1
|
Said NM, El-Shaer NH. Association of serum trefoil factor 3 and leptin levels with obesity: A case-control study. Cytokine 2024; 181:156690. [PMID: 38996578 DOI: 10.1016/j.cyto.2024.156690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND Obesity has a detrimental impact on individuals, communities, and healthcare systems. Trefoil factor 3 is a secretory protein involved in metabolic processes related to weight regulation. However, its relation with obesity is not fully understood. OBJECTIVE We aimed to assess the serum trefoil factor 3 level and to immunohistochemical detect the leptin in obese patients to evaluate their relation to obesity pathogenesis. METHODS As a case-control study, we enrolled 83 non-obese persons as a control group with a BMI (18.5-24.9) and 83 obese persons as a patient group with a BMI > 30. All the study volunteers are subjected to anthropometric measurements, glucose, and lipid profile analysis by colorimetric methods. Serum trefoil factor 3 level was estimated by ELISA and leptin hormone was detected immunohistochemically in the blood using cell block technique. RESULTS ROC curve analysis for TFF3 showed a good relation with obesity with an AUC of 0.891 and a cut-off value of > 96 ng/ml. There was a significant positive correlation between TFF3 and fasting blood sugar, total cholesterol, and triglycerides. The logistic regression analysis showed that TFF3 is a good risk factor for obesity incidence [p = 0.008; OR = 1.117; (95 % CI): 1.029-1.213]. This was confirmed by multiple linear regression that gave an equation for the possibility of predicting BMI using several factors including TFF3 [BMI = 0.821 + 0.051 × TFF3 + 0.044 × FBS + 0.85 × TC]. The more surprising was the ability of the immunohistochemistry cell block technique to detect leptin antigens associated with an obese person blood not only adipose tissue or serum. CONCLUSION Leptin hormone and TFF3 could be good indicators for obesity incidence. Further research with a larger sample size and in different populations could completely approve our results.
Collapse
Affiliation(s)
- Noha Mohamed Said
- Biochemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| | - Nahla H El-Shaer
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
2
|
Nunes-Souza V, Alenina N, Qadri F, Mosienko V, Santos RAS, Bader M, Rabelo LA. ACE2 Knockout Mice Are Resistant to High-Fat Diet-Induced Obesity in an Age-Dependent Manner. Int J Mol Sci 2024; 25:9515. [PMID: 39273464 PMCID: PMC11394789 DOI: 10.3390/ijms25179515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) presents pleiotropic actions. It hydrolyzes angiotensin I (AngI) and angiotensin II (AngII) into angiotensin-(1-9) (Ang-(1-9)) and angiotensin-(1-7) (Ang-(1-7)), respectively, as well as participates in tryptophan uptake in the gut and in COVID-19 infection. Our aim was to investigate the metabolic effect of ACE2 deletion in young adults and elderly mice under conditions of high calorie intake. Male C57Bl/6 (WT) and ACE2-deficient (ACE2-/y) mice were analyzed at the age of 6 and 12 months under standard diet (StD) and high-fat diet (HFD). Under StD, ACE2-/y showed lower body weight and fat depots, improved glucose tolerance, enhanced insulin sensitivity, higher adiponectin, and lower leptin levels compared to WT. This difference was even more pronounced after HFD in 6-month-old mice, but, interestingly, it was blunted at the age of 12 months. ACE2-/y presented a decrease in adipocyte diameter and lipolysis, which reflected in the upregulation of lipid metabolism in white adipose tissue through the increased expression of genes involved in lipid regulation. Under HFD, both food intake and total energy expenditure were decreased in 6-month-old ACE2-/y mice, accompanied by an increase in liquid intake, compared to WT mice, fed either StD or HFD. Thus, ACE2-/y mice are less susceptible to HFD-induced obesity in an age-dependent manner, as well as represent an excellent animal model of human lipodystrophy and a tool to investigate new treatments.
Collapse
Affiliation(s)
- Valéria Nunes-Souza
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (V.N.-S.); (F.Q.); (V.M.); (M.B.)
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Brazil
- National Institute of Science and Technology in Nanobiopharmaceutics (Nanobiofar), Belo Horizonte 31270-901, Brazil;
| | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (V.N.-S.); (F.Q.); (V.M.); (M.B.)
| | - Fatimunnisa Qadri
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (V.N.-S.); (F.Q.); (V.M.); (M.B.)
| | - Valentina Mosienko
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (V.N.-S.); (F.Q.); (V.M.); (M.B.)
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, UK
| | - Robson Augusto Souza Santos
- National Institute of Science and Technology in Nanobiopharmaceutics (Nanobiofar), Belo Horizonte 31270-901, Brazil;
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (V.N.-S.); (F.Q.); (V.M.); (M.B.)
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, 10117 Berlin, Germany
- Institute for Biology, University of Lübeck, 23562 Lübeck, Germany
| | - Luiza Antas Rabelo
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany; (V.N.-S.); (F.Q.); (V.M.); (M.B.)
- National Institute of Science and Technology in Nanobiopharmaceutics (Nanobiofar), Belo Horizonte 31270-901, Brazil;
- Laboratory of Cardiovascular Reactivity, Metabolic Syndrome Center, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió 57072-900, Brazil
| |
Collapse
|
3
|
Kostecka A, Kalamon N, Skoniecka A, Koczkowska M, Skowron PM, Piotrowski A, Pikuła M. Adipose-derived mesenchymal stromal cells in clinical trials: Insights from single-cell studies. Life Sci 2024; 351:122761. [PMID: 38866216 DOI: 10.1016/j.lfs.2024.122761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/14/2024]
Abstract
Mesenchymal Stromal Cells (MSCs) offer tremendous potential for the treatment of various diseases and their healing properties have been explored in hundreds of clinical trials. These trails primarily focus on immunological and neurological disorders, as well as regenerative medicine. Adipose tissue is a rich source of mesenchymal stromal cells and methods to obtain and culture adipose-derived MSCs (AD-MSCs) have been well established. Promising results from pre-clinical testing of AD-MSCs activity prompted clinical trials that further led to the approval of AD-MSCs for the treatment of complex perianal fistulas in Crohn's disease and subcutaneous tissue defects. However, AD-MSC heterogeneity along with various manufacturing protocols or different strategies to boost their activity create the need for standardized quality control procedures and safety assessment of the intended cell product. High-resolution transcriptomic methods have been recently gaining attention, as they deliver insight into gene expression profiles of individual cells, helping to deconstruct cellular hierarchy and differentiation trajectories, and to understand cell-cell interactions within tissues. This article presents a comprehensive overview of completed clinical trials evaluating the safety and efficacy of AD-MSC treatment, together with current single-cell studies of human AD-MSC. Furthermore, our work emphasizes the increasing significance of single-cell research in elucidating the mechanisms of cellular action and predicting their therapeutic effects.
Collapse
Affiliation(s)
- Anna Kostecka
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland; 3P - Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland.
| | - Natalia Kalamon
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland.
| | - Aneta Skoniecka
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Faculty of Medicine, Medical University of Gdansk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Magdalena Koczkowska
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland; 3P - Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland.
| | - Piotr M Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland.
| | - Arkadiusz Piotrowski
- Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland; 3P - Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland.
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Faculty of Medicine, Medical University of Gdansk, Dębinki 1, 80-211 Gdańsk, Poland.
| |
Collapse
|
4
|
Wang Z, Liu H. Roles of Lysine Methylation in Glucose and Lipid Metabolism: Functions, Regulatory Mechanisms, and Therapeutic Implications. Biomolecules 2024; 14:862. [PMID: 39062577 PMCID: PMC11274642 DOI: 10.3390/biom14070862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Glucose and lipid metabolism are essential energy sources for the body. Dysregulation in these metabolic pathways is a significant risk factor for numerous acute and chronic diseases, including type 2 diabetes (T2DM), Alzheimer's disease (AD), obesity, and cancer. Post-translational modifications (PTMs), which regulate protein structure, localization, function, and activity, play a crucial role in managing cellular glucose and lipid metabolism. Among these PTMs, lysine methylation stands out as a key dynamic modification vital for the epigenetic regulation of gene transcription. Emerging evidence indicates that lysine methylation significantly impacts glucose and lipid metabolism by modifying key enzymes and proteins. This review summarizes the current understanding of lysine methylation's role and regulatory mechanisms in glucose and lipid metabolism. We highlight the involvement of methyltransferases (KMTs) and demethylases (KDMs) in generating abnormal methylation signals affecting these metabolic pathways. Additionally, we discuss the chemical biology and pharmacology of KMT and KDM inhibitors and targeted protein degraders, emphasizing their clinical implications for diseases such as diabetes, obesity, neurodegenerative disorders, and cancers. This review suggests that targeting lysine methylation in glucose and lipid metabolism could be an ideal therapeutic strategy for treating these diseases.
Collapse
Affiliation(s)
| | - Huadong Liu
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China;
| |
Collapse
|
5
|
Kallies A, Vasanthakumar A. Transcriptional and hormonal control of adipose Treg heterogeneity and function. Immunol Rev 2024; 324:42-51. [PMID: 38733158 DOI: 10.1111/imr.13340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
Adipose tissue stores excess energy and produces a broad range of factors that regulate multiple physiological processes including systemic energy homeostasis. Visceral adipose tissue (VAT) plays a particularly important role in glucose metabolism as its endocrine function underpins food uptake and energy expenditure. Caloric excess triggers VAT inflammation which can impair insulin sensitivity and cause metabolic deregulation. Regulatory T cells (Tregs) that reside in the VAT suppress inflammation and protect from metabolic disease. The cellular components of VAT and its secretory products play a vital role in fostering the differentiation and maintenance of VAT Tregs. Critically, the physiology and inflammatory tone of VAT exhibit sex-specific disparities, resulting in substantial VAT Treg heterogeneity. Indeed, cytokines and sex hormones promote the differentiation of distinct populations of mature VAT Tregs, each characterized by unique phenotypes, homeostatic requirements, and functions. This review focuses on key findings that have significantly advanced our understanding of VAT Treg biology and the current state of the field, while also discussing open questions that require further exploration.
Collapse
Affiliation(s)
- Axel Kallies
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
- Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ajithkumar Vasanthakumar
- Department of Microbiology and Immunology, University of Melbourne, Melbourne, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
6
|
Barbagallo F, Cucinella L, Tiranini L, Chedraui P, Calogero AE, Nappi RE. Obesity and sexual health: focus on postmenopausal women. Climacteric 2024; 27:122-136. [PMID: 38251874 DOI: 10.1080/13697137.2024.2302429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024]
Abstract
Menopause is a cardiometabolic transition with many women experiencing weight gain and redistribution of body fat. Hormonal changes may affect also several dimensions of well-being, including sexual function, with a high rate of female sexual dysfunction (FSD), which displays a multifactorial etiology. The most important biological factors range from chronic low-grade inflammation, associated with hypertrophic adipocytes that may translate into endothelial dysfunction and compromised blood flow through the genitourinary system, to insulin resistance and other neuroendocrine mechanisms targeting the sexual response. Psychosocial factors include poor body image, mood disorders, low self-esteem and life satisfaction, as well as partner's health and quality of relationship, and social stigma. Even unhealthy lifestyle, chronic conditions and putative weight-promoting medications may play a role. The aim of the present narrative review is to update and summarize the state of the art on the link between obesity and FSD in postmenopausal women, pointing to the paucity of high-quality studies and the need for further research with validated end points to assess both biomarkers of obesity and FSD. In addition, we provide general information on the diagnosis and treatment of FSD at menopause with a focus on dietary interventions, physical activity, anti-obesity drugs and bariatric surgery.
Collapse
Affiliation(s)
- F Barbagallo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - L Cucinella
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, IRCCS San Matteo Foundation, Pavia, Italy
| | - L Tiranini
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - P Chedraui
- Escuela de Posgrados en Salud, Universidad Espíritu Santo, Samborondón, Ecuador
| | - A E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - R E Nappi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, IRCCS San Matteo Foundation, Pavia, Italy
| |
Collapse
|
7
|
Xie L, Wang H, Hu J, Liu Z, Hu F. The role of novel adipokines and adipose-derived extracellular vesicles (ADEVs): Connections and interactions in liver diseases. Biochem Pharmacol 2024; 222:116104. [PMID: 38428826 DOI: 10.1016/j.bcp.2024.116104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Adipose tissues (AT) are an important endocrine organ that secretes various functional adipokines, peptides, non-coding RNAs, and acts on AT themselves or other distant tissues or organs through autocrine, paracrine, or endocrine manners. An accumulating body of evidence has suggested that many adipokines play an important role in liver metabolism. Besides the traditional adipokines such as adiponectin and leptin, many novel adipokines have recently been identified to have regulatory effects on the liver. Additionally, AT can produce extracellular vesicles (EVs) that act on peripheral tissues. However, under pathological conditions, such as obesity and diabetes, dysregulation of adipokines is associated with functional changes in AT, which may cause liver diseases. In this review, we focus on the newly discovered adipokines and EVs secreted by AT and highlight their actions on the liver under the context of obesity, nonalcoholic fatty liver diseases (NAFLD), and some other liver diseases. Clarifying the action of adipokines and adipose tissue-derived EVs on the liver would help to identify novel therapeutic targets or biomarkers for metabolic diseases.
Collapse
Affiliation(s)
- Lijun Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Huiying Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jinying Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhuoying Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Health Law Research Center, School of Law, Central South University, Changsha, China.
| | - Fang Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
8
|
Rendine M, Cocci P, de Vivo L, Bellesi M, Palermo FA. Effects of Chronic Sleep Restriction on Transcriptional Sirtuin 1 Signaling Regulation in Male Mice White Adipose Tissue. Curr Issues Mol Biol 2024; 46:2144-2154. [PMID: 38534754 DOI: 10.3390/cimb46030138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Chronic sleep restriction (CSR) is a prevalent issue in modern society that is associated with several pathological states, ranging from neuropsychiatric to metabolic diseases. Despite its known impact on metabolism, the specific effects of CSR on the molecular mechanisms involved in maintaining metabolic homeostasis at the level of white adipose tissue (WAT) remain poorly understood. Therefore, this study aimed to investigate the influence of CSR on sirtuin 1 (SIRT1) and the peroxisome proliferator-activated receptor γ (PPARγ) signaling pathway in the WAT of young male mice. Both genes interact with specific targets involved in multiple metabolic processes, including adipocyte differentiation, browning, and lipid metabolism. The quantitative PCR (qPCR) results demonstrated a significant upregulation of SIRT-1 and some of its target genes associated with the transcriptional regulation of lipid homeostasis (i.e., PPARα, PPARγ, PGC-1α, and SREBF) and adipose tissue development (i.e., leptin, adiponectin) in CSR mice. On the contrary, DNA-binding transcription factors (i.e., CEBP-β and C-myc), which play a pivotal function during the adipogenesis process, were found to be down-regulated. Our results also suggest that the induction of SIRT1-dependent molecular pathways prevents weight gain. Overall, these findings offer new, valuable insights into the molecular adaptations of WAT to CSR, in order to support increased energy demand due to sleep loss.
Collapse
Affiliation(s)
- Marco Rendine
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy
| | - Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Luisa de Vivo
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Michele Bellesi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol BS8 1QU, UK
| | | |
Collapse
|
9
|
Tang L, Ye J. Commentary: Mammokine directs beige adipocytes to reserve energy for milk production in breast. Acta Pharm Sin B 2024; 14:1472-1476. [PMID: 38486985 PMCID: PMC10935006 DOI: 10.1016/j.apsb.2023.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/06/2023] [Accepted: 11/23/2023] [Indexed: 03/17/2024] Open
Affiliation(s)
- Lina Tang
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou University Affiliated Zhengzhou Central Hospital, Zhengzhou 450007, China
- Research Center for Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
10
|
Idrizaj E, Nistri S, Nardini P, Baccari MC. Adiponectin affects ileal contractility of mouse preparations. Am J Physiol Gastrointest Liver Physiol 2024; 326:G187-G194. [PMID: 38111974 DOI: 10.1152/ajpgi.00203.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
Adiponectin (ADPN) has been reported to induce inhibitory effects on gastric motor activity, which, being a source of peripheral satiety signals, would contribute to the central anorexigenic effects of the hormone in rodents. However, peripheral satiety signals can also originate from the small intestine. Since there are no data on the effects of ADPN in this gut region, the present study aimed to investigate whether ADPN affects murine ileal contractility. Immunofluorescence experiments and Western blot were also performed to reveal the expression of ADPN receptors. Mechanical responses of ileal preparations were recorded in vitro via force-displacement transducers. Preparations showed a tetrodotoxin- and atropine-insensitive spontaneous contractile activity. Electrical field stimulation (EFS) induced tetrodotoxin- and atropine-sensitive contractile responses. ADPN induced a decay of the basal tension and decreased the amplitude of either the spontaneous contractility or the EFS-induced excitatory responses. All ADPN effects were abolished by the nitric oxide (NO) synthesis inhibitor NG-nitro l-arginine. The expression of the ADPN receptor, AdipoR1, but not AdipoR2, was also revealed in enteric glial cells. The present results offer the first evidence that ADPN acts on ileal preparations. The hormone exerts inhibitory effects, likely involving AdipoR1 on enteric glial cells and NO. From a physiological point of view, it could be hypothesized that the depressant action of ADPN on ileal contractility represents an additional peripheral satiety signal which, as also described for the ileal brake, could contribute to the central anorexigenic effects of the hormone.NEW & NOTEWORTHY This study provides the first evidence that adiponectin (ADPN) is able to act on ileal preparations. Functional results demonstrate that the hormone, other than causing a slight decay of the basal tension, depresses the amplitude of both spontaneous contractility and neurally induced excitatory responses of the mouse ileum through the involvement of nitric oxide. The expression of the ADPN receptor AdipoR1 and its localization on glial cells was revealed by Western blot and immunofluorescence analysis.
Collapse
Affiliation(s)
- Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Firenze, Italy
| | - Silvia Nistri
- Department of Experimental and Clinical Medicine, Imaging Platform, University of Florence, Firenze, Italy
| | - Patrizia Nardini
- Department of Experimental and Clinical Medicine, Imaging Platform, University of Florence, Firenze, Italy
| | - Maria Caterina Baccari
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Firenze, Italy
| |
Collapse
|
11
|
Chung MJ, Park SW, Lee KJ, Park DH, Koh DH, Lee J, Lee HS, Park JY, Bang S, Min S, Park JH, Kim SJ, Park CH. Clinical impact of pancreatic steatosis measured by CT on the risk of post-ERCP pancreatitis: a multicenter prospective trial. Gastrointest Endosc 2024; 99:214-223.e4. [PMID: 37598866 DOI: 10.1016/j.gie.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND AND AIMS Pancreatic steatosis (PS) may be a risk factor for acute pancreatitis. Whether it is also a risk factor for post-ERCP pancreatitis (PEP) has not been evaluated. This study aimed to determine the impact of PS on PEP development. METHODS This multicenter prospective trial enrolled 786 consecutive patients who underwent contrast-enhanced abdominal CT and subsequent first-time ERCP. PS was evaluated based on pancreatic attenuation on unenhanced CT images. The risk of PS for the development of PEP was evaluated using a logistic regression model. RESULTS Of 527 patients included in the study, 157 (29.8%) had PS and 370 (70.2%) did not. At 24 hours after ERCP, there was a significant difference in the PEP identified in 22 patients (14.0%) in the PS group and 23 patients (6.2%) in the "no PS" (NPS) group (P = .017). Diabetes and hypertension were more common in the PS group than in the NPS group; no differences in dyslipidemia were found. Patients with PS had a higher risk for the development of PEP than those with NPS (odds ratio, 2.09; 95% confidence interval, 1.08-4.03). No other variables were identified as risk factors for PEP. CONCLUSIONS PS is a significant risk factor for PEP for which preventive measures should be considered. Standardized measurement protocols to assess PS by CT are needed. (Clinical trial registration number: KCT0006068.).
Collapse
Affiliation(s)
- Moon Jae Chung
- Division of Gastroenterology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Woo Park
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Kyong Joo Lee
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Da Hae Park
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Dong Hee Koh
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Jin Lee
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Hee Seung Lee
- Division of Gastroenterology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeong Youp Park
- Division of Gastroenterology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seungmin Bang
- Division of Gastroenterology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seonjeong Min
- Department of Radiology, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Ji Hoon Park
- Division of Gastroenterology, Department of Internal Medicine, CHA Ilsan Medical Center, CHA University, Goyang, Republic of Korea
| | - So Jeong Kim
- Division of Gastroenterology, Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chan Hyuk Park
- Department of Internal Medicine, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Republic of Korea
| |
Collapse
|
12
|
López-Alcalá J, Gordon A, Trávez A, Tercero-Alcázar C, Correa-Sáez A, González-Rellán MJ, Rangel-Zúñiga OA, Rodríguez A, Membrives A, Frühbeck G, Nogueiras R, Calzado MA, Guzmán-Ruiz R, Malagón MM. Localization, traffic and function of Rab34 in adipocyte lipid and endocrine functions. J Biomed Sci 2024; 31:2. [PMID: 38183057 PMCID: PMC10770960 DOI: 10.1186/s12929-023-00990-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 12/20/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Excessive lipid accumulation in the adipose tissue in obesity alters the endocrine and energy storage functions of adipocytes. Adipocyte lipid droplets represent key organelles coordinating lipid storage and mobilization in these cells. Recently, we identified the small GTPase, Rab34, in the lipid droplet proteome of adipocytes. Herein, we have characterized the distribution, intracellular transport, and potential contribution of this GTPase to adipocyte physiology and its regulation in obesity. METHODS 3T3-L1 and human primary preadipocytes were differentiated in vitro and Rab34 distribution and trafficking were analyzed using markers of cellular compartments. 3T3-L1 adipocytes were transfected with expression vectors and/or Rab34 siRNA and assessed for secretory activity, lipid accumulation and expression of proteins regulating lipid metabolism. Proteomic and protein interaction analyses were employed for the identification of the Rab34 interactome. These studies were combined with functional analysis to unveil the role played by the GTPase in adipocytes, with a focus on the actions conveyed by Rab34 interacting proteins. Finally, Rab34 regulation in response to obesity was also evaluated. RESULTS Our results show that Rab34 localizes at the Golgi apparatus in preadipocytes. During lipid droplet biogenesis, Rab34 translocates from the Golgi to endoplasmic reticulum-related compartments and then reaches the surface of adipocyte lipid droplets. Rab34 exerts distinct functions related to its intracellular location. Thus, at the Golgi, Rab34 regulates cisternae integrity as well as adiponectin trafficking and oligomerization. At the lipid droplets, this GTPase controls lipid accumulation and lipolysis through its interaction with the E1-ubiquitin ligase, UBA1, which induces the ubiquitination and proteasomal degradation of the fatty acid transporter and member of Rab34 interactome, FABP5. Finally, Rab34 levels in the adipose tissue and adipocytes are regulated in response to obesity and related pathogenic insults (i.e., fibrosis). CONCLUSIONS Rab34 plays relevant roles during adipocyte differentiation, including from the regulation of the oligomerization (i.e., biological activity) and secretion of a major adipokine with insulin-sensitizing actions, adiponectin, to lipid storage and mobilization from lipid droplets. Rab34 dysregulation in obesity may contribute to the altered adipokine secretion and lipid metabolism that characterize adipocyte dysfunction in conditions of excess adiposity.
Collapse
Affiliation(s)
- Jaime López-Alcalá
- Department of Cell Biology, Physiology, and Immunology, Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), University of Córdoba (UCO), Reina Sofía University Hospital (HURS), Córdoba, Spain
| | - Ana Gordon
- Department of Cell Biology, Physiology, and Immunology, Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), University of Córdoba (UCO), Reina Sofía University Hospital (HURS), Córdoba, Spain.
| | - Andrés Trávez
- Department of Cell Biology, Physiology, and Immunology, Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), University of Córdoba (UCO), Reina Sofía University Hospital (HURS), Córdoba, Spain
| | - Carmen Tercero-Alcázar
- Department of Cell Biology, Physiology, and Immunology, Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), University of Córdoba (UCO), Reina Sofía University Hospital (HURS), Córdoba, Spain
| | - Alejandro Correa-Sáez
- Department of Cell Biology, Physiology, and Immunology, Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), University of Córdoba (UCO), Reina Sofía University Hospital (HURS), Córdoba, Spain
| | - María Jesús González-Rellán
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Madrid, Spain
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Oriol A Rangel-Zúñiga
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Madrid, Spain
- Lipids and Atherosclerosis Unit, IMIBIC/University of Córdoba (UCO), Reina Sofía University Hospital (HURS), Córdoba, Spain
| | - Amaia Rodríguez
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Madrid, Spain
- Metabolic Research Laboratory, Department of Endocrinology & Nutrition, Clinic, University of Navarra, IdiSNA, Pamplona, Spain
| | - Antonio Membrives
- Department of Medical-Surgical Specialties, University of Córdoba (UCO), Reina Sofia University Hospital (HURS), Córdoba, Spain
| | - Gema Frühbeck
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Madrid, Spain
- Metabolic Research Laboratory, Department of Endocrinology & Nutrition, Clinic, University of Navarra, IdiSNA, Pamplona, Spain
| | - Rubén Nogueiras
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Madrid, Spain
- Department of Physiology, CiMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
| | - Marco A Calzado
- Department of Cell Biology, Physiology, and Immunology, Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), University of Córdoba (UCO), Reina Sofía University Hospital (HURS), Córdoba, Spain
| | - Rocío Guzmán-Ruiz
- Department of Cell Biology, Physiology, and Immunology, Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), University of Córdoba (UCO), Reina Sofía University Hospital (HURS), Córdoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Madrid, Spain
| | - María M Malagón
- Department of Cell Biology, Physiology, and Immunology, Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), University of Córdoba (UCO), Reina Sofía University Hospital (HURS), Córdoba, Spain.
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), ISCIII, Madrid, Spain.
| |
Collapse
|
13
|
Vilarrasa E, Nicolau J, de la Cueva P, Goday A, Gallardo F, Martorell-Calatayud A, Carrascosa JM. [Translated article] Glucagon-Like Peptide-1 Agonists for Treating Obesity in Patients With Immune-Mediated Skin Diseases. ACTAS DERMO-SIFILIOGRAFICAS 2024; 115:T56-T65. [PMID: 37918631 DOI: 10.1016/j.ad.2023.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 11/04/2023] Open
Abstract
Psoriasis and hidradenitis suppurativa are often associated with obesity. Because chronic low-grade inflammation underlies these 2 diseases, they can progress to more severe forms in patients with obesity if weight-reduction measures are not taken. This review covers pharmacologic alternatives for treating obesity, with emphasis on the benefits associated with the novel use of glucagon-like peptide-1 (GLP-1) agonists that act on satiety receptors. These drugs have led to greater weight loss in clinical trials and real-world settings than orlistat, which until recently was the only drug approved for treating obesity in the European Union. Although experience with GLP-1 agonists in patients with obesity and inflammatory skin diseases is currently scarce, the promising results reported suggest they may offer a useful tool for managing obesity.
Collapse
Affiliation(s)
- E Vilarrasa
- Servicio de Dermatología, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - J Nicolau
- Servicio de Endocrinología y Nutrición, Hospital Universitario Son Llàtzer, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Clínica Rotger (Grupo Quirón), Palma de Mallorca, Baleares, Spain
| | - P de la Cueva
- Servicio de Dermatología, Hospital Universitario Infanta Leonor, Comunidad de Madrid, Spain
| | - A Goday
- Departamento de Medicina, Universitat Autònoma de Barcelona, Barcelona; Servicio de Endocrinología y Nutrición, Hospital del Mar, IMIM Institut Mar d'Investigacions Mediques, Parc de Salut Mar, Barcelona; CIBEROBN, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - F Gallardo
- Servicio de Dermatología, Hospital del Mar, Parc de Salut Mar, Barcelona, Spain
| | | | - J M Carrascosa
- Servicio de Dermatología, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| |
Collapse
|
14
|
Vilarrasa E, Nicolau J, de la Cueva P, Goday A, Gallardo F, Martorell A, Carrascosa JM. Glucagon-Like Peptide-1 Agonists for Treating Obesity in Patients With Immune-Mediated Skin Diseases. ACTAS DERMO-SIFILIOGRAFICAS 2024; 115:56-65. [PMID: 37451337 DOI: 10.1016/j.ad.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Psoriasis and hidradenitis suppurativa are often associated with obesity. Because chronic low-grade inflammation underlies these 2 diseases, they can progress to more severe forms in patients with obesity if weight-reduction measures are not taken. This review covers pharmacologic alternatives for treating obesity, with emphasis on the benefits associated with the novel use of glucagon-like peptide-1 (GLP-1) agonists that act on satiety receptors. These drugs have led to greater weight loss in clinical trials and real-world settings than orlistat, which until recently was the only drug approved for treating obesity in the European Union. Although experience with GLP-1 agonists in patients with obesity and inflammatory skin diseases is currently scarce, the promising results reported suggest they may offer a useful tool for managing obesity.
Collapse
Affiliation(s)
- E Vilarrasa
- Servicio de Dermatología, Hospital de la Santa Creu i Sant Pau, Barcelona, España
| | - J Nicolau
- Servicio de Endocrinología y Nutrición, Hospital Universitario Son Llàtzer, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Clínica Rotger (Grupo Quirón), Palma de Mallorca, Baleares, España
| | - P de la Cueva
- Servicio de Dermatología, Hospital Universitario Infanta Leonor, Comunidad de Madrid, España
| | - A Goday
- Departamento de Medicina, Universitat Autònoma de Barcelona, Barcelona; Servicio de Endocrinología y Nutrición, Hospital del Mar, IMIM Institut Mar d'Investigacions Mediques, Parc de Salut Mar, Barcelona; CIBEROBN, Instituto de Salud Carlos III (ISCIII), Madrid, España
| | - F Gallardo
- Servicio de Dermatología, Hospital del Mar, Parc de Salut Mar, Barcelona, España
| | - A Martorell
- Servicio de Dermatología y Venereología, Hospital de Manises, Valencia, España.
| | - J M Carrascosa
- Servicio de Dermatología, Hospital Universitari Germans Trias i Pujol, Badalona, España
| |
Collapse
|
15
|
López-Alcalá J, Soler-Vázquez MC, Tercero-Alcázar C, Sánchez-Ceinos J, Guzmán-Ruiz R, Malagón MM, Gordon A. Rab18 Drift in Lipid Droplet and Endoplasmic Reticulum Interactions of Adipocytes under Obesogenic Conditions. Int J Mol Sci 2023; 24:17177. [PMID: 38139006 PMCID: PMC10743551 DOI: 10.3390/ijms242417177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
The adipose tissue stores excess energy in the form of neutral lipids within adipocyte lipid droplets (LDs). The correct function of LDs requires the interaction with other organelles, such as the endoplasmic reticulum (ER) as well as with LD coat-associated proteins, including Rab18, a mediator of intracellular lipid trafficking and ER-LD interaction. Although perturbations of the inter-organelle contact sites have been linked to several diseases, such as cancer, no information regarding ER-LD contact sites in dysfunctional adipocytes from the obese adipose tissue has been published to date. Herein, the ER-LD connection and Rab18 distribution at ER-LD contact sites are examined in adipocytes challenged with fibrosis and inflammatory conditions, which represent known hallmarks of the adipose tissue in obesity. Our results show that adipocytes differentiated in fibrotic conditions caused ER fragmentation, the expansion of ER-LD contact sites, and modified Rab18 dynamics. Likewise, adipocytes exposed to inflammatory conditions favored ER-LD contact, Rab18 accumulation in the ER, and Rab18 redistribution to large LDs. Finally, our studies in human adipocytes supported the suggestion that Rab18 transitions to the LD coat from the ER. Taken together, our results suggest that obesity-related pathogenic processes alter the maintenance of ER-LD interactions and interfere with Rab18 trafficking through these contact sites.
Collapse
Affiliation(s)
- Jaime López-Alcalá
- Department of Cell Biology, Physiology, and Immunology, Adipobiology Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.L.-A.); (M.C.S.-V.); (C.T.-A.); (R.G.-R.)
| | - M. Carmen Soler-Vázquez
- Department of Cell Biology, Physiology, and Immunology, Adipobiology Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.L.-A.); (M.C.S.-V.); (C.T.-A.); (R.G.-R.)
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Instituto de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Carmen Tercero-Alcázar
- Department of Cell Biology, Physiology, and Immunology, Adipobiology Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.L.-A.); (M.C.S.-V.); (C.T.-A.); (R.G.-R.)
| | - Julia Sánchez-Ceinos
- Cardiology Unit, Department of Medicine-Solna, Karolinska Institute (KI), Karolinska University Hospital (NKS), 17177 Stockholm, Sweden;
| | - Rocío Guzmán-Ruiz
- Department of Cell Biology, Physiology, and Immunology, Adipobiology Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.L.-A.); (M.C.S.-V.); (C.T.-A.); (R.G.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María M. Malagón
- Department of Cell Biology, Physiology, and Immunology, Adipobiology Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.L.-A.); (M.C.S.-V.); (C.T.-A.); (R.G.-R.)
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ana Gordon
- Department of Cell Biology, Physiology, and Immunology, Adipobiology Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (J.L.-A.); (M.C.S.-V.); (C.T.-A.); (R.G.-R.)
| |
Collapse
|
16
|
Soto-Sánchez J, Martínez-Navarro I, Mandujano-Lázaro G, Rios-Lugo MJ, Hernández-Mendoza H. Serum levels of anti-inflammatory/proinflammatory adipocytokines, and copper levels in overweight and obese women in an adult Mexican population. Hormones (Athens) 2023; 22:647-654. [PMID: 37603222 DOI: 10.1007/s42000-023-00477-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND An imbalance between adipokines and micronutrient concentrations, such as those of copper (Cu), has been linked to dysregulation of energy homeostasis leading to weight gain and the development of other comorbidities; however, information on this issue remains limited. Our aim was to investigate the correlation between Cu status and serum adipokine levels and their relationship in normal-weight, overweight, and obese adult women. METHODS Sixty patients were evaluated and classified according to their body mass index (BMI) and biochemical parameters; adipokines and Cu were measured at fasting. RESULTS Leptin (Lep) and resistin (Res) levels were elevated, whereas adiponectin (Adpn) and ghrelin (Ghr) values were decreased in overweight and obese women (p = 0.001). The mean Adpn/Lep ratio was <0.5 in overweight and obese subjects, while the Lep/Ghr ratio increased significantly in relation to weight gain, suggesting an inverse link between the ratios of these hormones in the regulation of obesity. The analysis revealed a positive association between BMI and Cu levels in obese women. Moreover, a negative association between Cu and Res in normal-weight subjects was found. CONCLUSIONS Circulating fasting Res levels are negatively associated with serum Cu concentration in normal-weight adult women. We also observed a close relationship between Adpn/Lep and Lep/Ghr ratios with obesity. However, more observational studies are required to confirm these results in future research.
Collapse
Affiliation(s)
- Jacqueline Soto-Sánchez
- Sección de Estudios de Posgrado e Investigación, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Israel Martínez-Navarro
- Posgrado de Ciencias Básicas, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Av. Venustiano Carranza 2405, 78210, San Luis Potosi, CP, Mexico
| | - Gilberto Mandujano-Lázaro
- Sección de Estudios de Posgrado e Investigación, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - María Judith Rios-Lugo
- Sección de Medicina Molecular y Traslacional, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Avda Sierra Leona 550, 78210, San Luis Potosi, CP, Mexico
- Facultad de Enfermería y Nutrición, Universidad Autónoma de San Luis Potosí, Avda. Niño Artillero 130, 78210, San Luis Potosi, CP, Mexico
| | - Héctor Hernández-Mendoza
- Instituto de Investigación de Zonas Desérticas, Universidad Autónoma de San Luis Potosí, Altair 200, 78377, San Luis Potosi, CP, Mexico.
- Hospital General de Soledad de Graciano Sánchez, Secretaría de Salud, Valentín Amador 1112, Soledad de Graciano Sánchez, 78435, San Luis Potosi, Mexico.
| |
Collapse
|
17
|
Filgueiras MDS, Pessoa MC, Bressan J, do Carmo AS, Fogal Vegi AS, de Albuquerque FM, de Novaes JF. Obesogenic neighborhood environment is associated with body fat and low-grade inflammation in Brazilian children: could the mother's BMI be a mediating factor? Public Health Nutr 2023; 27:e14. [PMID: 38031476 PMCID: PMC10830377 DOI: 10.1017/s1368980023002628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE To evaluate the direct and indirect associations of obesogenic and leptogenic neighborhood environments with body fat, and pro- and anti-inflammatory adipokines in Brazilian children. DESIGN Cross-sectional study. The body fat distribution was assessed using dual-energy X-ray absorptiometry (DXA). Concentrations of leptin and adiponectin were measured. Four hundred meters (0·25 miles) road network buffer was the neighborhood unit used to assess the environmental characteristics around households. Obesogenic and leptogenic environments were the latent variables obtained from the observed characteristics. The mother's BMI, ultra-processed food consumption, and physical activity before and after school, were tested as mediating variables. A hybrid model of structural equations was used to test the direct and indirect associations of obesogenic and leptogenic environments with body fat, leptin and adiponectin concentrations. SETTING Urban area of Viçosa, Minas Gerais, Brazil. PARTICIPANTS Children aged 8- and 9-years (n 367). RESULTS Obesogenic environment was directly associated with the mother's BMI (β: 0·24, P = 0·02) and the child's body fat (β: 0·19, P = 0·02). The mother's BMI and body fat mediated the association of the obesogenic environment with leptin concentrations (β: 0·05, P = 0·02). CONCLUSIONS Obesogenic neighborhood environment was directly associated with body fat and mother's BMI, and indirectly associated with leptin concentrations in Brazilian children, mediated by the mother's BMI and body fat.
Collapse
Affiliation(s)
- Mariana De Santis Filgueiras
- Department of Nutrition and Health, Universidade Federal de Viçosa, Av. P.H. Rolfs s/n, Centro de Ciências Biológicas II, Campus Universitário, Viçosa, Minas Gerais36570-900, Brazil
| | - Milene Cristine Pessoa
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena 190, Santa Efigênia, Belo Horizonte, Minas Gerais30130-100, Brazil
| | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Av. P.H. Rolfs s/n, Centro de Ciências Biológicas II, Campus Universitário, Viçosa, Minas Gerais36570-900, Brazil
| | - Ariene Silva do Carmo
- Department of Nutrition, Nursing School, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena 190, Santa Efigênia, Belo Horizonte, Minas Gerais30130-100, Brazil
| | - Aline Siqueira Fogal Vegi
- Nutrition School, Universidade Federal de Ouro Preto, Rua Dois, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais35400-000, Brazil
| | - Fernanda Martins de Albuquerque
- Nutrition Institute, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 12th floor, Maracanã, Rio de Janeiro20550-900, Brazil
| | - Juliana Farias de Novaes
- Department of Nutrition and Health, Universidade Federal de Viçosa, Av. P.H. Rolfs s/n, Centro de Ciências Biológicas II, Campus Universitário, Viçosa, Minas Gerais36570-900, Brazil
| |
Collapse
|
18
|
Lai YR, Huang CC, Cheng BC, Chiu WC, Lin TY, Chiang HC, Kuo CE, Lu CH. Impacts of Chemerin Levels and Antioxidant Capacity on the Severity of Cardiovascular Autonomic Neuropathy in Patients with Type 2 Diabetes and Prediabetes. Biomedicines 2023; 11:3024. [PMID: 38002024 PMCID: PMC10668959 DOI: 10.3390/biomedicines11113024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Existing evidence supports an association between chemerin levels and cardiovascular risk, while reduced thiol levels are linked to diabetes mellitus. It is hypothesized that chemerin may contribute to autonomic dysfunction and cardiovascular risk in type 2 diabetes mellitus (T2DM), potentially mediated by the antioxidant capacity of patients with well-controlled T2DM and prediabetes. Comprehensive cardiovascular autonomic testing and biomarker assessments were conducted for all participants. The severity of cardiovascular autonomic neuropathy (CAN) was evaluated using the composite autonomic scoring scale (CASS). A mediation model was employed to explore the potential relationships among chemerin levels, antioxidant capacity (indicated by thiol levels), and CAN severity (indicated by CASS values). A total of 184 participants were enrolled in this study, comprising 143 individuals with T2DM and 40 individuals with prediabetes. The findings reveal a significant negative association between thiols levels (r = -0.38, p < 0.0001) and the CASS values, while a positive association is observed between chemerin levels (r = 0.47, p < 0.0001) and the CASS values. Linear regression analysis identified chemerin and thiols as independent variables significantly associated with CASS values. Subsequent mediation analysis elucidated that thiols levels act as mediators in the relationship between elevated chemerin levels and an increased CASS value. This study shows that poor cardiovascular function, higher chemerin levels, and reduced antioxidant capacity coexist in individuals with T2DM and prediabetes. Mediation analysis suggests a pathophysiological link between high chemerin levels and low antioxidant capacity, adversely impacting CAN severity.
Collapse
Affiliation(s)
- Yun-Ru Lai
- Departments of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung City 83301, Taiwan; (Y.-R.L.); (C.-C.H.); (H.-C.C.)
- Departments of Hyperbaric Oxygen Therapy Center, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung City 83301, Taiwan
| | - Chih-Cheng Huang
- Departments of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung City 83301, Taiwan; (Y.-R.L.); (C.-C.H.); (H.-C.C.)
| | - Ben-Chung Cheng
- Departments of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung City 83301, Taiwan; (B.-C.C.); (W.-C.C.)
| | - Wen-Chan Chiu
- Departments of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung City 83301, Taiwan; (B.-C.C.); (W.-C.C.)
| | - Ting-Yin Lin
- Departments of Nursing, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung City 83301, Taiwan;
| | - Hui-Ching Chiang
- Departments of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung City 83301, Taiwan; (Y.-R.L.); (C.-C.H.); (H.-C.C.)
| | - Chun-En Kuo
- Departments of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung City 83301, Taiwan;
| | - Cheng-Hsien Lu
- Departments of Neurology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, No. 123, Ta Pei Road, Niao Sung Hsiang, Kaohsiung City 83301, Taiwan; (Y.-R.L.); (C.-C.H.); (H.-C.C.)
- Department of Biological Science, National Sun Yat-Sen University, Kaohsiung City 80424, Taiwan
- Department of Neurology, Xiamen Chang Gung Memorial Hospital, Xiamen 361126, China
| |
Collapse
|
19
|
An Y, Cao B, Li K, Xu Y, Zhao W, Zhao D, Ke J. A Prediction Model for Sight-Threatening Diabetic Retinopathy Based on Plasma Adipokines among Patients with Mild Diabetic Retinopathy. J Diabetes Res 2023; 2023:8831609. [PMID: 37920605 PMCID: PMC10620016 DOI: 10.1155/2023/8831609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 11/04/2023] Open
Abstract
Background Accumulating evidence has suggested a link between adipokines and diabetic retinopathy (DR). This study is aimed at investigating the risk factors for sight-threatening DR (STDR) and establishing a prognostic model for predicting STDR among a high-risk population of patients with type 2 diabetes mellitus (T2DM). Methods Plasma concentrations of adipokines were determined by enzyme-linked immunosorbent assay. In the case-control set, principal component analysis (PCA) was performed to select optimal predictive cytokines for STDR, involving severe nonproliferative DR (NPDR) and proliferative DR. Support vector machine (SVM) was used to examine the possible combination of baseline plasma adipokines to discriminate the patients with mild NPDR who will later develop STDR. An individual prospective cohort with a follow-up period of 3 years was used for the external validation. Results In both training and testing sets, involving 306 patients with T2DM, median levels of plasma adiponectin (APN), leptin, and fatty acid-binding protein 4 (FABP4) were significantly higher in the STDR group than those in mild NPDR. Except for adipsin, the other three adipokines, FABP4, APN, and leptin, were selected by PCA and integrated into SVM. The accuracy of the multivariate SVM classification model was acceptable in both the training set (AUC = 0.81, sensitivity = 71%, and specificity = 91%) and the testing set (AUC = 0.77, sensitivity = 61%, and specificity = 92%). 110 T2DM patients with mild NPDR, the high-risk population of STDR, were enrolled for external validation. Based on the SVM, the risk of each patient was calculated. More STDR occurred in the high-risk group than in the low-risk group, which were grouped by the median value of APN, FABP4, and leptin, respectively. The model was validated in an individual cohort using SVM with the AUC, sensitivity, and specificity reaching 0.77, 64%, and 91%, respectively. Conclusions Adiponectin, leptin, and FABP4 were demonstrated to be associated with the severity of DR and maybe good predictors for STDR, suggesting that adipokines may play an important role in the pathophysiology of DR development.
Collapse
Affiliation(s)
- Yaxin An
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Bin Cao
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Kun Li
- Beijing Key Laboratory of Diabetes Research and Care, Beijing 101149, China
| | - Yongsong Xu
- Beijing Key Laboratory of Diabetes Research and Care, Beijing 101149, China
| | - Wenying Zhao
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Dong Zhao
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
- Beijing Key Laboratory of Diabetes Research and Care, Beijing 101149, China
| | - Jing Ke
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| |
Collapse
|
20
|
Perdomo CM, Avilés-Olmos I, Dicker D, Frühbeck G. Towards an adiposity-related disease framework for the diagnosis and management of obesities. Rev Endocr Metab Disord 2023; 24:795-807. [PMID: 37162651 PMCID: PMC10492748 DOI: 10.1007/s11154-023-09797-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2023] [Indexed: 05/11/2023]
Abstract
Obesity is a complex disease that relapses frequently and associates with multiple complications that comprise a worldwide health priority because of its rising prevalence and association with numerous complications, including metabolic disorders, mechanic pathologies, and cancer, among others. Noteworthy, excess adiposity is accompanied by chronic inflammation, oxidative stress, insulin resistance, and subsequent organ dysfunction. This dysfunctional adipose tissue is initially stored in the visceral depot, overflowing subsequently to produce lipotoxicity in ectopic depots like liver, heart, muscle, and pancreas, among others. People living with obesity need a diagnostic approach that considers an exhaustive pathophysiology and complications assessment. Thus, it is essential to warrant a holistic diagnosis and management that guarantees an adequate health status, and quality of life. The present review summarizes the different complications associated with obesity, at the same time, we aim to fostering a novel framework that enhances a patient-centered approach to obesity management in the precision medicine era.
Collapse
Affiliation(s)
- Carolina M Perdomo
- Department of Endocrinology and Nutrition. Clínica, Universidad de Navarra, Pamplona, Spain
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain
| | - Icíar Avilés-Olmos
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Dror Dicker
- Department of Internal Medicine D, Rabin Medical Center, Hasharon Hospital, Petah Tikva, Israel
- Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Gema Frühbeck
- Department of Endocrinology and Nutrition. Clínica, Universidad de Navarra, Pamplona, Spain.
- IdiSNA (Instituto de Investigación en la Salud de Navarra), Pamplona, Spain.
- CIBEROBN, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
21
|
Kou R, Wang J, Li A, Wang Y, Zhang B, Liu J, Sun Y, Wang S. Ameliorating Effects of Bifidobacterium longum subsp. infantis FB3-14 against High-Fat-Diet-Induced Obesity and Gut Microbiota Disorder. Nutrients 2023; 15:4104. [PMID: 37836387 PMCID: PMC10574542 DOI: 10.3390/nu15194104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Obesity has emerged as one of the most prevalent chronic diseases worldwide. Our study was conducted to investigate the anti-obese potential of novel probiotic Bifidobacterium longum subsp. infantis FB3-14 (FB3-14) and the underlying molecular mechanisms in high-fat diet (HFD)-fed mice. The results demonstrated that an 8-week FB3-14 intervention significantly suppressed the HFD-induced body and fat weight gain and abnormal alterations of the serum lipid parameter, restoring the levels of cholesterol (4.29 mmol/L) and low-density lipoprotein cholesterol (3.42 mmol/L). FB3-14 treatment also attenuated adipocyte expansion, hepatic injury, and low-grade systemic inflammation and restored the expressions of lipid-metabolism-related genes, including Hsl, Leptin, and Adiponectin. Furthermore, FB3-14 was observed to reduce the Firmicutes/Bacteroidetes ratio in obese mice; increase the abundance of Akkermansia muciniphila, unclassified_Muribaculaceae, Lachnospiraceae_NK4A136_group, and Bifidobacterim; and upregulate G protein-coupled receptor41 associated with higher levels of butyric acid. These results indicate the protective effectiveness of FB3-14 in HFD-driven obesity and gut microbiota disorders, highlighting the promising potential of FB3-14 as a functional nutrition supplement.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300350, China; (R.K.); (J.W.); (A.L.); (Y.W.); (B.Z.); (J.L.); (Y.S.)
| |
Collapse
|
22
|
Calamita G, Delporte C. Insights into the Function of Aquaporins in Gastrointestinal Fluid Absorption and Secretion in Health and Disease. Cells 2023; 12:2170. [PMID: 37681902 PMCID: PMC10486417 DOI: 10.3390/cells12172170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Aquaporins (AQPs), transmembrane proteins permeable to water, are involved in gastrointestinal secretion. The secretory products of the glands are delivered either to some organ cavities for exocrine glands or to the bloodstream for endocrine glands. The main secretory glands being part of the gastrointestinal system are salivary glands, gastric glands, duodenal Brunner's gland, liver, bile ducts, gallbladder, intestinal goblet cells, exocrine and endocrine pancreas. Due to their expression in gastrointestinal exocrine and endocrine glands, AQPs fulfill important roles in the secretion of various fluids involved in food handling. This review summarizes the contribution of AQPs in physiological and pathophysiological stages related to gastrointestinal secretion.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
23
|
Jersin RÅ, Sri Priyanka Tallapragada D, Skartveit L, Bjune MS, Muniandy M, Lee-Ødegård S, Heinonen S, Alvarez M, Birkeland KI, André Drevon C, Pajukanta P, McCann A, Pietiläinen KH, Claussnitzer M, Mellgren G, Dankel SN. Impaired Adipocyte SLC7A10 Promotes Lipid Storage in Association With Insulin Resistance and Altered BCAA Metabolism. J Clin Endocrinol Metab 2023; 108:2217-2229. [PMID: 36916878 PMCID: PMC10438883 DOI: 10.1210/clinem/dgad148] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
CONTEXT The neutral amino acid transporter SLC7A10/ASC-1 is an adipocyte-expressed gene with reduced expression in insulin resistance and obesity. Inhibition of SLC7A10 in adipocytes was shown to increase lipid accumulation despite decreasing insulin-stimulated uptake of glucose, a key substrate for de novo lipogenesis. These data imply that alternative lipogenic substrates to glucose fuel continued lipid accumulation during insulin resistance in obesity. OBJECTIVE We examined whether increased lipid accumulation during insulin resistance in adipocytes may involve alter flux of lipogenic amino acids dependent on SLC7A10 expression and activity, and whether this is reflected by extracellular and circulating concentrations of marker metabolites. METHODS In adipocyte cultures with impaired SLC7A10, we performed RNA sequencing and relevant functional assays. By targeted metabolite analyses (GC-MS/MS), flux of all amino acids and selected metabolites were measured in human and mouse adipose cultures. Additionally, SLC7A10 mRNA levels in human subcutaneous adipose tissue (SAT) were correlated to candidate metabolites and adiposity phenotypes in 2 independent cohorts. RESULTS SLC7A10 impairment altered expression of genes related to metabolic processes, including branched-chain amino acid (BCAA) catabolism, lipogenesis, and glyceroneogenesis. In 3T3-L1 adipocytes, SLC7A10 inhibition increased fatty acid uptake and cellular content of glycerol and cholesterol. SLC7A10 impairment in SAT cultures altered uptake of aspartate and glutamate, and increased net uptake of BCAAs, while increasing the net release of the valine catabolite 3- hydroxyisobutyrate (3-HIB). In human cohorts, SLC7A10 mRNA correlated inversely with total fat mass, circulating triacylglycerols, BCAAs, and 3-HIB. CONCLUSION Reduced SLC7A10 activity strongly affects flux of BCAAs in adipocytes, which may fuel continued lipogenesis during insulin resistance, and be reflected in increased circulating levels of the valine-derived catabolite 3-HIB.
Collapse
Affiliation(s)
- Regine Å Jersin
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Divya Sri Priyanka Tallapragada
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Linn Skartveit
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Mona S Bjune
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Maheswary Muniandy
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Sindre Lee-Ødegård
- Department of Transplantation Medicine, The University of Oslo, Institute of Clinical Medicine, and Oslo University Hospital, N-0372 Oslo, Norway
| | - Sini Heinonen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland
| | - Marcus Alvarez
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Kåre Inge Birkeland
- Department of Transplantation Medicine, The University of Oslo, Institute of Clinical Medicine, and Oslo University Hospital, N-0372 Oslo, Norway
| | - Christian André Drevon
- Department of Nutrition, The University of Oslo, Institute of Basic Medical Sciences, N-0372 Oslo, Norway
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- Bioinformatics Interdepartmental Program, UCLA, Los Angeles, CA 90095, USA
- Institute for Precision Health, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Adrian McCann
- Bevital A/S, Laboratoriebygget, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, FIN-00014 Helsinki, Finland
- Obesity Center, Endocrinology, Abdominal Center, Helsinki University Hospital and University of Helsinki, FIN-00014 Helsinki, Finland
| | - Melina Claussnitzer
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Gunnar Mellgren
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, N-5021 Bergen, Norway
| | - Simon N Dankel
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, N-5021 Bergen, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, N-5021 Bergen, Norway
| |
Collapse
|
24
|
Jabłonowska-Lietz B, Nowicka G, Włodarczyk M, Rejowski S, Stasiowska M, Wrzosek M. Initial Weight Loss, Anthropometric Parameters, and Proinflammatory Transcript Levels in Patients with Class I Obesity. Biomedicines 2023; 11:2304. [PMID: 37626800 PMCID: PMC10452077 DOI: 10.3390/biomedicines11082304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Research into early predictors of effective weight loss could help determine more effective therapeutic interventions. In this study, 106 subjects with class I obesity, genotyped with the fat mass and obesity-associated (FTO) rs9930506 gene variant, were enrolled into a 12-week weight loss program (WLP). Anthropometric and body composition measurements were controlled with bioelectrical impedance analysis (BIA) at baseline and after 4 and 12 weeks. Biopsies of abdominal subcutaneous adipose tissue (AT) and venous blood samples were collected to monitor changes in interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), and nuclear factor kappa B (NF-κB) mRNA levels in white blood cells (WBCs) and to assess if changes in WBC gene expression reflected changes in adipose tissue. The FTO rs9930506 variant had no effect on weight loss and no reduction in proinflammatory transcripts in WBCs or AT. Changes in anthropometric parameters were associated with changes in carbohydrate metabolism. A linear regression model showed that initial weight loss (after 4 weeks of the WLP) was the most predictive factor of weight loss success after 12 weeks of the WLP. Changes in plasma lipids or proinflammatory transcript levels in WBCs or AT were not associated with weight loss effectiveness. However, the gene expression in WBCs did reflect changes occurring in subcutaneous AT.
Collapse
Affiliation(s)
- Beata Jabłonowska-Lietz
- Medical Center, National Institute of Public Health NIH—National Research Institute, 24 Chocimska St., 00-791 Warsaw, Poland
| | - Grażyna Nowicka
- Department of Biochemistry and Pharmacogenomics, Center for Preclinical Research, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
| | - Marta Włodarczyk
- Department of Biochemistry and Pharmacogenomics, Center for Preclinical Research, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
| | - Sławomir Rejowski
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, 1A Banacha St., 02-097 Warsaw, Poland
| | - Maria Stasiowska
- Department of Anaesthesia and Intensive Care, University College London Hospital, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Małgorzata Wrzosek
- Department of Biochemistry and Pharmacogenomics, Center for Preclinical Research, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
| |
Collapse
|
25
|
Siegel-Axel D, Barroso Oquendo M, Gerst F, Fend F, Wagner R, Heni M, Königsrainer A, Häring HU, Fritsche A, Schleicher E, Birkenfeld AL, Stefan N. Extracellular Matrix Expression in Human Pancreatic Fat Cells of Patients with Normal Glucose Regulation, Prediabetes and Type 2 Diabetes. Int J Mol Sci 2023; 24:11169. [PMID: 37446346 DOI: 10.3390/ijms241311169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Previously, we found that human pancreatic preadipocytes (PPAs) and islets influence each other and that the crosstalk with the fatty liver via the hepatokine fetuin-A/palmitate induces inflammatory responses. Here, we examined whether the mRNA-expression of pancreatic extracellular matrix (ECM)-forming and -degrading components differ in PPAs from individuals with normal glucose regulation (PPAs-NGR), prediabetes (PPAs-PD), and type 2 diabetes (PPAs-T2D), and whether fetuin-A/palmitate impacts ECM-formation/degradation and associated monocyte invasion. Human pancreatic resections were analyzed (immuno)histologically. PPAs were studied for mRNA expression by real-time PCR and protein secretion by Luminex analysis. Furthermore, co-cultures with human islets and monocyte migration assays in Transwell plates were conducted. We found that in comparison with NGR-PPAs, TIMP-2 mRNA levels were lower in PPAs-PD, and TGF-β1 mRNA levels were higher in PPAs-T2D. Fetuin-A/palmitate reduced fibronectin, decorin, TIMP-1/-2 and TGF-ß1 mRNA levels. Only fibronectin was strongly downregulated by fetuin-A/palmitate independently of the glycemic status. Co-culturing of PPAs with islets increased TIMP-1 mRNA expression in islets. Fetuin-A/palmitate increased MMP-1, usherin and dermatopontin mRNA-levels in co-cultured islets. A transmigration assay showed increased monocyte migration towards PPAs, which was enhanced by fetuin-A/palmitate. This was more pronounced in PPAs-T2D. The expression of distinct ECM components differs in PPAs-PD and PPAs-T2D compared to PPAs-NGR, suggesting that ECM alterations can occur even in mild hyperglycemia. Fetuin-A/palmitate impacts on ECM formation/degradation in PPAs and co-cultured islets. Fetuin-A/palmitate also enhances monocyte migration, a process which might impact on matrix turnover.
Collapse
Affiliation(s)
- Dorothea Siegel-Axel
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- Department of Internal Medicine IV, University Hospital of Tübingen, Otfried-Müller Str. 10, 72076 Tübingen, Germany
| | - Morgana Barroso Oquendo
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- Department of Internal Medicine IV, University Hospital of Tübingen, Otfried-Müller Str. 10, 72076 Tübingen, Germany
- EKU Tübingen, Quantitative Biology Center (QBiC), University of Tübingen, 72076 Tübingen, Germany
| | - Felicia Gerst
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- Department of Internal Medicine IV, University Hospital of Tübingen, Otfried-Müller Str. 10, 72076 Tübingen, Germany
| | - Falko Fend
- Department of General Pathology and Pathological Anatomy, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Robert Wagner
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- Department of Internal Medicine IV, University Hospital of Tübingen, Otfried-Müller Str. 10, 72076 Tübingen, Germany
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Heinrich Heine University Düsseldorf (HHU), 40225 Düsseldorf, Germany
| | - Martin Heni
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- Department of Internal Medicine IV, University Hospital of Tübingen, Otfried-Müller Str. 10, 72076 Tübingen, Germany
- Division of Endocrinology and Diabetology, Department of Internal Medicine I, University Hospital Ulm, 89081 Ulm, Germany
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- Department of Internal Medicine IV, University Hospital of Tübingen, Otfried-Müller Str. 10, 72076 Tübingen, Germany
| | - Andreas Fritsche
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- Department of Internal Medicine IV, University Hospital of Tübingen, Otfried-Müller Str. 10, 72076 Tübingen, Germany
| | - Erwin Schleicher
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- Department of Internal Medicine IV, University Hospital of Tübingen, Otfried-Müller Str. 10, 72076 Tübingen, Germany
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Andreas L Birkenfeld
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- Department of Internal Medicine IV, University Hospital of Tübingen, Otfried-Müller Str. 10, 72076 Tübingen, Germany
| | - Norbert Stefan
- Institute for Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the University of Tübingen, 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- Department of Internal Medicine IV, University Hospital of Tübingen, Otfried-Müller Str. 10, 72076 Tübingen, Germany
| |
Collapse
|
26
|
Félix-Soriano E, Sáinz N, Gil-Iturbe E, Castilla-Madrigal R, Celay J, Fernández-Galilea M, Pejenaute Á, Lostao MP, Martínez-Climent JA, Moreno-Aliaga MJ. Differential remodeling of subcutaneous white and interscapular brown adipose tissue by long-term exercise training in aged obese female mice. J Physiol Biochem 2023:10.1007/s13105-023-00964-2. [PMID: 37204588 DOI: 10.1007/s13105-023-00964-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 04/26/2023] [Indexed: 05/20/2023]
Abstract
Obesity exacerbates aging-induced adipose tissue dysfunction. This study aimed to investigate the effects of long-term exercise on inguinal white adipose tissue (iWAT) and interscapular brown adipose tissue (iBAT) of aged obese mice. Two-month-old female mice received a high-fat diet for 4 months. Then, six-month-old diet-induced obese animals were allocated to sedentarism (DIO) or to a long-term treadmill training (DIOEX) up to 18 months of age. In exercised mice, iWAT depot revealed more adaptability, with an increase in the expression of fatty acid oxidation genes (Cpt1a, Acox1), and an amelioration of the inflammatory status, with a favorable modulation of pro/antiinflammatory genes and lower macrophage infiltration. Additionally, iWAT of trained animals showed an increment in the expression of mitochondrial biogenesis (Pgc1a, Tfam, Nrf1), thermogenesis (Ucp1), and beige adipocytes genes (Cd137, Tbx1). In contrast, iBAT of aged obese mice was less responsive to exercise. Indeed, although an increase in functional brown adipocytes genes and proteins (Pgc1a, Prdm16 and UCP1) was observed, few changes were found on inflammation-related and fatty acid metabolism genes. The remodeling of iWAT and iBAT depots occurred along with an improvement in the HOMA index for insulin resistance and in glucose tolerance. In conclusion, long-term exercise effectively prevented the loss of iWAT and iBAT thermogenic properties during aging and obesity. In iWAT, the long-term exercise program also reduced the inflammatory status and stimulated a fat-oxidative gene profile. These exercise-induced adipose tissue adaptations could contribute to the beneficial effects on glucose homeostasis in aged obese mice.
Collapse
Affiliation(s)
- Elisa Félix-Soriano
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain
| | - Neira Sáinz
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain
| | - Eva Gil-Iturbe
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain
| | - Rosa Castilla-Madrigal
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain
| | - Jon Celay
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, University of Navarra, Pamplona, Spain
- CIBERONC, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marta Fernández-Galilea
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain
| | - Álvaro Pejenaute
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - M Pilar Lostao
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - José A Martínez-Climent
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, University of Navarra, Pamplona, Spain
- CIBERONC, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - María J Moreno-Aliaga
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
27
|
Onofrei VA, Anisie E, Zamfir CL, Ceasovschih A, Constantin M, Mitu F, Grigorescu ED, Petroaie AD, Timofte DV. Role of Chemerin and Perivascular Adipose Tissue Characteristics on Cardiovascular Risk Assessment by Arterial Stiffness Markers in Patients with Morbid Obesity. J Clin Med 2023; 12:jcm12082885. [PMID: 37109222 PMCID: PMC10145532 DOI: 10.3390/jcm12082885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The development of arterial stiffness (AS) in obesity is a multifactorial and complex process. The pleomorphic actions of adipokines and their local activity in perivascular adipose tissue (PVAT) are potential modulators of AS appearance and progression. We aimed to assess the correlations between two adipokines (chemerin, adiponectin), PVAT morphological changes (adipocyte size, blood vessel wall thickness) and AS parameters in the special subgroup of patients with morbid obesity. MATERIAL AND METHODS We enrolled 25 patients with morbid obesity and 25 non-obese patients, who were age- and gender-matched, untreated for cardiovascular risk factors, and admitted to hospital for laparoscopic surgical procedures (bariatric surgery for morbid obesity and non-inflammatory benign pathology surgery for non-obese patients). Before the surgical procedures, we evaluated demographic and anthropometric data and biochemical parameters including the studied adipokines. Arterial stiffness was evaluated using a Medexpert ArteriographTM TL2 device. In both groups, adipocyte size and vascular wall thickness as well as local adiponectin activity were analyzed in PVAT from intraoperative biopsies. RESULTS In our study, adiponectin (p = 0.0003), chemerin (p = 0.0001) and their ratio (p = 0.005) had statistically significant higher mean values in patients with morbid obesity compared to normal-weight patients. In patients with morbid obesity there were significant correlations between chemerin and AS parameters such as aortic pulse wave velocity (p = 0.006) and subendocardial viability index (p = 0.009). In the same group adipocyte size was significantly correlated with another AS parameter, namely, aortic systolic blood pressure (p = 0.030). In normal-weight patients, blood vessel wall thickness positively correlated with AS parameters such as brachial (p = 0.023) and aortic augmentation index (p = 0.023). An important finding was the negative adipoR1 and adipoR2 immunoexpression in PVAT adipocytes of patients with morbid obesity. Additionally, we found significant correlations between blood vessel wall thickness and blood fasting glucose (p < 0.05) in both groups. CONCLUSIONS Chemerin and adipocyte size could be predictive biomarkers for AS in patients with morbid obesity. Given the small number of patients included, our results need further validation.
Collapse
Affiliation(s)
- Viviana Aursulesei Onofrei
- Department of Medical Specialties, Grigore T. Popa, University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- Cardiology Clinic, St. Spiridon, Clinical Emergency Hospital, Independence Boulevard No. 1, 700111 Iasi, Romania
| | - Ecaterina Anisie
- Cardiology Clinic, St. Spiridon, Clinical Emergency Hospital, Independence Boulevard No. 1, 700111 Iasi, Romania
| | - Carmen Lacramioara Zamfir
- Department of Medical Specialties, Grigore T. Popa, University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
| | - Alexandr Ceasovschih
- Department of Medical Specialties, Grigore T. Popa, University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- Cardiology Clinic, St. Spiridon, Clinical Emergency Hospital, Independence Boulevard No. 1, 700111 Iasi, Romania
| | - Mihai Constantin
- Department of Medical Specialties, Grigore T. Popa, University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
| | - Florin Mitu
- Department of Medical Specialties, Grigore T. Popa, University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular Rehabilitation Clinic, Pantelimon Halipa Street No. 14, 700661 Iasi, Romania
- Academy of Medical Sciences, Ion C. Brătianu Boulevard No. 1, 030173 Bucharest, Romania
- Romanian Academy of Scientists, Dimitrie Mangeron Boulevard No. 433, 700050 Iasi, Romania
| | - Elena-Daniela Grigorescu
- Department of Medical Specialties, Grigore T. Popa, University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
| | - Antoneta Dacia Petroaie
- Department of Medical Specialties, Grigore T. Popa, University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
| | - Daniel Vasile Timofte
- Department of Medical Specialties, Grigore T. Popa, University of Medicine and Pharmacy, University Street No. 16, 700115 Iasi, Romania
- Cardiology Clinic, St. Spiridon, Clinical Emergency Hospital, Independence Boulevard No. 1, 700111 Iasi, Romania
- Academy of Medical Sciences, Ion C. Brătianu Boulevard No. 1, 030173 Bucharest, Romania
| |
Collapse
|
28
|
Xiong Y, Shi W, Huang X, Yu C, Zhou W, Bao H, Cheng X. Association between weight-adjusted waist index and arterial stiffness in hypertensive patients: The China H-type hypertension registry study. Front Endocrinol (Lausanne) 2023; 14:1134065. [PMID: 37008949 PMCID: PMC10064138 DOI: 10.3389/fendo.2023.1134065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Objective Exploring the relationship between (weight-adjusted waist index) WWI and arterial stiffness (AS) in the total and different BMI populations among patients with hypertension. Methods This study enrolled 5232 hypertensive subjects, a subset of the China H-type Hypertension Registry Study. WWI was calculated as WC (cm) divided by the square root of weight (kg). Brachial-ankle pulse wave velocity (baPWV) was measured to determine AS. Results The mean WWI was 10.97 (0.78)cm/√kg. In multiple logistic analyses showed that there were significant dose-dependent association between WWI with baPWV in a dose-dependent manner in total population (β 57.98, 95% CI 44.06-71.90), and in different BMI group: group 1 (BMI<18.5kg/m2) (β 94.30, 95% CI 39.36-149.23), group 2 (18.5-23.9kg/m2) (β 74.21, 95% CI 54.57-93.85), group 3 (≥24kg/m2) (β 26.11, 95% CI 5.22-47.01). In stratified analysis, stronger associations between WWI and baPWV were observed in patients with higher BP or lower BMI. Sensitivity analysis by excluding patients treated with lipid-lowering agents did not change the association between WWI and baPWV. Conclusion For hypertensive patients, we found that WWI was positively associated with baPWV in different BMI groups. WWI might be considered as an intervening factor in preventing and treatment of AS, besides BP management.
Collapse
Affiliation(s)
- Yurong Xiong
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Jiangxi Sub-Center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, China
| | - Weidong Shi
- Department of Cardiovascular Medicine, Wuyuan People’s Hospital, Shangrao, Jiangxi, China
| | - Xiao Huang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Jiangxi Sub-Center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, China
| | - Chao Yu
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Jiangxi Sub-Center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, China
- Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Wei Zhou
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Jiangxi Sub-Center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, China
- Center for Prevention and Treatment of Cardiovascular Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Huihui Bao
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Jiangxi Sub-Center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, China
| | - Xiaoshu Cheng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Provincial Cardiovascular Disease Clinical Medical Research Center, Nanchang, Jiangxi, China
- Jiangxi Sub-Center of National Clinical Research Center for Cardiovascular Diseases, Nanchang, China
| |
Collapse
|
29
|
Koebnick C, Sidell MA, Li X, Woolford SJ, Kuizon BD, Kunani P. Association of High Normal Body Weight in Youths With Risk of Hypertension. JAMA Netw Open 2023; 6:e231987. [PMID: 36917110 PMCID: PMC10015306 DOI: 10.1001/jamanetworkopen.2023.1987] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
IMPORTANCE Ample evidence links obesity to hypertension in youths. However, the association of high normal body mass index (BMI) with obesity and the interaction with different weight trajectories are not well understood. OBJECTIVE To examine the hypertension risk associated with high normal BMI for age and different weight trajectories in youths. DESIGN, SETTING, AND PARTICIPANTS This retrospective cohort study assessed 801 019 youths aged 3 to 17 years in an integrated health care system in Southern California from January 1, 2008, to February 28, 2015, with a maximum follow-up of 5 years from January 1, 2008, to February 28, 2020. Data analysis was performed from 2018 to 2022. EXPOSURES Youths were compared by first available (baseline) sex-specific BMI for age and change in the distance to the median BMI for age during the 5-year follow-up. MAIN OUTCOMES AND MEASURES Cox proportional hazards regression models with age as a time scale to assess hypertension risk (based on 2017 Blood Pressure Guidelines by the American Academy of Pediatrics from 3 consecutive independent visits), adjusted for sex, race and ethnicity, socioeconomic status, baseline year, and birth year. RESULTS A total of 801 019 youths (mean [SD] age, 9.4 [4.6] years; 409 167 [51.1%] female]; 59 399 [7.4%] Asian and Pacific Islanders, 65 712 [8.2%] Black, and 427 492 [53.4%] Hispanic) were studied. Compared with youths with a baseline BMI for age in the 40th to 59th percentiles, the adjusted hazard ratio (aHR) for hypertension within a maximum of 5 years was 1.26 (95% CI, 1.20-1.33) for youths between the 60th and 84th percentiles if they maintained their BMI for age. With every 1-unit annual increase in the distance to the median BMI for age, the aHR increased by 1.04 (95% CI, 1.04-1.05). The aHR was 4.94 (95% CI, 4.72-5.18) in youths with a baseline BMI for age in the 97th percentile or higher who maintained their body weight. Weight gain increased the risk associated with baseline BMI for age in the 97th percentile or higher with an aHR of 1.04 (95% CI, 1.04-1.05) per 1-unit annual increase in the distance to the median BMI for age. The risk associated with weight change was higher in youths living with low to high normal weight and overweight than in youths living with severe obesity. CONCLUSIONS AND RELEVANCE In this cohort study of youths, high normal body weight above the 60th percentile of BMI for age was associated with increased risk of hypertension. Weight gain was associated with further increases in hypertension risk. Further research is needed to evaluate the wide range of body weight considered normal in youths and the health risks associated with high normal weight.
Collapse
Affiliation(s)
- Corinna Koebnick
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena
| | - Margo A. Sidell
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena
| | - Xia Li
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena
| | - Susan J. Woolford
- Child Health Evaluation and Research Center, Department of Pediatrics, University of Michigan, Ann Arbor
| | - Beatriz D. Kuizon
- Kaiser Permanente Los Angeles Medical Center, Los Angeles, California
| | - Poornima Kunani
- Department of Pediatrics, Kaiser Permanente Manhattan Beach Medical Office, Manhattan Beach, California
| |
Collapse
|
30
|
Increased Aquaporin-7 Expression Is Associated with Changes in Rat Brown Adipose Tissue Whitening in Obesity: Impact of Cold Exposure and Bariatric Surgery. Int J Mol Sci 2023; 24:ijms24043412. [PMID: 36834823 PMCID: PMC9963055 DOI: 10.3390/ijms24043412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/24/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Glycerol is a key metabolite for lipid accumulation in insulin-sensitive tissues. We examined the role of aquaporin-7 (AQP7), the main glycerol channel in adipocytes, in the improvement of brown adipose tissue (BAT) whitening, a process whereby brown adipocytes differentiate into white-like unilocular cells, after cold exposure or bariatric surgery in male Wistar rats with diet-induced obesity (DIO) (n = 229). DIO promoted BAT whitening, evidenced by increased BAT hypertrophy, steatosis and upregulation of the lipogenic factors Pparg2, Mogat2 and Dgat1. AQP7 was detected in BAT capillary endothelial cells and brown adipocytes, and its expression was upregulated by DIO. Interestingly, AQP7 gene and protein expressions were downregulated after cold exposure (4 °C) for 1 week or one month after sleeve gastrectomy in parallel to the improvement of BAT whitening. Moreover, Aqp7 mRNA expression was positively associated with transcripts of the lipogenic factors Pparg2, Mogat2 and Dgat1 and regulated by lipogenic (ghrelin) and lipolytic (isoproterenol and leptin) signals. Together, the upregulation of AQP7 in DIO might contribute to glycerol influx used for triacylglycerol synthesis in brown adipocytes, and hence, BAT whitening. This process is reversible by cold exposure and bariatric surgery, thereby suggesting the potential of targeting BAT AQP7 as an anti-obesity therapy.
Collapse
|
31
|
Hashemnia SMR, Meshkani R, Zamani-Garmsiri F, Shabani M, Tajabadi-Ebrahimi M, Ragerdi Kashani I, Siadat SD, Mohassel Azadi S, Emamgholipour S. Amelioration of obesity-induced white adipose tissue inflammation by Bacillus coagulans T4 in a high-fat diet-induced obese murine model. Life Sci 2023; 314:121286. [PMID: 36526049 DOI: 10.1016/j.lfs.2022.121286] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
AIM Fresh evidence suggests that B. coagulans can be regarded as a promising therapeutic alternative for metabolic disorders. However, the possible effects of this probiotic on obesity-induced adipose tissue inflammation are unknown. METHODS C57BL/6j male mice were assigned to a normal-chow diet (NCD) or a high-fat diet (HFD) for 10 weeks. After this period, HFD-fed mice were randomly divided into two groups; HFD control group and HFD plus B. coagulans T4 (IBRC-N10791) for another 8 weeks. B. coagulans T4 was administrated daily by oral intragastric gavage (1 × 109 colony-forming units). KEY FINDINGS Here, we found that B. coagulans successfully mitigated obesity and related metabolic disorder, as indicated by reduced body weight gain, decreased adiposity, and improved glucose tolerance. B. coagulans T4 administration also inhibited HFD-induced macrophage accumulation in white adipose tissue and switched M1 to M2 macrophages. In parallel, B. coagulans T4 treatment attenuated HFD-induced alteration in mRNA expression of pro/anti-inflammatory cytokines and Tlr4 in white adipose tissue. Moreover, B. coagulans T4 supplementation reduced the Firmicutes/Bacteriodetes ratio and increased the number of Lactobacillus and Faecalibacterium compared to the HFD group. Additionally, a significant increase in propionate and acetate levels in the HFD group was seen following B. coagulans T4 administration. SIGNIFICANCE Taken together, the present study provides evidence that B. coagulans T4 supplementation exerts anti-obesity effects in part through attenuating inflammation in adipose tissue. The present study will have significant implications for obesity management.
Collapse
Affiliation(s)
| | - Reza Meshkani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fahimeh Zamani-Garmsiri
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Tehran, Iran
| | | | - Iraj Ragerdi Kashani
- Department of Anatomy, School of Medicine, Tehran University of Medical Science, Tehran, Tehran, Iran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Samaneh Mohassel Azadi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Solaleh Emamgholipour
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Lee YJ, Kim JJ, Kim J, Cho DW, Won JY. The Correlation between Waist Circumference and the Pro-Inflammatory Adipokines in Diabetic Retinopathy of Type 2 Diabetes Patients. Int J Mol Sci 2023; 24:ijms24032036. [PMID: 36768360 PMCID: PMC9917192 DOI: 10.3390/ijms24032036] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/31/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Central obesity is one of the major risk factors for type 2 diabetes mellitus (DM), and the most common complication of DM is diabetic retinopathy. However, the exact relationship between obesity and DR remains unknown. In this study, we evaluate the effect of obesity on DR by comparing the aqueous humor-derived adipokines. For the analysis, 37 DR patients and 29 non-DR-patients participated. To evaluate the obesity of the patients, body mass index (BMI) and waist circumference (WC) were used. By comparing the concentrations of adipokines obtained from the aqueous humor of the two groups, the relationship between DR and adipokines was analyzed. In addition, by analyzing the correlation between obesity and adipokines in patients, the relationship between central obesity and DR was finally confirmed. The WC was significantly higher in patients than in the non-patient group. The concentrations of all adipokines compared in this study were significantly higher in the DR group than in the non-DM group (p < 0.05). Among them, adiponectin, leptin, TNF-α, Factor D (adipsin), lipocalin-2 (NGAL), Serpin E1 (PAI-1), and CXCL8 (IL-8) were confirmed to have a positive correlation with central obesity (defined as WC). These findings suggest that central obesity is strongly associated with the risk of DR.
Collapse
Affiliation(s)
- Yeo Jin Lee
- Department of Ophthalmology and Visual Science, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul 03312, Republic of Korea
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul 14662, Republic of Korea
| | - Joeng Ju Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jongmin Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jae Yon Won
- Department of Ophthalmology and Visual Science, Eunpyeong St. Mary’s Hospital, The Catholic University of Korea, Seoul 03312, Republic of Korea
- Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea, Seoul 14662, Republic of Korea
- Correspondence:
| |
Collapse
|
33
|
Chronic docosahexaenoic acid supplementation improves metabolic plasticity in subcutaneous adipose tissue of aged obese female mice. J Nutr Biochem 2023; 111:109153. [PMID: 36150680 DOI: 10.1016/j.jnutbio.2022.109153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 01/01/2023]
Abstract
This study aimed to characterize the potential beneficial effects of chronic docosahexaenoic acid (DHA) supplementation on restoring subcutaneous white adipose tissue (scWAT) plasticity in obese aged female mice. Two-month-old female C57BL/6J mice received a control (CT) or a high fat diet (HFD) for 4 months. Then, 6-month-old diet-induced obese (DIO) mice were distributed into the DIO and the DIOMEG group (fed with a DHA-enriched HFD) up to 18 months. In scWAT, the DHA-enriched diet reduced the mean adipocyte size and reversed the upregulation of lipogenic genes induced by the HFD, reaching values even lower than those observed in CT animals. DIO mice exhibited an up-regulation of lipolytic and fatty oxidation gene expressions that was reversed in DHA-supplemented mice except for Cpt1a mRNA levels, which were higher in DIOMEG as compared to CT mice. DHA restored the increase of proinflammatory genes observed in scWAT of DIO mice. While no changes were observed in total macrophage F4/80+/CD11b+ content, the DHA treatment switched scWAT macrophages profile by reducing the M1 marker Cd11c and increasing the M2 marker CD206. These events occurred alongside with a stimulation of beige adipocyte specific genes, the restoration of UCP1 and pAKT/AKT ratio, and a recovery of the HFD-induced Fgf21 upregulation. In summary, DHA supplementation induced a metabolic remodeling of scWAT to a healthier phenotype in aged obese mice by modulating genes controlling lipid accumulation in adipocytes, reducing the inflammatory status, and inducing beige adipocyte markers in obese aged mice.
Collapse
|
34
|
Calamita G, Delporte C. Aquaporins in Glandular Secretion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1398:225-249. [PMID: 36717498 DOI: 10.1007/978-981-19-7415-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Exocrine and endocrine glands deliver their secretory product, respectively, at the surface of the target organs or within the bloodstream. The release of their products has been shown to rely on secretory mechanisms often involving aquaporins (AQPs). This chapter will provide insight into the role of AQPs in secretory glands located within the gastrointestinal tract, including salivary glands, gastric glands, duodenal Brunner's glands, liver, gallbladder, intestinal goblets cells, and pancreas, as well and in other parts of the body, including airway submucosal glands, lacrimal glands, mammary glands, and eccrine sweat glands. The involvement of AQPs in both physiological and pathophysiological conditions will also be highlighted.
Collapse
Affiliation(s)
- Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Environment, University of Bari "Aldo Moro", Bari, Italy
| | - Christine Delporte
- Laboratory of Pathophysiological and Nutritional Biochemistry, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.
| |
Collapse
|
35
|
Zurita-Cruz JN, Villasís-Keever MA, Manuel-Apolinar L, Damasio-Santana L, Garrido-Magaña E, Rivera-Hernández ADJ. Leptin/adiponectin ratio as a prognostic factor for increased weight gain in girls with central precocious puberty. Front Endocrinol (Lausanne) 2023; 14:1101399. [PMID: 36967781 PMCID: PMC10036755 DOI: 10.3389/fendo.2023.1101399] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
OBJECTIVE To determine if the leptin, adiponectin, and leptin/adiponectin ratio (LAR) can predict weight gain at the end of GnRH analogs (GnRHa) treatment in girls with central precocious puberty (CPP). MATERIAL AND METHODS Study design: prospective cohort. Serum levels of leptin and adiponectin were determined at diagnosis of CPP. Anthropometry was performed at diagnosis of CPP and every six-months, until treatment with GnRHa was discontinued and they presented menarche. Patients were divided according to BMI<94 and BMI>95 percentile at diagnosis of CPP. The outcome was the increased in weight gain (e.g., from normal weight to overweight) at the end of follow-up. Statistical analysis: repeated measures ANOVA test and Student's t-test were used to compare groups. Logistic regression analysis was used to evaluate the association of leptin and adiponectin levels, as well as LAR values with increased weight gain. RESULTS Fifty-six CPP patients were studied, 18 had BMI >95 percentile and 38 BMI <94 percentile. Of the 18 patients who initially had BMI >95th, two patients went from obesity to overweight, while among the 38 patients who started with BMI <94th, 21 (55.2%) increased their weight gain at the end of follow-up. This last group had higher leptin levels (8.99 ± 0.6 vs 6.14 ± 0.8, p=0.005) and higher LAR values compared to those who remained in the same weight (1.3 ± 0.5 vs 0.96 ± 0.56, p=0.01). In the logistic regression analysis, it was found that higher leptin levels and higher LAR values were associated with increased weight gain (RR 1.31, 95%CI 1.03-1.66, RR 4.86, 95%CI 1.10-21.51, respectively), regardless of birth weight, pubertal stage, age, and bone/chronological age ratio. CONCLUSIONS In patients with CPP, leptin levels and higher LAR values appear to be associated with significantly greater weight gain during GhRHa treatment, particularly in girls starting with BMI < 94 percentile.
Collapse
Affiliation(s)
- Jessie Nallely Zurita-Cruz
- Medicine Faculty of Autonomous National University, Clinical Research Department, Hospital Infantil de México Federico Gómez, Ciudad de Mexico, Mexico
| | - Miguel Angel Villasís-Keever
- Unit of Analysis and Synthesis of the Evidence, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
- *Correspondence: Miguel Angel Villasís-Keever,
| | - Leticia Manuel-Apolinar
- Department of Endocrinology Research, Hospital of Medical Specialties, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - Leticia Damasio-Santana
- Department of Endocrinology Research, Hospital of Medical Specialties, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - Eulalia Garrido-Magaña
- Department of Pediatric Endocrinology, Children’s Hospital, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | - Aleida de Jesús Rivera-Hernández
- Department of Pediatric Endocrinology, Children’s Hospital, National Medical Center XXI Century, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| |
Collapse
|
36
|
Neuronal Nitric Oxide Synthase as a Shared Target for the Effects of Adiponectin and Resistin on the Mechanical Responses of the Mouse Gastric Fundus. Int J Mol Sci 2022; 23:ijms232416113. [PMID: 36555750 PMCID: PMC9781802 DOI: 10.3390/ijms232416113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
It has been reported that adiponectin (ADPN) and resistin are co-secreted by white mouse adipocytes and exert similar inhibitory effects in the mouse gastric fundus, in which resistin was observed to increase neuronal nitric oxide synthase (nNOS) expression. On these grounds, the present work aimed to investigate whether the effects of the two adipokines on the neurally-induced relaxant responses potentiate each other and whether there is a possible correlation with changes in nNOS expression in preparations from the mouse gastric fundus. In carbachol (CCh)-precontracted strips, electrical field stimulation elicited nitrergic relaxant responses, whose amplitude was increased by ADPN or resistin, but no additional enhancements were observed in their concomitant presence. Western blot and immunofluorescence analyses revealed that ADPN, like resistin, was able to up-regulate nNOS expression and to increase the percentage of nNOS-positive neurons in the myenteric plexus: co-treatment with the two adipokines did not induce additional changes. The results indicate that the two adipokines modulate nitrergic neurotransmission, and both do so by up-regulating nNOS expression. Therefore, nNOS appears to be a shared target for the two adipokines' effects, which, rather than mutually reinforcing each other, may represent a dual physiological control mechanism to guarantee gastric fundus relaxation.
Collapse
|
37
|
Mitić R, Cantoni F, Börlin CS, Post MJ, Jackisch L. A simplified and defined serum-free medium for cultivating fat across species. iScience 2022; 26:105822. [PMID: 36636339 PMCID: PMC9830212 DOI: 10.1016/j.isci.2022.105822] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/15/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cultivated meat is a promising technology with the potential to mitigate the ethical and environmental issues associated with traditional meat. Fat plays a key role in the meat flavor; therefore, development of suitable adipogenic protocols for livestock is essential. The traditional adipogenic cocktail containing IBMX, dexamethasone, insulin and rosiglitazone is not food-compatible. Here, we demonstrate that of the four inducers only insulin and rosiglitazone are necessary in both serum-free (DMAD) and serum-containing media, with DMAD outperforming FBS. Two glucocorticoid receptor activators, progesterone and hydrocortisone, found in DMAD and FBS, affect differentiation homogeneity, without playing an essential role in activating adipogenic genes. Importantly, this protocol leads to mature adipocytes in 3D culture. This was demonstrated in both media types and in four species: ruminant and monogastric. We therefore propose a simplified one-step adipogenic protocol which, given the replacement of rosiglitazone by a food-compatible PPARγ agonist, is suitable for making cultivated fat.
Collapse
Affiliation(s)
- Rada Mitić
- Mosa Meat B.V., Maastricht, Limburg 6229 PM, the Netherlands
- Department of Physiology, Maastricht University, Maastricht, Limburg 6211 LK, the Netherlands
| | | | | | - Mark J. Post
- Mosa Meat B.V., Maastricht, Limburg 6229 PM, the Netherlands
- Department of Physiology, Maastricht University, Maastricht, Limburg 6211 LK, the Netherlands
| | - Laura Jackisch
- Mosa Meat B.V., Maastricht, Limburg 6229 PM, the Netherlands
- Corresponding author
| |
Collapse
|
38
|
Scherbakov VI, Skosyreva GA, Ryabichenko TI, Obukhova OO. Cytokines and regulation of glucose and lipid metabolism in the obesity. OBESITY AND METABOLISM 2022. [DOI: 10.14341/omet12863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The article presents data of the influence of cytokines of different directions of glucose and lipid metabolism in obesity. A change of the basic paradigm regarding adipose tissue has contributed to a number of recent discoveries. This concerns such basic concepts as healthy and diseased adipocytes, and, as a consequence, changes of their metabolism under the influence of cytokins. Distinguishing the concept of organokines demonstrates that despite the common features of cytokine regulation, each organ has its own specifics features of cytokine regulation, each organ has its own specific an important section of this concept is the idea of the heterogeneity of adipose tissue. Knowledge of the function of adipose tissue localized in different compartments of the body is expanding. There are date about the possibility of transition of one type of adipose tissue to another. A possible mechanism linking adipose tissue inflammation and the formation of insulin resistance (IR) is presented in this paper. The mechanism of IR development is closely connected with to proinflammatory cytokins disordering the insulin signal, accompanied by a decrease of the work of glucose transporters. A decrease of the income of glucose into cells leads to a change of glycolysis level to an increase of the fatty acids oxidation. Cytokins are able to participate in the process of the collaboration of some cells with others, that occurs both during physiological and pathological process.
Collapse
Affiliation(s)
- V. I. Scherbakov
- Federal Research Center of Fundamental and Translational Medicine
| | - G. A. Skosyreva
- Federal Research Center of Fundamental and Translational Medicine
| | | | - O. O. Obukhova
- Federal Research Center of Fundamental and Translational Medicine
| |
Collapse
|
39
|
Qian X, Meng X, Zhang S, Zeng W. Neuroimmune regulation of white adipose tissues. FEBS J 2022; 289:7830-7853. [PMID: 34564950 DOI: 10.1111/febs.16213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/21/2021] [Accepted: 09/24/2021] [Indexed: 01/14/2023]
Abstract
The white adipose tissues (WAT) are located in distinct depots throughout the body. They serve as an energy reserve, providing fatty acids for other tissues via lipolysis when needed, and function as an endocrine organ to regulate systemic metabolism. Their activities are coordinated through intercellular communications among adipocytes and other cell types such as residential and infiltrating immune cells, which are collectively under neuronal control. The adipocytes and immune subtypes including macrophages/monocytes, eosinophils, neutrophils, group 2 innate lymphoid cells (ILC2s), T and B cells, dendritic cells (DCs), and natural killer (NK) cells display cellular and functional diversity in response to the energy states and contribute to metabolic homeostasis and pathological conditions. Accumulating evidence reveals that neuronal innervations control lipid deposition and mobilization via regulating lipolysis, adipocyte size, and cellularity. Vice versa, the neuronal innervations and activity are influenced by cellular factors in the WAT. Though the literature describing adipose tissue cells is too extensive to cover in detail, we strive to highlight a selected list of neuronal and immune components in this review. The cell-to-cell communications and the perspective of neuroimmune regulation are emphasized to enlighten the potential therapeutic opportunities for treating metabolic disorders.
Collapse
Affiliation(s)
- Xinmin Qian
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Xia Meng
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Shan Zhang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Wenwen Zeng
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China.,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| |
Collapse
|
40
|
Cruz-Ávila J, Hernández-Pérez E, González-González R, Bologna-Molina R, Molina-Frechero N. Periodontal Disease in Obese Patients; Interleukin-6 and C-Reactive Protein Study: A Systematic Review. Dent J (Basel) 2022; 10:225. [PMID: 36547041 PMCID: PMC9777236 DOI: 10.3390/dj10120225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022] Open
Abstract
Periodontal disease (PD) and obesity are characterized by a dysregulated inflammatory state. Both conditions trigger inflammatory and immune responses with an increase in proinflammatory cytokines such as Interleukin 6 (IL-6) and the release of inflammatory mediators such as C-reactive protein (CRP). Individuals with a high body mass index (BMI) present a chronic inflammatory state. The aim of the present study was to perform a systematic review of inflammatory markers (IL-6 and CRP) in obese patients with PD and their possible relationship by analyzing the levels of these markers. A digital literature search was performed in three databases-PubMed, SciElo and Medigraphic-through an advanced search for original articles, employing IL-6 and CRP in obese patients with PD, within a publication period from 2010 to 2021. PRISMA guidelines, the JADAD scale and a qualitative analysis of scientific evidence were performed using the Cochrane collaboration method and the RoB 2 assessment tool. Ten articles were included in this analysis with the variables recorded and associated with subjects with obesity and PD. Of the ten articles included, three analyzed IL-6 and CRP, four analyzed IL-6 and three analyzed CRP. In conclusion, and based on the available evidence, the aforementioned markers of inflammation demonstrate that there is a relationship between PD and obesity.
Collapse
Affiliation(s)
- Julieta Cruz-Ávila
- Dental Sciences, Department of Health Care, Universidad Autónoma Metropolitana Xochimilco (UAM-X), Mexico City 04960, Mexico
| | - Elizabeth Hernández-Pérez
- Department of Health Sciences, Universidad Autónoma Metropolitana Iztapalapa (UAM-I), Mexico City 09340, Mexico
| | - Rogelio González-González
- Department of Research, School of Dentistry, Juarez University of the Durango State (UJED), Durango 34000, Mexico
| | - Ronell Bologna-Molina
- Molecular Pathology Area, School of Dentistry, University of the Republic (UDELAR), Montevideo 11200, Uruguay
| | - Nelly Molina-Frechero
- Department of Health Care, Universidad Autónoma Metropolitana Xochimilco (UAM-X), Mexico City 04960, Mexico
| |
Collapse
|
41
|
Marchi PH, Vendramini THA, Perini MP, Zafalon RVA, Amaral AR, Ochamotto VA, Da Silveira JC, Dagli MLZ, Brunetto MA. Obesity, inflammation, and cancer in dogs: Review and perspectives. Front Vet Sci 2022; 9:1004122. [PMID: 36262532 PMCID: PMC9573962 DOI: 10.3389/fvets.2022.1004122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity is the most common nutritional disease in dogs, and its prevalence has increased in recent decades. Several countries have demonstrated a prevalence of obesity in dogs similar to that observed in humans. Chronic low-grade inflammation is a prominent basis used to explain how obesity results in numerous negative health consequences. This is well known and understood, and recent studies have pointed to the association between obesity and predisposition to specific types of cancers and their complications. Such elucidations are important because, like obesity, the prevalence of cancer in dogs has increased in recent decades, establishing cancer as a significant cause of death for these animals. In the same way, intensive advances in technology in the field of human and veterinary medicine (which even proposes the use of animal models) have optimized existing therapeutic methods, led to the development of innovative treatments, and shortened the time to diagnosis of cancer. Despite the great challenges, this review aims to highlight the evidence obtained to date on the association between obesity, inflammation, and cancer in dogs, and the possible pathophysiological mechanisms that link obesity and carcinogenesis. The potential to control cancer in animals using existing knowledge is also presented.
Collapse
Affiliation(s)
- Pedro H. Marchi
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Thiago H. A. Vendramini
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Mariana P. Perini
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Rafael V. A. Zafalon
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Andressa R. Amaral
- Veterinary Nutrology Service, Veterinary Teaching Hospital of the School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Vanessa A. Ochamotto
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil
| | - Juliano C. Da Silveira
- Laboratory of Molecular, Morphophysiology and Development (LMMD), Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Maria L. Z. Dagli
- Laboratory of Experimental and Comparative Oncology, Department of Pathology, School of Veterinary Medicine and Animal Science of the University of São Paulo, São Paulo, Brazil
| | - Marcio A. Brunetto
- Pet Nutrology Research Center, Department of Animal Nutrition and Production of the School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, Brazil,Veterinary Nutrology Service, Veterinary Teaching Hospital of the School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil,*Correspondence: Marcio A. Brunetto
| |
Collapse
|
42
|
Modena DAO, Soares CD, Martignago CCS, Almeida S, Cazzo E, Chaim EA. Effects of LED photobiomodulation therapy on the subcutaneous fatty tissue of obese individuals - histological and immunohistochemical analysis. J COSMET LASER THER 2022; 24:84-90. [PMID: 36074934 DOI: 10.1080/14764172.2022.2109677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Photobiomodulation therapy (PBMT) has become an adjuvant therapeutic possibility in body remodeling procedures. Given this scenario, this study was proposed with the aim of evaluating the effects of PBMT to Light Emitting Diode (LED) associating the red (630 nm) and infrared (850 nm) wavelengths in the subcutaneous fatty tissue. This controlled study of comparative intervention that evaluated a sample of subcutaneous fatty tissue from women with grade II obesity. The participants received the LED PBMT treatment with associated red and infrared wavelengths sequentially on the left side of the abdomen and the right side was considered as control, with the collection of biological material performed at the time of bariatric surgery. For histological and immunohistochemical evaluation, Caspase 3, Cleaved Caspase 3, CD68+, HSL and adipophilin markers were used. The participants showed positivity in the expression of Caspase 3 and Cleaved Caspase (p < .0001), CD68+ macrophages (p < .0001), HSL (p < .0001) and adipophilin (p < .0013) in the intervention sample when compared to the control. PBMT and LED associating red and infrared wavelengths were able to promote autophagic lipolysis induced by adipocyte cell apoptosis in the subcutaneous tissue of obese individuals.
Collapse
Affiliation(s)
| | - Ciro Dantas Soares
- Oral Pathology Section, Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba, Brazil
| | | | - Stephani Almeida
- Department of Surgery, Medical Sciences Institute, Campinas University (Unicamp), São Paulo, Brazil
| | - Everton Cazzo
- Department of Surgery, Medical Sciences Institute, Campinas University (Unicamp), São Paulo, Brazil
| | - Elinton Adami Chaim
- Department of Surgery, Medical Sciences Institute, Campinas University (Unicamp), São Paulo, Brazil
| |
Collapse
|
43
|
Abstract
Adipose tissue is a complex heterogeneous tissue composed of adipocytes along with several non-adipocyte populations, including blood, stromal, endothelial, and progenitor cells, as well as extracellular matrix (ECM) components. As obesity progresses, the adipose tissue expands dynamically through adipocyte hypertrophy and/or hyperplasia. This expansion requires continuous ECM remodeling to properly accommodate the size increase as well as functional changes. Upon reaching a hypertrophic threshold beyond the adipocyte buffering capacity, excess ECM components are deposited, causing fibrosis and ultimately resulting in unhealthy metabolic maladaptation. These complex ECM remodeling processes in adipose tissues are regulated by the local environment, several key mediators, and genetic factors that are closely linked to insulin sensitivity. It is crucial to understand how adipocytes interact with nonadipocyte populations and various mediators (i.e., immune cells, ECM components, and adipokines) during these processes. This mini-review provides an overview of the latest research into the biology of obesity-induced adipose tissue fibrosis and its related clinical manifestations, providing insight for further studies aimed at controlling metabolic syndrome and its comorbidities.
Collapse
Affiliation(s)
- Yutaka Hasegawa
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Japan
| |
Collapse
|
44
|
Chen D, Lin Y, Zhao N, Wang Y, Li Y. Hoxa5 Inhibits the Proliferation and Induces Adipogenic Differentiation of Subcutaneous Preadipocytes in Goats. Animals (Basel) 2022; 12:ani12141859. [PMID: 35883405 PMCID: PMC9311789 DOI: 10.3390/ani12141859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
The homeobox a5 (Hoxa5) plays considerable roles in the differentiation and lipid metabolism of adipocytes. However, the current knowledge about the mechanistic roles and functions of Hoxa5 in goat subcutaneous preadipocyte remains unclear. Therefore, Hoxa5 loss-of-function and gain-of-function was performed to reveal its functions in adipogenesis. For differentiation, overexpression of Hoxa5 notably increased the expression of adipogenic genes (PPARγ, CEBP/α, CEBP/β, AP2, and SREBP1), as well as promoted goat subcutaneous preadipocyte lipid accumulation. Knockdown of Hoxa5 mediated by siRNA technique significantly inhibited its differentiation and suppressed the accumulation of lipid droplets. Regarding proliferation, overexpression of Hoxa5 reduced the number of cells stained with crystal violet, and inhibited mRNA expression of the marker genes including CCNE1, PCNA, CCND1, and CDK2, and also significantly reduced EdU-positive rates. Consistently, knockdown of Hoxa5 demonstrated the opposite tendency. In conclusion, these data demonstrated that Hoxa5 promotes adipogenic differentiation of goat subcutaneous preadipocyte and inhibits its proliferation in vitro.
Collapse
Affiliation(s)
- Dingshuang Chen
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu 610041, China; (D.C.); (Y.L.); (N.Z.); (Y.W.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
| | - Yaqiu Lin
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu 610041, China; (D.C.); (Y.L.); (N.Z.); (Y.W.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
| | - Nan Zhao
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu 610041, China; (D.C.); (Y.L.); (N.Z.); (Y.W.)
| | - Yong Wang
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu 610041, China; (D.C.); (Y.L.); (N.Z.); (Y.W.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Key Laboratory of Sichuan Province for Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation, Southwest Minzu University, Chengdu 610041, China
| | - Yanyan Li
- College of Animal Science and Veterinary, Southwest Minzu University, Chengdu 610041, China; (D.C.); (Y.L.); (N.Z.); (Y.W.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
45
|
Idrizaj E, Garella R, Nistri S, Squecco R, Baccari MC. Evidence that resistin acts on the mechanical responses of the mouse gastric fundus. Front Physiol 2022; 13:930197. [PMID: 35910552 PMCID: PMC9334560 DOI: 10.3389/fphys.2022.930197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/27/2022] [Indexed: 11/30/2022] Open
Abstract
Resistin, among its several actions, has been reported to exert central anorexigenic effects in rodents. Some adipokines which centrally modulate food intake have also been reported to affect the activity of gastric smooth muscle, whose motor responses represent a source of peripheral signals implicated in the control of the hunger-satiety cycle through the gut-brain axis. On this basis, in the present experiments, we investigated whether resistin too could affect the mechanical responses in the mouse longitudinal gastric fundal strips. Electrical field stimulation (EFS) elicited tetrodotoxin- and atropine-sensitive contractile responses. Resistin reduced the amplitude of the EFS-induced contractile responses. This effect was no longer detected in the presence of L-NNA, a nitric oxide (NO) synthesis inhibitor. Resistin did not influence the direct muscular response to methacholine. In the presence of carbachol and guanethidine, EFS elicited inhibitory responses whose amplitude was increased by resistin. L-NNA abolished the inhibitory responses evoked by EFS, indicating their nitrergic nature. In the presence of L-NNA, resistin did not have any effect on the EFS-evoked inhibitory responses. Western blot and immunofluorescence analysis revealed a significant increase in neuronal nitric oxide synthase (nNOS) expression in neurons of the myenteric plexus following resistin exposure. In conclusion, the present results offer the first evidence that resistin acts on the gastric fundus, likely through a modulatory action on the nitrergic neurotransmission.
Collapse
Affiliation(s)
- Eglantina Idrizaj
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
- *Correspondence: Eglantina Idrizaj, ; Maria Caterina Baccari,
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Silvia Nistri
- Department of Experimental and Clinical Medicine, Research Unit of Histology and Embryology, University of Florence, Florence, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
| | - Maria Caterina Baccari
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Florence, Italy
- *Correspondence: Eglantina Idrizaj, ; Maria Caterina Baccari,
| |
Collapse
|
46
|
Chakarov S, Blériot C, Ginhoux F. Role of adipose tissue macrophages in obesity-related disorders. J Exp Med 2022; 219:213212. [PMID: 35543703 PMCID: PMC9098652 DOI: 10.1084/jem.20211948] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 11/04/2022] Open
Abstract
The obesity epidemic has led researchers and clinicians to reconsider the etiology of this disease and precisely decipher its molecular mechanisms. The excessive accumulation of fat by cells, most notably adipocytes, which play a key role in this process, has many repercussions in tissue physiology. Herein, we focus on how macrophages, immune cells well known for their tissue gatekeeping functions, assume fundamental, yet ill-defined, roles in the genesis and development of obesity-related metabolic disorders. We first discuss the determinants of the biology of these cells before introducing the specifics of the adipose tissue environment, while highlighting its heterogeneity. Finally, we detail how obesity transforms both adipose tissue and local macrophage populations. Understanding macrophage diversity and their cross talk with the diverse cell types constituting the adipose tissue environment will allow us to frame the therapeutic potential of adipose tissue macrophages in obesity.
Collapse
Affiliation(s)
- Svetoslav Chakarov
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Camille Blériot
- Institut Gustave Roussy, Batiment de Médecine Moléculaire, Villejuif, France
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Shanghai JiaoTong University School of Medicine, Shanghai, China.,Institut Gustave Roussy, Batiment de Médecine Moléculaire, Villejuif, France.,Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore, Singapore.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| |
Collapse
|
47
|
Bhandari C, Agnihotr N. Pine nut oil supplementation alleviates the obesogenic effects in high-fat diet induced obese rats: A comparative study between epididymal and retroperitoneal adipose tissue. Nutr Res 2022; 106:85-100. [DOI: 10.1016/j.nutres.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 11/24/2022]
|
48
|
da Silva IV, Garra S, Calamita G, Soveral G. The Multifaceted Role of Aquaporin-9 in Health and Its Potential as a Clinical Biomarker. Biomolecules 2022; 12:biom12070897. [PMID: 35883453 PMCID: PMC9313442 DOI: 10.3390/biom12070897] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 12/10/2022] Open
Abstract
Aquaporins (AQPs) are transmembrane channels essential for water, energy, and redox homeostasis, with proven involvement in a variety of pathophysiological conditions such as edema, glaucoma, nephrogenic diabetes insipidus, oxidative stress, sepsis, cancer, and metabolic dysfunctions. The 13 AQPs present in humans are widely distributed in all body districts, drawing cell lineage-specific expression patterns closely related to cell native functions. Compelling evidence indicates that AQPs are proteins with great potential as biomarkers and targets for therapeutic intervention. Aquaporin-9 (AQP9) is the most expressed in the liver, with implications in general metabolic and redox balance due to its aquaglyceroporin and peroxiporin activities, facilitating glycerol and hydrogen peroxide (H2O2) diffusion across membranes. AQP9 is also expressed in other tissues, and their altered expression is described in several human diseases, such as liver injury, inflammation, cancer, infertility, and immune disorders. The present review compiles the current knowledge of AQP9 implication in diseases and highlights its potential as a new biomarker for diagnosis and prognosis in clinical medicine.
Collapse
Affiliation(s)
- Inês V. da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Sabino Garra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy;
| | - Giuseppe Calamita
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy;
- Correspondence: (G.C.); (G.S.)
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
- Correspondence: (G.C.); (G.S.)
| |
Collapse
|
49
|
Weber BZC, Arabaci DH, Kir S. Metabolic Reprogramming in Adipose Tissue During Cancer Cachexia. Front Oncol 2022; 12:848394. [PMID: 35646636 PMCID: PMC9135324 DOI: 10.3389/fonc.2022.848394] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/14/2022] [Indexed: 12/17/2022] Open
Abstract
Cancer cachexia is a disorder of energy balance characterized by the wasting of adipose tissue and skeletal muscle resulting in severe weight loss with profound influence on morbidity and mortality. Treatment options for cancer cachexia are still limited. This multifactorial syndrome is associated with changes in several metabolic pathways in adipose tissue which is affected early in the course of cachexia. Adipose depots are involved in energy storage and consumption as well as endocrine functions. In this mini review, we discuss the metabolic reprogramming in all three types of adipose tissues – white, brown, and beige – under the influence of the tumor macro-environment. Alterations in adipose tissue lipolysis, lipogenesis, inflammation and adaptive thermogenesis of beige/brown adipocytes are highlighted. Energy-wasting circuits in adipose tissue impacts whole-body metabolism and particularly skeletal muscle. Targeting of key molecular players involved in the metabolic reprogramming may aid in the development of new treatment strategies for cancer cachexia.
Collapse
|
50
|
Xue T, Xu H, Du Y, Ding J, Su Y, Lin Z. Browning of white adipocytes by gold nanocluster mediated electromagnetic induction heating hyperthermia. NANOSCALE 2022; 14:1187-1194. [PMID: 35005765 DOI: 10.1039/d1nr07263c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Browning of white adipose tissue (WAT) is becoming an attractive therapeutic target for obesity. Great efforts have been made to develop effective approaches to induce browning. Unfortunately, the current methods suffer from a series of disadvantages, such as low efficiency, unsatisfactory stability, and side effects. Herein, we report a new approach to induce browning of 3T3-L1 white adipocytes based on electromagnetic induction heating (EIH) hyperthermia. In particular, adipocyte-targeting aptamer modified gold nanoclusters (Apt-AuNCs) were employed as the mediators of EIH. Apt-AuNCs had good biocompatibility and excellent targeting performance with white adipocytes. After Apt-AuNCs/EIH treatment, adipocytes with characteristic multilocular and small lipid droplets increased, and the content of triglycerides reduced effectively. Apt-AuNCs/EIH treatment also significantly increased the mitochondrial activity in adipocytes. Meanwhile, the mRNA levels of key genes that are involved in browning, for example UCP1, PRDM16, PPARγ, and PGC-1α, were upregulated. Finally, the induction mechanism of Apt-AuNCs/EIH on browning of white adipocytes was explained by the synergistic effects of EIH hyperthermia and pharmacological action of AuNCs. To the best of our knowledge, this is the first attempt on induction of browning by metal nanocluster-mediated EIH hyperthermia, thus providing an interesting and efficient channel for obesity treatment.
Collapse
Affiliation(s)
- Tiantian Xue
- Research Center of Basic Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Hejie Xu
- Research Center of Basic Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Yanhui Du
- Research Center of Basic Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Jialuo Ding
- Research Center of Basic Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Yu Su
- Research Center of Basic Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Zhenkun Lin
- Research Center of Basic Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|