1
|
de Sousa ME, Gusmao DO, Dos Santos WO, Moriya HT, de Lima FF, List EO, Kopchick JJ, Donato J. Fasting and prolonged food restriction differentially affect GH secretion independently of GH receptor signaling in AgRP neurons. J Neuroendocrinol 2024; 36:e13254. [PMID: 36964750 DOI: 10.1111/jne.13254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023]
Abstract
Growth hormone (GH) receptor (GHR) is abundantly expressed in neurons that co-release the agouti-related protein (AgRP) and neuropeptide Y (NPY) in the arcuate nucleus of the hypothalamus (ARH). Since ARHAgRP/NPY neurons regulate several hypothalamic-pituitary-endocrine axes, this neuronal population possibly modulates GH secretion via a negative feedback loop, particularly during food restriction, when ARHAgRP/NPY neurons are highly active. The present study aims to determine the importance of GHR signaling in ARHAgRP/NPY neurons on the pattern of GH secretion in fed and food-deprived male mice. Additionally, we compared the effect of two distinct situations of food deprivation: 16 h of fasting or four days of food restriction (40% of usual food intake). Overnight fasting strongly suppressed both basal and pulsatile GH secretion. Animals lacking GHR in ARHAgRP/NPY neurons (AgRP∆GHR mice) did not exhibit differences in GH secretion either in the fed or fasted state, compared to control mice. In contrast, four days of food restriction increased GH pulse frequency, basal GH secretion, and pulse irregularity/complexity (measured by sample entropy), whereas pulsatile GH secretion was not affected in both control and AgRP∆GHR mice. Hypothalamic Ghrh mRNA levels were unaffected by fasting or food restriction, but Sst expression increased in acutely fasted mice, but decreased after prolonged food restriction in both control and AgRP∆GHR mice. Our findings indicate that short-term fasting and prolonged food restriction differentially affect the pattern of GH secretion, independently of GHR signaling in ARHAgRP/NPY neurons.
Collapse
Affiliation(s)
- Maria E de Sousa
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Daniela O Gusmao
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Willian O Dos Santos
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, 05508-000, Brazil
| | - Henrique T Moriya
- Biomedical Engineering Laboratory, Escola Politecnica, Universidade de Sao Paulo, Sao Paulo, 05508-010, Brazil
| | - Felipe F de Lima
- Biomedical Engineering Laboratory, Escola Politecnica, Universidade de Sao Paulo, Sao Paulo, 05508-010, Brazil
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, 45701, USA
| | - Jose Donato
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, 05508-000, Brazil
| |
Collapse
|
2
|
Donato J, Kopchick JJ. New findings on brain actions of growth hormone and potential clinical implications. Rev Endocr Metab Disord 2024; 25:541-553. [PMID: 38060062 PMCID: PMC11156798 DOI: 10.1007/s11154-023-09861-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Growth hormone (GH) is secreted by somatotropic cells of the anterior pituitary gland. The classical effects of GH comprise the stimulation of cell proliferation, tissue and body growth, lipolysis, and insulin resistance. The GH receptor (GHR) is expressed in numerous brain regions. Notably, a growing body of evidence indicates that GH-induced GHR signaling in specific neuronal populations regulates multiple physiological functions, including energy balance, glucose homeostasis, stress response, behavior, and several neurological/cognitive aspects. The importance of central GHR signaling is particularly evident when the organism is under metabolic stress, such as pregnancy, chronic food deprivation, hypoglycemia, and prolonged exercise. These particular situations are associated with elevated GH secretion. Thus, central GH action represents an internal signal that coordinates metabolic, neurological, neuroendocrine, and behavioral adaptations that are evolutionarily advantageous to increase the chances of survival. This review summarizes and discusses recent findings indicating that the brain is an important target of GH, and GHR signaling in different neuronal populations regulates essential physiological functions.
Collapse
Affiliation(s)
- Jose Donato
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Lineu Prestes, 1524, Sao Paulo, SP, 05508-000, Brazil.
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
3
|
Dos Santos WO, Juliano VAL, Chaves FM, Vieira HR, Frazao R, List EO, Kopchick JJ, Munhoz CD, Donato J. Growth Hormone Action in Somatostatin Neurons Regulates Anxiety and Fear Memory. J Neurosci 2023; 43:6816-6829. [PMID: 37625855 PMCID: PMC10552943 DOI: 10.1523/jneurosci.0254-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/28/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023] Open
Abstract
Dysfunctions in growth hormone (GH) secretion increase the prevalence of anxiety and other neuropsychiatric diseases. GH receptor (GHR) signaling in the amygdala has been associated with fear memory, a key feature of posttraumatic stress disorder. However, it is currently unknown which neuronal population is targeted by GH action to influence the development of neuropsychiatric diseases. Here, we showed that approximately 60% of somatostatin (SST)-expressing neurons in the extended amygdala are directly responsive to GH. GHR ablation in SST-expressing cells (SSTΔGHR mice) caused no alterations in energy or glucose metabolism. Notably, SSTΔGHR male mice exhibited increased anxiety-like behavior in the light-dark box and elevated plus maze tests, whereas SSTΔGHR females showed no changes in anxiety. Using auditory Pavlovian fear conditioning, both male and female SSTΔGHR mice exhibited a significant reduction in fear memory. Conversely, GHR ablation in SST neurons did not affect memory in the novel object recognition test. Gene expression was analyzed in a micro punch comprising the central nucleus of the amygdala (CEA) and basolateral (BLA) complex. GHR ablation in SST neurons caused sex-dependent changes in the expression of factors involved in synaptic plasticity and function. In conclusion, GHR expression in SST neurons is necessary to regulate anxiety in males, but not female mice. GHR ablation in SST neurons also decreases fear memory and affects gene expression in the amygdala, although marked sex differences were observed. Our findings identified for the first time a neurochemically-defined neuronal population responsible for mediating the effects of GH on behavioral aspects associated with neuropsychiatric diseases.SIGNIFICANCE STATEMENT Hormone action in the brain regulates different neurological aspects, affecting the predisposition to neuropsychiatric disorders, like depression, anxiety, and posttraumatic stress disorder. Growth hormone (GH) receptor is widely expressed in the brain, but the exact function of neuronal GH action is not fully understood. Here, we showed that mice lacking the GH receptor in a group of neurons that express the neuropeptide somatostatin exhibit increased anxiety. However, this effect is only observed in male mice. In contrast, the absence of the GH receptor in somatostatin-expressing neurons decreases fear memory, a key feature of posttraumatic stress disorder, in males and females. Thus, our study identified a specific group of neurons in which GH acts to affect the predisposition to neuropsychiatric diseases.
Collapse
Affiliation(s)
- Willian O Dos Santos
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Vitor A L Juliano
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Fernanda M Chaves
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Henrique R Vieira
- Department of Anatomy, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Renata Frazao
- Department of Anatomy, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508-900, Brazil
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens 45701, Ohio
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens 45701, Ohio
| | - Carolina D Munhoz
- Department of Pharmacology, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
4
|
List EO, Duran-Ortiz S, Kulkarni P, Davis E, Mora-Criollo P, Berryman DE, Kopchick JJ. Growth hormone receptor gene disruption. VITAMINS AND HORMONES 2023; 123:109-149. [PMID: 37717983 PMCID: PMC11462719 DOI: 10.1016/bs.vh.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Much of our understanding of growth hormone's (GH)'s numerous activities stems from studies utilizing GH receptor (GHR) knockout mice. More recently, the role of GH action has been examined by creating mice with tissue-specific or temporal GHR disruption. To date, 37 distinct GHR knockout mouse lines have been created. Targeted tissues include fat, liver, muscle, heart, bone, brain, macrophage, intestine, hematopoietic stem cells, pancreatic β cells, and inducible multi-tissue "global" disruption at various ages. In this chapter, a summary of each mouse line is provided with background information on the generation of the mouse line as well as important physiological outcomes resulting from GHR gene disruption. Collectively, these mouse lines provide unique insights into GH action and have resulted in the development of new hypotheses about the functions ascribed to GH action in particular tissues.
Collapse
Affiliation(s)
- Edward O List
- The Edison Biotechnology Institute, and the Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Silvana Duran-Ortiz
- The Edison Biotechnology Institute, and the Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Prateek Kulkarni
- The Edison Biotechnology Institute, and the Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Emily Davis
- The Edison Biotechnology Institute, and the Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Patricia Mora-Criollo
- The Edison Biotechnology Institute, and the Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - Darlene E Berryman
- The Edison Biotechnology Institute, and the Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States
| | - John J Kopchick
- The Edison Biotechnology Institute, and the Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States.
| |
Collapse
|
5
|
Zhu XZ, Deng ZM, Dai FF, Liu H, Cheng YX. The impact of early pregnancy metabolic disorders on pregnancy outcome and the specific mechanism. Eur J Med Res 2023; 28:197. [PMID: 37355665 DOI: 10.1186/s40001-023-01161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 06/08/2023] [Indexed: 06/26/2023] Open
Abstract
Miscarriage is the most common complication of pregnancy. The most common causes of early miscarriage are chromosomal abnormalities of the embryo, maternal endocrine abnormalities, organ malformations, and abnormal immune factors. Late miscarriages are mostly caused by factors such as cervical insufficiency. However, the causes of 50% of miscarriages remain unknown. Recently, increasing attention has been given to the role of metabolic abnormalities in miscarriage. In this review, we mainly discuss the roles of four major metabolic pathways (glucose, lipid, and amino acid metabolism, and oxidation‒reduction balance) in miscarriage and the metabolism-related genes that lead to metabolic disorders in miscarriage. Depending on aetiology, the current treatments for miscarriage include hormonal and immunological drugs, as well as surgery, while there are few therapies for metabolism. Therefore, we also summarize the drugs for metabolism-related targets. The study of altered metabolism underlying miscarriage not only helps us to understand the mechanisms involved in miscarriage but also provides an important basis for clinical research on new therapies.
Collapse
Affiliation(s)
- Xi-Zi Zhu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China
| | - Zhi-Min Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China
| | - Fang-Fang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China.
| | - Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China.
| |
Collapse
|
6
|
Wasinski F, Tavares MR, Gusmao DO, List EO, Kopchick JJ, Alves GA, Frazao R, Donato J. Central growth hormone action regulates neuroglial and proinflammatory markers in the hypothalamus of male mice. Neurosci Lett 2023; 806:137236. [PMID: 37030549 PMCID: PMC10133206 DOI: 10.1016/j.neulet.2023.137236] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/10/2023]
Abstract
Growth hormone (GH) action in specific neuronal populations regulates neuroendocrine responses, metabolism, and behavior. However, the potential role of central GH action on glial function is less understood. The present study aims to determine how the hypothalamic expression of several neuroglial markers is affected by central GH action in male mice. The dwarf GH- and insulin-like growth factor-1 (IGF-1)-deficient Ghrhrlit/lit mice showed decreased mRNA expression of Nes (Nestin), Gfap, Iba1, Adgre1 (F4/80), and Tnf (TNFα) in the hypothalamus, compared to wild-type animals. In contrast, transgenic overexpression of GH led to high serum GH and IGF-1 levels, and increased hypothalamic expression of Nes, Gfap, Adgre1, Iba1, and Rax. Hepatocyte-specific GH receptor (GHR) knockout mice, which are characterized by high serum GH levels, but reduced IGF-1 secretion, showed increased mRNA expression of Gfap, Iba1, Tnf, and Sox10, demonstrating that the increase in GH levels alters the hypothalamic expression of glial markers associated with neuroinflammation, independently of IGF-1. Conversely, brain-specific GHR knockout mice showed reduced expression of Gfap, Adgre1, and Vim (vimentin), indicating that brain GHR signaling is necessary to mediate GH-induced changes in the expression of several neuroglial markers. In conclusion, the hypothalamic mRNA levels of several neuroglial markers associated with inflammation are directly modulated by GHR signaling in male mice.
Collapse
Affiliation(s)
- Frederick Wasinski
- Department of Neurology and Neurosurgery, Universidade Federal de Sao Paulo, Sao Paulo, SP 04039-032, Brazil
| | - Mariana R Tavares
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Daniela O Gusmao
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Guilherme A Alves
- Department of Anatomy, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-900, Brazil
| | - Renata Frazao
- Department of Anatomy, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-900, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP 05508-000, Brazil.
| |
Collapse
|
7
|
Tavares MR, Frazao R, Donato J. Understanding the role of growth hormone in situations of metabolic stress. J Endocrinol 2023; 256:JOE-22-0159. [PMID: 36327147 DOI: 10.1530/joe-22-0159] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Growth hormone (GH) is secreted by the anterior pituitary gland and plays a key role in controlling tissue and body growth. While basal GH secretion is considerably reduced along adulthood and aging, several situations of metabolic stress can lead to robust increases in circulating GH levels. The objective of the present review is to summarize and discuss the importance of GH regulating different physiological functions in situations of metabolic stress, including prolonged food restriction, hypoglycemia, exercise, pregnancy, and obesity. The presented data indicate that GH increases hunger perception/food intake, fat mobilization, blood glucose levels, and insulin resistance and produces changes in energy expenditure and neuroendocrine responses during metabolic challenges. When all these effects are considered in the context of situations of metabolic stress, they contribute to restore homeostasis by (1) helping the organism to use appropriate energy substrates, (2) preventing hypoglycemia or increasing the availability of glucose, (3) stimulating feeding to provide nutrients in response to energy-demanding activities or to accelerate the recovery of energy stores, and (4) affecting the activity of neuronal populations involved in the control of metabolism and stress response. Thus, the central and peripheral effects of GH coordinate multiple adaptations during situations of metabolic stress that ultimately help the organism restore homeostasis, increasing the chances of survival.
Collapse
Affiliation(s)
- Mariana Rosolen Tavares
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Renata Frazao
- Department of Anatomy, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Jose Donato
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
8
|
dos Santos WO, Wasinski F, Tavares MR, Campos AMP, Elias CF, List EO, Kopchick JJ, Szawka RE, Donato J. Ablation of Growth Hormone Receptor in GABAergic Neurons Leads to Increased Pulsatile Growth Hormone Secretion. Endocrinology 2022; 163:6634255. [PMID: 35803590 PMCID: PMC9302893 DOI: 10.1210/endocr/bqac103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 11/19/2022]
Abstract
Growth hormone (GH) acts in several hypothalamic neuronal populations to modulate metabolism and the autoregulation of GH secretion via negative-feedback loops. However, few studies have investigated whether GH receptor (GHR) expression in specific neuronal populations is required for the homeostatic control of GH secretion and energy homeostasis. In the present study, we investigated the consequences of the specific GHR ablation in GABAergic (VGAT-expressing) or glutamatergic (VGLUT2-expressing) cells. GHR ablation in GABAergic neurons led to increased GH secretion, lean mass, and body growth in male and female mice. VGAT-specific GHR knockout (KO) male mice also showed increased serum insulin-like growth factor-1, hypothalamic Ghrh, and hepatic Igf1 messenger RNA levels. In contrast, normal GH secretion, but reduced lean body mass, was observed in mice carrying GHR ablation in glutamatergic neurons. GHR ablation in GABAergic cells increased weight loss and led to decreased blood glucose levels during food restriction, whereas VGLUT2-specific GHR KO mice showed blunted feeding response to 2-deoxy-D-glucose both in males and females, and increased relative food intake, oxygen consumption, and serum leptin levels in male mice. Of note, VGLUT2-cre female mice, independently of GHR ablation, exhibited a previously unreported phenotype of mild reduction in body weight without further metabolic alterations. The autoregulation of GH secretion via negative-feedback loops requires GHR expression in GABAergic cells. Furthermore, GHR ablation in GABAergic and glutamatergic neuronal populations leads to distinct metabolic alterations. These findings contribute to the understanding of the neuronal populations responsible for mediating the neuroendocrine and metabolic effects of GH.
Collapse
Affiliation(s)
- Willian O dos Santos
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Frederick Wasinski
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Mariana R Tavares
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Ana M P Campos
- Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, São Paulo, 05508-000, Brazil
| | - Carol F Elias
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, 48109-5622, USA
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, 45701, USA
| | - Raphael E Szawka
- Department of Physiology and Biophysics, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Jose Donato
- Correspondence: Jose Donato Jr, PhD, Department of Physiology and Biophysics, Instituto de Ciencias Biomedicas, Universidade de São Paulo, Av. Prof Lineu Prestes, 1524, São Paulo, 05508-000, Brazil.
| |
Collapse
|
9
|
Anhê GF, Bordin S. The adaptation of maternal energy metabolism to lactation and its underlying mechanisms. Mol Cell Endocrinol 2022; 553:111697. [PMID: 35690287 DOI: 10.1016/j.mce.2022.111697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/15/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022]
Abstract
Maternal energy metabolism undergoes a singular adaptation during lactation that allows for the caloric enrichment of milk. Changes in the mammary gland, changes in the white adipose tissue, brown adipose tissue, liver, skeletal muscles and endocrine pancreas are pivotal for this adaptation. The present review details the landmark studies describing the enzymatic modulation and the endocrine signals behind these metabolic changes. We will also update this perspective with data from recent studies showing transcriptional and post-transcriptional mechanisms that mediate the adaptation of the maternal metabolism to lactation. The present text will also bring experimental and observational data that describe the long-term consequences that short periods of lactation impose to maternal metabolism.
Collapse
Affiliation(s)
- Gabriel Forato Anhê
- Department of Translational Medicine, School of Medical Sciences, State University of Campinas, Campinas, Brazil.
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
10
|
Furigo IC, Dearden L. Mechanisms mediating the impact of maternal obesity on offspring hypothalamic development and later function. Front Endocrinol (Lausanne) 2022; 13:1078955. [PMID: 36619540 PMCID: PMC9813846 DOI: 10.3389/fendo.2022.1078955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
As obesity rates have risen around the world, so to have pregnancies complicated by maternal obesity. Obesity during pregnancy is not only associated with negative health outcomes for the mother and the baby during pregnancy and birth, there is also strong evidence that exposure to maternal obesity causes an increased risk to develop obesity, diabetes and cardiovascular disease later in life. Animal models have demonstrated that increased weight gain in offspring exposed to maternal obesity is usually preceded by increased food intake, implicating altered neuronal control of food intake as a likely area of change. The hypothalamus is the primary site in the brain for maintaining energy homeostasis, which it coordinates by sensing whole body nutrient status and appropriately adjusting parameters including food intake. The development of the hypothalamus is plastic and regulated by metabolic hormones such as leptin, ghrelin and insulin, making it vulnerable to disruption in an obese in utero environment. This review will summarise how the hypothalamus develops, how maternal obesity impacts on structure and function of the hypothalamus in the offspring, and the factors that are altered in an obese in utero environment that may mediate the permanent changes to hypothalamic function in exposed individuals.
Collapse
Affiliation(s)
- Isadora C. Furigo
- Centre for Sport, Exercise and Life Sciences, School of Life Sciences, Coventry University, Coventry, United Kingdom
| | - Laura Dearden
- Metabolic Research Laboratories, Wellcome MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Laura Dearden,
| |
Collapse
|
11
|
Wasinski F, Teixeira PDS, List EO, Kopchick JJ, Donato J. Growth hormone receptor contributes to the activation of STAT5 in the hypothalamus of pregnant mice. Neurosci Lett 2021; 770:136402. [PMID: 34929316 DOI: 10.1016/j.neulet.2021.136402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 11/19/2022]
Abstract
Growth hormone (GH) receptor (GHR) signaling induces the phosphorylation of the signal transducer and activator of transcription 5 (pSTAT5) in the cells of several tissues including in the hypothalamus. During pregnancy, several STAT5-recruiting hormones (e.g., prolactin, GH and placental lactogens) are highly secreted. However, the precise contribution of GHR signaling to the surge of pSTAT5 immunoreactive neurons that occurs in the hypothalamus of pregnant mice is currently unknown. Thus, the objective of the present study was to determine whether GHR expression in neurons is required for inducing pSTAT5 expression in several hypothalamic nuclei during pregnancy. Initially, we demonstrated that late pregnant C57BL/6 mice (gestational day 14 to 18) exhibited increased pulsatile GH secretion compared to virgin females. Next, we confirmed that neuron-specific GHR ablation robustly reduces hypothalamic Ghr mRNA levels and prevents GH-induced pSTAT5 in the arcuate, paraventricular and ventromedial hypothalamic nuclei. Subsequently, the number of pSTAT5 immunoreactive cells was determined in the hypothalamus of late pregnant mice. Although neuron-specific GHR ablation did not affect the number of pSTAT5 immunoreactive cells in the paraventricular nucleus of the hypothalamus, reduced pSTAT5 expression was observed in the arcuate and ventromedial nuclei of pregnant neuron-specific GHR knockouts, compared to control pregnant mice. In summary, a subset of hypothalamic neurons requires GHR signaling to express pSTAT5 during pregnancy. These findings contribute to the understanding of the endocrine factors that affect the activation of transcription factors in the brain during pregnancy.
Collapse
Affiliation(s)
- Frederick Wasinski
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo 05508000, Brazil
| | - Pryscila D S Teixeira
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo 05508000, Brazil
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Jose Donato
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo 05508000, Brazil.
| |
Collapse
|
12
|
Clarke GS, Gatford KL, Young RL, Grattan DR, Ladyman SR, Page AJ. Maternal adaptations to food intake across pregnancy: Central and peripheral mechanisms. Obesity (Silver Spring) 2021; 29:1813-1824. [PMID: 34623766 DOI: 10.1002/oby.23224] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/17/2021] [Accepted: 04/11/2021] [Indexed: 12/17/2022]
Abstract
A sufficient and balanced maternal diet is critical to meet the nutritional demands of the developing fetus and to facilitate deposition of fat reserves for lactation. Multiple adaptations occur to meet these energy requirements, including reductions in energy expenditure and increases in maternal food intake. The central nervous system plays a vital role in the regulation of food intake and energy homeostasis and responds to multiple metabolic and nutrient cues, including those arising from the gastrointestinal tract. This review describes the nutrient requirements of pregnancy and the impact of over- and undernutrition on the risk of pregnancy complications and adult disease in progeny. The central and peripheral regulation of food intake is then discussed, with particular emphasis on the adaptations that occur during pregnancy and the mechanisms that drive these changes, including the possible role of the pregnancy-associated hormones progesterone, estrogen, prolactin, and growth hormone. We identify the need for deeper mechanistic understanding of maternal adaptations, in particular, changes in gut-brain axis satiety signaling. Improved understanding of food intake regulation during pregnancy will provide a basis to inform strategies that prevent maternal under- or overnutrition, improve fetal health, and reduce the long-term health and economic burden for mothers and offspring.
Collapse
Affiliation(s)
- Georgia S Clarke
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Kathryn L Gatford
- Robinson Research Institute, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| | - Richard L Young
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Intestinal Nutrient Sensing Group, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Centre of Research Excellence: Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Amanda J Page
- Vagal Afferent Research Group, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Nutrition, Diabetes & Gut Health, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Centre of Research Excellence: Translating Nutritional Science to Good Health, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
13
|
dos Santos WO, Gusmao DO, Wasinski F, List EO, Kopchick JJ, Donato J. Effects of Growth Hormone Receptor Ablation in Corticotropin-Releasing Hormone Cells. Int J Mol Sci 2021; 22:9908. [PMID: 34576072 PMCID: PMC8465163 DOI: 10.3390/ijms22189908] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 01/11/2023] Open
Abstract
Corticotropin-releasing hormone (CRH) cells are the dominant neuronal population responsive to the growth hormone (GH) in the paraventricular nucleus of the hypothalamus (PVH). However, the physiological importance of GH receptor (GHR) signaling in CRH neurons is currently unknown. Thus, the main objective of the present study was to investigate the consequences of GHR ablation in CRH-expressing cells of male and female mice. GHR ablation in CRH cells did not cause significant changes in body weight, body composition, food intake, substrate oxidation, locomotor activity, glucose tolerance, insulin sensitivity, counterregulatory response to 2-deoxy-D-glucose and ghrelin-induced food intake. However, reduced energy expenditure was observed in female mice carrying GHR ablation in CRH cells. The absence of GHR in CRH cells did not affect anxiety, circadian glucocorticoid levels or restraint-stress-induced corticosterone secretion and activation of PVH neurons in both male and female mice. In summary, GHR ablation, specifically in CRH-expressing neurons, does not lead to major alterations in metabolism, hypothalamic-pituitary-adrenal axis, acute stress response or anxiety in mice. Considering the previous studies showing that central GHR signaling regulates homeostasis in situations of metabolic stress, future studies are still necessary to identify the potential physiological importance of GH action on CRH neurons.
Collapse
Affiliation(s)
- Willian O. dos Santos
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (W.O.d.S.); (D.O.G.); (F.W.)
| | - Daniela O. Gusmao
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (W.O.d.S.); (D.O.G.); (F.W.)
| | - Frederick Wasinski
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (W.O.d.S.); (D.O.G.); (F.W.)
| | - Edward O. List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (E.O.L.); (J.J.K.)
| | - John J. Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA; (E.O.L.); (J.J.K.)
| | - Jose Donato
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, SP, Brazil; (W.O.d.S.); (D.O.G.); (F.W.)
| |
Collapse
|
14
|
Wasinski F, Barrile F, Pedroso JAB, Quaresma PGF, dos Santos WO, List EO, Kopchick JJ, Perelló M, Donato J. Ghrelin-induced Food Intake, but not GH Secretion, Requires the Expression of the GH Receptor in the Brain of Male Mice. Endocrinology 2021; 162:6273366. [PMID: 33972988 PMCID: PMC8197284 DOI: 10.1210/endocr/bqab097] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 12/14/2022]
Abstract
Ghrelin stimulates both GH secretion and food intake. The orexigenic action of ghrelin is mainly mediated by neurons that coexpress agouti-related protein (AgRP) and neuropeptide Y (NPY) in the arcuate nucleus of the hypothalamus (ARH). GH also stimulates food intake and, importantly, ARHAgRP/NPY neurons express GH receptor (GHR). Thus, ghrelin-induced GH secretion may contribute to the orexigenic effect of ghrelin. Here, we investigated the response to ghrelin in male mice carrying GHR ablation specifically in neurons (brain GHR knockout [KO] mice) or exclusively in ARHAgRP/NPY neurons (AgRP GHR KO mice). Although brain GHR KO mice showed normal ghrelin-induced increase in plasma GH levels, these mutants lacked the expected orexigenic response to ghrelin. Additionally, brain GHR KO mice displayed reduced hypothalamic levels of Npy and Ghsr mRNA and did not elicit ghrelin-induced c-Fos expression in the ARH. Furthermore, brain GHR KO mice exhibited a prominent reduction in AgRP fiber density in the ARH and paraventricular nucleus of the hypothalamus (PVH). In contrast, AgRP GHR KO mice showed no changes in the hypothalamic Npy and Ghsr mRNAs and conserved ghrelin-induced food intake and c-Fos expression in the ARH. AgRP GHR KO mice displayed a reduced AgRP fiber density (~16%) in the PVH, but this reduction was less than that observed in brain GHR KO mice (~61%). Our findings indicate that GHR signaling in the brain is required for the orexigenic effect of ghrelin, independently of GH action on ARHAgRP/NPY neurons.
Collapse
Affiliation(s)
- Frederick Wasinski
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, 05508-000, Brazil
| | - Franco Barrile
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, La Plata, BA, 1900, Argentina
| | - João A B Pedroso
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, 05508-000, Brazil
| | - Paula G F Quaresma
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, 05508-000, Brazil
| | - Willian O dos Santos
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, 05508-000, Brazil
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Mario Perelló
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology, La Plata, BA, 1900, Argentina
- Correspondence: Mario Perelló, PhD, Multidisciplinary Institute of Cell Biology, Calle 526 S/N entre 10 y 11, La Plata, Buenos Aires, 1900. Argentina.
| | - Jose Donato
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, São Paulo, SP, 05508-000, Brazil
- Correspondence: Jose Donato Jr., PhD, Instituto de Ciencias Biomedicas. Av. Prof. Lineu Prestes, 1524, São Paulo, SP, 05508-000, Brazil;
| |
Collapse
|
15
|
Wasinski F, Chaves FM, Pedroso JA, Mansano NS, Camporez JP, Gusmão DO, List EO, Kopchick JJ, Frazão R, Szawka RE, Donato J. Growth hormone receptor in dopaminergic neurones regulates stress-induced prolactin release in male mice. J Neuroendocrinol 2021; 33:e12957. [PMID: 33769619 PMCID: PMC9670090 DOI: 10.1111/jne.12957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 02/03/2021] [Accepted: 02/10/2021] [Indexed: 12/15/2022]
Abstract
Arcuate nucleus (ARH) dopaminergic neurones regulate several biological functions, including prolactin secretion and metabolism. These cells are responsive to growth hormone (GH), although it is still unknown whether GH action on ARH dopaminergic neurones is required to regulate different physiological aspects. Mice carrying specific deletion of GH receptor (GHR) in tyrosine hydroxylase (TH)- or dopamine transporter (DAT)-expressing cells were produced. We investigated possible changes in energy balance, glucose homeostasis, fertility, pup survival and restraint stress-induced prolactin release. GHR deletion in DAT- or TH-expressing cells did not cause changes in food intake, energy expenditure, ambulatory activity, nutrient oxidation, glucose tolerance, insulin sensitivity and counter-regulatory response to hypoglycaemia in male and female mice. In addition, GHR deletion in dopaminergic cells caused no gross effects on reproduction and pup survival. However, restraint stress-induced prolactin release was significantly impaired in DAT- and TH-specific GHR knockout male mice, as well as in pegvisomant-treated wild-type males, whereas an intact response was observed in females. Patch clamp recordings were performed in ARH DAT neurones and, in contrast to prolactin, GH did not cause acute changes in the electrical activity of DAT neurones. Furthermore, TH phosphorylation at Ser40 in ARH neurones and median eminence axonal terminals was not altered in DAT-specific GHR knockout male mice during restraint stress. In conclusion, GH action in dopaminergic neurones is required for stress-induced prolactin release in male mice, suggesting the existence of sex differences in the capacity of GHR signalling to affect prolactin secretion. The mechanism behind this regulation still needs to be identified.
Collapse
Affiliation(s)
- Frederick Wasinski
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo, Brazil
| | - Fernanda M. Chaves
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo, Brazil
| | - João A.B. Pedroso
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo, Brazil
| | - Naira S. Mansano
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Anatomia, Sao Paulo, Brazil
| | - João Paulo Camporez
- Universidade de Sao Paulo, Faculdade de Medicina de Ribeirao Preto, Departamento de Fisiologia, Ribeirao Preto, Brazil
| | - Daniela O. Gusmão
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Edward O. List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - John J. Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Renata Frazão
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Anatomia, Sao Paulo, Brazil
| | - Raphael E. Szawka
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jose Donato
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo, Brazil
| |
Collapse
|
16
|
Donato J, Wasinski F, Furigo IC, Metzger M, Frazão R. Central Regulation of Metabolism by Growth Hormone. Cells 2021; 10:cells10010129. [PMID: 33440789 PMCID: PMC7827386 DOI: 10.3390/cells10010129] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
Growth hormone (GH) is secreted by the pituitary gland, and in addition to its classical functions of regulating height, protein synthesis, tissue growth, and cell proliferation, GH exerts profound effects on metabolism. In this regard, GH stimulates lipolysis in white adipose tissue and antagonizes insulin's effects on glycemic control. During the last decade, a wide distribution of GH-responsive neurons were identified in numerous brain areas, especially in hypothalamic nuclei, that control metabolism. The specific role of GH action in different neuronal populations is now starting to be uncovered, and so far, it indicates that the brain is an important target of GH for the regulation of food intake, energy expenditure, and glycemia and neuroendocrine changes, particularly in response to different forms of metabolic stress such as glucoprivation, food restriction, and physical exercise. The objective of the present review is to summarize the current knowledge about the potential role of GH action in the brain for the regulation of different metabolic aspects. The findings gathered here allow us to suggest that GH represents a hormonal factor that conveys homeostatic information to the brain to produce metabolic adjustments in order to promote energy homeostasis.
Collapse
Affiliation(s)
- Jose Donato
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (F.W.); (I.C.F.); (M.M.)
- Correspondence: ; Tel.: +55-1130910929
| | - Frederick Wasinski
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (F.W.); (I.C.F.); (M.M.)
| | - Isadora C. Furigo
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (F.W.); (I.C.F.); (M.M.)
| | - Martin Metzger
- Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil; (F.W.); (I.C.F.); (M.M.)
| | - Renata Frazão
- Departamento de Anatomia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-900, Brazil;
| |
Collapse
|
17
|
Pedroso JAB, Dos Santos LBP, Furigo IC, Spagnol AR, Wasinski F, List EO, Kopchick JJ, Donato J. Deletion of growth hormone receptor in hypothalamic neurons affects the adaptation capacity to aerobic exercise. Peptides 2021; 135:170426. [PMID: 33069692 PMCID: PMC7855886 DOI: 10.1016/j.peptides.2020.170426] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/08/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022]
Abstract
The hypothalamus mediates important exercise-induced metabolic adaptations, possibly via hormonal signals. Hypothalamic leptin receptor (LepR)- and steroidogenic factor 1 (SF1)-expressing neurons are directly responsive to growth hormone (GH) and deletion of GH receptor (GHR) in these cells impairs neuroendocrine responses during situations of metabolic stress. In the present study, we determined whether GHR ablation in LepR- or SF1-expressing cells modifies acute and chronic metabolic adaptations to exercise. Male mice carrying deletion of GHR in LepR- or SF1-expressing cells were submitted to 8 weeks of treadmill running training. Changes in aerobic performance and exercise-induced metabolic adaptations were determined. Mice carrying GHR deletion in LepR cells showed increased aerobic performance after 8 weeks of treadmill training, whereas GHR ablation in SF1 cells prevented improvement in running capacity. Trained mice carrying GHR ablation in SF1 cells exhibited increased fat mass and reduced cross-sectional area of the gastrocnemius muscle. In contrast, deletion of GHR in LepR cells reduced fat mass and increased gastrocnemius muscle hypertrophy, energy expenditure and voluntary locomotor activity in trained mice. Although glucose tolerance was not significantly affected by targeted deletions, glycemia before and immediately after maximum running tests was altered by GHR ablation. In conclusion, GHR signaling in hypothalamic neurons regulates the adaptation capacity to aerobic exercise in a cell-specific manner. These findings suggest that GH may represent a hormonal cue that informs specific hypothalamic neurons to produce exercise-induced acute and chronic metabolic adaptations.
Collapse
Affiliation(s)
- João A B Pedroso
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo, 05508-000, Brazil
| | - Lucas B P Dos Santos
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo, 05508-000, Brazil
| | - Isadora C Furigo
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo, 05508-000, Brazil
| | - Alexandre R Spagnol
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Farmacologia, Sao Paulo, 05508-000, Brazil
| | - Frederick Wasinski
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo, 05508-000, Brazil
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA
| | - Jose Donato
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo, 05508-000, Brazil.
| |
Collapse
|
18
|
Chaves FM, Mansano NS, Frazão R, Donato J. Tumor Necrosis Factor α and Interleukin-1β Acutely Inhibit AgRP Neurons in the Arcuate Nucleus of the Hypothalamus. Int J Mol Sci 2020; 21:ijms21238928. [PMID: 33255553 PMCID: PMC7728092 DOI: 10.3390/ijms21238928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/31/2022] Open
Abstract
Obesity-associated low-grade inflammation favors weight gain, whereas systemic infection frequently leads to anorexia. Thus, inflammatory signals can either induce positive or negative energy balance. In this study, we used whole-cell patch-clamp to investigate the acute effects of three important proinflammatory cytokines, tumor necrosis factor α (TNF-α), interleukin-6, and interleukin-1β (IL-1β) on the membrane excitability of agouti-related peptide (AgRP)- or proopiomelanocortin (POMC)-producing neurons. We found that both TNF-α and IL-1β acutely inhibited the activity of 35-42% of AgRP-producing neurons, whereas very few POMC neurons were depolarized by TNF-α. Interleukin-6 induced no acute changes in the activity of AgRP or POMC neurons. Our findings indicate that the effect of TNF-α and IL-1β, especially on the activity of AgRP-producing neurons, may contribute to inflammation-induced anorexia observed during acute inflammatory conditions.
Collapse
Affiliation(s)
- Fernanda M. Chaves
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil;
| | - Naira S. Mansano
- Departamento de Anatomia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-900, Brazil;
| | - Renata Frazão
- Departamento de Anatomia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-900, Brazil;
- Correspondence: (R.F.); (J.D.J.)
| | - Jose Donato
- Departamento de Fisiologia e Biofísica, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508-000, Brazil;
- Correspondence: (R.F.); (J.D.J.)
| |
Collapse
|
19
|
Wasinski F, Klein MO, Bittencourt JC, Metzger M, Donato J. Distribution of growth hormone-responsive cells in the brain of rats and mice. Brain Res 2020; 1751:147189. [PMID: 33152340 DOI: 10.1016/j.brainres.2020.147189] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/25/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
A growth hormone (GH) injection is able to induce the phosphorylated form of the signal transducer and activator of transcription 5 (pSTAT5) in a large number of cells throughout the mouse brain. The present study had the objective to map the distribution of GH-responsive cells in the brain of rats that received an intracerebroventricular injection of GH and compare it to the pattern found in mice. We observed that rats and mice exhibited a similar distribution of GH-induced pSTAT5 in the majority of areas of the telencephalon, hypothalamus and brainstem. However, rats exhibited a higher density of GH-responsive cells than mice in the horizontal limb of the diagonal band of Broca (HDB), supraoptic and suprachiasmatic nuclei, whereas mice displayed more GH-responsive cells than rats in the hippocampus, lateral hypothalamic area and dorsal motor nucleus of the vagus (DMX). Since both HDB and DMX contain acetylcholine-producing neurons, pSTAT5 was co-localized with choline acetyltransferase in GH-injected animals. We found that 50.0 ± 4.5% of cholinergic neurons in the rat HDB coexpressed GH-induced pSTAT5, whereas very few co-localizations were observed in the mouse HDB. In contrast, rats displayed fewer cholinergic neurons responsive to GH in the DMX at the level of the area postrema. In summary, pSTAT5 can be used as a marker of GH-responsive cells in the rat brain. Although rats and mice exhibit a relatively similar distribution of GH-responsive neurons, some species-specific differences exist, as exemplified for the responsiveness to GH in distinct populations of cholinergic neurons.
Collapse
Affiliation(s)
- Frederick Wasinski
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo, Brazil
| | - Marianne O Klein
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo, Brazil
| | - Jackson C Bittencourt
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo, Brazil
| | - Martin Metzger
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo, Brazil
| | - Jose Donato
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofísica, Sao Paulo, Brazil.
| |
Collapse
|
20
|
Gustafson P, Ladyman SR, McFadden S, Larsen C, Khant Aung Z, Brown RSE, Bunn SJ, Grattan DR. Prolactin receptor-mediated activation of pSTAT5 in the pregnant mouse brain. J Neuroendocrinol 2020; 32:e12901. [PMID: 33000513 DOI: 10.1111/jne.12901] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/10/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
Pregnancy represents a period of remarkable adaptive physiology throughout the body, with many of these important adaptations mediated by changes in gene transcription in the brain. A marked activation of the transcription factor signal transducer and activator of transcription 5 (STAT5) has been described in the brain during pregnancy and likely drives some of these changes. We aimed to investigate the physiological mechanism causing this increase in phosphorylated STAT5 (pSTAT5) during pregnancy. In various tissues, STAT5 is known to be activated by a number of different cytokines, including erythropoietin, growth hormone and prolactin. Because the lactogenic hormones that act through the prolactin receptor (PRLR), prolactin and its closely-related placental analogue placental lactogen, are significantly increased during pregnancy, we hypothesised that this receptor was primarily responsible for the pregnancy-induced increase in pSTAT5 in the brain. By examining temporal changes in plasma prolactin levels and the pattern of pSTAT5 immunoreactivity in the hypothalamus during early pregnancy, we found that the level of pSTAT5 was sensitive to circulating levels of endogenous prolactin. Using a transgenic model to conditionally delete PRLRs from forebrain neurones (Prlrlox/lox /CamK-Cre), we assessed the relative contribution of the PRLR to the up-regulation of pSTAT5 in the brain of pregnant mice. In the absence of PRLRs on most forebrain neurones, a significant reduction in pSTAT5 was observed throughout the hypothalamus and amygdala in late pregnancy, confirming that PRLR is key in mediating this response. The exception to this was the hypothalamic paraventricular nucleus, where only 17% of pSTAT5 immunoreactivity during pregnancy was in PRLR-expressing cells. Taken together, these data indicate that, although there are region-specific mechanisms involved, lactogenic activity through the PRLR is the primary signal activating STAT5 in the brain during pregnancy.
Collapse
Affiliation(s)
- Papillon Gustafson
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Sharon R Ladyman
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Sarah McFadden
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Caroline Larsen
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Zin Khant Aung
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rosemary S E Brown
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Stephen J Bunn
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Khant Aung Z, Grattan DR, Ladyman SR. Pregnancy-induced adaptation of central sensitivity to leptin and insulin. Mol Cell Endocrinol 2020; 516:110933. [PMID: 32707081 DOI: 10.1016/j.mce.2020.110933] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Pregnancy is a time of increased food intake and fat deposition in the mother, and adaptations of glucose homeostasis to meet the energy demands of the growing fetus. As part of these adaptations, leptin and insulin concentrations increase in the maternal circulation during pregnancy. Central effects of leptin and insulin, however, are counterproductive to pregnancy, as increased action of these hormones in the brain lead to suppression of food intake. To prevent this, it is well documented that pregnancy induces a state of leptin- and insulin-insensitivity in the brain, particularly the hypothalamus, in a range of species. While the mechanisms underlying leptin- or insulin-insensitivity during pregnancy vary between species, there is evidence of reduced transport into the brain, impaired activation of intracellular signalling pathways, including reduced leptin receptor expression, and attenuated activation of downstream neuronal pathways, especially for leptin insensitivity. Pregnancy-induced changes in prolactin, growth hormone and leptin are discussed in terms of their role in mediating this reduced response to leptin and insulin.
Collapse
Affiliation(s)
- Z Khant Aung
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand
| | - D R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1010, New Zealand
| | - S R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, 1010, New Zealand.
| |
Collapse
|
22
|
Quaresma PGF, Dos Santos WO, Wasinski F, Metzger M, Donato J. Neurochemical phenotype of growth hormone-responsive cells in the mouse paraventricular nucleus of the hypothalamus. J Comp Neurol 2020; 529:1228-1239. [PMID: 32844436 DOI: 10.1002/cne.25017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022]
Abstract
Multiple neuroendocrine, autonomic and behavioral responses are regulated by the paraventricular nucleus of the hypothalamus (PVH). Previous studies have shown that PVH neurons express the growth hormone (GH) receptor (GHR), although the role of GH signaling on PVH neurons is still unknown. Given the great heterogeneity of cell types located in the PVH, we performed a detailed analysis of the neurochemical identity of GH-responsive cells to understand the possible physiological importance of GH action on PVH neurons. GH-responsive cells were detected via the phosphorylated form of the signal transducer and activator of transcription-5 (pSTAT5) in adult male mice that received an intraperitoneal GH injection. Approximately 51% of GH-responsive cells in the PVH co-localized with the vesicular glutamate transporter 2. Rare co-localizations between pSTAT5 and vesicular GABA transporter or vasopressin were observed, whereas approximately 20% and 38% of oxytocin and tyrosine hydroxylase (TH) cells, respectively, were responsive to GH in the PVH. Approximately 55%, 35% and 63% of somatostatin, thyrotropin-releasing hormone (TRH) and corticotropin-releasing hormone (CRH) neurons expressed GH-induced pSTAT5, respectively. Additionally, 8%, 49% and 75% of neuroendocrine TH, TRH and CRH neurons, and 67%, 32% and 74% of nonneuroendocrine TH, TRH and CRH neurons were responsive to GH in the PVH of Fluoro-Gold-injected mice. Our findings suggest that GH action on PVH neurons is involved in the regulation of the thyroid, somatotropic and adrenal endocrine axes, possibly influencing homeostatic and stress responses.
Collapse
Affiliation(s)
- Paula G F Quaresma
- Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo, Brazil
| | - Willian O Dos Santos
- Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo, Brazil
| | - Frederick Wasinski
- Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo, Brazil
| | - Martin Metzger
- Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo, Brazil
| | - Jose Donato
- Instituto de Ciências Biomédicas, Departamento de Fisiologia e Biofísica, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Quaresma PGF, Teixeira PDS, Wasinski F, Campos AMP, List EO, Kopchick JJ, Donato J. Cholinergic neurons in the hypothalamus and dorsal motor nucleus of the vagus are directly responsive to growth hormone. Life Sci 2020; 259:118229. [PMID: 32781065 DOI: 10.1016/j.lfs.2020.118229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
AIMS Cholinergic neurons are distributed in brain areas containing growth hormone (GH)-responsive cells. We determined if cholinergic neurons are directly responsive to GH and the metabolic consequences of deleting the GH receptor (GHR) specifically in choline acetyltransferase (ChAT)-expressing cells. MAIN METHODS Mice received an acute injection of GH to detect neurons co-expressing ChAT and phosphorylated STAT5 (pSTAT5), a well-established marker of GH-responsive cells. For the physiological studies, mice carrying ablation of GHR exclusively in ChAT-expressing cells were produced and possible changes in energy and glucose homeostasis were determined when consuming regular chow or high-fat diet (HFD). KEY FINDINGS The majority of cholinergic neurons in the arcuate nucleus (60%) and dorsomedial nucleus (84%) of the hypothalamus are directly responsive to GH. Approximately 34% of pre-ganglionic parasympathetic neurons in the dorsal motor nucleus of the vagus also exhibited GH-induced pSTAT5. GH-induced pSTAT5 in these ChAT neurons was absent in GHR ChAT knockout mice. Mice carrying ChAT-specific GHR deletion, either in chow or HFD, did not exhibit significant changes in body weight, body adiposity, lean body mass, food intake, energy expenditure, respiratory quotient, ambulatory activity, serum leptin levels, glucose tolerance, insulin sensitivity and metabolic responses to 2-deoxy-d-glucose. However, GHR deletion in ChAT neurons caused decreased hypothalamic Pomc mRNA levels in HFD mice. SIGNIFICANCE Cholinergic neurons that regulate the metabolism are directly responsive to GH, although GHR signaling in these cells is not required for energy and glucose homeostasis. Thus, the physiological importance of GH action on cholinergic neurons still needs to be identified.
Collapse
Affiliation(s)
- Paula G F Quaresma
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo 05508-000, Brazil
| | - Pryscila D S Teixeira
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo 05508-000, Brazil
| | - Frederick Wasinski
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo 05508-000, Brazil
| | - Ana M P Campos
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo 05508-000, Brazil
| | - Edward O List
- Edison Biotechnology Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Jose Donato
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo 05508-000, Brazil.
| |
Collapse
|
24
|
Tyrosine Hydroxylase Neurons Regulate Growth Hormone Secretion via Short-Loop Negative Feedback. J Neurosci 2020; 40:4309-4322. [PMID: 32317389 DOI: 10.1523/jneurosci.2531-19.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Classical studies suggest that growth hormone (GH) secretion is controlled by negative-feedback loops mediated by GH-releasing hormone (GHRH)- or somatostatin-expressing neurons. Catecholamines are known to alter GH secretion and neurons expressing TH are located in several brain areas containing GH-responsive cells. However, whether TH-expressing neurons are required to regulate GH secretion via negative-feedback mechanisms is unknown. In the present study, we showed that between 50% and 90% of TH-expressing neurons in the periventricular, paraventricular, and arcuate hypothalamic nuclei and locus ceruleus of mice exhibited STAT5 phosphorylation (pSTAT5) after an acute GH injection. Ablation of GH receptor (GHR) from TH cells or in the entire brain markedly increased GH pulse secretion and body growth in both male and female mice. In contrast, GHR ablation in cells that express the dopamine transporter (DAT) or dopamine β-hydroxylase (DBH; marker of noradrenergic/adrenergic cells) did not affect body growth. Nevertheless, less than 50% of TH-expressing neurons in the hypothalamus were found to express DAT. Ablation of GHR in TH cells increased the hypothalamic expression of Ghrh mRNA, although very few GHRH neurons were found to coexpress TH- and GH-induced pSTAT5. In summary, TH neurons that do not express DAT or DBH are required for the autoregulation of GH secretion via a negative-feedback loop. Our findings revealed a critical and previously unidentified group of catecholaminergic interneurons that are apt to sense changes in GH levels and regulate the somatotropic axis in mice.SIGNIFICANCE STATEMENT Textbooks indicate until now that the pulsatile pattern of growth hormone (GH) secretion is primarily controlled by GH-releasing hormone and somatostatin neurons. The regulation of GH secretion relies on the ability of these cells to sense changes in circulating GH levels to adjust pituitary GH secretion within a narrow physiological range. However, our study identifies a specific population of tyrosine hydroxylase-expressing neurons that is critical to autoregulate GH secretion via a negative-feedback loop. The lack of this mechanism in transgenic mice results in aberrant GH secretion and body growth. Since GH plays a key role in cell proliferation, body growth, and metabolism, our findings provide a major advance to understand how the brain regulates the somatotropic axis.
Collapse
|
25
|
Wasinski F, Furigo IC, Teixeira PDS, Ramos-Lobo AM, Peroni CN, Bartolini P, List EO, Kopchick JJ, Donato J. Growth Hormone Receptor Deletion Reduces the Density of Axonal Projections from Hypothalamic Arcuate Nucleus Neurons. Neuroscience 2020; 434:136-147. [PMID: 32229232 DOI: 10.1016/j.neuroscience.2020.03.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022]
Abstract
The arcuate nucleus (ARH) is an important hypothalamic area for the homeostatic control of feeding and other metabolic functions. In the ARH, proopiomelanocortin- (POMC) and agouti-related peptide (AgRP)-expressing neurons play a key role in the central regulation of metabolism. These neurons are influenced by circulating factors, such as leptin and growth hormone (GH). The objective of the present study was to determine whether a direct action of GH on ARH neurons regulates the density of POMC and AgRP axonal projections to major postsynaptic targets. We studied POMC and AgRP axonal projections to the hypothalamic paraventricular (PVH), lateral (LHA) and dorsomedial (DMH) nuclei in leptin receptor (LepR)-deficient mice (Leprdb/db), GH-deficient mice (Ghrhrlit/lit) and in mice carrying specific ablations of GH receptor (GHR) either in LepR- or AgRP-expressing cells. Leprdb/db mice presented reduction in the density of POMC innervation to the PVH compared to wild-type and Ghrhrlit/lit mice. Additionally, both Leprdb/db and Ghrhrlit/lit mice showed reduced AgRP fiber density in the PVH, LHA and DMH. LepR GHR knockout mice showed decreased density of POMC innervation in the PVH and DMH, compared to control mice, whereas a reduction in the density of AgRP innervation was observed in all areas analyzed. Conversely, AgRP-specific ablation of GHR led to a significant reduction in AgRP projections to the PVH, LHA and DMH, without affecting POMC innervation. Our findings indicate that GH has direct trophic effects on the formation of POMC and AgRP axonal projections and provide additional evidence that GH regulates hypothalamic neurocircuits controlling energy homeostasis.
Collapse
Affiliation(s)
- Frederick Wasinski
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Isadora C Furigo
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Pryscila D S Teixeira
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Angela M Ramos-Lobo
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil
| | - Cibele N Peroni
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), São Paulo, SP 05508-900, Brazil
| | - Paolo Bartolini
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares (IPEN-CNEN), São Paulo, SP 05508-900, Brazil
| | - Edward O List
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute and Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Jose Donato
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
26
|
Grattan DR, Ladyman SR. Neurophysiological and cognitive changes in pregnancy. HANDBOOK OF CLINICAL NEUROLOGY 2020; 171:25-55. [PMID: 32736755 DOI: 10.1016/b978-0-444-64239-4.00002-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The hormonal fluctuations in pregnancy drive a wide range of adaptive changes in the maternal brain. These range from specific neurophysiological changes in the patterns of activity of individual neuronal populations, through to complete modification of circuit characteristics leading to fundamental changes in behavior. From a neurologic perspective, the key hormone changes are those of the sex steroids, estradiol and progesterone, secreted first from the ovary and then from the placenta, the adrenal glucocorticoid cortisol, as well as the anterior pituitary peptide hormone prolactin and its pregnancy-specific homolog placental lactogen. All of these hormones are markedly elevated during pregnancy and cross the blood-brain barrier to exert actions on neuronal populations through receptors expressed in specific regions. Many of the hormone-induced changes are in autonomic or homeostatic systems. For example, patterns of oxytocin and prolactin secretion are dramatically altered to support novel physiological functions. Appetite is increased and feedback responses to metabolic hormones such as leptin and insulin are suppressed to promote a positive energy balance. Fundamental physiological systems such as glucose homeostasis and thermoregulation are modified to optimize conditions for fetal development. In addition to these largely autonomic changes, there are also changes in mood, behavior, and higher processes such as cognition. This chapter summarizes the hormonal changes associated with pregnancy and reviews how these changes impact on brain function, drawing on examples from animal research, as well as available information about human pregnancy.
Collapse
Affiliation(s)
- David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| | - Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
27
|
Nagarajan A, Srivastava H, Jablonsky J, Sun LY. Tissue-Specific GHR Knockout Mice: An Updated Review. Front Endocrinol (Lausanne) 2020; 11:579909. [PMID: 33162937 PMCID: PMC7581730 DOI: 10.3389/fendo.2020.579909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/14/2020] [Indexed: 01/01/2023] Open
Abstract
Growth hormone (GH) signaling plays a key role in mediating growth, development, metabolism, and lifespan regulation. However, the mechanisms of longevity regulation at the cellular and molecular level are still not well-understood. An important area in the field of GH research is in the development of advanced transgenic systems for conditional expression of GH signaling in a cell type- or tissue-specific manner. There have been many recent studies conducted to examine the effects of tissue-specific GHR disruption. This review updates our previous discussions on this topic and summarizes recent data on the newly-made tissue-specific GHR-KO mice including intestinal epithelial cells, bone, hematopoietic stem cells, cardiac myocytes, and specific brain regions. The data from these new genetically-engineered mice have a significant impact on our understanding of the local GH signaling function.
Collapse
|
28
|
Wasinski F, Frazão R, Donato J. Effects of growth hormone in the central nervous system. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2019; 63:549-556. [PMID: 31939479 PMCID: PMC10522235 DOI: 10.20945/2359-3997000000184] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/29/2019] [Indexed: 11/23/2022]
Abstract
Growth hormone (GH) is best known for its effect stimulating tissue and somatic growth through the regulation of cell division, regeneration and proliferation. However, GH-responsive neurons are spread over the entire central nervous system, suggesting that they have important roles in the brain. The objective of the present review is to summarize and discuss the potential physiological importance of GH action in the central nervous system. We provide evidence that GH signaling in the brain regulates the physiology of numerous functions such as cognition, behavior, neuroendocrine changes and metabolism. Data obtained from experimental animal models have shown that disruptions in GH signaling in specific neuronal populations can affect the reproductive axis and impair food intake during glucoprivic conditions, neuroendocrine adaptions during food restriction, and counter-regulatory responses to hypoglycemia, and they can modify gestational metabolic adaptions. Therefore, the brain is an important target tissue of GH, and changes in GH action in the central nervous system can explain some dysfunctions presented by individuals with excessive or deficient GH secretion. Furthermore, GH acts in specific neuronal populations during situations of metabolic stress to promote appropriate physiological adjustments that restore homeostasis. Arch Endocrinol Metab. 2019;63(6):549-56.
Collapse
Affiliation(s)
- Frederick Wasinski
- Departamento de Fisiologia e BiofísicaInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloSPBrasilDepartamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brasil
| | - Renata Frazão
- Departamento de AnatomiaInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloSPBrasilDepartamento de Anatomia, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brasil
| | - Jose Donato
- Departamento de Fisiologia e BiofísicaInstituto de Ciências BiomédicasUniversidade de São PauloSão PauloSPBrasilDepartamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), São Paulo, SP, Brasil
| |
Collapse
|