1
|
Halle DR, Benhassen LL, Søberg KL, Nielsen PF, Kimose HH, Bauer A, Hasenkam JM, Modrau IS. Impact of minimal invasive extracorporeal circulation on systemic inflammatory response - a randomized trial. J Cardiothorac Surg 2024; 19:418. [PMID: 38961388 PMCID: PMC11221091 DOI: 10.1186/s13019-024-02903-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/15/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Extracorporeal circulation causes a systemic inflammatory response, that may cause postoperative haemodynamic instability and end-organ dysfunction. This study aimed to investigate the impact of minimal invasive extracorporeal circulation (MiECC) on the systemic inflammatory response compared with conventional extracorporeal circulation (CECC). METHODS Patients undergoing coronary artery bypass grafting were randomized to MiECC (n = 30) and CECC (n = 30). Primary endpoint was tumor necrosis factor-α. Secondary endpoints were other biochemical markers of inflammation (IL1β, IL6 and IL8, C-reactive protein, leukocytes), and markers of inadequate tissue perfusion and tissue damage (lactate dehydrogenase, lactate and creatine kinase-MB). In addition, we registered signs of systemic inflammatory response syndrome, haemodynamic instability, atrial fibrillation, respiratory dysfunction, and infection. RESULTS Patients treated with MiECC showed significantly lower levels of tumor necrosis factor-α than CECC during and early after extracorporeal circulation (median: MiECC 3.4 pg/mL; CI 2.2-4.5 vs. CECC 4.6 pg/mL; CI 3.4-5.6; p = 0.01). Lower levels of creatine kinase-MB and lactate dehydrogenase suggested less tissue damage. However, we detected no other significant differences in any other markers of inflammation, tissue damage or in any of the clinical outcomes. CONCLUSIONS Lower levels of TNF-α after MiECC compared with CECC may reflect reduced inflammatory response, although other biochemical markers of inflammation were comparable. Our results suggest better end-organ protection with MiECC compared with CECC. Clinical parameters related to systemic inflammatory response were comparable in this study. CLINICAL REGISTRATION NUMBER NCT03216720.
Collapse
Affiliation(s)
- Deborah Richards Halle
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Leila Louise Benhassen
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Karsten Lund Søberg
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Peter Fast Nielsen
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Hans-Henrik Kimose
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Adrian Bauer
- Dept. of Cardiovascular Perfusion, MediClin Heart Centre Coswig, Coswig, Germany
| | - John Michael Hasenkam
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Ivy Susanne Modrau
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Jeong SY, Park BW, Kim J, Lee S, You H, Lee J, Lee S, Park JH, Kim J, Sim W, Ban K, Park J, Park HJ, Kim S. Hyaluronic acid stimulation of stem cells for cardiac repair: a cell-free strategy for myocardial infarct. J Nanobiotechnology 2024; 22:149. [PMID: 38570846 PMCID: PMC10993512 DOI: 10.1186/s12951-024-02410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/18/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Myocardial infarction (MI), a representative form of ischemic heart disease, remains a huge burden worldwide. This study aimed to explore whether extracellular vesicles (EVs) secreted from hyaluronic acid (HA)-primed induced mesenchymal stem cells (HA-iMSC-EVs) could enhance the cardiac repair after MI. RESULTS HA-iMSC-EVs showed typical characteristics for EVs such as morphology, size, and marker proteins expression. Compared with iMSC-EVs, HA-iMSC-EVs showed enhanced tube formation and survival against oxidative stress in endothelial cells, while reduced reactive oxygen species (ROS) generation in cardiomyocytes. In THP-1 macrophages, both types of EVs markedly reduced the expression of pro-inflammatory signaling players, whereas HA-iMSC-EVs were more potent in augmenting anti-inflammatory markers. A significant decrease of inflammasome proteins was observed in HA-iMSC-EV-treated THP-1. Further, phospho-SMAD2 as well as fibrosis markers in TGF-β1-stimulated cardiomyocytes were reduced in HA-iMSC-EVs treatment. Proteomic data showed that HA-iMSC-EVs were enriched with multiple pathways including immunity, extracellular matrix organization, angiogenesis, and cell cycle. The localization of HA-iMSC-EVs in myocardium was confirmed after delivery by either intravenous or intramyocardial route, with the latter increased intensity. Echocardiography revealed that intramyocardial HA-iMSC-EVs injections improved cardiac function and reduced adverse cardiac remodeling and necrotic size in MI heart. Histologically, MI hearts receiving HA-iMSC-EVs had increased capillary density and viable myocardium, while showed reduced fibrosis. CONCLUSIONS Our results suggest that HA-iMSC-EVs improve cardiac function by augmenting vessel growth, while reducing ROS generation, inflammation, and fibrosis in MI heart.
Collapse
Affiliation(s)
- Seon-Yeong Jeong
- Brexogen Research Center, Brexogen Inc., Songpa‑gu, Seoul, 05855, South Korea
| | - Bong-Woo Park
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seoho-gu, Seoul, 06591, Republic of Korea
- Catholic High-Performance Cell Therapy Center and Department of Medical Life Science, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seoho-gu, Seoul, 06591, Republic of Korea
| | - Jimin Kim
- Brexogen Research Center, Brexogen Inc., Songpa‑gu, Seoul, 05855, South Korea
| | - Seulki Lee
- Brexogen Research Center, Brexogen Inc., Songpa‑gu, Seoul, 05855, South Korea
| | - Haedeun You
- Brexogen Research Center, Brexogen Inc., Songpa‑gu, Seoul, 05855, South Korea
| | - Joohyun Lee
- Brexogen Research Center, Brexogen Inc., Songpa‑gu, Seoul, 05855, South Korea
| | - Susie Lee
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seoho-gu, Seoul, 06591, Republic of Korea
| | - Jae-Hyun Park
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seoho-gu, Seoul, 06591, Republic of Korea
| | - Jinju Kim
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seoho-gu, Seoul, 06591, Republic of Korea
| | - Woosup Sim
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seoho-gu, Seoul, 06591, Republic of Korea
| | - Kiwon Ban
- Department of Biomedical Science, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Joonghoon Park
- Graduate School of International Agricultural Technology, Institutes of Green-Bio Science and Technology, Seoul National University, Pyeongchang, Gangwon-do, 25354, South Korea
| | - Hun-Jun Park
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, 222 Banpo-daero, Seoho-gu, Seoul, 06591, Republic of Korea.
- Division of Cardiology, Department of Internal Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea.
| | - Soo Kim
- Brexogen Research Center, Brexogen Inc., Songpa‑gu, Seoul, 05855, South Korea.
| |
Collapse
|
3
|
Bhaskara M, Anjorin O, Yoniles A, Liu J, Wang M. Importance of Per2 in cardiac mitochondrial protection during stress. Sci Rep 2024; 14:1290. [PMID: 38221535 PMCID: PMC10788343 DOI: 10.1038/s41598-024-51799-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024] Open
Abstract
During myocardial injury, inflammatory mediators and oxidative stress significantly increase to impair cardiac mitochondria. Emerging evidence has highlighted interplays between circadian protein-period 2 (Per2) and mitochondrial metabolism. However, besides circadian rhythm regulation, the direct role of Per2 in mitochondrial performance particularly following acute stress, remains unknown. In this study, we aim to determine the importance of Per2 protein's regulatory role in mitochondrial function following exposure to inflammatory cytokine TNFα and oxidative stressor H2O2 in human cardiomyocytes. Global warm ischemia (37 °C) significantly impaired complex I activity with concurrently reduced mitochondrial Per2 in adult mouse hearts. TNFα or H2O2 decreased Per2 protein levels and damaged mitochondrial respiratory function in adult mouse cardiomyocytes. Next, mitochondrial membrane potential ([Formula: see text] M) using JC-1 fluorescence probe and mitochondrial respiration capacity via Seahorse Cell Mito Stress Test were then detected in Per2 or control siRNA transfected AC16 Human Cardiomyocytes (HCM) that were subjected to 2 h-treatment of TNFα (100 ng/ml) or H2O2 (100 μM). After 4 h-treatment, cell death was also measured using Annexin V and propidium iodide apoptosis kit through flow cytometry. We found that knockdown of Per2 enhanced TNFα-induced cell death and TNFα- or H2O2-disrupted [Formula: see text]M, as well as TNFα- or H2O2-impaired mitochondrial respiration function. In conclusion, Per2 knockdown increases likelihood of cell death and mitochondrial dysfunction in human cardiomyocytes exposed to either TNFα or H2O2, supporting the protective role of Per2 in HCM during stress with a focus on mitochondrial function.
Collapse
Affiliation(s)
| | - Olufisayo Anjorin
- Department of Surgery, Indiana University School of Medicine, 950 W. Walnut Street, R2 E319, Indianapolis, IN, 46202, USA
| | - Arris Yoniles
- Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jianyun Liu
- Department of Surgery, Indiana University School of Medicine, 950 W. Walnut Street, R2 E319, Indianapolis, IN, 46202, USA
| | - Meijing Wang
- Department of Surgery, Indiana University School of Medicine, 950 W. Walnut Street, R2 E319, Indianapolis, IN, 46202, USA.
| |
Collapse
|
4
|
Ughetto A, Roubille F, Molina A, Battistella P, Gaudard P, Demaria R, Guihaire J, Lacampagne A, Delmas C. Heart graft preservation technics and limits: an update and perspectives. Front Cardiovasc Med 2023; 10:1248606. [PMID: 38028479 PMCID: PMC10657826 DOI: 10.3389/fcvm.2023.1248606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Heart transplantation, the gold standard treatment for end-stage heart failure, is limited by heart graft shortage, justifying expansion of the donor pool. Currently, static cold storage (SCS) of hearts from donations after brainstem death remains the standard practice, but it is usually limited to 240 min. Prolonged cold ischemia and ischemia-reperfusion injury (IRI) have been recognized as major causes of post-transplant graft failure. Continuous ex situ perfusion is a new approach for donor organ management to expand the donor pool and/or increase the utilization rate. Continuous ex situ machine perfusion (MP) can satisfy the metabolic needs of the myocardium, minimizing irreversible ischemic cell damage and cell death. Several hypothermic or normothermic MP methods have been developed and studied, particularly in the preclinical setting, but whether MP is superior to SCS remains controversial. Other approaches seem to be interesting for extending the pool of heart graft donors, such as blocking the paths of apoptosis and necrosis, extracellular vesicle therapy, or donor heart-specific gene therapy. In this systematic review, we summarize the mechanisms involved in IRI during heart transplantation and existing targeting therapies. We also critically evaluate all available data on continuous ex situ perfusion devices for adult donor hearts, highlighting its therapeutic potential and current limitations and shortcomings.
Collapse
Affiliation(s)
- Aurore Ughetto
- Phymedexp INSERM, CNRS, University of Montpellier, CHRU Montpellier, Montpellier, France
- Department of Anesthesiology and Critical Care Medicine, Arnaud de Villeneuve Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - François Roubille
- Phymedexp INSERM, CNRS, University of Montpellier, CHRU Montpellier, Montpellier, France
- Cardiology Department, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Adrien Molina
- Phymedexp INSERM, CNRS, University of Montpellier, CHRU Montpellier, Montpellier, France
- Cardio-thoracic and Vascular Surgery Department, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Pascal Battistella
- Cardio-thoracic and Vascular Surgery Department, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Philippe Gaudard
- Phymedexp INSERM, CNRS, University of Montpellier, CHRU Montpellier, Montpellier, France
- Department of Anesthesiology and Critical Care Medicine, Arnaud de Villeneuve Hospital, CHU Montpellier, University of Montpellier, Montpellier, France
| | - Roland Demaria
- Cardio-thoracic and Vascular Surgery Department, CHU de Montpellier, University of Montpellier, Montpellier, France
| | - Julien Guihaire
- Cardiac and Vascular Surgery, Marie Lanelongue Hospital, Paris Saclay University, Le Plessis Robinson, France
| | - Alain Lacampagne
- Phymedexp INSERM, CNRS, University of Montpellier, CHRU Montpellier, Montpellier, France
| | - Clément Delmas
- Phymedexp INSERM, CNRS, University of Montpellier, CHRU Montpellier, Montpellier, France
- Intensive Cardiac Care Unit, Cardiology Department, Rangueil University Hospital, Toulouse, France
- REICATRA, Institut Saint Jacques, CHU de Toulouse, Toulouse, France
| |
Collapse
|
5
|
Xing C, Bao L, Li W, Fan H. Progress on role of ion channels of cardiac fibroblasts in fibrosis. Front Physiol 2023; 14:1138306. [PMID: 36969589 PMCID: PMC10033868 DOI: 10.3389/fphys.2023.1138306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiac fibrosis is defined as excessive deposition of extracellular matrix (ECM) in pathological conditions. Cardiac fibroblasts (CFs) activated by injury or inflammation differentiate into myofibroblasts (MFs) with secretory and contractile functions. In the fibrotic heart, MFs produce ECM which is composed mainly of collagen and is initially involved in maintaining tissue integrity. However, persistent fibrosis disrupts the coordination of excitatory contractile coupling, leading to systolic and diastolic dysfunction, and ultimately heart failure. Numerous studies have demonstrated that both voltage- and non-voltage-gated ion channels alter intracellular ion levels and cellular activity, contributing to myofibroblast proliferation, contraction, and secretory function. However, an effective treatment strategy for myocardial fibrosis has not been established. Therefore, this review describes the progress made in research related to transient receptor potential (TRP) channels, Piezo1, Ca2+ release-activated Ca2+ (CRAC) channels, voltage-gated Ca2+ channels (VGCCs), sodium channels, and potassium channels in myocardial fibroblasts with the aim of providing new ideas for treating myocardial fibrosis.
Collapse
|
6
|
Vasquez-Rios G, Moledina DG, Jia Y, McArthur E, Mansour SG, Thiessen-Philbrook H, Shlipak MG, Koyner JL, Garg AX, Parikh CR, Coca SG. Pre-operative kidney biomarkers and risks for death, cardiovascular and chronic kidney disease events after cardiac surgery: the TRIBE-AKI study. J Cardiothorac Surg 2022; 17:338. [PMID: 36567329 PMCID: PMC9790121 DOI: 10.1186/s13019-022-02066-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 12/08/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Soluble tumor necrosis factor receptor (sTNFR)1, sTNFR2, and plasma kidney injury molecule-1 (KIM-1) are associated with kidney events in patients with and without diabetes. However, their associations with clinical outcomes when obtained pre-operatively have not been explored. METHODS The TRIBE-AKI cohort study is a prospective, multicenter, cohort study of high-risk adults undergoing cardiac surgery. We assessed the associations between pre-operative concentrations of plasma sTNFR1, sTNFR2, and KIM-1 and post-operative long-term outcomes including mortality, cardiovascular events, and chronic kidney disease (CKD) incidence or progression after discharge. RESULTS Among 1378 participants included in the analysis with a median follow-up period of 6.7 (IQR 4.0-7.9) years, 434 (31%) patients died, 256 (19%) experienced cardiovascular events and out of 837 with available long-term kidney function data, 30% developed CKD. After adjustment for clinical covariates, each log increase in biomarker concentration was independently associated with mortality with 95% CI adjusted hazard ratios (aHRs) of 3.0 (2.3-4.0), 2.3 (1.8-2.9), and 2.0 (1.6-2.4) for sTNFR1, sTNFR2, and KIM-1, respectively. For cardiovascular events, the 95% CI aHRs were 2.1 (1.5-3.1), 1.9 (1.4-2.6) and 1.6 (1.2-2.1) for sTNFR1, sTNFR2 and KIM-1, respectively. For CKD events, the aHRs were 2.2 (1.5-3.1) for sTNFR1, 1.9 (1.3-2.7) for sTNFR2, and 1.7 (1.3-2.3) for KIM-1. Despite the associations, each of the biomarkers alone or in combination failed to result in robust discrimination on an absolute basis or compared to a clinical model. CONCLUSION sTNFR1, sTNFR2, and KIM-1 were independently associated with longitudinal outcomes after discharge from a cardiac surgery hospitalization including death, cardiovascular, and CKD events when obtained pre-operatively in high-risk individuals. Pre-operative plasma biomarkers could serve to assist during the evaluation of patients in whom cardiac surgery is planned.
Collapse
Affiliation(s)
- George Vasquez-Rios
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1243, New York, NY, 10029, USA
| | - Dennis G Moledina
- Section of Nephrology and Clinical and Translational Research Accelerator, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Yaqi Jia
- Division of Nephrology, School of Medicine, Johns Hopkins University, 1830 E. Monument St., Suite 416, Baltimore, MD, 21287, USA
| | | | - Sherry G Mansour
- Section of Nephrology and Clinical and Translational Research Accelerator, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Heather Thiessen-Philbrook
- Division of Nephrology, School of Medicine, Johns Hopkins University, 1830 E. Monument St., Suite 416, Baltimore, MD, 21287, USA
| | - Michael G Shlipak
- Kidney Health Research Collaborative, University of California San Francisco, San Francisco, CA, USA.,Department of Medicine, San Francisco VA Medical Center and University of California, San Francisco, USA
| | - Jay L Koyner
- Section of Nephrology, Department of Medicine, Pritzker School of Medicine University of Chicago, Chicago, USA
| | - Amit X Garg
- ICES, Toronto, ON, Canada.,Division of Nephrology, Department of Medicine, Western University, London, ON, Canada
| | - Chirag R Parikh
- Division of Nephrology, School of Medicine, Johns Hopkins University, 1830 E. Monument St., Suite 416, Baltimore, MD, 21287, USA.
| | - Steven G Coca
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1243, New York, NY, 10029, USA.
| | | |
Collapse
|
7
|
Du C, Rasmusson RL, Bett GC, Franks B, Zhang H, Hancox JC. Investigation of the Effects of the Short QT Syndrome D172N Kir2.1 Mutation on Ventricular Action Potential Profile Using Dynamic Clamp. Front Pharmacol 2022; 12:794620. [PMID: 35115940 PMCID: PMC8806151 DOI: 10.3389/fphar.2021.794620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022] Open
Abstract
The congenital short QT syndrome (SQTS) is a cardiac condition that leads to abbreviated ventricular repolarization and an increased susceptibility to arrhythmia and sudden death. The SQT3 form of the syndrome is due to mutations to the KCNJ2 gene that encodes Kir2.1, a critical component of channels underlying cardiac inwardly rectifying K+ current, IK1. The first reported SQT3 KCNJ2 mutation gives rise to the D172N Kir2.1 mutation, the consequences of which have been studied on recombinant channels in vitro and in ventricular cell and tissue simulations. The aim of this study was to establish the effects of the D172N mutation on ventricular repolarization through real-time replacement of IK1 using the dynamic clamp technique. Whole-cell patch-clamp recordings were made from adult guinea-pig left ventricular myocytes at physiological temperature. Action potentials (APs) were elicited at 1 Hz. Intrinsic IK1 was inhibited with a low concentration (50 µM) of Ba2+ ions, which led to AP prolongation and triangulation, accompanied by a ∼6 mV depolarization of resting membrane potential. Application of synthetic IK1 through dynamic clamp restored AP duration, shape and resting potential. Replacement of wild-type (WT) IK1 with heterozygotic (WT-D172N) or homozygotic (D172N) mutant formulations under dynamic clamp significantly abbreviated AP duration (APD90) and accelerated maximal AP repolarization velocity, with no significant hyperpolarization of resting potential. Across stimulation frequencies from 0.5 to 3 Hz, the relationship between APD90 and cycle length was downward shifted, reflecting AP abbreviation at all stimulation frequencies tested. In further AP measurements at 1 Hz from hiPSC cardiomyocytes, the D172N mutation produced similar effects on APD and repolarization velocity; however, resting potential was moderately hyperpolarized by application of mutant IK1 to these cells. Overall, the results of this study support the major changes in ventricular cell AP repolarization with the D172N predicted from prior AP modelling and highlight the potential utility of using adult ventricular cardiomyocytes for dynamic clamp exploration of functional consequences of Kir2.1 mutations.
Collapse
Affiliation(s)
- Chunyun Du
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Randall L. Rasmusson
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University of New York, University at Buffalo, Buffalo, NY, United States
- Cytocybernetics Inc, North Tonawanda, NY, United States
| | - Glenna C. Bett
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, University of New York, University at Buffalo, Buffalo, NY, United States
- Cytocybernetics Inc, North Tonawanda, NY, United States
- Department of Obstetrics and Gynecology, Center for Cellular and Systems Electrophysiology, State University of New York, University at Buffalo, Buffalo, NY, United States
| | | | - Henggui Zhang
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Jules C. Hancox
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Biological Physics Group, Department of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
- *Correspondence: Jules C. Hancox,
| |
Collapse
|
8
|
Phloretin Alleviates Arsenic Trioxide-Induced Apoptosis of H9c2 Cardiomyoblasts via Downregulation in Ca 2+/Calcineurin/NFATc Pathway and Inflammatory Cytokine Release. Cardiovasc Toxicol 2021; 21:642-654. [PMID: 34037972 DOI: 10.1007/s12012-021-09655-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/27/2021] [Indexed: 01/25/2023]
Abstract
Arsenic trioxide (ATO) is among the first-line chemotherapeutic drugs for treating acute promyelocytic leukemia patients, but its clinical use is hampered due to cardiotoxicity. The present investigation unveils the mechanism underlying ATO-induced oxidative stress that promotes calcineurin (a ubiquitous Ca2+/calmodulin-dependent serine/threonine phosphatase expressed only during sustained Ca2+ elevation) expression, inflammatory cytokine release and apoptosis in H9c2 cardiomyoblasts, and its possible modulation with phloretin (PHL, an antioxidant polyphenol present in apple peel). ATO caused Ca2+ overload resulting in elevated expression of calcineurin and its downstream transcriptional effector NFATc causing the release of cytokines such as IL-2, IL-6, MCP-1, IFN-γ, and TNF-α in H9c2 cardiomyoblast. There was a visible increase in the nuclear fraction of NF-κB and ROS-mediated apoptotic cell death. The expression levels of cardiac-specific genes (troponin, desmin, and caveolin-3) and genes of the apoptotic signaling pathway (BCL-2, BAX, IGF1, AKT, ERK1, -2, RAF1, and JNK) in response to ATO and PHL were studied. The putative binding mode and the potential ligand-target interactions of PHL with calcineurin using docking software (Autodock and iGEMDOCKv2) showed the high binding affinity of PHL to calcineurin. PHL co-treatment significantly reduced Ca2+ influx and normalized the expression of calcineurin, NFATc, NF-κB, and other cytokines. PHL co-treatment resulted in activation of BCL-2, IGF1, AKT, RAF1, ERK1, and ERK2 and inhibition of BAX and JNK. Overall, these results revealed that PHL has a protective effect against ATO-induced apoptosis and we propose calcineurin as a druggable target for the interaction of PHL in ATO cardiotoxicity in H9c2 cells.
Collapse
|
9
|
Liu F, Wu H, Yang X, Dong Y, Huang G, Genin GM, Lu TJ, Xu F. A new model of myofibroblast-cardiomyocyte interactions and their differences across species. Biophys J 2021; 120:3764-3775. [PMID: 34280368 DOI: 10.1016/j.bpj.2021.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/02/2021] [Accepted: 06/28/2021] [Indexed: 11/18/2022] Open
Abstract
Although coupling between cardiomyocytes and myofibroblasts is well known to affect the physiology and pathophysiology of cardiac tissues across species, relating these observations to humans is challenging because the effect of this coupling varies across species and because the sources of these effects are not known. To identify the sources of cross-species variation, we built upon previous mathematical models of myofibroblast electrophysiology and developed a mechanoelectrical model of cardiomyocyte-myofibroblast interactions as mediated by electrotonic coupling and transforming growth factor-β1. The model, as verified by experimental data from the literature, predicted that both electrotonic coupling and transforming growth factor-β1 interaction between myocytes and myofibroblast prolonged action potential in rat myocytes but shortened action potential in human myocytes. This variance could be explained by differences in the transient outward K+ current associated with differential Kv4.2 gene expression across species. Results are useful for efforts to extrapolate the results of animal models to the predicted effects in humans and point to potential therapeutic targets for fibrotic cardiomyopathy.
Collapse
Affiliation(s)
- Fusheng Liu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an, P.R. China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an, P.R. China; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Hou Wu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an, P.R. China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an, P.R. China
| | - Xiaoyu Yang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an, P.R. China; Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an, P.R. China
| | - Yuqin Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an, P.R. China; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, P.R. China
| | - Guoyou Huang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, P.R. China
| | - Guy M Genin
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an, P.R. China; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, P.R. China; Department of Mechanical Engineering & Materials Science, St. Louis, Missouri; NSF Science and Technology Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, Missouri
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, P.R. China.
| | - Feng Xu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an, P.R. China; Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, P.R. China.
| |
Collapse
|
10
|
Akaishi T, Abe M, Miki T, Miki M, Funamizu Y, Ito S, Abe T, Ishii T. Ratio of diastolic to systolic blood pressure represents renal resistive index. J Hum Hypertens 2020; 34:512-519. [PMID: 31586124 PMCID: PMC7367813 DOI: 10.1038/s41371-019-0264-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/12/2019] [Accepted: 08/09/2019] [Indexed: 12/26/2022]
Abstract
Increased intrarenal vascular resistance is suggested to accompany chronic kidney diseases (CKD), which is known to be closely associated with hypertension. However, there are few studies that have examined the relationship between blood pressure and intrarenal vascular resistance. Renal color Doppler ultrasonography is one method that can non-invasively evaluate intrarenal vascular resistance. In this study, we comprehensively studied the correlations between ultrasonic parameters and blood pressure indices to elucidate their relationships. In total, 162 patients with suspected CKD were enrolled for this study. Demographics, blood pressure, blood test, urine test, and renal color Doppler ultrasonography data were obtained. The ratio of diastolic to systolic blood pressure (D/S ratio) and pulse pressure were calculated. Our results indicated strong negative correlations between the renal resistive index (RI) values in all four of the studied kidney regions and the D/S ratio. The RI values also showed significant correlations with diastolic pressure and pulse pressure, but they were weaker. Partial correlation coefficients between pulse pressure, mean arterial pressure, D/S ratio, and RI showed that D/S ratio significantly correlated with RI, but pulse pressure or mean arterial pressure did not. Systolic blood pressure did not correlate with any of the studied ultrasonic values. The negative correlation between RI values and the D/S ratio was still observed in subjects without renal dysfunction or any medications. In conclusion, D/S ratio, rather than pulse pressure or mean arterial pressure, would be the most appropriate index to estimate/calculate/judge intrarenal vascular resistance.
Collapse
Affiliation(s)
- Tetsuya Akaishi
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan
| | - Michiaki Abe
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan.
- Department of Nephrology, Endocrinology and Vascular Medicine, Tohoku University, Sendai, Japan.
| | - Takashi Miki
- Clinical Physiology Center, Tohoku University Hospital, Sendai, Japan
| | - Mika Miki
- Clinical Physiology Center, Tohoku University Hospital, Sendai, Japan
| | - Yasuharu Funamizu
- Clinical Physiology Center, Tohoku University Hospital, Sendai, Japan
| | - Sadayoshi Ito
- Department of Nephrology, Endocrinology and Vascular Medicine, Tohoku University, Sendai, Japan
| | - Takaaki Abe
- Department of Nephrology, Endocrinology and Vascular Medicine, Tohoku University, Sendai, Japan
| | - Tadashi Ishii
- Department of Education and Support for Regional Medicine, Tohoku University Hospital, Sendai, Japan
| |
Collapse
|
11
|
Bosch X, Jáuregui B, Villamor N, Morales-Ruiz M, Ortiz-Pérez JT, Borràs R, Penela D, Soto-Iglesias D, Perea RJ, Doltra A, Prat-González S, Jiménez W, Mira Á, Lasalvia L, Berruezo A. Monocyte Subsets Are Differently Associated with Infarct Size, Left Ventricular Function, and the Formation of a Potentially Arrhythmogenic Scar in Patients with Acute Myocardial Infarction. J Cardiovasc Transl Res 2019; 13:722-730. [PMID: 31833003 DOI: 10.1007/s12265-019-09944-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/28/2019] [Indexed: 11/25/2022]
Abstract
To investigate the role of classical (CLM, CD14++CD16-), intermediate (INTM, CD14++CD16+), and non-classical (Non-CLM, CD14+CD16++) monocytes in scar formation after ST-elevation myocardial infarction (STEMI), evaluated with cardiac magnetic resonance (CMR). One hundred two patients with a first STEMI had serial blood analyses after 1, 3, and 7 days. A CMR was performed at 7 days and 6 months, depicting scar core (CO), border zone (BZ), and the presence of BZ channels. CLM and INTM levels progressively decreased, correlated with the scar mass, CO, and BZ at 7 days and 6 months (p < 0.05), and inversely with left ventricular ejection fraction (LVEF, p < 0.01). Non-CLM levels gradually increased, correlated with BZ mass and the presence of BZ channels at 7 days and 6 months (p < 0.001).CLM and INTM are associated with infarct size and inversely with LVEF, whereas Non-CLM are associated with BZ mass and the presence of potentially arrhythmogenic substrate.
Collapse
Affiliation(s)
- Xavier Bosch
- Cardiology Department, Cardiovascular Institute, Hospital Clínic, University of Barcelona, Spain, Carrer de Villarroel, 170, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Beatriz Jáuregui
- Cardiology Department, Cardiovascular Institute, Hospital Clínic, University of Barcelona, Spain, Carrer de Villarroel, 170, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Heart Institute, Teknon Medical Center, Barcelona, Spain
| | - Neus Villamor
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Hematopathology Unit, Pathology Department, Hospital Clínic, University of Barcelona, Spain, Barcelona, Spain
| | - Manuel Morales-Ruiz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Biochemistry and Molecular Genetics Department, Hospital Clínic, University of Barcelona, Spain, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - José T Ortiz-Pérez
- Cardiology Department, Cardiovascular Institute, Hospital Clínic, University of Barcelona, Spain, Carrer de Villarroel, 170, 08036, Barcelona, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Roger Borràs
- Cardiology Department, Cardiovascular Institute, Hospital Clínic, University of Barcelona, Spain, Carrer de Villarroel, 170, 08036, Barcelona, Spain
| | - Diego Penela
- Cardiology Department, Ospedale Guglielmo da Saliceto, Piacenza, Italy
| | - David Soto-Iglesias
- Cardiology Department, Cardiovascular Institute, Hospital Clínic, University of Barcelona, Spain, Carrer de Villarroel, 170, 08036, Barcelona, Spain.,Heart Institute, Teknon Medical Center, Barcelona, Spain
| | - Rosario J Perea
- Radiology Department, Hospital Clínic, University of Barcelona, Spain, Barcelona, Spain
| | - Ada Doltra
- Cardiology Department, Cardiovascular Institute, Hospital Clínic, University of Barcelona, Spain, Carrer de Villarroel, 170, 08036, Barcelona, Spain
| | - Susana Prat-González
- Cardiology Department, Cardiovascular Institute, Hospital Clínic, University of Barcelona, Spain, Carrer de Villarroel, 170, 08036, Barcelona, Spain
| | - Wladimiro Jiménez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Biochemistry and Molecular Genetics Department, Hospital Clínic, University of Barcelona, Spain, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Áurea Mira
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Biochemistry and Molecular Genetics Department, Hospital Clínic, University of Barcelona, Spain, Barcelona, Spain
| | | | | |
Collapse
|
12
|
Abstract
Chemokines are small secreted proteins with chemoattractant properties that play a key role in inflammation. One such chemokine, Stromal cell-derived factor-1 (SDF-1) also known as CXCL12, and its receptor, CXCR4, are expressed and functional in cardiac myocytes. SDF-1 both stimulates and enhances the cellular signal which attracts potentially beneficial stem cells for tissue repair within the ischemic heart. Paradoxically however, this chemokine is known to act in concert with the inflammatory cytokines of the innate immune response which contributes to cellular injury through the recruitment of inflammatory cells during ischemia. In the present study, we have demonstrated that SDF-1 has dose dependent effects on freshly isolated cardiomyocytes. Using Tunnel and caspase 3-activation assays, we have demonstrated that the treatment of isolated adult rat cardiac myocyte with SDF-1 at higher concentrations (pathological concentrations) induced apoptosis. Furthermore, ELISA data demonstrated that the treatment of isolated adult rat cardiac myocyte with SDF-1 at higher concentrations upregulated TNF-α protein expression which directly correlated with subsequent apoptosis. There was a significant reduction in SDF-1 mediated apoptosis when TNF-α expression was neutralized which suggests that SDF-1 mediated apoptosis is TNF-α-dependent. The fact that certain stimuli are capable of driving cardiomyocytes into apoptosis indicates that these cells are susceptible to clinically relevant apoptotic triggers. Our findings suggest that the elevated SDF-1 levels seen in a variety of clinical conditions, including ischemic myocardial infarction, may either directly or indirectly contribute to cardiac cell death via a TNF-α mediated pathway. This highlights the importance of this receptor/ligand in regulating the cardiomyocyte response to stress conditions.
Collapse
|
13
|
Mohsin S, Houser SR. Cortical Bone Derived Stem Cells for Cardiac Wound Healing. Korean Circ J 2019; 49:314-325. [PMID: 30808081 PMCID: PMC6428954 DOI: 10.4070/kcj.2018.0437] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 12/23/2018] [Indexed: 12/23/2022] Open
Abstract
Ischemic heart disease can lead to myocardial infarction (MI), a major cause of morbidity and mortality worldwide. Adoptive transfer of multiple stem cell types into failing human hearts has demonstrated safety however the beneficial effects in patients with cardiovascular disorders have been modest. Modest improvement in patients with cardiac complications warrants identification of a novel stem cell population that possesses effective reparative properties and improves cardiac function after injury. Recently we have shown in a mouse model and a porcine pre-clinical animal model, that cortical bone derived stem cells (CBSCs) enhance cardiac function after MI and/or ischemia-reperfusion injury. These beneficial effects of allogeneic cell delivery appear to be mediated by paracrine mechanisms rather than by transdifferentiation of injected cells into vessels and/or immature myocytes. This review will discuss role of CBSCs in cardiac wound healing. After having modest beneficial improvement in most of the clinical trials, a critical need is to understand the interaction of the transplanted stem cells with the ischemic cardiac environment. Transplanted stem cells are exposed to pro-inflammatory factors and activated immune cells and fibroblasts, but their interactions remain unknown. We have shown that CBSCs modulate different processes including modulation of the immune response, angiogenesis, and restriction of infarct sizes after cardiac injury. This review will provide information on unique protective signature of CBSCs in rodent/swine animal models for heart repair that should provide basis for developing novel therapies for treating heart failure patients.
Collapse
Affiliation(s)
- Sadia Mohsin
- Department of Pharmacology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Steven R. Houser
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
14
|
Ock S, Kim HM, Lee WS, Ahn J, Kim J. Effect of sodium salicylate on COX-2 expression in neonatal rat cardiomyocytes. Mol Cell Toxicol 2018. [DOI: 10.1007/s13273-018-0011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Sharma S, Kaur A, Sharma S. Preconditioning potential of purmorphamine: a hedgehog activator against ischaemic reperfusion injury in ovariectomised rat heart. Perfusion 2017; 33:209-218. [PMID: 29065787 DOI: 10.1177/0267659117732401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The present study was been designed to investigate the role and pharmacological potential of hedgehog in oestrogen-deficient rat heart. METHODS Oestrogen deficiency was produced in female Wistar rats by the surgical removal of both ovaries and these animals were used four weeks later. Isolated rat heart was subjected to 30 min ischaemia followed by 120 min of reperfusion (I/R). The heart was subjected to pharmacological preconditioning with the hedgehog agonist purmorphamine (1μM) and GDC-0449, a hedgehog antagonist, in the last episode of reperfusion before I/R. Myocardial infarction was assessed in terms of the increase in lactate dehydrogenase (LDH), creatinine kinase-MB (CK-MB), myeloperoxidase (MPO) level and infarct size (triphenyltetrazolium chloride staining). Immunohistochemistry analysis was done for the assessment of tumour necrosis factor (TNF)-α level in cardiac tissue. eNOS expression was estimated by rt-PCR. RESULTS Pharmacological preconditioning with purmorphamine significantly attenuated I/R-induced myocardial infarction, TNF-α, MPO level and release of LDH and CK-MB compared to the I/R control group. However, GDC-0449 prevented the ameliorative preconditioning effect of estradiol. CONCLUSION It may be concluded that the hedgehog agonist purmorphamine prevents the ovariectomised heart from ischaemic reperfusion injury.
Collapse
Affiliation(s)
- Shweta Sharma
- Department of Pharmacology, Cardiovascular Division, I.S.F College of Pharmacy, Moga, India
| | - Avileen Kaur
- Department of Pharmacology, Cardiovascular Division, I.S.F College of Pharmacy, Moga, India
| | - Saurabh Sharma
- Department of Pharmacology, Cardiovascular Division, I.S.F College of Pharmacy, Moga, India
| |
Collapse
|
16
|
TNF-α stimulates endothelial palmitic acid transcytosis and promotes insulin resistance. Sci Rep 2017; 7:44659. [PMID: 28304381 PMCID: PMC5356338 DOI: 10.1038/srep44659] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/13/2017] [Indexed: 01/15/2023] Open
Abstract
Persistent elevation of plasma TNF-α is a marker of low grade systemic inflammation. Palmitic acid (PA) is the most abundant type of saturated fatty acid in human body. PA is bound with albumin in plasma and could not pass through endothelial barrier freely. Albumin-bound PA has to be transported across monolayer endothelial cells through intracellular transcytosis, but not intercellular diffusion. In the present study, we discovered that TNF-α might stimulate PA transcytosis across cardiac microvascular endothelial cells, which further impaired the insulin-stimulated glucose uptake by cardiomyocytes and promoted insulin resistance. In this process, TNF-α-stimulated endothelial autophagy and NF-κB signaling crosstalk with each other and orchestrate the whole event, ultimately result in increased expression of fatty acid transporter protein 4 (FATP4) in endothelial cells and mediate the increased PA transcytosis across microvascular endothelial cells. Hopefully the present study discovered a novel missing link between low grade systemic inflammation and insulin resistance.
Collapse
|
17
|
Wang JF, Ren X, DeAngelis J, Min J, Zhang Y, Hampton TG, Amende I, Morgan JP. Differential Patterns of Cocaine-Induced Organ Toxicity in Murine Heart versus Liver. Exp Biol Med (Maywood) 2016; 226:52-60. [PMID: 11368239 DOI: 10.1177/153537020122600108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To determine cocaine's toxicity in different organs, BALB/c mice were intraperitoneally injected daily for 15 days with either saline or cocaine: 10 mg/kg, 30 mg/kg, or 60 mg/kg. Cardiac function, hepatic pathophysiology, heart and liver apoptosis, and tumor necrosis factor (TNF-α) levels were analyzed. After administration of cocaine, cardiac function decreased. Inflammatory cell infiltration and eosinophilic contraction bands were visible in the hearts of mice treated with 60mg/kg cocaine. Moreover, histopathology demonstrated that cocaine caused hepatic necrosis. TdT-mediated dUTP nick end-labeling (TUNEL) staining and DNA ladder analysis indicated that cocaine caused apoptosis in both the heart and liver. Moreover, immunoassay showed that TNF-α levels significantly increased in the heart and liver with cocaine administration. However, our RT-PCR study showed that there was no significant difference in either the heart or liver in the levels of mRNA for TNF-α between cocaine-treated and saline control mice. The present study demonstrated that cocaine is toxic to multiple organs, and at low dose can induce hepatic damage without gross pathological injury to the heart. The results suggest that the liver is more sensitive than the heart to cocaine toxicity, and induction of apoptosis or TNF-α elevation may be a common mechanism responsible for cocaines toxicity.
Collapse
Affiliation(s)
- J F Wang
- The Charles A. Dana Research Institute and Harvard-Thorndike Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Elshazly SM, Mahmoud AA, Barakat W. Pentoxifylline abrogates cardiotoxicity induced by the administration of a single high dose or multiple low doses of doxorubicin in rats. Can J Physiol Pharmacol 2016; 94:1170-1177. [DOI: 10.1139/cjpp-2016-0115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Doxorubicin (DOX) possesses a broad-spectrum antineoplastic activity; however, its clinical application is impeded by cardiotoxicity. This study aimed to investigate the protective effect of pentoxifylline (PXF), which possesses antioxidant and anti-inflammatory properties against cardiotoxicity induced by a single high dose (15 mg/kg, i.p.) or multiple low doses (2.5 mg/kg, i.p., three times per week for 2 weeks) of DOX. At the end of the experimental period, the serum creatine kinase (CK)-MB and lactate dehydrogenase (LDH) activities were measured. The hearts were then removed for evaluating TNF-α, NO, malondialdehyde (MDA), and reduced glutathione (GSH) levels, superoxide dismutase (SOD) and catalase (CAT) activities, and the expression of iNOS, NF-κB, Fas ligand (FasL), and caspase-3. The administration of DOX in both dose regimens caused increases in serum CK-MB and LDH activities, in cardiac TNF-α, NO and MDA levels, as well as in the cardiac expression of iNOS, NF-κB, FasL and caspase-3, whereas it significantly reduced the cardiac GSH level, as well as SOD and CAT activities (P < 0.05). Prophylactic treatment of rats with PXF diminished DOX-induced alterations in theses parameters. Our results warrant the clinical use of PXF as an adjuvant therapy to abrogate cardiotoxicity of DOX and extend its clinical applications.
Collapse
Affiliation(s)
- Shimaa M. Elshazly
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Amr A.A. Mahmoud
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Waleed Barakat
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Department of Pharmacology, Faculty of Pharmacy, Tabuk University, Tabuk 71491, Kingdom of Saudi Arabia
| |
Collapse
|
19
|
Vornanen M. The temperature dependence of electrical excitability in fish hearts. J Exp Biol 2016; 219:1941-52. [DOI: 10.1242/jeb.128439] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 05/17/2016] [Indexed: 01/08/2023]
Abstract
ABSTRACT
Environmental temperature has pervasive effects on the rate of life processes in ectothermic animals. Animal performance is affected by temperature, but there are finite thermal limits for vital body functions, including contraction of the heart. This Review discusses the electrical excitation that initiates and controls the rate and rhythm of fish cardiac contraction and is therefore a central factor in the temperature-dependent modulation of fish cardiac function. The control of cardiac electrical excitability should be sensitive enough to respond to temperature changes but simultaneously robust enough to protect against cardiac arrhythmia; therefore, the thermal resilience and plasticity of electrical excitation are physiological qualities that may affect the ability of fishes to adjust to climate change. Acute changes in temperature alter the frequency of the heartbeat and the duration of atrial and ventricular action potentials (APs). Prolonged exposure to new thermal conditions induces compensatory changes in ion channel expression and function, which usually partially alleviate the direct effects of temperature on cardiac APs and heart rate. The most heat-sensitive molecular components contributing to the electrical excitation of the fish heart seem to be Na+ channels, which may set the upper thermal limit for the cardiac excitability by compromising the initiation of the cardiac AP at high temperatures. In cardiac and other excitable cells, the different temperature dependencies of the outward K+ current and inward Na+ current may compromise electrical excitability at temperature extremes, a hypothesis termed the temperature-dependent depression of electrical excitation.
Collapse
Affiliation(s)
- Matti Vornanen
- University of Eastern Finland, Department of Environmental and Biological Sciences, PO Box 111, Joensuu 80101, Finland
| |
Collapse
|
20
|
Pathak D, Guan D, Foehring RC. Roles of specific Kv channel types in repolarization of the action potential in genetically identified subclasses of pyramidal neurons in mouse neocortex. J Neurophysiol 2016; 115:2317-29. [PMID: 26864770 DOI: 10.1152/jn.01028.2015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/09/2016] [Indexed: 01/07/2023] Open
Abstract
The action potential (AP) is a fundamental feature of excitable cells that serves as the basis for long-distance signaling in the nervous system. There is considerable diversity in the appearance of APs and the underlying repolarization mechanisms in different neuronal types (reviewed in Bean BP. Nat Rev Neurosci 8: 451-465, 2007), including among pyramidal cell subtypes. In the present work, we used specific pharmacological blockers to test for contributions of Kv1, Kv2, or Kv4 channels to repolarization of single APs in two genetically defined subpopulations of pyramidal cells in layer 5 of mouse somatosensory cortex (etv1 and glt) as well as pyramidal cells from layer 2/3. These three subtypes differ in AP properties (Groh A, Meyer HS, Schmidt EF, Heintz N, Sakmann B, Krieger P. Cereb Cortex 20: 826-836, 2010; Guan D, Armstrong WE, Foehring RC. J Neurophysiol 113: 2014-2032, 2015) as well as laminar position, morphology, and projection targets. We asked what the roles of Kv1, Kv2, and Kv4 channels are in AP repolarization and whether the underlying mechanisms are pyramidal cell subtype dependent. We found that Kv4 channels are critically involved in repolarizing neocortical pyramidal cells. There are also pyramidal cell subtype-specific differences in the role for Kv1 channels. Only Kv4 channels were involved in repolarizing the narrow APs of glt cells. In contrast, in etv1 cells and layer 2/3 cells, the broader APs are partially repolarized by Kv1 channels in addition to Kv4 channels. Consistent with their activation in the subthreshold range, Kv1 channels also regulate AP voltage threshold in all pyramidal cell subtypes.
Collapse
Affiliation(s)
- Dhruba Pathak
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Dongxu Guan
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Robert C Foehring
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
21
|
Li PC, Tien YC, Day CH, Pai P, Kuo WW, Chen TS, Kuo CH, Tsai CH, Ju DT, Huang CY. Impact of LPS-induced cardiomyoblast cell apoptosis inhibited by earthworm extracts. Cardiovasc Toxicol 2016; 15:172-9. [PMID: 25249212 DOI: 10.1007/s12012-014-9281-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dilong is an earthworm extract with a dense nutritional content, widely used in Chinese herbal medicine to remove stasis and stimulate wound healing. Earthworm extracts are traditionally used by indigenous people throughout the world. How this Dilong inhibits Lipopolysaccharide (LPS)-induced cardiomyoblast cell apoptosis is still unclear. This study investigates the Dilong extract effect on LPS-induced apoptosis in H9c2 cardiomyoblast cells. LPS (1 μg/ml) administration for 24 h induced apoptosis in H9c2 cells. Cell apoptosis was detected using MTT, LDH, TUNEL assay and JC-1 staining. Western blot analysis was used to detect pro-apoptotic and anti-apoptotic proteins. Dilong extract totally blocked the LPS impact, leading to the activation of anti-apoptotic proteins, Bcl-2 and Bcl-xL, stabilized the mitochondria membrane and down-regulated the extrinsic and intrinsic pro-apoptotic proteins, TNF-α, active caspase-8, t-Bid, Bax, active caspase-9 and active caspase-3. Dilong could potentially serve as a cardio protective agent against LPS-induced H9c2 cardiomyoblast cell apoptosis.
Collapse
Affiliation(s)
- Ping-Chun Li
- Division of Cardiovascular Surgery, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tumor necrosis factor alpha stimulates p62 accumulation and enhances proteasome activity independently of ROS. Cell Biol Toxicol 2015; 31:83-94. [PMID: 25761618 DOI: 10.1007/s10565-015-9295-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 02/25/2015] [Indexed: 12/20/2022]
Abstract
Circulating TNF-α levels are elevated in a wide variety of cardiovascular pathologies including congestive heart failure (CHF). This cytokine is one of the leading mediators of the immune inflammatory response with widespread biological functions regulated by membrane receptors. The pathophysiological implication of the downstream effects of activating the TNF-α system in CHF appears to depend on its direct effects on the heart and endothelium. Evidence supporting the notion that circulating TNF-α promotes protein breakdown was initially obtained from studies utilizing transgenic animals overexpressing TNF-α, animals with experimental diseases that augment TNF-α and in animals treated with exogenous TNF-α. It was then demonstrated that TNF-α acts directly on cultured myotubes to stimulate catabolism; however, whether the effects are the same in the heart remains poorly understood. The present study shows that TNF-α treatment induces autophagy, but clearance through this pathway appears obstructed and, consequently, results in increased protein ubiquitination. Furthermore, prolonged TNF-α treatment enhanced E3 ubiquitin ligase expression but reduced activity of the proteasome. These results suggest that TNF-α induces sarcomeric dysfunction and remodeling by disrupting autophagy and elevating the degradation of myofibrillar proteins. Therefore, myocardial remodeling, as a consequence to reduced contractile proteins, contributes to contractile dysfunction, a symptom often observed in the end stages of CHF.
Collapse
|
23
|
Shi Z, Lian A, Zhang F. Nuclear factor-κB activation inhibitor attenuates ischemia reperfusion injury and inhibits Hmgb1 expression. Inflamm Res 2014; 63:919-25. [PMID: 25209109 DOI: 10.1007/s00011-014-0765-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 06/08/2014] [Accepted: 07/26/2014] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE AND DESIGN To investigate the effects of nuclear factor-κB activation inhibitor dehydroxymethylepoxyquinomicin (DHMEQ) on cardiac ischemia reperfusion injury in a transplantation model. METHODS Hearts of C57BL/6 mice were flushed and stored in cold Bretschneider solution for 8 h and then transplanted into syngeneic recipient. Some mice were administrated intraperitoneally with DHMEQ (8 mg/kg) 1 h before reperfusion. For inhibition of Hmgb1, mice were treated with glycyrrhizin at 250 mg/kg prior to reperfusion. RESULTS DHMEQ decreased cardiomyocyte apoptosis and recruitment of neutrophils and macrophages. Troponin T (TnT) production on 24 h after myocardial IR injury was reduced by DHMEQ treatment. Cardiac output at 60 mmHg of afterload pressure was significantly increased in hearts with DHMEQ treatment (IR+DHMEQ: 58.6 ± 5.75 ml/min; IR: 25.9 ± 4.1 ml/min; P < 0.05). Furthermore, DHMEQ suppressed high mobility group protein (Hmgb1) expression. And the Caspase 3 activity, the number of TUNEL-positive cardiomyocytes and infiltrated neutrophil in cardiac allograft were markedly decreased with Hmgb1 inhibitor treatment. CONCLUSIONS Nuclear factor-κB activation inhibitor DHMEQ attenuates ischemia reperfusion injury in a cardiac transplantation model and it may be a suitable agent for the protection of the cardiac against ischemia reperfusion injury.
Collapse
Affiliation(s)
- Zhiyong Shi
- Department of Cardiothoracic Surgery, China Pingmei Shenma Medical Group General Hospital, Pingdingshan Kuanggong Road 1#, Henan, China,
| | | | | |
Collapse
|
24
|
Wang X, Xiong M, Zeng Y, Sun X, Gong T, Zhang Z. Mechanistic studies of a novel mycophenolic acid-glucosamine conjugate that attenuates renal ischemia/reperfusion injury in rat. Mol Pharm 2014; 11:3503-14. [PMID: 25153320 DOI: 10.1021/mp500282g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Renal ischemia/reperfusion (I/R) injury causes high mortality and morbidity during renal procedures, yet current drugs should be used at high doses or for long periods due to lack of tissue specificity. In previous work we described a novel mycophenolic acid-glucosamine conjugate (MGC) that targets the proximal tubule epithelium, where it efficiently reduces renal I/R injury in rats and promotes recovery from reperfusion. Here we perform mechanistic studies of MGC in rats that suggest that the conjugate works by repressing the activation of renal inosine-5'-monophosphate dehydrogenase 2 (IMPDH2), thereby inhibiting the proliferation and accumulation of lympholeukocytes in the proximal tubules. In addition, MGC appears to inhibit inflammation through various pathways, including inhibition of free oxygen radical production, upregulation of bone morphogenetic protein-7, and downregulation of complement protein 3, TLR 4, intracellular adhesion molecules in the endothelium, proinflammatory cytokines (e.g., TNF-α, IL-6, IL-1, TGF-β), and chemotactic cytokines [e.g., monocyte chemoattractant protein-1 (MCP-1) and IL-8]. These findings suggest that MGC specifically targets the proximal tubules and acts through numerous mechanisms to substantially mitigate I/R injury in rats; this conjugate may provide a more effective alternative to current combination therapy.
Collapse
Affiliation(s)
- Xiaohong Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University , Southern Renmin Road, No. 17, Section 3, Chengdu 610041, P. R. China
| | | | | | | | | | | |
Collapse
|
25
|
Asgeri M, Pourafkari L, Kundra A, Javadzadegan H, Negargar S, Nader ND. Dual effects of tumor necrosis factor alpha on myocardial injury following prolonged hypoperfusion of the heart. Immunol Invest 2014; 44:23-35. [PMID: 24949667 DOI: 10.3109/08820139.2014.921689] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To examine the dose response of TNFα in an ex vivo rat model of myocardial ischemia reperfusion. METHODS AND RESULTS Seventy-two rat hearts were mounted on Langendorff apparatus and perfused with oxygenated Krebs-Henseleit solutions. Ischemia was induced by reducing the perfusate flow rate. During reperfusion, incremental doses of recombinant TNFα were infused as a part of perfusate. TNFα was blocked with monoclonal TNFα antibody. Myocardial function was measured by dP/dT and relaxation time (IVRT). Cellular injury was assessed by released myoglobin and tissue concentration of malondialdehyde activity of the heart homogenates. Baseline +dP/dT was 1645 ± 125 mmHg/sec, -dP/dT was 945 ± 73 mmHg/sec and IVRT was 65 ± 5 msec. At the conclusion of reperfusion period, lower doses of TNFα increased +dP/dT and lowered IVRT. In contrast, the higher doses of TNFα decreased +dP/dT and prolonged IVRT. Pretreating the hearts with monoclonal TNFα antibody completely abolished the effects of TNFα on myocardial contractility and relaxation comparable to ischemia controls. CONCLUSION Low dose TNFα improved myocardial function and decreased resultant cellular injury while high dose TNFα decreased myocardial function and increased myocardial injury following ischemia and reperfusion.
Collapse
Affiliation(s)
- Mehrdad Asgeri
- Department of Medicine, University Hospitals , Cleveland, Ohio , USA
| | | | | | | | | | | |
Collapse
|
26
|
Puglisi JL, Goldspink PH, Gomes AV, Utter MS, Bers DM, Solaro RJ. Influence of a constitutive increase in myofilament Ca(2+)-sensitivity on Ca(2+)-fluxes and contraction of mouse heart ventricular myocytes. Arch Biochem Biophys 2014; 552-553:50-9. [PMID: 24480308 PMCID: PMC4043955 DOI: 10.1016/j.abb.2014.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/02/2014] [Accepted: 01/18/2014] [Indexed: 11/25/2022]
Abstract
Chronic increases in myofilament Ca(2+)-sensitivity in the heart are known to alter gene expression potentially modifying Ca(2+)-homeostasis and inducing arrhythmias. We tested age-dependent effects of a chronic increase in myofilament Ca(2+)-sensitivity on induction of altered alter gene expression and activity of Ca(2+) transport systems in cardiac myocytes. Our approach was to determine the relative contributions of the major mechanisms responsible for restoring Ca(2+) to basal levels in field stimulated ventricular myocytes. Comparisons were made from ventricular myocytes isolated from non-transgenic (NTG) controls and transgenic mice expressing the fetal, slow skeletal troponin I (TG-ssTnI) in place of cardiac TnI (cTnI). Replacement of cTnI by ssTnI induces an increase in myofilament Ca(2+)-sensitivity. Comparisons included myocytes from relatively young (5-7months) and older mice (11-13months). Employing application of caffeine in normal Tyrode and in 0Na(+) 0Ca(2+) solution, we were able to dissect the contribution of the sarcoplasmic reticulum Ca(2+) pump (SR Ca(2+)-ATPase), the Na(+)/Ca(2+) exchanger (NCX), and "slow mechanisms" representing the activity of the sarcolemmal Ca(2+) pump and the mitochondrial Ca(2+) uniporter. The relative contribution of the SR Ca(2+)-ATPase to restoration of basal Ca(2+) levels in younger TG-ssTnI myocytes was lower than in NTG (81.12±2.8% vs 92.70±1.02%), but the same in the older myocytes. Younger and older NTG myocytes demonstrated similar contributions from the SR Ca(2+)-ATPase and NCX to restoration of basal Ca(2+). However, the slow mechanisms for Ca(2+) removal were increased in the older NTG (3.4±0.3%) vs the younger NTG myocytes (1.4±0.1%). Compared to NTG, younger TG-ssTnI myocytes demonstrated a significantly bigger contribution of the NCX (16±2.7% in TG vs 6.9±0.9% in NTG) and slow mechanisms (3.3±0.4% in TG vs 1.4±0.1% in NTG). In older TG-ssTnI myocytes the contributions were not significantly different from NTG (NCX: 4.9±0.6% in TG vs 5.5±0.7% in NTG; slow mechanisms: 2.5±0.3% in TG vs 3.4±0.3% in NTG). Our data indicate that constitutive increases in myofilament Ca(2+)-sensitivity alter the relative significance of the NCX transport system involved in Ca(2+)-homeostasis only in a younger group of mice. This modification may be of significance in early changes in altered gene expression and electrical stability hearts with increased myofilament Ca-sensitivity.
Collapse
Affiliation(s)
- Jose L Puglisi
- Department of Pharmacology, University of California Davis, Davis, CA 95616, United States
| | - Paul H Goldspink
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Aldrin V Gomes
- Department of Neurobiology, Physiology, and Behavior, University of California Davis, Davis, CA 95616, United States
| | - Megan S Utter
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, United States
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Davis, CA 95616, United States
| | - R John Solaro
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, United States.
| |
Collapse
|
27
|
Both castration and goserelin acetate ameliorate myocardial ischemia reperfusion injury and apoptosis in male rats. ISRN PHARMACOLOGY 2014; 2014:206951. [PMID: 24729888 PMCID: PMC3960567 DOI: 10.1155/2014/206951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/19/2014] [Indexed: 11/17/2022]
Abstract
Although reperfusion of an ischemic organ is essential to prevent irreversible tissue damage, it may amplify tissue injury. This study investigates the role of endogenous testosterone in myocardial ischemia reperfusion and apoptosis in male rats. Material and method. Twenty four male rats were randomized into 4 equal groups: Group (1), sham group, rats underwent the same anesthetic and surgical procedure as the control group except for LAD ligation; Group (2), Active control group, rats underwent LAD ligation; Group (3), castrated, rats underwent surgical castration, left 3wks for recovery, and then underwent LAD ligation; and Group (4), Goserelin acetate treated, rats received 3.6 mg of Goserelin 3 wks before surgery and then underwent LAD ligation. At the end of experiment, plasma cTn I, cardiac TNF-α, IL1-β, ICAM-1, and Apoptosis level were measured and histological examination was made. Results. Compared to sham group, the levels of myocardial TNF-α, IL-1β, ICAM-1, apoptosis, and plasma cTn I were significantly increased (P < 0.05) in control group and all rats showed significant myocardial injury (P < 0.05). Castration and Goserelin acetates significantly counteract the increase in myocardial levels of TNF-α, IL-1β, ICAM-1, plasma cTn I, and apoptosis (P < 0.05) and significantly reduce (P < 0.05) the severity of myocardial injury. We conclude that castration and Goserelin acetates ameliorate myocardial I/R injury and apoptosis in rats via interfering with inflammatory reactions.
Collapse
|
28
|
Recombinant human annexin A5 inhibits proinflammatory response and improves cardiac function and survival in mice with endotoxemia. Crit Care Med 2014; 42:e32-41. [PMID: 24145837 DOI: 10.1097/ccm.0b013e3182a63e01] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Annexin A5 is a 35-kDa protein with high affinity binding to negatively charged phospholipids. However, its effects on sepsis are not known. Our aim was to study the effects of annexin A5 on myocardial tumor necrosis factor-α expression, cardiac function, and animal survival in endotoxemia. DESIGN Prospective experimental study. SETTING University laboratory. SUBJECTS Adult male C57BL/6 mice. INTERVENTIONS Mice were challenged with lipopolysaccharide (4 or 20 mg/kg, i.p.) to induce endotoxemia with and without recombinant human annexin A5 treatment (5 or 10 μg/kg, i.v.). Cytokine expression and cardiac function were assessed, and animal survival was monitored. MEASUREMENTS AND MAIN RESULTS Treatment with annexin A5 inhibited myocardial mitogen-activated protein kinase, and nuclear factor-κB activation in mice with endotoxemia. Furthermore, annexin A5-treated animals showed significant reductions in myocardial and plasma levels of tumor necrosis factor-α and interleukin-1β while cardiac function was significantly improved during endotoxemia. Additionally, 5-day animal survival was significantly improved by either an immediate or a 4-hour delayed annexin A5 treatment after lipopolysaccharide challenge. Importantly, annexin A5 dose-dependently inhibited lipopolysaccharide binding to a toll-like receptor-4/myeloid differentiation factor 2 fusion protein. CONCLUSIONS Annexin A5 treatment decreases cytokine expression and improves cardiac function and survival during endotoxemia. These effects of annexin A5 are mediated by its ability to inhibit lipopolysaccharide binding to toll-like receptor-4, leading to reductions in mitogen-activated protein kinase and Akt signaling. Our study suggests that annexin A5 may have therapeutic potential in the treatment of sepsis.
Collapse
|
29
|
Alsaad AMS, Zordoky BNM, Tse MMY, El-Kadi AOS. Role of cytochrome P450-mediated arachidonic acid metabolites in the pathogenesis of cardiac hypertrophy. Drug Metab Rev 2013; 45:173-95. [PMID: 23600686 DOI: 10.3109/03602532.2012.754460] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A plethora of studies have demonstrated the expression of cytochrome P450 (CYP) and soluble epoxide hydrolase (sEH) enzymes in the heart and other cardiovascular tissues. In addition, the expression of these enzymes is altered during several cardiovascular diseases (CVDs), including cardiac hypertrophy (CH). The alteration in CYP and sEH expression results in derailed CYP-mediated arachidonic acid (AA) metabolism. In animal models of CH, it has been reported that there is an increase in 20-hydroxyeicosatetraenoic acid (20-HETE) and a decrease in epoxyeicosatrienoic acids (EETs). Further, inhibiting 20-HETE production by CYP ω-hydroxylase inhibitors and increasing EET stability by sEH inhibitors have been proven to protect against CH as well as other CVDs. Therefore, CYP-mediated AA metabolites 20-HETE and EETs are potential key players in the pathogenesis of CH. Some studies have investigated the molecular mechanisms by which these metabolites mediate their effects on cardiomyocytes and vasculature leading to pathological CH. Activation of several intracellular signaling cascades, such as nuclear factor of activated T cells, nuclear factor kappa B, mitogen-activated protein kinases, Rho-kinases, Gp130/signal transducer and activator of transcription, extracellular matrix degradation, apoptotic cascades, inflammatory cytokines, and oxidative stress, has been linked to the pathogenesis of CH. In this review, we discuss how 20-HETE and EETs can affect these signaling pathways to result in, or protect from, CH, respectively. However, further understanding of these metabolites and their effects on intracellular cascades will be required to assess their potential translation to therapeutic approaches for the prevention and/or treatment of CH and heart failure.
Collapse
Affiliation(s)
- Abdulaziz M S Alsaad
- Faculty of Pharmacy and Pharmaceutical Sciences, 2142J Katz Group-Rexall Center for Pharmacy and Health Research, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | | | | | | |
Collapse
|
30
|
Lee SE, Song HJ, Park SY, Nam Y, Min CH, Lee DY, Jeong JY, Ha HS, Kim HJ, Whang WK, Jeong JH, Kim IK, Kim HR, Min YS, Sohn UD. Effect of ECQ on Iodoacetamide-Induced Chronic Gastritis in Rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:469-77. [PMID: 24227950 PMCID: PMC3823962 DOI: 10.4196/kjpp.2013.17.5.469] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 12/25/2022]
Abstract
This study investigated effect of extract containing quercetin-3-O-β-D-glucuronopyranoside from Rumex Aquaticus Herba (ECQ) against chronic gastritis in rats. To produce chronic gastritis, the animals received a daily intra-gastric administration of 0.1 ml of 0.15% iodoacetamide (IA) solution for 7 days. Daily exposure of the gastric mucosa to IA induced both gastric lesions and significant reductions of body weight and food and water intake. These reductions recovered with treatment with ECQ for 7 days. ECQ significantly inhibited the elevation of the malondialdehyde levels and myeloperoxidase activity, which were used as indices of lipid peroxidation and neutrophil infiltration. ECQ recovered the level of glutathione, activity of superoxide dismutase (SOD), and expression of SOD-2. The increased levels of total NO concentration and iNOS expression in the IA-induced chronic gastritis were significantly reduced by treatment with ECQ. These results suggest that the ECQ has a therapeutic effect on chronic gastritis in rats by inhibitory actions on neutrophil infiltration, lipid peroxidation and various steps of reactive oxygen species (ROS) generation.
Collapse
Affiliation(s)
- Se Eun Lee
- Department of Pharmacology, College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Effects of Thyroid Hormone Analogue and a Leukotrienes Pathway-Blocker on Reperfusion Injury Attenuation after Heart Transplantation. ISRN PHARMACOLOGY 2013; 2013:303717. [PMID: 24167735 PMCID: PMC3791567 DOI: 10.1155/2013/303717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/14/2013] [Indexed: 11/18/2022]
Abstract
Background. Global myocardial ischemia reperfusion injury after heart transplantation is believed to impair graft function and
aggravate both acute and chronic rejection episodes. Objectives. To assess the possible protective potential of MK-886 and
3,5-diiodothyropropionic acid DITPA against global myocardial ischemia reperfusion injury after heart transplantation. Materials and Methods.
Adult albino rats were randomized into 6 groups as follows: group I sham group; group II, control group; groups III and IV, control vehicles (1,2); group V, MK-886 treated group.
Donor rats received MK-886 30 min before transplantation, and the same dose was repeated for recipients upon reperfusion; in group VI, DITPA treated group,
donors and recipients rats were pretreated with DITPA for 7 days before transplantation. Results.
Both MK-886 and DITPA significantly counteract the increase in the levels of cardiac TNF-α, IL-1β,
and ICAM-1 and plasma level of cTnI (P < 0.05). Morphologic analysis showed that both MK-886 and DITPA markedly improved (P < 0.05) the severity of cardiac injury in the heterotopically transplanted rats. Conclusions.
The results of our study reveal that both MK-886 and DITPA may ameliorate global myocardial ischemia reperfusion injury after heart transplantation via interfering
with inflammatory pathway.
Collapse
|
32
|
Elshazly SM, Abd El Motteleb DM, Nassar NN. The selective 5-LOX inhibitor 11-keto-β-boswellic acid protects against myocardial ischemia reperfusion injury in rats: involvement of redox and inflammatory cascades. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:823-33. [PMID: 23771412 DOI: 10.1007/s00210-013-0885-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/23/2013] [Indexed: 12/19/2022]
Abstract
Myocardial ischemia induces 5-lipoxygenase (LOX) translocation and leukotriene production in the heart. Leukotrienes increase inflammatory responses aggravating, thereby, ischemia-reperfusion (I/R) injury. This study aimed to investigate whether the selective 5-LOX inhibitor 11-keto-β-boswellic acid (11-keto BA), in three different dose levels, exert a protective effect on myocardial I/R injury in an in vivo rat heart model. Sixty male Wister rats were used in this study and divided into five equal groups (n=12): GP1, sham-operated receiving normal saline; Gp 2, rats were subjected to 45 min left anterior descending coronary artery ligation followed by 4 h reperfusion to serve as I/R group. Gps 3-5 received 11-keto BA in doses 250, 500, 1,000 mg/kg, respectively, via an oral gavage for 7 days then were exposed to I/R. I/R injury induced a significant elevation in myeloperoxidase activity and gene expression of intracellular adhesion molecules, cyclooxygenase-2, 5-lipooxygenasae, nuclear factor kappa-beta, tumor necrosis factor alpha, nuclear factor (erythroid-derived 2)-like 2, and hemeoxygenease-1 consequently with reduction in glutathione peroxidase in heart tissues. Furthermore, immunohistochemical examination of the heart tissues showed positive immuostaining for both 3-nitrotyrosine and caspase-3 with DNA-ladder formation in all diseased rats. 11-keto BA in three dose levels exerted dose dependent cardioprotective effect manifested by dose-dependent reduction in serum lactate dehydrogenase and infract size through mechanisms related to enhancement of antioxidant capacity and prevention of inflammatory cascades.
Collapse
Affiliation(s)
- Shimaa M Elshazly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | | | | |
Collapse
|
33
|
Hofmann U, Frantz S. How can we cure a heart "in flame"? A translational view on inflammation in heart failure. Basic Res Cardiol 2013; 108:356. [PMID: 23740214 PMCID: PMC3709073 DOI: 10.1007/s00395-013-0356-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 01/12/2023]
Abstract
The prevalence of chronic heart failure is still increasing making it a major health issue in the 21st century. Tremendous evidence has emerged over the past decades that heart failure is associated with a wide array of mechanisms subsumed under the term “inflammation”. Based on the great success of immuno-suppressive treatments in auto-immunity and transplantation, clinical trials were launched targeting inflammatory mediators in patients with chronic heart failure. However, they widely lacked positive outcomes. The failure of the initial study program directed against tumor necrosis factor-α led to the search for alternative therapeutic targets involving a broader spectrum of mechanisms besides cytokines. We here provide an overview of the current knowledge on immune activation in chronic heart failure of different etiologies, summarize clinical studies in the field, address unresolved key questions, and highlight some promising novel therapeutic targets for clinical trials from a translational basic science and clinical perspective.
Collapse
Affiliation(s)
- Ulrich Hofmann
- Department of Internal Medicine I, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany.
| | | |
Collapse
|
34
|
Celes MR, Prado CM, Rossi MA. Sepsis: Going to the Heart of the Matter. Pathobiology 2013; 80:70-86. [DOI: 10.1159/000341640] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 07/03/2012] [Indexed: 12/15/2022] Open
|
35
|
Fassio F, Almerigogna F. Kounis syndrome (allergic acute coronary syndrome): different views in allergologic and cardiologic literature. Intern Emerg Med 2012; 7:489-95. [PMID: 22271392 DOI: 10.1007/s11739-012-0754-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/04/2012] [Indexed: 10/14/2022]
Abstract
The clinical picture of myocardial ischemia accompanying allergic reactions is defined in the cardiologic literature as Kounis syndrome (KS) or allergic angina/myocardial infarction. In PubMed, a search for "Kounis syndrome", "allergic angina" or "allergic myocardial infarction" retrieves more than 100 results (among case reports, case series and reviews), most of which are published in cardiology/internal medicine/emergency medicine journals. In allergologic literature, heart involvement during anaphylactic reactions is well documented, but Kounis syndrome is hardly mentioned. Single case reports and small case series of angina triggered by allergic reactions have been reported for many years, and involvement of histamine and others mast cell mediators in the pathogenesis of coronary spasm has long been hypothesized, but the existence of an allergic acute coronary syndrome (ACS) is still questioned in the allergologic scientific community. Putative mechanisms of an allergic acute coronary syndrome include coronary spasm or heart tissue-resident mast cell activation (precipitating coronary spasm or inducing plaque rupture and coronary or stent thrombosis) due to systemic increase of allergic mediators, or heart tissue-resident mast cell activation by local stimuli. Indeed, the pathogenic mechanism of an ACS after an allergic insult might be related to direct effects of mast cell mediators on the myocardium and the atherosclerotic plaque, or to exacerbation of preexisting disease by the hemodynamic stress of the acute allergic/anaphylactic reaction. Which of these mechanisms is most important is still unclear, and this review outlines current views in the cardiologic and allergologic literature.
Collapse
Affiliation(s)
- Filippo Fassio
- Department of Biomedicine, Immunology and Cell Therapies Unit, AOU Careggi, University of Florence, Italy.
| | | |
Collapse
|
36
|
Delayed anesthetic preconditioning protects against myocardial infarction via activation of nuclear factor-κB and upregulation of autophagy. J Anesth 2012; 27:251-60. [PMID: 23143013 DOI: 10.1007/s00540-012-1494-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 09/13/2012] [Indexed: 12/12/2022]
Abstract
PURPOSE Delayed volatile anesthetic preconditioning (APC) can protect against myocardial ischemia/reperfusion (I/R) injury; the delayed phase is called the second window of protection (SWOP), but the underlying mechanism is unclear. Nuclear factor-κB (NF-κB) is involved in the myocardial protection conferred by APC in the acute phase; autophagy has been reported to confer apoptosis inhibition and infarction reduction. We hypothesized that APC initiates delayed cardioprotection against I/R injury via the activation of NF-kB and upregulation of autophagy, thus attenuating the inflammatory response and apoptosis METHODS After a rat I/R model was set up, left ventricular samples were obtained before I/R to assess NF-κB-DNA binding activity and microtubule-associated protein 1 light chain 3 (LC3) and cathepsin B protein expression, and to examine autophagosomes with a transmission electron microscope. Infarct size and the expressions of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and caspase-3 were measured at the end of 2-h reperfusion. RESULTS The infarct size was significantly reduced in the SWOP group (30 ± 3 %) when compared with that in the I/R group (47 ± 7 %, P < 0.05), and this finding was associated with increased NF-κB-DNA binding activity and autophagosomes. In addition, the expressions of LC3-II and cathepsin B were also up-regulated, and the expressions of TNF-α, IL-1β, and caspase-3 were attenuated in the SWOP group when compared with the findings in the I/R group. However, this protection was abolished by the administration of parthenolide (PTN) before sevoflurane inhalation, which resulted in an infarct size that was significantly increased (47 ± 5 %, P < 0.05 PTN + SWOP vs. SWOP group). CONCLUSION Delayed APC protected the rat heart from I/R injury. The underlying mechanisms may include NF-κB activation, upregulation of autophagy, and the attenuation of TNF-α, IL-1β, and caspase-3 expressions.
Collapse
|
37
|
Ueland T, Aukrust P, Damas JK, Gullestad L, Yndestad A. The tumor necrosis factor superfamily in heart failure. Future Cardiol 2012; 2:101-11. [PMID: 19804137 DOI: 10.2217/14796678.2.1.101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Numerous clinical studies have established that tumor necrosis factor (TNF)-alpha may play a pathogenic role in the development and progression of heart failure (HF). Recent reports suggest that other ligands in the TNF superfamily could also play a pathogenic role in chronic HF. TNF superfamily ligands are expressed predominantly by cells in the immune system, while the TNF receptor superfamily are expressed by a wide variety of cells, including myocardial cells. Several pathways are activated by ligand-receptor interactions, but of particular importance is the nuclear factor (NF)-kappaB pathway which is activated in the failing human heart. All ligands in the TNF superfamily have the potential to activate NF-kappaB, leading to transcription of genes involved in apoptosis, cell survival, proliferation, inflammation and hypertrophic signaling in cardiomyocytes. Among several TNF superfamily members that are activated in HF, the authors' have recentlyshown that CD40L-CD40 and OPG-RANK-RANKL interactions may be implicated in the pathogenesis of HF through different mechanisms, possibly representing new targets for therapy in this disorder.
Collapse
Affiliation(s)
- T Ueland
- Research Institute for Internal Medicine, Section of Endocrinology, Medical Deaprtment, National University Hospital, N-0027 Oslo, Norway.
| | | | | | | | | |
Collapse
|
38
|
Carrasquillo Y, Burkhalter A, Nerbonne JM. A-type K+ channels encoded by Kv4.2, Kv4.3 and Kv1.4 differentially regulate intrinsic excitability of cortical pyramidal neurons. J Physiol 2012; 590:3877-90. [PMID: 22615428 DOI: 10.1113/jphysiol.2012.229013] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Rapidly activating and rapidly inactivating voltage-gated A-type K+ currents, IA, are key determinants of neuronal excitability and several studies suggest a critical role for the Kv4.2 pore-forming α subunit in the generation of IA channels in hippocampal and cortical pyramidal neurons. The experiments here demonstrate that Kv4.2, Kv4.3 and Kv1.4 all contribute to the generation of IA channels in mature cortical pyramidal (CP) neurons and that Kv4.2-, Kv4.3- and Kv1.4-encoded IA channels play distinct roles in regulating the intrinsic excitability and the firing properties of mature CP neurons. In vivo loss of Kv4.2, for example, alters the input resistances, current thresholds for action potential generation and action potential repolarization of mature CP neurons. Elimination of Kv4.3 also prolongs action potential duration, whereas the input resistances and the current thresholds for action potential generation in Kv4.3−/− and WT CP neurons are indistinguishable. In addition, although increased repetitive firing was observed in both Kv4.2−/− and Kv4.3−/− CP neurons, the increases in Kv4.2−/− CP neurons were observed in response to small, but not large, amplitude depolarizing current injections, whereas firing rates were higher in Kv4.3−/− CP neurons only with large amplitude current injections. In vivo loss of Kv1.4, in contrast, had minimal effects on the intrinsic excitability and the firing properties of mature CP neurons. Comparison of the effects of pharmacological blockade of Kv4-encoded currents in Kv1.4−/− and WT CP neurons, however, revealed that Kv1.4-encoded IA channels do contribute to controlling resting membrane potentials, the regulation of current thresholds for action potential generation and repetitive firing rates in mature CP neurons.
Collapse
Affiliation(s)
- Yarimar Carrasquillo
- Department of Developmental Biology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8103, St Louis, MO 63110, USA
| | | | | |
Collapse
|
39
|
Singh M, Shah T, Khosla K, Singh P, Molnar J, Khosla S, Arora R. Safety and efficacy of intracoronary adenosine administration in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention: a meta-analysis of randomized controlled trials. Ther Adv Cardiovasc Dis 2012; 6:101-14. [DOI: 10.1177/1753944712446670] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background: Studies evaluating intracoronary administration of adenosine for prevention of microvascular dysfunction and ischemic-reperfusion injury in patients with acute myocardial infarction (AMI) undergoing primary percutaneous coronary intervention (PCI) have yielded mixed results. Therefore, we performed a meta-analysis of these trials to evaluate the safety and efficacy of intracoronary adenosine administration in patients with AMI undergoing primary PCI. Methods: A total of seven prospective randomized controlled trials were analyzed. The endpoints extracted were post-procedure residual stent thrombosis (ST) segment elevation and ST segment resolutions (STRes), difference in peak creatine kinase (CK-MB) concentration, thrombolysis in myocardial infarction (TIMI) grade III flow (TIMI 3 flow), myocardial blush grade (MBG) 3, mean difference in post-PCI ejection fraction (EF), all-cause mortality, cardiovascular mortality, heart failure (HF) and major adverse cardiovascular event (MACE). Safety endpoints analyzed were bradycardia, second-degree atrioventricular block (AVB), ventricular tachycardia (VT), ventricular fibrillation (VF) and recurrence of chest pain (CP). The endpoints were analyzed by standard methods of meta-analysis. Results: Intracoronary adenosine therapy led to significantly more post-PCI STRes [relative risk (RR) 1.39, 95% confidence interval (CI) 1.01–1.90; p = 0.04] and reduction in residual ST segment elevation (RR 0.82, CI 0.69–0.99; p = 0.04) but did not improve TIMI 3 flow (RR 1.09, CI 0.94–1.27; p = 0.25), MBG3 (RR 1.04, CI 0.65–1.69; p = 0.88), peak CK-MB concentration (mean difference −39.43, CI −120.223 to 41.371; p = 0.339) and post-PCI EF (mean difference 1.238, CI −5.802 to 8.277; p = 0.730). There was a trend towards improvement and MACE (RR 0.64, CI 0.40–1.03; p = 0.06), incidence of HF (RR 0.47, CI 0.19–1.12; p = 0.08) and CV mortality (RR 0.15, CI 0.02–1.23; p = 0.08) that did not reach statistical significance but no difference in all-cause mortality (RR 0.77, CI 0.25–2.34; p = 0.64). Safety analysis showed no significant difference in CP events (RR 1.26, CI 0.55–2.86; p = 0.58), bradycardia (RR 2.19, CI 0.24–0.38; p = 0.49), VT (odds ratio 0.61, CI 0.08–4.90; p = 0.64) and VF (RR 0.49, CI 0.13–1.90; p = 0.30), but significantly more second-degree AVB (RR 7.88, CI 4.15–14.9; p < 0.01) in the adenosine group compared with the placebo group. Conclusion: Intracoronary adenosine administration was well tolerated and significantly improved electrocardiographic outcomes with a tendency towards improvement in MACE, HF and CV mortality that could not reach statistical significance.
Collapse
Affiliation(s)
- Mukesh Singh
- Department of Cardiology, Chicago Medical School, 3333, Green Bay Road, North Chicago, IL 60068, USA
| | - Tejaskumar Shah
- Department of Cardiology, Chicago Medical School, North Chicago, IL, USA
| | - Kavia Khosla
- Department of Cardiology, Chicago Medical School, North Chicago, IL, USA
| | - Param Singh
- Department of Cardiology, Chicago Medical School, North Chicago, IL, USA
| | - Janos Molnar
- Department of Cardiology, Chicago Medical School, North Chicago, IL, USA
| | - Sandeep Khosla
- Department of Cardiology, Chicago Medical School, North Chicago, IL, USA
| | - Rohit Arora
- Department of Cardiology, Chicago Medical School, North Chicago, IL, USA
| |
Collapse
|
40
|
Cheng KA, Dosdall DJ, Li L, Rogers JM, Ideker RE, Huang J. Evolution of activation patterns during long-duration ventricular fibrillation in pigs. Am J Physiol Heart Circ Physiol 2011; 302:H992-H1002. [PMID: 22180655 DOI: 10.1152/ajpheart.00419.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Quantitative analysis has demonstrated five temporal stages of activation during the first 10 min of ventricular fibrillation (VF) in dogs. To determine whether these stages exist in another species, we applied the same analysis to the first 10 min of VF recorded in vivo from two 504-electrode arrays, one each on left anterior and posterior ventricular epicardium in six anesthetized pigs. The following descriptors were continuously quantified: 1) number of wavefronts, 2) wavefront fractionations, 3) wavefront collisions, 4) repeatability, 5) multiplicity index, 6) wavefront conduction velocity, 7) activation rate, 8) mean area activated by the wavefronts, 9) negative peak rate of voltage change, 10) incidence of breakthrough/foci, 11) incidence of block, and 12) incidence of reentry. Cluster analysis of these descriptors divided VF into four stages (stages i-iv). The values of most descriptors increased during stage i (1-22 s after VF induction), changed quickly to values indicating greater organization during stage ii (23-39 s), decreased steadily during stage iii (40-187 s), and remained relatively unchanged during stage iv (188-600 s). The epicardium still activated during stage iv instead of becoming silent as in dogs. In conclusion, during the first 10 min, VF activation can be divided into four stages in pigs instead of five stages as in dogs. Following a 16-s period during the first minute of VF when activation became more organized, all parameters exhibited progressive decreased organization. Further studies are warranted to determine whether these changes, particularly the increased organization of stage ii, have clinical consequences, such as alteration in defibrillation efficacy.
Collapse
Affiliation(s)
- Kang-An Cheng
- Peking Union Medical College Hospital, Beijing, Peoples Republic of China
| | | | | | | | | | | |
Collapse
|
41
|
Insulin-Mediated Inhibition of p38 Mitogen-Activated Protein Kinase Protects Cardiomyocytes in Severe Burns. J Burn Care Res 2011; 32:591-9. [DOI: 10.1097/bcr.0b013e31822dc3f2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Hypoxia reduces the response of human adipocytes towards TNFα resulting in reduced NF-κB signaling and MCP-1 secretion. Int J Obes (Lond) 2011; 36:986-92. [PMID: 22005720 DOI: 10.1038/ijo.2011.200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Obesity is associated with adipose tissue hypoxia, and is thought to be linked to the chronic low-grade inflammation of adipose tissue, although the precise mechanism has remained unclear. In this study, we investigated the effect of a prominent hypoxia on human primary adipocyte secretion and tumor necrosis factor alpha (TNFα)-induced nuclear factor-κB (NF-κB) signaling. RESULTS Using cytokine array and ELISA analysis, we compared the secretion patterns of normoxic and hypoxic (1% O(2)) adipocytes and observed various alterations in adipokine release. We could reproduce known alterations like an induction of interleukin (IL)-6, vascular endothelial growth factor, leptin and a reduction in adiponectin release under hypoxia. Interestingly, we observed a significant reduction in the secretion of macrophage chemotactic protein (MCP)-1 and other NF-κB-related genes, such as growth-regulated oncogene-α, eotaxin and soluble TNF-Receptor1 (TNF-R1) under hypoxia. TNFα stimulation of hypoxic adipocytes resulted in a significantly reduced phosphorylation of NF-κB and its inhibitor IκBα compared with normoxic cells. Furthermore, chronic treatment of hypoxic adipocytes with TNFα resulted in an expected higher secretion of the chemokines MCP-1 and IL-8, but under hypoxia, the secretion level was substantially lower than that under normoxia. This reduction in protein release was accompanied by a reduced mRNA expression of MCP-1, whereas IL-8 mRNA expression was not altered. Additionally, we observed a significantly reduced expression of the TNF-receptor TNF-R1, possibly being one cause for the reduced responsiveness of hypoxic adipocytes towards TNFα stimulation. CONCLUSION In conclusion, human primary adipocytes show a basal and TNFα-induced reduction of MCP-1 release under hypoxia. This effect may be due to a reduced expression of TNF-R1 and therefore attenuated TNFα-induced NF-κB signaling. These observations demonstrate a reduced responsiveness of hypoxic adipocytes towards inflammatory stimuli like TNFα, which may represent an adaptation process to maintain adipose tissue function under hypoxia and inflammatory conditions.
Collapse
|
43
|
Malliga DE, Wagner D, Fahrleitner-Pammer A. The role of osteoprotegerin (OPG) receptor activator for nuclear factor kappaB ligand (RANKL) in cardiovascular pathology - a review. Wien Med Wochenschr 2011; 161:565-70. [PMID: 21870142 DOI: 10.1007/s10354-011-0022-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/29/2011] [Indexed: 10/17/2022]
Abstract
Initially described as key regulators in metabolic bone disease osteoprotegerin (OPG), receptor activator of nuclear factor kappa B (RANK) and RANK ligand (RANKL) have also been discriminated as regulators in immunologic function. Cardiovascular diseases (CVD) develop over many years in life and are often triggered by inflammatory processes within the vessel wall that lead to vascular remodeling. Recently some study groups have described OPG as a prognostic parameter for mortality and morbidity in cardiovascular patients.
Collapse
Affiliation(s)
- Daniela-Eugenia Malliga
- Division of Cardiac Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | | | | |
Collapse
|
44
|
Abstract
The innate immune system, mediated via toll-like receptors (TLRs), represents the first line of defensive mechanisms that protects hosts from invading microbial pathogens. TLRs are a family of pattern recognition receptors (PRRs), and are pathologically activated by a set of pathogen-associated microbial patterns (PAMPs) and damage-associated molecular patterns (DAMPs). TLRs deliver signals via a specific intracellular signaling pathway involving distinctive adaptor proteins and protein kinases, and ultimately initiate transcriptional factors resulting in inflammatory responses. TLR4 is a paramount type of TLRs, located in the heart, and plays an important role in mediating myocardial ischemic reperfusion (I/R) injury. Loss-of-function experiments and animal models using genetic techniques have found that the MyD88-independent and the MyD88-dependent pathways together participate in the pathological process of myocardial I/R injury. Some other distinctive signaling pathways, such as the PI3K/AKt and AMPK/ERK pathways, interacting with the TLR4 signaling pathway, were also found to be causes of myocardial I/R injury. These different pathways activate a series of downstream transcriptional factors, produced a great quantity of inflammatory cytokines, such as IL, TNF, and initiate inflammatory response. This results in cardiac injury and dysfunction, such as myocardial stunning, no reflow phenomenon, reperfusion arrhythmias and lethal reperfusion injury, and other related complication such as ventricular remodeling. In the future, blockades aimed at blocking the signaling pathway could benefit developments in pharmacology.
Collapse
Affiliation(s)
- Yu Fang
- Department of Cardiovascular and Thoracic Surgery, 2nd Xiangya Hospital, Central South University, Changsha, China
| | | |
Collapse
|
45
|
Bollini S, Cheung KK, Riegler J, Dong X, Smart N, Ghionzoli M, Loukogeorgakis SP, Maghsoudlou P, Dubé KN, Riley PR, Lythgoe MF, De Coppi P. Amniotic fluid stem cells are cardioprotective following acute myocardial infarction. Stem Cells Dev 2011; 20:1985-94. [PMID: 21534857 DOI: 10.1089/scd.2010.0424] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In recent years, various types of stem cells have been characterized and their potential for cardiac regeneration has been investigated. We have previously described the isolation of broadly multipotent cells from amniotic fluid, defined as amniotic fluid stem (AFS) cells. The aim of this study was to investigate the therapeutic potential of human AFS cells (hAFS) in a model of acute myocardial infarction. Wistar rats underwent 30 min of ischemia by ligation of the left anterior descending coronary artery, followed by administration of hAFS cells and 2 h of reperfusion. Infarct size was assessed by 2,3,5-triphenyltetrazolium chloride staining and planimetry. hAFS cells were also analyzed by enzyme-linked immunosorbent assay to detect secretion of putative paracrine factors, such as the actin monomer-binding protein thymosin β4 (Tβ4). The systemic injection of hAFS cells and their conditioned medium (hAFS-CM) was cardioprotective, improving myocardial cell survival and decreasing the infarct size from 53.9%±2.3% (control animals receiving phosphate-buffered saline injection) to 40.0%±3.0% (hAFS cells) and 39.7%±2.5% (hAFS-CM, P<0.01). In addition, hAFS cells were demonstrated to secrete Tβ4, previously shown to be both cardioprotective and proangiogenic. Our results suggest that AFS cells have therapeutic potential in the setting of acute myocardial infarction, which may be mediated through paracrine effectors such as Tβ4. Therefore, AFS cells might represent a novel source for cell therapy and cell transplantation strategies in repair following ischemic heart disease, with a possible paracrine mechanism of action and a potential molecular candidate for acute cardioprotection.
Collapse
Affiliation(s)
- Sveva Bollini
- Surgery Unit, Institute of Child Health and Great Ormond Street Hospital, University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lannes-Vieira J, Pereira IR, Vinagre NF, Arnez LEA. TNF-α and TNFR in Chagas disease: from protective immunity to pathogenesis of chronic cardiomyopathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 691:221-30. [PMID: 21153326 DOI: 10.1007/978-1-4419-6612-4_23] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Joseli Lannes-Vieira
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute, Fiocruz, Av. Brasil 4365, Rio de Janeiro 21045-900, RJ, Brazil.
| | | | | | | |
Collapse
|
47
|
Thandavarayan RA, Giridharan VV, Sari FR, Arumugam S, Veeraveedu PT, Pandian GN, Palaniyandi SS, Ma M, Suzuki K, Gurusamy N, Watanabe K. Depletion of 14-3-3 Protein Exacerbates Cardiac Oxidative Stress, Inflammation and Remodeling Process via Modulation of MAPK/NF-ĸB Signaling Pathways after Streptozotocin-induced Diabetes Mellitus. Cell Physiol Biochem 2011; 28:911-22. [DOI: 10.1159/000335805] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2011] [Indexed: 11/19/2022] Open
|
48
|
Lv L, Lv L, Zhang Y, Kong Q. Luteolin Prevents LPS-Induced TNF-α Expression in Cardiac Myocytes Through Inhibiting NF-κB Signaling Pathway. Inflammation 2010; 34:620-9. [DOI: 10.1007/s10753-010-9271-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
49
|
Lacerda L, McCarthy J, Mungly SFK, Lynn EG, Sack MN, Opie LH, Lecour S. TNFα protects cardiac mitochondria independently of its cell surface receptors. Basic Res Cardiol 2010; 105:751-62. [PMID: 20680307 PMCID: PMC3414057 DOI: 10.1007/s00395-010-0113-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 07/12/2010] [Accepted: 07/13/2010] [Indexed: 10/19/2022]
Abstract
Our novel proposal is that TNFα exerts a direct effect on mitochondrial respiratory function in the heart, independently of its cell surface receptors. TNFα-induced cardioprotection is known to involve reactive oxygen species (ROS) and sphingolipids. We therefore further propose that this direct mitochondrial effect is mediated via ROS and sphingolipids. The protective concentration of TNFα (0.5 ng/ml) was added to isolated heart mitochondria from black 6 × 129 mice (WT) and double TNF receptor knockout mice (TNFR1&2(-/-)). Respiratory parameters and inner mitochondrial membrane potential were analyzed in the presence/absence of two antioxidants, N-acetyl-L: -cysteine or N-tert-butyl-α-(2-sulfophenyl)nitrone or two antagonists of the sphingolipid pathway, N-oleoylethanolamine (NOE) or imipramine. In WT, TNFα reduced State 3 respiration from 279.3 ± 3 to 119.3 ± 2 (nmol O₂/mg protein/min), increased proton leak from 15.7 ± 0.6% (control) to 36.6 ± 4.4%, and decreased membrane potential by 20.5 ± 3.1% compared to control groups. In TNFR1&2(-/-) mice, TNFα reduced State 3 respiration from 205.2 ± 4 to 75.7 ± 1 (p < 0.05 vs. respective control). In WT mice, both antioxidants added with TNFα restored State 3 respiration to 269.2 ± 2 and 257.6 ± 2, respectively. Imipramine and NOE also restored State 3 respiration to 248.4 ± 2 and 249.0 ± 2, respectively (p < 0.01 vs. TNFα alone). Similarly, both antioxidant and inhibitors of the sphingolipid pathway restored the proton leak to pre-TNF values. TNFα-treated mitochondria or isolated cardiac muscle fibers showed an increase in respiration after anoxia-reoxygenation, but this effect was lost in the presence of an antioxidant or NOE. Similar data were obtained in TNFR1&2(-/-) mice. TNFα exerts a protective effect on respiratory function in isolated mitochondria subjected to an anoxia-reoxygenation insult. This effect appears to be independent of its cell surface receptors, but is likely to be mediated by ROS and sphingolipids.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Antioxidants/pharmacology
- Cell Hypoxia
- Cell Respiration
- Enzyme Inhibitors/pharmacology
- Male
- Membrane Potential, Mitochondrial
- Mice
- Mice, 129 Strain
- Mice, Knockout
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Mitochondrial Membrane Transport Proteins/metabolism
- Mitochondrial Permeability Transition Pore
- Myocytes, Cardiac/metabolism
- Reactive Oxygen Species/metabolism
- Receptors, Tumor Necrosis Factor, Type I/deficiency
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type II/deficiency
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type II/metabolism
- Sphingolipids/metabolism
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Lydia Lacerda
- Cardioprotection Group, Hatter Cardiovascular Research Institute, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, Cape Town, South Africa.
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Differences in cardiovascular disease outcomes between men and women have long been recognized and attributed, in part, to gender and sex steroids. Gender dimorphisms also exist with respect to the roles of progenitor and stem cells in post-ischemic myocardial and endothelial repair and regeneration. Understanding how these cells are influenced by donor gender and the recipient hormonal milieu may enable researchers to further account for the gender-related disparities in clinical outcomes as well as utilize the beneficial effects of these hormones to optimize transplanted cell function and survival. This review discusses (1) the cardiovascular effects of sex steroids (specifically estradiol and testosterone); (2) the therapeutic potentials of endothelial progenitor cells, mesenchymal stem cells, and embryonic stem cells; and (3) the direct effect of sex steroids on these cell types.
Collapse
|