1
|
Carper D, Lac M, Coue M, Labour A, Märtens A, Banda JAA, Mazeyrie L, Mechta M, Ingerslev LR, Elhadad M, Petit JV, Maslo C, Monbrun L, Del Carmine P, Sainte-Marie Y, Bourlier V, Laurens C, Mithieux G, Joanisse DR, Coudray C, Feillet-Coudray C, Montastier E, Viguerie N, Tavernier G, Waldenberger M, Peters A, Wang-Sattler R, Adamski J, Suhre K, Gieger C, Kastenmüller G, Illig T, Lichtinghagen R, Seissler J, Mounier R, Hiller K, Jordan J, Barrès R, Kuhn M, Pesta D, Moro C. Loss of atrial natriuretic peptide signaling causes insulin resistance, mitochondrial dysfunction, and low endurance capacity. SCIENCE ADVANCES 2024; 10:eadl4374. [PMID: 39383215 PMCID: PMC11463261 DOI: 10.1126/sciadv.adl4374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 09/06/2024] [Indexed: 10/11/2024]
Abstract
Type 2 diabetes (T2D) and obesity are strongly associated with low natriuretic peptide (NP) plasma levels and a down-regulation of NP guanylyl cyclase receptor-A (GCA) in skeletal muscle and adipose tissue. However, no study has so far provided evidence for a causal link between atrial NP (ANP)/GCA deficiency and T2D pathogenesis. Here, we show that both systemic and skeletal muscle ANP/GCA deficiencies in mice promote metabolic disturbances and prediabetes. Skeletal muscle insulin resistance is further associated with altered mitochondrial function and impaired endurance running capacity. ANP/GCA-deficient mice exhibit increased proton leak and reduced content of mitochondrial oxidative phosphorylation proteins. We further show that GCA is related to several metabolic traits in T2D and positively correlates with markers of oxidative capacity in human skeletal muscle. Together, these results indicate that ANP/GCA signaling controls muscle mitochondrial integrity and oxidative capacity in vivo and plays a causal role in the development of prediabetes.
Collapse
Affiliation(s)
- Deborah Carper
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Marlène Lac
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Marine Coue
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Axel Labour
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Andre Märtens
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig and Physikalisch-Technische Bundesanstalt, Brunswick, Germany
| | - Jorge Alberto Ayala Banda
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Laurène Mazeyrie
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Mie Mechta
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lars Roed Ingerslev
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mohamed Elhadad
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | | | - Claire Maslo
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Laurent Monbrun
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Peggy Del Carmine
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR, 5261 Lyon, France
| | - Yannis Sainte-Marie
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Virginie Bourlier
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Claire Laurens
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | | | - Denis R. Joanisse
- Department of Kinesiology, Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, Canada
| | - Charles Coudray
- Dynamique Musculaire Et Métabolisme, INRAE, UMR866, Université Montpellier, Montpellier, France
| | | | - Emilie Montastier
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Nathalie Viguerie
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Geneviève Tavernier
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| | - Melanie Waldenberger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Rui Wang-Sattler
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Jerzy Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Karsten Suhre
- Bioinformatics Core, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Christian Gieger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Thomas Illig
- Hannover Unified Biobank, Hannover Medical School, Hanover, Germany
| | - Ralf Lichtinghagen
- Department of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Jochen Seissler
- Diabetes Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU, München, Germany
| | - Remy Mounier
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, INSERM U1315, CNRS UMR, 5261 Lyon, France
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig and Physikalisch-Technische Bundesanstalt, Brunswick, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Medical Faculty, University of Cologne, Cologne, Germany
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Dominik Pesta
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Medical Faculty, University of Cologne, Cologne, Germany
- Center for Endocrinology, Diabetes, and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Cedric Moro
- Institute of Metabolic and Cardiovascular Diseases, INSERM/Paul Sabatier University, UMR1297, Team MetaDiab, Toulouse, France
| |
Collapse
|
2
|
Pape DJ, Falls-Hubert KC, Merrill RA, Ahmed A, Qian Q, McGivney GR, Sobieralski P, Rauckhorst AJ, Yang L, Taylor EB. The mitochondrial dicarboxylate carrier mediates in vivo hepatic gluconeogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612761. [PMID: 39314408 PMCID: PMC11419125 DOI: 10.1101/2024.09.12.612761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Hepatic gluconeogenesis (GNG) is essential for maintaining euglycemia during prolonged fasting. However, GNG becomes pathologically elevated and drives chronic hyperglycemia in type 2 diabetes (T2D). Lactate/pyruvate is a major GNG substrate known to be imported into mitochondria for GNG. Yet, the subsequent mitochondrial carbon export mechanisms required to supply the extra-mitochondrial canonical GNG pathway have not been genetically delineated. Here, we evaluated the role of the mitochondrial dicarboxylate carrier (DiC) in mediating GNG from lactate/pyruvate. We generated liver-specific DiC knockout (DiC LivKO) mice. During lactate/pyruvate tolerance tests, DiC LivKO decreased plasma glucose excursion and 13C-lactate/-pyruvate flux into hepatic and plasma glucose. In a Western diet (WD) feeding model of T2D, acute DiC LivKO after induction of obesity decreased lactate/pyruvate-driven GNG, hyperglycemia, and hyperinsulinemia. Our results show that mitochondrial carbon export through the DiC mediates GNG and that the DiC contributes to impaired glucose homeostasis in a mouse model of T2D.
Collapse
Affiliation(s)
- Daniel J Pape
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Kelly C Falls-Hubert
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Ronald A Merrill
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Adnan Ahmed
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Qingwen Qian
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Gavin R McGivney
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Paulina Sobieralski
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Adam J Rauckhorst
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Ling Yang
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Eric B Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| |
Collapse
|
3
|
Estes SK, Shiota C, O'Brien TP, Printz RL, Shiota M. The impact of glucagon to support postabsorptive glucose flux and glycemia in healthy rats and its attenuation in male Zucker diabetic fatty rats. Am J Physiol Endocrinol Metab 2024; 326:E308-E325. [PMID: 38265288 PMCID: PMC11193518 DOI: 10.1152/ajpendo.00192.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Hyperglucagonemia is a hallmark of type 2 diabetes (T2DM), yet the role of elevated plasma glucagon (P-GCG) to promote excessive postabsorptive glucose production and contribute to hyperglycemia in patients with this disease remains debatable. We investigated the acute action of P-GCG to safeguard/support postabsorptive endogenous glucose production (EGP) and euglycemia in healthy Zucker control lean (ZCL) rats. Using male Zucker diabetic fatty (ZDF) rats that exhibit the typical metabolic disorders of human T2DM, such as excessive EGP, hyperglycemia, hyperinsulinemia, and hyperglucagonemia, we examined the ability of hyperglucagonemia to promote greater rates of postabsorptive EGP and hyperglycemia. Euglycemic or hyperglycemic basal insulin (INS-BC) and glucagon (GCG-BC) clamps were performed in the absence or during an acute setting of glucagon deficiency (GCG-DF, ∼10% of basal), either alone or in combination with insulin deficiency (INS-DF, ∼10% of basal). Glucose appearance, disappearance, and cycling rates were measured using [2-3H] and [3-3H]-glucose. In ZCL rats, GCG-DF reduced the levels of hepatic cyclic AMP, EGP, and plasma glucose (PG) by 50%, 32%, and 50%, respectively. EGP fell in the presence GCG-DF and INS-BC, but under GCG-DF and INS-DF, EGP and PG increased two- and threefold, respectively. GCG-DF revealed the hyperglucagonemia present in ZDF rats lacked the ability to regulate hepatic intracellular cyclic AMP levels and glucose flux, since EGP and PG levels fell by only 10%. We conclude that the liver in T2DM suffers from resistance to all three major regulatory factors, glucagon, insulin, and glucose, thus leading to a loss of metabolic flexibility.NEW & NOTEWORTHY In postabsorptive state, basal plasma insulin (P-INS) and plasma glucose (PG) act dominantly to increase hepatic glucose cycling and reduce endogenous glucose production (EGP) and PG in healthy rats, which is only counteracted by the acute action of basal plasma glucagon (P-GCG) to support EGP and euglycemia. Hyperglucagonemia, a hallmark of type 2 diabetes (T2DM) present in Zucker diabetic fatty (ZDF) rats, is not the primary mediator of hyperglycemia and high EGP as commonly thought; instead, the liver is resistant to glucagon as well as insulin and glucose.
Collapse
Affiliation(s)
- Shanea K Estes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Chiyo Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Tracy P O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Richard L Printz
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States
| |
Collapse
|
4
|
Klip A, De Bock K, Bilan PJ, Richter EA. Transcellular Barriers to Glucose Delivery in the Body. Annu Rev Physiol 2024; 86:149-173. [PMID: 38345907 DOI: 10.1146/annurev-physiol-042022-031657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Glucose is the universal fuel of most mammalian cells, and it is largely replenished through dietary intake. Glucose availability to tissues is paramount for the maintenance of homeostatic energetics and, hence, supply should match demand by the consuming organs. In its journey through the body, glucose encounters cellular barriers for transit at the levels of the absorbing intestinal epithelial wall, the renal epithelium mediating glucose reabsorption, and the tight capillary endothelia (especially in the brain). Glucose transiting through these cellular barriers must escape degradation to ensure optimal glucose delivery to the bloodstream or tissues. The liver, which stores glycogen and generates glucose de novo, must similarly be able to release it intact to the circulation. We present the most up-to-date knowledge on glucose handling by the gut, liver, brain endothelium, and kidney, and discuss underlying molecular mechanisms and open questions. Diseases associated with defects in glucose delivery and homeostasis are also briefly addressed. We propose that the universal problem of sparing glucose from catabolism in favor of translocation across the barriers posed by epithelia and endothelia is resolved through common mechanisms involving glucose transfer to the endoplasmic reticulum, from where glucose exits the cells via unconventional cellular mechanisms.
Collapse
Affiliation(s)
- Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada;
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada;
| | - Erik A Richter
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Bekebrede AF, de Boer VCJ, Gerrits WJJ, Keijer J. Functional and molecular profiling of fasted piglets reveals decreased energy metabolic function and cell proliferation in the small intestine. Am J Physiol Gastrointest Liver Physiol 2023; 325:G539-G555. [PMID: 37847725 PMCID: PMC10894671 DOI: 10.1152/ajpgi.00240.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
The small intestine requires energy to exert its important role in nutrient uptake and barrier function. Pigs are an important source of food and a model for humans. Young piglets and infants can suffer from periods of insufficient food intake. Whether this functionally affects the small intestinal epithelial cell (IEC) metabolic capacity and how this may be associated with an increased vulnerability to intestinal disease is unknown. We therefore performed a 48-h fasting intervention in young piglets. After feeding a standard weaning diet for 2 wk, 6-wk-old piglets (n = 16/group) were fasted for 48 h, and midjejunal IECs were collected upon euthanasia. Functional metabolism of isolated IECs was analyzed with the Seahorse XF analyzer and gene expression was assessed using RNA-sequencing. Fasting decreased the mitochondrial and glycolytic function of the IECs by 50% and 45%, respectively (P < 0.0001), signifying that overall metabolic function was decreased. The RNA-sequencing results corroborated our functional metabolic measurements, showing that particularly pathways related to mitochondrial energy production were decreased. Besides oxidative metabolic pathways, decreased cell-cycle progression pathways were most regulated in the fasted piglets, which were confirmed by 43% reduction of Ki67-stained cells (P < 0.05). Finally, the expression of barrier function genes was reduced upon fasting. In conclusion, we found that the decreased IEC energy metabolic function in response to fasting is supported by a decreased gene expression of mitochondrial pathways and is likely linked to the observed decreased intestinal cell proliferation and barrier function, providing insight into the vulnerability of piglets, and infants, to decreased food intake.NEW & NOTEWORTHY Fasting is identified as one of the underlying causes potentiating diarrhea development, both in piglets and humans. With this study, we demonstrate that fasting decreases the metabolism of intestinal epithelial cells, on a functional and transcriptional level. Transcriptional and histological data also show decreased intestinal cell proliferation. As such, fasting-induced intestinal energy shortage could contribute to intestinal dysfunction upon fasting.
Collapse
Affiliation(s)
- Anna F Bekebrede
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
- Animal Nutrition Group, Wageningen University, Wageningen, The Netherlands
| | - Vincent C J de Boer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Walter J J Gerrits
- Animal Nutrition Group, Wageningen University, Wageningen, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
6
|
Onodera T, Wang MY, Rutkowski JM, Deja S, Chen S, Balzer MS, Kim DS, Sun X, An YA, Field BC, Lee C, Matsuo EI, Mizerska M, Sanjana I, Fujiwara N, Kusminski CM, Gordillo R, Gautron L, Marciano DK, Hu MC, Burgess SC, Susztak K, Moe OW, Scherer PE. Endogenous renal adiponectin drives gluconeogenesis through enhancing pyruvate and fatty acid utilization. Nat Commun 2023; 14:6531. [PMID: 37848446 PMCID: PMC10582045 DOI: 10.1038/s41467-023-42188-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
Adiponectin is a secretory protein, primarily produced in adipocytes. However, low but detectable expression of adiponectin can be observed in cell types beyond adipocytes, particularly in kidney tubular cells, but its local renal role is unknown. We assessed the impact of renal adiponectin by utilizing male inducible kidney tubular cell-specific adiponectin overexpression or knockout mice. Kidney-specific adiponectin overexpression induces a doubling of phosphoenolpyruvate carboxylase expression and enhanced pyruvate-mediated glucose production, tricarboxylic acid cycle intermediates and an upregulation of fatty acid oxidation (FAO). Inhibition of FAO reduces the adiponectin-induced enhancement of glucose production, highlighting the role of FAO in the induction of renal gluconeogenesis. In contrast, mice lacking adiponectin in the kidney exhibit enhanced glucose tolerance, lower utilization and greater accumulation of lipid species. Hence, renal adiponectin is an inducer of gluconeogenesis by driving enhanced local FAO and further underlines the important systemic contribution of renal gluconeogenesis.
Collapse
Affiliation(s)
- Toshiharu Onodera
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US
| | - May-Yun Wang
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US
| | - Joseph M Rutkowski
- Division of Lymphatic Biology, Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, TX, USA
| | - Stanislaw Deja
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, US
| | - Shiuhwei Chen
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US
| | - Michael S Balzer
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Department of Nephrology and Medical Intensive Care, Charité, Universitätsmedizin Berlin, 10117, Berlin, Germany
- Berlin Institute of Health at Charité, Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Clinician Scientist Program, 10117, Berlin, Germany
| | - Dae-Seok Kim
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US
| | - Xuenan Sun
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US
| | - Yu A An
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US
- Department of Anesthesiology, Critical Care and Pain Medicine, UT Health Science Center at Houston, Houston, TX, USA
| | - Bianca C Field
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US
| | - Charlotte Lee
- Center for Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ei-Ichi Matsuo
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Monika Mizerska
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, US
| | - Ina Sanjana
- Solutions COE, Analytical & Measuring Instruments Division, Shimadzu Corporation, Kyoto, Japan
| | - Naoto Fujiwara
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Christine M Kusminski
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US
| | - Ruth Gordillo
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US
| | - Laurent Gautron
- Center for Hypothalamic Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Denise K Marciano
- Departments of Cell Biology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shawn C Burgess
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, US
| | - Katalin Susztak
- Renal, Electrolyte, and Hypertension Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Orson W Moe
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, US.
- Departments of Cell Biology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
7
|
Jacouton E, Mondot S, Langella P, Bermúdez-Humarán LG. Impact of Oral Administration of Lactiplantibacillus plantarum Strain CNCM I-4459 on Obesity Induced by High-Fat Diet in Mice. Bioengineering (Basel) 2023; 10:1151. [PMID: 37892881 PMCID: PMC10604482 DOI: 10.3390/bioengineering10101151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Recent evidence suggests that some lactobacilli strains, particularly Lactiplantibacillus plantarum, have a beneficial effect on obesity-associated syndromes. Several studies have investigated probiotic challenges in models of high-fat diet (HFD)-induced obesity, specifically with respect to its impact on hepatic and/or adipocyte metabolism, gut inflammation and epithelial barrier integrity, and microbiota composition. However, only a few studies have combined these aspects to generate a global understanding of how probiotics exert their protective effects. Here, we used the probiotic strain L. plantarum CNCM I-4459 and explored its impact on a mouse model of HFD-induced obesity. Briefly, mice were administered 1 × 109 CFUs/day and fed HFD for 12 weeks. Treatment with this strain improved insulin sensitivity by lowering serum levels of fasting glucose and fructosamine. Administration of the probiotic also affected the transport and metabolism of glucose, resulting in the downregulation of the hepatic Glut-4 and G6pase genes. Additionally, L. plantarum CNCM I-4459 promoted a decreased concentration of LDL-c and modulated hepatic lipid metabolism (downregulation of Fasn, Plin, and Cpt1α genes). Probiotic treatment also restored HFD-disrupted intestinal microbial composition by increasing microbial diversity and lowering the ratio of Firmicutes to Bacteroidetes. In conclusion, this probiotic strain represents a potential approach for at least partial restoration of the glucose sensitivity and lipid disruption that is associated with obesity.
Collapse
Affiliation(s)
| | | | | | - Luis G. Bermúdez-Humarán
- Institut National de Recherche pour l’Agriculture et l’Environnement (INRAE), AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France; (E.J.); (S.M.); (P.L.)
| |
Collapse
|
8
|
Lallement J, Raho I, Merlen G, Rainteau D, Croyal M, Schiffano M, Kassis N, Doignon I, Soty M, Lachkar F, Krempf M, Van Hul M, Cani PD, Foufelle F, Amouyal C, Le Stunff H, Magnan C, Tordjmann T, Cruciani-Guglielmacci C. Hepatic deletion of serine palmitoyl transferase 2 impairs ceramide/sphingomyelin balance, bile acids homeostasis and leads to liver damage in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159333. [PMID: 37224999 DOI: 10.1016/j.bbalip.2023.159333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/24/2023] [Accepted: 04/30/2023] [Indexed: 05/26/2023]
Abstract
Ceramides (Cer) have been shown as lipotoxic inducers, which disturb numerous cell-signaling pathways, leading to metabolic disorders such as type 2 diabetes. In this study, we aimed to determine the role of de novo hepatic ceramide synthesis in energy and liver homeostasis in mice. We generated mice lacking serine palmitoyltransferase 2 (Sptlc2), the rate limiting enzyme of ceramide de novo synthesis, in liver under albumin promoter. Liver function, glucose homeostasis, bile acid (BA) metabolism and hepatic sphingolipids content were assessed using metabolic tests and LC-MS. Despite lower expression of hepatic Sptlc2, we observed an increased concentration of hepatic Cer, associated with a 10-fold increase in neutral sphingomyelinase 2 (nSMase2) expression, and a decreased sphingomyelin content in the liver. Sptlc2ΔLiv mice were protected against obesity induced by high fat diet and displayed a defect in lipid absorption. In addition, an important increase in tauro-muricholic acid was associated with a downregulation of the nuclear BA receptor FXR target genes. Sptlc2 deficiency also enhanced glucose tolerance and attenuated hepatic glucose production, while the latter effect was dampened in presence of nSMase2 inhibitor. Finally, Sptlc2 disruption promoted apoptosis, inflammation and progressive development of hepatic fibrosis, worsening with age. Our data suggest a compensatory mechanism to regulate hepatic ceramides content from sphingomyelin hydrolysis, with deleterious impact on liver homeostasis. In addition, our results show the involvement of hepatic sphingolipid modulation in BA metabolism and hepatic glucose production in an insulin-independent manner, which highlight the still under-researched role of ceramides in many metabolic functions.
Collapse
Affiliation(s)
- Justine Lallement
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Ilyès Raho
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | | | - Dominique Rainteau
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Hôpital Saint Antoine, Biochemistry Department, Paris, France
| | - Mikael Croyal
- Université de Nantes, CHU Nantes, CNRS, INSERM, l'institut du thorax, F-44000 Nantes, France; Université de Nantes, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, F-44000 Nantes, France; Plateforme de Spectrométrie de Masse du CRNH-O, UMR1280, Nantes, France
| | - Melody Schiffano
- Plateforme de Spectrométrie de Masse du CRNH-O, UMR1280, Nantes, France
| | - Nadim Kassis
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | | | - Maud Soty
- Université Claude Bernard Lyon 1, Université de Lyon, INSERM UMR-S1213, Lyon, France
| | - Floriane Lachkar
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, 75006 Paris, France
| | | | - Matthias Van Hul
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain (Université catholique de Louvain), 1200 Brussels, Belgium; Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300 Wavre, Belgium
| | - Patrice D Cani
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, UCLouvain (Université catholique de Louvain), 1200 Brussels, Belgium; Walloon Excellence in Life Sciences and BIOtechnology (WELBIO) department, WEL Research Institute (WELRI), avenue Pasteur, 6, 1300 Wavre, Belgium
| | - Fabienne Foufelle
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, 75006 Paris, France
| | - Chloé Amouyal
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Hervé Le Stunff
- Institut des Neurosciences Paris-Saclay, CNRS UMR 9197, Université Paris Saclay, France
| | - Christophe Magnan
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | | | | |
Collapse
|
9
|
Fiorentino TV, De Vito F, Suraci E, Marasco R, Hribal ML, Luzza F, Sesti G. Obesity and overweight are linked to increased sodium-glucose cotransporter 1 and glucose transporter 5 levels in duodenum. Obesity (Silver Spring) 2023; 31:724-731. [PMID: 36746764 DOI: 10.1002/oby.23653] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/03/2022] [Accepted: 10/23/2022] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Prior evidence indicates that individuals with obesity have an accelerated intestinal glucose absorption. This cross-sectional study evaluated whether those with overweight or obesity display higher duodenal protein levels of the glucose carriers sodium-glucose cotransporter 1 (SGLT-1), glucose transporter 2 (GLUT-2), and glucose transporter 5 (GLUT-5). METHODS SGLT-1, GLUT-2, and GLUT-5 protein levels were assessed on duodenal mucosa biopsies of 52 individuals without diabetes categorized on the basis of their BMI as lean, with overweight, or with obesity. RESULTS Individuals with overweight and obesity exhibited progressively increased duodenal protein levels of SGLT-1 and GLUT-5 as compared with the lean group. Conversely, no differences in duodenal GLUT-2 abundance were found among the three groups. Univariate analysis showed that SGLT-1 and GLUT-5 protein levels were positively correlated with BMI, waist circumference, 1-hour post-load glucose, fasting and post-load insulin, and insulin secretion and resistance levels. Furthermore, a positive relationship was detected between intestinal GLUT-5 levels and serum uric acid concentrations, a product of fructose metabolism known to be involved in the pathogenesis of obesity and its complications. CONCLUSIONS Individuals with overweight and obesity display enhanced duodenal SGLT-1 and GLUT-5 abundance, which correlates with increased postprandial glucose concentrations, insulin resistance, and hyperinsulinemia.
Collapse
Affiliation(s)
- Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Francesca De Vito
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Evelina Suraci
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Raffaella Marasco
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Francesco Luzza
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Giorgio Sesti
- Department of Clinical and Molecular Medicine, University of Rome-Sapienza, Rome, Italy
| |
Collapse
|
10
|
Pinho RM, Garas LC, Huang BC, Weimer BC, Maga EA. Malnourishment affects gene expression along the length of the small intestine. Front Nutr 2022; 9:894640. [PMID: 36118759 PMCID: PMC9478944 DOI: 10.3389/fnut.2022.894640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Malnourishment is a risk factor for childhood mortality, jeopardizing the health of children by aggravating pneumonia/acute respiratory infections and diarrheal diseases. Malnourishment causes morphophysiological changes resulting in stunting and wasting that have long-lasting consequences such as cognitive deficit and metabolic dysfunction. Using a pig model of malnutrition, the interplay between the phenotypic data displayed by the malnourished animals, the gene expression pattern along the intestinal tract, microbiota composition of the intestinal contents, and hepatic metabolite concentrations from the same animals were correlated using a multi-omics approach. Samples from the duodenum, jejunum, and ileum of malnourished (protein and calorie-restricted diet) and full-fed (no dietary restrictions) piglets were subjected to RNA-seq. Gene co-expression analysis and phenotypic correlations were made with WGCNA, while the integration of transcriptome with microbiota composition and the hepatic metabolite profile was done using mixOmics. Malnourishment caused changes in tissue gene expression that influenced energetic balance, cell proliferation, nutrient absorption, and response to stress. Repression of antioxidant genes, including glutathione peroxidase, in coordination with induction of metal ion transporters corresponded to the hepatic metabolite changes. These data indicate oxidative stress in the intestine of malnourished animals. Furthermore, several of the phenotypes displayed by these animals could be explained by changes in gene expression.
Collapse
Affiliation(s)
- Raquel M. Pinho
- Department of Animal Science, University of California, Davis, Davis, CA, United States
- *Correspondence: Raquel M. Pinho
| | - Lydia C. Garas
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - B. Carol Huang
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Bart C. Weimer
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Elizabeth A. Maga
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
11
|
Carter RN, Gibbins MTG, Barrios-Llerena ME, Wilkie SE, Freddolino PL, Libiad M, Vitvitsky V, Emerson B, Le Bihan T, Brice M, Su H, Denham SG, Homer NZM, Mc Fadden C, Tailleux A, Faresse N, Sulpice T, Briand F, Gillingwater T, Ahn KH, Singha S, McMaster C, Hartley RC, Staels B, Gray GA, Finch AJ, Selman C, Banerjee R, Morton NM. The hepatic compensatory response to elevated systemic sulfide promotes diabetes. Cell Rep 2021; 37:109958. [PMID: 34758301 PMCID: PMC8595646 DOI: 10.1016/j.celrep.2021.109958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/06/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Impaired hepatic glucose and lipid metabolism are hallmarks of type 2 diabetes. Increased sulfide production or sulfide donor compounds may beneficially regulate hepatic metabolism. Disposal of sulfide through the sulfide oxidation pathway (SOP) is critical for maintaining sulfide within a safe physiological range. We show that mice lacking the liver- enriched mitochondrial SOP enzyme thiosulfate sulfurtransferase (Tst-/- mice) exhibit high circulating sulfide, increased gluconeogenesis, hypertriglyceridemia, and fatty liver. Unexpectedly, hepatic sulfide levels are normal in Tst-/- mice because of exaggerated induction of sulfide disposal, with associated suppression of global protein persulfidation and nuclear respiratory factor 2 target protein levels. Hepatic proteomic and persulfidomic profiles converge on gluconeogenesis and lipid metabolism, revealing a selective deficit in medium-chain fatty acid oxidation in Tst-/- mice. We reveal a critical role of TST in hepatic metabolism that has implications for sulfide donor strategies in the context of metabolic disease.
Collapse
Affiliation(s)
- Roderick N Carter
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Matthew T G Gibbins
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Martin E Barrios-Llerena
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Stephen E Wilkie
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK; Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Peter L Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Marouane Libiad
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Victor Vitvitsky
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Barry Emerson
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | | | - Madara Brice
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Huizhong Su
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XR, UK
| | - Scott G Denham
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Natalie Z M Homer
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Clare Mc Fadden
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Anne Tailleux
- Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U101-EGID, 59000, Lille, France
| | - Nourdine Faresse
- Physiogenex S.A.S, Prologue Biotech, 516 rue Pierre et Marie Curie, 31670 Labège, France
| | - Thierry Sulpice
- Physiogenex S.A.S, Prologue Biotech, 516 rue Pierre et Marie Curie, 31670 Labège, France
| | - Francois Briand
- Physiogenex S.A.S, Prologue Biotech, 516 rue Pierre et Marie Curie, 31670 Labège, France
| | - Tom Gillingwater
- College of Medicine & Veterinary Medicine, University of Edinburgh, Old Medical School (Anatomy), Teviot Place, Edinburgh EH8 9AG, UK
| | - Kyo Han Ahn
- Department of Chemistry, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, South Korea
| | - Subhankar Singha
- Department of Chemistry, POSTECH, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyungbuk 37673, South Korea
| | - Claire McMaster
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Richard C Hartley
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Bart Staels
- Université de Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U101-EGID, 59000, Lille, France
| | - Gillian A Gray
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK
| | - Andrew J Finch
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XR, UK
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nicholas M Morton
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute, Edinburgh EH16 4TJ, UK.
| |
Collapse
|
12
|
Vily-Petit J, Soty-Roca M, Silva M, Raffin M, Gautier-Stein A, Rajas F, Mithieux G. Intestinal gluconeogenesis prevents obesity-linked liver steatosis and non-alcoholic fatty liver disease. Gut 2020; 69:2193-2202. [PMID: 32205419 DOI: 10.1136/gutjnl-2019-319745] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/14/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Hepatic steatosis accompanying obesity is a major health concern, since it may initiate non-alcoholic fatty liver disease (NAFLD) and associated complications like cirrhosis or cancer. Intestinal gluconeogenesis (IGN) is a recently described function that contributes to the metabolic benefits of specific macronutrients as protein or soluble fibre, via the initiation of a gut-brain nervous signal triggering brain-dependent regulations of peripheral metabolism. Here, we investigate the effects of IGN on liver metabolism, independently of its induction by the aforementioned macronutrients. DESIGN To study the specific effects of IGN on hepatic metabolism, we used two transgenic mouse lines: one is knocked down for and the other overexpresses glucose-6-phosphatase, the key enzyme of endogenous glucose production, specifically in the intestine. RESULTS We report that mice with a genetic overexpression of IGN are notably protected from the development of hepatic steatosis and the initiation of NAFLD on a hypercaloric diet. The protection relates to a diminution of de novo lipogenesis and lipid import, associated with benefits at the level of inflammation and fibrosis and linked to autonomous nervous system. Conversely, mice with genetic suppression of IGN spontaneously exhibit increased hepatic triglyceride storage associated with activated lipogenesis pathway, in the context of standard starch-enriched diet. The latter is corrected by portal glucose infusion mimicking IGN. CONCLUSION We conclude that IGN per se has the capacity of preventing hepatic steatosis and its eventual evolution toward NAFLD.
Collapse
Affiliation(s)
- Justine Vily-Petit
- U1213 Nutrition, Diabetes and the Brain, Institut national de la santé et de la recherche médicale, Lyon, France.,U1213 Nutrition, Diabetes and the Brain, Université Lyon 1 Faculté de Médecine Lyon-Est, Lyon, France
| | - Maud Soty-Roca
- U1213 Nutrition, Diabetes and the Brain, Institut national de la santé et de la recherche médicale, Lyon, France.,U1213 Nutrition, Diabetes and the Brain, Université Lyon 1 Faculté de Médecine Lyon-Est, Lyon, France
| | - Marine Silva
- U1213 Nutrition, Diabetes and the Brain, Institut national de la santé et de la recherche médicale, Lyon, France.,U1213 Nutrition, Diabetes and the Brain, Université Lyon 1 Faculté de Médecine Lyon-Est, Lyon, France
| | - Margaux Raffin
- U1213 Nutrition, Diabetes and the Brain, Institut national de la santé et de la recherche médicale, Lyon, France.,U1213 Nutrition, Diabetes and the Brain, Université Lyon 1 Faculté de Médecine Lyon-Est, Lyon, France
| | - Amandine Gautier-Stein
- U1213 Nutrition, Diabetes and the Brain, Institut national de la santé et de la recherche médicale, Lyon, France.,U1213 Nutrition, Diabetes and the Brain, Université Lyon 1 Faculté de Médecine Lyon-Est, Lyon, France
| | - Fabienne Rajas
- U1213 Nutrition, Diabetes and the Brain, Institut national de la santé et de la recherche médicale, Lyon, France.,U1213 Nutrition, Diabetes and the Brain, Université Lyon 1 Faculté de Médecine Lyon-Est, Lyon, France
| | - Gilles Mithieux
- U1213 Nutrition, Diabetes and the Brain, Institut national de la santé et de la recherche médicale, Lyon, France .,U1213 Nutrition, Diabetes and the Brain, Université Lyon 1 Faculté de Médecine Lyon-Est, Lyon, France
| |
Collapse
|
13
|
Devant M, Marti S. Strategies for Feeding Unweaned Dairy Beef Cattle to Improve Their Health. Animals (Basel) 2020; 10:E1908. [PMID: 33080998 PMCID: PMC7603113 DOI: 10.3390/ani10101908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 12/22/2022] Open
Abstract
In order to answer the question of whether nutritional interventions may help to reduce the incidence of respiratory disease in dairy beef calves at arrival, the present review is divided in three sections. In the first section, the nutrition of calves previous to the arrival from the origin farm to the final rearing farm is reviewed. In the second section, the possible consequences of this previous nutrition on gut health and immune status upon arrival to the rearing farm are described. The main consequences of previous nutrition and management that these unweaned calves suffer at arrival are the negative energy balance, the increased intestinal permeability, the oxidative stress, the anemia, and the recovery feed consumption. Finally, in the third section, some considerations to advance in future nutritional strategies are suggested, which are focused on the prevention of the negative consequences of previous nutrition and the recovery of the gut and immune status. Moreover, additional suggestions are formulated that will be also helpful to reduce the incidence of bovine respiratory disease (BRD) that are not directly linked to nutrition like having a control golden standard in the studies or designing risk categories in order to classify calves as suitable or not to be transported.
Collapse
Affiliation(s)
- Maria Devant
- Ruminant Production, IRTA, Torre Marimon, 08140 Caldes de Montbui, Spain;
| | | |
Collapse
|
14
|
Pereira GA, Sodré FS, Murata GM, Amaral AG, Payolla TB, Campos CV, Sato FT, Anhê GF, Bordin S. Fructose Consumption by Adult Rats Exposed to Dexamethasone In Utero Changes the Phenotype of Intestinal Epithelial Cells and Exacerbates Intestinal Gluconeogenesis. Nutrients 2020; 12:nu12103062. [PMID: 33036430 PMCID: PMC7600908 DOI: 10.3390/nu12103062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 01/02/2023] Open
Abstract
Fructose consumption by rodents modulates both hepatic and intestinal lipid metabolism and gluconeogenesis. We have previously demonstrated that in utero exposure to dexamethasone (DEX) interacts with fructose consumption during adult life to exacerbate hepatic steatosis in rats. The aim of this study was to clarify if adult rats born to DEX-treated mothers would display differences in intestinal gluconeogenesis after excessive fructose intake. To address this issue, female Wistar rats were treated with DEX during pregnancy and control (CTL) mothers were kept untreated. Adult offspring born to CTL and DEX-treated mothers were assigned to receive either tap water (Control-Standard Chow (CTL-SC) and Dexamethasone-Standard Chow (DEX-SC)) or 10% fructose in the drinking water (CTL-fructose and DEX-fructose). Fructose consumption lasted for 80 days. All rats were subjected to a 40 h fasting before sample collection. We found that DEX-fructose rats have increased glucose and reduced lactate in the portal blood. Jejunum samples of DEX-fructose rats have enhanced phosphoenolpyruvate carboxykinase (PEPCK) expression and activity, higher facilitated glucose transporter member 2 (GLUT2) and facilitated glucose transporter member 5 (GLUT5) content, and increased villous height, crypt depth, and proliferating cell nuclear antigen (PCNA) staining. The current data reveal that rats born to DEX-treated mothers that consume fructose during adult life have increased intestinal gluconeogenesis while recapitulating metabolic and morphological features of the neonatal jejunum phenotype.
Collapse
Affiliation(s)
- Gizela A. Pereira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000 SP, Brazil; (G.A.P.); (F.S.S.); (G.M.M.); (A.G.A.); (T.B.P.); (F.T.S.)
| | - Frhancielly S. Sodré
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000 SP, Brazil; (G.A.P.); (F.S.S.); (G.M.M.); (A.G.A.); (T.B.P.); (F.T.S.)
| | - Gilson M. Murata
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000 SP, Brazil; (G.A.P.); (F.S.S.); (G.M.M.); (A.G.A.); (T.B.P.); (F.T.S.)
| | - Andressa G. Amaral
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000 SP, Brazil; (G.A.P.); (F.S.S.); (G.M.M.); (A.G.A.); (T.B.P.); (F.T.S.)
| | - Tanyara B. Payolla
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000 SP, Brazil; (G.A.P.); (F.S.S.); (G.M.M.); (A.G.A.); (T.B.P.); (F.T.S.)
| | - Carolina V. Campos
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, 13083-887 SP, Brazil; (C.V.C.); (G.F.A.)
| | - Fabio T. Sato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000 SP, Brazil; (G.A.P.); (F.S.S.); (G.M.M.); (A.G.A.); (T.B.P.); (F.T.S.)
| | - Gabriel F. Anhê
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, 13083-887 SP, Brazil; (C.V.C.); (G.F.A.)
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508-000 SP, Brazil; (G.A.P.); (F.S.S.); (G.M.M.); (A.G.A.); (T.B.P.); (F.T.S.)
- Correspondence: ; Tel.: +55-11-3091-7245
| |
Collapse
|
15
|
Wang H, Tang W, Zhang P, Zhang Z, He J, Zhu D, Bi Y. Modulation of gut microbiota contributes to effects of intensive insulin therapy on intestinal morphological alteration in high-fat-diet-treated mice. Acta Diabetol 2020; 57:455-467. [PMID: 31749050 DOI: 10.1007/s00592-019-01436-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023]
Abstract
AIMS Disturbance of intestinal homeostasis promotes the development of type 2 diabetes. Although intensive insulin therapy has been shown to promote extended glycemic remission in newly diagnosed type 2 diabetic patients through multiple mechanisms, its effect on intestinal homeostasis remains unknown. METHODS This study evaluated the effects of intensive insulin therapy on intestinal morphometric parameters in a hyperglycemic mice model induced by high-fat diet (HFD). 16S rRNA V4 region sequencing and multivariate analysis were utilized to evaluate the structural changes of gut microbiota. RESULTS HFD-induced increases in the lengths of villus, microvillus and crypt depth were significantly reversed after intensive insulin therapy. Moreover, intestinal proliferation was notably decreased after intensive insulin therapy, whereas intestinal apoptosis was further increased. Importantly, intensive insulin therapy significantly shifted the overall structure of the HFD-disrupted gut microbiota toward that of mice fed a normal diet and changed the gut microbial composition. The abundances of 54 operational taxonomic units (OTUs) were changed by intensive insulin therapy. Thirty altered OTUs correlated with two or more intestinal morphometric parameters and were designated 'functionally relevant phylotypes.' CONCLUSIONS For the first time, our data indicate that intensive insulin therapy recovers diabetes-associated gut structural abnormalities and restores the microbiome landscape. Moreover, specific altered 'functionally relevant phylotypes' correlates with improvement in diabetes-associated gut structural alterations.
Collapse
Affiliation(s)
- Hongdong Wang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Wenjuan Tang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Pengzi Zhang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Zhou Zhang
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Jielei He
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Dalong Zhu
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
| | - Yan Bi
- Department of Endocrinology, Drum Tower Hospital Affiliated to Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China.
| |
Collapse
|
16
|
Pal A, Rhoads DB, Tavakkoli A. Portal milieu and the interplay of multiple antidiabetic effects after gastric bypass surgery. Am J Physiol Gastrointest Liver Physiol 2019; 316:G668-G678. [PMID: 30896970 PMCID: PMC6580237 DOI: 10.1152/ajpgi.00389.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Diabetes is a worldwide health problem. Roux-en-Y gastric bypass (RYGB) leads to rapid resolution of type 2 diabetes (T2D). Decreased hepatic insulin resistance is key, but underlying mechanisms are poorly understood. We hypothesized that changes in intestinal function and subsequent changes in portal venous milieu drive some of these postoperative benefits. We therefore aimed to evaluate postoperative changes in portal milieu. Two rat strains, healthy [Sprague-Dawley (SD)] and obese diabetic [Zucker diabetic fatty (ZDF)] rats, underwent RYGB or control surgery. After 4 wk, portal and systemic blood was sampled before and during an intestinal glucose bolus to investigate changes in intestinal glucose absorption (Gabsorp) and utilization (Gutil), and intestinal secretion of incretins and glucagon-like peptide-2 (GLP-2). Hepatic activity of dipeptidyl peptidase-4 (DPP4), which degrades incretins, was also measured. RYGB decreased Gabsorp in both rat strains. Gutil increased in SD rats and decreased in ZDF rats. In both strains, there was increased expression of intestinal hexokinase and gluconeogenesis enzymes. Systemic incretin and GLP-2 levels also increased after RYGB. This occurred without an increase in secretion. Hepatic DPP4 activity and expression were unchanged. RYGB perturbs multiple intestinal pathways, leading to decreased intestinal glucose absorption and increased incretin levels in both healthy and diabetic animals. In diabetic rats, intestinal glucose balance shifts toward glucose release. The portal vein as the gut-liver axis may integrate these intestinal changes to contribute to rapid changes in hepatic glucose and hormone handling. This fresh insight into the surgical physiology of RYGB raises the hope of less invasive alternatives. NEW & NOTEWORTHY Portal milieu after gastric bypass surgery is an underinvestigated area. Roux-en-Y gastric bypass perturbs multiple intestinal pathways, reducing intestinal glucose absorption and increasing incretin levels. In diabetic rats, the intestine becomes a net releaser of glucose, increasing portal glucose levels. The portal vein as the gut-liver axis may integrate these intestinal changes to contribute to changes in hepatic glucose handling. This fresh insight raises the hope of less invasive alternatives.
Collapse
Affiliation(s)
- Atanu Pal
- 1Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts,2Harvard Medical School, Boston, Massachusetts
| | - David B. Rhoads
- 2Harvard Medical School, Boston, Massachusetts,3Pediatric Endocrinology, MassGeneral Hospital for Children, Boston, Massachusetts
| | - Ali Tavakkoli
- 1Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts,2Harvard Medical School, Boston, Massachusetts,4Center for Weight Management and Metabolic Surgery, Brigham and Women’s Hospital, Boston, Massachusetts
| |
Collapse
|
17
|
Fernandes G, Santo MA, Crespo ADFCB, Biancardi GB, Mota FC, Antonangelo L, de Cleva R. Early glycemic control and incretin improvement after gastric bypass: the role of oral and gastrostomy route. Surg Obes Relat Dis 2019; 15:595-601. [PMID: 30803884 DOI: 10.1016/j.soard.2019.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/04/2019] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Patients with obesity have a suppressed incretin effect and a consequent imbalance of glycemic homeostasis. Several studies have shown improved type 2 diabetes after Roux-en-Y gastric bypass (RYGB). The mechanisms of early action are linked to caloric restriction, improvement of insulin resistance, pancreatic beta cell function, and the incretin effect of glycogen-like protein 1 and gastric inhibitory polypeptide, but reported data are conflicting. OBJECTIVE The objective of this study was to evaluate glycemic metabolism, including the oral glucose tolerance test and enterohormonal profile in the early postoperative period in severely obese patients who underwent RYGB with gastrostomy, comparing the preoperative supply of a standard bolus of nutrient against the postoperative administration through an oral and a gastrostomy route. SETTING Clinics Hospital of University of São Paulo, Brazil. METHODS Eleven patients with obesity and diabetes underwent RYGB with a gastrostomy performed in the excluded gastric remnant. Patients were given preoperative assessments of glycemic and enterohormone profiles and an oral glucose tolerance test; these were compared with early postoperative assessments after oral and gastrostomy route administrations. RESULTS The mean preoperative body mass index of the group was 44.1 ± 6.6 kg/m2, mean fasting blood glucose of 194.5 ± 62.4 mg/dL, and glycated hemoglobin 8.7 ± 1.6%. In 77.7% of the patients, there was normalization of the glycemic curve in the early postoperative period as evaluated by the oral glucose tolerance test. Significant decreases in glycemia, insulinemia, and homeostatic model assessment-insulin resistance were also observed, regardless of the route of administration. There was significant increase in glycogen-like protein 1 by the postoperative oral route and reduction of gastric inhibitory polypeptide in both routes. Ghrelin did not change. CONCLUSION Glycemia and peripheral insulin resistance reductions were observed in early-postoperative RYGB, independent of the oral or gastrostomy route. Incretin improvement, mediated by glycogen-like protein 1 increased was observed only in the postoperative oral route, while GIP reduced for both routes.
Collapse
Affiliation(s)
- Gustavo Fernandes
- Hospital das Clínicas, Digestive Surgery Department, University of São Paulo Medical School, São Paulo - SP, Brazil
| | - Marco Aurelio Santo
- Hospital das Clínicas, Digestive Surgery Department, University of São Paulo Medical School, São Paulo - SP, Brazil
| | | | - Gabriel Barbosa Biancardi
- Hospital das Clínicas, Digestive Surgery Department, University of São Paulo Medical School, São Paulo - SP, Brazil
| | - Filippe Camarotto Mota
- Hospital das Clínicas, Digestive Surgery Department, University of São Paulo Medical School, São Paulo - SP, Brazil.
| | - Leila Antonangelo
- Hospital das Clínicas, Digestive Surgery Department, University of São Paulo Medical School, São Paulo - SP, Brazil
| | - Roberto de Cleva
- Hospital das Clínicas, Digestive Surgery Department, University of São Paulo Medical School, São Paulo - SP, Brazil
| |
Collapse
|
18
|
Gjorgjieva M, Mithieux G, Rajas F. Hepatic stress associated with pathologies characterized by disturbed glucose production. Cell Stress 2019; 3:86-99. [PMID: 31225503 PMCID: PMC6551742 DOI: 10.15698/cst2019.03.179] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The liver is an organ with many facets, including a role in energy production and metabolic balance, detoxification and extraordinary capacity of regeneration. Hepatic glucose production plays a crucial role in the maintenance of normal glucose levels in the organism i.e. between 0.7 to 1.1 g/l. The loss of this function leads to a rare genetic metabolic disease named glycogen storage disease type I (GSDI), characterized by severe hypoglycemia during short fasts. On the contrary, type 2 diabetes is characterized by chronic hyperglycemia, partly due to an overproduction of glucose by the liver. Indeed, diabetes is characterized by increased uptake/production of glucose by hepatocytes, leading to the activation of de novo lipogenesis and the development of a non-alcoholic fatty liver disease. In GSDI, the accumulation of glucose-6 phosphate, which cannot be hydrolyzed into glucose, leads to an increase of glycogen stores and the development of hepatic steatosis. Thus, in these pathologies, hepatocytes are subjected to cellular stress mainly induced by glucotoxicity and lipotoxicity. In this review, we have compared hepatic cellular stress induced in type 2 diabetes and GSDI, especially oxidative stress, autophagy deregulation, and ER-stress. In addition, both GSDI and diabetic patients are prone to the development of hepatocellular adenomas (HCA) that occur on a fatty liver in the absence of cirrhosis. These HCA can further acquire malignant traits and transform into hepatocellular carcinoma. This process of tumorigenesis highlights the importance of an optimal metabolic control in both GSDI and diabetic patients in order to prevent, or at least to restrain, tumorigenic activity during disturbed glucose metabolism pathologies.
Collapse
Affiliation(s)
- Monika Gjorgjieva
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France.,Université de Lyon, Lyon, F-69008 France.,Université Lyon I, Villeurbanne, F-69622 France
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France.,Université de Lyon, Lyon, F-69008 France.,Université Lyon I, Villeurbanne, F-69622 France
| | - Fabienne Rajas
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon, F-69008, France.,Université de Lyon, Lyon, F-69008 France.,Université Lyon I, Villeurbanne, F-69622 France
| |
Collapse
|
19
|
Potts A, Uchida A, Deja S, Berglund ED, Kucejova B, Duarte JA, Fu X, Browning JD, Magnuson MA, Burgess SC. Cytosolic phosphoenolpyruvate carboxykinase as a cataplerotic pathway in the small intestine. Am J Physiol Gastrointest Liver Physiol 2018; 315:G249-G258. [PMID: 29631378 PMCID: PMC6139646 DOI: 10.1152/ajpgi.00039.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cytosolic phosphoenolpyruvate carboxykinase (PEPCK) is a gluconeogenic enzyme that is highly expressed in the liver and kidney but is also expressed at lower levels in a variety of other tissues where it may play adjunct roles in fatty acid esterification, amino acid metabolism, and/or TCA cycle function. PEPCK is expressed in the enterocytes of the small intestine, but it is unclear whether it supports a gluconeogenic rate sufficient to affect glucose homeostasis. To examine potential roles of intestinal PEPCK, we generated an intestinal PEPCK knockout mouse. Deletion of intestinal PEPCK ablated ex vivo gluconeogenesis but did not significantly affect glycemia in chow, high-fat diet, or streptozotocin-treated mice. In contrast, postprandial triglyceride secretion from the intestine was attenuated in vivo, consistent with a role in fatty acid esterification. Intestinal amino acid profiles and 13C tracer appearance into these pools were significantly altered, indicating abnormal amino acid trafficking through the enterocyte. The data suggest that the predominant role of PEPCK in the small intestine of mice is not gluconeogenesis but rather to support nutrient processing, particularly with regard to lipids and amino acids. NEW & NOTEWORTHY The small intestine expresses gluconeogenic enzymes for unknown reasons. In addition to glucose synthesis, the nascent steps of this pathway can be used to support amino acid and lipid metabolisms. When phosphoenolpyruvate carboxykinase, an essential gluconeogenic enzyme, is knocked out of the small intestine of mice, glycemia is unaffected, but mice inefficiently absorb dietary lipid, have abnormal amino acid profiles, and inefficiently catabolize glutamine. Therefore, the initial steps of intestinal gluconeogenesis are used for processing dietary triglycerides and metabolizing amino acids but are not essential for maintaining blood glucose levels.
Collapse
Affiliation(s)
- Austin Potts
- 1Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Aki Uchida
- 1Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Stanislaw Deja
- 2Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Eric D. Berglund
- 1Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Blanka Kucejova
- 2Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joao A. Duarte
- 1Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Xiaorong Fu
- 2Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jeffrey D. Browning
- 3Department of Clinical Nutrition, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Mark A. Magnuson
- 5Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Shawn C. Burgess
- 1Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, Texas,4Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
20
|
Jang C, Hui S, Lu W, Cowan AJ, Morscher RJ, Lee G, Liu W, Tesz GJ, Birnbaum MJ, Rabinowitz JD. The Small Intestine Converts Dietary Fructose into Glucose and Organic Acids. Cell Metab 2018; 27:351-361.e3. [PMID: 29414685 PMCID: PMC6032988 DOI: 10.1016/j.cmet.2017.12.016] [Citation(s) in RCA: 370] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/18/2017] [Accepted: 12/20/2017] [Indexed: 12/22/2022]
Abstract
Excessive consumption of sweets is a risk factor for metabolic syndrome. A major chemical feature of sweets is fructose. Despite strong ties between fructose and disease, the metabolic fate of fructose in mammals remains incompletely understood. Here we use isotope tracing and mass spectrometry to track the fate of glucose and fructose carbons in vivo, finding that dietary fructose is cleared by the small intestine. Clearance requires the fructose-phosphorylating enzyme ketohexokinase. Low doses of fructose are ∼90% cleared by the intestine, with only trace fructose but extensive fructose-derived glucose, lactate, and glycerate found in the portal blood. High doses of fructose (≥1 g/kg) overwhelm intestinal fructose absorption and clearance, resulting in fructose reaching both the liver and colonic microbiota. Intestinal fructose clearance is augmented both by prior exposure to fructose and by feeding. We propose that the small intestine shields the liver from otherwise toxic fructose exposure.
Collapse
Affiliation(s)
- Cholsoon Jang
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Sheng Hui
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Wenyun Lu
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Alexis J Cowan
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Raphael J Morscher
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Gina Lee
- Department of Pharmacology and Meyer Cancer Center, Weill Cornell Medical School, New York, NY 10065, USA
| | - Wei Liu
- Pfizer Inc. Internal Medicine, Cambridge, MA 02139, USA
| | | | | | - Joshua D Rabinowitz
- Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
21
|
Garcia-Mazcorro JF, Lage NN, Mertens-Talcott S, Talcott S, Chew B, Dowd SE, Kawas JR, Noratto GD. Effect of dark sweet cherry powder consumption on the gut microbiota, short-chain fatty acids, and biomarkers of gut health in obese db/db mice. PeerJ 2018; 6:e4195. [PMID: 29312822 PMCID: PMC5756454 DOI: 10.7717/peerj.4195] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/05/2017] [Indexed: 12/22/2022] Open
Abstract
Cherries are fruits containing fiber and bioactive compounds (e.g., polyphenolics) with the potential of helping patients with diabetes and weight disorders, a phenomenon likely related to changes in the complex host-microbiota milieu. The objective of this study was to investigate the effect of cherry supplementation on the gut bacterial composition, concentrations of caecal short-chain fatty acids (SCFAs) and biomarkers of gut health using an in vivo model of obesity. Obese diabetic (db/db) mice received a supplemented diet with 10% cherry powder (supplemented mice, n = 12) for 12 weeks; obese (n = 10) and lean (n = 10) mice served as controls and received a standard diet without cherry. High-throughput sequencing of the 16S rRNA gene and quantitative real-time PCR (qPCR) were used to analyze the gut microbiota; SCFAs and biomarkers of gut health were also measured using standard techniques. According to 16S sequencing, supplemented mice harbored a distinct colonic microbiota characterized by a higher abundance of mucin-degraders (i.e., Akkermansia) and fiber-degraders (the S24-7 family) as well as lower abundances of Lactobacillus and Enterobacteriaceae. Overall this particular cherry-associated colonic microbiota did not resemble the microbiota in obese or lean controls based on the analysis of weighted and unweighted UniFrac distance metrics. qPCR confirmed some of the results observed in sequencing, thus supporting the notion that cherry supplementation can change the colonic microbiota. Moreover, the SCFAs detected in supplemented mice (caproate, methyl butyrate, propionate, acetate and valerate) exceeded those concentrations detected in obese and lean controls except for butyrate. Despite the changes in microbial composition and SCFAs, most of the assessed biomarkers of inflammation, oxidative stress, and intestinal health in colon tissues and mucosal cells were similar in all obese mice with and without supplementation. This paper shows that dietary supplementation with cherry powder for 12 weeks affects the microbiota and the concentrations of SCFAs in the lower intestinal tract of obese db/db diabetic mice. These effects occurred in absence of differences in most biomarkers of inflammation and other parameters of gut health. Our study prompts more research into the potential clinical implications of cherry consumption as a dietary supplement in diabetic and obese human patients.
Collapse
Affiliation(s)
- Jose F Garcia-Mazcorro
- Faculty of Veterinary Medicine, Universidad Autónoma de Nuevo León, General Escobedo, Mexico.,Research and Development, MNA de Mexico, San Nicolas de los Garza, Mexico
| | - Nara N Lage
- Research Center in Biological Sciences, Federal University of Ouro Preto, Minas Gerais, Brazil.,Department of Nutrition and Food Science, Texas A&M University, College Station, TX, United States of America
| | - Susanne Mertens-Talcott
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, United States of America
| | - Stephen Talcott
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, United States of America
| | - Boon Chew
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, United States of America
| | - Scot E Dowd
- Molecular Research LP, Shallowater, TX, United States of America
| | - Jorge R Kawas
- Faculty of Agronomy, Universidad Autónoma de Nuevo León, General Escobedo, Mexico
| | - Giuliana D Noratto
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
22
|
Maternal low intensity physical exercise prevents obesity in offspring rats exposed to early overnutrition. Sci Rep 2017; 7:7634. [PMID: 28794439 PMCID: PMC5550501 DOI: 10.1038/s41598-017-07395-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 06/27/2017] [Indexed: 01/02/2023] Open
Abstract
Low intensity exercise during pregnancy and lactation may create a protective effect against the development of obesity in offspring exposed to overnutrition in early life. To test these hypotheses, pregnant rats were randomly assigned into 2 groups: Sedentary and Exercised, low intensity, on a rodent treadmill at 30% VO2Max /30-minute/session/3x/week throughout pregnancy and the lactation. Male offspring were raised in small litters (SL, 3 pups/dam) and normal litters (NL, 9 pups/dam) as models of early overnutrition and normal feed, respectively. Exercised mothers showed low mesenteric fat pad stores and fasting glucose and improved glucose-insulin tolerance, VO2max during lactation and sympathetic activity. Moreover, the breast milk contained elevated levels of insulin. In addition, SL of sedentary mothers presented metabolic dysfunction and glucose and insulin intolerance and were hyperglycemic and hyperinsulinemic in adulthood. SL of exercised mothers showed lower fat tissue accretion and improvements in glucose tolerance, insulin sensitivity, insulinemia and glycemia. The results suggest that maternal exercise during the perinatal period can have a possible reprogramming effect to prevent metabolic dysfunction in adult rat offspring exposed to early overnutrition, which may be associated with the improvement in maternal health caused by exercise.
Collapse
|
23
|
Chen YJ, Zhang TY, Chen HY, Lin SM, Luo L, Wang DS. Simultaneous stimulation of glycolysis and gluconeogenesis by feeding in the anterior intestine of the omnivorous GIFT tilapia, Oreochromis niloticus. Biol Open 2017; 6:818-824. [PMID: 28619994 PMCID: PMC5483027 DOI: 10.1242/bio.024836] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The present study was performed to investigate the roles of anterior intestine in the postprandial glucose homeostasis of the omnivorous Genetically Improved Farmed Tilapia (GIFT). Sub-adult fish (about 173 g) were sampled at 0, 1, 3, 8 and 24 h post feeding (HPF) after 36 h of food deprivation, and the time course of changes in intestinal glucose transport, glycolysis, glycogenesis and gluconeogenesis at the transcription and enzyme activity level, as well as plasma glucose contents, were analyzed. Compared with 0 HPF (fasting for 36 h), the mRNA levels of both ATP-dependent sodium/glucose cotransporter 1 and facilitated glucose transporter 2 increased during 1-3 HPF, decreased at 8 HPF and then leveled off. These results indicated that intestinal uptake of glucose and its transport across the intestine to blood mainly occurred during 1-3 HPF, which subsequently resulted in the increase of plasma glucose level at the same time. Intestinal glycolysis was stimulated during 1-3 HPF, while glucose storage as glycogen was induced during 3-8 HPF. Unexpectedly, intestinal gluconeogenesis (IGNG) was also strongly induced during 1-3 HPF at the state of nutrient assimilation. The mRNA abundance and enzyme activities of glutamic-pyruvic and glutamic-oxaloacetic transaminases increased during 1-3 HPF, suggesting that the precursors of IGNG might originate from some amino acids. Taken together, it was concluded that the anterior intestine played an important role in the regulation of postprandial glucose homeostasis in omnivorous tilapia, as it represented significant glycolytic potential and glucose storage. It was interesting that postprandial IGNG was stimulated by feeding temporarily, and its biological significance remains to be elucidated in fish.
Collapse
Affiliation(s)
- Yong-Jun Chen
- Key Laboratory of Freshwater Fish Resources and Reproductive Development (Ministry of Education), College of Animal Science and Technology, Southwest University, Chongqing 400715, China .,Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ti-Yin Zhang
- Key Laboratory of Freshwater Fish Resources and Reproductive Development (Ministry of Education), College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Hai-Yan Chen
- Key Laboratory of Freshwater Fish Resources and Reproductive Development (Ministry of Education), College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Shi-Mei Lin
- Key Laboratory of Freshwater Fish Resources and Reproductive Development (Ministry of Education), College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - Li Luo
- Key Laboratory of Freshwater Fish Resources and Reproductive Development (Ministry of Education), College of Animal Science and Technology, Southwest University, Chongqing 400715, China
| | - De-Shou Wang
- Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
24
|
Abstract
Intestinal gluconeogenesis is a recently identified function influencing energy homeostasis. Intestinal gluconeogenesis induced by specific nutrients releases glucose, which is sensed by the nervous system surrounding the portal vein. This initiates a signal positively influencing parameters involved in glucose control and energy management controlled by the brain. This knowledge has extended our vision of the gut-brain axis, classically ascribed to gastrointestinal hormones. Our work raises several questions relating to the conditions under which intestinal gluconeogenesis proceeds and may provide its metabolic benefits. It also leads to questions on the advantage conferred by its conservation through a process of natural selection.
Collapse
Affiliation(s)
- Maud Soty
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon 69372, France; Université de Lyon, Lyon 69008, France; Université Lyon I, Villeurbanne 69622, France
| | - Amandine Gautier-Stein
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon 69372, France; Université de Lyon, Lyon 69008, France; Université Lyon I, Villeurbanne 69622, France
| | - Fabienne Rajas
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon 69372, France; Université de Lyon, Lyon 69008, France; Université Lyon I, Villeurbanne 69622, France
| | - Gilles Mithieux
- Institut National de la Santé et de la Recherche Médicale, U1213, Lyon 69372, France; Université de Lyon, Lyon 69008, France; Université Lyon I, Villeurbanne 69622, France.
| |
Collapse
|
25
|
Martins HA, Bazotte RB, Vicentini GE, Lima MM, Guarnier FA, Hermes-Uliana C, Frez FCV, Bossolani GDP, Fracaro L, Fávaro LDS, Manzano MI, Zanoni JN. l-Glutamine supplementation promotes an improved energetic balance in Walker-256 tumor-bearing rats. Tumour Biol 2017; 39:1010428317695960. [PMID: 28345452 DOI: 10.1177/1010428317695960] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
We evaluated the effects of supplementation with oral l-glutamine in Walker-256 tumor-bearing rats. A total of 32 male Wistar rats aged 54 days were randomly divided into four groups: rats without Walker-256 tumor, that is, control rats (C group); control rats supplemented with l-glutamine (CG group); Walker-256 tumor rats without l-glutamine supplementation (WT group); and WT rats supplemented with l-glutamine (WTG group). l-Glutamine was incorporated into standard food at a proportion of 2 g/100 g (2%). After 10 days of the experimental period, the jejunum and duodenum were removed and processed. Protein expression levels of key enzymes of gluconeogenesis, that is, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, were analyzed by western blot and immunohistochemical techniques. In addition, plasma corticosterone, glucose, insulin, and urea levels were evaluated. The WTG group showed significantly increased plasma glucose and insulin levels ( p < 0.05); however, plasma corticosterone and urea remained unchanged. Moreover, the WTG group showed increased immunoreactive staining for jejunal phosphoenolpyruvate carboxykinase and increased expression of duodenal glucose-6-phosphatase. Furthermore, the WTG group presented with less intense cancer cachexia and slower tumor growth. These results could be attributed, at least partly, to increased intestinal gluconeogenesis and insulinemia, and better glycemia maintenance during fasting in Walker-256 tumor rats on a diet supplemented with l-glutamine.
Collapse
Affiliation(s)
- Heber Amilcar Martins
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | - Roberto Barbosa Bazotte
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | | | - Mariana Machado Lima
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | | | - Catchia Hermes-Uliana
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | | | | | - Luciane Fracaro
- 1 Postgraduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Brazil
| | | | | | | |
Collapse
|
26
|
Gutierrez-Repiso C, Garcia-Serrano S, Moreno-Ruiz FJ, Alcain-Martinez G, Rodriguez-Pacheco F, Garcia-Fuentes E. Jejunal gluconeogenesis associated with insulin resistance level and its evolution after Roux-en-Y gastric bypass. Surg Obes Relat Dis 2017; 13:623-630. [DOI: 10.1016/j.soard.2016.11.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/28/2016] [Accepted: 11/26/2016] [Indexed: 01/16/2023]
|
27
|
Jensen BAH, Nielsen TS, Fritzen AM, Holm JB, Fjære E, Serup AK, Borkowski K, Risis S, Pærregaard SI, Søgaard I, Poupeau A, Poulsen M, Ma T, Sina C, Kiens B, Madsen L, Kristiansen K, Treebak JT. Dietary fat drives whole-body insulin resistance and promotes intestinal inflammation independent of body weight gain. Metabolism 2016; 65:1706-1719. [PMID: 27832859 DOI: 10.1016/j.metabol.2016.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND The obesogenic potential of high-fat diets (HFD) in rodents is attenuated when the protein:carbohydrate ratio is increased. However, it is not known if intake of an HFD irrespective of the protein:carbohydrate ratio and in the absence of weight gain, affects glucose homeostasis and the gut microbiota. METHODS We fed C57BL6/J mice 3 different HFDs with decreasing protein:carbohydrate ratios for 8weeks and compared the results to a LFD reference group. We analyzed the gut microbiota composition by 16S rDNA amplicon sequencing and the intestinal gene expression by real-time PCR. Whole body glucose homeostasis was evaluated by insulin and glucose tolerance tests as well as by a hyperinsulinemic euglycemic clamp experiment. RESULTS Compared with LFD-fed reference mice, HFD-fed mice, irrespective of protein:carbohydrate ratio, exhibited impaired glucose tolerance, whereas no differences were observed during insulin tolerance tests. The hyperinsulinemic euglycemic clamp revealed tissue-specific effects on glucose homeostasis in all HFD-fed groups. HFD-fed mice exhibited decreased insulin-stimulated glucose uptake in white but not in brown adipose tissue, and sustained endogenous glucose production under insulin-stimulated conditions. We observed no impairment of insulin-stimulated glucose uptake in skeletal muscles of different fiber type composition. HFD-feeding altered the gut microbiota composition paralleled by increased expression of pro-inflammatory cytokines and genes involved in gluconeogenesis in intestinal epithelial cells of the jejunum. CONCLUSIONS Intake of a HFD profoundly affected glucose homeostasis, gut inflammatory responses, and gut microbiota composition in the absence of fat mass accretion.
Collapse
Affiliation(s)
- Benjamin A H Jensen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| | - Thomas S Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas M Fritzen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jacob B Holm
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Even Fjære
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Annette K Serup
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kamil Borkowski
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Steve Risis
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simone I Pærregaard
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Ida Søgaard
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Audrey Poupeau
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michelle Poulsen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Tao Ma
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian Sina
- Medical Department, University Hospital Schleswig-Holstein, Campus Lübeck, Germany
| | - Bente Kiens
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lise Madsen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; National Institute of Nutrition and Seafood Research, Bergen, Norway
| | - Karsten Kristiansen
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; BGI-Shenzhen, Shenzhen, China.
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Integrative Physiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
28
|
Stefanucci A, Mollica A, Macedonio G, Zengin G, Ahmed AA, Novellino E. Exogenous opioid peptides derived from food proteins and their possible uses as dietary supplements: A critical review. FOOD REVIEWS INTERNATIONAL 2016. [DOI: 10.1080/87559129.2016.1225220] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Azzurra Stefanucci
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Chieti, Italy
| | - Adriano Mollica
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Chieti, Italy
| | - Giorgia Macedonio
- Dipartimento di Farmacia, Università di Chieti-Pescara “G. d’Annunzio”, Chieti, Italy
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| | - Abdelkareem A. Ahmed
- Department of Physiology and Biochemistry, Faculty of Veterinary Science, University of Nyala, Nyala, Sudan
| | - Ettore Novellino
- Dipartimento di Farmacia, Università di Napoli “Federico II”, Naples, Italy
| |
Collapse
|
29
|
Soty M, Chilloux J, Delalande F, Zitoun C, Bertile F, Mithieux G, Gautier-Stein A. Post-Translational Regulation of the Glucose-6-Phosphatase Complex by Cyclic Adenosine Monophosphate Is a Crucial Determinant of Endogenous Glucose Production and Is Controlled by the Glucose-6-Phosphate Transporter. J Proteome Res 2016; 15:1342-9. [PMID: 26958868 DOI: 10.1021/acs.jproteome.6b00110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The excessive endogenous glucose production (EGP) induced by glucagon participates in the development of type 2 diabetes. To further understand this hormonal control, we studied the short-term regulation by cyclic adenosine monophosphate (cAMP) of the glucose-6-phosphatase (G6Pase) enzyme, which catalyzes the last reaction of EGP. In gluconeogenic cell models, a 1-h treatment by the adenylate cyclase activator forskolin increased G6Pase activity and glucose production independently of any change in enzyme protein amount or G6P content. Using specific inhibitors or protein overexpression, we showed that the stimulation of G6Pase activity involved the protein kinase A (PKA). Results of site-directed mutagenesis, mass spectrometry analyses, and in vitro phosphorylation experiments suggested that the PKA stimulation of G6Pase activity did not depend on a direct phosphorylation of the enzyme. However, the temperature-dependent induction of both G6Pase activity and glucose release suggested a membrane-based mechanism. G6Pase is composed of a G6P transporter (G6PT) and a catalytic unit (G6PC). Surprisingly, we demonstrated that the increase in G6PT activity was required for the stimulation of G6Pase activity by forskolin. Our data demonstrate the existence of a post-translational mechanism that regulates G6Pase activity and reveal the key role of G6PT in the hormonal regulation of G6Pase activity and of EGP.
Collapse
Affiliation(s)
- Maud Soty
- INSERM U1213, 7-11 rue Paradin, F-69008 Lyon, France.,Université de Lyon, 7-11 rue Paradin, F-69008 Lyon, France.,Université Lyon1, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Julien Chilloux
- INSERM U1213, 7-11 rue Paradin, F-69008 Lyon, France.,Université de Lyon, 7-11 rue Paradin, F-69008 Lyon, France.,Université Lyon1, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - François Delalande
- Institut Pluridisciplinaire Hubert Curien, Département Sciences Analytiques, CNRS UMR7178 , 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.,Université de Strasbourg, 4 rue Blaise Pascal, F-67081 Strasbourg Cedex, France
| | - Carine Zitoun
- INSERM U1213, 7-11 rue Paradin, F-69008 Lyon, France.,Université de Lyon, 7-11 rue Paradin, F-69008 Lyon, France.,Université Lyon1, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Fabrice Bertile
- Institut Pluridisciplinaire Hubert Curien, Département Sciences Analytiques, CNRS UMR7178 , 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.,Université de Strasbourg, 4 rue Blaise Pascal, F-67081 Strasbourg Cedex, France
| | - Gilles Mithieux
- INSERM U1213, 7-11 rue Paradin, F-69008 Lyon, France.,Université de Lyon, 7-11 rue Paradin, F-69008 Lyon, France.,Université Lyon1, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| | - Amandine Gautier-Stein
- INSERM U1213, 7-11 rue Paradin, F-69008 Lyon, France.,Université de Lyon, 7-11 rue Paradin, F-69008 Lyon, France.,Université Lyon1, 43 Boulevard du 11 Novembre 1918, F-69622 Villeurbanne, France
| |
Collapse
|
30
|
Abstract
OBJECTIVE To evaluate the role of bile routing modification on the beneficial effects of gastric bypass surgery on glucose and energy metabolism. BACKGROUND Gastric bypass surgery (GBP) promotes early improvements in glucose and energy homeostasis in obese diabetic patients. A suggested mechanism associates a decrease in hepatic glucose production to an enhanced intestinal gluconeogenesis. Moreover, plasma bile acids are elevated after GBP and bile acids are inhibitors of gluconeogenesis. METHODS In male Sprague-Dawley rats, we performed bile diversions from the bile duct to the midjejunum or the mid-ileum to match the modified bile delivery in the gut occurring in GBP. Body weight, food intake, glucose tolerance, insulin sensitivity, and food preference were analyzed. The expression of gluconeogenesis genes was evaluated in both the liver and the intestine. RESULTS Bile diversions mimicking GBP promote an increase in plasma bile acids and a marked improvement in glucose control. Bile bioavailability modification is causal because a bile acid sequestrant suppresses the beneficial effects of bile diversions on glucose control. In agreement with the inhibitory role of bile acids on gluconeogenesis, bile diversions promote a blunting in hepatic glucose production, whereas intestinal gluconeogenesis is increased in the gut segments devoid of bile. In rats fed a high-fat-high-sucrose diet, bile diversions improve glucose control and dramatically decrease food intake because of an acquired disinterest in fatty food. CONCLUSIONS This study shows that bile routing modification is a key mechanistic feature in the beneficial outcomes of GBP.
Collapse
|
31
|
Rajas F, Clar J, Gautier-Stein A, Mithieux G. Lessons from new mouse models of glycogen storage disease type 1a in relation to the time course and organ specificity of the disease. J Inherit Metab Dis 2015; 38:521-7. [PMID: 25164786 PMCID: PMC5522669 DOI: 10.1007/s10545-014-9761-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 12/12/2022]
Abstract
Patients with glycogen storage diseases type 1 (GSD1) suffer from life-threatening hypoglycaemia, when left untreated. Despite an intensive dietary treatment, patients develop severe complications, such as liver tumors and renal failure, with aging. Until now, the animal models available for studying the GSD1 did not survive after weaning. To gain further insights into the molecular mechanisms of the disease and to evaluate potential treatment strategies, we have recently developed novel mouse models in which the catalytic subunit of glucose-6 phosphatase (G6pc) is deleted in each glucose-producing organ specifically. For that, B6.G6pc(ex3lox/ex3lox) mice were crossed with transgenic mice expressing a recombinase under the control of the serum albumin, the kidney androgen protein or the villin promoter, in order to obtain liver, kidney or intestine G6pc(-/-) mice, respectively. As opposed to total G6pc knockout mice, tissue-specific G6pc deficiency allows mice to maintain their blood glucose by inducing glucose production in the other gluconeogenic organs. Even though it is considered that glucose is produced mainly by the liver, liver G6pc(-/-) mice are perfectly viable and exhibit the same hepatic pathological features as GSD1 patients, including the late development of hepatocellular adenomas and carcinomas. Interestingly, renal G6pc(-/-) mice developed renal symptoms similar to the early human GSD1 nephropathy. This includes glycogen overload that leads to nephromegaly and morphological and functional alterations in the kidneys. Thus, our data suggest that renal G6Pase deficiency per se is sufficient to induce the renal pathology of GSD1. Therefore, these new mouse models should allow us to improve the strategies of treatment on both nutritional and pharmacological points of view.
Collapse
Affiliation(s)
- Fabienne Rajas
- Institut National de la Santé et de la Recherche Médicale, U855, Lyon, 69008, France,
| | | | | | | |
Collapse
|
32
|
Clar J, Mutel E, Gri B, Creneguy A, Stefanutti A, Gaillard S, Ferry N, Beuf O, Mithieux G, Nguyen TH, Rajas F. Hepatic lentiviral gene transfer prevents the long-term onset of hepatic tumours of glycogen storage disease type 1a in mice. Hum Mol Genet 2015; 24:2287-96. [DOI: 10.1093/hmg/ddu746] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
33
|
Insights into Transcriptional Regulation of Hepatic Glucose Production. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 318:203-53. [DOI: 10.1016/bs.ircmb.2015.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Mithieux G, Gautier-Stein A. Intestinal glucose metabolism revisited. Diabetes Res Clin Pract 2014; 105:295-301. [PMID: 24969963 DOI: 10.1016/j.diabres.2014.04.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 02/02/2023]
Abstract
It is long known that the gut can contribute to the control of glucose homeostasis via its high glucose utilization capacity. Recently, a novel function in intestinal glucose metabolism (gluconeogenesis) was described. The intestine notably contributes to about 20-25% of total endogenous glucose production during fasting. More importantly, intestinal gluconeogenesis is capable of regulating energy homeostasis through a communication with the brain. The periportal neural system senses glucose (produced by intestinal gluconeogenesis) in the portal vein walls, which sends a signal to the brain to modulate hunger sensations and whole body glucose homeostasis. Relating to the mechanism of glucose sensing, the role of the glucose receptor SGLT3 has been strongly suggested. Moreover, dietary proteins mobilize intestinal gluconeogenesis as a mandatory link between their detection in the portal vein and their effect of satiety. In the same manner, dietary soluble fibers exert their anti-obesity and anti-diabetic effects via the induction of intestinal gluconeogenesis. FFAR3 is a key neural receptor involved in the specific sensing of propionate to activate a gut-brain reflex arc triggering the induction of the gut gluconeogenic function. Lastly, intestinal gluconeogenesis might also be involved in the rapid metabolic improvements induced by gastric bypass surgeries of obesity.
Collapse
Affiliation(s)
- Gilles Mithieux
- Inserm U855, Faculté de Médecine Lyon-Est "Laennec", 69372 Lyon Cedex 08, France; Université Lyon 1, 69622 Villeurbanne, France; Université de Lyon, 69008 Lyon, France.
| | - Amandine Gautier-Stein
- Inserm U855, Faculté de Médecine Lyon-Est "Laennec", 69372 Lyon Cedex 08, France; Université Lyon 1, 69622 Villeurbanne, France; Université de Lyon, 69008 Lyon, France
| |
Collapse
|
35
|
De Vadder F, Mithieux G. Les fibres alimentaires induisent des bénéfices métaboliques via l’activation de la néoglucogenèse intestinale. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11690-014-0451-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Clar J, Gri B, Calderaro J, Birling MC, Hérault Y, Smit GPA, Mithieux G, Rajas F. Targeted deletion of kidney glucose-6 phosphatase leads to nephropathy. Kidney Int 2014; 86:747-56. [PMID: 24717294 DOI: 10.1038/ki.2014.102] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 01/27/2014] [Accepted: 02/13/2014] [Indexed: 12/18/2022]
Abstract
Renal failure is a major complication that arises with aging in glycogen storage disease type 1a and type 1b patients. In the kidneys, glucose-6 phosphatase catalytic subunit (encoded by G6pc) deficiency leads to the accumulation of glycogen, an effect resulting in marked nephromegaly and progressive glomerular hyperperfusion and hyperfiltration preceding the development of microalbuminuria and proteinuria. To better understand the end-stage nephropathy in glycogen storage disease type 1a, we generated a novel kidney-specific G6pc knockout (K-G6pc(-/-)) mouse, which exhibited normal life expectancy. After 6 months, K-G6pc(-/-) mice showed glycogen overload leading to nephromegaly and tubular dilation. Moreover, renal accumulation of lipids due to activation of de novo lipogenesis was observed. This led to the activation of the renin-angiotensin system and the development of epithelial-mesenchymal transition process and podocyte injury by transforming growth factor β1 signaling. The K-G6pc(-/-) mice developed microalbuminuria caused by the impairment of the glomerular filtration barrier. Thus, renal G6pc deficiency alone is sufficient to induce the development of the early-onset nephropathy observed in glycogen storage disease type 1a, independent of the liver disease. The K-G6pc(-/-) mouse model is a unique tool to decipher the molecular mechanisms underlying renal failure and to evaluate potential therapeutic strategies.
Collapse
Affiliation(s)
- Julie Clar
- 1] Institut National de la Santé et de la Recherche Médicale, U855, Lyon, France [2] Université de Lyon, Lyon, France [3] Université Lyon 1, Villeurbanne, France
| | - Blandine Gri
- 1] Institut National de la Santé et de la Recherche Médicale, U855, Lyon, France [2] Université de Lyon, Lyon, France [3] Université Lyon 1, Villeurbanne, France
| | - Julien Calderaro
- Département de Pathologie, Hôpital Henri Mondor, Créteil, France
| | - Marie-Christine Birling
- Institut Clinique de la Souris, Phenomin IGBMC, CNRS, Université de Strasbourg INSERM, U964, Illkirch, France
| | - Yann Hérault
- Institut Clinique de la Souris, Phenomin IGBMC, CNRS, Université de Strasbourg INSERM, U964, Illkirch, France
| | - G Peter A Smit
- Universitair Medisch Centrum Groningen, Groningen, The Netherlands
| | - Gilles Mithieux
- 1] Institut National de la Santé et de la Recherche Médicale, U855, Lyon, France [2] Université de Lyon, Lyon, France [3] Université Lyon 1, Villeurbanne, France
| | - Fabienne Rajas
- 1] Institut National de la Santé et de la Recherche Médicale, U855, Lyon, France [2] Université de Lyon, Lyon, France [3] Université Lyon 1, Villeurbanne, France
| |
Collapse
|
37
|
De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, Bäckhed F, Mithieux G. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 2014; 156:84-96. [PMID: 24412651 DOI: 10.1016/j.cell.2013.12.016] [Citation(s) in RCA: 1493] [Impact Index Per Article: 149.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/15/2013] [Accepted: 12/11/2013] [Indexed: 12/22/2022]
Abstract
Soluble dietary fibers promote metabolic benefits on body weight and glucose control, but underlying mechanisms are poorly understood. Recent evidence indicates that intestinal gluconeogenesis (IGN) has beneficial effects on glucose and energy homeostasis. Here, we show that the short-chain fatty acids (SCFAs) propionate and butyrate, which are generated by fermentation of soluble fiber by the gut microbiota, activate IGN via complementary mechanisms. Butyrate activates IGN gene expression through a cAMP-dependent mechanism, while propionate, itself a substrate of IGN, activates IGN gene expression via a gut-brain neural circuit involving the fatty acid receptor FFAR3. The metabolic benefits on body weight and glucose control induced by SCFAs or dietary fiber in normal mice are absent in mice deficient for IGN, despite similar modifications in gut microbiota composition. Thus, the regulation of IGN is necessary for the metabolic benefits associated with SCFAs and soluble fiber.
Collapse
Affiliation(s)
- Filipe De Vadder
- Institut de la Santé et de la Recherche Médicale, U855, Lyon 69372, France; Université de Lyon, Lyon 69008, France; Université Lyon 1, Villeurbanne 69622, France
| | - Petia Kovatcheva-Datchary
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, University of Gothenburg 41345, Sweden
| | - Daisy Goncalves
- Institut de la Santé et de la Recherche Médicale, U855, Lyon 69372, France; Université de Lyon, Lyon 69008, France; Université Lyon 1, Villeurbanne 69622, France
| | - Jennifer Vinera
- Institut de la Santé et de la Recherche Médicale, U855, Lyon 69372, France; Université de Lyon, Lyon 69008, France; Université Lyon 1, Villeurbanne 69622, France
| | - Carine Zitoun
- Institut de la Santé et de la Recherche Médicale, U855, Lyon 69372, France; Université de Lyon, Lyon 69008, France; Université Lyon 1, Villeurbanne 69622, France
| | - Adeline Duchampt
- Institut de la Santé et de la Recherche Médicale, U855, Lyon 69372, France; Université de Lyon, Lyon 69008, France; Université Lyon 1, Villeurbanne 69622, France
| | - Fredrik Bäckhed
- Wallenberg Laboratory and Department of Molecular and Clinical Medicine, University of Gothenburg 41345, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, Section for Metabolic Receptology and Enteroendocrinology, Faculty of Health Sciences, University of Copenhagen, Copenhagen 2200, Denmark
| | - Gilles Mithieux
- Institut de la Santé et de la Recherche Médicale, U855, Lyon 69372, France; Université de Lyon, Lyon 69008, France; Université Lyon 1, Villeurbanne 69622, France.
| |
Collapse
|
38
|
Mithieux G. Nutrient control of energy homeostasis via gut-brain neural circuits. Neuroendocrinology 2014; 100:89-94. [PMID: 25342450 DOI: 10.1159/000369070] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/10/2014] [Indexed: 11/19/2022]
Abstract
Intestinal gluconeogenesis is a recently described function in intestinal glucose metabolism. In particular, the intestine contributes around 20-25% of total endogenous glucose production during fasting. Intestinal gluconeogenesis appears to regulate energy homeostasis via a neurally mediated mechanism linking the enterohepatic portal system with the brain. The periportal neural system is able to sense glucose produced by intestinal gluconeogenesis in the portal vein walls, which sends a signal to the brain to modulate energy and glucose homeostasis. Dietary proteins mobilize intestinal gluconeogenesis as a mandatory link between the sensing of these proteins in the portal vein and their well-known effect of satiety. Comparably, dietary soluble fibers exert their antiobesity and antidiabetic effects via the induction of intestinal gluconeogenesis. Finally, intestinal gluconeogenesis might be involved in the rapid metabolic improvements in energy homeostasis induced by gastric bypass surgeries of obesity.
Collapse
Affiliation(s)
- Gilles Mithieux
- Inserm U-855, Faculté de Médecine Lyon-Est 'Laennec', and Université de Lyon, Lyon, France
| |
Collapse
|
39
|
Penhoat A, Fayard L, Stefanutti A, Mithieux G, Rajas F. Intestinal gluconeogenesis is crucial to maintain a physiological fasting glycemia in the absence of hepatic glucose production in mice. Metabolism 2014; 63:104-11. [PMID: 24135501 DOI: 10.1016/j.metabol.2013.09.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 09/08/2013] [Accepted: 09/09/2013] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Similar to the liver and kidneys, the intestine has been strongly suggested to be a gluconeogenic organ. However, the precise contribution of the intestine to endogenous glucose production (EGP) remains to be determined. To define the quantitative role of intestinal gluconeogenesis during long-term fasting, we compared changes in blood glucose during prolonged fasting in mice with a liver-deletion of the glucose-6 phosphatase catalytic (G6PC) subunit (LKO) and in mice with a combined deletion of G6PC in both the liver and the intestine (ILKO). MATERIALS/METHODS The LKO and ILKO mice were studied after 6h and 40 h of fasting by measuring metabolic and hormonal plasmatic parameters, as well as the expression of gluconeogenic enzymes in the liver, kidneys and intestine. RESULTS After a transient hypoglycemic episode (approximately 60 mg/dL) because of their incapacity to mobilize liver glycogen, the LKO mice progressively re-increased their plasma glucose to reach a glycemia comparable to that of wild-type mice (90 mg/dL) from 30 h of fasting. This increase was associated with a rapid induction of renal and intestinal gluconeogenic gene expression, driven by glucagon, glucocorticoids and acidosis. The ILKO mice exhibited a similar induction of renal gluconeogenesis. However, these mice failed to re-increase their glycemia and maintained a plasma glucose level of only 60 mg/dL throughout the 48 h-fasting period. CONCLUSIONS These data indicate that intestinal glucose production is essential to maintain glucose homeostasis in the absence of hepatic glucose production during fasting. These data provide a definitive quantitative estimate of the capacity of intestinal gluconeogenesis to sustain EGP during long-term fasting.
Collapse
Affiliation(s)
- Armelle Penhoat
- Institut National de la Santé et de la Recherche Médicale, U855, Lyon 69372, France; University of Lyon, Lyon 69008, France; University Lyon 1, Villeurbanne 69622, France
| | | | | | | | | |
Collapse
|
40
|
De Vadder F, Gautier-Stein A, Mithieux G. Satiety and the role of μ-opioid receptors in the portal vein. Curr Opin Pharmacol 2013; 13:959-63. [PMID: 24095601 DOI: 10.1016/j.coph.2013.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/20/2013] [Accepted: 09/04/2013] [Indexed: 01/03/2023]
Abstract
Mu-opioid receptors (MORs) are known to influence food intake at the brain level, through their involvement in the food reward system. MOR agonists stimulate food intake. On the other hand, MOR antagonists suppress food intake. MORs are also active in peripheral organs, especially in the small intestine where they control the gut motility. Recently, an indirect role in the control of food intake was ascribed to MORs in the extrinsic gastrointestinal neural system. MORs present in the neurons of the portal vein walls sense blood peptides released from the digestion of dietary protein. These peptides behave as MOR antagonists. Their MOR antagonist action initiates a gut-brain circuitry resulting in the induction of intestinal gluconeogenesis, a function controlling food intake. Thus, periportal MORs are a key mechanistic link in the satiety effect of protein-enriched diets.
Collapse
Affiliation(s)
- Filipe De Vadder
- Inserm U855, Lyon, France; Université Lyon 1, Villeurbanne, France; Université de Lyon, Lyon, France
| | | | | |
Collapse
|
41
|
El-Seweidy MM, Sadik NAH, Malek MM, Amin RS. Chronic effects of clozapine administration on insulin resistance in rats: evidence for adverse metabolic effects. Pathol Res Pract 2013; 210:5-9. [PMID: 24176172 DOI: 10.1016/j.prp.2013.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/23/2013] [Accepted: 09/23/2013] [Indexed: 02/08/2023]
Abstract
Chronic treatment with the atypical antipsychotics clozapine has been associated with an increased risk for deterioration of glucose homeostasis, leading to hyperglycemia and insulin resistance diabetes. The present study mainly aimed to investigate possible mechanisms underlying clozapine-induced hyperglycemia. Male Wistar albino rats were randomly divided into two groups (each consists of 12 rats). The first group received clozapine orally at a dose of 10mg/kg body weight daily for 6 weeks, while the other group received the drug vehicle only and served as the control group. At the end of the six weeks, hyperglycemia, hyperinsulinemia and insulin resistance, as indicated by Homeostatic model assessment of insulin resistance (HOMA-IR), were observed in the clozapine group as compared with the control group. This disturbance in glucose regulation was associated with non-significant changes in body weight, serum cortisol level, and hepatic glycogen content. The Clozapine group showed a significant increase in hepatic phosphorylase activity and in the gene expression level of hepatic glucose-6-phosphatse (G6Pase) enzymes compared to the control group. It can be concluded that clozapine-induced hyperglycemia and insulin resistance occur in a manner mostly independent of weight gain, and may be attributed to an increase in hepatic phosphorylase activity and increased expression level of G6Pase.
Collapse
Affiliation(s)
- Mohamed M El-Seweidy
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | | | - Marwa M Malek
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Rawia S Amin
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
42
|
Duodenal–Jejunal Bypass Surgery Up-Regulates the Expression of the Hepatic Insulin Signaling Proteins and the Key Regulatory Enzymes of Intestinal Gluconeogenesis in Diabetic Goto–Kakizaki Rats. Obes Surg 2013; 23:1734-42. [DOI: 10.1007/s11695-013-0985-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
43
|
Honka H, Mäkinen J, Hannukainen JC, Tarkia M, Oikonen V, Teräs M, Fagerholm V, Ishizu T, Saraste A, Stark C, Vähäsilta T, Salminen P, Kirjavainen A, Soinio M, Gastaldelli A, Knuuti J, Iozzo P, Nuutila P. Validation of [18F]fluorodeoxyglucose and positron emission tomography (PET) for the measurement of intestinal metabolism in pigs, and evidence of intestinal insulin resistance in patients with morbid obesity. Diabetologia 2013; 56:893-900. [PMID: 23334481 DOI: 10.1007/s00125-012-2825-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 12/17/2012] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS The role of the intestine in the pathogenesis of metabolic diseases is gaining much attention. We therefore sought to validate, using an animal model, the use of positron emission tomography (PET) in the estimation of intestinal glucose uptake (GU), and thereafter to test whether intestinal insulin-stimulated GU is altered in morbidly obese compared with healthy human participants. METHODS In the validation study, pigs were imaged using [(18)F]fluorodeoxyglucose ([(18)F]FDG) and the image-derived data were compared with corresponding ex vivo measurements in tissue samples and with arterial-venous differences in glucose and [(18)F]FDG levels. In the clinical study, GU was measured in different regions of the intestine in lean (n = 8) and morbidly obese (n = 8) humans at baseline and during euglycaemic hyperinsulinaemia. RESULTS PET- and ex vivo-derived intestinal values were strongly correlated and most of the fluorine-18-derived radioactivity was accumulated in the mucosal layer of the gut wall. In the gut wall of pigs, insulin promoted GU as determined by PET, the arterial-venous balance or autoradiography. In lean human participants, insulin increased GU from the circulation in the duodenum (from 1.3 ± 0.6 to 3.1 ± 1.1 μmol [100 g](-1) min(-1), p < 0.05) and in the jejunum (from 1.1 ± 0.7 to 3.0 ± 1.5 μmol [100 g](-1) min(-1), p < 0.05). Obese participants failed to show any increase in insulin-stimulated GU compared with fasting values (NS). CONCLUSIONS/INTERPRETATION Intestinal GU can be quantified in vivo by [(18)F]FDG PET. Intestinal insulin resistance occurs in obesity before the deterioration of systemic glucose tolerance.
Collapse
Affiliation(s)
- H Honka
- Turku PET Centre, University of Turku, PL 52, FIN-20520 Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gautier-Stein A, Soty M, Chilloux J, Zitoun C, Rajas F, Mithieux G. Glucotoxicity induces glucose-6-phosphatase catalytic unit expression by acting on the interaction of HIF-1α with CREB-binding protein. Diabetes 2012; 61:2451-60. [PMID: 22787137 PMCID: PMC3447892 DOI: 10.2337/db11-0986] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The activation of glucose-6-phosphatase (G6Pase), a key enzyme of endogenous glucose production, is correlated with type 2 diabetes. Type 2 diabetes is characterized by sustained hyperglycemia leading to glucotoxicity. We investigated whether glucotoxicity mechanisms control the expression of the G6Pase catalytic unit (G6pc). We deciphered the transcriptional regulatory mechanisms of the G6pc promoter by glucotoxicity in a hepatoma cell line then in primary hepatocytes and in the liver of diabetic mice. High glucose exposure induced the production of reactive oxygen species (ROS) and, in parallel, induced G6pc promoter activity. In hepatocytes, glucose induced G6pc gene expression and glucose release. The decrease of ROS concentrations by antioxidants eliminated all the glucose-inductive effects. The induction of G6pc promoter activity by glucose was eliminated in the presence of small interfering RNA, targeting either the hypoxia-inducible factor (HIF)-1α or the CREB-binding protein (CBP). Glucose increased the interaction of HIF-1α with CBP and the recruitment of HIF-1 on the G6pc promoter. The same mechanism might occur in hyperglycemic mice. We deciphered a new regulatory mechanism induced by glucotoxicity. This mechanism leading to the induction of HIF-1 transcriptional activity may contribute to the increase of hepatic glucose production during type 2 diabetes.
Collapse
|
45
|
Mu-opioid receptors and dietary protein stimulate a gut-brain neural circuitry limiting food intake. Cell 2012; 150:377-88. [PMID: 22771138 DOI: 10.1016/j.cell.2012.05.039] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 03/02/2012] [Accepted: 05/09/2012] [Indexed: 11/21/2022]
Abstract
Intestinal gluconeogenesis is involved in the control of food intake. We show that mu-opioid receptors (MORs) present in nerves in the portal vein walls respond to peptides to regulate a gut-brain neural circuit that controls intestinal gluconeogenesis and satiety. In vitro, peptides and protein digests behave as MOR antagonists in competition experiments. In vivo, they stimulate MOR-dependent induction of intestinal gluconeogenesis via activation of brain areas receiving inputs from gastrointestinal ascending nerves. MOR-knockout mice do not carry out intestinal gluconeogenesis in response to peptides and are insensitive to the satiety effect induced by protein-enriched diets. Portal infusions of MOR modulators have no effect on food intake in mice deficient for intestinal gluconeogenesis. Thus, the regulation of portal MORs by peptides triggering signals to and from the brain to induce intestinal gluconeogenesis are links in the satiety phenomenon associated with alimentary protein assimilation.
Collapse
|
46
|
Mithieux G. A synergy between incretin effect and intestinal gluconeogenesis accounting for the rapid metabolic benefits of gastric bypass surgery. Curr Diab Rep 2012; 12:167-71. [PMID: 22311610 DOI: 10.1007/s11892-012-0257-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The early improvement of glucose control taking place shortly after gastric bypass surgery in obese diabetic patients has long been mysterious. A recent study in mice has highlighted some specific mechanisms underlying this phenomenon. The specificity of gastric bypass in obese diabetic mice relates to major changes in the sensations of hunger and to rapid improvement of glucose parameters. The induction of intestinal gluconeogenesis plays a major role in diminishing hunger, and in restoring insulin sensitivity of endogenous glucose production. In parallel, the restoration of the secretion of glucagon-like peptide 1 and insulin plays a key additional role, in this context of recovered insulin sensitivity, to improve postprandial glucose tolerance. Therefore, a synergy between an incretin effect and intestinal gluconeogenesis is a key feature accounting for the rapid improvement of glucose control in obese diabetic patients after bypass surgery.
Collapse
|
47
|
Naville D, Duchampt A, Vigier M, Oursel D, Lessire R, Poirier H, Niot I, Bégeot M, Besnard P, Mithieux G. Link between intestinal CD36 ligand binding and satiety induced by a high protein diet in mice. PLoS One 2012; 7:e30686. [PMID: 22295104 PMCID: PMC3266275 DOI: 10.1371/journal.pone.0030686] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 12/21/2011] [Indexed: 01/09/2023] Open
Abstract
CD36 is a ubiquitous membrane glycoprotein that binds long-chain fatty acids. The presence of a functional CD36 is required for the induction of satiety by a lipid load and its role as a lipid receptor driving cellular signal has recently been demonstrated. Our project aimed to further explore the role of intestinal CD36 in the regulation of food intake. Duodenal infusions of vehicle or sulfo-N-succinimidyl-oleate (SSO) was performed prior to acute infusions of saline or Intralipid (IL) in mice. Infusion of minute quantities of IL induced a decrease in food intake (FI) compared to saline. Infusion of SSO had the same effect but no additive inhibitory effect was observed in presence of IL. No IL- or SSO-mediated satiety occurred in CD36-null mice. To determine whether the CD36-mediated hypophagic effect of lipids was maintained in animals fed a satietogen diet, mice were subjected to a High-Protein diet (HPD). Concomitantly with the satiety effect, a rise in intestinal CD36 gene expression was observed. No satiety effect occurred in CD36-null mice. HPD-fed WT mice showed a diminished FI compared to control mice, after saline duodenal infusion. But there was no further decrease after lipid infusion. The lipid-induced decrease in FI observed on control mice was accompanied by a rise in jejunal oleylethanolamide (OEA). Its level was higher in HPD-fed mice than in controls after saline infusion and was not changed by lipids. Overall, we demonstrate that lipid binding to intestinal CD36 is sufficient to produce a satiety effect. Moreover, it could participate in the satiety effect induced by HPD. Intestine can modulate FI by several mechanisms including an increase in OEA production and CD36 gene expression. Furthermore, intestine of mice adapted to HPD have a diminished capacity to modulate their food intake in response to dietary lipids.
Collapse
|
48
|
Umeda LM, Silva EA, Carneiro G, Arasaki CH, Geloneze B, Zanella MT. Early improvement in glycemic control after bariatric surgery and its relationships with insulin, GLP-1, and glucagon secretion in type 2 diabetic patients. Obes Surg 2012; 21:896-901. [PMID: 21559794 DOI: 10.1007/s11695-011-0412-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND The surgical treatment of obesity ameliorates metabolic abnormalities in patients with type 2 diabetes. The objective of this study was to evaluate the early effects of Roux-en-Y gastric bypass (RYGB) on metabolic and hormonal parameters in patients with type 2 diabetes (T2DM). METHODS Ten patients with T2DM (BMI, 39.7 ± 1.9) were evaluated before and 7, 30, and 90 days after RYGB. A meal test was performed, and plasma insulin, glucose, glucagon, and glucagon-like-peptide 1 (GLP-1) levels were measured at fasting and postprandially. RESULTS Seven days after RYGB, a significant reduction was observed in HOMA-IR index from 7.8 ± 5.5 to 2.6 ± 1.7; p < 0.05 was associated with a nonsignificant reduction in body weight. The insulin and GLP-1 curves began to show a peak at 30 min after food ingestion, while there was a progressive decrease in glucagon and blood glucose levels throughout the meal test. Thirty and 90 days after RYGB, along with progressive weight loss, blood glucose and hormonal changes remained in the same direction and became more expressive with the post-meal insulin curve suggesting recovery of the first phase of insulin secretion and with the increase in insulinogenic index, denoting improvement in β-cell function. Furthermore, a positive correlation was found between changes in GLP-1 and insulin levels measured at 30 min after meal (r = 0.6; p = 0.000). CONCLUSION Our data suggest that the RYGB surgery, beyond weight loss, induces early beneficial hormonal changes which favor glycemic control in type 2 diabetes.
Collapse
Affiliation(s)
- Luciana Mela Umeda
- Department of Medicine, Division of Endocrinology, Universidade Federal de São Paulo, Rua Leandro Dupret 365, CEP 04025011, Vila Clementino, São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
49
|
Mutel E, Gautier-Stein A, Abdul-Wahed A, Amigó-Correig M, Zitoun C, Stefanutti A, Houberdon I, Tourette JA, Mithieux G, Rajas F. Control of blood glucose in the absence of hepatic glucose production during prolonged fasting in mice: induction of renal and intestinal gluconeogenesis by glucagon. Diabetes 2011; 60:3121-31. [PMID: 22013018 PMCID: PMC3219939 DOI: 10.2337/db11-0571] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Since the pioneering work of Claude Bernard, the scientific community has considered the liver to be the major source of endogenous glucose production in all postabsorptive situations. Nevertheless, the kidneys and intestine can also produce glucose in blood, particularly during fasting and under protein feeding. The aim of this study was to better define the importance of the three gluconeogenic organs in glucose homeostasis. RESEARCH DESIGN AND METHODS We investigated blood glucose regulation during fasting in a mouse model of inducible liver-specific deletion of the glucose-6-phosphatase gene (L-G6pc(-/-) mice), encoding a mandatory enzyme for glucose production. Furthermore, we characterized molecular mechanisms underlying expression changes of gluconeogenic genes (G6pc, Pck1, and glutaminase) in both the kidneys and intestine. RESULTS We show that the absence of hepatic glucose release had no major effect on the control of fasting plasma glucose concentration. Instead, compensatory induction of gluconeogenesis occurred in the kidneys and intestine, driven by glucagon, glucocorticoids, and acidosis. Moreover, the extrahepatic action of glucagon took place in wild-type mice. CONCLUSIONS Our study provides a definitive quantitative estimate of the capacity of extrahepatic gluconeogenesis to sustain fasting endogenous glucose production under the control of glucagon, regardless of the contribution of the liver. Thus, the current dogma relating to the respective role of the liver and of extrahepatic gluconeogenic organs in glucose homeostasis requires re-examination.
Collapse
|
50
|
Scott WR, Batterham RL. Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy: understanding weight loss and improvements in type 2 diabetes after bariatric surgery. Am J Physiol Regul Integr Comp Physiol 2011; 301:R15-27. [PMID: 21474429 DOI: 10.1152/ajpregu.00038.2011] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity increases the likelihood of diseases like type 2 diabetes (T2D), heart disease, and cancer, and is one of the most serious public health problems of this century. In contrast to ineffectual prevention strategies, lifestyle modifications, and pharmacological therapies, bariatric surgery is a very effective treatment for morbid obesity and also markedly improves associated comorbidities like T2D. However, weight loss and resolution of T2D after bariatric surgery is heterogeneous and specific to type of bariatric procedure performed. Conventional mechanisms like intestinal malabsorption and gastric restriction do not fully explain this, and potent changes in appetite and the enteroinsular axis, as a result of anatomical reorganization and altered hormonal, neuronal, and nutrient signaling, are the portended cause. Uniquely these signaling changes appear to override vigorous homeostatic defenses of stable body weight and compelling self-gratifying motivations to eat and to reverse defects in beta-cell function and insulin sensitivity. Here we review mechanisms of weight loss and T2D resolution after Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy bariatric surgery, two markedly different procedures with robust clinical outcomes.
Collapse
Affiliation(s)
- William R Scott
- Centre for Obesity Research, Dept. of Medicine, Rayne Institute, University College London, WC1E 6JJ, UK
| | | |
Collapse
|