1
|
Wu Y, Zheng Z, Bai X, Liu P, Hu S, Wang L, Yang S. CircRNA_0003307 promoted brain microvascular endothelial cell angiogenesis, invasion, and migration in cerebral ischemia-reperfusion injury: Potential involvement of miRNA-191-5p/CDK6 pathway. Neuroscience 2024; 560:77-89. [PMID: 39284436 DOI: 10.1016/j.neuroscience.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/03/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUNDS The role of miR-191-5p in cerebral ischemia-reperfusion (I/R) injury has been established, with its expression in endothelial cells demonstrating anti-angiogenic effects. A potential circular RNA, circRNA_0003307, has been identified through bioinformatics analysis as a candidate for interaction with miR-191-5p, yet its functional significance in brain I/R injury remains unexplored. We aimed to investigate whether circRNA_0003307 regulates brain microvascular endothelial cell (BMEC) vascular tube formation, invasion, and migration by regulating the miR-191-5p cascade. METHODS Mouse BMECs (bEnd.3) were culturedand exposed to oxygen-glucose deprivation (OGD). The effects of circRNA_0003307 on vessel-like tube formation and cellular migration were examined. In addition, we investigated the protective effects of circRNA_0003307 on I/R injury in mice. RESULTS The results showed the level of circRNA_0003307 was concentration-dependently increased in OGD-induced bEnd.3 cells. ODG-induction enhanced angiogenesis, migration, and invasion of bEnd.3 cells, which were further promoted by the transfection of pcDNA-0003307. Silencing circRNA_0003307 expression showed the opposite results. The dual luciferase assay demonstrated miRNA-191-5p interacted with circRNA_00033073' UTR, and miRNA-191-5p could bind with CDK6. Meanwhile, circRNA_0003307 promoted the expression of CDK6 by sponging miRNA-191-5p. The overexpression of circRNA_0003307 activated the angiogenesis, migration, and invasion of OGD-induced bEnd.3 cells, which were hindered by miRNA-191-5p mimic or siRNA-CDK6. Thus, circRNA_0003307 promoted ODG-induced angiogenesis, migration, and invasion of bEnd.3 cells by targeting miR-191-5p/CDK6 axis. In vivo, circRNA_0003307 had protective effects on brain I/R injury, including neuroprotection, anti-apoptosis and angiogenesis. CONCLUSION CircRNA_0003307 may be a promisingtherapeutictarget forthe treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Ying Wu
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Zhi Zheng
- Department of Orthopedics, Luzhou People's Hospital, Luzhou 646000, Sichuan, China
| | - Xue Bai
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Ping Liu
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Shanshan Hu
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Lingxue Wang
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Sijing Yang
- National Traditional Chinese Medicine Clinical Research Base, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
2
|
Leng C, Lin K, Zhou M, Tao X, Sun B, Shu X, Liu W. Apolipoprotein E deficiency exacerbates blood-brain barrier disruption and hyperglycemia-associated hemorrhagic transformation after ischemic stroke. J Stroke Cerebrovasc Dis 2024; 33:107987. [PMID: 39218418 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The polymorphism of the apolipoprotein E (ApoE) gene has been implicated in both the susceptibility to neurodegenerative disease and the prognosis of traumatic brain injury (TBI). However, the influence of ApoE on the risk of hemorrhagic transformation (HT) after acute ischemic stroke remains inconclusive. The present study aimed to investigate the potential impact of ApoE deficiency on the risk of hyperglycemia-associated HT and to elucidate the underlying mechanisms. METHODS Wild-type (WT) and ApoE knockout (ApoE-/-) mice were injected with 50 % glucose to induce hyperglycemia and subsequently subjected to 90 min of intraluminal middle cerebral artery occlusion (MCAO). The mortality, neurological function, HT incidence and HT grading-score were evaluated at 24 hours after reperfusion. To evaluate the integrity of blood-brain barrier (BBB), the immunoglobulin G (IgG) leakage and the protein expressions of tight junctions (TJs) were detected using immunofluorescent staining and western blotting. Finally, the levels of matrix metalloproteinases (MMP)-2/9, microglial activation and proinflammatory mediators were investigated using immunofluorescent staining and western blotting. RESULTS ApoE-/- mice exhibited increased mortality and exacerbated neurological impairment, concomitant with more severe hyperglycemia-associated HT 24 hours post-reperfusion. Meanwhile, ApoE deficiency exacerbated the disruption of BBB, characterized by increased leakage of IgG, aggravated degradation of TJs and microvascular basement membranes. Furthermore, ApoE deficiency further aggravated the upregulation of MMP-2/9 and microglia-triggered neuroinflammation. CONCLUSIONS Our findings demonstrate that the absence of ApoE exacerbates neurological impairment and hyperglycemia-associated HT in ischemic stroke mice, which is closely associated with MMP-2/9 signaling and neuroinflammation-mediated disruption of BBB.
Collapse
Affiliation(s)
- Changlong Leng
- Hubei Key Laboratory of Cognitive and Affective Disorder, Jianghan University, Wuhan, China; Institute of Cerebrovascular Disease, School of Medicine, Jianghan University, Wuhan, China.
| | - Kuan Lin
- Hubei Key Laboratory of Cognitive and Affective Disorder, Jianghan University, Wuhan, China; Institute of Cerebrovascular Disease, School of Medicine, Jianghan University, Wuhan, China.
| | - Mei Zhou
- Hubei Key Laboratory of Cognitive and Affective Disorder, Jianghan University, Wuhan, China; Institute of Cerebrovascular Disease, School of Medicine, Jianghan University, Wuhan, China.
| | - Xiaoqin Tao
- Hubei Key Laboratory of Cognitive and Affective Disorder, Jianghan University, Wuhan, China.
| | - Binlian Sun
- Hubei Key Laboratory of Cognitive and Affective Disorder, Jianghan University, Wuhan, China.
| | - Xiji Shu
- Hubei Key Laboratory of Cognitive and Affective Disorder, Jianghan University, Wuhan, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China.
| | - Wei Liu
- Hubei Key Laboratory of Cognitive and Affective Disorder, Jianghan University, Wuhan, China; Institute of Cerebrovascular Disease, School of Medicine, Jianghan University, Wuhan, China; Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China.
| |
Collapse
|
3
|
Zhang G, Liang Z, Wang Y, Zhang Z, Hoi PM. Tetramethylpyrazine Analogue T-006 Protects Neuronal and Endothelial Cells Against Oxidative Stress via PI3K/AKT/mTOR and Nrf2 Signaling. Antioxidants (Basel) 2024; 13:1272. [PMID: 39456524 PMCID: PMC11505549 DOI: 10.3390/antiox13101272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND T-006, a novel neuroprotective derivative of tetramethylpyrazine (TMP), exhibits multifunctional neuroprotective properties. T-006 has been shown to improve neurological and behavioral functions in animal models of ischemic stroke and neurodegenerative diseases. The present study aims to further elucidate the mechanisms underlying the protective effects of T-006 against oxidative injuries induced by glutamate or hypoxia. METHODS Mouse hippocampal HT22 cells were used to evaluate the neuroprotective effects of T-006 against glutamate-induced injuries, while mouse brain endothelial bEnd.3 cells were used to evaluate the cerebrovascular protective effects of T-006 against oxygen-glucose deprivation followed by reperfusion (OGD/R)-induced injuries. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry were used to measure cell viability and oxidative stress. Western blot and immunofluorescence analyses of protein expression were used to study cell signaling pathways. RESULTS T-006 exhibited significant protective effects in both oxidative injury models. In HT22 cells, T-006 reduced cell death and enhanced antioxidant capacity by upregulating mTOR and nuclear factor erythroid 2-related factor 2/Heme oxygenase-1 (Nrf2/HO-1) signaling. Similarly, in bEnd.3 cells, T-006 reduced oxidative injuries and preserved tight junction integrity through Nrf2/HO-1 upregulation. These effects were inhibited by LY294002, a Phosphoinositide 3-kinase (PI3K) inhibitor. CONCLUSIONS T-006 may exert its neuroprotective and cerebrovascular protective effects via the regulation of PI3K/AKT-mediated pathways, which facilitate downstream mTOR and Nrf2 signaling, leading to improved cell survival and antioxidant defenses.
Collapse
Affiliation(s)
- Guiliang Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; (G.Z.); (Z.L.)
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Zirong Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; (G.Z.); (Z.L.)
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, China
| | - Yuqiang Wang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou 510632, China; (Y.W.); (Z.Z.)
- Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University College of Pharmacy, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Zaijun Zhang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou 510632, China; (Y.W.); (Z.Z.)
- Guangdong-Hong Kong-Macau Joint Laboratory for Pharmacodynamic Constituents of TCM and New Drugs Research, and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Jinan University College of Pharmacy, Guangzhou 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Jinan University College of Pharmacy, Guangzhou 510632, China
| | - Pui-Man Hoi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; (G.Z.); (Z.L.)
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
4
|
Chen W, Wu Z, Yin M, Zhang Y, Qin Y, Liu X, Tu J. Blockage of p38MAPK in astrocytes alleviates brain damage in a mouse model of embolic stroke through the CX43/AQP4 axis. J Stroke Cerebrovasc Dis 2024; 33:108085. [PMID: 39393507 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024] Open
Abstract
BACKGROUND Cerebral edema, a significant complication arising from acute ischemic stroke (IS), has a critical influence on morbidity and mortality. p38MAPK has been shown to promote neuronal apoptosis and brain damage. However, the role of the p38MAPK inhibitor SKF-86002 in protecting against ischemic injury and cerebral edema remains unclear. METHODS Infarct area was examined by TTC staining in middle cerebral artery occlusion (MCAO) mice. Neurological score and brain water content were evaluated. TUNEL and NeuN staining were used to assess neuronal apoptosis and the survival of neurons. Blood-brain barrier (BBB) permeability was determined by Evans blue. Double immunofluorescence staining detected the colocalization of AQP4 and CX43 in astrocytes. IHC staining revealed CX43 and AQP4 expression. EDU staining detected the proliferation of Oxygen and glucose deprivation/reoxygenation (OGD/R)-treated astrocytes. Levels of oxidative stress markers were determined using commercial kits. ELISA was used to assess the secretion of pro-inflammatory factors. RT-qPCR measured the expression of CX43, AQP4 and pro-inflammatory factors. Western blot analyzed the levels of p-p38/p38, AQP4 and CX43. Co-immunoprecipitation (Co-IP) determined the interaction between CX43 and AQP4. RESULTS SKF-86002 attenuated brain damage, edema, and neuronal apoptosis in MCAO mice. Astrocyte proliferation was suppressed, and oxidative stress and inflammation were alleviated by SKF-86002 treatment. SKF-86002 negatively regulated p38 signaling and the expression of AQP4 and CX43. Additionally, the expression of CX43/AQP4 within astrocytes was modulated by SKF-86002. CONCLUSION In summary, SKF-86002 alleviated IS injury and cerebral edema by inhibiting astrocyte proliferation, oxidative stress and inflammation. This effect was associated with the suppression of CX43/AQP4, suggesting that SKF-86002 shows promise as a novel therapeutic approach for preventing IS.
Collapse
Affiliation(s)
- Weiping Chen
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, PR China; Institute of Neuroscience, Nanchang University, Nanchang 330031, Jiangxi Province, PR China; Jiangxi Provincial Clinical Medical Research Center for Neurological Disorders, Nanchang 330031, Jiangxi Province, PR China
| | - Zhiping Wu
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, PR China; Institute of Neuroscience, Nanchang University, Nanchang 330031, Jiangxi Province, PR China; Jiangxi Provincial Clinical Medical Research Center for Neurological Disorders, Nanchang 330031, Jiangxi Province, PR China
| | - Min Yin
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, PR China; Institute of Neuroscience, Nanchang University, Nanchang 330031, Jiangxi Province, PR China; Jiangxi Provincial Clinical Medical Research Center for Neurological Disorders, Nanchang 330031, Jiangxi Province, PR China
| | - Yangbo Zhang
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, PR China; Institute of Neuroscience, Nanchang University, Nanchang 330031, Jiangxi Province, PR China; Jiangxi Provincial Clinical Medical Research Center for Neurological Disorders, Nanchang 330031, Jiangxi Province, PR China
| | - Yiren Qin
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, PR China
| | - Xu Liu
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, PR China; Institute of Neuroscience, Nanchang University, Nanchang 330031, Jiangxi Province, PR China; Jiangxi Provincial Clinical Medical Research Center for Neurological Disorders, Nanchang 330031, Jiangxi Province, PR China.
| | - Jianglong Tu
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, Jiangxi Province, PR China; Institute of Neuroscience, Nanchang University, Nanchang 330031, Jiangxi Province, PR China; Jiangxi Provincial Clinical Medical Research Center for Neurological Disorders, Nanchang 330031, Jiangxi Province, PR China.
| |
Collapse
|
5
|
Chen Q, Wang J, Xiong X, Chen J, Wang B, Yang H, Zhou J, Deng H, Gu L, Tian J. Blood-Brain Barrier-Penetrating Metal-Organic Framework Antioxidant Nanozymes for Targeted Ischemic Stroke Therapy. Adv Healthc Mater 2024:e2402376. [PMID: 39373278 DOI: 10.1002/adhm.202402376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/20/2024] [Indexed: 10/08/2024]
Abstract
Overproduction of reactive oxygen species (ROS) during reperfusion in ischemic stroke (IS) severely impedes neuronal survival and results in high rates of morbidity and disability. The effective blood-brain barrier (BBB) penetration and brain delivery of antioxidative agents remain the biggest challenge in treating ischemic reperfusion-induced cerebrovascular and neural injury. In this study, a metal-organic framework (MOF) nanozyme (MIL-101-NH2(Fe/Cu)) with ROS scavenging activities to encapsulate neuroprotective agent rapamycin is fabricated and decorating the exterior with BBB-targeting protein ligands (transferrin), thereby realizing enhanced drug retention and controlled release within ischemic lesions for the synergistic treatment of IS. Through the receptor-mediated transcellular pathway, the transferrin-coated MOF nanoparticles achieved efficient transport across the BBB and targeted accumulation at the cerebral ischemic injury site of mice with middle cerebral artery occlusion/reperfusion (MCAO/R), wherein the nanocarrier exhibited catalytic activities of ROS decomposition into O2 and H2O2-responsive rapamycin release. By its BBB-targeting, antioxidative, anti-inflammatory, and antiapoptotic properties, the MOF nanosystem addressed multiple pathological factors of IS and realized remarkable neuroprotective effects, leading to the substantial reduction of cerebral infarction volume and accelerated recovery of nerve functions in the MCAO/R mouse model. This MOF-based nanomedicine provides valuable design principles for effective IS therapy with multi-mechanism synergies.
Collapse
Affiliation(s)
- Qing Chen
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jin Wang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Junyang Chen
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Bo Wang
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Haixia Yang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jianliang Zhou
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Hongping Deng
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jian Tian
- Department of Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
6
|
Zhang L, Xie G, Zhang Y, Li J, Tang W, Yang L, Li K. A CT-based machine learning model for using clinical-radiomics to predict malignant cerebral edema after stroke: a two-center study. Front Neurosci 2024; 18:1443486. [PMID: 39420983 PMCID: PMC11484034 DOI: 10.3389/fnins.2024.1443486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Purpose This research aimed to create a machine learning model for clinical-radiomics that utilizes unenhanced computed tomography images to assess the likelihood of malignant cerebral edema (MCE) in individuals suffering from acute ischemic stroke (AIS). Methods The research included 179 consecutive patients with AIS from two different hospitals. These patients were randomly assigned to training (n = 143) and validation (n = 36) sets with an 8:2 ratio. Using 3DSlicer software, the radiomics features of regions impacted by infarction were derived from unenhanced CT scans. The radiomics features linked to MCE were pinpointed through a consistency test, Student's t test and the least absolute shrinkage and selection operator (LASSO) method for selecting features. Clinical parameters associated with MCE were also identified. Subsequently, machine learning models were constructed based on clinical, radiomics, and clinical-radiomics. Ultimately, the efficacy of these models was evaluated by measuring the operating characteristics of the subjects through their area under the curve (AUCs). Results Logistic regression (LR) was found to be the most effective machine learning algorithm, for forecasting the MCE. In the training and validation cohorts, the AUCs of clinical model were 0.836 and 0.773, respectively, for differentiating MCE patients; the AUCs of radiomics model were 0.849 and 0.818, respectively; the AUCs of clinical and radiomics model were 0.912 and 0.916, respectively. Conclusion This model can assist in predicting MCE after acute ischemic stroke and can provide guidance for clinical treatment and prognostic assessment.
Collapse
Affiliation(s)
| | - Gang Xie
- Department of Radiology, The Third People's Hospital of Chengdu, Chengdu, China
| | - Yue Zhang
- Department of Radiology, Chongqing General Hospital, Chongqing, China
- Chongqing Medical University, Chongqing, China
| | - Junlin Li
- North Sichuan Medical College, Nanchong, China
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| | - Wuli Tang
- Department of Radiology, Chongqing General Hospital, Chongqing, China
- Chongqing Medical University, Chongqing, China
| | - Ling Yang
- Department of Radiology, Chongqing General Hospital, Chongqing, China
- Chongqing Medical University, Chongqing, China
| | - Kang Li
- Department of Radiology, Chongqing General Hospital, Chongqing, China
| |
Collapse
|
7
|
Zhang C, Zheng J, Yu X, Kuang B, Dai X, Zheng L, Yu W, Teng W, Cao H, Li M, Yao J, Liu X, Zou W. "Baihui" (DU20)-penetrating "Qubin" (GB7) acupuncture on blood-brain barrier integrity in rat intracerebral hemorrhage models via the RhoA/ROCK II/MLC 2 signaling pathway. Animal Model Exp Med 2024; 7:740-757. [PMID: 38379356 DOI: 10.1002/ame2.12374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/21/2023] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Blocking the RhoA/ROCK II/MLC 2 (Ras homolog gene family member A/Rho kinase II/myosin light chain 2) signaling pathway can initiate neuroprotective mechanisms against neurological diseases such as stroke, cerebral ischemia, and subarachnoid hemorrhage. Nevertheless, it is not clear whether and how disrupting the RhoA/ROCK II/MLC 2 signaling pathway changes the pathogenic processes of the blood-brain barrier (BBB) after intracerebral hemorrhage (ICH). The present investigation included the injection of rat caudal vein blood into the basal ganglia area to replicate the pathophysiological conditions caused by ICH. METHODS Scalp acupuncture (SA) therapy was performed on rats with ICH at the acupuncture point "Baihui"-penetrating "Qubin," and the ROCK selective inhibitor fasudil was used as a positive control to evaluate the inhibitory effect of acupuncture on the RhoA/ROCK II/MLC 2 signaling pathway. Post-assessments included neurological deficits, brain edema, Evans blue extravasation, Western blot, quantitative polymerase chain reaction, and transmission electron microscope imaging. RESULTS We found that ROCK II acts as a promoter of the RhoA/ROCK II/MLC 2 signaling pathway, and its expression increased at 6 h after ICH, peaked at 3 days, and then decreased at 7 days after ICH, but was still higher than the pre-intervention level. According to some experimental results, although 3 days is the peak, 7 days is the best time point for acupuncture treatment. Starting from 6 h after ICH, the neurovascular structure and endothelial cell morphology around the hematoma began to change. Based on the changes in the promoter ROCK II, a 7-day time point was selected as the breakthrough point for treating ICH model rats in the main experiment. The results of this experiment showed that both SA at "Baihui"-penetrating "Qubin" and treatment with fasudil could improve the expression of endothelial-related proteins by inhibiting the RhoA/ROCK II/MLC 2 signaling pathway and reduce neurological dysfunction, brain edema, and BBB permeability in rats. CONCLUSION This study found that these experimental data indicated that SA at "Baihui"-penetrating "Qubin" could preserve BBB integrity and neurological function recovery after ICH by inhibiting RhoA/ROCK II/MLC 2 signaling pathway activation and by regulating endothelial cell-related proteins.
Collapse
Affiliation(s)
- Ce Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Zheng
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xueping Yu
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Binglin Kuang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaohong Dai
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lei Zheng
- Clinical Key Laboratory of Integrated Traditional Chinese and Western Medicine of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Weiwei Yu
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Teng
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Hongtao Cao
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mingyue Li
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiayong Yao
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoying Liu
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Zou
- First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
8
|
Gao F, Du W, Guo C, Geng P, Liu W, Jin X. α7nACh receptor, a promising target to reduce BBB damage by regulating inflammation and autophagy after ischemic stroke. Biomed Pharmacother 2024; 179:117337. [PMID: 39191022 DOI: 10.1016/j.biopha.2024.117337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/13/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Increased blood-brain barrier (BBB) permeability can lead to cerebral vasogenic edema and hemorrhagic transformation (HT) after reperfusion with tissue plasminogen activator (tPA), the only United States Food and Drug Administration (FDA)-approved treatment for acute ischemia stroke (AIS). The therapeutic benefits of tPA after AIS are partially outweighed by a more than a six-fold increase in the risk of symptomatic intracerebral hemorrhage. Therefore, strategies to protect the integrity of BBB are urgently needed to reduce HT and vasogenic edema after tPA thrombolysis or endovascular thrombectomy. Interestingly, an NIH study showed that smokers treated with tPA had a significantly lower prevalence of brain hemorrhage than nonsmokers, suggesting that cigarette smoking may protect patients treated with tPA from the side effects of cerebral hemorrhage. Importantly, we recently showed that treatment with nicotine reduces AIS-induced BBB damage and that modulating α7nAChR by modulation could reduce ischemia/reperfusion-induced BBB damage, suggesting that α7nAChR could be a potential target to reduce BBB after AIS. In this review, we first provide an overview of stroke and the impact of α7nAChR activation on BBB damage. Next, we discuss the features and mechanism of BBB destruction after AIS. We then discuss the effect of nicotine effect on BBB integrity as well as the mechanism underlying those effects. Finally, we discuss the side effects and potential strategies for modulating α7nAChR to reduce AIS-induced BBB damage.
Collapse
Affiliation(s)
- Fengying Gao
- Department of Emergency, Shanxi Provincial People's Hospital, Taiyuan 030001, China
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Chun Guo
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, UK
| | - Panpan Geng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Wencao Liu
- Department of Emergency, Shanxi Provincial People's Hospital, Taiyuan 030001, China.
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
9
|
Zheng T, Jiang T, Ma H, Zhu Y, Wang M. Targeting PI3K/Akt in Cerebral Ischemia Reperfusion Injury Alleviation: From Signaling Networks to Targeted Therapy. Mol Neurobiol 2024; 61:7930-7949. [PMID: 38441860 DOI: 10.1007/s12035-024-04039-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/09/2024] [Indexed: 09/21/2024]
Abstract
Ischemia/reperfusion (I/R) injury is a pathological event that results in reperfusion due to low blood flow to an organ. Cerebral ischemia is a common cerebrovascular disease with high mortality, and reperfusion is the current standard intervention. However, reperfusion may further induce cellular damage and dysfunction known as cerebral ischemia/reperfusion injury (CIRI). Currently, strategies for the clinical management of CIRI are limited, necessitating the exploration of novel and efficacious treatment modalities for the benefit of patients. PI3K/Akt signaling pathway is an important cellular process associated with the disease. Stimulation of the PI3K/Akt pathway enhances I/R injury in multiple organs such as heart, brain, lung, and liver. It stands as a pivotal signaling pathway crucial for diminishing cerebral infarction size and safeguarding the functionality of brain tissue after CIRI. During CIRI, activation of the PI3K/Akt pathway exhibits a protective effect on CIRI. Furthermore, activation of the PI3K/Akt pathway has the potential to augment the activity of antioxidant enzymes, resulting in a decrease in reactive oxygen species (ROS) and the associated oxidative stress. Meanwhile, PI3K/Akt plays a neuroprotective role by inhibiting inflammatory responses and apoptosis. For example, PI3K/Akt interacts with NF-κB, Nrf2, and MAPK signaling pathways to mitigate CIRI. This article is aimed to explore the pivotal role and underlying mechanism of PI3K/Akt in ameliorating CIRI and investigate the influence of ischemic preconditioning and post-processing, as well as the impact of pertinent drugs or activators targeting the PI3K/Akt pathway on CIRI. The primary objective is to furnish compelling evidence supporting the activation of PI3K/Akt in the context of CIRI, elucidating its mechanistic intricacies. By doing so, the paper aims to underscore the critical contribution of PI3K/Akt in mitigating CIRI, providing a theoretical foundation for considering the PI3K/Akt pathway as a viable target for CIRI treatment.
Collapse
Affiliation(s)
- Ting Zheng
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Taotao Jiang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hongxiang Ma
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yanping Zhu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Manxia Wang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730000, People's Republic of China.
- Department of Neurology, The Second Hospital of Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
10
|
Wei F, Zhou J, Pan L, Shen M, Niu D, Zeng Z, Cheng G, Yao J, Zhang G, Sun C. Integrative microbiomics, proteomics and lipidomics studies unraveled the preventive mechanism of Shouhui Tongbian Capsules on cerebral ischemic stroke injury. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118874. [PMID: 39362332 DOI: 10.1016/j.jep.2024.118874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cerebral ischemic stroke (CIS) is one of the most important factors leading to death and disability, which seriously threaten the survival and health of patients. The intentional flora and its derived metabolites are demonstrated to play vital roles in the physiology and onset of CIS. Shouhui Tongbian Capsules (SHTB), a Traditional Chinese Medicine, could regulate gut microbiota and metabolites. Study has found that SHTB has protective effect on CIS, but the mechanism is still unclear. AIM OF STUDY This study was designed to evaluate the preventive effects and the mechanism of SHTB on CIS injury. MATERIALS AND METHODS The rats were pretreated with SHTB for 5 days, then the middle cerebral artery occlusion/reperfusion (MCAO/R) was established. Neurological deficit score, TTC staining, brain water content, H&E and Nissl staining were preformed to evaluate the preventive effects of SHTB on CIS. The Occludin and ZO-1 were analyzed to evaluate the blood-brain barrier (BBB). 16S rDNA sequencing and LC-ESI-MS/MS-based metabolomics profiling were performed to analyze the gut microbiota composition and short chain fatty acids (SCFAs) profile in gut. Serum lipopolysaccharide specific IgA antibody (LPS-SIgA) and diamine oxidase (DAO), as well as colon Claudin 5 and ZO-1 were analyzed to evaluate the intestinal barrier. Proteomics was used to evaluated the proteins profile in brain. Lipidomics were used to evaluate the brain SCFAs as well as medium and long chain fatty acids (MCFAs and LCFAs). Malondialdehyde (MDA), Total Superoxide dismutase (T-SOD), Glutathione (GSH), Glutathione peroxidase (GSH-Px), Catalase (CAT) and reactive oxygen species (ROS) were assayed to evaluate the oxidative stress in brain. Western blot was performed to evaluate the expression of PPARγ, Nrf2, SLC3A2, SCL7A11, GPX4, ACSL4 and LOX. RESULTS SHTB prevented rats from MCAO/R injury, which was confirmed by lower cerebral infarct rate, brain water content, neurological deficit score and nissl body loss, and improved brain pathology. Meanwhile, SHTB upregulated the expression of ZO-1 and Occludin to maintain the integrity of BBB. 16S rDNA sequencing and LC-ESI-MS/MS-based targeted metabolomics found that SHTB increased the abundance of gut microbiota, regulated the numbers of intestinal bacteria to increase the production of Acetic acid, Propionic acid, and Butyric acid, as well as decrease the production of Valeric acid and Hexanoic acid in the gut. Meanwhile, SHTB improved the intestinal barrier by upregulating the protein levels of Claudin 5 and ZO-1, which was confirmed by low concentrations of LPS-SIgA and DAO in serum. Multi omics and spearman correlation analysis indicated that SHTB regulated the abundance of Escherichia-Shigella and Lactobacillus to increase Acetic acid, Propionic acid, and Butyric acid to induce the expression of PPARγ, thereby regulating fatty acid metabolism and degradation, improving lipid metabolism disorders, downregulating lipid oxidative stress, inhibiting ferroptosis, and alleviating brain injury. CONCLUSION This study confirmed that SHTB improved the disturbance of fatty acid metabolism in brain tissue by regulating gut microbiota and the production of fecal SCFAs to inhibit ferroptosis caused by lipid oxidative stress and prevent CIS injury, which provided a potential candidate drug for the prevention of CIS.
Collapse
Affiliation(s)
- Fangjiao Wei
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China.
| | - Jidong Zhou
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 273400, China.
| | - Lihong Pan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 273400, China.
| | - Mengmeng Shen
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 273400, China.
| | - Dejun Niu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 273400, China.
| | - Zhen Zeng
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 273400, China.
| | - Guoliang Cheng
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China; Linyi Key Laboratory for Immunopharmacology and Immunotoxicology of Natural Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 273400, China.
| | - Guimin Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Ji'nan, 250355, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China.
| | - Chenghong Sun
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, 276005, China; College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, 277160, China.
| |
Collapse
|
11
|
Chen Y, Ouyang L, Yang X, Wu B, Meng L, Gu J, Wang Y, Li J, Zhang J, Jing X, Lu S, Liu L, Fu S. Electroacupuncture Promotes the Generation of Intestinal Treg Cells After Ischemic Stroke by Foxp3 Acetylation Regulation. Mol Neurobiol 2024:10.1007/s12035-024-04500-1. [PMID: 39322831 DOI: 10.1007/s12035-024-04500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/12/2024] [Indexed: 09/27/2024]
Abstract
Electroacupuncture (EA) has been shown to ameliorate brain injury and protect against intestinal injury after ischemic stroke. These protective effects are closely associated with the enhancement of regulatory T (Treg) cell numbers and function in the intestine, as well as the inhibition of intestinal γδ T cell production and their migration to the brain. This study aimed to elucidate the potential mechanism by which EA regulates intestinal Treg cell differentiation after stroke. Sprague-Dawley rats were divided into three groups: the sham group, the middle cerebral artery occlusion (MCAO) group, and the MCAO plus EA (MEA) group. The MCAO model was generated by occluding the middle cerebral artery. EA was applied to Baihui (GV20) acupoint once daily. Samples were collected 3 days after reperfusion. Our results showed that EA reduced the inflammatory response in the brain and intestine after ischemic stroke. EA treatment increased the percentage of Treg cells in the small intestine of rats. EA increased the levels of SCFAs, while also inhibiting histone deacetylase activity (HDAC). Additionally, acetylated Foxp3 protein in the small intestine was increased after EA treatment. These results suggest that EA at GV20 alleviates brain and intestinal inflammatory injury in stroke rats, potentially through the enhancement of SCFA-mediated Foxp3 acetylation in Treg cells.
Collapse
Affiliation(s)
- Yonglin Chen
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China
| | - Ling Ouyang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xinyi Yang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Bufan Wu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lingling Meng
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jialin Gu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yaling Wang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Juan Li
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jingjing Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing, 211112, China
| | - Xinyue Jing
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shengfeng Lu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lanying Liu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029, China.
| | - Shuping Fu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
12
|
Mathias K, Machado RS, Tiscoski ADB, Dos Santos D, Lippert FW, Costa MA, Gonçalves CL, Generoso JS, Prophiro JS, Giustina AD, Petronilho F. IL-33 in Ischemic Stroke: Brain vs. Periphery. Inflammation 2024:10.1007/s10753-024-02148-6. [PMID: 39294293 DOI: 10.1007/s10753-024-02148-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024]
Abstract
Cerebrovascular disease is the second-leading cause of death and disability worldwide, with stroke being the most common cause. In ischemic stroke, several processes combine to produce immunosuppression, leaving the post-stroke body susceptible to infection, which in turn affects neuroinflammation. Interleukin-33 (IL-33), a member of the interleukin-1 family (IL-1), functions as a modulator of immune responses and inflammation, playing a crucial role in the establishment of immunologic responses. IL-33 has been shown to have a protective effect on brain injury and represents a potential target by modulating inflammatory cytokines and stimulating immune regulatory cells. With an emphasis on preclinical and clinical studies, this review covers the impact of IL-33 on immune system mechanisms following ischemic stroke.
Collapse
Affiliation(s)
- Khiany Mathias
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
- Health Sciences Unit, Program in Health Sciences, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Richard Simon Machado
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
- Health Sciences Unit, Program in Health Sciences, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Anita Dal Bó Tiscoski
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - David Dos Santos
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Fabricio Weinheimer Lippert
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Maiara Aguiar Costa
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Cinara Ludvig Gonçalves
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Jaqueline Silva Generoso
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil
| | - Josiane Somariva Prophiro
- Health Sciences Unit, Program in Health Sciences, University of South Santa Catarina, Tubarao, SC, Brazil
| | - Amanda Della Giustina
- Ottawa Hospital Research Institute, Sprott Centre for Stem Cell Research, Ottawa, ON, Canada
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Health Sciences Unit, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciuma, SC, Brazil.
| |
Collapse
|
13
|
Cao Q, Zeng W, Nie J, Ye Y, Chen Y. The protective effects of apelin-13 in HIV-1 tat- induced macrophage infiltration and BBB impairment. Tissue Barriers 2024:2392361. [PMID: 39264117 DOI: 10.1080/21688370.2024.2392361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 09/13/2024] Open
Abstract
Impairment of the blood - brain barrier (BBB) and subsequent inflammatory responses contribute to the development of human immunodeficiency virus (HIV)-1-associated neurocognitive disorders (HAND). Apelin-13, the most abundant member of the apelin family, acts as the ligand of the angiotensin receptor-like 1 (APJ). However, its pharmacological function in HAND and its underlying mechanism are unknown. In the current study, we report that the presence of HIV-1 Tat reduced the levels of Apelin-13 and APJ in the cortex tissue of mice. Importantly, Apelin-13 preserved BBB integrity against HIV-1 Tat in mice by increasing the expression of the tight junction protein zonula occludens-1 (ZO-1) and occludin. Interestingly, increased macrophage infiltration, indicated by elevated CD68-positive staining was observed in the cortex after stimulation with HIV-1, which was mitigated by the administration of Apelin-13. Correspondingly, Apelin-13 reduced the expression of monocyte chemoattractant protein-1; (MCP-1). An in vitro two-chamber and two-cell trans-well assay demonstrated that HIV-1 Tat challenge significantly promoted macrophage migration, which was notably attenuated by the introduction of Apelin-13. Accordingly, treatment with Apelin-13 restored the HIV-1 Tat-induced reduction of occludin and ZO-1, while preventing the upregulation of MCP-1 in human brain microvascular endothelial cells (HBMVECs). Our results suggest that Apelin-13 may reduce macrophage infiltration into brain tissues and mitigate BBB dysfunction in patients with HAND.
Collapse
Affiliation(s)
- Qi Cao
- First Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Wei Zeng
- Department of Emergency, Chongqing Public Health Medical Center, Chongqing, China
| | - Jingmin Nie
- First Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Yongjun Ye
- Department of General Surgery, Chongqing Public Health Medical Center, Chongqing, China
| | - Yanchao Chen
- Department of General Internal Medicine, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
14
|
Hammer MF, Bahramnejad E, Watkins JC, Ronaldson PT. Candesartan restores blood-brain barrier dysfunction, mitigates aberrant gene expression, and extends lifespan in a knockin mouse model of epileptogenesis. Clin Sci (Lond) 2024; 138:1089-1110. [PMID: 39092536 DOI: 10.1042/cs20240771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/04/2024]
Abstract
Blockade of Angiotensin type 1 receptor (AT1R) has potential therapeutic utility in the treatment of numerous detrimental consequences of epileptogenesis, including oxidative stress, neuroinflammation, and blood-brain barrier (BBB) dysfunction. We have recently shown that many of these pathological processes play a critical role in seizure onset and propagation in the Scn8a-N1768D mouse model. Here we investigate the efficacy and potential mechanism(s) of action of candesartan (CND), an FDA-approved angiotensin receptor blocker (ARB) indicated for hypertension, in improving outcomes in this model of pediatric epilepsy. We compared length of lifespan, seizure frequency, and BBB permeability in juvenile (D/D) and adult (D/+) mice treated with CND at times after seizure onset. We performed RNAseq on hippocampal tissue to quantify differences in genome-wide patterns of transcript abundance and inferred beneficial and detrimental effects of canonical pathways identified by enrichment methods in untreated and treated mice. Our results demonstrate that treatment with CND gives rise to increased survival, longer periods of seizure freedom, and diminished BBB permeability. CND treatment also partially reversed or 'normalized' disease-induced genome-wide gene expression profiles associated with inhibition of NF-κB, TNFα, IL-6, and TGF-β signaling in juvenile and adult mice. Pathway analyses reveal that efficacy of CND is due to its known dual mechanism of action as both an AT1R antagonist and a PPARγ agonist. The robust effectiveness of CND across ages, sexes and mouse strains is a positive indication for its translation to humans and its suitability of use for clinical trials in children with SCN8A epilepsy.
Collapse
Affiliation(s)
- Michael F Hammer
- BIO5 Institute, University of Arizona, Tucson, AZ, U.S.A
- Department of Neurology, University of Arizona, Tucson, AZ, U.S.A
| | - Erfan Bahramnejad
- BIO5 Institute, University of Arizona, Tucson, AZ, U.S.A
- Department of Pharmacology, University of Arizona, Tucson, AZ, U.S.A
| | - Joseph C Watkins
- Department of Mathematics, University of Arizona, Tucson, AZ, U.S.A
| | | |
Collapse
|
15
|
Kim SY, Cheon J. Senescence-associated microvascular endothelial dysfunction: A focus on the blood-brain and blood-retinal barriers. Ageing Res Rev 2024; 100:102446. [PMID: 39111407 DOI: 10.1016/j.arr.2024.102446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/05/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
The blood-brain barrier (BBB) and blood-retinal barrier (BRB) constitute critical physiochemical interfaces, precisely orchestrating the bidirectional communication between the brain/retina and blood. Increased permeability or leakage of these barriers has been demonstrably linked to age-related vascular and parenchymal damage. While it has been suggested that the gradual aging process may coincide with disruptions in these barriers, this phenomenon is significantly exacerbated in individuals with age-related neurodegenerative disorders (ARND). This review focuses on the microvascular endothelium, a key constituent of BBB and BRB, highlighting the impact of endothelial senescence on barrier dysfunction and exploring recent discoveries regarding core pathways implicated in its breakdown. Subsequently, we address the "vascular senescence hypothesis" for ARND, with a particular emphasis on Alzheimer's disease and age-related macular degeneration, centered on endothelial senescence. Finally, we discuss potential senotherapeutic strategies targeting barrier dysfunction.
Collapse
Affiliation(s)
- Sung Young Kim
- Department of Biochemistry, Konkuk University School of Medicine, Republic of Korea; Research Institute of Medical Science, Konkuk University, Republic of Korea; IBST, Konkuk University, Republic of Korea.
| | - Jaejoung Cheon
- Department of Biochemistry, Konkuk University School of Medicine, Republic of Korea
| |
Collapse
|
16
|
Jia CL, Gou Y, Gao Y, Pei X, Jin X, Li BL, Zhang Z, He Y, Ji ES, Zhao Y. Rosmarinic acid liposomes suppress ferroptosis in ischemic brain via inhibition of TfR1 in BMECs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155835. [PMID: 38968791 DOI: 10.1016/j.phymed.2024.155835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Iron deposition and ferroptosis are involved in ischemic stroke injury, but the choice of drugs for treatment is limited. PURPOSE To investigate the potential neuroprotective effects of Rosmarinic acid (RosA) encapsulated within nanoliposomes (RosA-LIP) on ischemic stroke. METHODS Wild-type (WT) and TfR1EC cKO (specific knockout of the TfR1 gene in BMECs) mice used to establish a dMCAO model, with simultaneous administration of RosA-LIP (20 mg/kg/d, i.p.) or RosA (20 mg/kg/d, i.p.). RESULTS The successful synthesis of RosA-LIP resulted in enhanced stability and precise delivery in both the serum and brain. The administration of RosA-LIP effectively mitigated ischemia-induced behavioral abnormalities and pathological damage. RosA-LIP inhibited ferroptosis by ameliorating mitochondrial abnormalities, increasing GPX4 levels, and decreasing ACSL4/LPCAT3/Lox-dependent lipid peroxidation. RosA-LIP effectively improved blood‒brain barrier (BBB) permeability, increased tight junctions (TJs) protein expression and reduced iron levels in ischemic tissue and brain microvascular endothelial cells (BMECs) by modulating FPN1 and TfR1 levels. Furthermore, RosA-LIP suppressed TfR1 to attenuate ACSL4/LPCAT3/Lox-mediated ferroptosis in TfR1EC cKO mice subjected to dMCAO. CONCLUSION RosA-LIP effectively increased the brain level of RosA and protected against ferroptosis through the regulation of TfR1 in BMECs.
Collapse
Affiliation(s)
- Cui-Ling Jia
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yujing Gou
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yuhui Gao
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaocui Pei
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China; Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
| | - Xiaofei Jin
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Bo-Liang Li
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhi Zhang
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yingna He
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China; Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China.
| | - En-Sheng Ji
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China.
| | - Yashuo Zhao
- Hebei Technology Innovation Center of TCM Combined Hydrogen Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China; Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China.
| |
Collapse
|
17
|
Xu ZY, Fu SX, Zhao HC, Wang YM, Liu Y, Ma JY, Yu Y, Zhang JL, Han ZP, Zheng MX. Dynamic changes in key factors of the blood-brain barrier in early diabetic mice. J Neuropathol Exp Neurol 2024; 83:763-771. [PMID: 38874450 DOI: 10.1093/jnen/nlae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024] Open
Abstract
Chronic hyperglycemia can result in damage to the hippocampus and dysfunction of the blood-brain barrier (BBB), potentially leading to neurological disorders. This study examined the histological structure of the hippocampus and the expression of critical genes associated with the BBB at 2 early stage time points in a streptozotocin-induced diabetes mellitus (DM) mouse model. Routine histology revealed vascular congestion and dilation of Virchow-Robin spaces in the hippocampal CA1 region of the DM group. Neuronal alterations included rounding and swelling and reduction in Nissl bodies and increased apoptosis. Compared to the control group, TJP1 mRNA expression in the DM group was significantly lower (P < .05 or P < .01), while mRNA levels of JAM3, TJP3, CLDN5, CLDN3, and OCLN initially increased and then decreased. At 7, 14, and 21 days, mRNA levels of the receptor for advanced glycation end products (AGER) were greater in the DM group than in the control group (P < .05 or P < .01). These findings indicate that early-stage diabetes may cause structural and functional impairments in hippocampal CA1 in mice. These abnormalities may parallel alterations in the expression of key BBB tight junction molecules and elevated AGER expression in early DM patients.
Collapse
Affiliation(s)
- Zhi-Yong Xu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Shu-Xian Fu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Hui-Chao Zhao
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yin-Min Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yan Liu
- The 83rd Army Group Hospital of the Chinese People's Liberation Army, Xinxiang, China
| | - Jin-You Ma
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yan Yu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Jia-Le Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Zhan-Peng Han
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Ming-Xue Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
18
|
Liang L, Liu Z, Yang X, Zhang Y, Liu H, Chen Y. Prediction of blood-brain barrier permeability using machine learning approaches based on various molecular representation. Mol Inform 2024; 43:e202300327. [PMID: 38864837 DOI: 10.1002/minf.202300327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/18/2024] [Accepted: 04/18/2024] [Indexed: 06/13/2024]
Abstract
The assessment of compound blood-brain barrier (BBB) permeability poses a significant challenge in the discovery of drugs targeting the central nervous system. Conventional experimental approaches to measure BBB permeability are labor-intensive, cost-ineffective, and time-consuming. In this study, we constructed six machine learning classification models by combining various machine learning algorithms and molecular representations. The model based on ExtraTree algorithm and random partitioning strategy obtains the best prediction result, with AUC value of 0.932±0.004 and balanced accuracy (BA) of 0.837±0.010 for the test set. We employed the SHAP method to identify important features associated with BBB permeability. In addition, matched molecular pair (MMP) analysis and representative substructure derivation method were utilized to uncover the transformation rules and distinctive structural features of BBB permeable compounds. The machine learning models proposed in this work can serve as an effective tool for assessing BBB permeability in the drug discovery for central nervous system disease.
Collapse
Affiliation(s)
- Li Liang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Zhiwen Liu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Xinyi Yang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Yanmin Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Haichun Liu
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China
| |
Collapse
|
19
|
Qu Z, Luo J, Li Z, Yang R, Zhao J, Chen X, Yu S, Shu H. Advancements in strategies for overcoming the blood-brain barrier to deliver brain-targeted drugs. Front Aging Neurosci 2024; 16:1353003. [PMID: 39253614 PMCID: PMC11381257 DOI: 10.3389/fnagi.2024.1353003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
The blood-brain barrier is known to consist of a variety of cells and complex inter-cellular junctions that protect the vulnerable brain from neurotoxic compounds; however, it also complicates the pharmacological treatment of central nervous system disorders as most drugs are unable to penetrate the blood-brain barrier on the basis of their own structural properties. This dramatically diminished the therapeutic effect of the drug and compromised its biosafety. In response, a number of drugs are often delivered to brain lesions in invasive ways that bypass the obstruction of the blood-brain barrier, such as subdural administration, intrathecal administration, and convection-enhanced delivery. Nevertheless, these intrusive strategies introduce the risk of brain injury, limiting their clinical application. In recent years, the intensive development of nanomaterials science and the interdisciplinary convergence of medical engineering have brought light to the penetration of the blood-brain barrier for brain-targeted drugs. In this paper, we extensively discuss the limitations of the blood-brain barrier on drug delivery and non-invasive brain-targeted strategies such as nanomedicine and blood-brain barrier disruption. In the meantime, we analyze their strengths and limitations and provide outlooks on the further development of brain-targeted drug delivery systems.
Collapse
Affiliation(s)
- Zhichuang Qu
- Department of Neurosurgery, Meishan City People's Hospital, Meishan, China
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
| | - Juan Luo
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zheng Li
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rong Yang
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jiaxi Zhao
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xin Chen
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
| | - Sixun Yu
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- College of Medicine of Southwest Jiaotong University, Chengdu, China
| | - Haifeng Shu
- Department of Neurosurgery, General Hospital of Western Theater Command, Chengdu, China
- College of Medicine of Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
20
|
Loiola RA, Hachani J, Duban-Deweer S, Sevin E, Bugno P, Kowalska A, Rizzi E, Shimizu F, Kanda T, Mysiorek C, Mazurek M, Gosselet F. Secretome of brain microvascular endothelial cells promotes endothelial barrier tightness and protects against hypoxia-induced vascular leakage. Mol Med 2024; 30:132. [PMID: 39187765 PMCID: PMC11348522 DOI: 10.1186/s10020-024-00897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Cell-based therapeutic strategies have been proposed as an alternative for brain and blood vessels repair after stroke, but their clinical application is hampered by potential adverse effects. We therefore tested the hypothesis that secretome of these cells might be used instead to still focus on cell-based therapeutic strategies. We therefore characterized the composition and the effect of the secretome of brain microvascular endothelial cells (BMECs) on primary in vitro human models of angiogenesis and vascular barrier. Two different secretome batches produced in high scale (scHSP) were analysed by mass spectrometry. Human primary CD34+-derived endothelial cells (CD34+-ECs) were used as well as in vitro models of EC monolayer (CMECs) and blood-brain barrier (BBB). Cells were also exposed to oxygen-glucose deprivation (OGD) conditions and treated with scHSP during reoxygenation. Protein yield and composition of scHSP batches showed good reproducibility. scHSP increased CD34+-EC proliferation, tubulogenesis, and migration. Proteomic analysis of scHSP revealed the presence of growth factors and proteins modulating cell metabolism and inflammatory pathways. scHSP improved the integrity of CMECs, and upregulated the expression of junctional proteins. Such effects were mediated through the activation of the interferon pathway and downregulation of Wnt signalling. Furthermore, OGD altered the permeability of both CMECs and BBB, while scHSP prevented the OGD-induced vascular leakage in both models. These effects were mediated through upregulation of junctional proteins and regulation of MAPK/VEGFR2. Finally, our results highlight the possibility of using secretome from BMECs as a therapeutic alternative to promote brain angiogenesis and to protect from ischemia-induced vascular leakage.
Collapse
Affiliation(s)
- Rodrigo Azevedo Loiola
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | - Johan Hachani
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | - Sophie Duban-Deweer
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | - Emmanuel Sevin
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | - Paulina Bugno
- Pure Biologics S.A., Duńska 11, 54-427, Wroclaw, Poland
| | | | - Eleonora Rizzi
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | - Fumitaka Shimizu
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Graduate School of Medicine, Yamaguchi University, Ube, Japan
| | - Caroline Mysiorek
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France
| | | | - Fabien Gosselet
- UR 2465, Laboratory of the Blood-Brain Barrier (LBHE), Sciences Faculty Jean Perrin, Artois University, 62300, Lens, France.
| |
Collapse
|
21
|
Huang X, Lan Z, Hu Z. Role and mechanisms of mast cells in brain disorders. Front Immunol 2024; 15:1445867. [PMID: 39253085 PMCID: PMC11381262 DOI: 10.3389/fimmu.2024.1445867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024] Open
Abstract
Mast cells serve as crucial effector cells within the innate immune system and are predominantly localized in the skin, airways, gastrointestinal tract, urinary and reproductive tracts, as well as in the brain. Under physiological conditions, brain-resident mast cells secrete a diverse array of neuro-regulatory mediators to actively participate in neuroprotection. Meanwhile, as the primary source of molecules causing brain inflammation, mast cells also function as the "first responders" in brain injury. They interact with neuroglial cells and neurons to facilitate the release of numerous inflammatory mediators, proteases, and reactive oxygen species. This process initiates and amplifies immune-inflammatory responses in the brain, thereby contributing to the regulation of neuroinflammation and blood-brain barrier permeability. This article provides a comprehensive overview of the potential mechanisms through which mast cells in the brain may modulate neuroprotection and their pathological implications in various neurological disorders. It is our contention that the inhibition of mast cell activation in brain disorders could represent a novel avenue for therapeutic breakthroughs.
Collapse
Affiliation(s)
- Xuanyu Huang
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ziwei Lan
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
22
|
Che J, Sun Y, Deng Y, Zhang J. Blood-brain barrier disruption: a culprit of cognitive decline? Fluids Barriers CNS 2024; 21:63. [PMID: 39113115 PMCID: PMC11305076 DOI: 10.1186/s12987-024-00563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Cognitive decline covers a broad spectrum of disorders, not only resulting from brain diseases but also from systemic diseases, which seriously influence the quality of life and life expectancy of patients. As a highly selective anatomical and functional interface between the brain and systemic circulation, the blood-brain barrier (BBB) plays a pivotal role in maintaining brain homeostasis and normal function. The pathogenesis underlying cognitive decline may vary, nevertheless, accumulating evidences support the role of BBB disruption as the most prevalent contributing factor. This may mainly be attributed to inflammation, metabolic dysfunction, cell senescence, oxidative/nitrosative stress and excitotoxicity. However, direct evidence showing that BBB disruption causes cognitive decline is scarce, and interestingly, manipulation of the BBB opening alone may exert beneficial or detrimental neurological effects. A broad overview of the present literature shows a close relationship between BBB disruption and cognitive decline, the risk factors of BBB disruption, as well as the cellular and molecular mechanisms underlying BBB disruption. Additionally, we discussed the possible causes leading to cognitive decline by BBB disruption and potential therapeutic strategies to prevent BBB disruption or enhance BBB repair. This review aims to foster more investigations on early diagnosis, effective therapeutics, and rapid restoration against BBB disruption, which would yield better cognitive outcomes in patients with dysregulated BBB function, although their causative relationship has not yet been completely established.
Collapse
Affiliation(s)
- Ji Che
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Yinying Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Yixu Deng
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China.
| |
Collapse
|
23
|
Miao K, Xia X, Zou Y, Shi B. Small Scale, Big Impact: Nanotechnology-Enhanced Drug Delivery for Brain Diseases. Mol Pharm 2024; 21:3777-3799. [PMID: 39038108 DOI: 10.1021/acs.molpharmaceut.4c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Central nervous system (CNS) diseases, ranging from brain cancers to neurodegenerative disorders like dementia and acute conditions such as strokes, have been heavily burdening healthcare and have a direct impact on patient quality of life. A significant hurdle in developing effective treatments is the presence of the blood-brain barrier (BBB), a highly selective barrier that prevents most drugs from reaching the brain. The tight junctions and adherens junctions between the endothelial cells and various receptors expressed on the cells make the BBB form a nonfenestrated and highly selective structure that is crucial for brain homeostasis but complicates drug delivery. Nanotechnology offers a novel pathway to circumvent this barrier, with nanoparticles engineered to ferry drugs across the BBB, protect drugs from degradation, and deliver medications to the designated area. After years of development, nanoparticle optimization, including sizes, shapes, surface modifications, and targeting ligands, can enable nanomaterials tailored to specific brain drug delivery settings. Moreover, smart nano drug delivery systems can respond to endogenous and exogenous stimuli that control subsequent drug release. Here, we address the importance of the BBB in brain disease treatment, summarize different delivery routes for brain drug delivery, discuss the cutting-edge nanotechnology-based strategies for brain drug delivery, and further offer valuable insights into how these innovations in nanoparticle technology could revolutionize the treatment of CNS diseases, presenting a promising avenue for noninvasive, targeted therapeutic interventions.
Collapse
Affiliation(s)
- Kaiting Miao
- Macquarie Medical School, Faculty of Medicine, Human Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Xue Xia
- Macquarie Medical School, Faculty of Medicine, Human Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yan Zou
- Macquarie Medical School, Faculty of Medicine, Human Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Bingyang Shi
- Macquarie Medical School, Faculty of Medicine, Human Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
24
|
Chen YY, Gong ZC, Zhang MM, Huang ZH. Brain-Targeting Emodin Mitigates Ischemic Stroke via Inhibiting AQP4-Mediated Swelling and Neuroinflammation. Transl Stroke Res 2024; 15:818-830. [PMID: 37380800 DOI: 10.1007/s12975-023-01170-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/26/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
Failure to achieve target-specific delivery to ischemic brain sites has hampered the clinical efficacy of newly developed therapies for ischemic stroke. Emodin, an active ingredient isolated from traditional Chinese medicine, has been indicated to alleviate ischemic stroke; however, the underlying mechanism remains unclear. In this study, we aimed to achieve brain-targeted delivery of emodin to maximize its therapeutic efficacy and elucidate the mechanisms by which emodin alleviates ischemic stroke. A polyethylene glycol (PEG)/cyclic Arg-Gly-Asp (cRGD)-modified liposome was used to encapsulate emodin. TTC, HE, Nissl staining, and immunofluorescence staining were employed to evaluate the therapeutic efficacy of brain-targeting emodin in MCAO and OGD/R models. Inflammatory cytokine levels were determined using ELISA. Immunoprecipitation, immunoblotting, and RT-qPCR were utilized for clarifying the changes in key downstream signaling. Lentivirus-mediated gene restoration was employed to verify the core effector of emodin for relieving ischemic stroke. Encapsulating emodin in a PEG/cRGD-modified liposome enhanced its accumulation in the infarct region and substantially raised its therapeutic efficacy. Furthermore, we demonstrated that AQP4, the most abundant water transporter subunit expressed in astrocytes, plays a crucial role in mediating the mechanisms by which emodin inhibits astrocyte swelling, neuroinflammatory blood-brain barrier (BBB) breakdown in vivo and in vitro, and brain edema in general. Our study unveiled the critical target of emodin responsible for alleviating ischemic stroke and a localizable drug delivery vehicle in the therapeutic strategy for ischemic stroke and other brain injuries.
Collapse
Affiliation(s)
- Yan-Yan Chen
- Wuxi Cancer Institute, and Wuxi Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China.
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, China.
| | - Zhi-Cheng Gong
- Wuxi Cancer Institute, and Wuxi Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Mei-Mei Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an, 712046, Shaanxi, China
| | - Zhao-Hui Huang
- Wuxi Cancer Institute, and Wuxi Institute of Integrated Chinese and Western Medicine, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China.
| |
Collapse
|
25
|
Zhou C, Zhou Y, Vong CT, Khan H, Cheang WS. 3,3',4,5'-Tetramethoxy-trans-stilbene and 3,4',5-trimethoxy-trans-stilbene prevent oxygen-glucose deprivation-induced injury in brain endothelial cell. J Cell Mol Med 2024; 28:e70008. [PMID: 39153195 PMCID: PMC11330235 DOI: 10.1111/jcmm.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/03/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
Blood-brain barrier (BBB) disruption is a major pathophysiological event of ischemic stroke. Brain microvascular endothelial cells are critical to maintain homeostasis between central nervous system and periphery. Resveratrol protects against ischemic stroke. 3,3',4,5'-tetramethoxy-trans-stilbene (3,3',4,5'-TMS) and 3,4',5-trimethoxy-trans-stilbene (3,4',5-TMS) are resveratrol derivatives with addition of methoxy groups, showing better pharmacokinetic performance. We aimed to explore their protective effects and underlying mechanisms. Oxygen-glucose deprivation (OGD) model was applied in bEnd.3 cell line, mouse brain microvascular endothelium to mimic ischemia. The cells were pre-treated with 3,3',4,5'-TMS or 3,4',5-TMS (1 and 5 μM, 24 h) and then subjected to 2-h OGD injury. Cell viability, levels of proinflammatory cytokines and reactive oxygen species (ROS), and protein expressions were measured by molecular assays and fluorescence staining. OGD injury triggered cell death, inflammatory responses, ROS production and nuclear factor-kappa B (NF-κB) signalling pathway. These impairments were remarkably attenuated by the two stilbenes, 3,3',4,5'-TMS and 3,4',5-TMS. They also alleviated endothelial barrier injuries through upregulating the expression of tight junction proteins. Moreover, 3,3',4,5'-TMS and 3,4',5-TMS activated 5' adenosine monophosphate-activated protein kinase (AMPK) and endothelial nitric oxide synthase (eNOS). Overall, 3,3',4,5'-TMS and 3,4',5-TMS exert protective effects against OGD damage through suppressing cell death, inflammatory responses, oxidative stress, as well as BBB disruption on bEnd.3 cells.
Collapse
Affiliation(s)
- Chunxiu Zhou
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical Sciences, University of MacauMacau SARChina
| | - Yan Zhou
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical Sciences, University of MacauMacau SARChina
| | - Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical Sciences, University of MacauMacau SARChina
- Macau Centre for Research and Development in Chinese MedicineUniversity of MacauMacau SARChina
| | - Haroon Khan
- Department of PharmacyAbdul Wali Khan University MardanMardanPakistan
| | - Wai San Cheang
- State Key Laboratory of Quality Research in Chinese MedicineInstitute of Chinese Medical Sciences, University of MacauMacau SARChina
| |
Collapse
|
26
|
Mulay AR, Hwang J, Kim DH. Microphysiological Blood-Brain Barrier Systems for Disease Modeling and Drug Development. Adv Healthc Mater 2024; 13:e2303180. [PMID: 38430211 PMCID: PMC11338747 DOI: 10.1002/adhm.202303180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/22/2024] [Indexed: 03/03/2024]
Abstract
The blood-brain barrier (BBB) is a highly controlled microenvironment that regulates the interactions between cerebral blood and brain tissue. Due to its selectivity, many therapeutics targeting various neurological disorders are not able to penetrate into brain tissue. Pre-clinical studies using animals and other in vitro platforms have not shown the ability to fully replicate the human BBB leading to the failure of a majority of therapeutics in clinical trials. However, recent innovations in vitro and ex vivo modeling called organs-on-chips have shown the potential to create more accurate disease models for improved drug development. These microfluidic platforms induce physiological stressors on cultured cells and are able to generate more physiologically accurate BBBs compared to previous in vitro models. In this review, different approaches to create BBBs-on-chips are explored alongside their application in modeling various neurological disorders and potential therapeutic efficacy. Additionally, organs-on-chips use in BBB drug delivery studies is discussed, and advances in linking brain organs-on-chips onto multiorgan platforms to mimic organ crosstalk are reviewed.
Collapse
Affiliation(s)
- Atharva R. Mulay
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Jihyun Hwang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Center for Microphysiological Systems, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, 21218
| |
Collapse
|
27
|
Liu XY, Chen B, Zhang R, Zhang MQ, Ma YY, Han Y, Jiang JD, Zhang JP. Atorvastatin-induced intracerebral hemorrhage is inhibited by berberine in zebrafish. J Appl Toxicol 2024; 44:1198-1213. [PMID: 38639436 DOI: 10.1002/jat.4614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/18/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
Intracerebral hemorrhage (ICH), for which there are currently no effective preventive or treatment methods, has a very high fatality rate. Statins, such as atorvastatin (ATV), are the first-line drugs for regulating blood lipids and treating hyperlipidemia-related cardiovascular diseases. However, ATV-associated ICH has been reported, although its incidence is rare. In this study, we aimed to investigate the protective action and mechanisms of berberine (BBR) against ATV-induced brain hemorrhage. We established an ICH model in zebrafish induced by ATV (2 μM) and demonstrated the effects of BBR (10, 50, and 100 μM) on ICH via protecting the vascular network using hemocyte staining and three transgenic zebrafish. BBR was found to reduce brain inflammation and locomotion injury in ICH-zebrafish. Mechanism research showed that ATV increased the levels of VE-cadherin and occludin proteins but disturbed their localization at the cell membrane by abnormal phosphorylation, which decreased the number of intercellular junctions between vascular endothelial cells (VECs), disrupting the integrity of vascular walls. BBR reversed the effects of ATV by promoting autophagic degradation of phosphorylated VE-cadherin and occludin in ATV-induced VECs examined by co-immunoprecipitation (co-IP). These findings provide crucial insights into understanding the BBR mechanisms involved in the maintenance of vascular integrity and in mitigating adverse reactions to ATV.
Collapse
Affiliation(s)
- Xin-Yan Liu
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Chen
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miao-Qing Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan-Yuan Ma
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Han
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Dong Jiang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Pu Zhang
- Key Laboratory of Biotechnology of Antibiotics, the National Health Commission (NHC), Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
28
|
Liu Y, Li X, Cao C, Ding H, Shi X, Zhang J, Li H. Critical role of Slc22a8 in maintaining blood-brain barrier integrity after experimental cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 2024:271678X241264401. [PMID: 39068534 DOI: 10.1177/0271678x241264401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Blood-brain barrier (BBB) damage significantly affects the prognosis of ischemic stroke patients. This project employed multi-omics analysis to identify key factors regulating BBB disruption during cerebral ischemia-reperfusion. An integrated analysis of three transcriptome sequencing datasets from mouse middle cerebral artery occlusion/reperfusion (MCAO/R) models identified eight downregulated genes in endothelial cells. Additionally, transcriptome analysis of BBB (cortex) and non-BBB (lung) endothelium of E13.5 mice revealed 2,102 upregulated genes potentially associated with BBB integrity. The eight downregulated genes were intersected with the 2,102 BBB-related genes and mapped using single-cell RNA sequencing data, revealing that solute carrier family 22 member 8 (Slc22a8) is specifically expressed in endothelial cells and pericytes and significantly decreases after MCAO/R. This finding was validated in the mouse MCAO/R model at both protein and mRNA levels in this study. External overexpression of Slc22a8 using a lentivirus carrying Tie2 improved Slc22a8 and tight junction protein levels and reduced BBB leakage after MCAO/R, accompanied by Wnt/β-catenin signaling activation. In conclusion, this study suggested that MCAO/R-induced downregulation of Slc22a8 expression may be a crucial mechanism underlying BBB disruption. Interventions that promote Slc22a8 expression or enhance its function hold promise for improving the prognosis of patients with cerebral ischemia.
Collapse
Affiliation(s)
- Yangyang Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Chang Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Haojie Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Xuan Shi
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Juyi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| |
Collapse
|
29
|
Chen T, Dai Y, Hu C, Lin Z, Wang S, Yang J, Zeng L, Li S, Li W. Cellular and molecular mechanisms of the blood-brain barrier dysfunction in neurodegenerative diseases. Fluids Barriers CNS 2024; 21:60. [PMID: 39030617 PMCID: PMC11264766 DOI: 10.1186/s12987-024-00557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/20/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Maintaining the structural and functional integrity of the blood-brain barrier (BBB) is vital for neuronal equilibrium and optimal brain function. Disruptions to BBB performance are implicated in the pathology of neurodegenerative diseases. MAIN BODY Early indicators of multiple neurodegenerative disorders in humans and animal models include impaired BBB stability, regional cerebral blood flow shortfalls, and vascular inflammation associated with BBB dysfunction. Understanding the cellular and molecular mechanisms of BBB dysfunction in brain disorders is crucial for elucidating the sustenance of neural computations under pathological conditions and for developing treatments for these diseases. This paper initially explores the cellular and molecular definition of the BBB, along with the signaling pathways regulating BBB stability, cerebral blood flow, and vascular inflammation. Subsequently, we review current insights into BBB dynamics in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. The paper concludes by proposing a unified mechanism whereby BBB dysfunction contributes to neurodegenerative disorders, highlights potential BBB-focused therapeutic strategies and targets, and outlines lessons learned and future research directions. CONCLUSIONS BBB breakdown significantly impacts the development and progression of neurodegenerative diseases, and unraveling the cellular and molecular mechanisms underlying BBB dysfunction is vital to elucidate how neural computations are sustained under pathological conditions and to devise therapeutic approaches.
Collapse
Affiliation(s)
- Tongli Chen
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yan Dai
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Chenghao Hu
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Zihao Lin
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Shengzhe Wang
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Jing Yang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| | - Shanshan Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| | - Weiyun Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| |
Collapse
|
30
|
Dave KM, Venna VR, Rao KS, Stolz DB, Brady B, Quaicoe VA, Maniskas ME, Hildebrand EE, Green D, Chen M, Milosevic J, Zheng SY, Shiva SS, McCullough LD, Manickam DS. Mitochondria-containing extracellular vesicles from mouse vs . human brain endothelial cells for ischemic stroke therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575903. [PMID: 38293207 PMCID: PMC10827130 DOI: 10.1101/2024.01.16.575903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Ischemic stroke-induced mitochondrial dysfunction in the blood-brain barrier-forming brain endothelial cells ( BECs ) results in long-term neurological dysfunction post-stroke. We previously data from a pilot study where intravenous administration of human BEC ( hBEC )-derived mitochondria-containing extracellular vesicles ( EVs ) showed a potential efficacy signal in a mouse middle cerebral artery occlusion ( MCAo ) model of stroke. We hypothesized that EVs harvested from donor species homologous to the recipient species ( e.g., mouse) may improve therapeutic efficacy, and therefore, use of mouse BEC ( mBEC )-derived EVs may improve post-stroke outcomes in MCAo mice. We investigated potential differences in the mitochondria transfer of EVs derived from the same species as the recipient cell (mBEC-EVs and recipient mBECs or hBECs-EVs and recipient hBECs) vs . cross-species EVs and recipient cells (mBEC-EVs and recipient hBECs or vice versa ). Our results showed that while both hBEC- and mBEC-EVs transferred EV mitochondria, mBEC-EVs outperformed hBEC-EVs in increasing ATP levels and improved recipient mBEC mitochondrial function via increasing oxygen consumption rates. mBEC-EVs significantly reduced brain infarct volume and neurological deficit scores compared to vehicle-injected MCAo mice. The superior therapeutic efficacy of mBEC-EVs in a mouse MCAo stroke support the continued use of mBEC-EVs to optimize the therapeutic potential of mitochondria-containing EVs in preclinical mouse models.
Collapse
|
31
|
Jiang F, Xu C, Fan X, Yang S, Fan W, Li M, Song J, Wei W, Chen H, Zhong D, Li G. MyD88 Inhibition Attenuates Cerebral Ischemia-reperfusion Injury by Regulating the Inflammatory Response and Reducing Blood-brain Barrier Damage. Neuroscience 2024; 549:121-137. [PMID: 38754722 DOI: 10.1016/j.neuroscience.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/01/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Myeloid differentiation primary response gene 88 (MyD88), a downstream molecule directly linked to Toll-like receptor (TLRs) and IL1 receptor, has been implicated in ischemia-reperfusion injury across various organs. However, its role in cerebral ischemia-reperfusion injury (CIRI) remains unclear. Five transient middle cerebral artery occlusion (tMCAO) microarray datasets were obtained from the Gene Expression Omnibus (GEO) database. We screened these datasets for differentially expressed genes (DEGs) using the GSE35338 and GSE58720 datasets and performed weighted gene co-expression network analysis (WGCNA) using the GSE30655, GSE28731, and GSE32529 datasets to identify the core module related to tMCAO. A protein-protein interaction (PPI) network was constructed using the intersecting DEGs and genes in the core module. Finally, we identified Myd88 was the core gene. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) validated that TNFα, IL17, and MyD88 signaling pathways were significantly enriched in tMCAO. Subsequently, we investigated the mechanistic role of MyD88 in the tMCAO model using male C57BL/6 mice. MyD88 expression increased significantly 24 h after reperfusion. After intraperitoneal administration of TJ-M2010-5, a MyD88-specific inhibitor, during reperfusion, the infarction volumes in the mice were ameliorated. TJ-M2010-5 inhibits the activation of microglia and astrocytes. Moreover, it attenuates the upregulation of inflammatory cytokines TNFα, IL17, and MMP9 while preserving the expression level of ZO1 after tMCAO, thereby safeguarding against blood-brain barrier (BBB) disruption. Finally, our findings suggest that MyD88 regulates the IRAK4/IRF5 signaling pathway associated with microglial activation. MyD88 participates in CIRI by regulating the inflammatory response and BBB damage following tMCAO.
Collapse
Affiliation(s)
- Fangchao Jiang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chen Xu
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuehui Fan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuai Yang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Fan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Meng Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jihe Song
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wan Wei
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongping Chen
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Di Zhong
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Guozhong Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China; Department of Neurology, Heilongjiang Provincial Hospital, Harbin, China.
| |
Collapse
|
32
|
Imenez Silva PH, Pepin M, Figurek A, Gutiérrez-Jiménez E, Bobot M, Iervolino A, Mattace-Raso F, Hoorn EJ, Bailey MA, Hénaut L, Nielsen R, Frische S, Trepiccione F, Hafez G, Altunkaynak HO, Endlich N, Unwin R, Capasso G, Pesic V, Massy Z, Wagner CA. Animal models to study cognitive impairment of chronic kidney disease. Am J Physiol Renal Physiol 2024; 326:F894-F916. [PMID: 38634137 DOI: 10.1152/ajprenal.00338.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/11/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
Mild cognitive impairment (MCI) is common in people with chronic kidney disease (CKD), and its prevalence increases with progressive loss of kidney function. MCI is characterized by a decline in cognitive performance greater than expected for an individual age and education level but with minimal impairment of instrumental activities of daily living. Deterioration can affect one or several cognitive domains (attention, memory, executive functions, language, and perceptual motor or social cognition). Given the increasing prevalence of kidney disease, more and more people with CKD will also develop MCI causing an enormous disease burden for these individuals, their relatives, and society. However, the underlying pathomechanisms are poorly understood, and current therapies mostly aim at supporting patients in their daily lives. This illustrates the urgent need to elucidate the pathogenesis and potential therapeutic targets and test novel therapies in appropriate preclinical models. Here, we will outline the necessary criteria for experimental modeling of cognitive disorders in CKD. We discuss the use of mice, rats, and zebrafish as model systems and present valuable techniques through which kidney function and cognitive impairment can be assessed in this setting. Our objective is to enable researchers to overcome hurdles and accelerate preclinical research aimed at improving the therapy of people with CKD and MCI.
Collapse
Affiliation(s)
- Pedro H Imenez Silva
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Marion Pepin
- Institut National de la Santé et de la Recherche Médicale U-1018 Centre de Recherche en Épidémiologie et Santé des Population, Équipe 5, Paris-Saclay University, Versailles Saint-Quentin-en-Yvelines University, Villejuif, France
- Department of Geriatrics, Centre Hospitalier Universitaire Ambroise Paré, Assistance Publique-Hôpitaux de Paris Université Paris-Saclay, Paris, France
| | - Andreja Figurek
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Eugenio Gutiérrez-Jiménez
- Center for Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mickaël Bobot
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, Assistance Publique-Hopitaux de Marseille, and INSERM 1263, Institut National de la Recherche Agronomique 1260, C2VN, Aix-Marseille Universitaire, Marseille, France
| | - Anna Iervolino
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli,' Naples, Italy
| | - Francesco Mattace-Raso
- Division of Geriatrics, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Ewout J Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center, Rotterdam, The Netherlands
| | - Matthew A Bailey
- Edinburgh Kidney, Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, United Kingdom
| | - Lucie Hénaut
- UR UPJV 7517, Jules Verne University of Picardie, Amiens, France
| | - Rikke Nielsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Francesco Trepiccione
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli,' Naples, Italy
| | - Gaye Hafez
- Department of Pharmacology, Faculty of Pharmacy, Altinbas University, Istanbul, Turkey
| | - Hande O Altunkaynak
- Department of Pharmacology, Gulhane Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Robert Unwin
- Department of Renal Medicine, Royal Free Hospital, University College London, London, United Kingdom
| | - Giovambattista Capasso
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli,' Naples, Italy
- Biogem Research Institute, Ariano Irpino, Italy
| | - Vesna Pesic
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Ziad Massy
- Centre for Research in Epidemiology and Population Health, INSERM UMRS 1018, Clinical Epidemiology Team, University Paris-Saclay, University Versailles-Saint Quentin, Villejuif, France
- Department of Nephrology, Centre Hospitalier Universitaire Ambroise Paré, Assistance Publique-Hôpitaux de Paris Université Paris-Saclay, Paris, France
| | - Carsten A Wagner
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
He Z, Xie L, Liu J, Wei X, Zhang W, Mei Z. Novel insight into the role of A-kinase anchoring proteins (AKAPs) in ischemic stroke and therapeutic potentials. Biomed Pharmacother 2024; 175:116715. [PMID: 38739993 DOI: 10.1016/j.biopha.2024.116715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Ischemic stroke, a devastating disease associated with high mortality and disability worldwide, has emerged as an urgent public health issue. A-kinase anchoring proteins (AKAPs) are a group of signal-organizing molecules that compartmentalize and anchor a wide range of receptors and effector proteins and have a major role in stabilizing mitochondrial function and promoting neurodevelopmental development in the central nervous system (CNS). Growing evidence suggests that dysregulation of AKAPs expression and activity is closely associated with oxidative stress, ion disorder, mitochondrial dysfunction, and blood-brain barrier (BBB) impairment in ischemic stroke. However, the underlying mechanisms remain inadequately understood. This review provides a comprehensive overview of the composition and structure of A-kinase anchoring protein (AKAP) family members, emphasizing their physiological functions in the CNS. We explored in depth the molecular and cellular mechanisms of AKAP complexes in the pathological progression and risk factors of ischemic stroke, including hypertension, hyperglycemia, lipid metabolism disorders, and atrial fibrillation. Herein, we highlight the potential of AKAP complexes as a pharmacological target against ischemic stroke in the hope of inspiring translational research and innovative clinical approaches.
Collapse
Affiliation(s)
- Ziyu He
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Letian Xie
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jiyong Liu
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xuan Wei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wenli Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei 443002, China.
| |
Collapse
|
34
|
Jia R, Solé-Guardia G, Kiliaan AJ. Blood-brain barrier pathology in cerebral small vessel disease. Neural Regen Res 2024; 19:1233-1240. [PMID: 37905869 PMCID: PMC11467932 DOI: 10.4103/1673-5374.385864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/27/2023] [Accepted: 08/22/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT Cerebral small vessel disease is a neurological disease that affects the brain microvasculature and which is commonly observed among the elderly. Although at first it was considered innocuous, small vessel disease is nowadays regarded as one of the major vascular causes of dementia. Radiological signs of small vessel disease include small subcortical infarcts, white matter magnetic resonance imaging hyperintensities, lacunes, enlarged perivascular spaces, cerebral microbleeds, and brain atrophy; however, great heterogeneity in clinical symptoms is observed in small vessel disease patients. The pathophysiology of these lesions has been linked to multiple processes, such as hypoperfusion, defective cerebrovascular reactivity, and blood-brain barrier dysfunction. Notably, studies on small vessel disease suggest that blood-brain barrier dysfunction is among the earliest mechanisms in small vessel disease and might contribute to the development of the hallmarks of small vessel disease. Therefore, the purpose of this review is to provide a new foundation in the study of small vessel disease pathology. First, we discuss the main structural domains and functions of the blood-brain barrier. Secondly, we review the most recent evidence on blood-brain barrier dysfunction linked to small vessel disease. Finally, we conclude with a discussion on future perspectives and propose potential treatment targets and interventions.
Collapse
Affiliation(s)
- Ruxue Jia
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, Nijmegen, the Netherlands
| | - Gemma Solé-Guardia
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, Nijmegen, the Netherlands
| | - Amanda J. Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behavior, Center for Medical Neuroscience, Preclinical Imaging Center PRIME, Radboud Alzheimer Center, Nijmegen, the Netherlands
| |
Collapse
|
35
|
Luo YM, Liu SS, Zhao M, Wei W, Yao JX, Sun JH, Cao Y, Li H. Crosstalk among Oxidative Stress, Autophagy, and Apoptosis in the Protective Effects of Ginsenoside Rb1 on Brain Microvascular Endothelial Cells: A Mixed Computational and Experimental Study. Curr Med Sci 2024; 44:578-588. [PMID: 38853191 DOI: 10.1007/s11596-024-2858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/28/2024] [Indexed: 06/11/2024]
Abstract
OBJECTIVE Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1), a component derived from medicinal plants, is known for its pharmacological benefits in IS, but its protective effects on BMECs have yet to be explored. This study aimed to investigate the potential protective effects of GRb1 on BMECs. METHODS An in vitro oxygen-glucose deprivation/reperfusion (OGD/R) model was established to mimic ischemia-reperfusion (I/R) injury. Bulk RNA-sequencing data were analyzed by using the Human Autophagy Database and various bioinformatic tools, including gene set enrichment analysis (GSEA), Gene Ontology (GO) classification and enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, protein-protein interaction network analysis, and molecular docking. Experimental validation was also performed to ensure the reliability of our findings. RESULTS Rb1 had a protective effect on BMECs subjected to OGD/R injury. Specifically, GRb1 was found to modulate the interplay between oxidative stress, apoptosis, and autophagy in BMECs. Key targets such as sequestosome 1 (SQSTM1/p62), autophagy related 5 (ATG5), and hypoxia-inducible factor 1-alpha (HIF-1α) were identified, highlighting their potential roles in mediating the protective effects of GRb1 against IS-induced damage. CONCLUSION GRbl protects BMECs against OGD/R injury by influencing oxidative stress, apoptosis, and autophagy. The identification of SQSTM1/p62, ATG5, and HIF-1α as promising targets further supports the potential of GRb1 as a therapeutic agent for IS, providing a foundation for future research into its mechanisms and applications in IS treatment.
Collapse
Affiliation(s)
- Yi-Miao Luo
- Department of Geriatrics, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, 100901, China
- Department of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Shu-Sen Liu
- School of Pharmacy, Harbin University of Commerce, Harbin, 150028, China
| | - Ming Zhao
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, 100901, China
| | - Wei Wei
- Wangjing Hospital, China Academy of Chinese Medical Science, Beijing, 100102, China
| | - Jiu-Xiu Yao
- Wangjing Hospital, China Academy of Chinese Medical Science, Beijing, 100102, China
| | - Jia-Hui Sun
- Wangjing Hospital, China Academy of Chinese Medical Science, Beijing, 100102, China
| | - Yu Cao
- Xiyuan Hospital, China Academy of Chinese Medical Science, Beijing, 100901, China.
| | - Hao Li
- Department of Geriatrics, Peking University Traditional Chinese Medicine Clinical Medical School (Xiyuan), Beijing, 100901, China.
- Department of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, 100191, China.
- Wangjing Hospital, China Academy of Chinese Medical Science, Beijing, 100102, China.
| |
Collapse
|
36
|
Li X, Yang Y, Feng P, Wang H, Zheng M, Zhu Y, Zhong K, Hu J, Ye Y, Lu L, Zhao Q. Quercetin improves the protection of hydroxysafflor yellow a against cerebral ischemic injury by modulating of blood-brain barrier and src-p-gp-mmp-9 signalling. Heliyon 2024; 10:e31002. [PMID: 38803916 PMCID: PMC11128878 DOI: 10.1016/j.heliyon.2024.e31002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Protection of the structural and functional integrity of the blood-brain barrier (BBB) is crucial for treating ischemic stroke (IS). Hydroxysafflor yellow A (HSYA) and quercetin (Quer), two main active components in the edible and medicinal plant Carthamus tinctorius L., have been reported to exhibit neuroprotective effects. We investigated the anti-IS and BBB-protective properties of HSYA and Quer and the underlying mechanisms. They decreased neurological deficits in middle cerebral artery occlusion (MCAO) mice, while their combination showed better effects. Importantly, HSYA and Quer ameliorated BBB permeability. Their effects on reduction of both EB leakage and infarct volume were similar, which may contribute to improved locomotor activities. Moreover, HSYA and Quer showed protective effects for hCMEC/D3 monolayer against oxygen-glucose deprivation. Src, p-Src, MMP-9, and P-gp were associated with ingredients treatments. Furthermore, molecular docking and molecular dynamics simulations revealed stable and tight binding modes of ingredients with Src and P-gp. The current study supports the potential role of HSYA, Quer, and their combination in the treatment of IS by regulating BBB integrity.
Collapse
Affiliation(s)
- Xiang Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yuanxiao Yang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China
| | - Pinpin Feng
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Hongwei Wang
- Department of Anesthesiology, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Mingzhi Zheng
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yiliang Zhu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China
| | - Kai Zhong
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China
| | - Jue Hu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China
| | - Yilu Ye
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 311399, China
| | - Linhuizi Lu
- Department of Clinical Medicine, Hangzhou Medical College, Hangzhou, 311399, China
| | - Qinqin Zhao
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| |
Collapse
|
37
|
Huang WT, Chen XJ, Lin YK, Shi JF, Li H, Wu HD, Jiang RL, Chen S, Wang X, Tan XX, Chen KY, Wang P. FGF17 protects cerebral ischemia reperfusion-induced blood-brain barrier disruption via FGF receptor 3-mediated PI3K/AKT signaling pathway. Eur J Pharmacol 2024; 971:176521. [PMID: 38522639 DOI: 10.1016/j.ejphar.2024.176521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Maintaining blood-brain barrier (BBB) integrity is critical components of therapeutic approach for ischemic stroke. Fibroblast growth factor 17 (FGF17), a member of FGF8 superfamily, exhibits the strongest expression throughout the wall of all major arteries during development. However, its molecular action and potential protective role on brain endothelial cells after stroke remains unclear. Here, we observed reduced levels of FGF17 in the serum of patients with ischemic stroke, as well as in the brains of mice subjected to middle cerebral artery occlusion (MCAO) injury and oxygen-glucose deprivation/reoxygenation (OGD/R)-induced brain microvascular endothelial cells (bEnd.3) cells. Moreover, treatment with exogenous recombinant human FGF17 (rhFGF17) decreased infarct volume, improved neurological deficits, reduced Evans Blue leakage and upregulated the expression of tight junctions in MCAO-injured mice. Meanwhile, rhFGF17 increased cell viability, enhanced trans-endothelial electrical resistance, reduced sodium fluorescein leakage, and alleviated reactive oxygen species (ROS) generation in OGD/R-induced bEnd.3 cells. Mechanistically, the treatment with rhFGF17 resulted in nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear accumulation and upregulation of heme oxygenase-1 (HO-1) expression. Additionally, based on in-vivo and in-vitro research, rhFGF17 exerted protective effects against ischemia/reperfusion (I/R) -induced BBB disruption and endothelial cell apoptosis through the activation of the FGF receptor 3/PI3K/AKT signaling pathway. Overall, our findings indicated that FGF17 may hold promise as a novel therapeutic strategy for ischemic stroke patients.
Collapse
Affiliation(s)
- Wen-Ting Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiong-Jian Chen
- Department of Pharmacy, Wenzhou Central Hospital, Wenzhou, 325099, China
| | - Yu-Kai Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jun-Feng Shi
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hong Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hao-Di Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ruo-Lin Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shuai Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xian-Xi Tan
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China.
| | - Ke-Yang Chen
- Department of Neurology, The Second Affiliated Hospital and Yuying Children' Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| | - Peng Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
38
|
Mallmann MP, Oliveira MS. Beta-caryophyllene in psychiatric and neurological diseases: Role of blood-brain barrier. VITAMINS AND HORMONES 2024; 126:125-168. [PMID: 39029971 DOI: 10.1016/bs.vh.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Beta-caryophyllene is an abundant terpene in cannabis, cinnamon, black pepper, cloves, and citrus fruit, delivering a striking, woody-spicy, like cloves and a sweet fruity aroma. Beta-caryophyllene is a Food and Drug Administration-approved food additive with Generally Recognized as Safe status. Interestingly, several biologic activities have been described for beta-caryophyllene, including anti-inflammatory and analgesic effects, neuroprotection against cerebral ischemia and neuronal injury, protection of neurovascular unit against oxidative damage, glial activation and neuroinflammation and anticonvulsant effects. In this chapter, we intend to review the beneficial effects of beta-caryophyllene in the context of psychiatric and neurological diseases. Also, we will analyze the possibility that the blood-brain-barrier may be a central target underlying the beneficial actions of beta-caryophyllene.
Collapse
|
39
|
Ke X, Xia S, Yu W, Mabry S, Fu Q, Menden HL, Sampath V, Lane RH. Delta like 4 regulates cerebrovascular development and endothelial integrity via DLL4-NOTCH-CLDN5 pathway and is vulnerable to neonatal hyperoxia. J Physiol 2024; 602:2265-2285. [PMID: 38632887 DOI: 10.1113/jp285716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
The mechanisms governing brain vascularization during development remain poorly understood. A key regulator of developmental vascularization is delta like 4 (DLL4), a Notch ligand prominently expressed in endothelial cells (EC). Exposure to hyperoxia in premature infants can disrupt the development and functions of cerebral blood vessels and lead to long-term cognitive impairment. However, its role in cerebral vascular development and the impact of postnatal hyperoxia on DLL4 expression in mouse brain EC have not been explored. We determined the DLL4 expression pattern and its downstream signalling gene expression in brain EC using Dll4+/+ and Dll4+/LacZ mice. We also performed in vitro studies using human brain microvascular endothelial cells. Finally, we determined Dll4 and Cldn5 expression in mouse brain EC exposed to postnatal hyperoxia. DLL4 is expressed in various cell types, with EC being the predominant one in immature brains. Moreover, DLL4 deficiency leads to persistent abnormalities in brain microvasculature and increased vascular permeability both in vivo and in vitro. We have identified that DLL4 insufficiency compromises endothelial integrity through the NOTCH-NICD-RBPJ-CLDN5 pathway, resulting in the downregulation of the tight junction protein claudin 5 (CLDN5). Finally, exposure to neonatal hyperoxia reduces DLL4 and CLDN5 expression in developing mouse brain EC. We reveal that DLL4 is indispensable for brain vascular development and maintaining the blood-brain barrier's function and is repressed by neonatal hyperoxia. We speculate that reduced DLL4 signalling in brain EC may contribute to the impaired brain development observed in neonates exposed to hyperoxia. KEY POINTS: The role of delta like 4 (DLL4), a Notch ligand in vascular endothelial cells, in brain vascular development and functions remains unknown. We demonstrate that DLL4 is expressed at a high level during postnatal brain development in immature brains and DLL4 insufficiency leads to abnormal cerebral vasculature and increases vascular permeability both in vivo and in vitro. We identify that DLL4 regulates endothelial integrity through NOTCH-NICD-RBPJ-CLDN5 signalling. Dll4 and Cldn5 expression are decreased in mouse brain endothelial cells exposed to postnatal hyperoxia.
Collapse
Affiliation(s)
- Xingrao Ke
- Department of Pediatrics Division of Neonatology, Children's Mercy, Kansas City, MO, USA
| | - Sheng Xia
- Department of Pediatrics Division of Neonatology, Children's Mercy, Kansas City, MO, USA
| | - Wei Yu
- Department of Pediatrics Division of Neonatology, Children's Mercy, Kansas City, MO, USA
| | - Sherry Mabry
- Department of Pediatrics Division of Neonatology, Children's Mercy, Kansas City, MO, USA
| | - Qi Fu
- Department of Pediatrics Division of Neonatology, Children's Mercy, Kansas City, MO, USA
| | - Heather L Menden
- Department of Pediatrics Division of Neonatology, Children's Mercy, Kansas City, MO, USA
| | - Venkatesh Sampath
- Department of Pediatrics Division of Neonatology, Children's Mercy, Kansas City, MO, USA
| | - Robert H Lane
- Department of Administration, Children Mercy Research Institute, Children's Mercy, Kansas City, MO, USA
| |
Collapse
|
40
|
Zhu C, Wang D, Chang C, Liu A, Zhou J, Yang T, Jiang Y, Li X, Jiang W. Dexmedetomidine alleviates blood-brain barrier disruption in rats after cerebral ischemia-reperfusion by suppressing JNK and p38 MAPK signaling. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:239-252. [PMID: 38682172 PMCID: PMC11058545 DOI: 10.4196/kjpp.2024.28.3.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 05/01/2024]
Abstract
Dexmedetomidine displays multiple mechanisms of neuroprotection in ameliorating ischemic brain injury. In this study, we explored the beneficial effects of dexmedetomidine on blood-brain barrier (BBB) integrity and neuroinflammation in cerebral ischemia/reperfusion injury. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 1.5 h and reperfusion for 24 h to establish a rat model of cerebral ischemia/reperfusion injury. Dexmedetomidine (9 g/kg) was administered to rats 30 min after MCAO through intravenous injection, and SB203580 (a p38 MAPK inhibitor, 200 g/kg) was injected intraperitoneally 30 min before MCAO. Brain damages were evaluated by 2,3,5-triphenyltetrazolium chloride staining, hematoxylin-eosin staining, Nissl staining, and brain water content assessment. BBB permeability was examined by Evans blue staining. Expression levels of claudin-5, zonula occludens-1, occludin, and matrix metalloproteinase-9 (MMP-9) as well as M1/M2 phenotypes-associated markers were assessed using immunofluorescence, RT-qPCR, Western blotting, and gelatin zymography. Enzyme-linked immunosorbent assay was used to examine inflammatory cytokine levels. We found that dexmedetomidine or SB203580 attenuated infarct volume, brain edema, BBB permeability, and neuroinflammation, and promoted M2 microglial polarization after cerebral ischemia/reperfusion injury. Increased MMP-9 activity by ischemia/reperfusion injury was inhibited by dexmedetomidine or SB203580. Dexmedetomidine inhibited the activation of the ERK, JNK, and p38 MAPK pathways. Moreover, activation of JNK or p38 MAPK reversed the protective effects of dexmedetomidine against ischemic brain injury. Overall, dexmedetomidine ameliorated brain injury by alleviating BBB permeability and promoting M2 polarization in experimental cerebral ischemia/reperfusion injury model by inhibiting the activation of JNK and p38 MAPK pathways.
Collapse
Affiliation(s)
- Canmin Zhu
- Department of Neurology, The First Peopleʼs Hospital of Jiangxia District, Wuhan 430200, Hubei, China
| | - Dili Wang
- Department of Neurology, The First Peopleʼs Hospital of Jiangxia District, Wuhan 430200, Hubei, China
| | - Chang Chang
- Department of Neurology, The First Peopleʼs Hospital of Jiangxia District, Wuhan 430200, Hubei, China
| | - Aofei Liu
- Department of Medicine, Soochow University, Suzhou 215006, Jiangsu, China
- Department of Vascular Neurosurgery, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Ji Zhou
- Department of Medicine, Soochow University, Suzhou 215006, Jiangsu, China
- Department of Vascular Neurosurgery, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Ting Yang
- Department of Neurology, The First Peopleʼs Hospital of Jiangxia District, Wuhan 430200, Hubei, China
| | - Yuanfeng Jiang
- Department of Medicine, Soochow University, Suzhou 215006, Jiangsu, China
- Department of Vascular Neurosurgery, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Xia Li
- Department of Medicine, Soochow University, Suzhou 215006, Jiangsu, China
- Department of Vascular Neurosurgery, PLA Rocket Force Characteristic Medical Center, Beijing 100088, China
| | - Weijian Jiang
- Department of Medicine, Soochow University, Suzhou 215006, Jiangsu, China
| |
Collapse
|
41
|
Zhang Z, Lu T, Li S, Zhao R, Li H, Zhang X, Li Y, Xia Y, Ni G. Acupuncture Extended the Thrombolysis Window by Suppressing Blood-Brain Barrier Disruption and Regulating Autophagy-Apoptosis Balance after Ischemic Stroke. Brain Sci 2024; 14:399. [PMID: 38672048 PMCID: PMC11048240 DOI: 10.3390/brainsci14040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Ischemic stroke (IS) is one of the leading causes of death and disability worldwide. The narrow therapeutic window (within 4.5 h) and severe hemorrhagic potential limits therapeutic efficacy of recombinant tissue type plasminogen activator (rt-PA) intravenous thrombolysis for patients. Xingnao Kaiqiao (XNKQ) acupuncture is an integral part of traditional Chinese medicine, specifically designed to address acute ischemic stroke by targeting key acupoints such as Shuigou (GV26) and Neiguan (PC6). In this study, we explored the therapeutic potential of XNKQ acupuncture in extending the time window for thrombolysis and interrogated the molecular mechanisms responsible for this effect. METHODS The effect of extending the thrombolysis window by acupuncture was evaluated via TTC staining, neuronal score evaluation, hemorrhagic transformation assay, and H&E staining. RNA sequencing (RNA-seq) technology was performed to identify the therapeutic targets and intervention mechanisms of acupuncture. Evans blue staining and transmission electron microscopy were used to assess blood-brain barrier (BBB) integrity. Immunofluorescence staining and co-immunoprecipitation were performed to evaluate the level of autophagy and apoptosis and validate their interactions with BBB endothelial cells. RESULTS Acupuncture alleviated infarction and neurological deficits and extended the thrombolysis window to 6 h. The RNA-seq revealed 16 potential therapeutic predictors for acupuncture intervention, which related to suppressing inflammation and restoring the function of BBB and blood vessels. Furthermore, acupuncture suppressed BBB leakage and preserved tight junction protein expression. The protective effect was associated with regulation of the autophagy-apoptosis balance in BBB endothelial cells. Acupuncture intervention dissociated the Beclin1/Bcl-2 complex, thereby promoting autophagy and reducing apoptosis. CONCLUSION XNKQ acupuncture could serve as an adjunctive therapy for rt-PA thrombolysis, aiming to extend the therapeutic time window and mitigate ischemia-reperfusion injury. Acupuncture suppressed BBB disruption by regulating the autophagy-apoptosis balance, which in turn extended the therapeutic window of rt-PA in IS. These findings provide a rationale for further exploration of acupuncture as a complementary candidate co-administered with rt-PA.
Collapse
Affiliation(s)
- Zhihui Zhang
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Tianliang Lu
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Shanshan Li
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Ruyu Zhao
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Honglei Li
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Xinchang Zhang
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Yiyang Li
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Yawen Xia
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| | - Guangxia Ni
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China; (Z.Z.)
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Qixia District, Nanjing 210023, China
| |
Collapse
|
42
|
Jithoo A, Penny TR, Pham Y, Sutherland AE, Smith MJ, Petraki M, Fahey MC, Jenkin G, Malhotra A, Miller SL, McDonald CA. The Temporal Relationship between Blood-Brain Barrier Integrity and Microglial Response following Neonatal Hypoxia Ischemia. Cells 2024; 13:660. [PMID: 38667275 PMCID: PMC11049639 DOI: 10.3390/cells13080660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Blood-brain barrier (BBB) dysfunction and neuroinflammation are key mechanisms of brain injury. We performed a time-course study following neonatal hypoxia-ischemia (HI) to characterize these events. HI brain injury was induced in postnatal day 10 rats by single carotid artery ligation followed by hypoxia (8% oxygen, 90 min). At 6, 12, 24, and 72 h (h) post-HI, brains were collected to assess neuropathology and BBB dysfunction. A significant breakdown of the BBB was observed in the HI injury group compared to the sham group from 6 h in the cortex and hippocampus (p < 0.001), including a significant increase in albumin extravasation (p < 0.0033) and decrease in basal lamina integrity and tight-junction proteins. There was a decrease in resting microglia (p < 0.0001) transitioning to an intermediate state from as early as 6 h post-HI, with the intermediate microglia peaking at 12 h (p < 0.0001), which significantly correlated to the peak of microbleeds. Neonatal HI insult leads to significant brain injury over the first 72 h that is mediated by BBB disruption within 6 h and a transitioning state of the resident microglia. Key BBB events coincide with the appearance of the intermediate microglial state and this relationship warrants further research and may be a key target for therapeutic intervention.
Collapse
Affiliation(s)
- Arya Jithoo
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Tayla R. Penny
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Amy E. Sutherland
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Madeleine J. Smith
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Maria Petraki
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
| | - Michael C. Fahey
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia;
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Atul Malhotra
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Paediatrics, Monash University, Melbourne, VIC 3168, Australia;
| | - Suzanne L. Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| | - Courtney A. McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia; (A.J.); (T.R.P.); (Y.P.); (A.E.S.); (M.J.S.); (G.J.); (A.M.); (S.L.M.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
43
|
Rehman S, Nadeem A, Akram U, Sarwar A, Quraishi A, Siddiqui H, Malik MAJ, Nabi M, Ul Haq I, Cho A, Mazumdar I, Kim M, Chen K, Sepehri S, Wang R, Balar AB, Lakhani DA, Yedavalli VS. Molecular Mechanisms of Ischemic Stroke: A Review Integrating Clinical Imaging and Therapeutic Perspectives. Biomedicines 2024; 12:812. [PMID: 38672167 PMCID: PMC11048412 DOI: 10.3390/biomedicines12040812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Ischemic stroke poses a significant global health challenge, necessitating ongoing exploration of its pathophysiology and treatment strategies. This comprehensive review integrates various aspects of ischemic stroke research, emphasizing crucial mechanisms, therapeutic approaches, and the role of clinical imaging in disease management. It discusses the multifaceted role of Netrin-1, highlighting its potential in promoting neurovascular repair and mitigating post-stroke neurological decline. It also examines the impact of blood-brain barrier permeability on stroke outcomes and explores alternative therapeutic targets such as statins and sphingosine-1-phosphate signaling. Neurocardiology investigations underscore the contribution of cardiac factors to post-stroke mortality, emphasizing the importance of understanding the brain-heart axis for targeted interventions. Additionally, the review advocates for early reperfusion and neuroprotective agents to counter-time-dependent excitotoxicity and inflammation, aiming to preserve tissue viability. Advanced imaging techniques, including DWI, PI, and MR angiography, are discussed for their role in evaluating ischemic penumbra evolution and guiding therapeutic decisions. By integrating molecular insights with imaging modalities, this interdisciplinary approach enhances our understanding of ischemic stroke and offers promising avenues for future research and clinical interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Sana Rehman
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Arsalan Nadeem
- Department of Medicine, Allama Iqbal Medical College, Lahore 54700, Pakistan;
| | - Umar Akram
- Department of Medicine, Allama Iqbal Medical College, Lahore 54700, Pakistan;
| | - Abeer Sarwar
- Department of Medicine, Fatima Memorial Hospital College of Medicine and Dentistry, Lahore 54000, Pakistan; (A.S.); (H.S.)
| | - Ammara Quraishi
- Department of Medicine, Dow University of Health Sciences, Karachi 74200, Pakistan;
| | - Hina Siddiqui
- Department of Medicine, Fatima Memorial Hospital College of Medicine and Dentistry, Lahore 54000, Pakistan; (A.S.); (H.S.)
| | | | - Mehreen Nabi
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Ihtisham Ul Haq
- Department of Medicine, Amna Inayat Medical College, Sheikhupura 54300, Pakistan;
| | - Andrew Cho
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Ishan Mazumdar
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Minsoo Kim
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Kevin Chen
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Sadra Sepehri
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Richard Wang
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Aneri B. Balar
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Dhairya A. Lakhani
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| | - Vivek S. Yedavalli
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (M.N.); (A.C.); (I.M.); (M.K.); (K.C.); (S.S.); (R.W.); (A.B.B.); (D.A.L.); (V.S.Y.)
| |
Collapse
|
44
|
Lv Y, Xie G, Xi Y, Zhang L, Wang J, Wu J. MicroRNA Regulatory Pattern in Diabetic Mouse Cortex at Different Stages Following Ischemic Stroke. J Mol Neurosci 2024; 74:36. [PMID: 38568285 DOI: 10.1007/s12031-024-02207-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/14/2024] [Indexed: 04/05/2024]
Abstract
After ischemic stroke, microRNAs (miRNAs) participate in various processes, including immune responses, inflammation, and angiogenesis. Diabetes is a key factor increasing the risk of ischemic stroke; however, the regulatory pattern of miRNAs at different stages of diabetic stroke remains unclear. This study comprehensively analyzed the miRNA expression profiles in diabetic mice at 1, 3, and 7 days post-reperfusion following the middle cerebral artery occlusion (MCAO). We identified differentially expressed (DE) miRNAs in diabetic stroke and found significant dysregulation of some novel miRNAs (novel_mir310, novel_mir89, and novel_mir396) post-stroke. These DEmiRNAs were involved in apoptosis and the formation of tight junctions. Finally, we identified three groups of time-dependent DE miRNAs (miR-6240, miR-135b-3p, and miR-672-5p). These have the potential to serve as biomarkers of diabetic stroke. These findings provide a new perspective for future research, emphasizing the dynamic changes in miRNA expression after diabetic stroke and offering potential candidates as biomarkers for future clinical applications.
Collapse
Affiliation(s)
- Yifei Lv
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Dong-Hu Road #169, Wuhan, Hubei, 430071, P.R. China
| | - Guanghui Xie
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yujie Xi
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Dong-Hu Road #169, Wuhan, Hubei, 430071, P.R. China
| | - Liu Zhang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Dong-Hu Road #169, Wuhan, Hubei, 430071, P.R. China
| | - Jiajun Wang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Dong-Hu Road #169, Wuhan, Hubei, 430071, P.R. China
| | - Jianhua Wu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Dong-Hu Road #169, Wuhan, Hubei, 430071, P.R. China.
| |
Collapse
|
45
|
Wang X, Yu Z, Dong F, Li J, Niu P, Ta Q, Kan J, Ma C, Han M, Yu J, Zhao D, Li J. Clarifying the mechanism of apigenin against blood-brain barrier disruption in ischemic stroke using systems pharmacology. Mol Divers 2024; 28:609-630. [PMID: 36949297 DOI: 10.1007/s11030-023-10607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/12/2023] [Indexed: 03/24/2023]
Abstract
Currently, recombinant tissue plasminogen activator (rtPA) is an effective therapy for ischemic stroke (IS). However, blood-brain barrier (BBB) disruption is a serious side effect of rtPA therapy and may lead to patients' death. The natural polyphenol apigenin has a good therapeutic effect on IS. Apigenin has potential BBB protection, but the mechanism by which it protects the BBB integrity is not clear. In this study, we used network pharmacology, bioinformatics, molecular docking and molecular dynamics simulation to reveal the mechanisms by which apigenin protects the BBB. Among the 146 targets of apigenin for the treatment of IS, 20 proteins were identified as core targets (e.g., MMP-9, TLR4, STAT3). Apigenin protects BBB integrity by inhibiting the activity of MMPs through anti-inflammation and anti-oxidative stress. These mechanisms included JAK/STAT, the toll-like receptor signaling pathway, and Nitrogen metabolism signaling pathways. The findings of this study contribute to a more comprehensive understanding of the mechanism of apigenin in the treatment of BBB disruption and provide ideas for the development of drugs to treat IS.
Collapse
Affiliation(s)
- Xu Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China
| | - ZiQiao Yu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Fuxiang Dong
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Jinjian Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Ping Niu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Qiyi Ta
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - JunMing Kan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Chunyu Ma
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Moxuan Han
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Junchao Yu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Dexi Zhao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
| | - Jinhua Li
- School of Public Health, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
46
|
Ma Y, Xu D, Wan Z, Wei Z, Chen Z, Wang Y, Han X, Chen Y. Exposure to different surface-modified polystyrene nanoparticles caused anxiety, depression, and social deficit in mice via damaging mitochondria in neurons. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170739. [PMID: 38340854 DOI: 10.1016/j.scitotenv.2024.170739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/12/2024]
Abstract
Nanoplastics (NPs) are unavoidable hazardous materials that result from the human production and use of plastics. While there is evidence that NPs can bioaccumulate in the brain, no enough research regarding the pathways by which NPs reach the brain was conducted, and it is also urgently needed to evaluate the health threat to the nervous system. Here, we observed accumulation of polystyrene nanoplastics (PS-NPs) with different surface modifications (PS, PS-COOH, and PS-NH2) in mouse brains. Further studies showed that PS-NPs disrupted the tight junctions between endothelial cells and transport into endothelial cells via the endocytosis and macropinocytosis pathways. Additionally, NPs exposure induced a series of alternations in behavioral tests, including anxiety- and depression-like changes and impaired social interaction performance. Further results identified that NPs could be internalized into neurons and localized in the mitochondria, bringing about mitochondrial dysfunction and a concurrent decline of ATP production, which might be associated with abnormal animal behaviors. The findings provide novel insights into the neurotoxicity of NPs and provide a basis for the formulation of policy on plastic production and usage by relevant government agencies.
Collapse
Affiliation(s)
- Yuhan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Dihui Xu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Zicheng Wan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Ziyang Wei
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Zining Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Yuheng Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
47
|
Zhang L, Bai XY, Sun KY, Li X, Zhang ZQ, Liu YD, Xiang Y, Liu XL. A New Perspective in the Treatment of Ischemic Stroke: Ferroptosis. Neurochem Res 2024; 49:815-833. [PMID: 38170383 DOI: 10.1007/s11064-023-04096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/14/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
Ischemic stroke is a common neurological disease. Currently, there are no Food and Drug Administration-approved drugs that can maximize the improvement in ischemic stroke-induced nerve damage. Hence, treating ischemic stroke remains a clinical challenge. Ferroptosis has been increasingly studied in recent years, and it is closely related to the pathophysiological process of ischemic stroke. Iron overload, reactive oxygen species accumulation, lipid peroxidation, and glutamate accumulation associated with ferroptosis are all present in ischemic stroke. This article focuses on describing the relationship between ferroptosis and ischemic stroke and summarizes the relevant substances that ameliorate ischemic stroke-induced neurological damage by inhibiting ferroptosis. Finally, the problems in the treatment of ischemic stroke targeting ferroptosis are discussed, hoping to provide a new direction for its treatment.
Collapse
Affiliation(s)
- Lei Zhang
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Xin Yue Bai
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Ke Yao Sun
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Xuan Li
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Zhao Qi Zhang
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Yi Ding Liu
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Yang Xiang
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Xiao Long Liu
- School of Medicine, Yan'an University, Yan'an, 716000, China.
| |
Collapse
|
48
|
Duan Y, Deng Y, Tang F, Li J. Lifibrate attenuates blood-brain barrier damage following ischemic stroke via the MLCK/p-MLC/ZO-1 axis. Aging (Albany NY) 2024; 16:6135-6146. [PMID: 38546384 PMCID: PMC11042934 DOI: 10.18632/aging.205692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/23/2024] [Indexed: 04/23/2024]
Abstract
Dysfunction of tight junction proteins-associated damage to the blood-brain barrier (BBB) plays an important role in the pathogenesis of ischemic stroke. Lifibrate, an inhibitor of cholinephosphotransferase (CPT), has been used as an agent for serum lipid lowering. However, the protective effects of Lifibrate in ischemic stroke and the underlying mechanism have not been clearly elucidated. Here, we employed an in vivo mice model of MCAO and an OGD/R model in vitro. In the mice models, neurological deficit scores and infarct volume were assessed. Evans Blue solution was used to detect the BBB permeability. The TEER was examined to determine brain endothelial monolayer permeability. Here, we found that Lifibrate improved neurological dysfunction in stroke. Additionally, increased BBB permeability during stroke was significantly ameliorated by Lifibrate. Correspondingly, the reduced expression of the tight junction protein ZO-1 was restored by Lifibrate at both the mRNA and protein levels. Using an in vitro model, we found that Lifibrate ameliorated OGD/R-induced injury in human bEnd.3 brain microvascular endothelial cells by increasing cell viability but reducing the release of LDH. Importantly, Lifibrate suppressed the increase in endothelial monolayer permeability and the reduction in TEER induced by OGD/R via the rescue of ZO-1 expression. Mechanistically, Lifibrate blocked activation of the MLCK/ p-MLC signaling pathway in OGD/R-stimulated bEnd.3 cells. In contrast, overexpression of MLCK abolished the protective effects of Lifibrate in endothelial monolayer permeability, TEER, as well as the expression of ZO-1. Our results provide a basis for further investigation into the neuroprotective mechanism of Lifibrate during stroke.
Collapse
Affiliation(s)
- Yu Duan
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Jing’an, Shanghai 200040, China
| | - Yao Deng
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Jing’an, Shanghai 200040, China
| | - Feng Tang
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Jing’an, Shanghai 200040, China
| | - Jian Li
- Department of Neurosurgery, Huadong Hospital Affiliated to Fudan University, Jing’an, Shanghai 200040, China
| |
Collapse
|
49
|
Zong P, Feng J, Li CX, Jellison ER, Yue Z, Miller B, Yue L. Activation of endothelial TRPM2 exacerbates blood-brain barrier degradation in ischemic stroke. Cardiovasc Res 2024; 120:188-202. [PMID: 37595268 PMCID: PMC10936752 DOI: 10.1093/cvr/cvad126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/23/2023] [Accepted: 05/23/2023] [Indexed: 08/20/2023] Open
Abstract
AIMS Damage of the blood-brain barrier (BBB) is a hallmark of brain injury during the early stages of ischemic stroke. The subsequent endothelial hyperpermeability drives the initial pathological changes and aggravates neuronal death. Transient receptor potential melastatin 2 (TRPM2) is a Ca2+-permeable nonselective cation channel activated by oxidative stress. However, whether TRPM2 is involved in BBB degradation during ischemic stroke remains unknown. We aimed to investigate the role of TRPM2 in BBB degradation during ischemic stroke and the underlying molecular mechanisms. METHODS AND RESULTS Specific deletion of Trpm2 in endothelial cells using Cdh5 Cre produces a potent protective effect against brain injury in mice subjected to middle cerebral artery occlusion (MCAO), which is characterized by reduced infarction size, mitigated plasma extravasation, suppressed immune cell invasion, and inhibited oxidative stress. In vitro experiments using cultured cerebral endothelial cells (CECs) demonstrated that either Trpm2 deletion or inhibition of TRPM2 activation attenuates oxidative stress, Ca2+ overload, and endothelial hyperpermeability induced by oxygen-glucose deprivation (OGD) and CD36 ligand thrombospondin-1 (TSP1). In transfected HEK293T cells, OGD and TSP1 activate TRPM2 in a CD36-dependent manner. Noticeably, in cultured CECs, deleting Trpm2 or inhibiting TRPM2 activation also suppresses the activation of CD36 and cellular dysfunction induced by OGD or TSP1. CONCLUSIONS In conclusion, our data reveal a novel molecular mechanism in which TRPM2 and CD36 promote the activation of each other, which exacerbates endothelial dysfunction during ischemic stroke. Our study suggests that TRPM2 in endothelial cells is a promising target for developing more effective and safer therapies for ischemic stroke.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), 263 Farmington Ave, Farmington, CT 06030, USA
- Department of Neuroscience, University of Connecticut School of Medicine (UConn Health), 263 Farmington Ave, Farmington, CT 06030, USA
| | - Jianlin Feng
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), 263 Farmington Ave, Farmington, CT 06030, USA
| | - Cindy X Li
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), 263 Farmington Ave, Farmington, CT 06030, USA
| | - Evan R Jellison
- Department of Immunology, University of Connecticut School of Medicine (UConn Health), 263 Farmington Ave, Farmington, CT 06030, USA
| | - Zhichao Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), 263 Farmington Ave, Farmington, CT 06030, USA
| | - Barbara Miller
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), 263 Farmington Ave, Farmington, CT 06030, USA
- Department of Neuroscience, University of Connecticut School of Medicine (UConn Health), 263 Farmington Ave, Farmington, CT 06030, USA
| |
Collapse
|
50
|
Zhang S, Zhao J, Sha WM, Zhang XP, Mai JY, Bartlett PF, Hou ST. Inhibition of EphA4 reduces vasogenic edema after experimental stroke in mice by protecting the blood-brain barrier integrity. J Cereb Blood Flow Metab 2024; 44:419-433. [PMID: 37871622 PMCID: PMC10870966 DOI: 10.1177/0271678x231209607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/07/2023] [Accepted: 09/22/2023] [Indexed: 10/25/2023]
Abstract
Cerebral vasogenic edema, a severe complication of ischemic stroke, aggravates neurological deficits. However, therapeutics to reduce cerebral edema still represent a significant unmet medical need. Brain microvascular endothelial cells (BMECs), vital for maintaining the blood-brain barrier (BBB), represent the first defense barrier for vasogenic edema. Here, we analyzed the proteomic profiles of the cultured mouse BMECs during oxygen-glucose deprivation and reperfusion (OGD/R). Besides the extensively altered cytoskeletal proteins, ephrin type-A receptor 4 (EphA4) expressions and its activated phosphorylated form p-EphA4 were significantly increased. Blocking EphA4 using EphA4-Fc, a specific and well-tolerated inhibitor shown in our ongoing human phase I trial, effectively reduced OGD/R-induced BMECs contraction and tight junction damage. EphA4-Fc did not protect OGD/R-induced neuronal and astrocytic death. However, administration of EphA4-Fc, before or after the onset of transient middle cerebral artery occlusion (tMCAO), reduced brain edema by about 50%, leading to improved neurological function recovery. The BBB permeability test also confirmed that cerebral BBB integrity was well maintained in tMCAO brains treated with EphA4-Fc. Therefore, EphA4 was critical in signaling BMECs-mediated BBB breakdown and vasogenic edema during cerebral ischemia. EphA4-Fc is promising for the treatment of clinical post-stroke edema.
Collapse
Affiliation(s)
- Shuai Zhang
- Brain Research Centre, Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, P. R. China
| | - Jing Zhao
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Wei-Meng Sha
- Brain Research Centre, Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, P. R. China
| | - Xin-Pei Zhang
- Brain Research Centre, Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, P. R. China
| | - Jing-Yuan Mai
- Brain Research Centre, Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, P. R. China
| | - Perry F Bartlett
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Sheng-Tao Hou
- Brain Research Centre, Department of Biology, School of Life Science, Southern University of Science and Technology, Shenzhen, P. R. China
| |
Collapse
|