1
|
Damirchian RH, Nourbakhsh M, Atashi SS, Zare M, Zahedi A, Hosseini FS. Herbal Medicine and Voice Quality: Uncovering the Impact Through Acoustic Analysis. J Voice 2024:S0892-1997(24)00377-1. [PMID: 39551657 DOI: 10.1016/j.jvoice.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024]
Abstract
OBJECTIVE Rutarin, an herbal formulation combining powdered seeds of Cydonia oblonga (quince) and aerial parts of Origanum majorana (marjoram), is used to address respiratory issues and enhance voice quality. This study investigates the effects of Rutarin on voice parameters, including fundamental frequency (F0), jitter, shimmer, harmonics-to-noise ratio (HNR), cepstral peak prominence (CPP), and smoothed cepstral peak prominence (CPPS). METHODS Voice samples of 79 individuals who produced a sustained vowel /a/ were examined before and after consuming either Rutarin or warm water. The pretest vowel production was performed twice with a 5-minute interval between the first and second recordings before the actual test. Following consumption, the post test was performed five times for each participant at intervals immediately after drinking, 5, 15, 35, and 60 minutes. The repeated measure analysis of variance and Friedman test were employed to assess the within-subject differences, allowing the analysis of multiple conditions experienced by the same individual. RESULTS Despite the recognized medicinal properties of its components, Rutarin did not produce significant improvements in voice quality compared to water. Water demonstrated notable effects on F0, jitter, HNR, CPP, and CPPS, particularly in male participants (P < 0.05). CONCLUSION Although Rutarin may offer some therapeutic advantages for throat and respiratory health, it does not appear to enhance vocal performance as claimed.
Collapse
Affiliation(s)
| | - Mandana Nourbakhsh
- Department of Linguistics, Faculty of Literature, Alzahra University, Tehran, Iran.
| | - Seyed Shahab Atashi
- Department of Food and Drug Control, Jundishapour University of Medical Sciences, Ahvaz, Iran.
| | - Mohammad Zare
- Department of Statistics, Faculty of Mathematical Sciences, Alzahra University, Tehran, Iran.
| | - Azadeh Zahedi
- Superintendent of Punak Health Center, Northwest Health Headquarters of Tehran, Iran University of Medical Sciences, Tehran, Iran.
| | - Fakhri Sadat Hosseini
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| |
Collapse
|
2
|
Lee MSS, North CM, Choudhuri I, Biswas SK, Fleisch AF, Farooque A, Bao D, Afroz S, Mow S, Husain N, Islam F, Mostafa MG, Biswas PP, Ludwig DS, Digumarthy SR, Hug C, Quamruzzaman Q, Christiani DC, Mazumdar M. Arsenic exposure is associated with elevated sweat chloride concentration and airflow obstruction among adults in Bangladesh: a cross sectional study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.25.24314390. [PMID: 39399016 PMCID: PMC11469388 DOI: 10.1101/2024.09.25.24314390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Arsenic is associated with lung disease and experimental models suggest that arsenic-induced degradation of the chloride channel CFTR (cystic fibrosis transmembrane conductance regulator) is a mechanism of arsenic toxicity. We examined associations between arsenic exposure, sweat chloride concentration (measure of CFTR function), and pulmonary function among 285 adults in Bangladesh. Participants with sweat chloride ≥ 60 mmol/L had higher arsenic exposures than those with sweat chloride < 60 mmol/L (water: median 77.5 μg/L versus 34.0 μg/L, p = 0.025; toenails: median 4.8 μg/g versus 3.7 μg/g, p = 0.024). In linear regression models, a one-unit μg/g increment in toenail arsenic was associated with a 0.59 mmol/L higher sweat chloride concentration, p < 0.001. We found that toenail arsenic concentration was associated with increased odds of airway obstruction (OR: 1.97, 95%: 1.06, 3.67, p = 0.03); however, sweat chloride concentration did not mediate this association. Our findings suggest that sweat chloride concentration may be a novel biomarker for arsenic exposure and also that arsenic likely acts on the lung through mechanisms other than CFTR dysfunction.
Collapse
Affiliation(s)
- Mi-Sun S Lee
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA
| | - Crystal M North
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Irada Choudhuri
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Subrata K Biswas
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Abby F Fleisch
- Center for Interdisciplinary Population Health Research, MaineHealth, Portland, ME USA
- Pediatric Endocrinology and Diabetes, Maine Medical Center, Portland, ME USA
| | - Afifah Farooque
- Department of Neurology, Boston Children's Hospital, Boston, MA USA
| | - Diane Bao
- Department of Neurology, Boston Children's Hospital, Boston, MA USA
| | - Sakila Afroz
- Dhaka Community Hospital Trust, Dhaka Bangladesh
| | - Sadia Mow
- Dhaka Community Hospital Trust, Dhaka Bangladesh
| | | | - Fuadul Islam
- Dhaka Community Hospital Trust, Dhaka Bangladesh
| | | | - Partha Pratim Biswas
- Department of Biochemistry, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - David S Ludwig
- New Balance Obesity Prevention Center, Boston Children's Hospital, Boston, MA USA
| | - Subba R Digumarthy
- Thoracic Imaging and Intervention Division, Massachusetts General Hospital, Boston, MA USA
| | | | | | - David C Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Maitreyi Mazumdar
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA USA
- Department of Neurology, Boston Children's Hospital, Boston, MA USA
| |
Collapse
|
3
|
Harvey BJ, McElvaney NG. Sex differences in airway disease: estrogen and airway surface liquid dynamics. Biol Sex Differ 2024; 15:56. [PMID: 39026347 PMCID: PMC11264786 DOI: 10.1186/s13293-024-00633-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024] Open
Abstract
Biological sex differences exist for many airway diseases in which females have either worse or better health outcomes. Inflammatory airway diseases such as cystic fibrosis (CF) and asthma display a clear male advantage in post-puberty while a female benefit is observed in asthma during the pre-puberty years. The influence of menstrual cycle stage and pregnancy on the frequency and severity of pulmonary exacerbations in CF and asthma point to a role for sex steroid hormones, particularly estrogen, in underpinning biological sex differences in these diseases. There are many ways by which estrogen may aggravate asthma and CF involving disturbances in airway surface liquid (ASL) dynamics, inappropriate hyper-immune and allergenic responses, as well as exacerbation of pathogen virulence. The deleterious effect of estrogen on pulmonary function in CF and asthma contrasts with the female advantage observed in airway diseases characterised by pulmonary edema such as pneumonia, acute respiratory distress syndrome (ARDS) and COVID-19. Airway surface liquid hypersecretion and alveolar flooding are hallmarks of ARDS and COVID-19, and contribute to the morbidity and mortality of severe forms of these diseases. ASL dynamics encompasses the intrinsic features of the thin lining of fluid covering the airway epithelium which regulate mucociliary clearance (ciliary beat, ASL height, volume, pH, viscosity, mucins, and channel activating proteases) in addition to innate defence mechanisms (pathogen virulence, cytokines, defensins, specialised pro-resolution lipid mediators, and metabolism). Estrogen regulation of ASL dynamics contributing to biological sex differences in CF, asthma and COVID-19 is a major focus of this review.
Collapse
Affiliation(s)
- Brian J Harvey
- Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, 126 St Stephens Green, Dublin 2, Ireland.
- Department of Medicine, RCSI ERC, Beaumont Hospital, Dublin 2, Ireland.
| | - Noel G McElvaney
- Faculty of Medicine and Health Sciences, Royal College of Surgeons in Ireland, 126 St Stephens Green, Dublin 2, Ireland
| |
Collapse
|
4
|
Wu M, Chen JH. CFTR dysfunction leads to defective bacterial eradication on cystic fibrosis airways. Front Physiol 2024; 15:1385661. [PMID: 38699141 PMCID: PMC11063615 DOI: 10.3389/fphys.2024.1385661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
Dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel by genetic mutations causes the inherited disease cystic fibrosis (CF). CF lung disease that involves multiple disorders of epithelial function likely results from loss of CFTR function as an anion channel conducting chloride and bicarbonate ions and its function as a cellular regulator modulating the activity of membrane and cytosol proteins. In the absence of CFTR activity, abundant mucus accumulation, bacterial infection and inflammation characterize CF airways, in which inflammation-associated tissue remodeling and damage gradually destroys the lung. Deciphering the link between CFTR dysfunction and bacterial infection in CF airways may reveal the pathogenesis of CF lung disease and guide the development of new treatments. Research efforts towards this goal, including high salt, low volume, airway surface liquid acidosis and abnormal mucus hypotheses are critically reviewed.
Collapse
Affiliation(s)
| | - Jeng-Haur Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| |
Collapse
|
5
|
Jairaman A, Prakriya M. Calcium Signaling in Airway Epithelial Cells: Current Understanding and Implications for Inflammatory Airway Disease. Arterioscler Thromb Vasc Biol 2024; 44:772-783. [PMID: 38385293 PMCID: PMC11090472 DOI: 10.1161/atvbaha.123.318339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Airway epithelial cells play an indispensable role in protecting the lung from inhaled pathogens and allergens by releasing an array of mediators that orchestrate inflammatory and immune responses when confronted with harmful environmental triggers. While this process is undoubtedly important for containing the effects of various harmful insults, dysregulation of the inflammatory response can cause lung diseases including asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. A key cellular mechanism that underlies the inflammatory responses in the airway is calcium signaling, which stimulates the production and release of chemokines, cytokines, and prostaglandins from the airway epithelium. In this review, we discuss the role of major Ca2+ signaling pathways found in airway epithelial cells and their contributions to airway inflammation, mucociliary clearance, and surfactant production. We highlight the importance of store-operated Ca2+ entry as a major signaling hub in these processes and discuss therapeutic implications of targeting Ca2+ signaling for airway inflammation.
Collapse
Affiliation(s)
- Amit Jairaman
- Department of Physiology and Biophysics, School of Medicine, University of California-Irvine (UCI) (A.J.)
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (M.P.)
| |
Collapse
|
6
|
Sure F, Einsiedel J, Gmeiner P, Duchstein P, Zahn D, Korbmacher C, Ilyaskin AV. The small molecule activator S3969 stimulates the epithelial sodium channel by interacting with a specific binding pocket in the channel's β-subunit. J Biol Chem 2024; 300:105785. [PMID: 38401845 PMCID: PMC11065748 DOI: 10.1016/j.jbc.2024.105785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/13/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024] Open
Abstract
The epithelial sodium channel (ENaC) is essential for mediating sodium absorption in several epithelia. Its impaired function leads to severe disorders, including pseudohypoaldosteronism type 1 and respiratory distress. Therefore, pharmacological ENaC activators have potential therapeutic implications. Previously, a small molecule ENaC activator (S3969) was developed. So far, little is known about molecular mechanisms involved in S3969-mediated ENaC stimulation. Here, we identified an S3969-binding site in human ENaC by combining structure-based simulations with molecular biological methods and electrophysiological measurements of ENaC heterologously expressed in Xenopus laevis oocytes. We confirmed a previous observation that the extracellular loop of β-ENaC is essential for ENaC stimulation by S3969. Molecular dynamics simulations predicted critical residues in the thumb domain of β-ENaC (Arg388, Phe391, and Tyr406) that coordinate S3969 within a binding site localized at the β-γ-subunit interface. Importantly, mutating each of these residues reduced (R388H; R388A) or nearly abolished (F391G; Y406A) the S3969-mediated ENaC activation. Molecular dynamics simulations also suggested that S3969-mediated ENaC stimulation involved a movement of the α5 helix of the thumb domain of β-ENaC away from the palm domain of γ-ENaC. Consistent with this, the introduction of two cysteine residues (βR437C - γS298C) to form a disulfide bridge connecting these two domains prevented ENaC stimulation by S3969 unless the disulfide bond was reduced by DTT. Finally, we demonstrated that S3969 stimulated ENaC endogenously expressed in cultured human airway epithelial cells (H441). These new findings may lead to novel (patho-)physiological and therapeutic concepts for disorders associated with altered ENaC function.
Collapse
Affiliation(s)
- Florian Sure
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Einsiedel
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Patrick Duchstein
- Theoretical Chemistry/Computer Chemistry Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Dirk Zahn
- Theoretical Chemistry/Computer Chemistry Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christoph Korbmacher
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alexandr V Ilyaskin
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
7
|
Olivença DV, Davis JD, Kumbale CM, Zhao CY, Brown SP, McCarty NA, Voit EO. Mathematical models of cystic fibrosis as a systemic disease. WIREs Mech Dis 2023; 15:e1625. [PMID: 37544654 PMCID: PMC10843793 DOI: 10.1002/wsbm.1625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023]
Abstract
Cystic fibrosis (CF) is widely known as a disease of the lung, even though it is in truth a systemic disease, whose symptoms typically manifest in gastrointestinal dysfunction first. CF ultimately impairs not only the pancreas and intestine but also the lungs, gonads, liver, kidneys, bones, and the cardiovascular system. It is caused by one of several mutations in the gene of the epithelial ion channel protein CFTR. Intense research and improved antimicrobial treatments during the past eight decades have steadily increased the predicted life expectancy of a person with CF (pwCF) from a few weeks to over 50 years. Moreover, several drugs ameliorating the sequelae of the disease have become available in recent years, and notable treatments of the root cause of the disease have recently generated substantial improvements in health for some but not all pwCF. Yet, numerous fundamental questions remain unanswered. Complicating CF, for instance in the lung, is the fact that the associated insufficient chloride secretion typically perturbs the electrochemical balance across epithelia and, in the airways, leads to the accumulation of thick, viscous mucus and mucus plaques that cannot be cleared effectively and provide a rich breeding ground for a spectrum of bacterial and fungal communities. The subsequent infections often become chronic and respond poorly to antibiotic treatments, with outcomes sometimes only weakly correlated with the drug susceptibility of the target pathogen. Furthermore, in contrast to rapidly resolved acute infections with a single target pathogen, chronic infections commonly involve multi-species bacterial communities, called "infection microbiomes," that develop their own ecological and evolutionary dynamics. It is presently impossible to devise mathematical models of CF in its entirety, but it is feasible to design models for many of the distinct drivers of the disease. Building upon these growing yet isolated modeling efforts, we discuss in the following the feasibility of a multi-scale modeling framework, known as template-and-anchor modeling, that allows the gradual integration of refined sub-models with different granularity. The article first reviews the most important biomedical aspects of CF and subsequently describes mathematical modeling approaches that already exist or have the potential to deepen our understanding of the multitude aspects of the disease and their interrelationships. The conceptual ideas behind the approaches proposed here do not only pertain to CF but are translatable to other systemic diseases. This article is categorized under: Congenital Diseases > Computational Models.
Collapse
Affiliation(s)
- Daniel V. Olivença
- Center for Engineering Innovation, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, USA
| | - Jacob D. Davis
- Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, Georgia
| | - Carla M. Kumbale
- Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, Georgia
| | - Conan Y. Zhao
- Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Samuel P. Brown
- Department of Biological Sciences, Georgia Tech and Emory University, Atlanta, Georgia
| | - Nael A. McCarty
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - Eberhard O. Voit
- Department of Biomedical Engineering, Georgia Tech and Emory University, Atlanta, Georgia
| |
Collapse
|
8
|
Qu C, Guan X, Li C, Zhu X, Ma T, Li H, Yu B, Yang H. Sesquiterpene lactones improve secretory diarrhea symptoms by inhibiting intestinal Ca 2+-activated Cl - channel activities directly and indirectly. Eur J Pharmacol 2023; 955:175917. [PMID: 37473982 DOI: 10.1016/j.ejphar.2023.175917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Secretory diarrhea caused by bacteria and viruses is usually accompanied by activation of the cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated Cl- channels (CaCCs) in the intestinal epithelium. Inhibition of CFTR and CaCCs activities significantly reduces fluid losses and intestinal motility in diarrheal diseases. For this reason, CFTR and CaCCs are potential targets of therapeutic drug screening. Here, we reported that the sesquiterpene lactones, alantolactone (AL) and isoalantolactone (iAL), significantly inhibited ATP and Eact-induced short-circuit currents in T84, HT-29 and Fischer rat thyroid (FRT) cells expressing transmembrane protein 16A (TMEM16A) in a concentration-dependent manner. AL and iAL also inhibited the CaCC-mediated short-circuit currents induced by carbachol in the mouse colons. Both compounds inhibited forskolin-induced currents in T84 cells but did not significantly affect mouse colons. In vivo studies indicated that AL and iAL attenuated gastrointestinal motility and decreased watery diarrhea in rotavirus-infected neonatal mice. Preliminary mechanism studies showed that AL and iAL inhibited CaCCs at least partially by inhibiting Ca2+ release and basolateral membrane K+ channels activity. These findings suggest a new pharmacological activity of sesquiterpene lactone compounds that might lead to the development of treatments for rotaviral secretory diarrhea.
Collapse
Affiliation(s)
- Chao Qu
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Science, Liaoning Normal University, Dalian, China
| | - Xin Guan
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Science, Liaoning Normal University, Dalian, China; Stem Cell Clinical Research Center, National Joint Engineering Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, China; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian, China
| | - Chang Li
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Science, Liaoning Normal University, Dalian, China
| | - Xiaojuan Zhu
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Science, Liaoning Normal University, Dalian, China
| | - Tonghui Ma
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Science, Liaoning Normal University, Dalian, China
| | - Hongyan Li
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Science, Liaoning Normal University, Dalian, China.
| | - Bo Yu
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Science, Liaoning Normal University, Dalian, China.
| | - Hong Yang
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, School of Life Science, Liaoning Normal University, Dalian, China.
| |
Collapse
|
9
|
Myszor IT, Gudmundsson GH. Modulation of innate immunity in airway epithelium for host-directed therapy. Front Immunol 2023; 14:1197908. [PMID: 37251385 PMCID: PMC10213533 DOI: 10.3389/fimmu.2023.1197908] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Innate immunity of the mucosal surfaces provides the first-line defense from invading pathogens and pollutants conferring protection from the external environment. Innate immune system of the airway epithelium consists of several components including the mucus layer, mucociliary clearance of beating cilia, production of host defense peptides, epithelial barrier integrity provided by tight and adherens junctions, pathogen recognition receptors, receptors for chemokines and cytokines, production of reactive oxygen species, and autophagy. Therefore, multiple components interplay with each other for efficient protection from pathogens that still can subvert host innate immune defenses. Hence, the modulation of innate immune responses with different inducers to boost host endogenous front-line defenses in the lung epithelium to fend off pathogens and to enhance epithelial innate immune responses in the immunocompromised individuals is of interest for host-directed therapy. Herein, we reviewed possibilities of modulation innate immune responses in the airway epithelium for host-directed therapy presenting an alternative approach to standard antibiotics.
Collapse
Affiliation(s)
- Iwona T. Myszor
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
| | - Gudmundur Hrafn Gudmundsson
- Faculty of Life and Environmental Sciences, Biomedical Center, University of Iceland, Reykjavik, Iceland
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
11
|
Cho DY, Grayson JW, Woodworth BA. Unified Airway—Cystic Fibrosis. Otolaryngol Clin North Am 2022; 56:125-136. [DOI: 10.1016/j.otc.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Qiu ZE, Xu JB, Chen L, Huang ZX, Lei TL, Huang ZY, Hou XC, Yang HL, Lin QH, Zhu YX, Zhao L, Zhou WL, Zhang YL. Allicin Facilitates Airway Surface Liquid Hydration by Activation of CFTR. Front Pharmacol 2022; 13:890284. [PMID: 35784719 PMCID: PMC9241074 DOI: 10.3389/fphar.2022.890284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
Airway epithelium plays critical roles in regulating airway surface liquid (ASL), the alteration of which causes mucus stasis symptoms. Allicin is a compound released from garlic and harbors the capacity of lung-protection. However, the potential regulatory effects of allicin on airway epithelium remain elusive. This study aimed to investigate the effects of allicin on ion transport across airway epithelium and evaluate its potential as an expectorant. Application of allicin induced Cl− secretion across airway epithelium in a concentration-dependent manner. Blockade of cystic fibrosis transmembrane conductance regulator (CFTR) or inhibition of adenylate cyclase-cAMP signaling pathway attenuated allicin-induced Cl− secretion in airway epithelial cells. The in vivo study showed that inhaled allicin significantly increased the ASL secretion in mice. These results suggest that allicin induces Cl− and fluid secretion across airway epithelium via activation of CFTR, which might provide therapeutic strategies for the treatment of chronic pulmonary diseases associated with ASL dehydration.
Collapse
Affiliation(s)
- Zhuo-Er Qiu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Bang Xu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Lei Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ze-Xin Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tian-Lun Lei
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zi-Yang Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Chun Hou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hai-Long Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qin-Hua Lin
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yun-Xin Zhu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Lei Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Lei Zhao, ; Wen-Liang Zhou, ; Yi-Lin Zhang,
| | - Wen-Liang Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Lei Zhao, ; Wen-Liang Zhou, ; Yi-Lin Zhang,
| | - Yi-Lin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Lei Zhao, ; Wen-Liang Zhou, ; Yi-Lin Zhang,
| |
Collapse
|
13
|
Markovetz MR, Garbarine IC, Morrison CB, Kissner WJ, Seim I, Forest MG, Papanikolas MJ, Freeman R, Ceppe A, Ghio A, Alexis NE, Stick SM, Ehre C, Boucher RC, Esther CR, Muhlebach MS, Hill DB. Mucus and mucus flake composition and abundance reflect inflammatory and infection status in cystic fibrosis. J Cyst Fibros 2022; 21:959-966. [DOI: 10.1016/j.jcf.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/11/2022] [Accepted: 04/06/2022] [Indexed: 10/18/2022]
|
14
|
Novak C, Ballinger MN, Ghadiali S. Mechanobiology of Pulmonary Diseases: A Review of Engineering Tools to Understand Lung Mechanotransduction. J Biomech Eng 2021; 143:110801. [PMID: 33973005 PMCID: PMC8299813 DOI: 10.1115/1.4051118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/01/2021] [Indexed: 12/17/2022]
Abstract
Cells within the lung micro-environment are continuously subjected to dynamic mechanical stimuli which are converted into biochemical signaling events in a process known as mechanotransduction. In pulmonary diseases, the abrogated mechanical conditions modify the homeostatic signaling which influences cellular phenotype and disease progression. The use of in vitro models has significantly expanded our understanding of lung mechanotransduction mechanisms. However, our ability to match complex facets of the lung including three-dimensionality, multicellular interactions, and multiple simultaneous forces is limited and it has proven difficult to replicate and control these factors in vitro. The goal of this review is to (a) outline the anatomy of the pulmonary system and the mechanical stimuli that reside therein, (b) describe how disease impacts the mechanical micro-environment of the lung, and (c) summarize how existing in vitro models have contributed to our current understanding of pulmonary mechanotransduction. We also highlight critical needs in the pulmonary mechanotransduction field with an emphasis on next-generation devices that can simulate the complex mechanical and cellular environment of the lung. This review provides a comprehensive basis for understanding the current state of knowledge in pulmonary mechanotransduction and identifying the areas for future research.
Collapse
Affiliation(s)
- Caymen Novak
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, 473 West 12th Avenue, Columbus, OH 43210
| | - Megan N. Ballinger
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, 473 West 12th Avenue, Columbus, OH 43210
| | - Samir Ghadiali
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, 473 West 12th Avenue, Columbus, OH 43210; Department of Biomedical Engineering, The Ohio State University, 2124N Fontana Labs, 140 West 19th Avenue, Columbus, OH 43210
| |
Collapse
|
15
|
Park S, Lee PH, Baek AR, Park JS, Lee J, Park SW, Kim DJ, Jang AS. Association of the Tight Junction Protein Claudin-4 with Lung Function and Exacerbations in Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2021; 16:2735-2740. [PMID: 34675499 PMCID: PMC8502106 DOI: 10.2147/copd.s330674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/13/2021] [Indexed: 01/22/2023] Open
Abstract
Purpose Chronic obstructive pulmonary disease (COPD) imposes a major healthcare burden. A tight junction protein, claudin-4 (CLDN4), may play a protective role in acute lung injury, but its role in COPD is unclear. To investigate the relationship between CLDN4 and COPD, we evaluated the association of CLDN4 with the clinical parameters of COPD, including exacerbations. Patients and Methods We analyzed a cohort of 30 patients with COPD and 25 healthy controls and evaluated their clinical parameters, including lung function. The plasma CLDN4 level in stable and exacerbated COPD was measured. Results The COPD patients were all males and predominantly smokers; their initial lung function was poorer than the healthy controls. The mean CLDN4 plasma level was 0.0219 ± 0.0205 ng/mg in the control group, 0.0086 ± 0.0158 ng/mg in the stable COPD group (COPD-ST) and 0.0917 ± 0.0871 ng/mg in the exacerbated COPD (COPD-EXA) group. The plasma CLDN4 level was significantly lower in the COPD-ST than the control group, but was significantly elevated in the COPD-EXA group. The plasma CLDN4 level was inversely correlated with forced vital capacity and forced expiratory volume in 1 second in the COPD-EXA group (r=0.506, P=0.001 and r=0.527, P<0.001, respectively). Conclusion The plasma CLDN4 level is closely correlated with COPD exacerbations and decreased lung function. This suggests that CLDN4 has potential as a severity marker for COPD.
Collapse
Affiliation(s)
- Shinhee Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Pureun-Haneul Lee
- Department of Interdisciplinary Program in Biomedical Science Major, Soonchunhyang Graduate School, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Ae Rin Baek
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Jong Sook Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Junehyuk Lee
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Sung-Woo Park
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - Do Jin Kim
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| | - An-Soo Jang
- Division of Allergy and Respiratory Medicine, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Republic of Korea
| |
Collapse
|
16
|
Muñoz Castro G, Balañá Corberó A. Airway Clearance and Mucoactive Therapies. Semin Respir Crit Care Med 2021; 42:616-622. [PMID: 34261185 DOI: 10.1055/s-0041-1730922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The respiratory system is constantly exposed to external pathogens but has different and effective defense systems. The pathophysiology of bronchiectasis affects the defense system considerably in that alterations occur in the airway that reduce its effectiveness in mucociliary clearance and the greater presence of mucins leads to the accumulation of more adherent and viscous mucus. One of the pillars of treatment of this disease should be improvement of mucociliary clearance and a decrease in the adherence and viscosity of the mucus. To this end, the mobilization of secretions must be increased through effective respiratory physiotherapy techniques, which can be manual and/or instrumental. The properties of mucus can be modified to improve its mobilization through the use of a mucoactive agent. Despite the increase in the number and quality of studies, the evidence for these treatments remains scarce, although their application is recommended in all guidelines.
Collapse
Affiliation(s)
- Gerard Muñoz Castro
- Department of Pneumology, Dr. Josep Trueta University Hospital, Girona, Spain.,Bronchiectasis Group, Girona Biomedical Research Institute, Girona, Spain.,Department of Physical Therapy, EUSES & ENTI, University of Girona and University of Barcelona, Barcelona, Spain
| | - Ana Balañá Corberó
- Department of Pneumology, Hospital del Mar-Parc de Salut Mar, Barcelona, Spain.,Myogenesis, Inflammation and Muscle Function-IMIM, Barcelona, Spain.,Department of Physical Therapy, EUIFN Blanquerna URL Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Airway Epithelial Nucleotide Release Contributes to Mucociliary Clearance. Life (Basel) 2021; 11:life11050430. [PMID: 34064654 PMCID: PMC8151306 DOI: 10.3390/life11050430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
Mucociliary clearance (MCC) is a dominant component of pulmonary host defense. In health, the periciliary layer (PCL) is optimally hydrated, thus acting as an efficient lubricant layer over which the mucus layer moves by ciliary force. Airway surface dehydration and production of hyperconcentrated mucus is a common feature of chronic obstructive lung diseases such as cystic fibrosis (CF) and chronic bronchitis (CB). Mucus hydration is driven by electrolyte transport activities, which in turn are regulated by airway epithelial purinergic receptors. The activity of these receptors is controlled by the extracellular concentrations of ATP and its metabolite adenosine. Vesicular and conducted pathways contribute to ATP release from airway epithelial cells. In this study, we review the evidence leading to the identification of major components of these pathways: (a) the vesicular nucleotide transporter VNUT (the product of the SLC17A9 gene), the ATP transporter mediating ATP storage in (and release from) mucin granules and secretory vesicles; and (b) the ATP conduit pannexin 1 expressed in non-mucous airway epithelial cells. We further illustrate that ablation of pannexin 1 reduces, at least in part, airway surface liquid (ASL) volume production, ciliary beating, and MCC rates.
Collapse
|
18
|
Hyperinflammation and airway surface liquid dehydration in cystic fibrosis: purinergic system as therapeutic target. Inflamm Res 2021; 70:633-649. [PMID: 33904934 DOI: 10.1007/s00011-021-01464-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/06/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE AND DESIGN The exacerbate inflammatory response contributes to the progressive loss of lung function in cystic fibrosis (CF), a genetic disease that affects the osmotic balance of mucus and mucociliary clearance, resulting in a microenvironment that favors infection and inflammation. The purinergic system, an extracellular signaling pathway characterized by nucleotides, enzymes and receptors, may have a protective role in the disease, through its action in airway surface liquid (ASL) and anti-inflammatory response. MATERIALS AND METHODS To make up this review, studies covering topics of CF, inflammation, ASL and purinergic system were selected from the main medical databases, such as Pubmed and ScienceDirect. CONCLUSION We propose several ways to modulate the purinergic system as a potential therapy for CF, like inhibition of P2X7, activation of P2Y2, A2A and A2B receptors and blocking of adenosine deaminase. Among them, we postulate that the most suitable strategy is to block the action of adenosine deaminase, which culminates in the increase of Ado levels that presents anti-inflammatory actions and improves mucociliary clearance. Furthermore, it is possible to maintain the physiological levels of ATP to control the hydration of ASL. These therapies could correct the main mechanisms that contribute to the progression of CF.
Collapse
|
19
|
Cui Y, Hou Y, Zhang H, Liu Y, Mao K, Nie H, Ding Y. Regulation of Electrolyte Permeability by Herbal Monomers in Edematous Disorders. Curr Pharm Des 2021; 27:833-839. [PMID: 32940173 DOI: 10.2174/1381612826666200917144655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/10/2020] [Indexed: 11/22/2022]
Abstract
Edema is a gradual accumulation of fluid in the interstitial tissues or luminal cavities, which is regulated by ion transport pathways and reflects dysfunction of fluid and salt homeostasis. Increasing evidence suggests that some herbal monomers significantly reduce organ/tissue edema. In this review, we briefly summarized the electrolyte permeability involved in pathomechanisms of organ edema, and the benefits of herbal monomers on ionic transport machinery, including Na+-K+-ATPase, Na+ and Cl- channels, Na+-K+-2Cl- co-transporter, etc. Pharmaceutical relevance is implicated in developing advanced strategies to mitigate edematous disorders. In conclusion, the natural herbal monomers regulate electrolyte permeability in many edematous disorders, and further basic and clinical studies are needed.
Collapse
Affiliation(s)
- Yong Cui
- Department of Anesthesiology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Honglei Zhang
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yanhong Liu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Kejun Mao
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
20
|
Mikhailik A, Michurina TV, Dikranian K, Hearn S, Maxakov VI, Siller SS, Takemaru KI, Enikolopov G, Peunova N. nNOS regulates ciliated cell polarity, ciliary beat frequency, and directional flow in mouse trachea. Life Sci Alliance 2021; 4:4/5/e202000981. [PMID: 33653689 PMCID: PMC8008965 DOI: 10.26508/lsa.202000981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/24/2022] Open
Abstract
Clearance of the airway is dependent on directional mucus flow across the mucociliary epithelium, and deficient flow is implicated in a range of human disorders. Efficient flow relies on proper polarization of the multiciliated cells and sufficient ciliary beat frequency. We show that NO, produced by nNOS in the multiciliated cells of the mouse trachea, controls both the planar polarity and the ciliary beat frequency and is thereby necessary for the generation of the robust flow. The effect of nNOS on the polarity of ciliated cells relies on its interactions with the apical networks of actin and microtubules and involves RhoA activation. The action of nNOS on the beat frequency is mediated by guanylate cyclase; both NO donors and cGMP can augment fluid flow in the trachea and rescue the deficient flow in nNOS mutants. Our results link insufficient availability of NO in ciliated cells to defects in flow and ciliary activity and may thereby explain the low levels of exhaled NO in ciliopathies.
Collapse
Affiliation(s)
- Anatoly Mikhailik
- Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Tatyana V Michurina
- Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Krikor Dikranian
- Department of Neuroscience, Washington University, St. Louis, MO, USA
| | - Stephen Hearn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Vladimir I Maxakov
- Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Saul S Siller
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Ken-Ichi Takemaru
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Grigori Enikolopov
- Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, USA.,Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Natalia Peunova
- Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, USA .,Department of Anesthesiology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
21
|
Pedan H, Janosova V, Hajtman A, Calkovsky V. Non-Reflex Defense Mechanisms of Upper Airway Mucosa: Possible Clinical Application. Physiol Res 2021; 69:S55-S67. [PMID: 32228012 DOI: 10.33549/physiolres.934404] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The sinonasal mucosa has an essential role in defense mechanisms of the upper respiratory tract. The innate immune system presents the primary defense against noxious microorganisms followed by induction of the adaptive immune mechanisms as a consequence of the presence of pathogens. This well-known activation of adaptive immune system in response to presence of the antigen on mucosal surfaces is now broadly applicated in vaccinology research. Prevention of infectious diseases belongs to substantial challenges in maintaining the population health. Non-invasive, easily applicable mucosal vaccination purposes various research opportunities that could be usable in daily practice. However, the existence of multiple limitations such as rapid clearance of vaccine from nasal mucosa by means of mucociliary transport represents a great challenge in development of safe and efficient vaccines. Here we give an updated view on nasal functions with focus on nasal mucosal immunity and its potential application in vaccination in nearly future.
Collapse
Affiliation(s)
- H Pedan
- Clinic of Otorhinolaryngology and Head and Neck Surgery, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, and Martin University Hospital, Martin, Slovak
| | | | | | | |
Collapse
|
22
|
|
23
|
Editorial: Special Issue on "Therapeutic Approaches for Cystic Fibrosis". Int J Mol Sci 2020; 21:ijms21186657. [PMID: 32932926 PMCID: PMC7555172 DOI: 10.3390/ijms21186657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/18/2022] Open
|
24
|
P2X3-Receptor Antagonists as Potential Antitussives: Summary of Current Clinical Trials in Chronic Cough. Lung 2020; 198:609-616. [PMID: 32661659 DOI: 10.1007/s00408-020-00377-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/01/2020] [Indexed: 01/17/2023]
Abstract
Cough is among the most common complaints for which patients worldwide seek medical attention. In a majority of patients with chronic cough (defined as cough of greater than 8 weeks' duration), successful management results from a thorough evaluation and treatment of underlying causes. In a subgroup of patients, however, cough proves refractory to therapeutic trials aimed at known reversible causes of chronic cough. Such patients are appropriately termed as having refractory chronic cough. At present, safe and effective medications are lacking for this challenging patient population. Currently available therapeutic options are usually ineffective or achieve antitussive effect at the expense of intolerable side effects, typically sedation. Fortunately, the past decade has witnessed great progress in elucidating underlying mechanisms of cough. From that knowledge, aided by the development of validated instruments to measure objective and subjective cough-related end points, numerous antitussive drug development programs have emerged. The most active area of inquiry at present involves antagonists of the purinergic P2X receptors. Indeed, four clinical programs (one in Phase 3 and three in Phase 2) are currently underway investigating antagonists of receptors comprised entirely or partially of the P2X3 subunit as potential antitussive medications. Herein we review the foundation on which P2X receptor antagonists were developed as potential antitussive medications and provide an update on current clinical trials.
Collapse
|
25
|
Danahay HL, Lilley S, Fox R, Charlton H, Sabater J, Button B, McCarthy C, Collingwood SP, Gosling M. TMEM16A Potentiation: A Novel Therapeutic Approach for the Treatment of Cystic Fibrosis. Am J Respir Crit Care Med 2020; 201:946-954. [PMID: 31898911 PMCID: PMC7159426 DOI: 10.1164/rccm.201908-1641oc] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Rationale: Enhancing non–CFTR (cystic fibrosis transmembrane conductance regulator)-mediated anion secretion is an attractive therapeutic approach for the treatment of cystic fibrosis (CF) and other mucoobstructive diseases. Objectives: To determine the effects of TMEM16A potentiation on epithelial fluid secretion and mucociliary clearance. Methods: The effects of a novel low-molecular-weight TMEM16A potentiator (ETX001) were evaluated in human cell and animal models of airway epithelial function and mucus transport. Measurements and Main Results: Potentiating the activity of TMEM16A with ETX001 increased the Ca2+-activated Cl− channel activity and anion secretion in human bronchial epithelial (HBE) cells from patients with CF without impacting calcium signaling. ETX001 rapidly increased fluid secretion and airway surface liquid height in CF-HBE cells under both static conditions and conditions designed to mimic the shear stress associated with tidal breathing. In ovine models of mucus clearance (tracheal mucus velocity and mucociliary clearance), inhaled ETX001 was able to accelerate clearance both when CFTR function was reduced by administration of a pharmacological blocker and when CFTR was fully functional. Conclusions: Enhancing the activity of TMEM16A increases epithelial fluid secretion and enhances mucus clearance independent of CFTR function. TMEM16A potentiation is a novel approach for the treatment of patients with CF and non-CF mucoobstructive diseases.
Collapse
Affiliation(s)
| | - Sarah Lilley
- Sussex Drug Discovery Centre, University of Sussex, Brighton, United Kingdom
| | - Roy Fox
- Sussex Drug Discovery Centre, University of Sussex, Brighton, United Kingdom
| | - Holly Charlton
- Sussex Drug Discovery Centre, University of Sussex, Brighton, United Kingdom
| | - Juan Sabater
- Mount Sinai Medical Center of Florida, Miami, Florida; and
| | - Brian Button
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | | | | | - Martin Gosling
- Enterprise Therapeutics, Brighton, United Kingdom.,Sussex Drug Discovery Centre, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
26
|
The Role of MicroRNA in the Airway Surface Liquid Homeostasis. Int J Mol Sci 2020; 21:ijms21113848. [PMID: 32481719 PMCID: PMC7312818 DOI: 10.3390/ijms21113848] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
Mucociliary clearance, mediated by a coordinated function of cilia bathing in the airway surface liquid (ASL) on the surface of airway epithelium, protects the host from inhaled pathogens and is an essential component of the innate immunity. ASL is composed of the superficial mucus layer and the deeper periciliary liquid. Ion channels, transporters, and pumps coordinate the transcellular and paracellular movement of ions and water to maintain the ASL volume and mucus hydration. microRNA (miRNA) is a class of non-coding, short single-stranded RNA regulating gene expression by post-transcriptional mechanisms. miRNAs have been increasingly recognized as essential regulators of ion channels and transporters responsible for ASL homeostasis. miRNAs also influence the airway host defense. We summarize the most up-to-date information on the role of miRNAs in ASL homeostasis and host-pathogen interactions in the airway and discuss concepts for miRNA-directed therapy.
Collapse
|
27
|
Particle transport and deposition correlation with near-wall flow characteristic under inspiratory airflow in lung airways. Comput Biol Med 2020; 120:103703. [PMID: 32217283 DOI: 10.1016/j.compbiomed.2020.103703] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/26/2020] [Accepted: 03/11/2020] [Indexed: 02/04/2023]
Abstract
Exposure of lung airways to detrimental suspended aerosols in the environment increases the vulnerability of the respiratory and cardiovascular systems. In addition, recent developments in therapeutic inhalation devices magnify the importance of particle transport. In this manuscript, particle transport and deposition patterns in the upper tracheobronchial (TB) tree were studied where the inertial forces are considerable for microparticles. Wall shear stress divergence (WSSdiv) is proposed as a wall-based parameter that can predict particle deposition patterns. WSSdiv is proportional to near-wall normal velocity and can quantify the strength of flow towards and away from the wall. Computational fluid dynamics (CFD) simulations were performed to quantify airflow velocity and WSS vectors for steady inhalation in one case-control and unsteady inhalation in six subject-specific airway trees. Turbulent flow simulation was performed for the steady case using large eddy simulation to study the effect of turbulence. Magnetic resonance velocimetry (MRV) measurements were used to validate the case-control CFD simulation. Inertial particle transport was modeled by solving the Maxey-Riley equation in a Lagrangian framework. Deposition percentage (DP) was quantified for the case-control model over five particle sizes. DP was found to be proportional to particle size in agreement with previous studies in the literature. A normalized deposition concentration (DC) was defined to characterize localized deposition. A relatively strong correlation (Pearson value > 0.7) was found between DC and positive WSSdiv for physiologically relevant Stokes (St) numbers. Additionally, a regional analysis was performed after dividing the lungs into smaller areas. A spatial integral of positive WSSdiv over each division was shown to maintain a very strong correlation (Pearson value > 0.9) with cumulative spatial DC or regional dosimetry. The conclusions were generalized to a larger population in which two healthy and four asthmatic patients were investigated. This study shows that WSSdiv could be used to predict the qualitative surface deposition and relative regional dosimetry without the need to solve a particle transport problem.
Collapse
|
28
|
Secor PR, Burgener EB, Kinnersley M, Jennings LK, Roman-Cruz V, Popescu M, Van Belleghem JD, Haddock N, Copeland C, Michaels LA, de Vries CR, Chen Q, Pourtois J, Wheeler TJ, Milla CE, Bollyky PL. Pf Bacteriophage and Their Impact on Pseudomonas Virulence, Mammalian Immunity, and Chronic Infections. Front Immunol 2020; 11:244. [PMID: 32153575 PMCID: PMC7047154 DOI: 10.3389/fimmu.2020.00244] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Pf bacteriophage are temperate phages that infect the bacterium Pseudomonas aeruginosa, a major cause of chronic lung infections in cystic fibrosis (CF) and other settings. Pf and other temperate phages have evolved complex, mutualistic relationships with their bacterial hosts that impact both bacterial phenotypes and chronic infection. We and others have reported that Pf phages are a virulence factor that promote the pathogenesis of P. aeruginosa infections in animal models and are associated with worse skin and lung infections in humans. Here we review the biology of Pf phage and what is known about its contributions to pathogenesis and clinical disease. First, we review the structure, genetics, and epidemiology of Pf phage. Next, we address the diverse and surprising ways that Pf phages contribute to P. aeruginosa phenotypes including effects on biofilm formation, antibiotic resistance, and motility. Then, we cover data indicating that Pf phages suppress mammalian immunity at sites of bacterial infection. Finally, we discuss recent literature implicating Pf in chronic P. aeruginosa infections in CF and other settings. Together, these reports suggest that Pf bacteriophage have direct effects on P. aeruginosa infections and that temperate phages are an exciting frontier in microbiology, immunology, and human health.
Collapse
Affiliation(s)
- Patrick R. Secor
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, United States
| | - Elizabeth B. Burgener
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, Stanford, CA, United States
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - M. Kinnersley
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Laura K. Jennings
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
| | - Valery Roman-Cruz
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Center for Translational Medicine, University of Montana, Missoula, MT, United States
| | - Medeea Popescu
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Jonas D. Van Belleghem
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Naomi Haddock
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Conner Copeland
- Department of Computer Science, University of Montana, Missoula, MT, United States
| | - Lia A. Michaels
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Christiaan R. de Vries
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Qingquan Chen
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Julie Pourtois
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Travis J. Wheeler
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT, United States
- Department of Computer Science, University of Montana, Missoula, MT, United States
| | - Carlos E. Milla
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, Stanford, CA, United States
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
29
|
Meerburg JJ, Andrinopoulou ER, Bos AC, Shin H, van Straten M, Hamed K, Mastoridis P, Tiddens HAWM. Effect of Inspiratory Maneuvers on Lung Deposition of Tobramycin Inhalation Powder: A Modeling Study. J Aerosol Med Pulm Drug Deliv 2020; 33:61-72. [PMID: 32073919 DOI: 10.1089/jamp.2019.1529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Tobramycin inhalation powder (TIP) and tobramycin inhalation solution (TIS) are considered equally effective for the treatment of chronic pulmonary Pseudomonas aeruginosa infection in cystic fibrosis (CF) patients. The impact of TIP inhalation maneuvers on distribution of tobramycin is unknown. We hypothesized that (1) fast TIP inhalations result in greater extrathoracic and reduced small airway concentrations compared with slow or uninstructed TIP inhalations; (2) slow TIP inhalations result in greater small airway concentrations than TIS inhalations. The aim of the study was to assess TIP and TIS deposition with computational fluid dynamics (CFD). Methods: Uninstructed, instructed fast, and instructed slow TIP inhalations of CF patients on maintenance TIP therapy, and inhalations during nebulization of saline with PARI LC Plus® were recorded at home. Drug deposition was determined using TIP and TIS aerosol characteristics together with CFD simulations based on airway geometries from chest computed tomography scans. The drug concentration was assessed in extrathoracic, central, large, and small airways. Results: Twelve patients aged 12-45 years were included, and 144 CFD simulations were performed. In all individual analyses, the tobramycin concentrations were well above the threshold for effective dose of 10 times minimal inhibitory concentration throughout the bronchial tree. Extrathoracic concentrations were comparable between fast and uninstructed TIP inhalations, while slow inhalations resulted in reduced extrathoracic concentrations compared with uninstructed TIP inhalations (p = 0.024). Small airway concentrations were comparable between fast and uninstructed TIP inhalations, while slow TIP inhalations resulted in greater small airway concentrations than uninstructed TIP inhalations (p < 0.001). Small airway concentrations of TIS were comparable with those of slow TIP inhalations (p = 0.065), but greater than those of fast and uninstructed TIP inhalations (p < 0.001). Conclusion: All TIS and TIP inhalation maneuvers resulted in high enough concentrations, however, inhaling TIS or inhaling TIP slowly results in the greatest small airway deposition.
Collapse
Affiliation(s)
- Jennifer J Meerburg
- Department of Pediatric Pulmonology and Allergology, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands.,Department of Radiology and Nuclear Medicine and Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Aukje C Bos
- Department of Pediatric Pulmonology and Allergology, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands.,Department of Radiology and Nuclear Medicine and Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Marcel van Straten
- Department of Radiology and Nuclear Medicine and Erasmus Medical Center, Rotterdam, the Netherlands
| | - Kamal Hamed
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Paul Mastoridis
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Harm A W M Tiddens
- Department of Pediatric Pulmonology and Allergology, Erasmus Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands.,Department of Radiology and Nuclear Medicine and Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
30
|
van Heusden C, Button B, Anderson WH, Ceppe A, Morton LC, O'Neal WK, Dang H, Alexis NE, Donaldson S, Stephan H, Boucher RC, Lazarowski ER. Inhibition of ATP hydrolysis restores airway surface liquid production in cystic fibrosis airway epithelia. Am J Physiol Lung Cell Mol Physiol 2020; 318:L356-L365. [PMID: 31800264 PMCID: PMC7052677 DOI: 10.1152/ajplung.00449.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 11/22/2022] Open
Abstract
Airway surface dehydration is a pathological feature of cystic fibrosis (CF) lung disease. CF is caused by mutations in the CF transmembrane conductance regulator (CFTR), a cyclic AMP-regulated Cl- channel controlled in part by the adenosine A2B receptor. An alternative CFTR-independent mechanism of fluid secretion is regulated by ATP via the P2Y2 receptor (P2Y2R) that activates Ca2+-regulated Cl- channels (CaCC/TMEM16) and inhibits Na+ absorption. However, due to rapid ATP hydrolysis, steady-state ATP levels in CF airway surface liquid (ASL) are inadequate to maintain P2Y2R-mediated fluid secretion. Therefore, inhibiting airway epithelial ecto-ATPases to increase ASL ATP levels constitutes a strategy to restore airway surface hydration in CF. Using [γ32P]ATP as radiotracer, we assessed the effect of a series of ATPase inhibitory compounds on the stability of physiologically occurring ATP concentrations. We identified the polyoxometalate [Co4(H2O)2(PW9O34)2]10- (POM-5) as the most potent and effective ecto-ATPase inhibitor in CF airway epithelial cells. POM-5 caused long-lasting inhibition of ATP hydrolysis in airway epithelia, which was reversible upon removal of the inhibitor. Importantly, POM-5 markedly enhanced steady-state levels of released ATP, promoting increased ASL volume in CF cell surfaces. These results provide proof of concept for ecto-ATPase inhibitors as therapeutic agents to restore hydration of CF airway surfaces. As a test of this notion, cell-free sputum supernatants from CF subjects were studied and found to have abnormally elevated ATPase activity, which was markedly inhibited by POM-5.
Collapse
Affiliation(s)
- Catharina van Heusden
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
- Department of Biophysics and Biochemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Wayne H Anderson
- Marsico Lung Institute/Pulmonary and Critical Care Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Agathe Ceppe
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Lisa C Morton
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Wanda K O'Neal
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Hong Dang
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Neil E Alexis
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, North Carolina
| | - Scott Donaldson
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Holger Stephan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
| | - Richard C Boucher
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| | - Eduardo R Lazarowski
- Marsico Lung Institute/UNC CF Research Center, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
31
|
Retinoic acid signalling adjusts tight junction permeability in response to air-liquid interface conditions. Cell Signal 2020; 65:109421. [DOI: 10.1016/j.cellsig.2019.109421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/14/2019] [Accepted: 09/15/2019] [Indexed: 12/12/2022]
|
32
|
Abstract
A spectrum of intrapulmonary airway diseases, for example, cigarette smoke-induced bronchitis, cystic fibrosis, primary ciliary dyskinesia, and non-cystic fibrosis bronchiectasis, can be categorized as "mucoobstructive" airway diseases. A common theme for these diseases appears to be the failure to properly regulate mucus concentration, producing mucus hyperconcentration that slows mucus transport and, importantly, generates plaque/plug adhesion to airway surfaces. These mucus plaques/plugs generate long diffusion distances for oxygen, producing hypoxic niches within adherent airway mucus and subjacent epithelia. Data suggest that concentrated mucus plaques/plugs are proinflammatory, in part mediated by release of IL-1α from hypoxic cells. The infectious component of mucoobstructive diseases may be initiated by anaerobic bacteria that proliferate within the nutrient-rich hypoxic mucus environment. Anaerobes ultimately may condition mucus to provide the environment for a succession to classic airway pathogens, including Staphylococcus aureus, Haemophilus influenzae, and ultimately Pseudomonas aeruginosa. Novel therapies to treat mucoobstructive diseases focus on restoring mucus concentration. Strategies to rehydrate mucus range from the inhalation of osmotically active solutes, designed to draw water into airway surfaces, to strategies designed to manipulate the relative rates of sodium absorption versus chloride secretion to endogenously restore epithelial hydration. Similarly, strategies designed to reduce the mucin burden in the airways, either by reducing mucin production/secretion or by clearing accumulated mucus (e.g., reducing agents), are under development. Thus, the new insights into a unifying process, that is, mucus hyperconcentration, that drives a significant component of the pathogenesis of mucoobstructive diseases promise multiple new therapeutic strategies to aid patients with this syndrome.
Collapse
|
33
|
Rowell TR, Keating JE, Zorn BT, Glish GL, Shears SB, Tarran R. Flavored e-liquids increase cytoplasmic Ca 2+ levels in airway epithelia. Am J Physiol Lung Cell Mol Physiol 2019; 318:L226-L241. [PMID: 31693394 DOI: 10.1152/ajplung.00123.2019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
E-cigarettes are noncombustible, electronic nicotine-delivery devices that aerosolize an e-liquid, i.e., nicotine, in a propylene glycol-vegetable glycerin vehicle that also contains flavors. While the effects of nicotine are relatively well understood, more information regarding the potential biological effects of the other e-liquid constituents is needed. This is a serious concern, because e-liquids are available in >7,000 distinct flavors. We previously demonstrated that many e-liquids affect cell growth/viability through an unknown mechanism. Since Ca2+ is a ubiquitous second messenger that regulates cell growth, we characterized the effects of e-liquids on cellular Ca2+ homeostasis. To better understand the extent of this effect, we screened e-liquids for their ability to alter cytosolic Ca2+ levels and found that 42 of 100 flavored e-liquids elicited a cellular Ca2+ response. Banana Pudding (BP) e-liquid, a representative e-liquid from this group, caused phospholipase C activation, endoplasmic reticulum (ER) Ca2+ release, store-operated Ca2+ entry (SOCE), and protein kinase C (PKCα) phosphorylation. However, longer exposures to BP e-liquid depleted ER Ca2+ stores and inhibited SOCE, suggesting that this e-liquid may alter Ca2+ homeostasis by short- and long-term mechanisms. Since dysregulation of Ca2+ signaling can cause chronic inflammation, ER stress, and abnormal cell growth, flavored e-cigarette products that can elicit cell Ca2+ responses should be further screened for potential toxicity.
Collapse
Affiliation(s)
- Temperance R Rowell
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| | - James E Keating
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Bryan T Zorn
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina
| | - Gary L Glish
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina
| | - Stephen B Shears
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Robert Tarran
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
34
|
Transforming Growth Factor-β1 Selectively Recruits microRNAs to the RNA-Induced Silencing Complex and Degrades CFTR mRNA under Permissive Conditions in Human Bronchial Epithelial Cells. Int J Mol Sci 2019; 20:ijms20194933. [PMID: 31590401 PMCID: PMC6801718 DOI: 10.3390/ijms20194933] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/27/2019] [Accepted: 10/05/2019] [Indexed: 12/23/2022] Open
Abstract
Mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene lead to cystic fibrosis (CF). The most common mutation F508del inhibits folding and processing of CFTR protein. FDA-approved correctors rescue the biosynthetic processing of F508del-CFTR protein, while potentiators improve the rescued CFTR channel function. Transforming growth factor (TGF-β1), overexpressed in many CF patients, blocks corrector/potentiator rescue by inhibiting CFTR mRNA in vitro. Increased TGF-β1 signaling and acquired CFTR dysfunction are present in other lung diseases. To study the mechanism of TGF-β1 repression of CFTR, we used molecular, biochemical, and functional approaches in primary human bronchial epithelial cells from over 50 donors. TGF-β1 destabilized CFTR mRNA in cells from lungs with chronic disease, including CF, and impaired F508del-CFTR rescue by new-generation correctors. TGF-β1 increased the active pool of selected micro(mi)RNAs validated as CFTR inhibitors, recruiting them to the RNA-induced silencing complex (RISC). Expression of F508del-CFTR globally modulated TGF-β1-induced changes in the miRNA landscape, creating a permissive environment required for degradation of F508del-CFTR mRNA. In conclusion, TGF-β1 may impede the full benefit of corrector/potentiator therapy in CF patients. Studying miRNA recruitment to RISC under disease-specific conditions may help to better characterize the miRNAs utilized by TGF-β1 to destabilize CFTR mRNA.
Collapse
|
35
|
Cho DY, Skinner D, Zhang S, Lazrak A, Lim DJ, Weeks CG, Banks CG, Han CK, Kim SK, Tearney GJ, Matalon S, Rowe SM, Woodworth BA. Korean Red Ginseng aqueous extract improves markers of mucociliary clearance by stimulating chloride secretion. J Ginseng Res 2019; 45:66-74. [PMID: 33437158 PMCID: PMC7790903 DOI: 10.1016/j.jgr.2019.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/30/2019] [Accepted: 09/06/2019] [Indexed: 11/26/2022] Open
Abstract
Background Abnormal chloride (Cl-) transport has a detrimental impact on mucociliary clearance in both cystic fibrosis (CF) and non-CF chronic rhinosinusitis. Ginseng is a medicinal plant noted to have anti-inflammatory and antimicrobial properties. The present study aims to assess the capability of red ginseng aqueous extract (RGAE) to promote transepithelial Cl- secretion in nasal epithelium. Methods Primary murine nasal septal epithelial (MNSE) [wild-type (WT) and transgenic CFTR-/-], fisher-rat-thyroid (FRT) cells expressing human WT CFTR, and TMEM16A-expressing human embryonic kidney cultures were utilized for the present experiments. Ciliary beat frequency (CBF) and airway surface liquid (ASL) depth measurements were performed using micro-optical coherence tomography (μOCT). Mechanisms underlying transepithelial Cl- transport were determined using pharmacologic manipulation in Ussing chambers and whole-cell patch clamp analysis. Results RGAE (at 30μg/mL of ginsenosides) significantly increased Cl- transport [measured as change in short-circuit current (ΔISC = μA/cm2)] when compared with control in WT and CFTR-/- MNSE (WT vs control = 49.8±2.6 vs 0.1+/-0.2, CFTR-/- = 33.5±1.5 vs 0.2±0.3, p < 0.0001). In FRT cells, the CFTR-mediated ΔISC attributed to RGAE was small (6.8 ± 2.5 vs control, 0.03 ± 0.01, p < 0.05). In patch clamp, TMEM16A-mediated currents were markedly improved with co-administration of RGAE and uridine 5-triphosphate (8406.3 +/- 807.7 pA) over uridine 5-triphosphate (3524.1 +/- 292.4 pA) or RGAE alone (465.2 +/- 90.7 pA) (p < 0.0001). ASL and CBF were significantly greater with RGAE (6.2+/-0.3 μm vs control, 3.9+/-0.09 μm; 10.4+/-0.3 Hz vs control, 7.3 ± 0.2 Hz; p < 0.0001) in MNSE. Conclusion RGAE augments ASL depth and CBF by stimulating Cl- secretion through CaCC, which suggests therapeutic potential in both CF and non-CF chronic rhinosinusitis.
Collapse
Affiliation(s)
- Do-Yeon Cho
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Daniel Skinner
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Shaoyan Zhang
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Ahmed Lazrak
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States.,Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Dong Jin Lim
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Christopher G Weeks
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Catherine G Banks
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Chang Kyun Han
- Korea Ginseng Research Institute, Korea Ginseng Corporation, Daejeon, Republic of Korea
| | - Si-Kwan Kim
- Department of Biomedical Chemistry, Konkuk University, Chungju, Republic of Korea
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Sadis Matalon
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States.,Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Steven M Rowe
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States.,Departments of Medicine, Pediatrics, Cell Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Bradford A Woodworth
- Department of Otolaryngology Head & Neck Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
36
|
A physiologically-motivated model of cystic fibrosis liquid and solute transport dynamics across primary human nasal epithelia. J Pharmacokinet Pharmacodyn 2019; 46:457-472. [PMID: 31494805 DOI: 10.1007/s10928-019-09649-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/02/2019] [Indexed: 11/27/2022]
Abstract
Cystic fibrosis (CF) disease is caused by mutations affecting the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel expressed in the mucosal side of epithelial tissue. In the airway, dysfunctional CFTR results in a transepithelial osmotic imbalance leading to hyperabsorption of airway surface liquid mucostasis, chronic inflammation, and eventual respiratory failure. Human nasal epithelial cell cultures from healthy and CF donors were used to perform studies of liquid and solute transport dynamics at an air/liquid interface in order to emulate the in vivo airway. Then, these results were used to inform a quantitative systems pharmacology model of airway epithelium describing electrically and chemically driven transcellular ionic transport, contributions of both convective and diffusive paracellular solute transport, and osmotically driven transepithelial water dynamics. Model predictions showed CF cultures, relative to non-CF ones, have increased apical and basolateral water permeabilities, and increase paracellular permeability and transepithelial chemical driving force for a radiolabeled tracer used to track small molecule absorption. These results provide a computational platform to better understand and probe the mechanisms behind the liquid hyperabsorption and small molecule retention profiles observed in the CF airway.
Collapse
|
37
|
Newsome H, L. Lin E, Poetker DM, Garcia GJM. Clinical Importance of Nasal Air Conditioning: A Review of the Literature. Am J Rhinol Allergy 2019; 33:763-769. [DOI: 10.1177/1945892419863033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background Nasal air conditioning (ie, heating and humidification of inspired air) is an important function of the nasal cavity. This function may be reduced in cases of aggressive nasal surgery. Future virtual surgery planning tools may be used to design surgical approaches that preserve the nasal air conditioning capacity while decreasing airflow resistance. However, it is unclear whether there is a threshold below which impaired nasal air conditioning is associated with negative health consequences. Objective This study aims to review the literature on the clinical impact of reduced nasal air conditioning and its implications for nasal surgery outcomes. Methods A literature search was performed on PubMed and Scopus databases for articles that investigated the effect of air temperature and humidity on mucociliary clearance, respiratory epithelial structure, and the prevalence and severity of respiratory diseases. Results Inspiration of cold, dry air has direct effects on the respiratory epithelium, such as reduced mucociliary clearance and loss of cilia. Nasal surgeries do inflict some changes to the nasal mucosa and geometry that may result in decreased heating and humidification, but it is unclear how long these effects last. Laryngectomy patients serve as a human model for the absence of nasal air conditioning. The heat and moisture exchangers that many laryngectomy patients wear have been shown to improve lung function and reduce pulmonary symptoms associated with breathing unconditioned air, such as increased coughing and thickened mucus. Conclusion Nasal air conditioning is an important mechanism to maintain mucociliary clearance and prevent infection by inhaled pathogens. Preservation of nasal air conditioning capacity should be considered in the implementation of future virtual surgery planning tools. However, a threshold for the onset of negative health consequences due to impaired nasal air conditioning is not yet available.
Collapse
Affiliation(s)
- Hillary Newsome
- Department of Otolaryngology & Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Biomedical Engineering, Marquette University & The Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Emily L. Lin
- Department of Otolaryngology & Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Biomedical Engineering, Marquette University & The Medical College of Wisconsin, Milwaukee, Wisconsin
| | - David M. Poetker
- Department of Otolaryngology & Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Guilherme J. M. Garcia
- Department of Otolaryngology & Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Biomedical Engineering, Marquette University & The Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
38
|
Grygorczyk R, Boudreault F, Tan JJ, Ponomarchuk O, Sokabe M, Furuya K. Mechanosensitive ATP release in the lungs: New insights from real-time luminescence imaging studies. CURRENT TOPICS IN MEMBRANES 2019; 83:45-76. [PMID: 31196610 DOI: 10.1016/bs.ctm.2019.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular ATP and other nucleotides are important autocrine/paracrine mediators that stimulate purinergic receptors and regulate diverse processes in the normal lungs. They are also associated with pathogenesis of a number of respiratory diseases and clinical complications including acute respiratory distress syndrome and ventilator induced lung injury. Mechanical forces are major stimuli for cellular ATP release but precise mechanisms responsible for this release are still debated. The present review intends to provide the current state of knowledge of the mechanisms of ATP release in the lung. Putative pathways of the release, including the contribution of cell membrane injury and cell lysis are discussed addressing their strength, weaknesses and missing evidence that requires future study. We also provide an overview of the recent technical advances in studying cellular ATP release in vitro and ex vivo. Special attention is given to new insights into lung ATP release obtained with the real-time luminescence ATP imaging. This includes recent data on stretch-induced mechanosensitive ATP release in a model and primary cells of lung alveoli in vitro as well as inflation-induced ATP release in airspaces and pulmonary blood vessels of lungs, ex vivo.
Collapse
Affiliation(s)
- Ryszard Grygorczyk
- Department of Medicine, Université de Montréal, Montréal, QC, Canada; Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.
| | - Francis Boudreault
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Ju Jing Tan
- Department of Medicine, Université de Montréal, Montréal, QC, Canada; Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Olga Ponomarchuk
- Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Masahiro Sokabe
- Mechanobiology Laboratory, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| | - Kishio Furuya
- Mechanobiology Laboratory, Nagoya University, Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
39
|
Abstract
Recognizing and acting early on airway compromise reduces morbidity and mortality in patients with airway obstruction. Causes include foreign bodies, toxic/hot fumes, difficult intubation, laryngeal spasm, and tumors. Before definitive control of the airway is possible, provide 100% oxygen with a tightly fitting mask to optimize body oxygen stores. Pulse oximetry is a poor indicator of airway compromise; a decreasing arterial hemoglobin oxygen saturation is a late sign of impending hypoxemia. Basic airway maneuvers improve the patency of an obstructed airway. Getting help from an anesthetist early is a priority.
Collapse
|
40
|
Abstract
Mucociliary clearance is critically important in protecting the airways from infection and from the harmful effects of smoke and various inspired substances known to induce oxidative stress and persistent inflammation. An essential feature of the clearance mechanism involves regulation of the periciliary liquid layer on the surface of the airway epithelium, which is necessary for normal ciliary beating and maintenance of mucus hydration. The underlying ion transport processes associated with airway surface hydration include epithelial Na+ channel-dependent Na+ absorption occurring in parallel with CFTR and Ca2+-activated Cl- channel-dependent anion secretion, which are coordinately regulated to control the depth of the periciliary liquid layer. Oxidative stress is known to cause both acute and chronic effects on airway ion transport function, and an increasing number of studies in the past few years have identified an important role for autophagy as part of the physiological response to the damaging effects of oxidation. In this review, recent studies addressing the influence of oxidative stress and autophagy on airway ion transport pathways, along with results showing the potential of autophagy modulators in restoring the function of ion channels involved in transepithelial electrolyte transport necessary for effective mucociliary clearance, are presented.
Collapse
Affiliation(s)
- Scott M O'Grady
- Departments of Animal Science, Integrative Biology and Physiology, University of Minnesota , St. Paul, Minnesota
| |
Collapse
|
41
|
Webster MJ, Tarran R. Slippery When Wet: Airway Surface Liquid Homeostasis and Mucus Hydration. CURRENT TOPICS IN MEMBRANES 2018; 81:293-335. [PMID: 30243435 DOI: 10.1016/bs.ctm.2018.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ability to regulate cell volume is crucial for normal physiology; equally the regulation of extracellular fluid homeostasis is of great importance. Alteration of normal extracellular fluid homeostasis contributes to the development of several diseases including cystic fibrosis. With regard to the airway surface liquid (ASL), which lies apically on top of airway epithelia, ion content, pH, mucin and protein abundance must be tightly regulated. Furthermore, airway epithelia must be able to switch from an absorptive to a secretory state as required. A heterogeneous population of airway epithelial cells regulate ASL solute and solvent composition, and directly secrete large mucin molecules, antimicrobials, proteases and soluble mediators into the airway lumen. This review focuses on how epithelial ion transport influences ASL hydration and ASL pH, with a specific focus on the roles of anion and cation channels and exchangers. The role of ions and pH in mucin expansion is also addressed. With regard to fluid volume regulation, we discuss the roles of nucleotides, adenosine and the short palate lung and nasal epithelial clone 1 (SPLUNC1) as soluble ASL mediators. Together, these mechanisms directly influence ciliary beating and in turn mucociliary clearance to maintain sterility and to detoxify the airways. Whilst all of these components are regulated in normal airways, defective ion transport and/or mucin secretion proves detrimental to lung homeostasis as such we address how defective ion and fluid transport, and a loss of homeostatic mechanisms, contributes to the development of pathophysiologies associated with cystic fibrosis.
Collapse
Affiliation(s)
- Megan J Webster
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Robert Tarran
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
42
|
Prause M, Niedermoser S, Schirrmacher R, Wängler C, Wängler B. Synthetic approaches towards [18F]fluoro-DOG1, a potential radiotracer for the imaging of gastrointestinal stromal tumors. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Bos AC, Mouton JW, van Westreenen M, Andrinopoulou ER, Janssens HM, Tiddens HAWM. Patient-specific modelling of regional tobramycin concentration levels in airways of patients with cystic fibrosis: can we dose once daily? J Antimicrob Chemother 2018; 72:3435-3442. [PMID: 29029057 DOI: 10.1093/jac/dkx293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 07/18/2017] [Indexed: 01/28/2023] Open
Abstract
Background Inhaled tobramycin is important in the treatment of Pseudomonas aeruginosa (Pa) infections in cystic fibrosis (CF). However, despite its use it fails to attenuate the clinical progression of CF lung disease. The bactericidal efficacy of tobramycin is known to be concentration-dependent and hence changing the dosing regimen from a twice-daily (q12h) inhalation to a once-daily (q24h) inhaled double dose could improve treatment outcomes. Objectives To predict local concentrations of nebulized tobramycin in the airways of patients with CF, delivered with the small airway-targeting Akita® system or standard PARI-LC® Plus system, with different inspiratory flow profiles. Methods Computational fluid dynamic (CFD) methods were applied to patient-specific airway models reconstructed from chest CT scans. The following q12h and q24h dosing regimens were evaluated: Akita® (150 and 300 mg) and PARI-LC® Plus (300 and 600 mg). Site-specific concentrations were calculated. Results Twelve CT scans from patients aged 12-17 years (median = 15.7) were selected. Small airway concentrations were 762-2999 mg/L for the q12h dosing regimen and 1523-5997 mg/L for the q24h dosing regimen, well above the MIC for WT Pa strains. Importantly, the q24h regimen appeared to be more suitable than the q12h regimen against more resistant Pa strains and the inhibitory effects of sputum on tobramycin activity. Conclusions CFD modelling showed that high concentrations of inhaled tobramycin are indeed delivered to the airways, with the Akita® system being twice as efficient as the PARI-LC® system. Ultimately, the q24h dosing regimen appears more effective against subpopulations with high MICs (i.e. more resistant strains).
Collapse
Affiliation(s)
- Aukje C Bos
- Department of Pediatric Pulmonology, Erasmus Medical Centre (MC)-Sophia Children's Hospital, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.,Department of Radiology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Johan W Mouton
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Mireille van Westreenen
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | | | - Hettie M Janssens
- Department of Pediatric Pulmonology, Erasmus Medical Centre (MC)-Sophia Children's Hospital, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Harm A W M Tiddens
- Department of Pediatric Pulmonology, Erasmus Medical Centre (MC)-Sophia Children's Hospital, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands.,Department of Radiology, Erasmus MC, Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| |
Collapse
|
44
|
Role of mucins in lung homeostasis: regulated expression and biosynthesis in health and disease. Biochem Soc Trans 2018; 46:707-719. [PMID: 29802217 DOI: 10.1042/bst20170455] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 01/02/2023]
Abstract
In humans and mice, the first line of innate defense against inhaled pathogens and particles in the respiratory tract is airway mucus. The primary solid components of the mucus layer are the mucins MUC5AC and MUC5B, polymeric glycoproteins whose changes in abundance and structure can dramatically affect airway defense. Accordingly, MUC5AC/Muc5ac and MUC5B/Muc5b are tightly regulated at a transcriptional level by tissue-specific transcription factors in homeostasis and in response to injurious and inflammatory triggers. In addition to modulated levels of mucin gene transcription, translational and post-translational biosynthetic processes also exert significant influence upon mucin function. Mucins are massive macromolecules with numerous functional domains that contribute to their structural composition and biophysical properties. Single MUC5AC and MUC5B apoproteins have molecular masses of >400 kDa, and von Willebrand factor D-like as well as other cysteine-rich domain segments contribute to mucin polymerization and flexibility, thus increasing apoprotein length and complexity. Additional domains serve as sites for O-glycosylation, which increase further mucin mass several-fold. Glycosylation is a defining process for mucins that is specific with respect to additions of glycans to mucin apoprotein backbones, and glycan additions influence the physical properties of the mucins via structural modifications as well as charge interactions. Ultimately, through their tight regulation and complex assembly, airway mucins follow the biological rule of 'form fits function' in that their structural organization influences their role in lung homeostatic mechanisms.
Collapse
|
45
|
Newby JM, Seim I, Lysy M, Ling Y, Huckaby J, Lai SK, Forest MG. Technological strategies to estimate and control diffusive passage times through the mucus barrier in mucosal drug delivery. Adv Drug Deliv Rev 2018; 124:64-81. [PMID: 29246855 PMCID: PMC5809312 DOI: 10.1016/j.addr.2017.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 01/05/2023]
Abstract
In mucosal drug delivery, two design goals are desirable: 1) insure drug passage through the mucosal barrier to the epithelium prior to drug removal from the respective organ via mucus clearance; and 2) design carrier particles to achieve a prescribed arrival time and drug uptake schedule at the epithelium. Both goals are achievable if one can control "one-sided" diffusive passage times of drug carrier particles: from deposition at the mucus interface, through the mucosal barrier, to the epithelium. The passage time distribution must be, with high confidence, shorter than the timescales of mucus clearance to maximize drug uptake. For 100nm and smaller drug-loaded nanoparticulates, as well as pure drug powders or drug solutions, diffusion is normal (i.e., Brownian) and rapid, easily passing through the mucosal barrier prior to clearance. Major challenges in quantitative control over mucosal drug delivery lie with larger drug-loaded nanoparticulates that are comparable to or larger than the pores within the mucus gel network, for which diffusion is not simple Brownian motion and typically much less rapid; in these scenarios, a timescale competition ensues between particle passage through the mucus barrier and mucus clearance from the organ. In the lung, as a primary example, coordinated cilia and air drag continuously transport mucus toward the trachea, where mucus and trapped cargo are swallowed into the digestive tract. Mucus clearance times in lung airways range from minutes to hours or significantly longer depending on deposition in the upper, middle, lower airways and on lung health, giving a wide time window for drug-loaded particle design to achieve controlled delivery to the epithelium. We review the physical and chemical factors (of both particles and mucus) that dictate particle diffusion in mucus, and the technological strategies (theoretical and experimental) required to achieve the design goals. First we describe an idealized scenario - a homogeneous viscous fluid of uniform depth with a particle undergoing passive normal diffusion - where the theory of Brownian motion affords the ability to rigorously specify particle size distributions to meet a prescribed, one-sided, diffusive passage time distribution. Furthermore, we describe how the theory of Brownian motion provides the scaling of one-sided diffusive passage times with respect to mucus viscosity and layer depth, and under reasonable caveats, one can also prescribe passage time scaling due to heterogeneity in viscosity and layer depth. Small-molecule drugs and muco-inert, drug-loaded carrier particles 100nm and smaller fall into this class of rigorously controllable passage times for drug delivery. Second we describe the prevalent scenarios in which drug-loaded carrier particles in mucus violate simple Brownian motion, instead exhibiting anomalous sub-diffusion, for which all theoretical control over diffusive passage times is lost, and experiments are prohibitive if not impossible to measure one-sided passage times. We then discuss strategies to overcome these roadblocks, requiring new particle-tracking experiments and emerging advances in theory and computation of anomalous, sub-diffusive processes that are necessary to predict and control one-sided particle passage times from deposition at the mucosal interface to epithelial uptake. We highlight progress to date, remaining hurdles, and prospects for achieving the two design goals for 200nm and larger, drug-loaded, non-dissolving, nanoparticulates.
Collapse
Affiliation(s)
- Jay M Newby
- Department of Mathematics and Applied Physical Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States
| | - Ian Seim
- Department of Mathematics and Applied Physical Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States
| | - Martin Lysy
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON N2L 3G1, United States
| | - Yun Ling
- Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, ON N2L 3G1, United States
| | - Justin Huckaby
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States; UNC-NCSU Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States; Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States
| | - M Gregory Forest
- Department of Mathematics and Applied Physical Sciences, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States; UNC-NCSU Joint Department of Biomedical Engineering, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
46
|
Bossmann M, Ackermann BW, Thome UH, Laube M. Signaling Cascade Involved in Rapid Stimulation of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) by Dexamethasone. Int J Mol Sci 2017; 18:ijms18081807. [PMID: 28825630 PMCID: PMC5578194 DOI: 10.3390/ijms18081807] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/10/2017] [Accepted: 08/17/2017] [Indexed: 01/09/2023] Open
Abstract
Impairment of mucociliary clearance with reduced airway fluid secretion leads to chronically inflamed airways. Cystic fibrosis transmembrane conductance regulator (CFTR) is crucially involved in airway fluid secretion and dexamethasone (dexa) has previously been shown to elevate CFTR activity in airway epithelial cells. However, the pathway by which dexa increases CFTR activity is largely unknown. We aimed to determine whether the increase of CFTR activity by dexa is achieved by non-genomic signaling and hypothesized that the phosphoinositide 3-kinase (PI3K) pathway is involved in CFTR stimulation. Primary rat airway epithelial cells and human bronchial submucosal gland-derived Calu-3 cells were analyzed in Ussing chambers and kinase activation was determined by Western blots. Results demonstrated a critical involvement of PI3K and protein kinase B (AKT) signaling in the dexa-induced increase of CFTR activity, while serum and glucocorticoid dependent kinase 1 (SGK1) activity was not essential. We further demonstrated a reduced neural precursor cell expressed, developmentally downregulated 4-like (NEDD4L) ubiquitin E3 ligase activity induced by dexa, possibly responsible for the elevated CFTR activity. Finally, increases of CFTR activity by dexa were demonstrated within 30 min accompanied by rapid activation of AKT. In conclusion, dexa induces a rapid stimulation of CFTR activity which depends on PI3K/AKT signaling in airway epithelial cells. Glucocorticoids might thus represent, in addition to their immunomodulatory actions, a therapeutic strategy to rapidly increase airway fluid secretion.
Collapse
Affiliation(s)
- Miriam Bossmann
- Center for Pediatric Research Leipzig, Division of Neonatology, University of Leipzig, 04103 Leipzig, Germany.
| | - Benjamin W Ackermann
- Center for Pediatric Research Leipzig, Division of Neonatology, University of Leipzig, 04103 Leipzig, Germany.
| | - Ulrich H Thome
- Center for Pediatric Research Leipzig, Division of Neonatology, University of Leipzig, 04103 Leipzig, Germany.
| | - Mandy Laube
- Center for Pediatric Research Leipzig, Division of Neonatology, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
47
|
Mathematical model reveals role of nucleotide signaling in airway surface liquid homeostasis and its dysregulation in cystic fibrosis. Proc Natl Acad Sci U S A 2017; 114:E7272-E7281. [PMID: 28808008 DOI: 10.1073/pnas.1617383114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mucociliary clearance is composed of three components (i.e., mucin secretion, airway surface hydration, and ciliary-activity) which function coordinately to clear inhaled microbes and other foreign particles from airway surfaces. Airway surface hydration is maintained by water fluxes driven predominantly by active chloride and sodium ion transport. The ion channels that mediate electrogenic ion transport are regulated by extracellular purinergic signals that signal through G protein-coupled receptors. These purinoreceptors and the signaling pathways they activate have been identified as possible therapeutic targets for treating lung disease. A systems-level description of airway surface liquid (ASL) homeostasis could accelerate development of such therapies. Accordingly, we developed a mathematical model to describe the dynamic coupling of ion and water transport to extracellular purinergic signaling. We trained our model from steady-state and time-dependent experimental measurements made using normal and cystic fibrosis (CF) cultured human airway epithelium. To reproduce CF conditions, reduced chloride secretion, increased potassium secretion, and increased sodium absorption were required. The model accurately predicted ASL height under basal normal and CF conditions and the collapse of surface hydration due to the accelerated nucleotide metabolism associated with CF exacerbations. Finally, the model predicted a therapeutic strategy to deliver nucleotide receptor agonists to effectively rehydrate the ASL of CF airways.
Collapse
|
48
|
Goldenberg RB. Singing Lessons for Respiratory Health: A Literature Review. J Voice 2017; 32:85-94. [PMID: 28461167 DOI: 10.1016/j.jvoice.2017.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/28/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Several studies have explored the role of music and singing as a treatment for respiratory symptoms. The objective of this paper was to review the current body of literature in regard to the use of singing as both a physiological and a psychological therapy for respiratory disease and assess the role the singing teacher might play in this treatment. STUDY DESIGN This is a literature review, discussion of results and directions for further research. METHOD Multiple databases were searched using keywords such as "respiratory," "physiotherapy," and "pulmonary" in conjunction with "singing." Studies that met selection criteria were summarized and analyzed. RESULTS Seventeen studies pertaining to multiple conditions including chronic obstructive pulmonary disease, asthma, cystic fibrosis, cancer, Parkinson disease, quadriplegia, and multiple sclerosis were analyzed. All studies reported trends of positive physical and/or quality of life outcomes after a series of singing lessons, regardless of statistical significance. Several noted improvements in maximum expiratory pressure and overall breathing technique. Many studies included open-ended interviews revealing participants' perception of singing as an effective therapy that was fun, improved mood, taught breathing and breath control, was a good exercise for the lungs, and had improved physical functioning. CONCLUSIONS Singing can be used as an adjunctive treatment for respiratory disease, with the best results occurring after long-term study. Group lessons and a strong teacher relationship feed the need for social interaction and support, which can facilitate treatment compliance. Further research is warranted.
Collapse
|
49
|
CK2 is a key regulator of SLC4A2-mediated Cl -/HCO 3- exchange in human airway epithelia. Pflugers Arch 2017; 469:1073-1091. [PMID: 28455748 PMCID: PMC5554290 DOI: 10.1007/s00424-017-1981-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/27/2017] [Accepted: 04/10/2017] [Indexed: 12/17/2022]
Abstract
Transepithelial bicarbonate secretion by human airway submucosal glands and surface epithelial cells is crucial to maintain the pH-sensitive innate defence mechanisms of the lung. cAMP agonists stimulate HCO3- secretion via coordinated increases in basolateral HCO3- influx and accumulation, as well as CFTR-dependent HCO3- efflux at the luminal membrane of airway epithelial cells. Here, we investigated the regulation of a basolateral located, DIDS-sensitive, Cl-/HCO3- exchanger, anion exchanger 2 (AE2; SLC4A2) which is postulated to act as an acid loader, and therefore potential regulator of HCO3- secretion, in human airway epithelial cells. Using intracellular pH measurements performed on Calu-3 cells, we demonstrate that the activity of the basolateral Cl-/HCO3- exchanger was significantly downregulated by cAMP agonists, via a PKA-independent mechanism and also required Ca2+ and calmodulin under resting conditions. AE2 contains potential phosphorylation sites by a calmodulin substrate, protein kinase CK2, and we demonstrated that AE2 activity was reduced in the presence of CK2 inhibition. Moreover, CK2 inhibition abolished the activity of AE2 in primary human nasal epithelia. Studies performed on mouse AE2 transfected into HEK-293T cells confirmed almost identical Ca2+/calmodulin and CK2 regulation to that observed in Calu-3 and primary human nasal cells. Furthermore, mouse AE2 activity was reduced by genetic knockout of CK2, an effect which was rescued by exogenous CK2 expression. Together, these findings are the first to demonstrate that CK2 is a key regulator of Cl--dependent HCO3- export at the serosal membrane of human airway epithelial cells.
Collapse
|
50
|
Blackmon RL, Kreda SM, Sears PR, Chapman BS, Hill DB, Tracy JB, Ostrowski LE, Oldenburg AL. Direct monitoring of pulmonary disease treatment biomarkers using plasmonic gold nanorods with diffusion-sensitive OCT. NANOSCALE 2017; 9:4907-4917. [PMID: 28358158 PMCID: PMC5473168 DOI: 10.1039/c7nr00376e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The solid concentration of pulmonary mucus (wt%) is critical to respiratory health. In patients with respiratory disease, such as Cystic Fibrosis (CF) and Chronic Obstructive Pulmonary Disorder (COPD), mucus hydration is impaired, resulting in high wt%. Mucus with high wt% is a hallmark of pulmonary disease that leads to obstructed airways, inflammation, and infection. Methods to measure mucus hydration in situ and in real-time are needed for drug development and personalized therapy. We employed plasmonic gold nanorod (GNR) biosensors that intermittently collide with macromolecules comprising the mucus mesh as they self-diffuse, such that GNR translational diffusion (DT) is sensitive to wt%. GNRs are attractive candidates for bioprobes due to their anisotropic optical scattering that makes them easily distinguishable from native tissue using polarization-sensitive OCT. Using principles of heterodyne dynamic light scattering, we developed diffusion-sensitive optical coherence tomography (DS-OCT) to spatially-resolve changing DT in real-time. DS-OCT enables, for the first time, direct monitoring of changes in nanoparticle diffusion rates that are sensitive to nanoporosity with spatial and temporal resolutions of 4.7 μm and 0.2 s. DS-OCT therefore enables us to measure spatially-resolved changes in mucus wt% over time. In this study, we demonstrate the applicability of DS-OCT on well-differentiated primary human bronchial epithelial cells during a clinical mucus-hydrating therapy, hypertonic saline treatment (HST), to reveal, for the first time, mucus mixing, cellular secretions, and mucus hydration on the micrometer scale that translate to long-term therapeutic effects.
Collapse
Affiliation(s)
- R L Blackmon
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, NC 27599-3255, USA.
| | | | | | | | | | | | | | | |
Collapse
|