1
|
Kauffenstein G, Martin L, Le Saux O. The Purinergic Nature of Pseudoxanthoma Elasticum. BIOLOGY 2024; 13:74. [PMID: 38392293 PMCID: PMC10886499 DOI: 10.3390/biology13020074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/12/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Pseudoxanthoma Elasticum (PXE) is an inherited disease characterized by elastic fiber calcification in the eyes, the skin and the cardiovascular system. PXE results from mutations in ABCC6 that encodes an ABC transporter primarily expressed in the liver and kidneys. It took nearly 15 years after identifying the gene to better understand the etiology of PXE. ABCC6 function facilitates the efflux of ATP, which is sequentially hydrolyzed by the ectonucleotidases ENPP1 and CD73 into pyrophosphate (PPi) and adenosine, both inhibitors of calcification. PXE, together with General Arterial Calcification of Infancy (GACI caused by ENPP1 mutations) as well as Calcification of Joints and Arteries (CALJA caused by NT5E/CD73 mutations), forms a disease continuum with overlapping phenotypes and shares steps of the same molecular pathway. The explanation of these phenotypes place ABCC6 as an upstream regulator of a purinergic pathway (ABCC6 → ENPP1 → CD73 → TNAP) that notably inhibits mineralization by maintaining a physiological Pi/PPi ratio in connective tissues. Based on a review of the literature and our recent experimental data, we suggest that PXE (and GACI/CALJA) be considered as an authentic "purinergic disease". In this article, we recapitulate the pathobiology of PXE and review molecular and physiological data showing that, beyond PPi deficiency and ectopic calcification, PXE is associated with wide and complex alterations of purinergic systems. Finally, we speculate on the future prospects regarding purinergic signaling and other aspects of this disease.
Collapse
Affiliation(s)
- Gilles Kauffenstein
- UMR INSERM 1260, Regenerative Nanomedicine, University of Strasbourg, 67084 Strasbourg, France
| | - Ludovic Martin
- PXE Consultation Center, MAGEC Nord Reference Center for Rare Skin Diseases, Angers University Hospital, 49000 Angers, France
- MITOVASC-UMR CNRS 6015 INSERM 1083, University of Angers, 49000 Angers, France
| | - Olivier Le Saux
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| |
Collapse
|
2
|
Sudi S, Thomas FM, Daud SK, Ag Daud DM, Sunggip C. The Pleiotropic Role of Extracellular ATP in Myocardial Remodelling. Molecules 2023; 28:molecules28052102. [PMID: 36903347 PMCID: PMC10004151 DOI: 10.3390/molecules28052102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/26/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 03/12/2023] Open
Abstract
Myocardial remodelling is a molecular, cellular, and interstitial adaptation of the heart in response to altered environmental demands. The heart undergoes reversible physiological remodelling in response to changes in mechanical loading or irreversible pathological remodelling induced by neurohumoral factors and chronic stress, leading to heart failure. Adenosine triphosphate (ATP) is one of the potent mediators in cardiovascular signalling that act on the ligand-gated (P2X) and G-protein-coupled (P2Y) purinoceptors via the autocrine or paracrine manners. These activations mediate numerous intracellular communications by modulating the production of other messengers, including calcium, growth factors, cytokines, and nitric oxide. ATP is known to play a pleiotropic role in cardiovascular pathophysiology, making it a reliable biomarker for cardiac protection. This review outlines the sources of ATP released under physiological and pathological stress and its cell-specific mechanism of action. We further highlight a series of cardiovascular cell-to-cell communications of extracellular ATP signalling cascades in cardiac remodelling, which can be seen in hypertension, ischemia/reperfusion injury, fibrosis, hypertrophy, and atrophy. Finally, we summarize current pharmacological intervention using the ATP network as a target for cardiac protection. A better understanding of ATP communication in myocardial remodelling could be worthwhile for future drug development and repurposing and the management of cardiovascular diseases.
Collapse
Affiliation(s)
- Suhaini Sudi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Fiona Macniesia Thomas
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Siti Kadzirah Daud
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Dayang Maryama Ag Daud
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
- Health through Exercise and Active Living (HEAL) Research Unit, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
| | - Caroline Sunggip
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
- Borneo Medical and Health Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Sabah, Malaysia
- Correspondence:
| |
Collapse
|
3
|
Kawai K, Sato Y, Kawakami R, Sakamoto A, Cornelissen A, Mori M, Ghosh S, Kutys R, Virmani R, Finn AV. Generalized Arterial Calcification of Infancy (GACI): Optimizing Care with a Multidisciplinary Approach. J Multidiscip Healthc 2022; 15:1261-1276. [PMID: 35677616 PMCID: PMC9167688 DOI: 10.2147/jmdh.s251861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/31/2021] [Accepted: 04/22/2022] [Indexed: 11/23/2022] Open
Abstract
It is very unusual to see evidence of arterial calcification in infants and children, and when detected, genetic disorders of calcium metabolism should be suspected. Generalized arterial calcification of infancy (GACI) is a hereditary disease, which is characterized by severe arterial calcification of medium sized arteries, mostly involving the media with marked intimal proliferation and ectopic mineralization of the extravascular tissues. It is caused by inactivating variants in genes encoding either ENPP1, in a majority of cases (70–75%), or ABCC6, in a minority (9–10%). Despite similar histologic appearances between ENPP1 and ABCC6 deficiencies, including arterial calcification, organ calcification, and cardiovascular calcification, mortality is higher in subjects carrying the ENPP1 versus ABCC6 variants (40% vs 10%, respectively). Overall mortality in individuals with GACI is high (55%) before the age of 6 months, with 24.4% dying in utero or being stillborn. Rare cases show spontaneous regression with age, while others who survive into adulthood often manifest musculoskeletal complications (osteoarthritis and interosseous membrane ossification), enthesis mineralization, and cervical spine fusion. Despite recent advances in the understanding of the genetic mechanisms underlying this disease, there is still no ideal therapy for the resolution of vascular calcification in GACI. Although bisphosphonates with anti-calcification properties have been commonly used for the treatment of CAGI, their benefit is controversial, with favorable results reported at one year and questionable benefit with delayed initiation of treatment. Enzyme replacement therapy with administration of recombinant form of ENPP1 prevents calcification and mortality, improves hypertension and cardiac function, and prevents intimal proliferation and osteomalacia in mouse models of ENPP1 deficiency. Therefore, newer treatments targeting genes are on the horizon. In this article, we review up to date knowledge of the understanding of GACI, its clinical, pathologic, and etiologic understanding and treatment in support of more comprehensive care of GACI patients.
Collapse
Affiliation(s)
| | - Yu Sato
- CVPath Institute, Gaithersburg, MD, USA
| | | | | | | | | | | | | | | | - Aloke V Finn
- CVPath Institute, Gaithersburg, MD, USA
- University of Maryland, School of Medicine, Baltimore, MD, USA
- Correspondence: Aloke V Finn, 19 Firstfield Road, Gaithersburg, MD, 20878, USA, Tel +301.208.3570, Fax +301.208.3745, Email
| |
Collapse
|
4
|
Villa-Bellosta R. Role of the extracellular ATP/pyrophosphate metabolism cycle in vascular calcification. Purinergic Signal 2022:10.1007/s11302-022-09867-1. [PMID: 35511317 DOI: 10.1007/s11302-022-09867-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/29/2021] [Accepted: 04/19/2022] [Indexed: 10/18/2022] Open
Abstract
Conventionally, ATP is considered to be the principal energy source in cells. However, over the last few years, a novel role for ATP as a potent extracellular signaling molecule and the principal source of extracellular pyrophosphate, the main endogenous inhibitor of vascular calcification, has emerged. A large body of evidence suggests that two principal mechanisms are involved in the initiation and progression of ectopic calcification: high phosphate concentration and pyrophosphate deficiency. Pathologic calcification of cardiovascular structures, or vascular calcification, is a feature of several genetic diseases and a common complication of chronic kidney disease, diabetes, and aging. Previous studies have shown that the loss of function of several enzymes and transporters involved in extracellular ATP/pyrophosphate metabolism is associated with vascular calcification. Therefore, pyrophosphate homeostasis should be further studied to facilitate the design of novel therapeutic approaches for ectopic calcification of cardiovascular structures, including strategies to increase pyrophosphate concentrations by targeting the ATP/pyrophosphate metabolism cycle.
Collapse
Affiliation(s)
- Ricardo Villa-Bellosta
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Av Barcelona, Campus Vida, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain. .,Department of Biochemistry and Molecular Biology, Universidade de Santiago de Compostela, Plaza do Obradoiro s/n, Santiago de Compostela, Spain.
| |
Collapse
|
5
|
Bartlett CL, Cave EM, Crowther NJ, Ferris WF. A new perspective on the function of Tissue Non-Specific Alkaline Phosphatase: from bone mineralization to intra-cellular lipid accumulation. Mol Cell Biochem 2022; 477:2093-2106. [PMID: 35471716 DOI: 10.1007/s11010-022-04429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/04/2021] [Accepted: 03/31/2022] [Indexed: 11/29/2022]
Abstract
Tissue-nonspecific alkaline phosphatase (TNAP) is one of four isozymes, which include germ cell, placental and intestinal alkaline phosphatases. The TNAP isozyme has 3 isoforms (liver, bone and kidney) which differ by tissue expression and glycosylation pattern. Despite a long history of investigation, the exact function of TNAP in many tissues is largely unknown. Only the bone isoform has been well characterised during mineralization where the enzyme hydrolyses pyrophosphate to inorganic phosphate, which combines with calcium to form hydroxyapatite crystals deposited as new bone. The inorganic phosphate also increases gene expression of proteins that support tissue mineralization. Recent studies have shown that TNAP is expressed in preadipocytes from several species, and that inhibition of TNAP activity causes attenuation of intracellular lipid accumulation in these and other lipid-storing cells. The mechanism by which TNAP stimulates lipid accumulation is not known; however, proteins that are important for controlling phosphate levels in bone are also expressed in adipocytes. This review examines the evidence that inorganic phosphate generated by TNAP promotes transcription that enhances the expression of the regulators of lipid storage and consequently, that TNAP has a major function of lipid metabolism.
Collapse
Affiliation(s)
- Cara-Lesley Bartlett
- Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Eleanor Margaret Cave
- Department of Chemical Pathology, University of the Witwatersrand Faculty of Health Sciences, Johannesburg, South Africa
| | - Nigel John Crowther
- Department of Chemical Pathology, University of the Witwatersrand Faculty of Health Sciences, Johannesburg, South Africa.,Department of Chemical Pathology, National Health Laboratory Service, Johannesburg, South Africa
| | - William Frank Ferris
- Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
6
|
Nanoanalytical analysis of bisphosphonate-driven alterations of microcalcifications using a 3D hydrogel system and in vivo mouse model. Proc Natl Acad Sci U S A 2021; 118:1811725118. [PMID: 33795519 PMCID: PMC8040669 DOI: 10.1073/pnas.1811725118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022] Open
Abstract
The most common cause of heart attacks or strokes is the rupture of thin fibrous caps that cover vulnerable plaques within blood vessels. Small mineral deposits, called microcalcifications, increase local tissue stress and thereby increase the risk of cap rupture. We report here the use of a three-dimensional collagen hydrogel model of fibrous cap calcification and a complementary mouse model of plaque formation to determine whether bisphosphonate (BiP) therapy, commonly used to treat bone loss, alters microcalcification formation. The results showed that BiP treatment resulted in time-dependent changes in microcalcification size and mineral morphology, dependent on whether BiP treatment was initiated before or after the expected onset of microcalcification formation. Vascular calcification predicts atherosclerotic plaque rupture and cardiovascular events. Retrospective studies of women taking bisphosphonates (BiPs), a proposed therapy for vascular calcification, showed that BiPs paradoxically increased morbidity in patients with prior acute cardiovascular events but decreased mortality in event-free patients. Calcifying extracellular vesicles (EVs), released by cells within atherosclerotic plaques, aggregate and nucleate calcification. We hypothesized that BiPs block EV aggregation and modify existing mineral growth, potentially altering microcalcification morphology and the risk of plaque rupture. Three-dimensional (3D) collagen hydrogels incubated with calcifying EVs were used to mimic fibrous cap calcification in vitro, while an ApoE−/− mouse was used as a model of atherosclerosis in vivo. EV aggregation and formation of stress-inducing microcalcifications was imaged via scanning electron microscopy (SEM) and atomic force microscopy (AFM). In both models, BiP (ibandronate) treatment resulted in time-dependent changes in microcalcification size and mineral morphology, dependent on whether BiP treatment was initiated before or after the expected onset of microcalcification formation. Following BiP treatment at any time, microcalcifications formed in vitro were predicted to have an associated threefold decrease in fibrous cap tensile stress compared to untreated controls, estimated using finite element analysis (FEA). These findings support our hypothesis that BiPs alter EV-driven calcification. The study also confirmed that our 3D hydrogel is a viable platform to study EV-mediated mineral nucleation and evaluate potential therapies for cardiovascular calcification.
Collapse
|
7
|
Buchet R, Tribes C, Rouaix V, Doumèche B, Fiore M, Wu Y, Magne D, Mebarek S. Hydrolysis of Extracellular ATP by Vascular Smooth Muscle Cells Transdifferentiated into Chondrocytes Generates P i but Not PP i. Int J Mol Sci 2021; 22:ijms22062948. [PMID: 33799449 PMCID: PMC8000465 DOI: 10.3390/ijms22062948] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2021] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
(1) Background: Tissue non-specific alkaline phosphatase (TNAP) is suspected to induce atherosclerosis plaque calcification. TNAP, during physiological mineralization, hydrolyzes the mineralization inhibitor inorganic pyrophosphate (PPi). Since atherosclerosis plaques are characterized by the presence of necrotic cells that probably release supraphysiological concentrations of ATP, we explored whether this extracellular adenosine triphosphate (ATP) is hydrolyzed into the mineralization inhibitor PPi or the mineralization stimulator inorganic phosphate (Pi), and whether TNAP is involved. (2) Methods: Murine aortic smooth muscle cell line (MOVAS cells) were transdifferentiated into chondrocyte-like cells in calcifying medium, containing ascorbic acid and β-glycerophosphate. ATP hydrolysis rates were determined in extracellular medium extracted from MOVAS cultures during their transdifferentiation, using 31P-NMR and IR spectroscopy. (3) Results: ATP and PPi hydrolysis by MOVAS cells increased during transdifferentiation. ATP hydrolysis was sequential, yielding adenosine diphosphate (ADP), adenosine monophosphate (AMP), and adenosine without any detectable PPi. The addition of levamisole partially inhibited ATP hydrolysis, indicating that TNAP and other types of ectonucleoside triphoshatediphosphohydrolases contributed to ATP hydrolysis. (4) Conclusions: Our findings suggest that high ATP levels released by cells in proximity to vascular smooth muscle cells (VSMCs) in atherosclerosis plaques generate Pi and not PPi, which may exacerbate plaque calcification.
Collapse
Affiliation(s)
- Rene Buchet
- Institute for Molecular and Supramolecular Chemistry and Biochemistry, Université Lyon 1, French National Centre for Scientific Research, F-69622 Lyon, France; (C.T.); (V.R.); (B.D.); (M.F.); (D.M.); (S.M.)
- Correspondence:
| | - Camille Tribes
- Institute for Molecular and Supramolecular Chemistry and Biochemistry, Université Lyon 1, French National Centre for Scientific Research, F-69622 Lyon, France; (C.T.); (V.R.); (B.D.); (M.F.); (D.M.); (S.M.)
| | - Valentine Rouaix
- Institute for Molecular and Supramolecular Chemistry and Biochemistry, Université Lyon 1, French National Centre for Scientific Research, F-69622 Lyon, France; (C.T.); (V.R.); (B.D.); (M.F.); (D.M.); (S.M.)
| | - Bastien Doumèche
- Institute for Molecular and Supramolecular Chemistry and Biochemistry, Université Lyon 1, French National Centre for Scientific Research, F-69622 Lyon, France; (C.T.); (V.R.); (B.D.); (M.F.); (D.M.); (S.M.)
| | - Michele Fiore
- Institute for Molecular and Supramolecular Chemistry and Biochemistry, Université Lyon 1, French National Centre for Scientific Research, F-69622 Lyon, France; (C.T.); (V.R.); (B.D.); (M.F.); (D.M.); (S.M.)
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130012, China;
| | - David Magne
- Institute for Molecular and Supramolecular Chemistry and Biochemistry, Université Lyon 1, French National Centre for Scientific Research, F-69622 Lyon, France; (C.T.); (V.R.); (B.D.); (M.F.); (D.M.); (S.M.)
| | - Saida Mebarek
- Institute for Molecular and Supramolecular Chemistry and Biochemistry, Université Lyon 1, French National Centre for Scientific Research, F-69622 Lyon, France; (C.T.); (V.R.); (B.D.); (M.F.); (D.M.); (S.M.)
| |
Collapse
|
8
|
Bertoni APS, de Campos RP, Tamajusuku ASK, Stefani GP, Braganhol E, Battastini AMO, Wink MR. Biochemical analysis of ectonucleotidases on primary rat vascular smooth muscle cells and in silico investigation of their role in vascular diseases. Life Sci 2020; 256:117862. [PMID: 32473244 DOI: 10.1016/j.lfs.2020.117862] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/24/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 12/27/2022]
Abstract
Vascular smooth muscle cells (VSMCs) exhibit a high degree of plasticity when they undergo the progression from a normal to a disease condition, which makes them a potential target for evaluating early markers and for the development of new therapies. Purinergic signalling plays a key role in vascular tonus control, ATP being an inductor of vasoconstriction, whereas adenosine mediates a vasodilation effect antagonising the ATP actions. The control of extracellular ATP and adenosine levels is done by ectonucleotidases, which represent a potential target to be evaluated in the progression of cardiovascular diseases. In this study, we analysed the basal activity and expression of the ectonucleotidases in aortic rat VSMCs, and we further performed in silico analysis to determine the expression of those enzymes in conditions that mimicked vascular diseases. Cultured in vitro VSMCs showed a prominent expression of Entpd1 followed by Entpd2 and Nt5e (CD73) and very low levels of Entpd3. Slightly faster AMP hydrolysis was observed when compared to ATP and ADP nucleotides. In silico analysis showed that the ectonucleotidases were modulated after induction of conditions that can lead to vascular diseases such as, hypertensive and hypotensive mice models (Nt5e); exposition to high-fat (Entpd1 and Entpd2) or high-phosphate (Nt5e) diet; mechanical stretch (Entpd1, Entpd2 and Nt5e); and myocardial infarction (Entpd1). Our data show that VSMCs are able to efficiently metabolise the extracellular nucleotides generating adenosine. The modulation of Entpd1, Entdp2 and Nt5e in vascular diseases suggests these ectoenzymes as potential targets or markers to be investigated in future studies.
Collapse
Affiliation(s)
- Ana Paula Santin Bertoni
- Departamento de Ciências Básicas da Saúde and Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Rafael Paschoal de Campos
- Laboratório de Sinalização e Plasticidade Celular, Departamento de Biofísica, Instituto de Biociências UFRGS, Porto Alegre, RS, Brazil
| | | | - Giuseppe Potrick Stefani
- Laboratório de Fisiologia Experimental, UFCSPA, Porto Alegre, RS, Brazil; Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Elizandra Braganhol
- Departamento de Ciências Básicas da Saúde and Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; PPG-Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Ana Maria Oliveira Battastini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Márcia Rosângela Wink
- Departamento de Ciências Básicas da Saúde and Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; PPG-Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
9
|
Li Y, Sun Z, Zhang L, Yan J, Shao C, Jing L, Li L, Wang Z. Role of Macrophages in the Progression and Regression of Vascular Calcification. Front Pharmacol 2020; 11:661. [PMID: 32457633 PMCID: PMC7227444 DOI: 10.3389/fphar.2020.00661] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/05/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022] Open
Abstract
Vascular calcification is an abnormal cell-mediated process in which bone-specific hydroxyapatite crystals are actively deposited on the blood vessel wall and is a significant pathological basis for the increased incidence and mortality of adverse cardiovascular events. Macrophages play an important regulatory role in the occurrence, development, and regression of vascular calcification. After the tissue microenvironment changes, macrophages subsequently change their polarity and phenotype or secrete functional substances as an adaptive response. As research on macrophages continue to move into this field, we gain a new understanding of the mechanism of the formation and regression of vascular calcification, which might offer valuable new intervention targets for the prevention and inhibition of vascular calcification. This review summarizes a wealth of research in this field and explores the roles of macrophages in the development process of vascular calcification.
Collapse
Affiliation(s)
- Yalan Li
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhen Sun
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lili Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Chen Shao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lele Jing
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
10
|
Abstract
Extracellular pyrophosphate (ePPi) was first identified as a key endogenous inhibitor of mineralisation in the 1960's by Fleisch and colleagues. The main source of ePPi seems to be extracellular ATP which is continually released from cells in a controlled way. ATP is rapidly broken down by enzymes including ecto-nucleotide pyrophosphatase/phosphodiesterases to produce ePPi. The major function of ePPi is to directly inhibit hydroxyapatite formation and growth meaning that this simple molecule acts as the body's own "water softener". However, studies have also shown that ePPi can influence gene expression and regulate its own production and breakdown. This review will summarise our current knowledge of ePPi metabolism and how it acts to prevent pathological soft tissue calcification and regulate physiological bone mineralisation.
Collapse
Affiliation(s)
- Isabel R Orriss
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW1 0TU, UK.
| |
Collapse
|
11
|
Hortells L, Guillén N, Sosa C, Sorribas V. Several phosphate transport processes are present in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2019; 318:H448-H460. [PMID: 31886722 DOI: 10.1152/ajpheart.00433.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
We have studied inorganic phosphate (Pi) handling in rat aortic vascular smooth muscle cells (VSMC) using 32P-radiotracer assays. Our results have revealed a complex set of mechanisms consisting of 1) well-known PiT1/PiT2-mediated sodium-dependent Pi transport; 2) Slc20-unrelated sodium-dependent Pi transport that is sensitive to the stilbene derivatives 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) and 4-acetamido-4-isothiocyanostilbene-2,2-disulfonate (SITS); 3) a sodium-independent Pi uptake system that is competitively inhibited by sulfate, bicarbonate, and arsenate and is weakly inhibited by DIDS, SITS, and phosphonoformate; and 4) an exit pathway from the cell that is partially chloride dependent and unrelated to the known anion-exchangers expressed in VSMC. The inhibitions of sodium-independent Pi transport by sulfate and of sodium-dependent transport by SITS were studied in greater detail. The maximal inhibition by sulfate was similar to that of Pi itself, with a very high inhibition constant (212 mM). SITS only partially inhibited sodium-dependent Pi transport, but the Ki was very low (14 µM). Nevertheless, SITS and DIDS did not inhibit Pi transport in Xenopus laevis oocytes expressing PiT1 or PiT2. Both the sodium-dependent and sodium-independent transport systems were highly dependent on VSMC confluence and on the differentiation state, but they were not modified by incubating VSMC for 7 days with 2 mM Pi under nonprecipitating conditions. This work not only shows that the Pi handling by cells is highly complex but also that the transport systems are shared with other ions such as bicarbonate or sulfate.NEW & NOTEWORTHY In addition to the inorganic phosphate (Pi) transporters PiT1 and PiT2, rat vascular smooth muscle cells show a sodium-dependent Pi transport system that is inhibited by DIDS and SITS. A sodium-independent Pi uptake system of high affinity is also expressed, which is inhibited by sulfate, bicarbonate, and arsenate. The exit of excess Pi is through an exchange with extracellular chloride. Whereas the metabolic effects of the inhibitors, if any, cannot be discarded, kinetic analysis during initial velocity suggests competitive inhibition.
Collapse
Affiliation(s)
- Luis Hortells
- Veterinary Faculty, Department of Toxicology, University of Zaragoza, Zaragoza, Spain
| | - Natalia Guillén
- Veterinary Faculty, Department of Toxicology, University of Zaragoza, Zaragoza, Spain
| | - Cecilia Sosa
- Veterinary Faculty, Department of Toxicology, University of Zaragoza, Zaragoza, Spain
| | - Víctor Sorribas
- Veterinary Faculty, Department of Toxicology, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
12
|
Inhibition of vascular smooth muscle cell calcification by ATP analogues. Purinergic Signal 2019; 15:315-326. [PMID: 31338672 DOI: 10.1007/s11302-019-09672-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/03/2018] [Accepted: 06/28/2019] [Indexed: 12/29/2022] Open
Abstract
Arterial medial calcification (AMC) has been associated with phenotypic changes in vascular smooth muscle cells (VSMCs) that reportedly makes them more osteoblast-like. Previous work has shown that ATP/UTP can inhibit AMC directly via P2 receptors and indirectly by NPP1-mediated hydrolysis to produce the mineralisation inhibitor, pyrophosphate (PPi). This study investigated the role of P2X receptors in the inhibitory effects of extracellular nucleotides on VSMC calcification. We found that Bz-ATP, α,β-meATP and β,γ-meATP inhibited calcification by up to 100%. Culture in a high-phosphate medium (2 mM) was associated with increased VSMC death and apoptosis; treatment with Bz-ATP, α,β-meATP and β,γ-meATP reduced apoptosis to levels seen in non-calcifying cells. Calcification was also associated with alterations in the protein levels of VSMC (e.g. SM22α and SMA) and osteoblast-associated (e.g. Runx2 and osteopontin) markers; Bz-ATP, α,β-meATP and β,γ-meATP attenuated these changes in protein expression. Long-term culture with Bz-ATP, α,β-meATP and β,γ-meATP resulted in lower extracellular ATP levels and an increased rate of ATP breakdown. P2X receptor antagonists failed to prevent the inhibitory effects of these analogues suggesting that they act via P2X receptor-independent mechanisms. In agreement, the breakdown products of α,β-meATP and β,γ-meATP (α,β-meADP and methylene diphosphonate, respectively) also dose-dependently inhibited VSMC calcification. Furthermore, the actions of Bz-ATP, α,β-meATP and β,γ-meATP were unchanged in VSMCs isolated from NPP1-knockout mice, suggesting that the functional effects of these compounds do not involve NPP1-mediated generation of PPi. Together, these results indicate that the inhibitory effects of ATP analogues on VSMC calcification and apoptosis in vitro may be mediated, at least in part, by mechanisms that are independent of purinergic signalling and PPi.
Collapse
|
13
|
Patel JJ, Bourne LE, Davies BK, Arnett TR, MacRae VE, Wheeler-Jones CP, Orriss IR. Differing calcification processes in cultured vascular smooth muscle cells and osteoblasts. Exp Cell Res 2019; 380:100-113. [PMID: 31004580 PMCID: PMC6520648 DOI: 10.1016/j.yexcr.2019.04.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/12/2018] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 11/15/2022]
Abstract
Arterial medial calcification (AMC) is the deposition of calcium phosphate mineral, often as hydroxyapatite, in the medial layer of the arteries. AMC shares some similarities to skeletal mineralisation and has been associated with the transdifferentiation of vascular smooth muscle cells (VSMCs) towards an osteoblast-like phenotype. This study used primary mouse VSMCs and calvarial osteoblasts to directly compare the established and widely used in vitro models of AMC and bone formation. Significant differences were identified between osteoblasts and calcifying VSMCs. First, osteoblasts formed large mineralised bone nodules that were associated with widespread deposition of an extracellular collagenous matrix. In contrast, VSMCs formed small discrete regions of calcification that were not associated with collagen deposition and did not resemble bone. Second, calcifying VSMCs displayed a progressive reduction in cell viability over time (≤7-fold), with a 50% increase in apoptosis, whereas osteoblast and control VSMCs viability remained unchanged. Third, osteoblasts expressed high levels of alkaline phosphatase (TNAP) activity and TNAP inhibition reduced bone formation by to 90%. TNAP activity in calcifying VSMCs was ∼100-fold lower than that of bone-forming osteoblasts and cultures treated with β-glycerophosphate, a TNAP substrate, did not calcify. Furthermore, TNAP inhibition had no effect on VSMC calcification. Although, VSMC calcification was associated with increased mRNA expression of osteoblast-related genes (e.g. Runx2, osterix, osteocalcin, osteopontin), the relative expression of these genes was up to 40-fold lower in calcifying VSMCs versus bone-forming osteoblasts. In summary, calcifying VSMCs in vitro display some limited osteoblast-like characteristics but also differ in several key respects: 1) their inability to form collagen-containing bone; 2) their lack of reliance on TNAP to promote mineral deposition; and, 3) the deleterious effect of calcification on their viability.
Collapse
Affiliation(s)
- Jessal J Patel
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK; School of Life & Medical Sciences, University of Hertfordshire, Hatfield, UK
| | - Lucie E Bourne
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Bethan K Davies
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Timothy R Arnett
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Vicky E MacRae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | - Isabel R Orriss
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK.
| |
Collapse
|
14
|
Sikura KÉ, Potor L, Szerafin T, Zarjou A, Agarwal A, Arosio P, Poli M, Hendrik Z, Méhes G, Oros M, Posta N, Beke L, Fürtös I, Balla G, Balla J. Potential Role of H-Ferritin in Mitigating Valvular Mineralization. Arterioscler Thromb Vasc Biol 2019; 39:413-431. [PMID: 30700131 PMCID: PMC6393195 DOI: 10.1161/atvbaha.118.312191] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
Objective- Calcific aortic valve disease is a prominent finding in elderly and in patients with chronic kidney disease. We investigated the potential role of iron metabolism in the pathogenesis of calcific aortic valve disease. Approach and Results- Cultured valvular interstitial cells of stenotic aortic valve with calcification from patients undergoing valve replacement exhibited significant susceptibility to mineralization/osteoblastic transdifferentiation in response to phosphate. This process was abrogated by iron via induction of H-ferritin as reflected by lowering ALP and osteocalcin secretion and preventing extracellular calcium deposition. Cellular phosphate uptake and accumulation of lysosomal phosphate were decreased. Accordingly, expression of phosphate transporters Pit1 and Pit2 were repressed. Translocation of ferritin into lysosomes occurred with high phosphate-binding capacity. Importantly, ferritin reduced nuclear accumulation of RUNX2 (Runt-related transcription factor 2), and as a reciprocal effect, it enhanced nuclear localization of transcription factor Sox9 (SRY [sex-determining region Y]-box 9). Pyrophosphate generation was also increased via upregulation of ENPP2 (ectonucleotide pyrophosphatase/phosphodiesterase-2). 3H-1, 2-dithiole-3-thione mimicked these beneficial effects in valvular interstitial cell via induction of H-ferritin. Ferroxidase activity of H-ferritin was essential for this function, as ceruloplasmin exhibited similar inhibitory functions. Histological analysis of stenotic aortic valve revealed high expression of H-ferritin without iron accumulation and its relative dominance over ALP in noncalcified regions. Increased expression of H-ferritin accompanied by elevation of TNF-α (tumor necrosis factor-α) and IL-1β (interleukin-1β) levels, inducers of H-ferritin, corroborates the essential role of ferritin/ferroxidase via attenuating inflammation in calcific aortic valve disease. Conclusions- Our results indicate that H-ferritin is a stratagem in mitigating valvular mineralization/osteoblastic differentiation. Utilization of 3H-1, 2-dithiole-3-thione to induce ferritin expression may prove a novel therapeutic potential in valvular mineralization.
Collapse
Affiliation(s)
- Katalin Éva Sikura
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian, Academy of Sciences, Debrecen, Hungary
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - László Potor
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian, Academy of Sciences, Debrecen, Hungary
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - Tamás Szerafin
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
- Department of Cardiac Surgery, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - Abolfazl Zarjou
- Department of Medicine, Division of Nephrology, Nephrology Research and Training Center and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anupam Agarwal
- Department of Medicine, Division of Nephrology, Nephrology Research and Training Center and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Paolo Arosio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maura Poli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Zoltán Hendrik
- Department of Pathology, University of Debrecen, Faculty of Medicine, 4012 Debrecen, Hungary
| | - Gábor Méhes
- Department of Pathology, University of Debrecen, Faculty of Medicine, 4012 Debrecen, Hungary
| | - Melinda Oros
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian, Academy of Sciences, Debrecen, Hungary
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - Niké Posta
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian, Academy of Sciences, Debrecen, Hungary
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - Lívia Beke
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
- Department of Pathology, University of Debrecen, Faculty of Medicine, 4012 Debrecen, Hungary
| | - Ibolya Fürtös
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - György Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian, Academy of Sciences, Debrecen, Hungary
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| | - József Balla
- HAS-UD Vascular Biology and Myocardial Pathophysiology Research Group, Hungarian, Academy of Sciences, Debrecen, Hungary
- Department of Medicine, Faculty of Medicine, University of Debrecen, 4012 Debrecen, Hungary
| |
Collapse
|
15
|
Khan T, Sinkevicius KW, Vong S, Avakian A, Leavitt MC, Malanson H, Marozsan A, Askew KL. ENPP1 enzyme replacement therapy improves blood pressure and cardiovascular function in a mouse model of generalized arterial calcification of infancy. Dis Model Mech 2018; 11:dmm.035691. [PMID: 30158213 PMCID: PMC6215426 DOI: 10.1242/dmm.035691] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
Generalized arterial calcification of infancy (GACI) is a rare, life-threatening disorder caused by loss-of-function mutations in the gene encoding ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1), which normally hydrolyzes extracellular ATP into AMP and pyrophosphate (PPi). The disease is characterized by extensive arterial calcification and stenosis of large- and medium-sized vessels, leading to vascular-related complications of hypertension and heart failure. There is currently no effective treatment available, but bisphosphonates – nonhydrolyzable PPi analogs – are being used off-label to reduce arterial calcification, although this has no reported impact on the hypertension and cardiac dysfunction features of GACI. In this study, the efficacy of a recombinant human ENPP1 protein therapeutic (rhENPP1) was tested in Enpp1asj-2J homozygous mice (Asj-2J or Asj-2J hom), a model previously described to show extensive mineralization in the arterial vasculature, similar to GACI patients. In a disease prevention study, Asj-2J mice treated with rhENPP1 for 3 weeks showed >95% reduction in aorta calcification. Terminal hemodynamics and echocardiography imaging of Asj-2J mice also revealed that a 6-week rhENPP1 treatment normalized elevated arterial and left ventricular pressure, which translated into significant improvements in myocardial compliance, contractility, heart workload and global cardiovascular efficiency. This study suggests that ENPP1 enzyme replacement therapy could be a more effective GACI therapeutic than bisphosphonates, treating not just the vascular calcification, but also the hypertension that eventually leads to cardiac failure in GACI patients. Summary: ENPP1 enzyme replacement therapy can have important implications for generalized arterial calcification of infancy by treating both vascular calcification and hypertension, which are the leading causes of cardiac failure and mortality in patients.
Collapse
Affiliation(s)
- Tayeba Khan
- Alexion Pharmaceuticals, Lexington, MA 02421, USA
| | | | - Sylvia Vong
- Alexion Pharmaceuticals, New Haven, CT 06510, USA
| | | | | | | | | | - Kim L Askew
- Alexion Pharmaceuticals, Lexington, MA 02421, USA
| |
Collapse
|
16
|
Patel JJ, Zhu D, Opdebeeck B, D’Haese P, Millán JL, Bourne LE, Wheeler-Jones CPD, Arnett TR, MacRae VE, Orriss IR. Inhibition of arterial medial calcification and bone mineralization by extracellular nucleotides: The same functional effect mediated by different cellular mechanisms. J Cell Physiol 2018; 233:3230-3243. [PMID: 28976001 PMCID: PMC5792173 DOI: 10.1002/jcp.26166] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2017] [Accepted: 08/22/2017] [Indexed: 12/30/2022]
Abstract
Arterial medial calcification (AMC) is thought to share some outward similarities to skeletal mineralization and has been associated with the transdifferentiation of vascular smooth muscle cells (VSMCs) to an osteoblast-like phenotype. ATP and UTP have previously been shown to inhibit bone mineralization. This investigation compared the effects of extracellular nucleotides on calcification in VSMCs with those seen in osteoblasts. ATP, UTP and the ubiquitous mineralization inhibitor, pyrophosphate (PPi ), dose dependently inhibited VSMC calcification by ≤85%. Culture of VSMCs in calcifying conditions was associated with an increase in apoptosis; treatment with ATP, UTP, and PPi reduced apoptosis to levels seen in non-calcifying cells. Extracellular nucleotides had no effect on osteoblast viability. Basal alkaline phosphatase (TNAP) activity was over 100-fold higher in osteoblasts than VSMCs. ATP and UTP reduced osteoblast TNAP activity (≤50%) but stimulated VSMC TNAP activity (≤88%). The effects of extracellular nucleotides on VSMC calcification, cell viability and TNAP activity were unchanged by deletion or inhibition of the P2Y2 receptor. Conversely, the actions of ATP/UTP on bone mineralization and TNAP activity were attenuated in osteoblasts lacking the P2Y2 receptor. Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) hydrolyses ATP and UTP to produce PPi . In both VSMCs and osteoblasts, deletion of NPP1 blunted the inhibitory effects of extracellular nucleotides suggesting involvement of P2 receptor independent pathways. Our results show that although the overall functional effect of extracellular nucleotides on AMC and bone mineralization is similar there are clear differences in the cellular mechanisms mediating these actions.
Collapse
Affiliation(s)
- JJ Patel
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - D Zhu
- Guangzhou Institute of Cardiovascular Disease, School of Basic Medical Sciences, Guangzhou Medical University, China
| | - B Opdebeeck
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Belgium
| | - P D’Haese
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Belgium
| | - JL Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - LE Bourne
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - CPD Wheeler-Jones
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - TR Arnett
- Department of Cell and Developmental Biology, University College London, London, UK
| | - VE MacRae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - IR Orriss
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| |
Collapse
|
17
|
Xiong L, Jung JU, Guo HH, Pan JX, Sun XD, Mei L, Xiong WC. Osteoblastic Lrp4 promotes osteoclastogenesis by regulating ATP release and adenosine-A 2AR signaling. J Cell Biol 2017; 216:761-778. [PMID: 28193701 PMCID: PMC5350517 DOI: 10.1083/jcb.201608002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2016] [Revised: 11/23/2016] [Accepted: 01/10/2017] [Indexed: 02/05/2023] Open
Abstract
Lrp4 is mutated in patients with high-bone-mass diseases. Loss of Lrp4 in osteoblasts (OBs) increases bone formation by OBs and decreases bone resorption by osteoclasts through an unclear mechanism. Xiong et al. show that overproduction of extracellular adenosine in Lrp4-deficient OBs, which are derived from ATP hydrolysis and signals through A2AR and RANK, may underlie Lrp4 regulation of osteoclastogenesis. Bone homeostasis depends on the functional balance of osteoblasts (OBs) and osteoclasts (OCs). Lrp4 is a transmembrane protein that is mutated in patients with high bone mass. Loss of Lrp4 in OB-lineage cells increases bone mass by elevating bone formation by OBs and reducing bone resorption by OCs. However, it is unclear how Lrp4 deficiency in OBs impairs osteoclastogenesis. Here, we provide evidence that loss of Lrp4 in the OB lineage stabilizes the prorenin receptor (PRR) and increases PRR/V-ATPase–driven ATP release, thereby enhancing the production of the ATP derivative adenosine. Both pharmacological and genetic inhibition of adenosine-2A receptor (A2AR) in culture and Lrp4 mutant mice diminishes the osteoclastogenic deficit and reduces trabecular bone mass. Furthermore, elevated adenosine-A2AR signaling reduces receptor activator of nuclear factor κB (RANK)–mediated osteoclastogenesis. Collectively, these results identify a mechanism by which osteoblastic Lrp4 controls osteoclastogenesis, reveal a cross talk between A2AR and RANK signaling in osteoclastogenesis, and uncover an unrecognized pathophysiological mechanism of high-bone-mass disorders.
Collapse
Affiliation(s)
- Lei Xiong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, GA 30912.,Department of Neurology, Medical College of Georgia, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30912
| | - Ji-Ung Jung
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, GA 30912.,Department of Neurology, Medical College of Georgia, Augusta, GA 30912
| | - Hao-Han Guo
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, GA 30912.,Department of Neurology, Medical College of Georgia, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30912
| | - Jin-Xiu Pan
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, GA 30912.,Department of Neurology, Medical College of Georgia, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30912
| | - Xiang-Dong Sun
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, GA 30912.,Department of Neurology, Medical College of Georgia, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30912
| | - Lin Mei
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, GA 30912 .,Department of Neurology, Medical College of Georgia, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30912
| | - Wen-Cheng Xiong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta, GA 30912 .,Department of Neurology, Medical College of Georgia, Augusta, GA 30912.,Charlie Norwood VA Medical Center, Augusta, GA 30912
| |
Collapse
|
18
|
Abstract
The protein product of the progressive ankylosis gene, known as ANK, is a 492-amino acid multi-pass transmembrane protein. This protein is critical for the regulation of pyrophosphate, and gain of function ANK mutations is associated with calcium pyrophosphate deposition disease. Much about the structure, function, and regulation of ANK remain unstudied. This review of the current literature examines recent contributions to our understanding of ANK. We focus on new work on the function, binding partners, and regulators of ANK. A more complete understanding of this important protein may help to identify future therapeutic targets for the treatment of calcium pyrophosphate deposition disease.
Collapse
Affiliation(s)
- Elizabeth Mitton-Fitzgerald
- The Division of Rheumatology, Department of Medicine, Medical College of Wisconsin and the Zablocki VA Medical Center, Milwaukee, WI, 53295-1000, USA
| | - Claudia M Gohr
- The Division of Rheumatology, Department of Medicine, Medical College of Wisconsin and the Zablocki VA Medical Center, Milwaukee, WI, 53295-1000, USA.
| | - Brittany Bettendorf
- The Division of Rheumatology, Department of Medicine, Medical College of Wisconsin and the Zablocki VA Medical Center, Milwaukee, WI, 53295-1000, USA
| | - Ann K Rosenthal
- The Division of Rheumatology, Department of Medicine, Medical College of Wisconsin and the Zablocki VA Medical Center, Milwaukee, WI, 53295-1000, USA
| |
Collapse
|
19
|
Ruiz JL, Weinbaum S, Aikawa E, Hutcheson JD. Zooming in on the genesis of atherosclerotic plaque microcalcifications. J Physiol 2016; 594:2915-27. [PMID: 27040360 DOI: 10.1113/jp271339] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/30/2015] [Accepted: 03/23/2016] [Indexed: 01/08/2023] Open
Abstract
Epidemiological evidence conclusively demonstrates that calcium burden is a significant predictor of cardiovascular morbidity and mortality; however, the underlying mechanisms remain largely unknown. These observations have challenged the previously held notion that calcification serves to stabilize the atherosclerotic plaque. Recent studies have shown that microcalcifications that form within the fibrous cap of the plaques lead to the accrual of plaque-destabilizing mechanical stress. Given the association between calcification morphology and cardiovascular outcomes, it is important to understand the mechanisms leading to calcific mineral deposition and growth from the earliest stages. We highlight the open questions in the field of cardiovascular calcification and include a review of the proposed mechanisms involved in extracellular vesicle-mediated mineral deposition.
Collapse
Affiliation(s)
- Jessica L Ruiz
- Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sheldon Weinbaum
- Department of Biomedical Engineering, City College of New York, New York, NY, USA
| | - Elena Aikawa
- Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joshua D Hutcheson
- Center for Interdisciplinary Cardiovascular Sciences, Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
Orriss IR, Arnett TR, Russell RGG. Pyrophosphate: a key inhibitor of mineralisation. Curr Opin Pharmacol 2016; 28:57-68. [PMID: 27061894 DOI: 10.1016/j.coph.2016.03.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/07/2016] [Revised: 03/18/2016] [Accepted: 03/24/2016] [Indexed: 12/20/2022]
Abstract
Inorganic pyrophosphate has long been known as a by-product of many intracellular biosynthetic reactions, and was first identified as a key endogenous inhibitor of biomineralisation in the 1960s. The major source of pyrophosphate appears to be extracellular ATP, which is released from cells in a controlled manner. Once released, ATP can be rapidly hydrolysed by ecto-nucleotide pyrophosphatase/phosphodiesterases to produce pyrophosphate. The main action of pyrophosphate is to directly inhibit hydroxyapatite formation thereby acting as a physiological 'water-softener'. Evidence suggests pyrophosphate may also act as a signalling molecule to influence gene expression and regulate its own production and breakdown. This review will summarise our current understanding of pyrophosphate metabolism and how it regulates bone mineralisation and prevents harmful soft tissue calcification.
Collapse
Affiliation(s)
- Isabel R Orriss
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK.
| | - Timothy R Arnett
- Department of Cell and Developmental Biology, University College London, London, UK
| | - R Graham G Russell
- The Botnar Research Centre, Nuffield Orthopaedic Centre, Oxford, UK; The Mellanby Centre for Bone Research, University of Sheffield, Sheffield, UK
| |
Collapse
|
21
|
Villa-Bellosta R, Hamczyk MR, Andrés V. Alternatively activated macrophages exhibit an anticalcifying activity dependent on extracellular ATP/pyrophosphate metabolism. Am J Physiol Cell Physiol 2016; 310:C788-99. [PMID: 26936458 DOI: 10.1152/ajpcell.00370.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/28/2015] [Accepted: 02/25/2016] [Indexed: 11/22/2022]
Abstract
Calcium-phosphate deposition (CPD) in atherosclerotic lesions, which begins in middle age and increases with aging, is a major independent predictor of future cardiovascular disease morbi-mortality. Remodeling of atherosclerotic vessels during aging is regulated in part by intimal macrophages, which can polarize to phenotypically distinct populations with distinct functions. This study tested the hypothesis that classically activated macrophages (M1φs) and alternatively activated macrophages (M2φs) differently affect vascular smooth muscle cell (VSMC) calcification and investigated the underlying mechanisms. We analyzed mouse VSMC-macrophage cocultures using a transwell system. Coculture of VSMCs with M2φs significantly reduced CPD, but coculture with M1φs had no effect. The anticalcific effect of M2φs was associated with elevated amounts of extracellular ATP and pyrophosphate (PPi), two potent inhibitors of CPD, and was lost upon forced hydrolysis of these metabolites. In M2φs and VSMC-M2φs cocultures, analysis of the ectoenzymes that regulate extracellular ATP/PPi metabolism revealed increased mRNA expression and activity of ectoenzyme nucleotide pyrophosphatase/phosphodiesterase-1, which synthesizes PPi from ATP, without changes in tissue-nonspecific alkaline phosphatase, which hydrolyzes PPi In conclusion, increased accumulation of extracellular ATP and PPi by alternatively activated mouse M2φs inhibits CPD. These results reveal novel mechanisms underlying macrophage-dependent control of intimal calcification.
Collapse
Affiliation(s)
| | - Magda R Hamczyk
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| |
Collapse
|
22
|
Abstract
A hallmark of aging, and major contributor to the increased prevalence of cardiovascular disease in patients with chronic kidney disease (CKD), is the progressive structural and functional deterioration of the arteries and concomitant accrual of mineral. Vascular calcification (VC) was long viewed as a degenerative age-related pathology that resulted from the passive deposition of mineral in the extracellular matrix; however, since the discovery of "bone-related" protein expression in calcified atherosclerotic plaques over 20 years ago, a plethora of studies have evoked the now widely accepted view that VC is a highly regulated and principally cell-mediated phenomenon that recapitulates many features of physiologic ossification. Central to this theory are changes in vascular smooth muscle cell (VSMC) phenotype and viability, thought to be driven by chronic exposure to a number of dystrophic stimuli characteristics of the uremic state. Here, dedifferentiated synthetic VSMCs are seen to spawn calcifying matrix vesicles that actively seed mineralization of the arterial matrix. This review provides an overview of the major epidemiological, histological, and molecular aspects of VC in the context of CKD, and a counterpoint to the prevailing paradigm that emphasizes the primacy of VSMC-mediated mechanisms. Particular focus is given to the import of protein and small molecule inhibitors in regulating physiologic and pathological mineralization and the emerging role of mineral nanoparticles and their interplay with proinflammatory processes.
Collapse
Affiliation(s)
- Edward R Smith
- Department of Nephrology, The Royal Melbourne Hospital, Parkville, VIC, 3050, Australia.
| |
Collapse
|
23
|
Villa-Bellosta R. Vascular Calcification Revisited: A New Perspective for Phosphate Transport. Curr Cardiol Rev 2015; 11:341-351. [PMID: 26242187 PMCID: PMC4774640 DOI: 10.2174/1573403x11666150805120505] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/23/2019] [Revised: 03/10/2015] [Accepted: 03/11/2015] [Indexed: 12/30/2022] Open
Abstract
Elevated serum phosphorus has emerged as a key risk factor for pathologic calcification of
cardiovascular structures, or vascular calcification (VC). To prevent the formation of calciumphosphate
deposits (CPD), the body uses adenosine-5’-triphosphate (ATP) to synthesize inhibitors of
calcification, including proteins and inhibitors of low molecular weight. Extracellular pyrophosphate
(PPi) is a potent inhibitor of VC, which is produced during extracellular hydrolysis of ATP. Loss of
function in the enzymes and transporters that are involved in the cycle of extracellular ATP, including
Pi transporters, leads to excessive deposition of calcium-phosphate salts. Treatment of hyperphosphatemia
with Pi-binders and Injection of exogenous PPi are the effective treatments to prevent CPD
in the aortic wall. The role of sodium phosphate cotransporters in ectopic calcification is contradictory and not well defined,
but their important role in the control of intracellular Pi levels and the synthesis of ATP make them an important
target to study.
Collapse
|
24
|
Yegutkin GG. Enzymes involved in metabolism of extracellular nucleotides and nucleosides: functional implications and measurement of activities. Crit Rev Biochem Mol Biol 2015; 49:473-97. [PMID: 25418535 DOI: 10.3109/10409238.2014.953627] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
Extracellular nucleotides and nucleosides mediate diverse signaling effects in virtually all organs and tissues. Most models of purinergic signaling depend on functional interactions between distinct processes, including (i) the release of endogenous ATP and other nucleotides, (ii) triggering of signaling events via a series of nucleotide-selective ligand-gated P2X and metabotropic P2Y receptors as well as adenosine receptors and (iii) ectoenzymatic interconversion of purinergic agonists. The duration and magnitude of purinergic signaling is governed by a network of ectoenzymes, including the enzymes of the nucleoside triphosphate diphosphohydrolase (NTPDase) family, the nucleotide pyrophosphatase/phosphodiesterase (NPP) family, ecto-5'-nucleotidase/CD73, tissue-nonspecific alkaline phosphatase (TNAP), prostatic acid phosphatase (PAP) and other alkaline and acid phosphatases, adenosine deaminase (ADA) and purine nucleoside phosphorylase (PNP). Along with "classical" inactivating ectoenzymes, recent data provide evidence for the co-existence of a counteracting ATP-regenerating pathway comprising the enzymes of the adenylate kinase (AK) and nucleoside diphosphate kinase (NDPK/NME/NM23) families and ATP synthase. This review describes recent advances in this field, with special emphasis on purine-converting ectoenzymes as a complex and integrated network regulating purinergic signaling in such (patho)physiological states as immunomodulation, inflammation, tumorigenesis, arterial calcification and other diseases. The second part of this review provides a comprehensive overview and basic principles of major approaches employed for studying purinergic activities, including spectrophotometric Pi-liberating assays, high-performance liquid chromatographic (HPLC) and thin-layer chromatographic (TLC) analyses of purine substrates and metabolites, capillary electrophoresis, bioluminescent, fluorometric and electrochemical enzyme-coupled assays, histochemical staining, and further emphasizes their advantages, drawbacks and suitability for assaying a particular catalytic reaction.
Collapse
Affiliation(s)
- Gennady G Yegutkin
- Department of Medical Microbiology and Immunology, University of Turku , Turku , Finland
| |
Collapse
|
25
|
|
26
|
Probenecid as a sensitizer of bisphosphonate-mediated effects in breast cancer cells. Mol Cancer 2014; 13:265. [PMID: 25496233 PMCID: PMC4295226 DOI: 10.1186/1476-4598-13-265] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2014] [Accepted: 11/27/2014] [Indexed: 12/17/2022] Open
Abstract
Background Anti-resorptive bisphosphonates (BP) are used for the treatment of osteoporosis and bone metastases. Clinical studies indicated a benefit in survival and tumor relapse in subpopulations of breast cancer patients receiving zoledronic acid, thus stimulating the debate about its anti-tumor activity. Amino-bisphosphonates in nM concentrations inhibit farnesyl pyrophosphate synthase leading to accumulation of isopentenyl pyrophosphate (IPP) and the ATP/pyrophosphate adduct ApppI, which induces apoptosis in osteoclasts. For anti-tumor effects μM concentrations are needed and a sensitizer for bisphosphonate effects would be beneficial in clinical anti-tumor applications. We hypothesized that enhancing intracellular pyrophosphate accumulation via inhibition of probenecid-sensitive channels and transporters would sensitize tumor cells for bisphosphonates anti-tumor efficacy. Method MDA-MB-231, T47D and MCF-7 breast cancer cells were treated with BP (zoledronic acid, risedronate, ibandronate, alendronate) and the pyrophosphate channel inhibitors probenecid and novobiocin. We determined cell viability and caspase 3/7 activity (apoptosis), accumulation of IPP and ApppI, expression of ANKH, PANX1, ABCC1, SLC22A11, and the zoledronic acid target gene and tumor-suppressor KLF2. Results Treatment of MDA-MB-231 with BP induced caspase 3/7 activity, with zoledronic acid being the most effective. In MCF-7 and T47D either BP markedly suppressed cell viability with only minor effects on apoptosis. Co-treatment with probenecid enhanced BP effects on cell viability, IPP/ApppI accumulation as measurable in MCF-7 and T47D cells, caspase 3/7 activity and target gene expression. Novobiocin co-treatment of MDA-MB-231 yielded identical results on viability and apoptosis compared to probenecid, rendering SLC22A family members as candidate modulators of BP effects, whereas no such evidence was found for ANKH, ABCC1 and PANX1. Conclusions In summary, we demonstrate effects of various bisphosphonates on caspase 3/7 activity, cell viability and expression of tumor suppressor genes in breast cancer cells. Blocking probenecid and novobiocin-sensitive channels and transporters enhances BP anti-tumor effects and renders SLC22A family members as good candidates as BP modulators. Further studies will have to unravel if treatment with such BP-sensitizers translates into preclinical and clinical efficacy. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-265) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Huesa C, Zhu D, Glover JD, Ferron M, Karsenty G, Milne EM, Millan JL, Ahmed SF, Farquharson C, Morton NM, MacRae VE. Deficiency of the bone mineralization inhibitor NPP1 protects mice against obesity and diabetes. Dis Model Mech 2014; 7:1341-50. [PMID: 25368121 PMCID: PMC4257003 DOI: 10.1242/dmm.017905] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022] Open
Abstract
The emergence of bone as an endocrine regulator has prompted a re-evaluation of the role of bone mineralization factors in the development of metabolic disease. Ectonucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) controls bone mineralization through the generation of pyrophosphate, and levels of NPP1 are elevated both in dermal fibroblast cultures and muscle of individuals with insulin resistance. We investigated the metabolic phenotype associated with impaired bone metabolism in mice lacking the gene that encodes NPP1 (Enpp1−/− mice). Enpp1−/− mice exhibited mildly improved glucose homeostasis on a normal diet but showed a pronounced resistance to obesity and insulin resistance in response to chronic high-fat feeding. Enpp1−/− mice had increased levels of the insulin-sensitizing bone-derived hormone osteocalcin but unchanged insulin signalling within osteoblasts. A fuller understanding of the pathways of NPP1 could inform the development of novel therapeutic strategies for treating insulin resistance.
Collapse
Affiliation(s)
- Carmen Huesa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian, Edinburgh, EH25 9RG, UK
| | - Dongxing Zhu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian, Edinburgh, EH25 9RG, UK.
| | - James D Glover
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian, Edinburgh, EH25 9RG, UK
| | - Mathieu Ferron
- Integrative and Molecular Physiology Research Unit Institut de Recherches Cliniques de Montréal (IRCM), 110 Avenue des Pins Ouest - Laboratory 2750, Montréal, QC H2W 1R7, Canada
| | - Gerard Karsenty
- Department of Developmental Genetics, Columbia University, NY 10032, USA
| | - Elspeth M Milne
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian, Edinburgh, EH25 9RG, UK
| | - José Luis Millan
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | - S Faisal Ahmed
- Developmental Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Colin Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian, Edinburgh, EH25 9RG, UK
| | - Nicholas M Morton
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Vicky E MacRae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Roslin, Midlothian, Edinburgh, EH25 9RG, UK
| |
Collapse
|
28
|
Dabisch-Ruthe M, Kuzaj P, Götting C, Knabbe C, Hendig D. Pyrophosphates as a major inhibitor of matrix calcification in Pseudoxanthoma elasticum. J Dermatol Sci 2014; 75:109-20. [PMID: 24907773 DOI: 10.1016/j.jdermsci.2014.04.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/17/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Pseudoxanthoma elasticum (PXE) is a rare hereditary disorder characterized by late onset and progressive calcification of elastic fibers in skin, eyes and the cardiovascular system, exemplifying a model for conditions characterized by soft tissue calcification. OBJECTIVE The aim of our study was to characterize cellular inorganic pyrophosphate (PPi) homeostasis in PXE. METHODS Gene expression of PPi metabolizing enzymes was determined by quantitative real-time PCR after incubation up to 21 days with or without addition of Na2HPO4. Extracellular and cytosolic PPi concentrations were measured by enzyme-linked bioluminescence assay. ALP and ENPP1 activity was determined spectrophotometrically. We further established a human cell culture model suitable for investigating PXE and related disorders without addition of artificial calcification triggers. RESULTS Independently of the experimental conditions, PXE fibroblasts revealed a higher degree of matrix calcification. We observed that matrix calcification was associated with altered gene expression of PPi metabolizing enzymes in PXE fibroblasts. In this context, PXE fibroblasts exhibited significantly higher expression of ALP and OPN and reduced mRNA expression and activity of ENPP1. Here, for the first time cytosolic and extracellular PPi levels were shown to be strongly reduced in PXE fibroblasts. We further showed that PPi concentration in bovine and human sera additives had a strong impact on matrix calcification. In a last experimental line, we demonstrated that addition of PPi analogs reduced matrix calcification of PXE fibroblasts most likely by reducing ALP and OPN mRNA expression, restoring ENPP1 activity and subsequently elevating PPi concentrations. CONCLUSION The results of our study along with recent findings point to the essential role of PPi as the central regulatory metabolites preventing matrix calcification in PXE. But what remains to be determined is the underlying molecular mechanism leading to depletion of PPi in PXE. We further suggest that supplementation of PPi analogs might counteract pathological calcification in PXE and related disorders.
Collapse
Affiliation(s)
- Mareike Dabisch-Ruthe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Patricia Kuzaj
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | | | - Cornelius Knabbe
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Doris Hendig
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany.
| |
Collapse
|
29
|
Burnstock G, Ralevic V. Purinergic signaling and blood vessels in health and disease. Pharmacol Rev 2013; 66:102-92. [PMID: 24335194 DOI: 10.1124/pr.113.008029] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022] Open
Abstract
Purinergic signaling plays important roles in control of vascular tone and remodeling. There is dual control of vascular tone by ATP released as a cotransmitter with noradrenaline from perivascular sympathetic nerves to cause vasoconstriction via P2X1 receptors, whereas ATP released from endothelial cells in response to changes in blood flow (producing shear stress) or hypoxia acts on P2X and P2Y receptors on endothelial cells to produce nitric oxide and endothelium-derived hyperpolarizing factor, which dilates vessels. ATP is also released from sensory-motor nerves during antidromic reflex activity to produce relaxation of some blood vessels. In this review, we stress the differences in neural and endothelial factors in purinergic control of different blood vessels. The long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides in promoting migration and proliferation of both vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis and vessel remodeling during restenosis after angioplasty are described. The pathophysiology of blood vessels and therapeutic potential of purinergic agents in diseases, including hypertension, atherosclerosis, ischemia, thrombosis and stroke, diabetes, and migraine, is discussed.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London NW3 2PF, UK; and Department of Pharmacology, The University of Melbourne, Australia.
| | | |
Collapse
|
30
|
Villa-Bellosta R, Rivera-Torres J, Osorio FG, Acín-Pérez R, Enriquez JA, López-Otín C, Andrés V. Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson-Gilford progeria syndrome that is ameliorated on pyrophosphate treatment. Circulation 2013; 127:2442-51. [PMID: 23690466 DOI: 10.1161/circulationaha.112.000571] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Progerin is a mutant form of lamin A responsible for Hutchinson-Gilford progeria syndrome (HGPS), a premature aging disorder characterized by excessive atherosclerosis and vascular calcification that leads to premature death, predominantly of myocardial infarction or stroke. The goal of this study was to investigate mechanisms that cause excessive vascular calcification in HGPS. METHODS AND RESULTS We performed expression and functional studies in wild-type mice and knock-in Lmna(G609G/+) mice expressing progerin, which mimic the main clinical manifestations of HGPS. Lmna(G609G/+) mice showed excessive aortic calcification, and primary aortic vascular smooth muscle cells from these progeroid animals had an impaired capacity to inhibit vascular calcification. This defect in progerin-expressing vascular smooth muscle cells is associated with increased expression and activity of tissue-nonspecific alkaline phosphatase and mitochondrial dysfunction, which leads to reduced ATP synthesis. Accordingly, Lmna(G609G/+) vascular smooth muscle cells are defective for the production and extracellular accumulation of pyrophosphate, a major inhibitor of vascular calcification. We also found increased alkaline phosphatase activity and reduced ATP and pyrophosphate levels in plasma of Lmna(G609G/+) mice without changes in phosphorus and calcium. Treatment with pyrophosphate inhibited vascular calcification in progeroid mice. CONCLUSIONS Excessive vascular calcification in Lmna(G609G) mice is caused by reduced extracellular accumulation of pyrophosphate that results from increased tissue-nonspecific alkaline phosphatase activity and diminished ATP availability caused by mitochondrial dysfunction in vascular smooth muscle cells. Excessive calcification is ameliorated on pyrophosphate treatment. These findings reveal a previously undefined pathogenic process in HGPS that may also contribute to vascular calcification in normal aging, because progerin progressively accumulates in the vascular tissue of individuals without HGPS.
Collapse
Affiliation(s)
- Ricardo Villa-Bellosta
- Centro Nacional de Investigaciones Cardiovasculares, Melchor Fernández Almagro 3, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
31
|
Enzyme-coupled assays for simultaneous detection of nanomolar ATP, ADP, AMP, adenosine, inosine and pyrophosphate concentrations in extracellular fluids. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1967-75. [PMID: 22967714 DOI: 10.1016/j.bbamcr.2012.08.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/22/2012] [Revised: 07/19/2012] [Accepted: 08/02/2012] [Indexed: 12/20/2022]
Abstract
Purinergic signaling cascade includes the release of endogenous ATP and other agonists by chemical and mechanical stimuli, modulation of diverse cellular functions and subsequent ectoenzymatic inactivation. Basal release of extracellular purines and its physiological relevance remain controversial. Here we employed a combination of enzyme-coupled approaches for simultaneous bioluminescent (ATP, ADP, PP(i)) and fluorometric (AMP), adenosine, inosine, hypoxanthine) measurements of ATP and its metabolites without additional manipulations or derivatization of sampled biological fluids. By using these sensing techniques, extracellular purines were determined in various cells and tissues both at resting and pro-inflammatory conditions. The results obtained revealed the ability of endothelial, lymphoid and tumor cells to maintain extracellular ATP, ADP and adenosine at certain characteristic nanomolar levels. By quantifying the amounts of endogenously released and/or exogenously applied purines and their metabolites, these sensing techniques may be applied for evaluating purine-converting pathways on the cell surfaces and also for ex vivo analysis of purine homeostasis in the intact tissues. Furthermore, we provide novel insight into the mechanisms underlying tumorigenic effects of ATP by demonstrating the ability of metastatic prostate carcinoma PC3 and breast cancer MDA-MB-231 cells to maintain PP(i), which derives from extracellular ATP in the course of nucleotide pyrophosphatase/phosphodiesterase reaction. Collectively, the results imply a complex pattern of nucleotide turnover where extracellular ATP, ADP and adenosine are maintained at steady-state levels via conunterbalanced release and inactivation of ATP and other purines, and further suggest the importance of basal agonist release for continuous activation and/or desensitization of purinergic receptors.
Collapse
|
32
|
Orriss IR, Key ML, Brandao-Burch A, Patel JJ, Burnstock G, Arnett TR. The regulation of osteoblast function and bone mineralisation by extracellular nucleotides: The role of p2x receptors. Bone 2012; 51:389-400. [PMID: 22749889 DOI: 10.1016/j.bone.2012.06.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 04/04/2012] [Revised: 06/06/2012] [Accepted: 06/09/2012] [Indexed: 10/28/2022]
Abstract
Extracellular nucleotides, signalling through P2 receptors, regulate the function of both osteoblasts and osteoclasts. Osteoblasts are known to express multiple P2 receptor subtypes (P2X2,5,7 and P2Y(1),(2,4,6)), levels of which change during differentiation. ATP and UTP potently inhibit bone mineralisation in vitro, an effect mediated, at least in part, via the P2Y(2) receptor. We report here that primary rat osteoblasts express additional, functional P2 receptors (P2X1, P2X3, P2X4, P2X6, P2Y(12), P2Y(13) and P2Y(14)). Receptor expression changed with cellular differentiation: e.g., P2X4 receptor mRNA levels were 5-fold higher in mature, bone-forming osteoblasts, relative to immature, proliferating cells. The rank order of expression of P2 receptor mRNAs in mature osteoblasts was P2X4>>P2Y(1)>P2X2>P2Y(6)>P2X1>P2Y(2)>P2Y(4)>P2X6>P2X5>P2X7>P2X3>P2Y(14)>P2Y(13)>P2Y(12). Increased intracellular Ca(2+) levels following stimulation with P2X-selective agonists indicated the presence of functional receptors. To investigate whether P2X receptors might also regulate bone formation, osteoblasts were cultured for 14days with P2X receptor agonists. The P2X1 and P2X3 receptor agonists, α,β-meATP and β,γ-meATP inhibited bone mineralisation by 70% and 90%, respectively at 1μM, with complete abolition at ≥25μM; collagen production was unaffected. Bz-ATP, a P2X7 receptor agonist, reduced bone mineralisation by 70% and 99% at 10μM and 100μM, respectively. Osteoblast alkaline phosphatase activity was similarly inhibited by these agonists, whilst ecto-nucleotide pyrophosphatase/phosphodiesterase activity was increased. The effects of α,β-meATP and Bz-ATP were attenuated by antagonists selective for the P2X1 and P2X7 receptors, respectively. Our results show that normal osteoblasts express functional P2X receptors and that the P2X1 and P2X7 receptors negatively regulate bone mineralisation.
Collapse
Affiliation(s)
- Isabel R Orriss
- Department of Cell and Developmental Biology, University College London, London, UK.
| | | | | | | | | | | |
Collapse
|
33
|
Mackenzie NCW, Zhu D, Milne EM, van 't Hof R, Martin A, Quarles DL, Millán JL, Farquharson C, MacRae VE. Altered bone development and an increase in FGF-23 expression in Enpp1(-/-) mice. PLoS One 2012; 7:e32177. [PMID: 22359666 PMCID: PMC3281127 DOI: 10.1371/journal.pone.0032177] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/11/2011] [Accepted: 01/22/2012] [Indexed: 01/18/2023] Open
Abstract
Nucleotide pyrophosphatase phosphodiesterase 1 (NPP1) is required for the conversion of extracellular ATP into inorganic pyrophosphate (PP(i)), a recognised inhibitor of hydroxyapatite (HA) crystal formation. A detailed phenotypic assessment of a mouse model lacking NPP1 (Enpp1(-/-)) was completed to determine the role of NPP1 in skeletal and soft tissue mineralization in juvenile and adult mice. Histopathological assessment of Enpp1(-/-) mice at 22 weeks of age revealed calcification in the aorta and kidney and ectopic cartilage formation in the joints and spine. Radiographic assessment of the hind-limb showed hyper-mineralization in the talocrural joint and hypo-mineralization in the femur and tibia. MicroCT analysis of the tibia and femur disclosed altered trabecular architecture and bone geometry at 6 and 22 weeks of age in Enpp1(-/-) mice. Trabecular number, trabecular bone volume, structure model index, trabecular and cortical thickness were all significantly reduced in tibiae and femurs from Enpp1(-/-) mice (P<0.05). Bone stiffness as determined by 3-point bending was significantly reduced in Enpp1(-/-) tibiae and femurs from 22-week-old mice (P<0.05). Circulating phosphate and calcium levels were reduced (P<0.05) in the Enpp1(-/-) null mice. Plasma levels of osteocalcin were significantly decreased at 6 weeks of age (P<0.05) in Enpp1(-/-) mice, with no differences noted at 22 weeks of age. Plasma levels of CTx (Ratlaps™) and the phosphaturic hormone FGF-23 were significantly increased in the Enpp1(-/-) mice at 22 weeks of age (P<0.05). Fgf-23 messenger RNA expression in cavarial osteoblasts was increased 12-fold in Enpp1(-/-) mice compared to controls. These results indicate that Enpp1(-/-) mice are characterized by severe disruption to the architecture and mineralization of long-bones, dysregulation of calcium/phosphate homeostasis and changes in Fgf-23 expression. We conclude that NPP1 is essential for normal bone development and control of physiological bone mineralization.
Collapse
Affiliation(s)
- Neil Charles Wallace Mackenzie
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - Dongxing Zhu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - Elspeth M. Milne
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - Rob van 't Hof
- Rheumatic Diseases Unit, Molecular Medicine Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Aline Martin
- University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Darryl Leigh Quarles
- University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - José Luis Millán
- Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Colin Farquharson
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, United Kingdom
| | - Vicky Elisabeth MacRae
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, Scotland, United Kingdom
| |
Collapse
|
34
|
Curiel D, Sánchez G, Ramírez de Arellano C, Tárraga A, Molina P. Combined study of anion recognition by a carbazole-based neutral tripodal receptor in a competitive environment. Org Biomol Chem 2012; 10:1896-904. [DOI: 10.1039/c2ob06868k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
|
35
|
Lopez-Castejón G, Baroja-Mazo A, Pelegrín P. Novel macrophage polarization model: from gene expression to identification of new anti-inflammatory molecules. Cell Mol Life Sci 2011; 68:3095-107. [PMID: 21188461 PMCID: PMC11114961 DOI: 10.1007/s00018-010-0609-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2010] [Revised: 12/01/2010] [Accepted: 12/07/2010] [Indexed: 12/22/2022]
Abstract
Plasticity is a well-known property of macrophages that is controlled by different changes in environmental signals. Macrophage polarization is regarded as a spectrum of activation phenotypes adjusted from one activation extreme, the classic (M1), to the other, the alternative (M2) activation. Here we show, in vitro and in vivo, that both M1 and M2 macrophage phenotypes are tightly coupled to specific patterns of gene expression. Novel M2-associated markers were characterized and identified as genes controlling the extracellular metabolism of ATP to generate pyrophosphates (PPi). Stimulation of M1 macrophages with PPi dampens both NLR and TLR signaling and thus mediates cytokine production. In this context extracellular PPi enhanced the resolution phase of a murine peritonitis model via a decrease in pro-inflammatory cytokine production. Therefore, our study reveals an additional level of plasticity modulating the resolution of inflammation.
Collapse
Affiliation(s)
- Gloria Lopez-Castejón
- Faculty of Life Science, University of Manchester, Michael Smith Building D3315, Manchester, M13 9PT UK
| | - Alberto Baroja-Mazo
- Inflammation and Experimental Surgery Unit, University Hospital “Virgen de la Arrixaca”-Fundación Formación Investigación Sanitaria Región Murcia (FFIS), Carretera Madrid Cartagena s/n, 30120 Murcia, Spain
| | - Pablo Pelegrín
- Inflammation and Experimental Surgery Unit, University Hospital “Virgen de la Arrixaca”-Fundación Formación Investigación Sanitaria Región Murcia (FFIS), Carretera Madrid Cartagena s/n, 30120 Murcia, Spain
- Faculty of Life Science, University of Manchester, Michael Smith Building D3315, Manchester, M13 9PT UK
| |
Collapse
|
36
|
Kukulski F, Lévesque SA, Sévigny J. Impact of ectoenzymes on p2 and p1 receptor signaling. ADVANCES IN PHARMACOLOGY 2011; 61:263-99. [PMID: 21586362 DOI: 10.1016/b978-0-12-385526-8.00009-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
Abstract
P2 receptors that are activated by extracellular nucleotides (e.g., ATP, ADP, UTP, UDP, Ap(n)A) and P1 receptors activated by adenosine control a diversity of biological processes. The activation of these receptors is tightly regulated by ectoenzymes that metabolize their ligands. This review presents these enzymes as well as their roles in the regulation of P2 and P1 receptor activation. We focus specifically on the role of ectoenzymes in processes of our interest, that is, inflammation, vascular tone, and neurotransmission. An update on the development of ectonucleotidase inhibitors is also presented.
Collapse
Affiliation(s)
- Filip Kukulski
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | | | | |
Collapse
|
37
|
Trueblood KE, Mohr S, Dubyak GR. Purinergic regulation of high-glucose-induced caspase-1 activation in the rat retinal Müller cell line rMC-1. Am J Physiol Cell Physiol 2011; 301:C1213-23. [PMID: 21832250 DOI: 10.1152/ajpcell.00265.2011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
Abstract
Chronic activation of proinflammatory caspase-1 in the retinas of diabetic animals and patients in vivo and retinal Müller cells in vitro is well documented. In this study we characterized how elevated glucose and extracellular purines contribute to the activation of caspase-1 in a cultured rat Müller cell (rMC-1) model. The ability of high glucose (25 mM, 24 h) to activate caspase-1 was attenuated by either apyrase, which metabolizes extracellular ATP to AMP, or adenosine deaminase (ADA), which metabolizes extracellular adenosine to inosine. This suggested that autocrine stimulation of ATP-sensing P2 receptors and adenosine-sensing P1 receptors may in part mediate the response to high glucose. Exogenous ATP, 5'-N-ethylcarboxamido-adenosine (NECA), a nonselective P1 receptor agonist, or forskolin (FSK) increased caspase-1 activity in rMC-1 cells cultured in control glucose (5 mM) medium. Accumulation of active caspase-1 was also increased by dipyridamole, which suppresses adenosine reuptake. High-glucose stimulation of caspase-1 was attenuated by suramin, a nonselective P2 antagonist, or A2 adenosine receptor antagonists, but not by antagonism of P2X7 ATP-gated ion channel receptors. Although high glucose increased P2X7 mRNA, neither P2X7 protein nor function was detected in rMC-1 cells. The increased caspase-1 activity stimulated by high glucose, FSK, NECA, or ATP was correlated with increased gene expression of caspase-1 and thioredoxin-interacting-protein (TXNIP). These findings support a novel role for autocrine P1 and P2 purinergic receptors coupled to cAMP signaling cascades and transcriptional induction of caspase-1 in mediating the high-glucose-induced activation of caspase-1 and secretion of IL-1β in a cell culture model of nonhematopoietic retinal Müller cells.
Collapse
Affiliation(s)
- Katherine E Trueblood
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | |
Collapse
|
38
|
Gendaszewska-Darmach E, Kucharska M. Nucleotide receptors as targets in the pharmacological enhancement of dermal wound healing. Purinergic Signal 2011; 7:193-206. [PMID: 21519856 PMCID: PMC3146642 DOI: 10.1007/s11302-011-9233-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/10/2010] [Accepted: 04/10/2011] [Indexed: 12/15/2022] Open
Abstract
With a growing interest of the involvement of extracellular nucleotides in both normal physiology and pathology, it has become evident that P2 receptor agonists and antagonists may have therapeutic potential. The P2Y2 receptor agonists (diquafosol tetrasodium and denufosol tetrasodium) are in the phase 3 of clinical trials for dry eye and cystic fibrosis, respectively. The thienopyridine derivatives clopidogrel and ticlopidine (antagonists of the platelet P2Y12 receptor) have been used in cardiovascular medicine for nearly a decade. Purines and pyrimidines may be of therapeutic potential also in wound healing since ATP and UTP have been shown to have many hallmarks of wound healing factors. Recent studies have demonstrated that extracellular nucleotides take part in all phases of wound repair: hemostasis, inflammation, tissue formation, and tissue remodeling. This review is focused on the potent purines and pyrimidines which regulate many physiological processes important for wound healing.
Collapse
Affiliation(s)
- Edyta Gendaszewska-Darmach
- Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Stefanowskiego 4/10, 90-924, Lodz, Poland,
| | | |
Collapse
|
39
|
Villa-Bellosta R, Wang X, Millán JL, Dubyak GR, O'Neill WC. Extracellular pyrophosphate metabolism and calcification in vascular smooth muscle. Am J Physiol Heart Circ Physiol 2011; 301:H61-8. [PMID: 21490328 DOI: 10.1152/ajpheart.01020.2010] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 01/09/2023]
Abstract
Extracellular inorganic pyrophosphate (ePP(i)) is an important endogenous inhibitor of vascular calcification, but it is not known whether systemic or local vascular PP(i) metabolism controls calcification. To determine the role of ePP(i) in vascular smooth muscle, we identified the pathways responsible for ePP(i) production and hydrolysis in rat and mouse aortas and manipulated them to demonstrate their role in the calcification of isolated aortas in culture. Rat and mouse aortas contained mRNA for ectonucleotide pyrophosphatase/phosphodiesterases (NPP1-3), the putative PP(i) transporter ANK, and tissue-nonspecific alkaline phosphatase (TNAP). Synthesis of PP(i) from ATP in aortas was blocked by β,γ-methylene-ATP, an inhibitor of NPPs. Aortas from mice lacking NPP1 (Enpp1(-/-)) did not synthesize PP(i) from ATP and exhibited increased calcification in culture. Although ANK-mediated transport of PP(i) could not be demonstrated in aortas, aortas from mutant (ank/ank) mice calcified more in culture than did aortas from normal (ANK/ANK) mice. Hydrolysis of PP(i) was reduced 25% by β,γ-methylene-ATP and 50% by inhibition of TNAP. Hydrolysis of PP(i) was increased in cells overexpressing TNAP or NPP3 but not NPP1 and was not reduced in Enpp1(-/-) aortas. Overexpression of TNAP increased calcification of cultured aortas. The results show that smooth muscle NPP1 and TNAP control vascular calcification through effects on synthesis and hydrolysis of ePP(i), indicating an important inhibitory role of locally produced PP(i). Smooth muscle ANK also affects calcification, but this may not be mediated through transport of PP(i). NPP3 is identified as an additional pyrophosphatase that could influence vascular calcification.
Collapse
|
40
|
Costello JC, Rosenthal AK, Kurup IV, Masuda I, Medhora M, Ryan LM. Parallel regulation of extracellular ATP and inorganic pyrophosphate: roles of growth factors, transduction modulators, and ANK. Connect Tissue Res 2011; 52:139-46. [PMID: 20604715 DOI: 10.3109/03008207.2010.491928] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Extracellular inorganic pyrophosphate (ePPi) is a key regulator of pathologic mineralization in articular cartilage. Articular chondrocytes generate ePPi by the transportation of intracellular PPi (iPPi) through transport mechanisms such as ANK or by the degradation of extracellular adenosine triphosphate (eATP) by ectoenzymes. Although numerous modulators of ePPi have been characterized, little is known about eATP elaboration in cartilage. We sought to determine (1) whether eATP is coordinately regulated with ePPi and (2) whether ANK transports ATP. METHODS Primary articular chondrocytes were treated with factors known to modulate ePPi levels including growth factors (TGFβ1 and IGF-1), anion channel inhibitors, and chemicals that alter adenylyl cyclase and protein kinase C activities. Additional chondrocyte monolayers were infected with adenovirus containing functional (Ad-ANK) or mutated (Ad-ANK mutant) ANK sequences. eATP levels were measured with a bioluminescent assay. RESULTS TGFβ1 enhanced eATP accumulation by 33%, whereas IGF-1 decreased eATP accumulation by 63% and attenuated TGFβ1-induced eATP release by 72%. Forskolin and probenecid diminished eATP accumulation by 55% and 89%. Phorbol-12-myristate-13-acetate increased eATP by 29%. Transfection of chondrocytes with Ad-ANK caused a 10-fold increase in eATP compared with control values. CONCLUSION Modulation of eATP by various factors paralleled their effects on ePPi production, suggesting a shared pathway of ePPi and eATP production and implicating ANK in eATP transport. As eATP directly contributes to pathologic mineralization in articular cartilage, understanding eATP regulation may lead to effective therapies for crystal-associated arthritis.
Collapse
Affiliation(s)
- Jill C Costello
- Division of Rheumatology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin 53295-1000, USA
| | | | | | | | | | | |
Collapse
|
41
|
Villa-Bellosta R, Sorribas V. Calcium Phosphate Deposition With Normal Phosphate Concentration - Role of Pyrophosphate -. Circ J 2011; 75:2705-10. [DOI: 10.1253/circj.cj-11-0477] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 11/09/2022]
|
42
|
Osmond DA, Inscho EW. P2X(1) receptor blockade inhibits whole kidney autoregulation of renal blood flow in vivo. Am J Physiol Renal Physiol 2010; 298:F1360-8. [PMID: 20335318 DOI: 10.1152/ajprenal.00016.2010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022] Open
Abstract
In vitro experiments demonstrate that P2X(1) receptor activation is important for normal afferent arteriolar autoregulatory behavior, but direct in vivo evidence for this relationship occurring in the whole kidney is unavailable. Experiments were performed to test the hypothesis that P2X(1) receptors are important for autoregulation of whole kidney blood flow. Renal blood flow (RBF) was measured in anesthetized male Sprague-Dawley rats before and during P2 receptor blockade with PPADS, P2X(1) receptor blockade with IP5I, or A(1) receptor blockade with DPCPX. Both P2X(1) and A(1) receptor stimulation with alpha,beta-methylene ATP and CPA, respectively, caused dose-dependent decreases in RBF. Administration of either PPADS or IP5I significantly blocked P2X(1) receptor stimulation. Likewise, administration of DPCPX significantly blocked A(1) receptor activation to CPA. Autoregulatory behavior was assessed by measuring RBF responses to reductions in renal perfusion pressure. In vehicle-infused rats, as pressure was decreased from 120 to 100 mmHg, there was no decrease in RBF. However, in either PPADS- or IP5I-infused rats, each decrease in pressure resulted in a significant decrease in RBF, demonstrating loss of autoregulatory ability. In DPCPX-infused rats, reductions in pressure did not cause significant reductions in RBF over the pressure range of 100-120 mmHg, but the autoregulatory curve tended to be steeper than vehicle-infused rats over the range of 80-100 mmHg, suggesting that A(1) receptors may influence RBF at lower pressures. These findings are consistent with in vitro data from afferent arterioles and support the hypothesis that P2X(1) receptor activation is important for whole kidney autoregulation in vivo.
Collapse
Affiliation(s)
- David A Osmond
- Department of Physiology, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | |
Collapse
|
43
|
Chara O, Pafundo DE, Schwarzbaum PJ. Negative feedback of extracellular ADP on ATP release in goldfish hepatocytes: a theoretical study. J Theor Biol 2010; 264:1147-58. [PMID: 20303983 DOI: 10.1016/j.jtbi.2010.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2009] [Revised: 02/09/2010] [Accepted: 03/15/2010] [Indexed: 11/25/2022]
Abstract
A mathematical model was built to account for the kinetic of extracellular ATP (ATPe) and extracellular ADP (ADPe) concentrations from goldfish hepatocytes exposed to hypotonicity. The model was based on previous experimental results on the time course of ATPe accumulation, ectoATPase activity, and cell viability [Pafundo et al., 2008]. The kinetic of ATPe is controlled by a lytic ATP flux, a non-lytic ATP flux, and ecto-ATPase activity, whereas ADPe kinetic is governed by a lytic ADP flux and both ecto-ATPase and ecto-ADPase activities. Non-lytic ATPe efflux was included as a diffusion equation modulated by ATPe activation (positive feedback) and ADPe inhibition (negative feedback). The model yielded physically meaningful and stable steady-state solutions, was able to fit the experimental time evolution of ATPe and simulated the concomitant kinetic of ADPe. According to the model during the first minute of hypotonicity the concentration of ATPe is mainly governed by both lytic and non-lytic ATP efflux, with almost no contribution from ecto-ATPase activity. Later on, ecto-ATPase activity becomes important in defining the time dependent decay of ATPe levels. ADPe inhibition of the non-lytic ATP efflux was strong, whereas ATPe activation was minimal. Finally, the model was able to predict the consequences of partial inhibition of ecto-ATPase activity on the ATPe kinetic, thus emulating the exposure of goldfish cells to hypotonic medium in the presence of the ATP analog AMP-PCP. The model predicts this analog to both inhibit ectoATPase activity and increase non-lytic ATP release.
Collapse
Affiliation(s)
- Osvaldo Chara
- Instituto de Física de Líquidos y Sistemas Biológicos (CONICET La Plata, UNLP, CIC), Calle 59 No. 789, c.c. 565, 1900 La Plata, Argentina.
| | | | | |
Collapse
|
44
|
Prosdocimo DA, Wyler SC, Romani AM, O'Neill WC, Dubyak GR. Regulation of vascular smooth muscle cell calcification by extracellular pyrophosphate homeostasis: synergistic modulation by cyclic AMP and hyperphosphatemia. Am J Physiol Cell Physiol 2010; 298:C702-13. [PMID: 20018951 PMCID: PMC2838579 DOI: 10.1152/ajpcell.00419.2009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/16/2009] [Accepted: 12/14/2009] [Indexed: 11/22/2022]
Abstract
Vascular calcification is a multifaceted process involving gain of calcification inducers and loss of calcification inhibitors. One such inhibitor is inorganic pyrophosphate (PP(i)), and regulated generation and homeostasis of extracellular PP(i) is a critical determinant of soft-tissue mineralization. We recently described an autocrine mechanism of extracellular PP(i) generation in cultured rat aortic vascular smooth muscle cells (VSMC) that involves both ATP release coupled to the ectophosphodiesterase/pyrophosphatase ENPP1 and efflux of intracellular PP(i) mediated or regulated by the plasma membrane protein ANK. We now report that increased cAMP signaling and elevated extracellular inorganic phosphate (P(i)) act synergistically to induce calcification of these VSMC that is correlated with progressive reduction in ability to accumulate extracellular PP(i). Attenuated PP(i) accumulation was mediated in part by cAMP-dependent decrease in ANK expression coordinated with cAMP-dependent increase in expression of TNAP, the tissue nonselective alkaline phosphatase that degrades PP(i). Stimulation of cAMP signaling did not alter ATP release or ENPP1 expression, and the cAMP-induced changes in ANK and TNAP expression were not sufficient to induce calcification. Elevated extracellular P(i) alone elicited only minor calcification and no significant changes in ANK, TNAP, or ENPP1. In contrast, combined with a cAMP stimulus, elevated P(i) induced decreases in the ATP release pathway(s) that supports ENPP1 activity; this resulted in markedly reduced rates of PP(i) accumulation that facilitated robust calcification. Calcified VSMC were characterized by maintained expression of multiple SMC differentiation marker proteins including smooth muscle (SM) alpha-actin, SM22alpha, and calponin. Notably, addition of exogenous ATP (or PP(i) per se) rescued cAMP + phosphate-treated VSMC cultures from progression to the calcified state. These observations support a model in which extracellular PP(i) generation mediated by both ANK- and ATP release-dependent mechanisms serves as a critical regulator of VSMC calcification.
Collapse
Affiliation(s)
- Domenick A Prosdocimo
- Dept. of Physiology and Biophysics, Case Western Reserve Univ., School of Medicine, 2109 Adelbert Rd., Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
Cells release adenosine triphosphate (ATP), which activates plasma membrane-localized P2X and P2Y receptors and thereby modulates cellular function in an autocrine or paracrine manner. Release of ATP and the subsequent activation of P2 receptors help establish the basal level of activation (sometimes termed "the set point") for signal transduction pathways and regulate a wide array of responses that include tissue blood flow, ion transport, cell volume regulation, neuronal signaling, and host-pathogen interactions. Basal release and autocrine or paracrine responses to ATP are multifunctional, evolutionarily conserved, and provide an economical means for the modulation of cell, tissue, and organismal biology.
Collapse
Affiliation(s)
- Ross Corriden
- Departments of Pharmacology and Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|