2005] [Indexed: 10/25/2022]
Abstract
Sticholysin II (St II) is a highly hemolytic cytolysin isolated from the sea anemone Stichodactyla heliantus. The toxin hemolytic action takes place through the formation of channels that provoke an electrolyte unbalance leading to osmotic shock. The lytic event must involve the exchange of electrolytes and the entrance of water, leading to red blood cell disruption. These processes can occur through St II pores and/or the endogenous red blood cells transporters. In order to evaluate the contribution of these channels to water, anion and cation transport, we have measured the hemolysis and K+ efflux rates in the presence of several specific inhibitors. The results obtained in the presence of Hg, an AQP1 blocker, indicate that water transport through these channels is not essential for the occurrence of the lytic process induced by St II. The data also support a partial role of K+ and anion transporters. In particular, they are compatible with a preferential K+ efflux though the K(+)/Cl- co-transport as a response to the promoted swelling. Furthermore, they suggest that chloride influx, a process that can regulate both K+ efflux and lysis, is partially mediated by the endogenous cell transporters, in particular, band-3 anion exchange system being relevant at early stages of the lytic process.
Collapse
Affiliation(s)
- G Celedon
- Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Gamba G. Molecular Physiology and Pathophysiology of Electroneutral Cation-Chloride Cotransporters. Physiol Rev 2005; 85:423-93. [PMID: 15788703 DOI: 10.1152/physrev.00011.2004] [Citation(s) in RCA: 583] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Electroneutral cation-Cl−cotransporters compose a family of solute carriers in which cation (Na+or K+) movement through the plasma membrane is always accompanied by Cl−in a 1:1 stoichiometry. Seven well-characterized members include one gene encoding the thiazide-sensitive Na+−Cl−cotransporter, two genes encoding loop diuretic-sensitive Na+−K+−2Cl−cotransporters, and four genes encoding K+−Cl−cotransporters. These membrane proteins are involved in several physiological activities including transepithelial ion absorption and secretion, cell volume regulation, and setting intracellular Cl−concentration below or above its electrochemical potential equilibrium. In addition, members of this family play an important role in cardiovascular and neuronal pharmacology and pathophysiology. Some of these cotransporters serve as targets for loop diuretics and thiazide-type diuretics, which are among the most commonly prescribed drugs in the world, and inactivating mutations of three members of the family cause inherited diseases such as Bartter's, Gitelman's, and Anderman's diseases. Major advances have been made in the past decade as consequences of molecular identification of all members in this family. This work is a comprehensive review of the knowledge that has evolved in this area and includes molecular biology of each gene, functional properties of identified cotransporters, structure-function relationships, and physiological and pathophysiological roles of each cotransporter.
Collapse
Affiliation(s)
- Gerardo Gamba
- Molecular Physiology Unit, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
24
|
Gawenis LR, Hut H, Bot AGM, Shull GE, de Jonge HR, Stien X, Miller ML, Clarke LL. Electroneutral sodium absorption and electrogenic anion secretion across murine small intestine are regulated in parallel. Am J Physiol Gastrointest Liver Physiol 2004; 287:G1140-9. [PMID: 15284023 DOI: 10.1152/ajpgi.00177.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Electrolyte transport processes of small intestinal epithelia maintain a balance between hydration of the luminal contents and systemic fluid homeostasis. Under basal conditions, electroneutral Na(+) absorption mediated by Na(+)/H(+) exchanger 3 (NHE3) predominates; under stimulated conditions, increased anion secretion mediated by CFTR occurs concurrently with inhibition of Na(+) absorption. Homeostatic adjustments to diseases that chronically affect the activity of one transporter (e.g., cystic fibrosis) may include adaptations in the opposing transport process to prevent enterosystemic fluid imbalance. To test this hypothesis, we measured electrogenic anion secretion (indexed by the short-circuit current) across NHE3-null [NHE3(-)] murine small intestine and electroneutral Na(+) absorption (by radioisotopic flux analysis) across small intestine of mice with gene-targeted disruptions of the anion secretory pathway, i.e., CFTR-null [CFTR(-)] or Na(+)-K(+)-2Cl(-) cotransporter-null [NKCC1(-)]. Protein expression of NHE3 and CFTR in the intestinal epithelia was measured by immunoblotting. In NHE3(-), compared with wild-type small intestine, maximal and bumetanide-sensitive anion secretion following cAMP stimulation was significantly reduced, and there was a corresponding decrease in CFTR protein expression. In CFTR(-) and NKCC1(-) intestine, Na(+) absorption was significantly reduced compared with wild-type. NHE3 protein expression was decreased in the CFTR(-) intestine but was unchanged in the NKCC1(-) intestine, indicating that factors independent of expression also downregulate NHE3 activity. Together, these data support the concept that absorptive and secretory processes determining NaCl and water movement across the intestinal epithelium are regulated in parallel to maintain balance between the systemic fluid volume and hydration of the luminal contents.
Collapse
Affiliation(s)
- Lara R Gawenis
- Dalton Cardiovascular Research Center, Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Tsuchiya Y, Nakashima S, Banno Y, Suzuki Y, Morita H. Effect of high-NaCl or high-KCl diet on hepatic Na+- and K+-receptor sensitivity and NKCC1 expression in rats. Am J Physiol Regul Integr Comp Physiol 2004; 286:R591-6. [PMID: 14656769 DOI: 10.1152/ajpregu.00559.2003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported that the bumetanide-sensitive Na+-K+-2Cl-cotransporter (NKCC1) is involved in the hepatic Na+and K+sensor mechanism. In the present study, we examined the effects of a high-NaCl or high-KCl diet on hepatic Na+and K+receptor sensitivity and NKCC1 expression in the liver of Sprague-Dawley rats. RT-PCR and Western blots were used to measure NKCC1 mRNA and protein expression, respectively. Infusion of hypertonic NaCl or isotonic KCl + NaCl solutions into the portal vein increased hepatic afferent nerve activity (HANA) in a Na+or K+dose-dependent manner. After 4 wk on a high-NaCl or high-KCl diet, HANA responses were attenuated compared with animals fed a normal diet, and NKCC1 expression was reduced. These results show that a high-NaCl or high-KCl diet decreases NKCC1 expression in the liver, and it might cause a reduction in hepatic Na+- and K+-receptor sensitivity.
Collapse
Affiliation(s)
- You Tsuchiya
- Department of Physiology, Gifu University School of Medicine, Gifu 500-8705, Japan
| | | | | | | | | |
Collapse
|
26
|
Karle C, Gehrig T, Wodopia R, Höschele S, Kreye VAW, Katus HA, Bärtsch P, Mairbäurl H. Hypoxia-induced inhibition of whole cell membrane currents and ion transport of A549 cells. Am J Physiol Lung Cell Mol Physiol 2004; 286:L1154-60. [PMID: 14729515 DOI: 10.1152/ajplung.00403.2002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In excitable cells, hypoxia inhibits K channels, causes membrane depolarization, and initiates complex adaptive mechanisms. It is unclear whether K channels of alveolar epithelial cells reveal a similar response to hypoxia. A549 cells were exposed to hypoxia during whole cell patch-clamp measurements. Hypoxia reversibly inhibited a voltage-dependent outward current, consistent with a K current, because tetraethylamonium (TEA; 10 mM) abolished this effect; however, iberiotoxin (0.1 microM) does not. In normoxia, TEA and iberiotoxin inhibited whole cell current (-35%), whereas the K-channel inhibitors glibenclamide (1 microM), barium (1 mM), chromanol B293 (10 microM), and 4-aminopyridine (1 mM) were ineffective. (86)Rb uptake was measured to see whether K-channel modulation also affected transport activity. TEA, iberiotoxin, and 4-h hypoxia (1.5% O(2)) inhibited total (86)Rb uptake by 40, 20, and 35%, respectively. Increased extracellular K also inhibited (86)Rb uptake in a dose-dependent way. The K-channel opener 1-ethyl-2-benzimidazolinone (1 mM) increased (86)Rb uptake by 120% in normoxic and hypoxic cells by activation of Na-K pumps (+60%) and Na-K-2Cl cotransport (+170%). However, hypoxic transport inhibition was also seen in the presence of 1-ethyl-2-benzimidazolinone, TEA, and iberiotoxin. These results indicate that hypoxia, membrane depolarization, and K-channel inhibition decrease whole cell membrane currents and transport activity. It appears, therefore, that a hypoxia-induced change in membrane conductance and membrane potential might be a link between hypoxia and alveolar ion transport inhibition.
Collapse
Affiliation(s)
- Christoph Karle
- Section III-Cardiology, Department of Internal Medicine, Medical Clinic and Policlinic, University of Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Flatman PW. Regulation of Na-K-2Cl cotransport in red cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 559:77-88. [PMID: 18727229 DOI: 10.1007/0-387-23752-6_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Peter W Flatman
- Membrane Biology Group, College of Medicine and Veterinary Medicine, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, EH8 9XD Scotland, UK.
| |
Collapse
|
28
|
Tsujii-Hayashi Y, Kitahara M, Yamagaki T, Kojima-Aikawa K, Matsumoto I. A potential endogenous ligand of annexin IV in the exocrine pancreas. Carbohydrate structure of GP-2, a glycosylphosphatidylinositol-anchored glycoprotein of zymogen granule membranes. J Biol Chem 2002; 277:47493-9. [PMID: 12324456 DOI: 10.1074/jbc.m206572200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We demonstrated previously that annexins IV, V, and VI, proteins of the calcium/phospholipid-binding annexin family, have glycosaminoglycan binding properties (Ishitsuka, R., Kojima, K., Utsumi, H., Ogawa, H., and Matsumoto, I. (1998) J. Biol. Chem. 273, 9935-9941). In this study, we investigated the endogenous ligands of annexin IV in the exocrine pancreas. Immunohistochemical study of bovine pancreas showed that annexin IV localized in the apical cytoplasmic region of pancreatic acinar cells where zymogen granules are concentrated. Because it is the major component of the zymogen granule membrane, the glycosylphosphatidylinositol-anchored glycoprotein GP-2 was suggested to play a role in apical sorting and secretion of zymogens. We isolated GP-2 from porcine pancreas extract and determined the structure of its N-linked oligosaccharides by two-dimensional mapping. The major carbohydrate structures of porcine GP-2 were trisialo-triantennary and tetrasialo-tetra-antennary complex-type oligosaccharides. Dot-blot assay showed that annexin IV interacts with GP-2 in the presence of calcium and that it recognizes the terminal sialic acid residues linked through alpha2-3 linkages to the carbohydrate of GP-2. Lectin blot assay showed that Maackia amurensis mitogen, a plant lectin specific for the trisaccharide sequence Sia(alpha)2-3Galbeta1-4GlcNAc of N-linked oligosaccharides, has strong affinity for GP-2. Thus, M. amurensis mitogen was used as a specific probe for GP-2 in the histochemical staining of the bovine pancreas. GP-2 was found to localize exclusively in the same apical cytoplasmic region of pancreatic acinar cells as annexin IV does. These results suggest that GP-2 is an endogenous ligand of annexin IV in the exocrine pancreas.
Collapse
Affiliation(s)
- Yoko Tsujii-Hayashi
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | | | | | | | | |
Collapse
|
29
|
Flatman PW. Regulation of Na-K-2Cl cotransport by phosphorylation and protein-protein interactions. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1566:140-51. [PMID: 12421545 DOI: 10.1016/s0005-2736(02)00586-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Na-K-2Cl cotransporter plays important roles in cell ion homeostasis and volume control and is particularly important in mediating the movement of ions and thus water across epithelia. In addition to being affected by the concentration of the transported ions, cotransport is affected by cell volume, hormones, growth factors, oxygen tension, and intracellular ionized Mg(2+) concentration. These probably influence transport through three main routes acting in parallel: cotransporter phosphorylation, protein-protein interactions and cell Cl(-) concentration. Many effects are mediated, at least in part, by changes in protein phosphorylation, and are disrupted by kinase and phosphatase inhibitors, and manoeuvres that reduce cell ATP content. In some cases, phosphorylation of the cotransporter itself on serine and threonine (but not tyrosine) is associated with changes in transport rate, in others, phosphorylation of associated proteins has more influence. Analysis of the stimulation of cotransport by calyculin A, arsenite and deoxygenation suggests that the cotransporter is phosphorylated by several kinases and dephosphorylated by several phosphatases. These kinases and phosphatases may themselves be regulated by phosphorylation of residues including tyrosine, with Src kinases possibly playing an important role. Protein-protein interactions also influence cotransport activity. Cotransporter molecules bind to each other to form high molecular weight complexes, they also bind to other members of the cation-chloride cotransport family, to a variety of cytoskeletal proteins, and to enzymes that are part of regulatory cascades. Many of these interactions affect transport and may override the effects of cotransporter phosphorylation. Cell Cl(-) may also directly affect the way the cotransporter functions independently of its role as substrate.
Collapse
Affiliation(s)
- Peter W Flatman
- Membrane Biology Group, Division of Biomedical and Clinical Laboratory Sciences, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh Scotland, UK.
| |
Collapse
|
30
|
Zeuthen T. General models for water transport across leaky epithelia. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 215:285-317. [PMID: 11952232 DOI: 10.1016/s0074-7696(02)15013-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The group of leaky epithelia, such as proximal tubule and small intestine, have several common properties in regard to salt and water transport. The fluid transport is isotonic, the transport rate increases in dilute solutions, and water can be transported uphill. Yet, it is difficult to find common features that could form the basis for a general transport model. The direction of transepithelial water transport does not correlate with the direction of the primary active Na+ transport, or with the ultrastucture as defined by the location of apical and basolateral membranes, of the junctional complex and the lateral intercellular spaces. The presence of specific water channels, aquaporins, increases the water permeability of the epithelial cell membranes, i.e., the kidney proximal tubule. Yet other leaky epithelia, for example, the retinal pigment epithelium, have no known aquaporins. There is, however, a general correlation between the direction of transepithelial transport and the direction of transport via cotransporters of the symport type. A simple epithelial model based on water permeabilities, a hyperosmolar compartment and restricted salt diffusion, is unable to explain epithelial transport phenomena, in particular the ability for uphill water transport. The inclusion of cotransporters as molecular water pumps in these models alleviates this problem.
Collapse
Affiliation(s)
- Thomas Zeuthen
- Institute of Medical Physiology, The Panum Institute, University of Copenhagen, Denmark
| |
Collapse
|
31
|
Kupriyanov VV, Xiang B, Sun J, Jilkina O. The effects of drugs modulating K(+) transport on Rb(+) uptake and distribution in pig hearts following regional ischemia: (87)Rb MRI study. NMR IN BIOMEDICINE 2002; 15:348-355. [PMID: 12203226 DOI: 10.1002/nbm.777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The effects of drugs that can modulate passive permeability of K(+) into cardiomyocytes in normal and reperfusion-damaged cardiac muscle were assessed. Rubidium ion (Rb(+)) was used as a K(+) tracer and (87)Rb-MRI as a detection method. The left anterior descending artery (LAD) of isolated pig hearts perfused with Krebs-Henseleit buffer (KHB) was occluded for 2 h and subsequently reperfused for 2 h with KHB containing 4.7 mM RbCl instead of KCl. The buffer contained either a blocker of ATP-sensitive K(+) channels (K(ATP)), glibenclamide (Glib, 3 micro M), a K(ATP) opener, pinacidil (Pin, 10 micro M), a K(+)/Na(+)/2Cl(-) co-transporter inhibitor, bumetanide (Bum, 10 micro M) or no drug (control). Upon reperfusion three-dimensional (87)Rb MR images were acquired to obtain kinetics of Rb(+) uptake and its distribution. Areas at risk (AAR) and areas of necrosis were determined by Evans Blue and triphenyl tetrazolium chloride staining, respectively. Rb(+) uptake kinetics in the remote posterior (Pos) wall were similar in all groups. The kinetics remained monoexponential in the affected anterior (Ant) wall and the uptake rates were 32, 36, 37 and 21% of that in the Pos wall in the control, Glib, Pin and Bum groups, respectively. Infarct sizes determined histologically as a percentage of total ventricular (left + right) mass (14-22%) corresponded to sizes of areas with 20-40% of maximal Rb image intensity [I(Rb)(max), 15-22%], except for the Pin group (12.5 vs 21%). The sizes of areas with 20-50% of I(Rb)(max) (30-36%) closely correlated with those of AAR determined histologically (31-33%). Lactate dehydrogenase release did not differ in all groups. We conclude that: (1) reperfusion damage quickly inhibits Rb(+) uptake; (2) Rb(+) uptake in normal and reperfused tissue does not significantly depend on K(ATP) or the K(+)/Na(+)/2Cl(-) cotransporter; (3) areas with 20-40% of maximal image intensity correspond to infarct areas.
Collapse
|
32
|
Walker NM, Flagella M, Gawenis LR, Shull GE, Clarke LL. An alternate pathway of cAMP-stimulated Cl secretion across the NKCC1-null murine duodenum. Gastroenterology 2002; 123:531-41. [PMID: 12145806 DOI: 10.1053/gast.2002.34757] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Adenosine 3',5'-cyclic monophosphate (cAMP)-stimulated anion secretion across the duodenal epithelium requires the cystic fibrosis transmembrane conductance regulator (CFTR) in the apical membrane and anion uptake proteins in the basolateral membrane. NKCC1, the epithelial Na(+)/K(+)/2Cl(-) cotransporter, is the major protein responsible for Cl(-) uptake. In this study, we evaluate the role of NKCC1 in determining the relative rates of transepithelial Cl(-) and HCO(3)(-) secretion during cAMP stimulation of the duodenum. METHODS Bicarbonate and chloride secretion across duodenal mucosa was measured in Ussing chambers by pH stat and (36)Cl flux methods using mice with either gene-targeted deletion of NKCC1 (NKCC1-/-) or bumetanide blockade of NKCC1. RESULTS Total anion secretion stimulated by forskolin treatment of NKCC1-null duodenum resulted from approximately equivalent rates of electrogenic chloride, electrogenic bicarbonate, and electroneutral bicarbonate secretion. Evaluation of the alternate chloride secretory pathway indicated chloride uptake by a basolateral membrane anion exchange process with characteristics consistent with the anion exchanger isoform AE2. CONCLUSIONS Chloride uptake by basolateral anion exchanger activity (AE2) supports intracellular cAMP-stimulated chloride secretion in the NKCC1-null duodenum. A model for the alternate chloride secretion pathway is proposed whereby chloride uptake via AE2 is coupled to basolateral NaHCO(3) cotransport to support CFTR-mediated chloride and bicarbonate secretion.
Collapse
Affiliation(s)
- Nancy M Walker
- Dalton Cardiovascular Research Center and the Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | | | | | |
Collapse
|
33
|
Jang IS, Jeong HJ, Katsurabayashi S, Akaike N. Functional roles of presynaptic GABA(A) receptors on glycinergic nerve terminals in the rat spinal cord. J Physiol 2002; 541:423-34. [PMID: 12042349 PMCID: PMC2290345 DOI: 10.1113/jphysiol.2001.016535] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
GABA(A) receptor-mediated presynaptic depolarization is believed to induce presynaptic inhibition of excitatory synaptic transmission. We report here the functional roles of presynaptic GABA(A) receptors in glycinergic transmission of the rat spinal cord. In mechanically dissociated rat sacral dorsal commissural nucleus (SDCN) neurons attached with native glycinergic and GABAergic nerve terminals, glycinergic spontaneous inhibitory postsynaptic currents (sIPSCs) were isolated from a mixture of both glycinergic and GABAergic sIPSCs by perfusing the SDCN nerve cell body with ATP-free internal solution. Under such experimental conditions, exogenously applied muscimol (0.5 microM) depolarized glycinergic presynaptic nerve terminals and significantly increased glycinergic sIPSC frequency to 542.7 +/- 47.3 % of the control without affecting the mean current amplitude. The facilitatory effect of muscimol on sIPSC frequency was completely blocked by bicuculline (10 microM) or SR95531 (10 microM), selective GABA(A) receptor antagonists. This muscimol-induced presynaptic depolarization was due to a higher intraterminal Cl(-) concentration, which is maintained by a bumetanide-sensitive Na-K-Cl cotransporter. On the contrary, when electrically evoked, this muscimol-induced presynaptic depolarization was found to decrease the action potential-dependent glycine release evoked by focal stimulation of a single terminal. The results suggest that GABA(A) receptor-mediated presynaptic depolarization has two functional roles: (1) presynaptic inhibition of action potential-driven glycinergic transmission, and (2) presynaptic facilitation of spontaneous glycinergic transmission.
Collapse
Affiliation(s)
- Il-Sung Jang
- Cellular and System Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
34
|
Vidyasagar S, Ramakrishna BS. Effects of butyrate on active sodium and chloride transport in rat and rabbit distal colon. J Physiol 2002; 539:163-73. [PMID: 11850510 PMCID: PMC2290116 DOI: 10.1113/jphysiol.2001.013056] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Short chain fatty acids, particularly butyrate, stimulate electroneutral NaCl absorption from the colon. Their effect in colonic epithelia lacking basal electroneutral NaCl absorption is unknown. Butyrate is also reported to inhibit active Cl- secretion in the colon. The present studies were undertaken to investigate the inter-relationships between the effects of butyrate on active Na+ and Cl- transport in the colon. Studies were carried out in rabbit distal colon (known to have predominant electrogenic Na+ absorption), rat distal colon (characterised by electroneutral Na+ absorption), and hyperaldosteronaemic rat distal colon (characterised by electrogenic Na+ absorption). The effect of cholera toxin (CT) was also noted. Potential difference, short-circuit current (I(SC)) and fluxes of Na+ and Cl- were measured in stripped mucosa under voltage-clamp conditions. Butyrate stimulated electroneutral Na+ and Cl- absorption in distal colon of normal and salt-depleted rats, and stimulated Na+ absorption in rabbit distal colon. Amiloride (10(-4) M) or CT did not inhibit this process. In rabbit distal colon, stimulation of Na+ absorption by butyrate was not dependent on the presence of Cl- in the medium. Butyrate significantly decreased conductance, decreased flux of sodium from serosa to mucosa (particularly in rabbit distal colon), and decreased I(SC). Net Cl- secretion, induced by CT, was completely inhibited by butyrate. Stimulation of Na+ absorption was independent of exposure to CT. Bumetanide reversed net Cl- secretion to net absorption, but did not alter Na+ or Cl- fluxes in tissues exposed to butyrate. Thus butyrate stimulates active Na+ absorption in colonic epithelia, with or without expression of basal Na+-H+ exchange. Independently, butyrate inhibits active Cl- secretion induced by cAMP in these epithelia.
Collapse
Affiliation(s)
- S Vidyasagar
- Department of Gastrointestinal Sciences, Christian Medical College & Hospital, Vellore 632004, India
| | | |
Collapse
|
35
|
Ebel H, Hollstein M, Gunther T. Role of the choline exchanger in Na(+)-independent Mg(2+) efflux from rat erythrocytes. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1559:135-44. [PMID: 11853680 DOI: 10.1016/s0005-2736(01)00445-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Two types of Na(+)-independent Mg(2+) efflux exist in erythrocytes: (1) Mg(2+) efflux in sucrose medium and (2) Mg(2+) efflux in high Cl(-) media such as KCl-, LiCl- or choline Cl-medium. The mechanism of Na(+)-independent Mg(2+) efflux in choline Cl medium was investigated in this study. Non-selective transport by the following transport mechanisms has been excluded: K(+),Cl(-)- and Na(+),K(+),Cl(-)-symport, Na(+)/H(+)-, Na(+)/Mg(2+)-, Na(+)/Ca(2+)- and K(+)(Na(+))/H(+) antiport, Ca(2+)-activated K(+) channel and Mg(2+) leak flux. We suggest that, in choline Cl medium, Na(+)-independent Mg(2+) efflux can be performed by non-selective transport via the choline exchanger. This was supported through inhibition of Mg(2+) efflux by hemicholinum-3 (HC-3), dodecyltrimethylammonium bromide (DoTMA) and cinchona alkaloids, which are inhibitors of the choline exchanger. Increasing concentrations of HC-3 inhibited the efflux of choline and efflux of Mg(2+) to the same degree. The K(d) value for inhibition of [(14)C]choline efflux and for inhibition of Mg(2+) efflux by HC-3 were the same within the experimental error. Inhibition of choline efflux and of Mg(2+) efflux in choline medium occurred as follows: quinine>cinchonine>HC-3>DoTMA. Mg(2+) efflux was reduced to the same degree by these inhibitors as was the [(14)C]choline efflux.
Collapse
Affiliation(s)
- H Ebel
- Institut für Klinische Physiologie, Klinikum Benjamin Franklin, Freie Universität Berlin, Germany.
| | | | | |
Collapse
|
36
|
Isenring P, Forbush B. Ion transport and ligand binding by the Na-K-Cl cotransporter, structure-function studies. Comp Biochem Physiol A Mol Integr Physiol 2001; 130:487-97. [PMID: 11913460 DOI: 10.1016/s1095-6433(01)00420-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cation-Cl cotransporters (CCCs) mediate the coupled movement of Na and/or K to that of Cl across the plasmalemma of animal cells. Eight CCCs have been identified to date: two Na-K-Cl cotransporters (NKCC), four K-Cl cotransporters (KCCs), one Na-Cl cotransporter (NCC) and one CCC interacting protein (CIP). All of the NKCCs and KCCs are inhibited by loop diuretics; mercury and other modifying agents are also known to block NKCC-mediated transport. In this work, we have utilized a mutational approach to study the interaction between different substrates and the NKCCs. We relied on the strategy of exchanging domains between functionally distinct carriers (the shark NKCCl and the human NKCCl) to identify residues or group of residues that are involved in the interaction with ions, loop diuretics and Hg. Our results show that the N- and C-termini have no role in determining the species differences in ion transport and bumetanide binding. On the other hand, the interaction between Hg and the NKCCs is found to partially involve the C-terminus through residues that contain available sulfhydryl groups. Within the transmembrane segments, variant residues in the 2nd, 4th and 7th predicted alpha-helices are shown to encode the differences in ion transport between the shark and the human cotransporters. For loop diuretic binding, several regions throughout the central domain appear to be involved. Interestingly, these regions are not the same as those involved in cation or anion transport, and in Hg binding.
Collapse
Affiliation(s)
- P Isenring
- Department of Medicine, Faculty of Medicine, Laval University, Québec, Canada.
| | | |
Collapse
|
37
|
Contribution of the Na-K-Cl cotransporter on GABA(A) receptor-mediated presynaptic depolarization in excitatory nerve terminals. J Neurosci 2001. [PMID: 11487619 DOI: 10.1523/jneurosci.21-16-05962.2001] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABA(A) receptor-mediated responses manifest as either hyperpolarization or depolarization according to the intracellular Cl(-) concentration ([Cl(-)](i)). Here, we report a novel functional interaction between the Na-K-Cl cotransporter (NKCC) and GABA(A) receptor actions on glutamatergic presynaptic nerve terminals projecting to ventromedial hypothalamic (VMH) neurons. The activation of presynaptic GABA(A) receptors depolarizes the presynaptic nerve terminals and facilitates spontaneous glutamate release by activating TTX-sensitive Na(+) channels and high-threshold Ca(2+) channels. This depolarizing action of GABA was caused by an outwardly directed Cl(-) driving force for GABA(A) receptors; that is, the [Cl(-)](i) of glutamatergic nerve terminals was higher than that predicted for a passive distribution. The higher [Cl(-)](i) was generated by bumetanide-sensitive NKCCs and was responsible for the GABA-induced presynaptic depolarization. Thus, GABA(A) receptor-mediated modulation of spontaneous glutamatergic transmission may contribute to the development and regulation of VMH function as well as to the excitability of VMH neurons themselves.
Collapse
|
38
|
Chipperfield AR, Harper AA. Chloride in smooth muscle. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 74:175-221. [PMID: 11226512 DOI: 10.1016/s0079-6107(00)00024-9] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Interest in the functions of intracellular chloride expanded about twenty years ago but mostly this referred to tissues other than smooth muscle. On the other hand, accumulation of chloride above equilibrium seems to have been recognised more readily in smooth muscle. Experimental data is used to show by calculation that the Donnan equilibrium cannot account for the chloride distribution in smooth muscle but it can in skeletal muscle. The evidence that chloride is normally above equilibrium in smooth muscle is discussed and comparisons are made with skeletal and cardiac muscle. The accent is on vascular smooth muscle and the mechanisms of accumulation and dissipation. The three mechanisms by which chloride can be accumulated are described with some emphasis on calculating the driving forces, where this is possible. The mechanisms are chloride/bicarbonate exchange, (Na+K+Cl) cotransport and a novel entity, "pump III", known only from own work. Their contributions to chloride accumulation vary and appear to be characteristic of individual smooth muscles. Thus, (Na+K+Cl) always drives chloride inwards, chloride/bicarbonate exchange is always present but does not always do it and "pump III" is not universal. Three quite different biophysical approaches to assessing chloride permeability are considered and the calculations underlying them are worked out fully. Comparisons with other tissues are made to illustrate that low chloride permeability is a feature of smooth muscle. Some of the functions of the high intracellular chloride concentrations are considered. This includes calculations to illustrate its depolarising influence on the membrane potential, a concept which, experience tells us, some people find confusing. The major topic is the role of chloride in the regulation of smooth muscle contractility. Whilst there is strong evidence that the opening of the calcium-dependent chloride channel leads to depolarisation, calcium entry and contraction in some smooth muscles, it appears that chloride serves a different function in others. Thus, although activation and inhibition of (Na+K+Cl) cotransport is associated with contraction and relaxation respectively, the converse association of inhibition and contraction has been seen. Nevertheless, inhibition of chloride/bicarbonate exchange and "pump III" and stimulation of (K+Cl) cotransport can all cause relaxation and this suggests that chloride is always involved in the contraction of smooth muscle. The evidence that (Na+K+Cl) cotransport more active in experimental hypertension is discussed. This is a common but not universal observation. The information comes almost exclusively from work on cultured cells, usually from rat aorta. Nevertheless, work on smooth muscle freshly isolated from hypertensive rats confirms that (Na+K+Cl) cotransport is activated in hypertension but there are several other differences, of which the depolarisation of the membrane potential may be the most important.Finally, a simple calculation is made which indicates as much as 40% of the energy put into the smooth muscle cell membrane by the sodium pump is necessary to drive (Na+K+Cl) cotransport. Notwithstanding the approximations in this calculation, this suggests that chloride accumulation is energetically expensive. Presumably, this is related to the apparently universal role of chloride in contraction.
Collapse
Affiliation(s)
- A R Chipperfield
- School of Life Sciences, Old Medical School, The University of Dundee, DD1 4HN, Dundee, UK.
| | | |
Collapse
|
39
|
Wall SM, Fischer MP, Mehta P, Hassell KA, Park SJ. Contribution of the Na+-K+-2Cl- cotransporter NKCC1 to Cl- secretion in rat OMCD. Am J Physiol Renal Physiol 2001; 280:F913-21. [PMID: 11292635 DOI: 10.1152/ajprenal.2001.280.5.f913] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In rat kidney the "secretory" isoform of the Na+-K+-2Cl- cotransporter (NKCC1) localizes to the basolateral membrane of the alpha-intercalated cell. The purpose of this study was to determine whether rat outer medullary collecting duct (OMCD) secretes Cl- and whether transepithelial Cl- transport occurs, in part, through Cl- uptake across the basolateral membrane mediated by NKCC1 in series with Cl- efflux across the apical membrane. OMCD tubules from rats treated with deoxycorticosterone pivalate were perfused in vitro in symmetrical HCO/CO2-buffered solutions. Cl- secretion was observed in this segment, accompanied by a lumen positive transepithelial potential. Bumetanide (100 microM), when added to the bath, reduced Cl- secretion by 78%, although the lumen positive transepithelial potential and fluid flux were unchanged. Bumetanide-sensitive Cl- secretion was dependent on extracellular Na+ and either K+ or NH, consistent with the ion dependency of NKCC1-mediated Cl- transport. In conclusion, OMCD tubules from deoxycorticosterone pivalate-treated rats secrete Cl- into the luminal fluid through NKCC1-mediated Cl- uptake across the basolateral membrane in series with Cl- efflux across the apical membrane. The physiological role of NKCC1-mediated Cl- uptake remains to be determined. However, the role of NKCC1 in the process of fluid secretion could not be demonstrated.
Collapse
Affiliation(s)
- S M Wall
- Division of Renal Diseases and Hypertension, University of Texas Medical School at Houston, 6431 Fannin, MSB 4.148, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
40
|
Suvatne J, Barakat AI, O'Donnell ME. Flow-induced expression of endothelial Na-K-Cl cotransport: dependence on K(+) and Cl(-) channels. Am J Physiol Cell Physiol 2001; 280:C216-27. [PMID: 11121393 DOI: 10.1152/ajpcell.2001.280.1.c216] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Steady laminar shear stress has been shown previously to markedly increase Na-K-Cl cotransporter mRNA and protein in human umbilical vein endothelial cells and also to rapidly increase endothelial K(+) and Cl(-) channel conductances. The present study was done to evaluate the effects of shear stress on Na-K-Cl cotransporter activity and protein expression in bovine aortic endothelial cells (BAEC) and to determine whether changes in cotransporter expression may be dependent on early changes in K(+) and Cl(-) channel conductances. Confluent BAEC monolayers were exposed in a parallel-plate flow chamber to either steady shear stress (19 dyn/cm(2)) or purely oscillatory shear stress (0 +/- 19 dyn/cm(2)) for 6-48 h. After shearing, BAEC monolayers were assessed for Na-K-Cl cotransporter activity or were subjected to Western blot analysis of cotransporter protein. Steady shear stress led to a 2- to 4-fold increase in BAEC cotransporter protein levels and a 1.5- to 1.8-fold increase in cotransporter activity, increases that were sustained over the longest time periods studied. Oscillatory flow, in contrast, had no effect on cotransporter protein levels. In the presence of flow-sensitive K(+) and Cl(-) channel pharmacological blockers, the steady shear stress-induced increase in cotransporter protein was virtually abolished. These results suggest that shear stress modulates the expression of the BAEC Na-K-Cl cotransporter by mechanisms that are dependent on flow-activated ion channels.
Collapse
Affiliation(s)
- J Suvatne
- Department of Human Physiology, School of Medicine, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
41
|
Abstract
BACKGROUND & AIMS The traditional paradigm of fluid movement in the mammalian colon is that fluid absorption and secretion are present in surface and crypt cells, respectively. We have recently demonstrated Na(+)-dependent fluid absorption in isolated crypts that are devoid of neurohumoral stimulation. We now explore the mechanism of Na(+)-dependent fluid absorption in isolated rat colonic crypts. METHODS Net fluid absorption was determined using microperfusion techniques and methoxy[(3)H]inulin with ion substitutions and transport inhibitors. RESULTS Net fluid absorption was reduced but not abolished by substitution of either N-methyl-D-glucamine- Cl(-) or tetramethylammonium for Na(+) and by lumen addition of 5-ethylisopropyl amiloride, an amiloride analogue that selectively inhibits Na(+)-H(+) exchange. Net fluid absorption was also dependent on lumen Cl(-) because removal of lumen Cl(-) significantly (P < 0.001) reduced net fluid absorption. DIDS at 100 micromol/L, a concentration at which DIDS is an anion exchange inhibitor, minimally reduced net fluid absorption (P < 0.05). In contrast, either 500 micromol/L DIDS, a concentration at which DIDS is known to act as a Cl(-) channel blocker, or 10 micromol/L NPPB, a Cl(-) channel blocker, both substantially inhibited net fluid absorption (P < 0.001). Finally, both the removal of bath Cl(-) and addition of bath bumetanide, an inhibitor of Na-K-2Cl cotransport and Cl(-) secretion, resulted in a significant increase in net fluid absorption. CONCLUSIONS (1) Net Na(+)-dependent net fluid absorption in the isolated colonic crypt represents both a larger Na(+)-dependent absorptive process and a smaller secretory process; and (2) the absorptive process consists of a Na(+)-dependent, HCO(3)(-)-independent process and a Na(+)-independent, Cl(-)-dependent, HCO(3)(-)-dependent process. Fluid movement in situ represents these transport processes plus fluid secretion induced by neurohumoral stimulation.
Collapse
Affiliation(s)
- J P Geibel
- Department of Surgery, Yale University, New Haven, Connecticut, USA
| | | | | |
Collapse
|
42
|
Su G, Haworth RA, Dempsey RJ, Sun D. Regulation of Na(+)-K(+)-Cl(-) cotransporter in primary astrocytes by dibutyryl cAMP and high [K(+)](o). Am J Physiol Cell Physiol 2000; 279:C1710-21. [PMID: 11078685 DOI: 10.1152/ajpcell.2000.279.6.c1710] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we examined the Na(+)-K(+)-Cl(-) cotransporter activity and expression in rat cortical astrocyte differentiation. Astrocyte differentiation was induced by dibutyryl cAMP (DBcAMP, 0. 25 mM) for 7 days, and cells changed from a polygonal to process-bearing morphology. Basal activity of the cotransporter was significantly increased in DBcAMP-treated astrocytes (P < 0.05). Expression of an approximately 161-kDa cotransporter protein was increased by 91% in the DBcAMP-treated astrocytes. Moreover, the specific [(3)H]bumetanide binding was increased by 67% in the DBcAMP-treated astrocytes. Inhibition of protein synthesis by cyclohexamide (2-3 microgram/ml) significantly attenuated the DBcAMP-mediated upregulation of the cotransporter activity and expression. The Na(+)-K(+)-Cl(-) cotransporter in astrocytes has been suggested to play a role in K(+) uptake. In 75 mM extracellular K(+) concentration, the cotransporter-mediated K(+) influx was stimulated by 147% in nontreated cells and 79% in DBcAMP-treated cells (P < 0.05). To study whether this high K(+)-induced stimulation of the cotransporter is attributed to membrane depolarization and Ca(2+) influx, the role of the L-type voltage-dependent Ca(2+) channel was investigated. The high-K(+)-mediated stimulation of the cotransporter activity was abolished in the presence of either 0.5 or 1.0 microM of the L-type channel blocker nifedipine or Ca(2+)-free HEPES buffer. A rise in intracellular free Ca(2+) in astrocytes was observed in high K(+). These results provide the first evidence that the Na(+)-K(+)-Cl(-) cotransporter protein expression can be regulated selectively when intracellular cAMP is elevated. The study also demonstrates that the cotransporter in astrocytes is stimulated by high K(+) in a Ca(2+)-dependent manner.
Collapse
Affiliation(s)
- G Su
- Department of Neurological Surgery, School of Medicine, University of Wisconsin, Madison, Wisconsin 53792, USA
| | | | | | | |
Collapse
|
43
|
Tomita T, Hata T. Effects of removal of Na(+) and Cl(-) on spontaneous electrical activity, slow wave, in the circular muscle of the guinea-pig gastric antrum. THE JAPANESE JOURNAL OF PHYSIOLOGY 2000; 50:469-77. [PMID: 11120913 DOI: 10.2170/jjphysiol.50.469] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In the circular muscle of the guinea-pig gastric antrum, a decrease in the external Na(+) to less than 20 mM produced depolarization of the membrane with transient prolongation of the slow wave. This was followed by a high rhythmic activity. The activity was inhibited by reapplication of Na(+) before recovery. The depolarization in Na(+)-deficient solution was prevented and rhythmic activity continued at about 5/min for at least 6 min by simultaneous removal of K(+), Ca(2+), or Cl(-). After exposure to a Na(+)- and Cl(-)-deficient solution for a few minutes, reapplication of the Na(+) in Cl(-)-deficient solution inhibited generation of the slow wave until Cl(-) reapplication. Similar results were obtained when Na(+) and Cl(-) were reapplied in the absence of K(+) after exposure to a Na(+)-, K(+)-free, and Cl(-)-deficient solution, although the inhibition was weaker than Na(+) reapplication in a Cl(-)-deficient solution. In the presence of furosemide or bumetanide, a strong inhibition of activity was produced by the reapplication of Na(+) and Cl(-) after exposure to an Na(+)- and Cl(-)-deficient solution. A hypothesis is presented that intracellular Ca(2+) concentration ([Ca(2+)](i)) is the most important factor determining the generation and frequency of the slow wave and that [Ca(2+)](i) is regulated by the Na(+) concentration gradient across the plasma membrane. The recovery of the Na(+) concentration gradient by Na(+) reapplication after removal of Na(+) and Cl(-) is mainly controlled by a Na(+)-K(+)-Cl(-) co-transport.
Collapse
Affiliation(s)
- T Tomita
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, 470-1192 Japan.
| | | |
Collapse
|
44
|
Abstract
The Na-K-Cl cotransporters are a class of ion transport proteins that transport Na, K, and Cl ions into and out of cells in an electrically neutral manner, in most cases with a stoichiometry of 1Na:1K:2Cl. To date, two Na-K-Cl cotransporter isoforms have been identified: NKCC1, which is present in a wide variety of secretory epithelia and non-epithelial cells; and NKCC2, which is present exclusively in the kidney, in the epithelial cells of the thick ascending limb of Henle's loop and of the macula densa. Both NKCC isoforms represent part of a diverse family of cation-chloride cotransport proteins that share a common predicted membrane topology; this family also includes Na-Cl cotransporters and multiple K-Cl cotransporter isoforms. In secretory epithelia, the regulation of NKCC1, which is typically present on the basolateral membrane, is tightly coordinated with that of other transporters, including apical Cl channels, to maintain cell volume and integrity during active salt and fluid secretion. Changes in intracellular [Cl] ([Cl]i) appear to be involved in this regulation of NKCC1, which is directly phosphorylated by an unknown protein kinase in response to various secretagogues as well as reductions in [Cl]i and cell volume. This review focuses on structure-function relationships within NKCC1 and on recent developments pertaining to NKCC1 regulation at cellular and molecular levels.
Collapse
Affiliation(s)
- M Haas
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
45
|
Arumanayagam M, Rogers M. Platelet sodium pump and sodium potassium cotransport activity in nonpregnant, normotensive, and hypertensive pregnant women. Hypertens Pregnancy 2000; 18:35-44. [PMID: 10463998 DOI: 10.3109/10641959909009609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To determine ouabain-sensitive sodium pump and bumetanide-sensitive sodium potassium cotransport activity in platelets from nonpregnant and normotensive pregnant women and from women with pregnancy-induced hypertension (PIH). METHODS Blood was collected from 9 normotensive nonpregnant subjects, 24 normotensive pregnant subjects in both second and third trimesters, 9 subjects who developed proteinuric PIH, and 9 subjects who developed moderate nonproteinuric PIH. Platelet sodium pump activity was determined by the difference in the uptake of rubidium-86 in the presence and absence of ouabain; sodium potassium cotransport (SPC) activity is that component that is inhibitable by bumetanide. RESULTS SPC activity was similar in normotensive subjects in the second [median (range) 78 mmol Rb/h/mg protein (18-140)] and third trimesters [85 (39-134)] but was significantly (p < 0.001) higher than in nonpregnant subjects [22 (4-107)]. In addition, SPC was significantly (p < 0.001) lower in subjects with nonproteinuric [42 (4-67)] or proteinuric PIH [59 (33-102)] compared to those who remained normotensive. Sodium pump activity was significantly higher (p < 0.05) in nonpregnant subjects [263 (188-430)] compared with the other groups of subjects. Total rubidium uptake was significantly higher (p < 0.05) in third-trimester normotensive subjects [471 (243-560)] compared with second-trimester subjects [405 (278-608)]. CONCLUSION Our results suggest that the lower SPC activity in both nonproteinuric and proteinuric PIH may be an early sign of abnormality in the transport of sodium and potassium across the vascular smooth-muscle cell membrane, which is responsible for the maintenance of blood pressure.
Collapse
Affiliation(s)
- M Arumanayagam
- Department of Chemical Pathology, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, NT, Hong Kong.
| | | |
Collapse
|
46
|
Abstract
Obligatory, coupled cotransport of Na(+), K(+), and Cl(-) by cell membranes has been reported in nearly every animal cell type. This review examines the current status of our knowledge about this ion transport mechanism. Two isoforms of the Na(+)-K(+)-Cl(-) cotransporter (NKCC) protein (approximately 120-130 kDa, unglycosylated) are currently known. One isoform (NKCC2) has at least three alternatively spliced variants and is found exclusively in the kidney. The other (NKCC1) is found in nearly all cell types. The NKCC maintains intracellular Cl(-) concentration ([Cl(-)](i)) at levels above the predicted electrochemical equilibrium. The high [Cl(-)](i) is used by epithelial tissues to promote net salt transport and by neural cells to set synaptic potentials; its function in other cells is unknown. There is substantial evidence in some cells that the NKCC functions to offset osmotically induced cell shrinkage by mediating the net influx of osmotically active ions. Whether it serves to maintain cell volume under euvolemic conditons is less clear. The NKCC may play an important role in the cell cycle. Evidence that each cotransport cycle of the NKCC is electrically silent is discussed along with evidence for the electrically neutral stoichiometries of 1 Na(+):1 K(+):2 Cl- (for most cells) and 2 Na(+):1 K(+):3 Cl(-) (in squid axon). Evidence that the absolute dependence on ATP of the NKCC is the result of regulatory phosphorylation/dephosphorylation mechanisms is decribed. Interestingly, the presumed protein kinase(s) responsible has not been identified. An unusual form of NKCC regulation is by [Cl(-)](i). [Cl(-)](i) in the physiological range and above strongly inhibits the NKCC. This effect may be mediated by a decrease of protein phosphorylation. Although the NKCC has been studied for approximately 20 years, we are only beginning to frame the broad outlines of the structure, function, and regulation of this ubiquitous ion transport mechanism.
Collapse
Affiliation(s)
- J M Russell
- Department of Biology, Biological Research Laboratories, Syracuse, New York, USA. .,edu
| |
Collapse
|
47
|
Jennings ML. Volume-sensitive K(+)/Cl(-) cotransport in rabbit erythrocytes. Analysis of the rate-limiting activation and inactivation events. J Gen Physiol 1999; 114:743-58. [PMID: 10578012 PMCID: PMC2230653 DOI: 10.1085/jgp.114.6.743] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/1999] [Accepted: 10/08/1999] [Indexed: 11/20/2022] Open
Abstract
The kinetics of activation and inactivation of K(+)/Cl(-) cotransport (KCC) have been measured in rabbit red blood cells for the purpose of determining the individual rate constants for the rate-limiting activation and inactivation events. Four different interventions (cell swelling, N-ethylmaleimide [NEM], low intracellular pH, and low intracellular Mg(2+)) all activate KCC with a single exponential time course; the kinetics are consistent with the idea that there is a single rate-limiting event in the activation of transport by all four interventions. In contrast to LK sheep red cells, the KCC flux in Mg(2+)-depleted rabbit red cells is not affected by cell volume. KCC activation kinetics were examined in cells pretreated with NEM at 0 degrees C, washed, and then incubated at higher temperatures. The forward rate constant for activation has a very high temperature dependence (E(a) approximately 32 kCal/mol), but is not affected measurably by cell volume. Inactivation kinetics were examined by swelling cells at 37 degrees C to activate KCC, and then resuspending at various osmolalities and temperatures to inactivate most of the transporters. The rate of transport inactivation increases steeply as cell volume decreases, even in a range of volumes where nearly all the transporters are inactive in the steady state. This finding indicates that the rate-limiting inactivation event is strongly affected by cell volume over the entire range of cell volumes studied, including normal cell volume. The rate-limiting inactivation event may be mediated by a protein kinase that is inhibited, either directly or indirectly, by cell swelling, low Mg(2+), acid pH, and NEM.
Collapse
Affiliation(s)
- M L Jennings
- Department of Physiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| |
Collapse
|
48
|
Jacoby SC, Gagnon E, Caron L, Chang J, Isenring P. Inhibition of Na(+)-K(+)-2Cl(-) cotransport by mercury. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:C684-92. [PMID: 10516098 DOI: 10.1152/ajpcell.1999.277.4.c684] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mercury alters the function of proteins by reacting with cysteinyl sulfhydryl (SH(-)) groups. The inorganic form (Hg(2+)) is toxic to epithelial tissues and interacts with various transport proteins including the Na(+) pump and Cl(-) channels. In this study, we determined whether the Na(+)-K(+)-Cl(-) cotransporter type 1 (NKCC1), a major ion pathway in secretory tissues, is also affected by mercurial substrates. To characterize the interaction, we measured the effect of Hg(2+) on ion transport by the secretory shark and human cotransporters expressed in HEK-293 cells. Our studies show that Hg(2+) inhibits Na(+)-K(+)-Cl(-) cotransport, with inhibitor constant (K(i)) values of 25 microM for the shark carrier (sNKCC1) and 43 microM for the human carrier. In further studies, we took advantage of species differences in Hg(2+) affinity to identify residues involved in the interaction. An analysis of human-shark chimeras and of an sNKCC1 mutant (Cys-697-->Leu) reveals that transmembrane domain 11 plays an essential role in Hg(2+) binding. We also show that modification of additional SH(-) groups by thiol-reacting compounds brings about inhibition and that the binding sites are not exposed on the extracellular face of the membrane.
Collapse
Affiliation(s)
- S C Jacoby
- Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
49
|
Flatman PW, Creanor J. Stimulation of Na+-K+-2Cl- cotransport by arsenite in ferret erythrocytes. J Physiol 1999; 519 Pt 1:143-52. [PMID: 10432345 PMCID: PMC2269477 DOI: 10.1111/j.1469-7793.1999.0143o.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/1999] [Accepted: 05/19/1999] [Indexed: 11/29/2022] Open
Abstract
1. Na+-K+-2Cl- cotransport activity was measured in ferret erythrocytes as the bumetanide-sensitive uptake of 86Rb. 2. The Na+-K+-2Cl- cotransport rate was stimulated by treating erythrocytes with sodium arsenite but not by sodium arsenate (up to 1 mM). Stimulation took an hour to develop fully. Arsenite had no effect on bumetanide-resistant 86Rb uptake. 3. In cells stored for 3 days or less, cotransport stimulation by arsenite could be described by assuming arsenite either acts at a single site (EC50, 60+/-14 microM, mean +/- S.E.M., n = 3) or that it acts at both high- (EC50, 35+/-9 microM, mean +/- S.E.M., n = 3) and low- (EC50 >2 mM) affinity sites. 4. Stimulation by 1 mM arsenite was greatest on the day of cell collection (rate about 3 times that of the control), even exceeding that produced by 20 nM calyculin A, and declined during cell storage. Addition of calyculin A to arsenite-stimulated cells resulted in further stimulation of Na+-K+-2Cl- cotransport, suggesting that arsenite and calyculin act synergistically. This was most apparent in stored cells. 5. Stimulation by 1 mM arsenite was not affected by treating cells with the mitogen-activated protein kinase inhibitors SB203580 (20 microM) and PD98059 (50 microM), but was both prevented and reversed by the kinase inhibitors staurosporine (2 microM), 4-amino-5-(4-methylphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP1, 50 microM) and genistein (0.3 mM), and with a combination of 10 microM A23187 and 2 mM EDTA (to reduce intracellular Mg2+ concentration). Only treatment with EDTA and A23187 prevented stimulation by the combination of 1 mM arsenite and 20 nM calyculin, whereas no treatment was able to fully reverse this stimulation once elicited. 6. Our data are consistent with arsenite stimulating (perhaps indirectly) a kinase that phosphorylates and activates the Na+-K+-2Cl- cotransporter.
Collapse
Affiliation(s)
- P W Flatman
- Membrane Biology Group, Department of Biomedical Sciences, University Medical School, Teviot Place, Edinburgh EH8 9AG, UK.
| | | |
Collapse
|
50
|
Alvarez LJ, Candia OA, Turner HC, Zamudio AC. Phorbol ester modulation of active ion transport across the rabbit conjunctival epithelium. Exp Eye Res 1999; 69:33-44. [PMID: 10375447 DOI: 10.1006/exer.1999.0676] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein kinase C (PKC) activation elicits diverse cell-type specific effects on key epithelial transporters. The present work examined the influence of phorbol esters, which are known activators of PKC isoenzymes, on the short-circuit current (Isc), a direct measure of net transcellular electrolyte transport, of the rabbit conjunctiva. In this preparation, the Iscmeasures a Na+-dependent, bumetanide-inhibitable Cl-transport in the basolateral-to-apical direction plus an amiloride-resistant Na+absorptive process in the opposite direction. Additions of phorbol 12-myristate-13-acetate (PMA) to the basolateral bathing media did not affect the transepithelial electrical parameters; but its introduction to the apical bath at 1 and 10 micrometers elicited a transient ( approximately 2 min duration) Iscspike followed by a sustained reduction relative to the control level. Such PMA-elicited Iscreductions were from 14. 0+/-2.0 to 3.1+/-0.8 microA cm-2(+/-s.e.m.'s, n =3) at 1 micrometer and from 16.5+/-1.9 to 4.6+/-0.7 microA cm-2(n =22) at 10 micrometers. The former concentration failed to produce extensive Iscreductions in 3 other experiments. Similar results were obtained with phorbol 12, 13-dibutyrate (PDBu). Its apical administration at 0.1 micrometer reduced the Iscfrom 18.5+/-4.1 to 7.8+/-2.0 (n =3), and from 16. 5+/-2.9 to 6.9+/-1.2 (n =7) when introduced at 1 micrometer. The phorbol-evoked Iscreductions occurred without a simultaneous change in transepithelial resistance (Rt). However, after about 15-20 min, Rtgradually declined by about 25%. In contrast to these results, treatment with a phorbol ester known not to activate PKC (4-alpha-PMA) did not affect the electrical parameters when added at 10 micrometers. PMA- and PDBu-evoked Iscreductions could be obtained with conjunctiva that were (1) pretreated with bumetanide, (2) bathed in Cl--free media, and (3) pretreated with amphotericin B, changes consistent with a likely inhibition of the basolateral Na+/K+pump. Such Iscinhibitions were attenuated with conjunctiva pre-exposed to 1 micrometer staurosporine, a nonselective kinase inhibitor known to suppress PKC activity. Staurosporine, in itself, produced a rapid 26% Iscinhibition (n =15) along with a 17% Rtincrease upon its apical introduction. These electrical responses were less extensive in Cl--free media and absent in amphotericin B-treated conjunctiva, suggesting the presence of a kinase-mediated regulation of apical channels for both Na+and Cl-. Overall, these results imply that in addition to previously demonstrated epinephrine-elicited, up-regulation of Cl-secretion, mechanisms may also exist, via PKC activation, to suppress Na+/K+pumping and consequently reduce transepithelial transport rates.
Collapse
Affiliation(s)
- L J Alvarez
- Department of Ophthalmology, Mount Sinai School of Medicine, 100th Street and 5th Avenue, New York, NY, 10029, USA
| | | | | | | |
Collapse
|