1
|
Alshafei M, Morsi M, Reschke J, Rustenbeck I. The Proton Leak of the Inner Mitochondrial Membrane Is Enlarged in Freshly Isolated Pancreatic Islets. Biomedicines 2024; 12:1747. [PMID: 39200212 PMCID: PMC11351158 DOI: 10.3390/biomedicines12081747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 09/02/2024] Open
Abstract
In a number of investigations on the mechanism of the metabolic amplification of insulin secretion, differences between the response of freshly isolated islets and of islets cultured for one day have been observed. Since no trivial explanation like insufficient numbers of viable cells after cell culture could be found, a more thorough investigation into the mechanisms responsible for the difference was made, concentrating on the function of the mitochondria as the site where the metabolism of nutrient stimulators of secretion forms the signals impacting on the transport and fusion of insulin granules. Using combinations of inhibitors of oxidative phosphorylation, we come to the conclusion that the mitochondrial membrane potential is lower and the exchange of mitochondrial reducing equivalents is faster in freshly isolated islets than in cultured islets. The significantly higher rate of oxygen consumption in fresh islets than in cultured islets (13 vs. 8 pmol/min/islet) was not caused by a different activity of the F1F0-ATPase, but by a larger proton leak. These observations raise the questions as to whether the proton leak is a physiologically regulated pathway and whether its larger size in fresh islets reflects the working condition of the islets within the pancreas.
Collapse
Affiliation(s)
- Mohammed Alshafei
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (M.A.); (M.M.); (J.R.)
| | - Mai Morsi
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (M.A.); (M.M.); (J.R.)
- Department of Pharmacology, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Julia Reschke
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (M.A.); (M.M.); (J.R.)
| | - Ingo Rustenbeck
- Institute of Pharmacology, Toxicology and Clinical Pharmacy, Technische Universität Braunschweig, 38106 Braunschweig, Germany; (M.A.); (M.M.); (J.R.)
- PVZ-Center of Pharmaceutical Engineering, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
2
|
Kamat V, Sweet IR. Hypertonicity during a rapid rise in D-glucose mediates first-phase insulin secretion. Front Endocrinol (Lausanne) 2024; 15:1395028. [PMID: 38989001 PMCID: PMC11233695 DOI: 10.3389/fendo.2024.1395028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Biphasic insulin secretion is an intrinsic characteristic of the pancreatic islet and has clinical relevance due to the loss of first-phase in patients with Type 2 diabetes. As it has long been shown that first-phase insulin secretion only occurs in response to rapid changes in glucose, we tested the hypothesis that islet response to an increase in glucose is a combination of metabolism plus an osmotic effect where hypertonicity is driving first-phase insulin secretion. Methods Experiments were performed using perifusion analysis of rat, mouse, and human islets. Insulin secretion rate (ISR) and other parameters associated with its regulation were measured in response to combinations of D-glucose and membrane-impermeable carbohydrates (L-glucose or mannitol) designed to dissect the effect of hypertonicity from that of glucose metabolism. Results Remarkably, the appearance of first-phase responses was wholly dependent on changes in tonicity: no first-phase in NAD(P)H, cytosolic calcium, cAMP secretion rate (cAMP SR), or ISR was observed when increased D-glucose concentration was counterbalanced by decreases in membrane-impermeable carbohydrates. When D-glucose was greater than 8 mM, rapid increases in L-glucose without any change in D-glucose resulted in first-phase responses in all measured parameters that were kinetically similar to D-glucose. First-phase ISR was completely abolished by H89 (a non-specific inhibitor of protein kinases) without affecting first-phase calcium response. Defining first-phase ISR as the difference between glucose-stimulated ISR with and without a change in hypertonicity, the peak of first-phase ISR occurred after second-phase ISR had reached steady state, consistent with the well-established glucose-dependency of mechanisms that potentiate glucose-stimulated ISR. Discussion The data collected in this study suggests a new model of glucose-stimulated biphasic ISR where first-phase ISR derives from (and after) a transitory amplification of second-phase ISR and driven by hypertonicity-induced rise in H89-inhibitable kinases likely driven by first-phase responses in cAMP, calcium, or a combination of both.
Collapse
Affiliation(s)
| | - Ian R. Sweet
- University of Washington Medicine Diabetes Institute, University of Washington, Seattle, WA, United States
| |
Collapse
|
3
|
Chichura KS, Elfers CT, Salameh TS, Kamat V, Chepurny OG, McGivney A, Milliken BT, Holz GG, Applebey SV, Hayes MR, Sweet IR, Roth CL, Doyle RP. A peptide triple agonist of GLP-1, neuropeptide Y1, and neuropeptide Y2 receptors promotes glycemic control and weight loss. Sci Rep 2023; 13:9554. [PMID: 37308546 PMCID: PMC10261008 DOI: 10.1038/s41598-023-36178-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/24/2023] [Indexed: 06/14/2023] Open
Abstract
Mechanisms underlying long-term sustained weight loss and glycemic normalization after obesity surgery include changes in gut hormone levels, including glucagon-like peptide 1 (GLP-1) and peptide YY (PYY). We demonstrate that two peptide biased agonists (GEP44 and GEP12) of the GLP-1, neuropeptide Y1, and neuropeptide Y2 receptors (GLP-1R, Y1-R, and Y2-R, respectively) elicit Y1-R antagonist-controlled, GLP-1R-dependent stimulation of insulin secretion in both rat and human pancreatic islets, thus revealing the counteracting effects of Y1-R and GLP-1R agonism. These agonists also promote insulin-independent Y1-R-mediated glucose uptake in muscle tissue ex vivo and more profound reductions in food intake and body weight than liraglutide when administered to diet-induced obese rats. Our findings support a role for Y1-R signaling in glucoregulation and highlight the therapeutic potential of simultaneous receptor targeting to achieve long-term benefits for millions of patients.
Collapse
Affiliation(s)
- Kylie S Chichura
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Clinton T Elfers
- Seattle Children's Research Institute, 1900 Ninth Ave, Seattle, WA, 98101, USA
| | - Therese S Salameh
- Seattle Children's Research Institute, 1900 Ninth Ave, Seattle, WA, 98101, USA
| | - Varun Kamat
- Diabetes Research Institute and Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, 98195, USA
| | - Oleg G Chepurny
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Aelish McGivney
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - Brandon T Milliken
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA
| | - George G Holz
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Sarah V Applebey
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ian R Sweet
- Diabetes Research Institute and Division of Metabolism, Endocrinology, and Nutrition, University of Washington, Seattle, WA, 98195, USA
| | - Christian L Roth
- Seattle Children's Research Institute, 1900 Ninth Ave, Seattle, WA, 98101, USA.
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, 98105, USA.
| | - Robert P Doyle
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, NY, 13244, USA.
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
- Department of Pharmacology, State University of New York, Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
4
|
Musazadeh V, Kavyani Z, Mirhosseini N, Dehghan P, Vajdi M. Effect of vitamin D supplementation on type 2 diabetes biomarkers: an umbrella of interventional meta-analyses. Diabetol Metab Syndr 2023; 15:76. [PMID: 37072813 PMCID: PMC10114333 DOI: 10.1186/s13098-023-01010-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 02/26/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Vitamin D supplementation exerts several supporting effects on improving glycemic status, however, results are inconclusive. Thus, in the present study, we aimed to conduct an umbrella of meta-analysis regarding the impact of vitamin D on type 2 diabetes (T2DM) biomarkers. METHODS The Scopus, PubMed, Web of Science, Embase, and Google Scholar online databases were searched up to March 2022. All meta-analyses evaluating the impact of vitamin D supplementation on T2DM biomarkers were considered eligible. Overall, 37 meta-analyses were included in this umbrella meta-analysis. RESULTS Our findings indicated that vitamin D supplementation significantly decreased fasting blood sugar (FBS) (WMD = - 3.08; 95% CI: - 3.97, - 2.19, p < 0.001, and SMD = - 0.26; 95% CI: - 0.38, - 0.14, p < 0.001), hemoglobin A1c (HbA1c) (WMD = - 0.05; 95% CI: - 0.10, - 0.01, p = 0.016, and SMD = - 0.16; 95% CI: - 0.27, - 0.05, p = 0.004), insulin concentrations (WMD = - 2.62; 95% CI: - 4.11, - 1.13; p < 0.001, and SMD = - 0.33; 95% CI: - 0.56, - 0.11, p = 0.004), and homeostatic model assessment for insulin resistance (HOMA-IR) (WMD = - 0.67; 95% CI: - 1.01, - 0.32, p < 0.001, and SMD = - 0.31; 95% CI: - 0.46, - 0.16, p < 0.001). CONCLUSION This umbrella meta-analysis proposed that vitamin D supplementation may improve T2DM biomarkers.
Collapse
Affiliation(s)
- Vali Musazadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeynab Kavyani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Parvin Dehghan
- Associate of Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahdi Vajdi
- Student Research Committee, Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
5
|
Fong C, Alesi S, Mousa A, Moran LJ, Deed G, Grant S, Tapia K, Ee C. Efficacy and Safety of Nutrient Supplements for Glycaemic Control and Insulin Resistance in Type 2 Diabetes: An Umbrella Review and Hierarchical Evidence Synthesis. Nutrients 2022; 14:2295. [PMID: 35684094 PMCID: PMC9182772 DOI: 10.3390/nu14112295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Nutrient supplements are widely used for type 2 diabetes (T2D), yet evidence-based guidance for clinicians is lacking. Methods: We searched the four electronic databases from November 2015−December 2021. The most recent, most comprehensive, high-ranked systematic reviews, meta-analyses, and/or umbrella reviews of randomised controlled trials in adults with T2D were included. Data were extracted on study characteristics, aggregate outcome measures per group (glycaemic control, measures of insulin sensitivity and secretion), adverse events, and Grading of Recommendations Assessment, Development, and Evaluation (GRADE) assessments. Quality was assessed using A Measurement Tool to Assess Systematic Reviews Version 2.0 (AMSTAR 2). Results: Twelve meta-analyses and one umbrella review were included. There was very low certainty evidence that chromium, Vitamin C, and omega-3 polyunsaturated fatty acids (Ω-3 PUFAs) were superior to placebo for the primary outcome of glycated hemoglobin (HbA1c) (Mean Difference/MD −0.54, −0.54 and ES −0.27, respectively). Probiotics were superior to placebo for HbA1c (Weighted Mean Difference/WMD −0.43%). There was very low certainty evidence that Vitamin D was superior to placebo for lowering HbA1c in trials of <6 months (MD −0.17%). Magnesium, zinc, Vitamin C, probiotics, and polyphenols were superior to placebo for FBG. Vitamin D was superior to placebo for insulin resistance. Data on safety was limited. Conclusions: Future research should identify who may benefit from nutrient supplementation, safety, and optimal regimens and formulations.
Collapse
Affiliation(s)
- Charmie Fong
- School of Medicine, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia;
| | - Simon Alesi
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Level 1/43-51 Kanooka Grove, Clayton, VIC 3168, Australia; (S.A.); (A.M.); (L.J.M.)
| | - Aya Mousa
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Level 1/43-51 Kanooka Grove, Clayton, VIC 3168, Australia; (S.A.); (A.M.); (L.J.M.)
| | - Lisa J. Moran
- Monash Centre for Health Research and Implementation (MCHRI), School of Public Health and Preventive Medicine, Monash University, Level 1/43-51 Kanooka Grove, Clayton, VIC 3168, Australia; (S.A.); (A.M.); (L.J.M.)
| | - Gary Deed
- School of Public Health and Preventive Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC 3004, Australia;
| | - Suzanne Grant
- NICM Health Research Institute, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (S.G.); (K.T.)
| | - Kriscia Tapia
- NICM Health Research Institute, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (S.G.); (K.T.)
- L7/D18 Susan Wakil Health Building, Faculty of Medicine and Health, School of Health Sciences, University of Sydney, Western Avenue, Camperdown, NSW 2006, Australia
| | - Carolyn Ee
- NICM Health Research Institute, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (S.G.); (K.T.)
| |
Collapse
|
6
|
Kamat V, Radtke JR, Hu Q, Wang W, Sweet IR, Hampe CS. Autoantibodies directed against glutamate decarboxylase interfere with glucose-stimulated insulin secretion in dispersed rat islets. Int J Exp Pathol 2022; 103:140-148. [PMID: 35246889 PMCID: PMC9264341 DOI: 10.1111/iep.12437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/17/2022] [Accepted: 02/20/2022] [Indexed: 11/28/2022] Open
Abstract
Islet autoantibodies, including autoantibodies directed against the 65kDa isoform of glutamate decarboxylase (GAD65Ab), are present in the majority of patients with newly diagnosed type 1 diabetes (T1D). Whereas these autoantibodies are historically viewed as an epiphenomenon of the autoimmune response with no significant pathogenic function, we consider in this study the possibility that they impact the major islet function, namely glucose-stimulated insulin secretion. Two human monoclonal GAD65Ab (GAD65 mAb) (b78 and b96.11) were investigated for uptake by live rat beta cells, subcellular localization and their effect on glucose-stimulated insulin secretion. The GAD65 mAbs were internalized by live pancreatic beta cells, where they localized to subcellular structures in an epitope-specific manner. Importantly, GAD65 mAb b78 inhibited, while GAD65 mAb b96.11 enhanced, glucose-stimulated insulin secretion (GSIS). These opposite effects on GSIS rule out non-specific effects of the antibodies and suggest that internalization of the antibody leads to epitope-specific interaction with intracellular machinery regulating insulin granule release. The most likely explanation for the alteration of GSIS by GAD65 Abs is via changes in GABA release due to inhibition or change in GAD65 enzyme activity. This is the first report indicating an active role of GAD65Ab in the pathogenesis of T1D.
Collapse
Affiliation(s)
- Varun Kamat
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Jared R Radtke
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Qingxun Hu
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Wang Wang
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington, USA
| | - Ian R Sweet
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Christiane S Hampe
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
7
|
Kamat V, Robbings BM, Jung SR, Kelly J, Hurley JB, Bube KP, Sweet IR. Fluidics system for resolving concentration-dependent effects of dissolved gases on tissue metabolism. eLife 2021; 10:e66716. [PMID: 34734803 PMCID: PMC8660022 DOI: 10.7554/elife.66716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
Oxygen (O2) and other dissolved gases such as the gasotransmitters H2S, CO, and NO affect cell metabolism and function. To evaluate effects of dissolved gases on processes in tissue, we developed a fluidics system that controls dissolved gases while simultaneously measuring parameters of electron transport, metabolism, and secretory function. We use pancreatic islets, retina, and liver from rodents to highlight its ability to assess effects of O2 and H2S. Protocols aimed at emulating hypoxia-reperfusion conditions resolved a previously unrecognized transient spike in O2 consumption rate (OCR) following replenishment of O2, and tissue-specific recovery of OCR following hypoxia. The system revealed both inhibitory and stimulatory effects of H2S on insulin secretion rate from isolated islets. The unique ability of this new system to quantify metabolic state and cell function in response to precise changes in dissolved gases provides a powerful platform for cell physiologists to study a wide range of disease states.
Collapse
Affiliation(s)
- Varun Kamat
- University of Washington Medicine Diabetes Institute, University of WashingtonSeattleUnited States
| | - Brian M Robbings
- University of Washington Medicine Diabetes Institute, University of WashingtonSeattleUnited States
- Department of Biochemistry, University of WashingtonSeattleUnited States
| | - Seung-Ryoung Jung
- University of Washington Medicine Diabetes Institute, University of WashingtonSeattleUnited States
| | | | - James B Hurley
- Department of Biochemistry, University of WashingtonSeattleUnited States
| | - Kenneth P Bube
- Department of Mathematics, University of WashingtonSeattleUnited States
| | - Ian R Sweet
- University of Washington Medicine Diabetes Institute, University of WashingtonSeattleUnited States
| |
Collapse
|
8
|
Zakhary CM, Rushdi H, Hamdan JA, Youssef KN, Khan A, Abdalla MA, Khan S. Protective Role of Vitamin D Therapy in Diabetes Mellitus Type II. Cureus 2021; 13:e17317. [PMID: 34567869 PMCID: PMC8451532 DOI: 10.7759/cureus.17317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/20/2021] [Indexed: 01/15/2023] Open
Abstract
Diabetes Mellitus type II (DM II) is a worldwide disease with a rapidly growing parallel prevalence and adversities affecting multi-body systems. Hence, it is imperative to treat DM II effectively, maintaining glucose homeostasis to avoid complications such as diabetic nephropathy, peripheral neuropathy, and retinopathy. Vitamin D, among many benefits, has positive outcomes on hemoglobin A1c (HbA1c) control. It aids in insulin secretion and sensitivity. We systematically screened four databases for relevant information; PubMed, Medline, PMC, and Google scholar. Inclusion and exclusion criteria were applied, and quality appraisal was then done using certain checklist tools: Newcastle-Ottawa tool, AMSTAR (A Measurement Tool to Assess Systematic Reviews) checklist, SANRA (Scale for the Assessment of Narrative Review Articles) checklist, and Cochrane bias assessment. Data were collected from 14 articles, of which eight are systematic reviews and meta-analysis, one is a narrative review, five are randomized controlled trials and three are general information about DM II and Vitamin D. In addition, this article evaluates the clinical significance of Vitamin D administration in DM II from a glucose homeostasis perspective, and complications such as nephropathy, neuropathy, and retinopathy. Vitamin D had a clinical positive impact on glucose level, particularly on hemoglobin A1c (HbA1c) reduction, alleviation of diabetic neuropathy and nephropathy symptoms, and hyperglycemia induced-oxidative stress on the retinal cells.
Collapse
Affiliation(s)
- Christine M Zakhary
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Hiam Rushdi
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Jaafar A Hamdan
- Medicine, American University of Antigua, St. John, ATG
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Kerolos N Youssef
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Aafreen Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Mohammed A Abdalla
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
9
|
Vig S, Lambooij JM, Zaldumbide A, Guigas B. Endoplasmic Reticulum-Mitochondria Crosstalk and Beta-Cell Destruction in Type 1 Diabetes. Front Immunol 2021; 12:669492. [PMID: 33936111 PMCID: PMC8085402 DOI: 10.3389/fimmu.2021.669492] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Beta-cell destruction in type 1 diabetes (T1D) results from the combined effect of inflammation and recurrent autoimmunity. In response to inflammatory signals, beta-cells engage adaptive mechanisms where the endoplasmic reticulum (ER) and mitochondria act in concert to restore cellular homeostasis. In the recent years it has become clear that this adaptive phase may trigger the development of autoimmunity by the generation of autoantigens recognized by autoreactive CD8 T cells. The participation of the ER stress and the unfolded protein response to the increased visibility of beta-cells to the immune system has been largely described. However, the role of the other cellular organelles, and in particular the mitochondria that are central mediator for beta-cell survival and function, remains poorly investigated. In this review we will dissect the crosstalk between the ER and mitochondria in the context of T1D, highlighting the key role played by this interaction in beta-cell dysfunctions and immune activation, especially through regulation of calcium homeostasis, oxidative stress and generation of mitochondrial-derived factors.
Collapse
Affiliation(s)
- Saurabh Vig
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Joost M. Lambooij
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
10
|
Tinsley IC, Borner T, Swanson ML, Chepurny OG, Doebley SA, Kamat V, Sweet IR, Holz GG, Hayes MR, De Jonghe BC, Doyle RP. Synthesis, Optimization, and Biological Evaluation of Corrinated Conjugates of the GLP-1R Agonist Exendin-4. J Med Chem 2021; 64:3479-3492. [PMID: 33677970 PMCID: PMC8279408 DOI: 10.1021/acs.jmedchem.1c00185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
Corrination
is the conjugation of a corrin ring containing molecule,
such as vitamin B12 (B12) or B12 biosynthetic precursor
dicyanocobinamide (Cbi), to small molecules, peptides, or proteins
with the goal of modifying pharmacology. Recently, a corrinated GLP-1R
agonist (GLP-1RA) exendin-4 (Ex4) has been shown in vivo to have reduced penetration into the central nervous system relative
to Ex4 alone, producing a glucoregulatory GLP-1RA devoid of anorexia
and emesis. The study herein was designed to optimize the lead conjugate
for GLP-1R agonism and binding. Two specific conjugation sites were
introduced in Ex4, while also utilizing various linkers, so that it
was possible to identify Cbi conjugates of Ex4 that exhibit improved
binding and agonist activity at the GLP-1R. An optimized conjugate
(22), comparable with Ex4, was successfully screened
and subsequently assayed for insulin secretion in rat islets and in vivo in shrews for glucoregulatory and emetic behavior,
relative to Ex4.
Collapse
Affiliation(s)
- Ian C Tinsley
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Tito Borner
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, Pennsylvania 19104, United States
| | - MacKenzie L Swanson
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Oleg G Chepurny
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| | - Sarah A Doebley
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, Pennsylvania 19104, United States
| | - Varun Kamat
- Department of Medicine, University of Washington, Medicine Diabetes Institute, Seattle, Washington 98109, United States
| | - Ian R Sweet
- Department of Medicine, University of Washington, Medicine Diabetes Institute, Seattle, Washington 98109, United States
| | - George G Holz
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| | - Matthew R Hayes
- Department of Psychiatry, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Bart C De Jonghe
- Department of Biobehavioral Health Sciences, University of Pennsylvania, School of Nursing, Philadelphia, Pennsylvania 19104, United States
| | - Robert P Doyle
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States.,Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| |
Collapse
|
11
|
Hong JH, Kim DH, Lee MK. Glucolipotoxicity and GLP-1 secretion. BMJ Open Diabetes Res Care 2021; 9:9/1/e001905. [PMID: 33627316 PMCID: PMC7908300 DOI: 10.1136/bmjdrc-2020-001905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/15/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION The concept of glucolipotoxicity refers to the combined, deleterious effects of elevated glucose and/or fatty acid levels. RESEARCH DESIGN AND METHODS To investigate the effects of chronic glucolipotoxicity on glucagon-like peptide-1-(7-36) amide (GLP-1) secretion, we generated glucolipotoxic conditions in human NCI-H716 enteroendocrine cells using either 5 or 25 mM glucose with or without 500 µM palmitate for 72 hours. For in vivo study, we have established a chronic nutrient infusion model in the rat. Serial blood samples were collected for 2 hours after the consumption of a mixed meal to evaluate insulin sensitivity and β-cell function. RESULTS Chronic glucolipotoxic conditions decreased GLP-1 secretion and the expressions of pCREB, pGSK3β, β-catenin, and TCF7L2 in NCI-H716 cells. Glucolipotoxicity conditions reduced glucose transporter expression, glucose uptake, and nicotinamide-adenine dinucleotide phosphate (NADPH) levels in L-cells, and increased triglyceride accumulation. In contrast, PPARα and ATP levels were reduced, which correlated well with decreased levels of SUR1 and Kir6.2, cAMP contents and expressions of pCAMK2, EPAC and PKA. We also observed an increase in reactive oxygen species production, UCP2 expression and Complex I activity. Simultaneous treatment with insulin restored the GLP-1 secretion. Glucolipotoxic conditions decreased insulin secretion in a time-dependent manner in INS-1 cells, which was recovered with exendin-4 cotreatment. Glucose and SMOFlipid infusion for 6 hours decreased GLP-1 secretion and proglucagon mRNA levels as well as impaired the glucose tolerance, insulin and C-peptide secretion in rats. CONCLUSION These results provide evidence for the first time that glucolipotoxicity could affect GLP-1 secretion through changes in glucose and lipid metabolism, gene expressions, and proglucagon biosynthesis and suggest the interrelationship between glucolipotoxicities of L-cells and β-cells which develops earlier than that of L-cells.
Collapse
Affiliation(s)
- Jung-Hee Hong
- Division of Endocrinology & Metabolism, Samsung Biomedical Research Institute, Seoul, South Korea
| | - Dae-Hee Kim
- Division of Cell Therapy, Department of Neurosurgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Moon-Kyu Lee
- Division of Endocrinology & Metabolism, Department of Internal Medicine, Uijungbu Eulji Medical Center, Eulji University School of Medicine, Uijungbu, South Korea
| |
Collapse
|
12
|
Milliken BT, Elfers C, Chepurny OG, Chichura KS, Sweet IR, Borner T, Hayes MR, De Jonghe BC, Holz GG, Roth CL, Doyle RP. Design and Evaluation of Peptide Dual-Agonists of GLP-1 and NPY2 Receptors for Glucoregulation and Weight Loss with Mitigated Nausea and Emesis. J Med Chem 2021; 64:1127-1138. [PMID: 33449689 PMCID: PMC7956155 DOI: 10.1021/acs.jmedchem.0c01783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
There is a critical unmet need for
therapeutics to treat the epidemic
of comorbidities associated with obesity and type 2 diabetes, ideally
devoid of nausea/emesis. This study developed monomeric peptide agonists
of glucagon-like peptide 1 receptor (GLP-1R) and neuropeptide Y2 receptor
(Y2-R) based on exendin-4 (Ex-4) and PYY3–36. A
novel peptide, GEP44, was obtained via in vitro receptor
screens, insulin secretion in islets, stability assays, and in vivo rat and shrew studies of glucoregulation, weight
loss, nausea, and emesis. GEP44 in lean and diet-induced obese rats
produced greater reduction in body weight compared to Ex-4 without
triggering nausea associated behavior. Studies in the shrew demonstrated
a near absence of emesis for GEP44 in contrast to Ex-4. Collectively,
these data demonstrate that targeting GLP-1R and Y2-R with chimeric
single peptides offers a route to new glucoregulatory treatments that
are well-tolerated and have improved weight loss when compared directly
to Ex-4.
Collapse
Affiliation(s)
- Brandon T Milliken
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Clinton Elfers
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington 98105, United States
| | - Oleg G Chepurny
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| | - Kylie S Chichura
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
| | - Ian R Sweet
- Diabetes Research Institute, University of Washington, Seattle, Washington 98105, United States
| | - Tito Borner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Matthew R Hayes
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Bart C De Jonghe
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - George G Holz
- Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| | - Christian L Roth
- Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, Washington 98105, United States
| | - Robert P Doyle
- Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States.,Department of Medicine, State University of New York, Upstate Medical University, Syracuse, New York 13210, United States
| |
Collapse
|
13
|
Heterogeneous expression of CFTR in insulin-secreting β-cells of the normal human islet. PLoS One 2020; 15:e0242749. [PMID: 33264332 PMCID: PMC7710116 DOI: 10.1371/journal.pone.0242749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
Cystic fibrosis (CF) is due to mutations in the CF-transmembrane conductance regulator (CFTR) and CF-related diabetes (CFRD) is its most common co-morbidity, affecting ~50% of all CF patients, significantly influencing pulmonary function and longevity. Yet, the complex pathogenesis of CFRD remains unclear. Two non-mutually exclusive underlying mechanisms have been proposed in CFRD: i) damage of the endocrine cells secondary to the severe exocrine pancreatic pathology and ii) intrinsic β-cell impairment of the secretory response in combination with other factors. The later has proven difficult to determine due to low expression of CFTR in β-cells, which results in the general perception that this Cl−channel does not participate in the modulation of insulin secretion or the development of CFRD. The objective of the present work is to demonstrate CFTR expression at the molecular and functional levels in insulin-secreting β-cells in normal human islets, where it seems to play a role. Towards this end, we have used immunofluorescence confocal and immunofluorescence microscopy, immunohistochemistry, RT-qPCR, Western blotting, pharmacology, electrophysiology and insulin secretory studies in normal human, rat and mouse islets. Our results demonstrate heterogeneous CFTR expression in human, mouse and rat β-cells and provide evidence that pharmacological inhibition of CFTR influences basal and stimulated insulin secretion in normal mouse islets but not in islets lacking this channel, despite being detected by electrophysiological means in ~30% of β-cells. Therefore, our results demonstrate a potential role for CFTR in the pancreatic β-cell secretory response suggesting that intrinsic β-cell dysfunction may also participate in the pathogenesis of CFRD.
Collapse
|
14
|
Hayami T, Yokoi N, Yamaguchi T, Honda K, Murao N, Takahashi H, Wang S, Seino Y, Kamiya H, Yabe D, Sweet IR, Mizoguchi A, Nakamura J, Seino S. Tumor-like features of gene expression and metabolic profiles in enlarged pancreatic islets are associated with impaired incretin-induced insulin secretion in obese diabetes: A study of Zucker fatty diabetes mellitus rat. J Diabetes Investig 2020; 11:1434-1447. [PMID: 32279428 PMCID: PMC7610108 DOI: 10.1111/jdi.13272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 03/26/2020] [Accepted: 04/05/2020] [Indexed: 12/13/2022] Open
Abstract
AIMS/INTRODUCTION Pancreatic islets are heterogenous. To clarify the relationship between islet heterogeneity and incretin action in the islets, we studied gene expression and metabolic profiles of non-large and enlarged islets of the Zucker fatty diabetes mellitus rat, an obese diabetes model, as well as incretin-induced insulin secretion (IIIS) in these islets. MATERIALS AND METHODS Pancreatic islets of control (fa/+) and fatty (fa/fa) rats at 8 and 12 weeks-of-age were isolated. The islets of fa/fa rats at 12 weeks-of-age were separated into non-large islets (≤200 μm in diameter) and enlarged islets (>300 μm in diameter). Morphological analyses, insulin secretion experiments, transcriptome analysis, metabolome analysis and oxygen consumption analysis were carried out on these islets. RESULTS The number of enlarged islets was increased with age in fatty rats, and IIIS was significantly reduced in the enlarged islets. Markers for β-cell differentiation were markedly decreased in the enlarged islets, but those for cell proliferation were increased. Glycolysis was enhanced in the enlarged islets, whereas the tricarboxylic acid cycle was suppressed. The oxygen consumption rate under glucose stimulation was reduced in the enlarged islets. Production of glutamate, a key signal for IIIS, was decreased in the enlarged islets. CONCLUSIONS The enlarged islets of Zucker fatty diabetes mellitus rats, which are defective for IIIS, show tumor cell-like metabolic features, including a dedifferentiated state, accelerated aerobic glycolysis and impaired mitochondrial function. The age-dependent increase in such islets could contribute to the pathophysiology of obese diabetes.
Collapse
Affiliation(s)
- Tomohide Hayami
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Kansai Electric Power Medical Research Institute, Kobe, Japan.,Division of Diabetes, Department of Internal Medicine, Aichi Medical University, Nagakute, Japan
| | - Norihide Yokoi
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Kansai Electric Power Medical Research Institute, Kobe, Japan
| | - Takuro Yamaguchi
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Kansai Electric Power Medical Research Institute, Kobe, Japan
| | - Kohei Honda
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoya Murao
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Harumi Takahashi
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Kansai Electric Power Medical Research Institute, Kobe, Japan
| | - Shujie Wang
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yusuke Seino
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Fujita Health University, Toyoake, Japan
| | - Hideki Kamiya
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University, Nagakute, Japan
| | - Daisuke Yabe
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Kansai Electric Power Medical Research Institute, Kobe, Japan
| | - Ian R Sweet
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Seattle, Washington, USA
| | - Akira Mizoguchi
- Department of Neural Regeneration and Cell Communication, Mie University Graduate School of Medicine, Tsu, Japan
| | - Jiro Nakamura
- Division of Diabetes, Department of Internal Medicine, Aichi Medical University, Nagakute, Japan
| | - Susumu Seino
- Division of Molecular and Metabolic Medicine, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,Kansai Electric Power Medical Research Institute, Kobe, Japan
| |
Collapse
|
15
|
Hu Z, Chen J, Sun X, Wang L, Wang A. Efficacy of vitamin D supplementation on glycemic control in type 2 diabetes patients: A meta-analysis of interventional studies. Medicine (Baltimore) 2019; 98:e14970. [PMID: 30946322 PMCID: PMC6456062 DOI: 10.1097/md.0000000000014970] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Conflicting evidence exists on the effect of vitamin D supplementation on glucose metabolism in subjects with type 2 diabetes (T2D). Therefore, this meta-analysis focuses on the relationship between vitamin D intervention and glycaemic control in subjects with T2D. METHODS We reviewed available randomized controlled trials (RCTs) studies from the establishment time of each database to March 31, 2018. Stata 13.0 software was used to evaluate the included literature. RESULTS Finally, a total of 19 RCT studies involving 747 intervention subjects and 627 placebo controls were included in this meta-analysis. Meta-analysis results showed that compared with the control group, the short-term vitamin D supplementation group had a decline in hemoglobin A1c (HbA1c), insulin resistance, and insulin. The Standard Mean Difference (SMD) (95% CI [95% confidence interval]) of HbA1c, insulin resistance, and insulin were -0.17 (-0.29, -0.05), -0.75 (-0.97, -0.53), -0.57 (-0.78, -0.35), respectively with all P value <.05. But there were no significant differences in long-term follow-up vitamin D intervention. CONCLUSION Vitamin D supplementation in T2D patients can improve HbA1c, insulin resistance, and insulin in short-term intervention, suggesting that vitamin D can be considered as a therapeutic agent along with the other treatments for T2D.
Collapse
|
16
|
Sabatini PV, Speckmann T, Lynn FC. Friend and foe: β-cell Ca 2+ signaling and the development of diabetes. Mol Metab 2019; 21:1-12. [PMID: 30630689 PMCID: PMC6407368 DOI: 10.1016/j.molmet.2018.12.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/03/2018] [Accepted: 12/19/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The divalent cation Calcium (Ca2+) regulates a wide range of processes in disparate cell types. Within insulin-producing β-cells, increases in cytosolic Ca2+ directly stimulate insulin vesicle exocytosis, but also initiate multiple signaling pathways. Mediated through activation of downstream kinases and transcription factors, Ca2+-regulated signaling pathways leverage substantial influence on a number of critical cellular processes within the β-cell. Additionally, there is evidence that prolonged activation of these same pathways is detrimental to β-cell health and may contribute to Type 2 Diabetes pathogenesis. SCOPE OF REVIEW This review aims to briefly highlight canonical Ca2+ signaling pathways in β-cells and how β-cells regulate the movement of Ca2+ across numerous organelles and microdomains. As a main focus, this review synthesizes experimental data from in vitro and in vivo models on both the beneficial and detrimental effects of Ca2+ signaling pathways for β-cell function and health. MAJOR CONCLUSIONS Acute increases in intracellular Ca2+ stimulate a number of signaling cascades, resulting in (de-)phosphorylation events and activation of downstream transcription factors. The short-term stimulation of these Ca2+ signaling pathways promotes numerous cellular processes critical to β-cell function, including increased viability, replication, and insulin production and secretion. Conversely, chronic stimulation of Ca2+ signaling pathways increases β-cell ER stress and results in the loss of β-cell differentiation status. Together, decades of study demonstrate that Ca2+ movement is tightly regulated within the β-cell, which is at least partially due to its dual roles as a potent signaling molecule.
Collapse
Affiliation(s)
- Paul V Sabatini
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Thilo Speckmann
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada; Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada; Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
17
|
Kuok IT, Rountree AM, Jung SR, Sweet IR. Palmitate is not an effective fuel for pancreatic islets and amplifies insulin secretion independent of calcium release from endoplasmic reticulum. Islets 2019; 11:51-64. [PMID: 31084524 PMCID: PMC6548485 DOI: 10.1080/19382014.2019.1601490] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of the study was to determine the acute contribution of fuel oxidation in mediating the increase in insulin secretion rate (ISR) in response to fatty acids. Measures of mitochondrial metabolism, as reflected by oxygen consumption rate (OCR) and cytochrome c reduction, calcium signaling, and ISR by rat islets were used to evaluate processes stimulated by acute exposure to palmitic acid (PA). The contribution of mitochondrial oxidation of PA was determined in the presence and absence of a blocker of mitochondrial transport of fatty acids (etomoxir) at different glucose concentrations. Subsequent to increasing glucose from 3 to 20 mM, PA caused small increases in OCR and cytosolic calcium (about 20% of the effect of glucose). In contrast, the effect of PA on ISR was almost 3 times that by glucose, suggesting that the metabolism of PA is not the dominant mechanism mediating PA's effect on ISR. This was further supported by lack of inhibition of PA-stimulated OCR and ISR when blocking entry of PA into mitochondria (with etomoxir), and PA's lack of stimulation of reduced cytochrome c in the presence of high glucose. Consistent with the lack of metabolic stimulation by PA, an inhibitor of calcium release from the endoplasmic reticulum, but not a blocker of L-type calcium channels, abolished the PA-induced elevation of cytosolic calcium. Notably, ISR was unaffected by thapsigargin showing the dissociation of endoplasmic reticulum calcium release and second phase insulin secretion. In conclusion, stimulation of ISR by PA was mediated by mechanisms largely independent of the oxidation of the fuel.
Collapse
Affiliation(s)
- Iok Teng Kuok
- University of Washington Diabetes Research Institute, University of Washington, Seattle, WA, USA
| | - Austin M. Rountree
- University of Washington Diabetes Research Institute, University of Washington, Seattle, WA, USA
| | - Seung-Ryoung Jung
- University of Washington Diabetes Research Institute, University of Washington, Seattle, WA, USA
| | - Ian R. Sweet
- University of Washington Diabetes Research Institute, University of Washington, Seattle, WA, USA
- CONTACT Ian R. Sweet UW Diabetes Institute, University of Washington, Box 358062, 750 Republican Street, Seattle, WA 98195-8062
| |
Collapse
|
18
|
Schulze T, Mattern K, Früh E, Hecht L, Rustenbeck I, Dietzel A. A 3D microfluidic perfusion system made from glass for multiparametric analysis of stimulus-secretioncoupling in pancreatic islets. Biomed Microdevices 2018; 19:47. [PMID: 28540469 DOI: 10.1007/s10544-017-0186-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microfluidic perfusion systems (MPS) are well suited to perform multiparametric measurements with small amounts of tissue to function as an Organ on Chip device (OOC). Such microphysiolgical characterization is particularly valuable in research on the stimulus-secretion-coupling of pancreatic islets. Pancreatic islets are fully functional competent mini-organs, which serve as fuel sensors and transduce metabolic activity into rates of hormone secretion. To enable the simultaneous measurement of fluorescence and oxygen consumption we designed a microfluidic perfusion system from borosilicate glass by 3D femtosecond laser ablation. Retention of islets was accomplished by a plain well design. The characteristics of flow and shear force in the microchannels and wells were simulated and compared with the measured exchange of the perfusion media. Distribution of latex beads, MIN6 cell pseudo islets and isolated mouse islets in the MPS was characterized in dependence of flow rate and well depth. Overall, the observations suggested that a sufficient retention of the islets at low shear stress, together with sufficient exchange of test medium, was achieved at a well depth of 300 μm and perfusion rates between 40 and 240 μl/min. This enabled multiparametric measurement of oxygen consumption, NAD(P)H autofluorescence, cytosolic Ca2+ concentration, and insulin secretion by isolated mouse islets. After appropriate correction for different lag times, kinetics of these processes could be compared. Such measurements permit a more precise insight into metabolic changes underlying the regulation of insulin secretion. Thus, rapid prototyping using laser ablation enables flexible adaption of borosilicate MPS designs to different demands of biomedical research.
Collapse
Affiliation(s)
- Torben Schulze
- Institute of Pharmacology and Toxicology, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106, Braunschweig, Germany.,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Kai Mattern
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106, Braunschweig, Germany.,Institute of Microtechnology, Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124, Braunschweig, Germany
| | - Eike Früh
- Institute of Pharmacology and Toxicology, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106, Braunschweig, Germany
| | - Lars Hecht
- Institute of Microtechnology, Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124, Braunschweig, Germany
| | - Ingo Rustenbeck
- Institute of Pharmacology and Toxicology, Technische Universität Braunschweig, Mendelssohnstr. 1, 38106, Braunschweig, Germany. .,Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106, Braunschweig, Germany.
| | - Andreas Dietzel
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106, Braunschweig, Germany. .,Institute of Microtechnology, Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124, Braunschweig, Germany.
| |
Collapse
|
19
|
Sabatini PV, Speckmann T, Nian C, Glavas MM, Wong CK, Yoon JS, Kin T, Shapiro AMJ, Gibson WT, Verchere CB, Lynn FC. Neuronal PAS Domain Protein 4 Suppression of Oxygen Sensing Optimizes Metabolism during Excitation of Neuroendocrine Cells. Cell Rep 2018; 22:163-174. [PMID: 29298418 DOI: 10.1016/j.celrep.2017.12.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 10/27/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023] Open
Abstract
Depolarization of neuroendocrine cells results in calcium influx, which induces vesicle exocytosis and alters gene expression. These processes, along with the restoration of resting membrane potential, are energy intensive. We hypothesized that cellular mechanisms exist to maximize energy production during excitation. Here, we demonstrate that NPAS4, an immediate early basic helix-loop-helix (bHLH)-PAS transcription factor, acts to maximize energy production by suppressing hypoxia-inducible factor 1α (HIF1α). As such, knockout of Npas4 from insulin-producing β cells results in reduced OXPHOS, loss of insulin secretion, β cell dedifferentiation, and type 2 diabetes. NPAS4 plays a similar role in the nutrient-sensing cells of the hypothalamus. Its knockout here results in increased food intake, reduced locomotor activity, and elevated peripheral glucose production. In conclusion, NPAS4 is critical for the coordination of metabolism during the stimulation of electrically excitable cells; its loss leads to the defects in cellular metabolism that underlie the cellular dysfunction that occurs in metabolic disease.
Collapse
Affiliation(s)
- Paul V Sabatini
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Thilo Speckmann
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Cuilan Nian
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Chi Kin Wong
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Ji Soo Yoon
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Tatsuya Kin
- Department of Surgery and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - A M James Shapiro
- Department of Surgery and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - William T Gibson
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - C Bruce Verchere
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Francis C Lynn
- Diabetes Research Group, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Surgery, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
20
|
Kanow MA, Giarmarco MM, Jankowski CS, Tsantilas K, Engel AL, Du J, Linton JD, Farnsworth CC, Sloat SR, Rountree A, Sweet IR, Lindsay KJ, Parker ED, Brockerhoff SE, Sadilek M, Chao JR, Hurley JB. Biochemical adaptations of the retina and retinal pigment epithelium support a metabolic ecosystem in the vertebrate eye. eLife 2017; 6:28899. [PMID: 28901286 PMCID: PMC5617631 DOI: 10.7554/elife.28899] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/12/2017] [Indexed: 12/12/2022] Open
Abstract
Here we report multiple lines of evidence for a comprehensive model of energy metabolism in the vertebrate eye. Metabolic flux, locations of key enzymes, and our finding that glucose enters mouse and zebrafish retinas mostly through photoreceptors support a conceptually new model for retinal metabolism. In this model, glucose from the choroidal blood passes through the retinal pigment epithelium to the retina where photoreceptors convert it to lactate. Photoreceptors then export the lactate as fuel for the retinal pigment epithelium and for neighboring Müller glial cells. We used human retinal epithelial cells to show that lactate can suppress consumption of glucose by the retinal pigment epithelium. Suppression of glucose consumption in the retinal pigment epithelium can increase the amount of glucose that reaches the retina. This framework for understanding metabolic relationships in the vertebrate retina provides new insights into the underlying causes of retinal disease and age-related vision loss.
Collapse
Affiliation(s)
- Mark A Kanow
- Department of Biochemistry, University of Washington, Seattle, United States
| | | | - Connor Sr Jankowski
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Kristine Tsantilas
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Abbi L Engel
- Department of Ophthalmology, University of Washington, Seattle, United States
| | - Jianhai Du
- Department of Ophthalmology, West Virginia University, Morgantown, United States.,Department of Biochemistry, West Virginia University, Morgantown, United States
| | - Jonathan D Linton
- Department of Biochemistry, University of Washington, Seattle, United States.,Department of Ophthalmology, University of Washington, Seattle, United States
| | | | - Stephanie R Sloat
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Austin Rountree
- Department of Medicine, UW Diabetes Institute, University of Washington, Seattle, United States
| | - Ian R Sweet
- Department of Medicine, UW Diabetes Institute, University of Washington, Seattle, United States
| | - Ken J Lindsay
- Department of Biochemistry, University of Washington, Seattle, United States.,Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Edward D Parker
- Department of Ophthalmology, University of Washington, Seattle, United States
| | - Susan E Brockerhoff
- Department of Biochemistry, University of Washington, Seattle, United States.,Department of Ophthalmology, University of Washington, Seattle, United States
| | - Martin Sadilek
- Department of Chemistry, University of Washington, Seattle, United States
| | - Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, United States
| | - James B Hurley
- Department of Biochemistry, University of Washington, Seattle, United States.,Department of Ophthalmology, University of Washington, Seattle, United States
| |
Collapse
|
21
|
Schulze T, Morsi M, Reckers K, Brüning D, Seemann N, Panten U, Rustenbeck I. Metabolic amplification of insulin secretion is differentially desensitized by depolarization in the absence of exogenous fuels. Metabolism 2017; 67:1-13. [PMID: 28081772 DOI: 10.1016/j.metabol.2016.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/18/2016] [Accepted: 10/20/2016] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The metabolic amplification of insulin secretion is the sequence of events which enables the secretory response to a fuel secretagogue to exceed the secretory response to a purely depolarizing stimulus. The signals in this pathway are incompletely understood. Here, we have characterized an experimental procedure by which the amplifying response to glucose is reversibly desensitized, while the response to α-ketoisocaproic acid (KIC) is unchanged. MATERIALS/METHODS Insulin secretion, NAD(P)H- and FAD-autofluorescence, Fura-2 fluorescence and oxygen consumption were measured in perifused NMRI mouse islets. The ATP- and ADP-contents were measured in statically incubated mouse islets. All islets were freshly isolated. RESULTS While the original observation on the dissociation between glucose- and KIC-amplification was obtained with islets that had been exposed to a high concentration of the sulfonylurea glipizide in the absence of glucose, we now show that in the absence of exogenous fuel a moderate depolarization, irrespective of its mechanism, progressively decreased the amplification in response to both glucose and KIC. However, the amplification in response to glucose declined faster, so a time window exists where glucose was already inefficient, whereas KIC was of unimpaired efficiency. Measurements of adenine nucleotides, NAD(P)H- and FAD-autofluorescence, and oxygen consumption point to a central role of the mitochondrial metabolism in this process. The desensitization could be quickly reversed by increasing oxidative deamination of glutamate and consequently anaplerosis of the citrate cycle. CONCLUSION Depolarization in the absence of exogenous fuel may be a useful model to identify those signals which are indispensable for the generation of metabolic amplification.
Collapse
Affiliation(s)
- Torben Schulze
- Institute of Pharmacology and Toxicology, University of Braunschweig, D-38106 Braunschweig, Germany
| | - Mai Morsi
- Institute of Pharmacology and Toxicology, University of Braunschweig, D-38106 Braunschweig, Germany
| | - Kirstin Reckers
- Institute of Pharmacology and Toxicology, University of Braunschweig, D-38106 Braunschweig, Germany
| | - Dennis Brüning
- Institute of Pharmacology and Toxicology, University of Braunschweig, D-38106 Braunschweig, Germany
| | - Nele Seemann
- Institute of Pharmacology and Toxicology, University of Braunschweig, D-38106 Braunschweig, Germany
| | - Uwe Panten
- Institute of Pharmacology and Toxicology, University of Braunschweig, D-38106 Braunschweig, Germany
| | - Ingo Rustenbeck
- Institute of Pharmacology and Toxicology, University of Braunschweig, D-38106 Braunschweig, Germany.
| |
Collapse
|
22
|
A method for high-throughput functional imaging of single cells within heterogeneous cell preparations. Sci Rep 2016; 6:39319. [PMID: 27982116 PMCID: PMC5159830 DOI: 10.1038/srep39319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 11/17/2016] [Indexed: 01/25/2023] Open
Abstract
Functional characterization of individual cells within heterogeneous tissue preparations is challenging. Here, we report the development of a versatile imaging method that assesses single cell responses of various endpoints in real time, while identifying the individual cell types. Endpoints that can be measured include (but are not limited to) ionic flux (calcium, sodium, potassium and hydrogen), metabolic responsiveness (NAD(P)H, mitochondrial membrane potential), and signal transduction (H2O2 and cAMP). Subsequent to fluorescent imaging, identification of cell types using immunohistochemistry allows for mapping of cell type to their respective functional real time responses. To validate the utility of this method, NAD(P)H responses to glucose of islet alpha versus beta cells generated from dispersed pancreatic islets, followed by the construction of frequency distributions characterizing the variability in the magnitude of each individual cell responses were compared. As expected, no overlap between the glucose response frequency distributions for beta cells versus alpha cells was observed, thereby establishing both the high degree of fidelity and low rate of both false-negatives and false-positives in this approach. This novel method has the ability not only to resolve single cell level functional differences between cell types, but also to characterize functional heterogeneity within a given cell type.
Collapse
|
23
|
Sun M, Liu H, Xu H, Wang H, Wang X. CNTF-ACM promotes mitochondrial respiration and oxidative stress in cortical neurons through upregulating L-type calcium channel activity. Mol Cell Biochem 2016; 420:195-206. [PMID: 27514537 DOI: 10.1007/s11010-016-2792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 08/06/2016] [Indexed: 10/21/2022]
Abstract
A specialized culture medium termed ciliary neurotrophic factor-treated astrocyte-conditioned medium (CNTF-ACM) allows investigators to assess the peripheral effects of CNTF-induced activated astrocytes upon cultured neurons. CNTF-ACM has been shown to upregulate neuronal L-type calcium channel current activity, which has been previously linked to changes in mitochondrial respiration and oxidative stress. Therefore, the aim of this study was to evaluate CNTF-ACM's effects upon mitochondrial respiration and oxidative stress in rat cortical neurons. Cortical neurons, CNTF-ACM, and untreated control astrocyte-conditioned medium (UC-ACM) were prepared from neonatal Sprague-Dawley rat cortical tissue. Neurons were cultured in either CNTF-ACM or UC-ACM for a 48-h period. Changes in the following parameters before and after treatment with the L-type calcium channel blocker isradipine were assessed: (i) intracellular calcium levels, (ii) mitochondrial membrane potential (ΔΨm), (iii) oxygen consumption rate (OCR) and adenosine triphosphate (ATP) formation, (iv) intracellular nitric oxide (NO) levels, (v) mitochondrial reactive oxygen species (ROS) production, and (vi) susceptibility to the mitochondrial complex I toxin rotenone. CNTF-ACM neurons displayed the following significant changes relative to UC-ACM neurons: (i) increased intracellular calcium levels (p < 0.05), (ii) elevation in ΔΨm (p < 0.05), (iii) increased OCR and ATP formation (p < 0.05), (iv) increased intracellular NO levels (p < 0.05), (v) increased mitochondrial ROS production (p < 0.05), and (vi) increased susceptibility to rotenone (p < 0.05). Treatment with isradipine was able to partially rescue these negative effects of CNTF-ACM (p < 0.05). CNTF-ACM promotes mitochondrial respiration and oxidative stress in cortical neurons through elevating L-type calcium channel activity.
Collapse
Affiliation(s)
- Meiqun Sun
- Department of Histology and Embryology, Bengbu Medical College, Bengbu, Anhui, China
| | - Hongli Liu
- Department of Gynecological Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Huanbai Xu
- Department of Endocrinology and Metabolism, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, China
| | - Hongtao Wang
- Department of Immunology, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaojing Wang
- Department of Respiration, Anhui Clinical and Preclinical Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Bengbu Medical College, No. 287 Changhuai Road, Bengbu, 233000, Anhui, China.
| |
Collapse
|
24
|
Li L, Pan ZF, Huang X, Wu BW, Li T, Kang MX, Ge RS, Hu XY, Zhang YH, Ge LJ, Zhu DY, Wu YL, Lou YJ. Junctophilin 3 expresses in pancreatic beta cells and is required for glucose-stimulated insulin secretion. Cell Death Dis 2016; 7:e2275. [PMID: 27336719 PMCID: PMC5143404 DOI: 10.1038/cddis.2016.179] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/26/2016] [Accepted: 05/30/2016] [Indexed: 12/15/2022]
Abstract
It is well accepted that junctophilin (JPHs) isoforms act as a physical bridge linking plasma membrane and endoplasmic reticulum (ER) for channel crosstalk in excitable cells. Our purpose is to investigate whether JPHs are involved in the proper communication between Ca(2+) influx and subsequent Ca(2+) amplification in pancreatic beta cells, thereby participating in regulating insulin secretion. The expression of JPH isoforms was examined in human and mouse pancreatic tissues, and JPH3 expression was found in both the beta cells. In mice, knockdown of Jph3 (si-Jph3) in islets decreased glucose-stimulated insulin secretion (GSIS) accompanied by mitochondrial function impairment. Si-Jph3 lowered the insulin secretory response to Ca(2+) signaling in the presence of glucose, and reduced [Ca(2+)]c transient amplitude triggered by caffeine. Si-Jph3 also attenuated mitofusin 2 expression, thereby disturbing the spatial organization of ER-mitochondria contact in islets. These results suggest that the regulation of GSIS by the KATP channel-independent pathways is partly impaired due to decrease of JPH3 expression in mouse islets. JPH3 also binds to type 2 ryanodine receptors (RyR2) in mouse and human pancreatic tissues, which might contribute to Ca(2+) release amplification in GSIS. This study demonstrates some previously unrecognized findings in pancreatic tissues: (1) JPH3 expresses in mouse and human beta cells; (2) si-Jph3 in mouse primary islets impairs GSIS in vitro; (3) impairment in GSIS in si-Jph3 islets is due to changes in RyR2-[Ca(2+)]c transient amplitude and ER-mitochondria contact.
Collapse
Affiliation(s)
- L Li
- Insititute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Innovation Team for Stem Cell Translational Medicine of Cardiovascular Disease of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
| | - Z-F Pan
- Insititute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Innovation Team for Stem Cell Translational Medicine of Cardiovascular Disease of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - X Huang
- Key Innovation Team for Stem Cell Translational Medicine of Cardiovascular Disease of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Cardiovascular Key Laboratory of Zhejiang Province, The 2nd Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - B-W Wu
- Insititute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Innovation Team for Stem Cell Translational Medicine of Cardiovascular Disease of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - T Li
- Insititute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Innovation Team for Stem Cell Translational Medicine of Cardiovascular Disease of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - M-X Kang
- Department of General Surgery, The 2nd Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - R-S Ge
- The Population Council at the Rockefeller University, New York 10021, NY, USA
- Institute of Reproductive Biomedicine, the 2nd Affiliated Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - X-Y Hu
- Key Innovation Team for Stem Cell Translational Medicine of Cardiovascular Disease of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Cardiovascular Key Laboratory of Zhejiang Province, The 2nd Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Y-H Zhang
- Insititute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Innovation Team for Stem Cell Translational Medicine of Cardiovascular Disease of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - L-J Ge
- Insititute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Innovation Team for Stem Cell Translational Medicine of Cardiovascular Disease of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - D-Y Zhu
- Insititute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Innovation Team for Stem Cell Translational Medicine of Cardiovascular Disease of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Y-L Wu
- Department of General Surgery, The 2nd Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Y-J Lou
- Insititute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Key Innovation Team for Stem Cell Translational Medicine of Cardiovascular Disease of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
25
|
Schulze T, Morsi M, Brüning D, Schumacher K, Rustenbeck I. Different responses of mouse islets and MIN6 pseudo-islets to metabolic stimulation: a note of caution. Endocrine 2016; 51:440-7. [PMID: 26227244 DOI: 10.1007/s12020-015-0701-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 07/20/2015] [Indexed: 11/25/2022]
Abstract
MIN6 cells and MIN6 pseudo-islets are popular surrogates for the use of primary beta cells and islets. Even though it is generally agreed that the stimulus-secretion coupling may deviate from that of beta cells or islets, direct comparisons are rare. The present side-by-side comparison of insulin secretion, cytosolic Ca(2+) concentration ([Ca(2+)] i ) and oxygen consumption rate (OCR) points out where similarities and differences exist between MIN6 cells and normal mouse beta cells. In mouse islets and MIN6 pseudo-islets depolarization by 40 mM KCl was a more robust insulinotropic stimulus than 30 mM glucose. In MIN6 pseudo-islets, but not in mouse islets, the response to 30 mM glucose was much lower than to 40 mM KCl and could be suppressed by a preceding stimulation with 40 mM KCl. In MIN6 pseudo-islets, glucose was less effective to raise [Ca(2+)] i than in primary islets. In marked contrast to islets, the OCR response of MIN6 pseudo-islets to 30 mM glucose was smaller than to 40 mM KCl and was further diminished by a preceding stimulation with 40 mM KCl. The same pattern was observed when MIN6 pseudo-islets were cultured in 5 mM glucose. As with insulin secretion memory effects on the OCR remained after wash-out of a stimulus. The differences between MIN6 cells and primary beta cells were generally larger in the responses to glucose than to depolarization by KCl. Thus, the use of MIN6 cells in investigations on metabolic signalling requires particular caution.
Collapse
Affiliation(s)
- Torben Schulze
- Institute of Pharmacology and Toxicology and Center of Pharmaceutical Engineering, University of Braunschweig, Mendelssohnstr. 1, 38106, Brunswick, Germany
| | - Mai Morsi
- Institute of Pharmacology and Toxicology and Center of Pharmaceutical Engineering, University of Braunschweig, Mendelssohnstr. 1, 38106, Brunswick, Germany
| | - Dennis Brüning
- Institute of Pharmacology and Toxicology and Center of Pharmaceutical Engineering, University of Braunschweig, Mendelssohnstr. 1, 38106, Brunswick, Germany
| | - Kirstin Schumacher
- Institute of Pharmacology and Toxicology and Center of Pharmaceutical Engineering, University of Braunschweig, Mendelssohnstr. 1, 38106, Brunswick, Germany
| | - Ingo Rustenbeck
- Institute of Pharmacology and Toxicology and Center of Pharmaceutical Engineering, University of Braunschweig, Mendelssohnstr. 1, 38106, Brunswick, Germany.
| |
Collapse
|
26
|
Gerencser AA. Bioenergetic Analysis of Single Pancreatic β-Cells Indicates an Impaired Metabolic Signature in Type 2 Diabetic Subjects. Endocrinology 2015. [PMID: 26204464 DOI: 10.1210/en.2015-1552] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Impaired activation of mitochondrial energy metabolism by glucose has been demonstrated in type 2 diabetic β-cells. The cause of this dysfunction is unknown. The aim of this study was to identify segments of energy metabolism with normal or with altered function in human type 2 diabetes mellitus. The mitochondrial membrane potential (ΔψM), and its response to glucose, is the main driver of mitochondrial ATP synthesis and is hence a central mediator of glucose-induced insulin secretion, but its quantitative determination in β-cells from human donors has not been attempted, due to limitations in assay technology. Here, novel fluorescence microscopic assays are exploited to quantify ΔψM and its response to glucose and other secretagogues in β-cells of dispersed pancreatic islet cells from 4 normal and 3 type 2 diabetic organ donors. Mitochondrial volume densities and the magnitude of ΔψM in low glucose were not consistently altered in diabetic β-cells. However, ΔψM was consistently less responsive to elevation of glucose concentration, whereas the decreased response was not observed with metabolizable secretagogue mixtures that feed directly into the tricarboxylic acid cycle. Single-cell analysis of the heterogeneous responses to metabolizable secretagogues indicated no dysfunction in relaying ΔψM hyperpolarization to plasma membrane potential depolarization in diabetic β-cells. ΔψM of diabetic β-cells was distinctly responsive to acute inhibition of ATP synthesis during glucose stimulation. It is concluded that the mechanistic deficit in glucose-induced insulin secretion and mitochondrial hyperpolarization of diabetic human β-cells is located upstream of the tricarboxylic acid cycle and manifests in dampening the control of ΔψM by glucose metabolism.
Collapse
Affiliation(s)
- Akos A Gerencser
- Buck Institute for Research on Aging and Image Analyst Software, Novato, California 94945; and College of Pharmacy, Touro University California, Vallejo, California 94592
| |
Collapse
|
27
|
Rountree AM, Neal AS, Lisowski M, Rizzo N, Radtke J, White S, Luciani DS, Kim F, Hampe CS, Sweet IR. Control of insulin secretion by cytochrome C and calcium signaling in islets with impaired metabolism. J Biol Chem 2014; 289:19110-9. [PMID: 24841202 DOI: 10.1074/jbc.m114.556050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The aim of the study was to assess the relative control of insulin secretion rate (ISR) by calcium influx and signaling from cytochrome c in islets where, as in diabetes, the metabolic pathways are impaired. This was achieved either by culturing isolated islets at low (3 mm) glucose or by fasting rats prior to the isolation of the islets. Culture in low glucose greatly reduced the glucose response of cytochrome c reduction and translocation and ISR, but did not affect the response to the mitochondrial fuel α-ketoisocaproate. Unexpectedly, glucose-stimulated calcium influx was only slightly reduced in low glucose-cultured islets and was not responsible for the impairment in glucose-stimulated ISR. A glucokinase activator acutely restored cytochrome c reduction and translocation and ISR, independent of effects on calcium influx. Islets from fasted rats had reduced ISR and cytochrome c reduction in response to both glucose and α-ketoisocaproate despite normal responses of calcium. Our data are consistent with the scenario where cytochrome c reduction and translocation are essential signals in the stimulation of ISR, the loss of which can result in impaired ISR even when calcium response is normal.
Collapse
Affiliation(s)
- Austin M Rountree
- From the Diabetes and Obesity Center, Department of Medicine, University of Washington, Seattle, Washington 98195 and
| | - Adam S Neal
- From the Diabetes and Obesity Center, Department of Medicine, University of Washington, Seattle, Washington 98195 and
| | - Mark Lisowski
- From the Diabetes and Obesity Center, Department of Medicine, University of Washington, Seattle, Washington 98195 and
| | - Norma Rizzo
- From the Diabetes and Obesity Center, Department of Medicine, University of Washington, Seattle, Washington 98195 and
| | - Jared Radtke
- From the Diabetes and Obesity Center, Department of Medicine, University of Washington, Seattle, Washington 98195 and
| | - Sarah White
- the Department of Surgery, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Dan S Luciani
- the Department of Surgery, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Francis Kim
- From the Diabetes and Obesity Center, Department of Medicine, University of Washington, Seattle, Washington 98195 and
| | - Christiane S Hampe
- From the Diabetes and Obesity Center, Department of Medicine, University of Washington, Seattle, Washington 98195 and
| | - Ian R Sweet
- From the Diabetes and Obesity Center, Department of Medicine, University of Washington, Seattle, Washington 98195 and
| |
Collapse
|
28
|
Zraika S, Koh DS, Barrow BM, Lu B, Kahn SE, Andrikopoulos S. Neprilysin deficiency protects against fat-induced insulin secretory dysfunction by maintaining calcium influx. Diabetes 2013; 62:1593-601. [PMID: 23328128 PMCID: PMC3636612 DOI: 10.2337/db11-1593] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neprilysin contributes to free fatty acid (FFA)-induced cellular dysfunction in nonislet tissues in type 2 diabetes. Here, we show for the first time that with prolonged FFA exposure, islet neprilysin is upregulated and this is associated with reduced insulin pre-mRNA and ATP levels, oxidative/nitrative stress, impaired potassium and calcium channel activities, and decreased glucose-stimulated insulin secretion (GSIS). Genetic ablation of neprilysin specifically protects against FFA-induced impairment of calcium influx and GSIS in vitro and in vivo but does not ameliorate other FFA-induced defects. Importantly, adenoviral overexpression of neprilysin in islets cultured without FFA reproduces the defects in both calcium influx and GSIS, suggesting that upregulation of neprilysin per se mediates insulin secretory dysfunction and that the mechanism for protection conferred by neprilysin deletion involves prevention of reduced calcium influx. Our findings highlight the critical nature of calcium signaling for normal insulin secretion and suggest that interventions to inhibit neprilysin may improve β-cell function in obese humans with type 2 diabetes.
Collapse
Affiliation(s)
- Sakeneh Zraika
- Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, Washington, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Rountree AM, Reed BJ, Cummings BP, Jung SR, Stanhope KL, Graham JL, Griffen SC, Hull RL, Havel PJ, Sweet IR. Loss of coupling between calcium influx, energy consumption and insulin secretion associated with development of hyperglycaemia in the UCD-T2DM rat model of type 2 diabetes. Diabetologia 2013; 56:803-13. [PMID: 23404441 PMCID: PMC3855025 DOI: 10.1007/s00125-012-2808-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
Abstract
AIMS/HYPOTHESIS Previous studies on isolated islets have demonstrated tight coupling between calcium (Ca(2+)) influx and oxygen consumption rate (OCR) that is correlated with insulin secretion rate (ISR). To explain these observations, we have proposed a mechanism whereby the activation of a highly energetic process (Ca(2+)/metabolic coupling process [CMCP]) by Ca(2+) mediates the stimulation of ISR. The aim of the study was to test whether impairment of the CMCP could play a role in the development of type 2 diabetes. METHODS Glucose- and Ca(2+)-mediated changes in OCR and ISR in isolated islets were compared with the time course of changes of plasma insulin concentrations observed during the progression to hyperglycaemia in a rat model of type-2 diabetes (the University of California at Davis type 2 diabetes mellitus [UCD-T2DM] rat). Islets were isolated from UCD-T2DM rats before, 1 week, and 3 weeks after the onset of hyperglycaemia. RESULTS Glucose stimulation of cytosolic Ca(2+) and OCR was similar for islets harvested before and 1 week after the onset of hyperglycaemia. In contrast, a loss of decrement in islet OCR and ISR in response to Ca(2+) channel blockade coincided with decreased fasting plasma insulin concentrations observed in rats 3 weeks after the onset of hyperglycaemia. CONCLUSIONS/INTERPRETATION These results suggest that phenotypic impairment of diabetic islets in the UCD-T2DM rat is downstream of Ca(2+) influx and involves unregulated stimulation of the CMCP. The continuously elevated levels of CMCP induced by chronic hyperglycaemia in these islets may mediate the loss of islet function.
Collapse
Affiliation(s)
- A M Rountree
- Diabetes and Obesity Center of Excellence, University of Washington, 850 Republican Street, Seattle, WA 98109-8055, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dixit SS, Wang T, Manzano EJQ, Yoo S, Lee J, Chiang DY, Ryan N, Respress JL, Yechoor VK, Wehrens XHT. Effects of CaMKII-mediated phosphorylation of ryanodine receptor type 2 on islet calcium handling, insulin secretion, and glucose tolerance. PLoS One 2013; 8:e58655. [PMID: 23516528 PMCID: PMC3596297 DOI: 10.1371/journal.pone.0058655] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 02/07/2013] [Indexed: 11/28/2022] Open
Abstract
Altered insulin secretion contributes to the pathogenesis of type 2 diabetes. This alteration is correlated with altered intracellular Ca2+-handling in pancreatic β cells. Insulin secretion is triggered by elevation in cytoplasmic Ca2+ concentration ([Ca2+]cyt) of β cells. This elevation in [Ca2+]cyt leads to activation of Ca2+/calmodulin-dependent protein kinase II (CAMKII), which, in turn, controls multiple aspects of insulin secretion. CaMKII is known to phosphorylate ryanodine receptor 2 (RyR2), an intracellular Ca2+-release channel implicated in Ca2+-dependent steps of insulin secretion. Our data show that RyR2 is CaMKII phosphorylated in a pancreatic β-cell line in a glucose-sensitive manner. However, it is not clear whether any change in CaMKII-mediated phosphorylation underlies abnormal RyR2 function in β cells and whether such a change contributes to alterations in insulin secretion. Therefore, knock-in mice with a mutation in RyR2 that mimics its constitutive CaMKII phosphorylation, RyR2-S2814D, were studied. This mutation led to a gain-of-function defect in RyR2 indicated by increased basal RyR2-mediated Ca2+ leak in islets of these mice. This chronic in vivo defect in RyR2 resulted in basal hyperinsulinemia. In addition, S2814D mice also developed glucose intolerance, impaired glucose-stimulated insulin secretion and lowered [Ca2+]cyt transients, which are hallmarks of pre-diabetes. The glucose-sensitive Ca2+ pool in islets from S2814D mice was also reduced. These observations were supported by immunohistochemical analyses of islets in diabetic human and mouse pancreata that revealed significantly enhanced CaMKII phosphorylation of RyR2 in type 2 diabetes. Together, these studies implicate that the chronic gain-of-function defect in RyR2 due to CaMKII hyperphosphorylation is a novel mechanism that contributes to pathogenesis of type 2 diabetes.
Collapse
Affiliation(s)
- Sayali S. Dixit
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tiannan Wang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Eiffel John Q. Manzano
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shin Yoo
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jeongkyung Lee
- Diabetes and Endocrinology Research Center and Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, Texas, United States of America
| | - David Y. Chiang
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nicole Ryan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jonathan L. Respress
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Vijay K. Yechoor
- Diabetes and Endocrinology Research Center and Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xander H. T. Wehrens
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Medicine, Division of Cardiology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
31
|
Bensellam M, Laybutt DR, Jonas JC. The molecular mechanisms of pancreatic β-cell glucotoxicity: recent findings and future research directions. Mol Cell Endocrinol 2012; 364:1-27. [PMID: 22885162 DOI: 10.1016/j.mce.2012.08.003] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/11/2012] [Accepted: 08/01/2012] [Indexed: 02/06/2023]
Abstract
It is well established that regular physiological stimulation by glucose plays a crucial role in the maintenance of the β-cell differentiated phenotype. In contrast, prolonged or repeated exposure to elevated glucose concentrations both in vitro and in vivo exerts deleterious or toxic effects on the β-cell phenotype, a concept termed as glucotoxicity. Evidence indicates that the latter may greatly contribute to the pathogenesis of type 2 diabetes. Through the activation of several mechanisms and signaling pathways, high glucose levels exert deleterious effects on β-cell function and survival and thereby, lead to the worsening of the disease over time. While the role of high glucose-induced β-cell overstimulation, oxidative stress, excessive Unfolded Protein Response (UPR) activation, and loss of differentiation in the alteration of the β-cell phenotype is well ascertained, at least in vitro and in animal models of type 2 diabetes, the role of other mechanisms such as inflammation, O-GlcNacylation, PKC activation, and amyloidogenesis requires further confirmation. On the other hand, protein glycation is an emerging mechanism that may play an important role in the glucotoxic deterioration of the β-cell phenotype. Finally, our recent evidence suggests that hypoxia may also be a new mechanism of β-cell glucotoxicity. Deciphering these molecular mechanisms of β-cell glucotoxicity is a mandatory first step toward the development of therapeutic strategies to protect β-cells and improve the functional β-cell mass in type 2 diabetes.
Collapse
Affiliation(s)
- Mohammed Bensellam
- Université catholique de Louvain, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Brussels, Belgium
| | | | | |
Collapse
|
32
|
Chen W, Lisowski M, Khalil G, Sweet IR, Shen AQ. Microencapsulated 3-dimensional sensor for the measurement of oxygen in single isolated pancreatic islets. PLoS One 2012; 7:e33070. [PMID: 22479359 PMCID: PMC3315556 DOI: 10.1371/journal.pone.0033070] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 02/03/2012] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Oxygen consumption reflects multiple processes in pancreatic islets including mechanisms contributing to insulin secretion, oxidative stress and viability, providing an important readout in studies of islet function, islet viability and drug testing. Due to the scarcity, heterogeneity, and intrinsic kinetic properties of individual islets, it would be of great benefit to detect oxygen consumption by single islets. We present a novel method we have developed to image oxygen in single islets. METHODOLOGY/PRINCIPAL FINDINGS Using a microfluidics system, individual islets and a fluorescent oxygen-sensitive dye were encased within a thin alginate polymer layer. Insulin secretion by the encapsulated islets was normal. Fluorescent signal from the encased dye, detected using a standard inverted fluorescence microscope and digital camera, was stable and proportional to the amount of oxygen in the media. When integrated into a perifusion system, the sensing system detected changes in response to metabolic substrates, mitochondrial poisons, and induced-oscillations. Glucose responses averaged 30.1±7.1% of the response to a metabolic inhibitor (cyanide), increases were observed in all cases (n = 6), and the system was able to resolve changes in oxygen consumption that had a period greater than 0.5 minutes. The sensing system operated similarly from 2-48 hours following encapsulation, and viability and function of the islets were not significantly affected by the encapsulation process. CONCLUSIONS/SIGNIFICANCE An oxygen-dependent dye situated around and within a pancreatic islet encapsulated by a thin layer of alginate was sensitive to changes in oxygen consumption, and was not harmful to the function or viability of islets over the course of two days. The microcapsule-based sensing method is particularly suited to assessing the effects of compounds (dose responses and time courses) and chronic changes occurring over the course of days. The approach should be applicable to other cell types and dyes sensitive to other biologically important molecules.
Collapse
Affiliation(s)
- Wanyu Chen
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, China
| | - Mark Lisowski
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Gamal Khalil
- Department of Aeronautics and Astronautics Department, University of Washington, Seattle, Washington, Unites States of America
| | - Ian R. Sweet
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Amy Q. Shen
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
33
|
Bensellam M, Duvillié B, Rybachuk G, Laybutt DR, Magnan C, Guiot Y, Pouysségur J, Jonas JC. Glucose-induced O₂ consumption activates hypoxia inducible factors 1 and 2 in rat insulin-secreting pancreatic beta-cells. PLoS One 2012; 7:e29807. [PMID: 22235342 PMCID: PMC3250482 DOI: 10.1371/journal.pone.0029807] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 12/06/2011] [Indexed: 12/21/2022] Open
Abstract
Background Glucose increases the expression of glycolytic enzymes and other hypoxia-response genes in pancreatic beta-cells. Here, we tested whether this effect results from the activation of Hypoxia-Inducible-factors (HIF) 1 and 2 in a hypoxia-dependent manner. Methodology/Principal Findings Isolated rat islets and insulin-secreting INS-1E cells were stimulated with nutrients at various pO2 values or treated with the HIF activator CoCl2. HIF-target gene mRNA levels and HIF subunit protein levels were measured by real-time RT-PCR, Western Blot and immunohistochemistry. The formation of pimonidazole-protein adducts was used as an indicator of hypoxia. In INS-1E and islet beta-cells, glucose concentration-dependently stimulated formation of pimonidazole-protein adducts, HIF1 and HIF2 nuclear expression and HIF-target gene mRNA levels to a lesser extent than CoCl2 or a four-fold reduction in pO2. Islets also showed signs of HIF activation in diabetic Leprdb/db but not non-diabetic Leprdb/+ mice. In vitro, these glucose effects were reproduced by nutrient secretagogues that bypass glycolysis, and were inhibited by a three-fold increase in pO2 or by inhibitors of Ca2+ influx and insulin secretion. In INS-1E cells, small interfering RNA-mediated knockdown of Hif1α and Hif2α, alone or in combination, indicated that the stimulation of glycolytic enzyme mRNA levels depended on both HIF isoforms while the vasodilating peptide adrenomedullin was a HIF2-specific target gene. Conclusions/Significance Glucose-induced O2 consumption creates an intracellular hypoxia that activates HIF1 and HIF2 in rat beta-cells, and this glucose effect contributes, together with the activation of other transcription factors, to the glucose stimulation of expression of some glycolytic enzymes and other hypoxia response genes.
Collapse
Affiliation(s)
- Mohammed Bensellam
- Pôle d′Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Bertrand Duvillié
- INSERM U845, Faculté de Médecine, Research Center Growth and Signalling, Université Paris Descartes, Hôpital Necker, Paris, France
| | - Galyna Rybachuk
- Pôle d′Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - D. Ross Laybutt
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, Australia
| | - Christophe Magnan
- Unité de Biologie Fonctionnelle et Adaptative, CNRS-Université Paris Diderot-Paris 7, Paris, France
| | - Yves Guiot
- Pôle de Morphologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Jacques Pouysségur
- Institute of Developmental Biology and Cancer Research, University of Nice, CNRS UMR 6543, Centre A. Lacassagne, Nice, France
| | - Jean-Christophe Jonas
- Pôle d′Endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
- * E-mail:
| |
Collapse
|
34
|
Jung SR, Kuok ITD, Couron D, Rizzo N, Margineantu DH, Hockenbery DM, Kim F, Sweet IR. Reduced cytochrome C is an essential regulator of sustained insulin secretion by pancreatic islets. J Biol Chem 2011; 286:17422-34. [PMID: 21393241 DOI: 10.1074/jbc.m110.202820] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Influx of calcium is an essential but insufficient signal in sustained nutrient-stimulated insulin secretion, and increased metabolic rate of the beta cell is also required. The aim of the study was to test the hypothesis that the reduced state of cytochrome c is a metabolic co-factor necessary for insulin secretion, over and above its participation in the ATP-generating function of electron transport/oxidative phosphorylation. We found that nutrient stimulation of insulin secretion by isolated rat islets was strongly correlated with reduced cytochrome c, and agents that acutely and specifically reduced cytochrome c led to increased insulin secretion, even in the face of decreased oxygen consumption and calcium influx. In contrast, neither sites 1 nor 4 of the electron transport chain were both necessary and essential for the stimulation of insulin secretion to occur. Importantly, stimulation of islets with glucose, α-ketoisocaproate, or glyceraldehyde resulted in the appearance of cytochrome c in the cytosol, suggesting a pathway for the regulation of exocytotic machinery by reduction of cytochrome c. The data suggest that the metabolic factor essential for sustained calcium-stimulated insulin secretion to occur is linked to reduction and translocation of cytochrome c.
Collapse
Affiliation(s)
- Seung-Ryoung Jung
- Department of Medicine, Diabetes and Obesity Center, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Houamed KM, Sweet IR, Satin LS. BK channels mediate a novel ionic mechanism that regulates glucose-dependent electrical activity and insulin secretion in mouse pancreatic β-cells. J Physiol 2010; 588:3511-23. [PMID: 20643769 DOI: 10.1113/jphysiol.2009.184341] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BK channels are large unitary conductance K(+) channels cooperatively activated by intracellular calcium and membrane depolarisation. We show that BK channels regulate electrical activity in β-cells of mouse pancreatic islets exposed to elevated glucose. In 11.1 mM glucose, the non-peptidyl BK channel blocker paxilline increased the height of β-cell action potentials (APs) by 21 mV without affecting burst- or silent-period durations. In isolated β-cells, paxilline increased AP height by 16 mV without affecting resting membrane potential. In voltage clamp, paxilline blocked a transient component of outward current activated by a short depolarisation, which accounted for at least 90% of the initial outward K(+) current. This BK current (I(BK)) was blocked by the Ca(2+) channel blockers Cd(2+) (200 μM) or nimodipine (1 μM), and potentiated by FPL-64176 (1 μM). I(BK) was also 56% blocked by the BK channel blocker iberiotoxin (100 nM). I(BK) activated more than 10-fold faster than the delayed rectifier I(Kv) over the physiological voltage range, and partially inactivated. An AP-like command revealed that I(BK) activated and deactivated faster than I(Kv) and accounted for 86% of peak I(K), explaining why I(BK) block increased AP height. A higher amplitude AP-like command, patterned on an AP recorded in 11.1 mM glucose plus paxilline, activated 4-fold more I(Kv) and significantly increased Ca(2+) entry. Paxilline increased insulin secretion in islets exposed to 11.1 mM glucose by 67%, but did not affect basal secretion in 2.8 mM glucose. These data suggest a modified model of β-cell AP generation where I(BK) and I(Kv) coordinate the AP repolarisation.
Collapse
Affiliation(s)
- Khaled M Houamed
- Department of Pharmacology and Brehm Diabetes Center, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| | | | | |
Collapse
|
36
|
Islam MS. Calcium signaling in the islets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:235-59. [PMID: 20217501 DOI: 10.1007/978-90-481-3271-3_11] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Easy access to rodent islets and insulinoma cells and the ease of measuring Ca(2+) by fluorescent indicators have resulted in an overflow of data that have clarified minute details of Ca(2+) signaling in the rodent islets. Our understanding of the mechanisms and the roles of Ca(2+) signaling in the human islets, under physiological conditions, has been hugely influenced by uncritical extrapolation of the rodent data obtained under suboptimal experimental conditions. More recently, electrophysiological and Ca(2+) studies have elucidated the ion channel repertoire relevant for Ca(2+) signaling in the human islets and have examined their relative importance. Many new channels belonging to the transient receptor potential (TRP) family are present in the beta-cells. Ryanodine receptors, nicotinic acid adenine dinucleotide phosphate channel, and Ca(2+)-induced Ca(2+) release add new dimension to the complexity of Ca(2+) signaling in the human beta-cells. A lot more needs to be learnt about the roles of these new channels and CICR, not because that will be easy but because that will be difficult. Much de-learning will also be needed. Human beta-cells do not have a resting state in the normal human body even under physiological fasting conditions. Their membrane potential under physiologically relevant resting conditions is approximately -50 mV. Biphasic insulin secretion is an experimental epiphenomenon unrelated to the physiological pulsatile insulin secretion into the portal vein in the human body. Human islets show a wide variety of electrical activities and patterns of [Ca(2+)](i) changes, whose roles in mediating pulsatile secretion of insulin into the portal vein remain questionable. Future studies will hopefully be directed toward a better understanding of Ca(2+) signaling in the human islets in the context of the pathogenesis and treatment of human diabetes.
Collapse
Affiliation(s)
- M Shahidul Islam
- Department of Clinical Sciences and Education, Södersjukhuset, Karolinska Institutet, Research Center, 118 83 Stockholm, Sweden.
| |
Collapse
|