1
|
Nwia SM, Li XC, Leite APDO, Hassan R, Zhuo JL. The Na +/H + Exchanger 3 in the Intestines and the Proximal Tubule of the Kidney: Localization, Physiological Function, and Key Roles in Angiotensin II-Induced Hypertension. Front Physiol 2022; 13:861659. [PMID: 35514347 PMCID: PMC9062697 DOI: 10.3389/fphys.2022.861659] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/25/2022] [Indexed: 01/29/2023] Open
Abstract
The sodium (Na+)/hydrogen (H+) exchanger 3 (NHE3) is one of the most important Na+/H+ antiporters in the small intestines of the gastrointestinal tract and the proximal tubules of the kidney. The roles of NHE3 in the regulation of intracellular pH and acid-base balance have been well established in cellular physiology using in vitro techniques. Localized primarily on the apical membranes in small intestines and proximal tubules, the key action of NHE3 is to facilitate the entry of luminal Na+ and the extrusion of intracellular H+ from intestinal and proximal tubule tubular epithelial cells. NHE3 is, directly and indirectly, responsible for absorbing the majority of ingested Na+ from small and large intestines and reabsorbing >50% of filtered Na+ in the proximal tubules of the kidney. However, the roles of NHE3 in the regulation of proximal tubular Na+ transport in the integrative physiological settings and its contributions to the basal blood pressure regulation and angiotensin II (Ang II)-induced hypertension have not been well studied previously due to the lack of suitable animal models. Recently, novel genetically modified mouse models with whole-body, kidney-specific, or proximal tubule-specific deletion of NHE3 have been generated by us and others to determine the critical roles and underlying mechanisms of NHE3 in maintaining basal body salt and fluid balance, blood pressure homeostasis, and the development of Ang II-induced hypertension at the whole-body, kidney, or proximal tubule levels. The objective of this invited article is to review, update, and discuss recent findings on the critical roles of intestinal and proximal tubule NHE3 in maintaining basal blood pressure homeostasis and their potential therapeutic implications in the development of angiotensin II (Ang II)-dependent hypertension.
Collapse
Affiliation(s)
- Sarah M. Nwia
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States,Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Xiao Chun Li
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States,Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Ana Paula de Oliveira Leite
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States,Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Rumana Hassan
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States,Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jia Long Zhuo
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States,Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States,*Correspondence: Jia Long Zhuo,
| |
Collapse
|
2
|
Amino Acids 785, 787 of the Na +/H + Exchanger Cytoplasmic Tail Modulate Protein Activity and Tail Conformation. Int J Mol Sci 2021; 22:ijms222111349. [PMID: 34768780 PMCID: PMC8583816 DOI: 10.3390/ijms222111349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
The mammalian Na+/H+ exchanger isoform 1 (NHE1) is a plasma membrane protein ubiquitously present in humans. It regulates intracellular pH by removing an intracellular proton in exchange for an extracellular sodium. It consists of a 500 amino acid membrane domain plus a 315 amino acid, regulatory cytosolic tail. Here, we investigated the effect of mutation of two amino acids of the regulatory tail, Ser785 and Ser787, that were similar in location and context to two amino acids of the Arabidopsis Na+/H+ exchanger SOS1. Mutation of these two amino acids to either Ala or phosphomimetic Glu did not affect surface targeting but led to a slight reduction in the level of protein expressed. The activity of the NHE1 protein was reduced in the phosphomimetic mutations and the effect was due to a decrease in Vmax activity. The Ser to Glu mutations also caused a change in the apparent molecular weight of both the full-length protein and of the cytosolic tail of NHE1. A conformational change in this region was indicated by differential trypsin sensitivity. We also found that a peptide containing amino acids 783–790 bound to several more proximal regions of the NHE1 tail in in vitro protein interaction experiments. The results are the first characterization of these two amino acids and show that they have significant effects on enzyme kinetics and the structure of the NHE1 protein.
Collapse
|
3
|
Characterization of modeled inhibitory binding sites on isoform one of the Na +/H + exchanger. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183648. [PMID: 33992631 DOI: 10.1016/j.bbamem.2021.183648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/31/2022]
Abstract
Mammalian Na+/H+ exchanger isoform one (NHE1) is a plasma membrane protein responsible for pH regulation in mammalian cells. Excess activity of the protein promotes heart disease and is a trigger of metastasis in cancer. Inhibitors of the protein exist but problems in specificity have delayed their clinical application. Here we examined amino acids involved in two modeled inhibitor binding sites (A, B) in human NHE1. Twelve mutations (Asp159, Phe348, Ser351, Tyr381, Phe413, Leu465, Gly466, Tyr467, Leu468, His473, Met476, Leu481) were made and characterized. Mutants S351A, F413A, Y467A, L468A, M476A and L481A had 40-70% of wild type expression levels, while G466A and H473A expressed 22% ~ 30% of the wild type levels. Most mutants, were targeted to the cell surface at levels similar to wild type NHE1, approximately 50-70%, except for F413A and G466A, which had very low surface targeting. Most of the mutants had measurable activity except for D159A, F413A and G466A. Resistance to inhibition by EMD87580 was elevated in mutants F438A, L465A and L468A and reduced in mutants S351A, Y381A, H473A, M476A and L481A. All mutants with large alterations in inhibitory properties showed reduced Na+ affinity. The greatest changes in activity and inhibitor sensitivity were in mutants present in binding site B which is more closely associated with TM4 and C terminal of extracellular loop 5, and is situated between the putative scaffolding domain and transport domain. The results help define the inhibitor binding domain of the NHE1 protein and identify new amino acids involved in inhibitor binding.
Collapse
|
4
|
Role of Genetic Mutations of the Na +/H + Exchanger Isoform 1, in Human Disease and Protein Targeting and Activity. Mol Cell Biochem 2020; 476:1221-1232. [PMID: 33201382 DOI: 10.1007/s11010-020-03984-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/06/2020] [Indexed: 01/22/2023]
Abstract
The mammalian Na+/H+ exchanger isoform one (NHE1) is a plasma membrane protein that is ubiquitously present in human cells. It functions to regulate intracellular pH removing an intracellular proton in exchange for one extracellular sodium and is involved in heart disease and in promoting metastasis in cancer. It is made of a 500 amino acid membrane domain plus a 315 amino acid, regulatory cytosolic tail. The membrane domain is thought to have 12 transmembrane segments and a large membrane-associated extracellular loop. Early studies demonstrated that in mice, disruption of the NHE1 gene results in locomotor ataxia and a phenotype of slow-wave epilepsy. Defects included a progressive neuronal degeneration. Growth and reproductive ability were also reduced. Recent studies have identified human autosomal homozygous recessive mutations in the NHE1 gene (SLC9A1) that result in impaired development, ataxia and other severe defects, and explain the cause of the human disease Lichtenstein-Knorr syndrome. Other human mutations have been identified that are stop codon polymorphisms. These cause short non-functional NHE1 proteins, while other genetic polymorphisms in the NHE1 gene cause impaired expression of the NHE1 protein, reduced activity, enhanced protein degradation or altered kinetic activation of the protein. Since NHE1 plays a key role in many human physiological functions and in human disease, genetic polymorphisms of the protein that significantly alter its function and are likely play significant roles in varying human phenotypes and be involved in disease.
Collapse
|
5
|
Amino Acids 563-566 of the Na +/H + Exchanger Isoform 1 C-Terminal Cytosolic Tail Prevent Protein Degradation and Stabilize Protein Expression and Activity. Int J Mol Sci 2020; 21:ijms21051737. [PMID: 32138345 PMCID: PMC7084640 DOI: 10.3390/ijms21051737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 12/28/2022] Open
Abstract
Isoform one of the mammalian Na+/H+ exchanger is a plasma membrane protein that is ubiquitously present in humans. It regulates intracellular pH through the removal of one intracellular proton in exchange for a single extracellular sodium. It consists of a 500 amino acid membrane domain plus a 315 amino acid, C-terminal tail. We examined amino acids of the C-terminal tail that are important in the targeting and activity of the protein. A previous study demonstrated that stop codon polymorphisms can result in decreased activity, expression, targeting and enhanced protein degradation. Here, we determine elements that are critical in these anomalies. A series of progressive deletions of the C-terminal tail demonstrated a progressive decrease in activity and targeting, though these remained until a final drop off with the deletion of amino acids 563–566. The deletion of the 562LIAGERS568 sequence or the alteration to the 562LAAAARS568 sequence caused the decreased protein expression, aberrant targeting, reduced activity and enhanced degradation of the Na+/H+ exchanger (NHE1) protein. The 562LIAGERS568 sequence bound to other regions of the C-terminal cytosolic domain. We suggest this region is necessary for the activity, targeting, stability, and expression of the NHE1 protein. The results define a new sequence that is important in maintenance of NHE1 protein levels and activity.
Collapse
|
6
|
Dutta D, Fliegel L. Molecular modeling and inhibitor docking analysis of the Na +/H + exchanger isoform one 1. Biochem Cell Biol 2018; 97:333-343. [PMID: 30058365 DOI: 10.1139/bcb-2018-0158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Na+/H+ exchanger isoform one (NHE1) is a mammalian plasma membrane protein that removes intracellular protons, thereby elevating intracellular pH (pHi). NHE1 uses the energy of allowing an extracellular sodium down its gradient into cells to remove one intracellular proton. The ubiquitous protein has several important physiological and pathological influences on mammalian cells as a result of its activity. The three-dimensional structure of human NHE1 (hNHE1) is not known. Here, we modeled NHE1 based on the structure of MjNhaP1 of Methanocaldoccocus jannaschii in combination with biochemical surface accessibility data. hNHE1 contained 12 transmembrane segments including a characteristic Na+/H+ antiporter fold of two transmembrane segments with a helix - extended region - helix conformation crossing each other within the membrane. Amino acids 363-410 mapped principally to the extracellular surface as an extracellular loop (EL5). A large preponderance of amino acids shown to be surface accessible by biochemical experiments mapped near to, or on, the extracellular surface. Docking of Na+/H+ exchanger inhibitors to the extracellular surface suggested that inhibitor binding on an extracellular site is made up from several amino acids of different regions of the protein. The results present a novel testable, three-dimensional model illustrating NHE1 structure and accounting for experimental biochemical data.
Collapse
Affiliation(s)
- Debajyoti Dutta
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.,Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
7
|
Mitochondrial function controls intestinal epithelial stemness and proliferation. Nat Commun 2016; 7:13171. [PMID: 27786175 PMCID: PMC5080445 DOI: 10.1038/ncomms13171] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/09/2016] [Indexed: 02/07/2023] Open
Abstract
Control of intestinal epithelial stemness is crucial for tissue homeostasis. Disturbances in epithelial function are implicated in inflammatory and neoplastic diseases of the gastrointestinal tract. Here we report that mitochondrial function plays a critical role in maintaining intestinal stemness and homeostasis. Using intestinal epithelial cell (IEC)-specific mouse models, we show that loss of HSP60, a mitochondrial chaperone, activates the mitochondrial unfolded protein response (MT-UPR) and results in mitochondrial dysfunction. HSP60-deficient crypts display loss of stemness and cell proliferation, accompanied by epithelial release of WNT10A and RSPO1. Sporadic failure of Cre-mediated Hsp60 deletion gives rise to hyperproliferative crypt foci originating from OLFM4+ stem cells. These effects are independent of the MT-UPR-associated transcription factor CHOP. In conclusion, compensatory hyperproliferation of HSP60+ escaper stem cells suggests paracrine release of WNT-related factors from HSP60-deficient, functionally impaired IEC to be pivotal in the control of the proliferative capacity of the stem cell niche. It is unclear what role mitochondrial function plays in maintaining intestinal epithelial cell (IEC) homeostasis. Here, the authors deplete a mitochondrial chaperone, heat shock protein 60 (HSP60) in IEC and observe a loss of stemness and cell proliferation, and suggest this is accompanied by a compensatory release of WNT-related factors.
Collapse
|
8
|
Saha S, Aranda E, Hayakawa Y, Bhanja P, Atay S, Brodin NP, Li J, Asfaha S, Liu L, Tailor Y, Zhang J, Godwin AK, Tome WA, Wang TC, Guha C, Pollard JW. Macrophage-derived extracellular vesicle-packaged WNTs rescue intestinal stem cells and enhance survival after radiation injury. Nat Commun 2016; 7:13096. [PMID: 27734833 PMCID: PMC5065628 DOI: 10.1038/ncomms13096] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022] Open
Abstract
WNT/β-catenin signalling is crucial for intestinal homoeostasis. The intestinal epithelium and stroma are the major source of WNT ligands but their origin and role in intestinal stem cell (ISC) and epithelial repair remains unknown. Macrophages are a major constituent of the intestinal stroma. Here, we analyse the role of macrophage-derived WNT in intestinal repair in mice by inhibiting their release using a macrophage-restricted ablation of Porcupine, a gene essential for WNT synthesis. Such Porcn-depleted mice have normal intestinal morphology but are hypersensitive to radiation injury in the intestine compared with wild-type (WT) littermates. Porcn-null mice are rescued from radiation lethality by treatment with WT but not Porcn-null bone marrow macrophage-conditioned medium (CM). Depletion of extracellular vesicles (EV) from the macrophage CM removes WNT function and its ability to rescue ISCs from radiation lethality. Therefore macrophage-derived EV-packaged WNTs are essential for regenerative response of intestine against radiation. The intestinal stroma secretes WNT ligands but the role of WNT in intestinal repair is unclear. Here, the authors show that when WNT synthesis is ablated from stromal macrophages, the intestine morphology is normal but hypersensitive to radiation injury, implicating macrophage-derived WNT in intestinal repair.
Collapse
Affiliation(s)
- Subhrajit Saha
- Department of Radiation Oncology, Albert Einstein College of Medicine &Montefiore Medical Center, Bronx, New York 10461, USA
| | - Evelyn Aranda
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Yoku Hayakawa
- Department of Medicine, Division of Digestive and Liver Diseases, Irving Cancer Research Center, Columbia University, New York, New York 10032, USA
| | - Payel Bhanja
- Department of Radiation Oncology, Albert Einstein College of Medicine &Montefiore Medical Center, Bronx, New York 10461, USA
| | - Safinur Atay
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - N Patrik Brodin
- Department of Radiation Oncology, Albert Einstein College of Medicine &Montefiore Medical Center, Bronx, New York 10461, USA
| | - Jiufeng Li
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Samuel Asfaha
- Department of Medicine, Division of Digestive and Liver Diseases, Irving Cancer Research Center, Columbia University, New York, New York 10032, USA
| | - Laibin Liu
- Department of Radiation Oncology, Albert Einstein College of Medicine &Montefiore Medical Center, Bronx, New York 10461, USA
| | - Yagnesh Tailor
- Department of Medicine, Division of Digestive and Liver Diseases, Irving Cancer Research Center, Columbia University, New York, New York 10032, USA
| | - Jinghang Zhang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, 10461, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Wolfgang A Tome
- Department of Radiation Oncology, Albert Einstein College of Medicine &Montefiore Medical Center, Bronx, New York 10461, USA
| | - Timothy C Wang
- Department of Medicine, Division of Digestive and Liver Diseases, Irving Cancer Research Center, Columbia University, New York, New York 10032, USA
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine &Montefiore Medical Center, Bronx, New York 10461, USA.,Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Jeffrey W Pollard
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.,MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Carbohydrate feeding has been shown to be ergogenic, but recently substantial advances have been made in optimizing the guidelines for carbohydrate intake during prolonged exercise. RECENT FINDINGS It was found that limitations to carbohydrate oxidation were in the absorptive process most likely because of a saturation of carbohydrate transporters. By using a combination of carbohydrates that use different intestinal transporters for absorption it was shown that carbohydrate delivery and oxidation could be increased. Studies demonstrated increases in exogenous carbohydrate oxidation rates of up to 65% of glucose: fructose compared with glucose only. Exogenous carbohydrate oxidation rates reach values of 1.75 g/min whereas previously it was thought that 1 g/min was the absolute maximum. The increased carbohydrate oxidation with multiple transportable carbohydrates was accompanied by increased fluid delivery and improved oxidation efficiency, and thus the likelihood of gastrointestinal distress may be diminished. Studies also demonstrated reduced fatigue and improved exercise performance with multiple transportable carbohydrates compared with a single carbohydrate. SUMMARY Multiple transportable carbohydrates, ingested at high rates, can be beneficial during endurance sports in which the duration of exercise is 3 h or more.
Collapse
Affiliation(s)
- Asker E Jeukendrup
- School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
10
|
Slepkov E, Fliegel L. Regulation of Expression of the Na+/H+ Exchanger by Thyroid Hormone. VITAMINS AND HORMONES 2004; 69:249-69. [PMID: 15196885 DOI: 10.1016/s0083-6729(04)69009-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The Na+/H+ exchanger is a pH regulatory protein with a ubiquitous distribution in eukaryotic cells. Several isoforms of the Na+/H+ exchanger are known. The first isoform to be characterized and cloned, NHE1, is present on the plasma membrane of cells and functions to remove one intracellular proton in exchange for one extracellular sodium ion. It is involved in pH regulation, cell growth, differentiation, and cell migration. NHE1 is also involved in the cycle of damage that occurs in the heart with ischemic heart disease. Recent studies have shown that the Na+/H+ exchanger is regulated in response to thyroid hormone. Reduction in circulating thyroid hormone levels reduces the amount of both protein and mRNA of NHE1. Conversely, an elevation of thyroid hormone levels has the opposite effects. Transcriptional regulation of NHE1 expression has been demonstrated. The NHE1 promoter contains a TR alpha(1) binding site located between -841 to -800 bp. This element responds positively to TR alpha(1). This regulation of the NHE1 promoter by thyroid hormone is proposed to be responsible for postnatal changes in expression of the Na+/H+ exchanger.
Collapse
Affiliation(s)
- Emily Slepkov
- Department of Biochemistry, University of Alberta, Edmonton, Canada T6G 2H7
| | | |
Collapse
|
11
|
Boudry G, Lallès JP, Malbert CH, Bobillier E, Sève B. Diet-related adaptation of the small intestine at weaning in pigs is functional rather than structural. J Pediatr Gastroenterol Nutr 2002; 34:180-7. [PMID: 11840037 DOI: 10.1097/00005176-200202000-00014] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND Incidence of diarrhea at weaning in commercial pigs is an important problem, and diet is thought to be a predisposing factor. The aim of this study was to determine the impact of switching from milk-based to cereal-based diets on the morphology and function of the small intestine of piglets using a model of delayed weaning to isolate the influence of the diet from that of environmental and social factors. METHODS Forty-five piglets received a milk-based diet for 5 weeks after weaning. Thirty piglets were then switched from milk-based to wheat- or barley-based diets, mimicking the dietary change that occurs at weaning. The last 15 piglets remained on the milk-based diet. Piglets were killed 4 days after the dietary switch. Jejunal mucosa morphometry and enzyme activities were measured. Ussing chambers were used to measure intestinal permeability to macromolecules, basal electrical properties, glucose absorption, and induced chloride-secretion. RESULTS Alkaline phosphatase- and sucrase-specific activities were higher in both groups of cereal-fed piglets than in milk-fed piglets. Dipeptidylpeptidase IV activity was higher in wheat-fed piglets than in the other groups. Na + -dependent glucose absorption was 1.7-fold higher in cereals-fed piglets than in milk-fed piglets. Serotonin-induced and vasoactive intestinal polypeptide-induced chloride secretion was doubled in cereals-fed piglets. Dietary transition did not influence the other parameters. CONCLUSIONS These results indicate that switching from milk to cereals increased some mucosal enzyme activities, intestinal Na + -dependent glucose absorption, and response to secretagogues. This supports the hypothesis that dietary factors could initiate diarrhea in the presence of other aggravating factors, such as pathogens or environmental stress.
Collapse
Affiliation(s)
- Gaëlle Boudry
- Unité Mixte de Recherche sur le Veau et le Porc, INRA, Saint Gilles, France.
| | | | | | | | | |
Collapse
|
12
|
Korn T, Kühlkamp T, Track C, Schatz I, Baumgarten K, Gorboulev V, Koepsell H. The plasma membrane-associated protein RS1 decreases transcription of the transporter SGLT1 in confluent LLC-PK1 cells. J Biol Chem 2001; 276:45330-40. [PMID: 11562363 DOI: 10.1074/jbc.m105975200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously we cloned RS1, a 67-kDa polypeptide that is associated with the intracellular side of the plasma membrane. Upon co-expression in Xenopus laevis oocytes, human RS1 decreased the concentration of the Na(+)-D-glucose co-transporter hSGLT1 in the plasma membrane (Valentin, M., Kühlkamp, T., Wagner, K., Krohne, G., Arndt, P., Baumgarten, K., Weber, W.-M., Segal, A., Veyhl, M., and Koepsell, H. (2000) Biochim. Biophys. Acta 1468, 367-380). Here, the porcine renal epithelial cell line LLC-PK1 was used to investigate whether porcine RS1 (pRS1) plays a role in transcriptional up-regulation of SGLT1 after confluence and in down-regulation of SGLT1 by high extracellular D-glucose concentrations. Western blots indicated a dramatic decrease of endogenous pRS1 protein at the plasma membrane after confluence but no significant effect of D-glucose. In confluent LLC-PK1 cells overexpressing pRS1, SGLT1 mRNA, protein, and methyl-alpha-D-glucopyranoside uptakes were drastically decreased; however, the reduction of methyl-alpha-D-glucopyranoside uptake after cultivation with 25 mm D-glucose remained. In confluent pRS1 antisense cells, the expression of SGLT1 mRNA and protein was strongly increased, whereas the reduction of SGLT1 expression during cultivation with high D-glucose was not influenced. Nuclear run-on assays showed that the transcription of SGLT1 was 10-fold increased in the pRS1 antisense cells. The data suggest that RS1 participates in transcriptional up-regulation of SGLT1 after confluence but not in down-regulation by D-glucose.
Collapse
Affiliation(s)
- T Korn
- Institute of Anatomy of the Bayerische Julius-Maximilians-Universität, 97070 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Pepe GJ, Burch MG, Sibley CP, Davies WA, Albrecht ED. Expression of the mRNAs and Proteins for the Na(+)/H(+) exchangers and their regulatory factors in baboon and human placental syncytiotrophoblast. Endocrinology 2001; 142:3685-92. [PMID: 11459818 DOI: 10.1210/endo.142.8.8343] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In polarized epithelial cells of several organ systems, e.g. the kidney, a family of Na(+)/H(+) exchangers (e.g. Na(+)/H(+) exchanger-1 and -3) and their regulatory proteins, Na(+)/H(+) exchanger regulatory factor and Na(+)/H(+) exchanger-3 kinase A regulatory protein play a major role in regulating Na(+)/H(+) exchange integral to cellular homeostasis. Because the primate placenta regulates exchange of Na(+) and H(+) between the mother and fetus critical to fetal-placental homeostasis, the current study determined whether Na(+)/H(+) exchanger-1 and -3 were compartmentalized and associated with expression of Na(+)/H(+) exchanger regulatory factor and Na(+)/H(+) exchanger-3 kinase A regulatory protein in baboon and human syncytiotrophoblast. Using RT-PCR, single 413-bp Na(+)/H(+) exchanger-1 and 190-bp Na(+)/H(+) exchanger-3 products were expressed by baboon and human syncytiotrophoblasts. The 104-kDa Na(+)/H(+) exchanger-1 protein was detected by Western blot in microvillus membranes and to a much lesser extent in the basal membranes of the baboon and human syncytiotrophoblasts. In contrast, the 85-kDa Na(+)/H(+) exchanger-3 protein was detected primarily in membranes contiguous with the basal membranes of the syncytiotrophoblast of both species. Differential localization of Na(+)/H(+) exchanger-1 and -3 was confirmed by immunocytochemistry. The Na(+)/H(+) exchanger-3 regulatory protein, Na(+)/H(+) exchanger-3 kinase A regulatory protein, resided almost exclusively in the basal membranes, whereas Na(+)/H(+) exchanger regulatory factor was localized primarily to the microvillus membranes in the baboon and human syncytiotrophoblast. Collectively, these results are the first to show that the baboon and human term placental syncytiotrophoblast expressed the mRNAs and proteins for Na(+)/H(+) exchanger-1 and -3 and their regulatory factors and that Na(+)/H(+) exchanger-1 and Na(+)/H(+) exchanger regulatory factor resided primarily in the microvillus membranes, whereas Na(+)/H(+) exchanger-3 and Na(+)/H(+) exchanger-3 kinase A regulatory protein were localized to membranes contiguous with the basal membranes and to the basal membranes, respectively. We conclude that a complete Na(+)/H(+) exchange system is present in the baboon and human term placental syncytiotrophoblast and suggest that the primate placenta exhibits polarity with respect to the capacity for regulation of Na(+)/H(+) exchange between the placenta and the maternal and fetal circulations.
Collapse
Affiliation(s)
- G J Pepe
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23507, USA.
| | | | | | | | | |
Collapse
|
14
|
Kawamoto T, Kimura H, Kusumoto K, Fukumoto S, Shiraishi M, Watanabe T, Sawada H. Potent and selective inhibition of the human Na+/H+ exchanger isoform NHE1 by a novel aminoguanidine derivative T-162559. Eur J Pharmacol 2001; 420:1-8. [PMID: 11412833 DOI: 10.1016/s0014-2999(01)00991-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We isolated Na+/H+ exchanger (NHE)-deficient Chinese hamster ovary (CHO-K1) cells stably expressing human NHE isoforms (hNHE1, hNHE2 and hNHE3) and established an assay system for measuring their Na+/H+ exchange activity by monitoring intracellular pH alterations. Using this assay system, we demonstrated that the acylguanidine derivatives, cariporide and eniporide, cause selective inhibition of hNHE1 (IC50 value of 30 nM for cariporide, IC50 value of 4.5 nM for eniporide). Furthermore, we found that a novel synthetic aminoguanidine derivative, T-162559 ((5E,7S)-[7-(5-fluoro-2-methylphenyl)-4-methyl-7,8-dihydro-5(6H)-quinolinylideneamino] guanidine dimethanesulfonate), causes a selective inhibition of hNHE1 with more potent activity than cariporide and eniporide (IC50 value of 0.96 nM). This compound did not affect Na+/HCO3- cotransport and Na+/Ca2+ exchange.
Collapse
Affiliation(s)
- T Kawamoto
- Discovery Research Laboratories IV, Pharmaceutical Discovery Research Division, Takeda Chemical Industries, Ltd., 17-85, Jusohonmachi 2-chome, Yodogawa-ku, 532-8686, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
We are becoming increasingly aware of inherited genetic abnormalities as causes of disease. However, alterations in gene expression can also contribute to other disease processes. Recently it has been suggested that our environment may alter such genes and thus be a direct influence on disease. Diet is a potent mechanism for altering the environment of cells of most organs, particularly the gastrointestinal tract. This review addresses the influence of nutritional factors on intestinal gene regulation. These influences include insulin, which is not a dietary component but responds to dietary changes, and butyrate, a short chain fatty acid produced by normal intestinal flora. Manipulation of diet may be a means of treating intestinal disorders. Nutritional treatment therefore is also discussed in the light of its effect on gene expression.
Collapse
Affiliation(s)
- I R Sanderson
- Department of Paediatric Gastroenterology, St Bartholomew's and the Royal London School of Medicine and Dentistry, London EC1A 7BE, United Kingdom.
| | | |
Collapse
|
16
|
Turchi L, Loubat A, Rochet N, Rossi B, Ponzio G. Evidence for a direct correlation between c-Jun NH2 terminal kinase 1 activation, cyclin D2 expression, and G(1)/S phase transition in the murine hybridoma 7TD1 cells. Exp Cell Res 2000; 261:220-8. [PMID: 11082292 DOI: 10.1006/excr.2000.5060] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this study we show that the addition of fresh culture medium to high-density growth-arrested 7TD1 cells induces a strong and transient stimulation of the c-Jun NH2 terminal kinase activity (Jun kinase/JNK), a marked increase in cyclin D2 expression, the phosphorylation of pRb, and the transition from G(1) to S phase. The stimulation of cyclin D2 expression and the induction of JNK activity appear to be the consequences of the alkalinization of the extracellular medium. Indeed both parameters (i) can be induced, regardless of cell dilution, by the addition of a weak base such as triethylamine, and (ii) are together inhibited by (N-ethyl-N-isopropyl)amiloride, a specific inhibitor of the Na(+)/H(+) exchanger. We provide a strong argument indicating the existence of a direct correlation between JNK1 activation and cyclin D2 stimulation. Indeed, we demonstrate that cyclin D2 expression is blocked by SB 202190, an agent known to inhibit both JNK and p38(MAPK), but not by SB 203580, a specific inhibitor of p38(MAPK). Furthermore, we also observed that DMSO and forskolin, two agents that inhibit the proliferation of 7TD1 cells, inhibit in parallel cyclin D2 and JNK1. Altogether our results suggest that (i) JNK1 participates in the signaling pathway which controls the expression of cyclin D2 and (ii) that the inhibition of JNK1 by DMSO and forskolin could explain, at least in part, the antiproliferative action of these drugs in 7TD1 cells.
Collapse
Affiliation(s)
- L Turchi
- "Biologie et Physiopathologie de la peau" Faculté de Médecine, INSERM U385, France
| | | | | | | | | |
Collapse
|
17
|
Garden OA, Musk P, Worthington-White DA, Dewey MJ, Rich IN. Silent polymorphisms within the coding region of human sodium/hydrogen exchanger isoform-1 cDNA in peripheral blood mononuclear cells of leukemia patients: A comparison with healthy controls. CANCER GENETICS AND CYTOGENETICS 2000; 120:37-43. [PMID: 10913675 DOI: 10.1016/s0165-4608(99)00246-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We have examined the sequence of the cDNA encoding the sodium/hydrogen exchanger isoform 1 (NHE1), from 23 bases upstream of the start codon to 28 bases downstream of the stop codon. Template was prepared from (1) peripheral blood mononuclear cells (PBMC) isolated from 10 healthy unrelated Caucasian volunteers; (2) PBMCs isolated from 6 leukemic patients (acute lymphoblastic leukemia [ALL], n = 3; chronic lymphocytic leukemia [CLL], n = 1; chronic myelogenous leukemia [CML], n = 2); and (3) samples of 4 leukemic cell lines (ALL: CEM, MOLT4; AML: KG1a; CML: K562). NHE1 cDNA in normal PBMCs showed silent polymorphism of nucleotides 112 (N1: T, frequency 0.70; C, frequency 0.30; prevalence of heterozygosity 0.42); 2248 (N2: G, frequency 0.90; A, frequency 0. 10; heterozygosity 0.18); and 2493 (N3: G, frequency 0.90; A, frequency 0.10; heterozygosity 0.18). Deduced primary structure of NHE1 protein in all normal volunteers was identical to that previously published for NHE1 from renal and cardiac tissue. Similar to normal PBMCs, NHE1 cDNA from leukemic cells showed polymorphism of nucleotides N1, N2, and N3, but failed to demonstrate leukemia-specific sequence differences. We conclude that the coding region of NHE1 cDNA shows a greater level of polymorphism than is currently recognized, but that sequence mutation of NHE1 is not a key event in the pathogenesis of leukemia.
Collapse
Affiliation(s)
- O A Garden
- Division of Transplantation Medicine, South Carolina Cancer Center, Palmetto Richland Memorial Hospital, University of South Carolina School of Medicine, Columbia, SC, USA
| | | | | | | | | |
Collapse
|
18
|
McLean LA, Roscoe J, Jorgensen NK, Gorin FA, Cala PM. Malignant gliomas display altered pH regulation by NHE1 compared with nontransformed astrocytes. Am J Physiol Cell Physiol 2000; 278:C676-88. [PMID: 10751317 DOI: 10.1152/ajpcell.2000.278.4.c676] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Malignant gliomas exhibit alkaline intracellular pH (pH(i)) and acidic extracellular pH (pH(e)) compared with nontransformed astrocytes, despite increased metabolic H(+) production. The acidic pH(e) limits the availability of HCO(-)(3), thereby reducing both passive and dynamic HCO(-)(3)-dependent buffering. This implies that gliomas are dependent upon dynamic HCO(-)(3)-independent H(+) buffering pathways such as the type 1 Na(+)/H(+) exchanger (NHE1). In this study, four rapidly proliferating gliomas exhibited significantly more alkaline steady-state pH(i) (pH(i) = 7.31-7.48) than normal astrocytes (pH(i) = 6.98), and increased rates of recovery from acidification, under nominally CO(2)/HCO(-)(3)-free conditions. Inhibition of NHE1 in the absence of CO(2)/HCO(-)(3) resulted in pronounced acidification of gliomas, whereas normal astrocytes were unaffected. When suspended in CO(2)/HCO(-)(3) medium astrocyte pH(i) increased, yet glioma pH(i) unexpectedly acidified, suggesting the presence of an HCO(-)(3)-dependent acid loading pathway. Nucleotide sequencing of NHE1 cDNA from the gliomas demonstrated that genetic alterations were not responsible for this altered NHE1 function. The data suggest that NHE1 activity is significantly elevated in gliomas and may provide a useful target for the development of tumor-selective therapies.
Collapse
Affiliation(s)
- L A McLean
- Department of Human Physiology, School of Medicine, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
19
|
Wingertzahn MA, Teichberg S, Wapnir RA. Modified starch enhances absorption and accelerates recovery in experimental diarrhea in rats. Pediatr Res 1999; 45:397-402. [PMID: 10088661 DOI: 10.1203/00006450-199903000-00018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Rice gruels have been used as home remedies to treat dehydration associated with diarrheal illness in developing countries. These preparations have produced conflicting results, most likely due to the heterogeneity of starch used. We investigated whether the modified tapioca starch, Textra (TX), at 5.0 or 10.0 g/L added to a 90 mmol/L Na+-111 mmol glucose oral rehydration solution (ORS) enhanced water and electrolyte absorption in two models of diarrhea. To induce a secretory state (model A), the jejunum of juvenile rats was perfused with 10 mmol/L theophylline (THEO) under anesthesia and then perfused with the solutions indicated above. To produce chronic osmotic-secretory diarrhea (model B), rats had a magnesium citrate-phenolphthalein solution as the sole fluid source for 1 wk, and then were perfused as the THEO-treated rats. Water, electrolyte, and glucose absorption were measured during both perfusions. As an extension of the perfusion studies, we compared how fast rats recovered from chronic osmotic diarrhea by offering them either water, ORS, or ORS containing 5.0 g/L TX along with solid food. Recovery rate markers were measured after 24 h and included weight gain, food and fluid intake, and stool output. In model A, addition of 5.0 g/L TX to ORS reversed Na+ secretion and improved net water as well as K+ and glucose absorption, compared with THEO-treated rats perfused with ORS without TX. In model B, addition of TX to ORS increased water, Na+, K+, and glucose absorption, compared with rats perfused without TX. Increasing TX from 5.0 to 10.0 g/L had no additional benefit. In recovery experiments, animals with free access to ORS with TX had significantly greater weight gain and decreased stool output compared with animals recovering with water or ORS without TX. Our experiments suggest that TX may be a useful additive to standard ORS to promote fluid and electrolyte absorption and may provide additional energy without increasing ORS osmotic load.
Collapse
Affiliation(s)
- M A Wingertzahn
- Department of Pediatrics, North Shore University Hospital, New York University School of Medicine, Manhasset 11030, USA
| | | | | |
Collapse
|
20
|
Takaichi K, Miyajima Y, Hanai JI, Kurokawa K, Fujita T, Warnock DG. Expression of transfected human Na+/H+ exchanger (NHE-1) in the the basolateral membrane of opossum kidney cells. J Cell Physiol 1999; 178:44-50. [PMID: 9886489 DOI: 10.1002/(sici)1097-4652(199901)178:1<44::aid-jcp6>3.0.co;2-o] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Some epithelial cells have Na+/H+ exchanger (NHE) activity in both apical and basolateral membranes. Amiloride-sensitive NHE-1 is generally identified in the basolateral membrane. The renal cell line, OK7a, targets amiloride-resistant NHE predominantly to the apical membrane. It is controversial whether the transfected NHE-1 is targeted preferentially to the basolateral membrane in OK7a cells, when human NHE-1 is chronically expressed under control of constitutively active promoters. We tried to identify the membranes in which the transfected human NHE-1 could be detected following acute expression in OK7a cells. We have always observed small Na(+)-dependent pH recovery in the basolateral membrane in OK7a cells. It is, however, controversial whether or not OK7a cells express NHE activity in the basolateral membrane. We also characterized Na(+)-dependent pH recovery in the basolateral membrane. It was not inhibited by [4,4'diisothiocyanatostilbene-2,2'-disulfonic acid] (DIDS), [4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid] (SITS), or contralateral amiloride. Li+ but not K+, chol+, or NMG+ could replace Na+. These results are consistent with the presence of the NHE in the basolateral membrane. NHE activities were predominant in the apical membrane and those in both membranes were resistant to amiloride analogs. After stable transfection with human NHE-1 in a vector utilizing the metallothionein promoter, overnight induction with Zn(2+)increased the NHE activity and its sensitivity to amiloride only in the basolateral membrane in OK7a cells. We conclude that the transfected human NHE-1 is exclusively targeted to the basolateral membrane of OK7a cells during acute induction.
Collapse
Affiliation(s)
- K Takaichi
- Fourth Department of Internal Medicine, University of Tokyo School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Kalaria RN, Premkumar DR, Lin CW, Kroon SN, Bae JY, Sayre LM, LaManna JC. Identification and expression of the Na+/H+ exchanger in mammalian cerebrovascular and choroidal tissues: characterization by amiloride-sensitive [3H]MIA binding and RT-PCR analysis. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 58:178-87. [PMID: 9685633 DOI: 10.1016/s0169-328x(98)00108-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We report the initial characterization of [3H]5-(N-methyl-N-isobutyl)amiloride (MIA) binding to the Na+/H+ exchanger (NHE) and expression of its gene in mammalian cerebrovascular, choroidal and neocortical tissues. [3H]MIA bound reversibly to particulate fractions of rat, pig and human cerebral microvessels, choroid plexus and cerebral cortex. Scatchard analyses revealed binding to a single amiloride-sensitive site with dissociation constants (Kd) ranging from 20 to 90 nM for the various tissue preparations. The maximal binding capacities (Bmax) were between 2 to 17 pmol/mg protein and were several-fold greater in cerebral microvessels compared to the cerebral cortex. Amiloride, MIA, 5-(N, N-hexamethylene)amiloride (HMA), 5-(N, N-dimethyl)amiloride (DMA) and 5-(N-methyl-N-isopropyl)amiloride (IPA) variably displaced [3H]MIA binding to the microvessels in the following rank order: MIA>HMA>/=IPA>DMA>amiloride. Benzamil, a potent ligand of the Na+/Ca+ transporter was the least sensitive. These binding results were most compatible with the existence of the amiloride-sensitive NHE type 1 in the brain vascular and choroidal tissues. To substantiate this, we utilized reverse transcription polymerase chain reaction (RT-PCR) techniques to search for NHE-1 mRNA. Using primers corresponding to conserved sequences of the human growth factor-activatable NHE gene, RT-PCR revealed strong expression of NHE-1 mRNA in cerebral microvessels, choroid plexus, pial vessels and vascular smooth muscle cells relative to neocortical tissues from several species including rat, pig, cow, monkey and human subjects. Further confirmation of NHE-1 isoform mRNA expression in the cerebrovascular tissues was obtained by HpaII restriction digestion analysis and by subcloning and sequencing of the PCR amplified products. Our study suggests that mammalian cerebrovascular and choroidal tissues contain high amounts of the ubiquitous amiloride-sensitive [3H]MIA binding proteins consistent with the expression of NHE type 1 mRNA.
Collapse
Affiliation(s)
- R N Kalaria
- Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Corpe CP, Bovelander FJ, Hoekstra JH, Burant CF. The small intestinal fructose transporters: site of dietary perception and evidence for diurnal and fructose sensitive control elements. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1402:229-38. [PMID: 9606981 DOI: 10.1016/s0167-4889(97)00155-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
To obtain an insight into the mechanisms responsible for GLUT5 diurnality and fructose responsiveness, rats were gavaged at 9:00 AM or 6:00 PM with 1 g of fructose in the presence or absence of cycloheximide. After 4 h of fructose exposure, GLUT5 mRNA and protein levels increased 2-3.5-fold above the natural diurnal levels of expression. In situ hybridization and immunochemical analysis of GLUT5 mRNA and protein demonstrated that both diurnality and fructose responsiveness was confined to mature enterocytes. The protein synthesis inhibitor, cycloheximide, blunted the diurnal and fructose driven increase in GLUT5 mRNA expression in the morning, but had minimal effect on the pattern of expression in the evening. This differential sensitivity of intestinal GLUT5 mRNA to de novo protein synthesis may reflect the increasing presence of diurnal and fructose sensitive control factors during the day. Following vehicle gavage, Cycloheximide was more effective in reducing GLUT5 protein expression levels in the morning when compared to the evening. These data suggest that the turnover of GLUT5 protein may be diurnally influenced.
Collapse
Affiliation(s)
- C P Corpe
- Department of Medicine, University of Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
23
|
Rhoads DB, Rosenbaum DH, Unsal H, Isselbacher KJ, Levitsky LL. Circadian periodicity of intestinal Na+/glucose cotransporter 1 mRNA levels is transcriptionally regulated. J Biol Chem 1998; 273:9510-6. [PMID: 9545279 DOI: 10.1074/jbc.273.16.9510] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Intestinal expression of the high affinity Na+/glucose cotransporter 1 (SGLT1), which absorbs dietary glucose and galactose, exhibits both circadian periodicity in its activity and induction by dietary carbohydrate. Because the daily variation in SGLT1 activity is established by the feeding schedule (whether ad libitum or imposed) and persists in the absence of food, this variation has been described as anticipatory. To delineate the mechanisms regulating SGLT1, its expression was examined in rats maintained in a 12-h photoperiod with free access to chow. SGLT1 mRNA levels varied significantly, with the maximum abundance occurring near the onset of dark and the minimum near the onset of light. The SGLT1 transcription rate was 7-fold higher in the morning (1000-1100 h) than in the afternoon (1600-1700 h). An element for hepatocyte nuclear factor 1 (HNF-1) was identified in the SGLT1 promoter that formed different complexes with small intestinal nuclear extracts, depending on the time when the source animal was killed. Serological tests indicated that HNF-1alpha was present in complexes throughout the day, while HNF-1beta binding exhibited circadian periodicity. We propose that exchange of HNF-1 dimerization partners contributes to circadian changes in SGLT1 transcription. Because SGLT1 mRNA levels also varied in rhesus monkeys (offset by approximately one-half day from rats), a similar mechanism appears to be present in primates.
Collapse
Affiliation(s)
- D B Rhoads
- Pediatric Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.
| | | | | | | | | |
Collapse
|
24
|
McBurney MI, Reimer RA, Tappenden KA. Short chain fatty acids, intestinal adaptation, and nutrient utilization. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 427:135-43. [PMID: 9361839 DOI: 10.1007/978-1-4615-5967-2_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- M I McBurney
- Department of Agriculture, University of Alberta, Edmonton
| | | | | |
Collapse
|
25
|
Hanai JI, Takaichi K, Miyajima Y, Fujita T, Kurokawa K. Na+/H+ exchanger (NHE) in the basolateral membrane is encoded by NHE-1 mRNA in LLC-PK1 clone 4 cells. J Cell Physiol 1997; 171:318-24. [PMID: 9180901 DOI: 10.1002/(sici)1097-4652(199706)171:3<318::aid-jcp10>3.0.co;2-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Several isoforms of Na+/H+ exchanger (NHE-1-5) have been identified. LLC-PK1 clone 4 (CL4) expresses the amiloride-sensitive type of NHE predominantly in the basolateral membrane, which is believed to be NHE-1. It is not clear whether CL4 expresses NHE in the apical membrane and which side of NHE is encoded by the NHE-1 mRNA. Using acidified CL4 cells on the filter membrane, we examined Na(+)-dependent pH recovery of the apical and basolateral membranes separately. Na+ applied to the apical membrane recovered cell pH. Na(+)-dependent pH recovery in the apical membrane was not inhibited by SITS, DIDS, or contralateral amiloride. Li+ but not K+, chol+, or NMG+ could replace Na+. These data are consistent with the presence of NHE in the apical membrane. Transfection with an antisense oligonucleotide corresponding to the 5' terminal site of NHE-1 cDNA of CL4 decreased NHE activity in the basolateral membrane but not in the apical membrane. We conclude that CL4 expresses NHE activities in both apical and basolateral membranes and that NHE-1 mRNA encodes NHE only in the basolateral membrane.
Collapse
Affiliation(s)
- J I Hanai
- First Department of Internal Medicine, University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
26
|
Koren W, Postnov IY, Postnov YV. Increased Na(+)-H+ exchange in red blood cells of patients with primary aldosteronism. Hypertension 1997; 29:587-91. [PMID: 9040443 DOI: 10.1161/01.hyp.29.2.587] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We measured Na(+)-H+ exchange as the amiloride-inhibited fraction of H+ efflux from red blood cells into a sodium-containing medium (pHo 7.95 to 8.05) at pHi values of 6.05 to 6.15, 6.35 to 6.45, 6.95 to 7.05, and 7.35 to 7.45 in 12 drug-free patients with primary aldosteronism before and after excision of histologically proven aldosterone-producing adrenal adenoma, 12 drug-free essential hypertensive patients, and 12 healthy control subjects. Red blood cell Na(+)-H+ exchange was increased in patients with primary aldosteronism similarly to the mean exchanger velocity in essential hypertensive patients compared with values in healthy subjects (334 +/- 25 and 310 +/- 29 versus 139 +/- 21 mumol H+/L cells per minute, respectively; P < .001 and .01). The kinetic parameters of Na(+)-H+ exchange returned to normal on day 2 after removal of the aldosterone-producing mass. Km for [Na+]o was not affected by aldosterone, whereas Km for [H+]i was decreased in patients with primary aldosteronism. The kinetic characteristics did not differ in essential hypertensive patients and control subjects. Protein kinase C inhibition in vitro by calphostin C (60 nmol/L) increased Km for [H+]i and caused up to a 65% suppression of Na(+)-H+ exchange (pHi 6.05 to 6.15). while diminishing Km for [Na+]o in red blood cells of patients with primary aldosteronism. The calmodulin antagonist W-13 (60 mmol/L) decreased exchanger velocity and increased Km for both H+ and Na+. We conclude that aldosterone stimulates red blood cell Na(+)-H+ exchange by a nongenomic mechanism that augments the exchanger affinity to Na+ and H+. In primary aldosteronism, protein kinase C and calmodulin seem to have synergistic stimulatory effects on red blood cell Na(+)-H+ exchange, and both increase the affinity of the exchanger to H+, while their effect on Na+ binding is opposite.
Collapse
Affiliation(s)
- W Koren
- Central Research Laboratory, Ministry of Public Health, Moscow, Russia
| | | | | |
Collapse
|
27
|
Lambotte S, Veyhl M, Köhler M, Morrison-Shetlar AI, Kinne RK, Schmid M, Koepsell H. The human gene of a protein that modifies Na(+)-D-glucose co-transport. DNA Cell Biol 1996; 15:769-77. [PMID: 8836035 DOI: 10.1089/dna.1996.15.769] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Recently, a cDNA (pRS1) was cloned from pig kidney cortex that encodes a membrane-associated protein involved in Na(+)-coupled sugar transport. pRS1 alters sugar transport by SGLT1 from rabbit intestine or by SMIT from dog kidney which is homologous to SGLT1. In contrast, pRS1 does not influence transporters from other genetic families. We report the cloning of the intronless human gene hRS1 (6,743 bp), which encodes a 617-amino-acid protein with 74% amino acid identity to pRS1. By fluorescence in situ hybridization, hRS1 was localized to chromosome 1p36.1. The localization to one chromosome and Southern blot analysis of restricted genomic DNA suggest that there is only one RS1-homologous gene in humans. Functionality of hRS1 was demonstrated by co-expression experiments of hRS1 and SGLT1 from human intestine in oocytes from Xenopus laevis. They show that hRS1-protein inhibits Na(+)-D-glucose co-transport expressed by human SGLT1 by decreasing both the Vmax and the apparent Km value of the transporter. The analysis of the 5'-noncoding sequence of hRS1 revealed different enhancer consensus sequences that are absent in the SGLT1 gene, e.g., several consensus sequences for steroid-binding proteins.
Collapse
Affiliation(s)
- S Lambotte
- Max-Planck Institute für Biochemie, Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Strazzabosco M, Boyer JL. Regulation of intracellular pH in the hepatocyte. Mechanisms and physiological implications. J Hepatol 1996; 24:631-44. [PMID: 8773922 DOI: 10.1016/s0168-8278(96)80153-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- M Strazzabosco
- Istituto di Medicina Interna, Università di Padova, Italy
| | | |
Collapse
|
29
|
Koren W, Koldanov R, Postnov I, Morozova E, Zolkina I, Enina L, Shostak N. Red cell Na+/H+ exchange and B cell alloantigen 883 (D8/17) in patients with acute rheumatic fever and inactive rheumatic heart disease. Scand J Rheumatol 1996; 25:87-91. [PMID: 8614772 DOI: 10.3109/03009749609069213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The association of Na+/H+ antiport with 883 alloantigen was studied in patients with rheumatic disease. Simultaneous measurements were made of red cell Na+/H+ exchange and 883 alloantigen in microlymphocytotoxic test with D8/17 monoclonal antibodies in 20 patients with acute rheumatic fever, 20 patients with inactive rheumatic heart disease, 20 patients with atherosclerotic heart disease (stable anginal syndrome), and 20 healthy subjects. The number of 883(+) B cells and the Na+/H+ antiport activity were increased in rheumatic fever compared to healthy controls: 24.8 +/- 0.4 vs. 11.1 +/- 1.0% cells, 431 +/- 43 vs 121 +/- 12 micromol H+/l cells in min, respectively; p < 0.001; and in patients with rheumatic heart disease compared to patients with atherosclerotic heart disease; 25.7 +/- 1.8 vs. 9.8 +/- 1.1% cells, 482 +/- 73 vs. 124 +/- 12 micromol H+/l cells in min, respectively; p < 0.001.
Collapse
Affiliation(s)
- W Koren
- Internal Diseases Department, N.I. Pirogov Medical University, Moscow, Russia
| | | | | | | | | | | | | |
Collapse
|
30
|
Silva NL, Haworth RS, Singh D, Fliegel L. The carboxyl-terminal region of the Na+/H+ exchanger interacts with mammalian heat shock protein. Biochemistry 1995; 34:10412-20. [PMID: 7654695 DOI: 10.1021/bi00033a013] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We expressed the carboxyl-terminal 178 amino acids of the rabbit cardiac Na+/H+ exchanger as a fusion protein with glutathione-S-transferase. The fusion protein (PCR178) was found in the supernatant of extracts of E. coli and was purified using Glutathione-Sepharose affinity chromatography. Affinity-purified antibodies raised against the carboxyl-terminal region of the Na+/H+ exchanger identified the resultant protein. PCR178 copurified with a 70 kDa protein. Amino-terminal sequencing of the 70 kDa protein identified it as dnaK, the bacterial equivalent of the mammalian 70 kDa heat shock protein (hsp70). DnaK was dissociated from the Na+/H+ exchanger fusion protein by the addition of MgATP. When purified PCR178 was coupled to a cyanogen bromide-activated Sepharose column, bovine hsp70 bound to the column and was eluted with MgATP. Nondenaturing polyacrylamide gel electrophoresis showed that, in the absence of MgATP, hsp70 formed a complex with PCR178. The complex was dissociated by the addition of MgATP. GST alone did not form a complex with hsp70. Immunoprecipitation of the Na+/H+ exchanger with antiexchanger antibodies resulted in coprecipitation of hsp70 protein from antiporter containing cells. Cells that overexpress the Na+/H+ exchanger had increased amounts of hsp70 which coprecipitated with antiexchanger antibody. The results show that heat shock protein complexes with the mammalian Na+/H+ exchanger.
Collapse
Affiliation(s)
- N L Silva
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
31
|
Madsen KL, Ariano D, Fedorak RN. Vanadate treatment rapidly improves glucose transport and activates 6-phosphofructo-1-kinase in diabetic rat intestine. Diabetologia 1995; 38:403-12. [PMID: 7796980 DOI: 10.1007/bf00410277] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effect of oral vanadate on intestinal sodium-dependent glucose transport and 6-phosphofructo-1-kinase (EC 2.7.1.11) activity was examined in male Sprague-Dawley rats following a 30-day period of non-treated streptozotocin-induced diabetes. Non-treated diabetic rats were hyperglycaemic and demonstrated increased intestinal sodium-dependent glucose transport and Na,K-ATPase activity compared with controls. These increases were associated with a significant decrease in the total activity and activity ratios (activity at 0.5 mmol/l fructose 6-phosphate at pH 7.0/activity at pH 8.0) of intestinal 6-phosphofructo-1-kinase and decreased levels of fructose 2,6-bisphosphate. Supplementation of drinking water with vanadate (0.5 mg/ml) resulted in a rapid decline in blood glucose levels to a slightly hyperglycaemic level. Jejunal glucose transport and Na,K-ATPase activity were normalized after 48 h of vanadate treatment. In contrast, ileal glucose transport was significantly reduced 12 h following beginning vanadate treatment even though Na,K-ATPase activity did not normalize until 36 h later. Km was significantly decreased in both jejunum and ileum by vanadate treatment indicating an increased affinity of the sodium-dependent intestinal glucose transporter for glucose. 6-phosphofructo-1-kinase total activity and susceptibility to ATP inhibition was completely restored after 12 h of vanadate treatment. This increase was associated with a rise in fructose 2,6-bisphosphate levels. Fasting rats for 12 h had no effect on glucose transport or 6-phosphofructo-1-kinase activity, indicating the anorectic effect of vanadate was not responsible for changes in either parameter. In contrast, cycloheximide prevented both the rise in 6-phosphofructo-1-kinase activity and the rise in fructose 2,6-bisphosphate levels, and the subsequent reduction in glucose transport, indicating a requirement for protein synthesis. The removal of vanadate resulted in an immediate return to pre-treatment blood glucose levels. In contrast, intestinal glucose transport and 6-phosphofructo-1-kinase activity remained at treatment levels up until 72 h, indicating that oral vanadate treatment can have prolonged beneficial effects on intestinal function. In conclusion, the treatment of streptozotocin-induced diabetic rats with oral vanadate results in an activation of 6-phosphofructo-1-kinase coupled with a normalization of intestinal sodium-dependent glucose transport. Vanadate may thus have a beneficial effect on intestinal function and may prove useful as oral adjunctive diabetic therapy.
Collapse
Affiliation(s)
- K L Madsen
- Department of Medicine, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
32
|
Garciandia A, López R, Tisaire J, Arrázola A, Fortuño A, Bueno J, Diez J. Enhanced Na(+)-H+ exchanger activity and NHE-1 mRNA expression in lymphocytes from patients with essential hypertension. Hypertension 1995; 25:356-64. [PMID: 7875760 DOI: 10.1161/01.hyp.25.3.356] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
It has been demonstrated that the activity of the sodium-proton exchanger (NHE-1 isoform) is increased in lymphocytes and other blood cells from patients with essential hypertension. In the present study, we investigated whether an increased level of NHE-1-specific mRNA in lymphocytes from patients with essential hypertension would explain the enhanced transport activity. Twenty-two hypertensive patients and 21 normotensive subjects were studied. Basal cytosolic pH was measured by the pH-sensitive fluorescent probe 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein. Maximal sodium-proton exchange activity was determined by acidifying cell pH and measuring the initial rate of the net sodium-dependent proton efflux driven by an outward proton gradient. The transcript level of NHE-1 was measured by reverse transcription-polymerase chain reaction in comparison with a constitutively expressed reference gene (beta-actin). Intracellular pH was lower in hypertensive patients than normotensive subjects (7.34 +/- 0.01 versus 7.39 +/- 0.01, mean +/- SEM, P < .001). The maximal activity of the sodium-proton exchanger was higher in hypertensive patients than in normotensive subjects (1262 +/- 100 versus 881 +/- 56 mmol/L cells per hour, P < .01). NHE-1 mRNA was increased in hypertensive patients compared with normotensive subjects (ratio of NHE-1 mRNA to beta-actin mRNA, 0.16 +/- 0.01 versus 0.12 +/- 0.02, P < .05). These data suggest that the increased sodium-proton exchange activity in essential hypertension may be related to the de novo synthesis of exchanger protein.
Collapse
Affiliation(s)
- A Garciandia
- Department of Internal Medicine, School of Medicine, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Klanke CA, Su YR, Callen DF, Wang Z, Meneton P, Baird N, Kandasamy RA, Orlowski J, Otterud BE, Leppert M. Molecular cloning and physical and genetic mapping of a novel human Na+/H+ exchanger (NHE5/SLC9A5) to chromosome 16q22.1. Genomics 1995; 25:615-22. [PMID: 7759094 DOI: 10.1016/0888-7543(95)80002-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A human genomic clone for a novel fifth member of the Na+/H+ exchanger (NHE) family, NHE5 (gene symbol SLC9A5), has been isolated and partially sequenced. The deduced amino acid sequence of two exons, containing 154 codons, exhibits 59-73% identity to the other members of the NHE family, with closest similarity to NHE3. Northern blot analysis demonstrated that the NHE5 gene is expressed in brain, testis, spleen, and skeletal muscle. Fluorescence in situ hybridization analysis of a cosmid containing NHE5 to human metaphase chromosomes localized the NHE5 gene to the cytogenetic interval 16q21-q22. A panel of somatic cell hybrids containing various portions of chromosome 16 was used to refine further the placement of NHE5 within band 16q22.1. A polymorphic dinucleotide (GT/CA)n repeat contained in the NHE5 cosmid was identified and developed into a microsatellite PCR marker. This was typed in a subset of the CEPH (Centre d'Etude du Polymorphisme Humain) families to place it on a genetic map of the human genome. Pairwise linkage analysis of this marker showed that it was linked to marker D16S421 with a maximal lod score of 35.21 at a recombination fraction (theta) of 0.000, in complete concordance with its chromosomal localization by physical mapping. Multipoint linkage analysis placed NHE5 between the flanking markers D16S421 and D16S512. The cloning of this new member of the sodium hydrogen exchanger family, its chromosomal localization, and the discovery of a polymorphic marker for it now make it feasible to study the possible involvement of this gene in disorders of Na+/H+ transport.
Collapse
Affiliation(s)
- C A Klanke
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati Medical Center, Ohio 45267-0524, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lewis JL, Warnock DG. Renal apical membrane sodium-hydrogen exchange in genetic salt-sensitive hypertension. Hypertension 1994; 24:491-8. [PMID: 8088917 DOI: 10.1161/01.hyp.24.4.491] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Inbred Dahl/Rapp salt-sensitive and salt-resistant rats differ in their blood pressure response to dietary salt. We studied sodium-hydrogen (Na-H) exchanger kinetics in renal brush border membrane vesicles prepared from both strains on either a 1% or 8% NaCl diet. Kinetics measurements were made with the acridine orange fluorescence quenching technique in vesicles prepared at pH 6.0. The initial Na-H exchange rate was measured using preparations with similar initial quench values. The maximal transport rate (Vmax, fluorescence units per second per milligram protein [+/- SEM]) in salt-sensitive rats on a 1% NaCl diet was significantly lower than that in salt-resistant rats (36.9 +/- 4.4 versus 51.8 +/- 5.5, respectively, P < .0005). With the 8% NaCl diet for 1 week, the Vmax of salt-resistant rats decreased and became similar to that of salt-sensitive rats. The affinity for sodium (Km, millimoles per liter [+/- SEM]) was also lower in salt-sensitive rats than in salt-resistant rats while on a 1% NaCl diet (11.8 +/- 1.0 versus 19.6 +/- 2.3, respectively, P < .002). These values converged when both strains were fed an 8% NaCl diet for 1 week. Inhibition by 25 mumol/L amiloride was less in salt-sensitive rats than in salt-resistant rats on the 1% NaCl diet. These results show that salt-sensitive rats have lower renal apical membrane Na-H exchange activity than salt-resistant rats on a 1% NaCl diet.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J L Lewis
- Department of Medicine, University of Alabama at Birmingham 35294-0007
| | | |
Collapse
|
35
|
Madsen KL, Porter VM, Fedorak RN. Vanadate reduces sodium-dependent glucose transport and increases glycolytic activity in LLC-PK1 epithelia. J Cell Physiol 1994; 158:459-66. [PMID: 8126069 DOI: 10.1002/jcp.1041580310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The effect of vanadate pentoxide on apical sodium-dependent glucose transport in LLC-PK1 epithelia was examined. Epithelia grown in the presence or absence of 1 microM vanadate formed confluent monolayers and exhibited no differences in DNA, protein, or ultrastructure. Vanadate-supplemented epithelia demonstrated a lower steady-state alpha-methyl-D-glucopyranoside (AMG) concentrating capacity and a twofold reduction in apical AMG uptake Jmax. This decreased AMG transport occurred as a consequence of a reduction in the number of transport carriers and was not associated with a change in the sodium electrochemical gradient. The vanadate-induced reduction in apical glucose carrier functional activity and expression was accompanied by a stimulation of intracellular glycolytic flux activity, as evidenced by increased glucose consumption, lactate production, PFK-1 activity, and intracellular ATP. There was no difference in intracellular cAMP levels between vanadate-supplemented and non-supplemented epithelia. These results demonstrate an association between stimulation of glycolytic pathway activity and an adaptive response in the form of a reduction in the function and expression of the sodium-dependent apical glucose transporter in LLC-PK1 epithelia.
Collapse
Affiliation(s)
- K L Madsen
- Department of Medicine, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
36
|
Kolyada AY, Lebedeva TV, Johns CA, Madias NE. Proximal regulatory elements and nuclear activities required for transcription of the human Na+/H+ exchanger (NHE-1) gene. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0167-4781(94)90124-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Yu FH, Shull GE, Orlowski J. Functional properties of the rat Na/H exchanger NHE-2 isoform expressed in Na/H exchanger-deficient Chinese hamster ovary cells. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74424-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
38
|
Fliegel L, Dyck JR, Wang H, Fong C, Haworth RS. Cloning and analysis of the human myocardial Na+/H+ exchanger. Mol Cell Biochem 1993; 125:137-43. [PMID: 8283968 DOI: 10.1007/bf00936442] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Na+/H+ exchanger is an integral membrane protein that is universally distribute in mammalian tissues and is responsible for intracellular pH regulation. Several isoforms of the Na+/H+ exchanger exist (NHE-1-NHE-4). The first that was cloned is the amiloride sensitive isoform (NHE-1). Using a fragment of the rabbit cardiac Na+/H+ exchanger cDNA clone we isolated and sequenced Na+/H+ exchanger cDNA from a human heart coding for the complete human Na+/H+ exchanger (NHE-1 isoform). Two overlapping cDNA clones were obtained, giving a combined sequence that contained both 3' and 5' untranslated regions. The 5' and 3' untranslated regions proved to be highly homologous to human sequences described earlier but contained some variations that could affect the mRNA stability and/or the efficiency of translation of the Na+/H+ exchanger. Northern blot analysis and reverse transcriptase polymerase chain reaction confirmed the presence of the 5 kb NHE-1 message in primary cultures of isolated myocytes.
Collapse
Affiliation(s)
- L Fliegel
- Department of Biochemistry, Faculty of Medicine, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
39
|
Abstract
Recent studies have revealed that an enhancement of sodium-proton exchange is a frequently observed ion transport abnormality in essential hypertension. An altered antiport activity not only is measurable in blood cells of hypertensive subjects ex vivo but also is detectable in skeletal muscle in vivo. Several lines of argument suggest that the altered antiport activity is not an epiphenomenon of hypertension: 1) the increased activity is found only in a subgroup of patients with high blood pressure, 2) it is not tightly correlated to the severity or duration of hypertension, and 3) high sodium-proton exchange activity persists over time and is not affected by antihypertensive treatment. Available evidence suggests that enhanced sodium-proton exchange is associated with or a cause for the structural alterations found in resistance vessels of hypertensive individuals (media hypertrophy) and left ventricular hypertrophy. This review summarizes some of the physiological properties and roles of the sodium-proton exchanger and discusses its kinetic properties in essential hypertension. Furthermore, the reasons for the enhanced antiport activity and its potential implications regarding the pathogenesis of hypertension are discussed.
Collapse
Affiliation(s)
- D Rosskopf
- Max-Planck-Institut für Biophysik, Frankfurt/Main, FRG
| | | | | |
Collapse
|