1
|
Lautaoja-Kivipelto JH, Karvinen S, Korhonen TM, O'Connell TM, Tiirola M, Hulmi JJ, Pekkala S. Interaction of the C2C12 myotube contractions and glucose availability on transcriptome and extracellular vesicle microRNAs. Am J Physiol Cell Physiol 2024; 326:C348-C361. [PMID: 38047306 PMCID: PMC11192488 DOI: 10.1152/ajpcell.00401.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/26/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Exercise-like electrical pulse stimulation (EL-EPS) of myotubes mimics many key physiological changes induced by in vivo exercise. Besides enabling intracellular research, EL-EPS allows to study secreted factors, including muscle-specific microRNAs (myomiRs) carried in extracellular vesicles (EVs). These factors can participate in contraction-induced intercellular cross talk and may mediate the health benefits of exercise. However, the current knowledge of these responses, especially under variable nutritional conditions, is limited. We investigated the effects of EL-EPS on C2C12 myotube transcriptome in high- and low-glucose conditions by messenger RNA sequencing, while the expression of EV-carried miRNAs was analyzed by small RNA sequencing and RT-qPCR. We show that higher glucose availability augmented contraction-induced transcriptional changes and that the majority of the differentially expressed genes were upregulated. Furthermore, based on the pathway analyses, processes related to contractility and cytokine/inflammatory responses were upregulated. In addition, we report that EL-EPS increased packing of miR-1-3p into EVs independent of glucose availability. Together our findings suggest that in vitro EL-EPS is a usable tool not only to study contraction-induced intracellular mechanisms but also extracellular responses. The distinct transcriptional changes observed under variable nutritional conditions emphasize the importance of careful consideration of media composition in future exercise-mimicking studies.NEW & NOTEWORTHY The present study examined for the first time the effects of exercise-like electrical pulse stimulation administered under distinct nutritional conditions on 1) the transcriptome of the C2C12 myotubes and 2) their media containing extracellular vesicle-carried microRNAs. We report that higher glucose availability augmented transcriptional responses related especially to contractility and cytokine/inflammatory pathways. Agreeing with in vivo studies, we show that the packing of exercise-responsive miR-1-3p was increased in the extracellular vesicles in response to myotube contractions.
Collapse
Affiliation(s)
- Juulia H Lautaoja-Kivipelto
- Faculty of Sport and Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
- Faculty of Medicine, Research Unit of Biomedicine and Internal Medicine, University of Oulu, Oulu, Finland
| | - Sira Karvinen
- Faculty of Sport and Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Tia-Marje Korhonen
- Faculty of Sport and Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Thomas M O'Connell
- Department of Otolaryngology, Head & Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, United States
| | - Marja Tiirola
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Juha J Hulmi
- Faculty of Sport and Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Satu Pekkala
- Faculty of Sport and Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
2
|
Wang BYH, Hsiao AWT, Shiu HT, Wong N, Wang AYF, Lee CW, Lee OKS, Lee WYW. Mesenchymal stem cells alleviate dexamethasone-induced muscle atrophy in mice and the involvement of ERK1/2 signalling pathway. Stem Cell Res Ther 2023; 14:195. [PMID: 37542297 PMCID: PMC10403871 DOI: 10.1186/s13287-023-03418-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/17/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND High dosage of dexamethasone (Dex) is an effective treatment for multiple diseases; however, it is often associated with severe side effects including muscle atrophy, resulting in higher risk of falls and poorer life quality of patients. Cell therapy with mesenchymal stem cells (MSCs) holds promise for regenerative medicine. In this study, we aimed to investigate the therapeutic efficacy of systemic administration of adipose-derived mesenchymal stem cells (ADSCs) in mitigating the loss of muscle mass and strength in mouse model of DEX-induced muscle atrophy. METHODS 3-month-old female C57BL/6 mice were treated with Dex (20 mg/kg body weight, i.p.) for 10 days to induce muscle atrophy, then subjected to intravenous injection of a single dose of ADSCs ([Formula: see text] cells/kg body weight) or vehicle control. The mice were killed 7 days after ADSCs treatment. Body compositions were measured by animal DXA, gastrocnemius muscle was isolated for ex vivo muscle functional test, histological assessment and Western blot, while tibialis anterior muscles were isolated for RNA-sequencing and qPCR. For in vitro study, C2C12 myoblast cells were cultured under myogenic differentiation medium for 5 days following 100 [Formula: see text]M Dex treatment with or without ADSC-conditioned medium for another 4 days. Samples were collected for qPCR analysis and Western blot analysis. Myotube morphology was measured by myosin heavy chain immunofluorescence staining. RESULTS ADSC treatment significantly increased body lean mass (10-20%), muscle wet weight (15-30%) and cross-sectional area (CSA) (~ 33%) in DEX-induced muscle atrophy mice model and down-regulated muscle atrophy-associated genes expression (45-65%). Hindlimb grip strength (~ 37%) and forelimb ex vivo muscle contraction property were significantly improved (~ 57%) in the treatment group. Significant increase in type I fibres (~ 77%) was found after ADSC injection. RNA-sequencing results suggested that ERK1/2 signalling pathway might be playing important role underlying the beneficial effect of ADSC treatment, which was confirmed by ERK1/2 inhibitor both in vitro and in vivo. CONCLUSIONS ADSCs restore the pathogenesis of Dex-induced muscle atrophy with an increased number of type I fibres, stronger muscle strength, faster recovery rate and more anti-fatigue ability via ERK1/2 signalling pathway. The inhibition of muscle atrophy-associated genes by ADSCs offered this treatment as an intervention option for muscle-associated diseases. Taken together, our findings suggested that adipose-derived mesenchymal stem cell therapy could be a new treatment option for patient with Dex-induced muscle atrophy.
Collapse
Affiliation(s)
- Belle Yu-Hsuan Wang
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Allen Wei-Ting Hsiao
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hoi Ting Shiu
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Nicodemus Wong
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Amanda Yu-Fan Wang
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chien-Wei Lee
- Center for Translational Genomics and Regenerative Medicine Research, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan.
- Department of Biomedical Engineering, China Medical University, Taichung, 404327, Taiwan.
| | - Oscar Kuang-Sheng Lee
- Center for Translational Genomics and Regenerative Medicine Research, China Medical University Hospital, China Medical University, Taichung, 404327, Taiwan.
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Orthopedics, China Medical University Hospital, Taichung, 404327, Taiwan.
| | - Wayne Yuk-Wai Lee
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong.
- Musculoskeletal Research Laboratory, SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong.
- Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Shatin, Hong Kong.
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
3
|
Ferrara PJ, Reidy PT, Petrocelli JJ, Yee EM, Fix DK, Mahmassani ZS, Montgomery JA, McKenzie AI, de Hart NMMP, Drummond MJ. Global deletion of CCL2 has adverse impacts on recovery of skeletal muscle fiber size and function and is muscle specific. J Appl Physiol (1985) 2023; 134:923-932. [PMID: 36861669 PMCID: PMC10069960 DOI: 10.1152/japplphysiol.00444.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023] Open
Abstract
Timely and complete recovery of muscle mass and function following a bout of physical disuse are critical components of returning to normal activities of daily living and lifestyle. Proper cross talk between the muscle tissue and myeloid cells (e.g., macrophages) throughout the recovery period from disuse atrophy plays a significant role in the complete resolution of muscle size and function. Chemokine C-C motif ligand 2 (CCL2) has a critical function of recruiting macrophages during the early phase of muscle damage. However, the importance of CCL2 has not been defined in the context of disuse and recovery. Here, we utilized a mouse model of whole body CCL2 deletion (CCL2KO) and subjected them to a period of hindlimb unloading followed by reloading to investigate the importance of CCL2 on the regrowth of muscle following disuse atrophy using ex vivo muscle tests, immunohistochemistry, and fluorescence-activated cell sorting approaches. We show mice that lack CCL2 display an incomplete recovery of gastrocnemius muscle mass, myofiber cross-sectional area, and EDL muscle contractile characteristics during the recovery from disuse atrophy. The soleus and plantaris had limited impact as a result of CCL2 deficiency suggesting a muscle-specific effect. Mice that lack CCL2 have decreased skeletal muscle collagen turnover, which may be related to defects in muscle function and stiffness. In addition, we show that the recruitment of macrophages to gastrocnemius muscle was dramatically reduced in CCL2KO mice during the recovery from disuse atrophy, which likely precipitated poor recovery of muscle size and function and aberrant collagen remodeling.NEW & NOTEWORTHY We provide evidence that the whole body loss of CCL2 in mice has adverse impacts on whole body function and skeletal muscle-specific contractile characteristics and collagen content. These defects in muscle function worsened during the recovery from disuse atrophy and corresponded with decreased recovery of muscle mass. We conclude that the absence of CCL2 decreased recruitment of proinflammatory macrophages to the muscle during the regrowth phase following disuse atrophy resulting in impaired collagen remodeling events and full resolution of muscle morphology and function.
Collapse
Affiliation(s)
- Patrick J Ferrara
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Jonathan J Petrocelli
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, United States
| | - Elena M Yee
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, United States
| | - Dennis K Fix
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
| | - Ziad S Mahmassani
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, United States
| | - Jessie A Montgomery
- Department of Chemistry, University of Utah, Salt Lake City, Utah, United States
| | - Alec I McKenzie
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, United States
| | - Naomi M M P de Hart
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Micah J Drummond
- Molecular Medicine Program, University of Utah, Salt Lake City, Utah, United States
- Department of Physical Therapy and Athletic Training, University of Utah, Salt Lake City, Utah, United States
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
4
|
Liu H, Lin X, Gong R, Shen H, Qu Z, Zhao Q, Shen J, Xiao H, Deng H. Identification and Functional Characterization of Metabolites for Skeletal Muscle Mass in Early Postmenopausal Chinese Women. J Gerontol A Biol Sci Med Sci 2022; 77:2346-2355. [PMID: 35352111 PMCID: PMC9799191 DOI: 10.1093/gerona/glac075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 01/20/2023] Open
Abstract
Low skeletal muscle mass (SMM) is a crucial component of the sarcopenia phenotypes. In the present study, we aim to identify the specific metabolites associated with SMM variation and their functional mechanisms of decreased SMM in early postmenopausal women. We performed an untargeted metabolomics analysis in 430 early postmenopausal women to identify specific metabolite associated with skeletal muscle mass indexes (SMIes). Then, the potential causal effect of specific metabolite on SMM variation was accessed by one-sample Mendelian randomization (MR) analysis. Finally, in vitro experiments and transcriptomics bioinformatics analysis were conducted to explore the impact and potential functional mechanisms of specific metabolite on SMM variation. We detected 65 metabolites significantly associated with at least one SMI (variable importance in projection > 1.5 by partial least squares regression and p < .05 in multiple linear regression analysis). Remarkably, stearic acid (SA) was negatively associated with all SMIes, and subsequent MR analyses showed that increased serum SA level had a causal effect on decreased SMM (p < .05). Further in vitro experiments showed that SA could repress myoblast's differentiation at mRNA, protein, and phenotype levels. By combining transcriptome bioinformatics analysis, our study supports that SA may inhibit myoblast differentiation and myotube development by regulating the migration, adhesion, and fusion of myoblasts. This metabolomics study revealed specific metabolic profiles associated with decreased SMM in postmenopausal women, first highlighted the importance of SA in regulating SMM variation, and illustrated its potential mechanism on decreased SMM.
Collapse
Affiliation(s)
- Huimin Liu
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan Province, P.R. China
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Rui Gong
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Zhihao Qu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Qi Zhao
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Shunde Hospital of Southern Medical University (The First People’s Hospital of Shunde), Foshan City, Guangdong Province, China
| | - Hongmei Xiao
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan Province, P.R. China
| | - Hongwen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
5
|
Komori T, Morikawa Y. Essential roles of the cytokine oncostatin M in crosstalk between muscle fibers and immune cells in skeletal muscle after aerobic exercise. J Biol Chem 2022; 298:102686. [PMID: 36370846 PMCID: PMC9720348 DOI: 10.1016/j.jbc.2022.102686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/10/2022] Open
Abstract
Crosstalk between muscle fibers and immune cells is well known in the processes of muscle repair after exercise, especially resistance exercise. In aerobic exercise, however, this crosstalk is not fully understood. In the present study, we found that macrophages, especially anti-inflammatory (M2) macrophages, and neutrophils accumulated in skeletal muscles of mice 24 h after a single bout of an aerobic exercise. The expression of oncostatin M (OSM), a member of the interleukin 6 family of cytokines, was also increased in muscle fibers immediately after the exercise. In addition, we determined that deficiency of OSM in mice inhibited the exercise-induced accumulation of M2 macrophages and neutrophils, whereas intramuscular injection of OSM increased these immune cells in skeletal muscles. Furthermore, the chemokines related to the recruitment of macrophages and neutrophils were induced in skeletal muscles after aerobic exercise, which were attenuated in OSM-deficient mice. Among them, CC chemokine ligand 2, CC chemokine ligand 7, and CXC chemokine ligand 1 were induced by OSM in skeletal muscles. Next, we analyzed the direct effects of OSM on the skeletal muscle macrophages, because the OSM receptor β subunit was expressed predominantly in macrophages in the skeletal muscle. OSM directly induced the expression of these chemokines and anti-inflammatory markers in the skeletal muscle macrophages. From these findings, we conclude that OSM is essential for aerobic exercise-induced accumulation of M2 macrophages and neutrophils in the skeletal muscle partly through the regulation of chemokine expression in macrophages.
Collapse
|
6
|
Characteristics of the Protocols Used in Electrical Pulse Stimulation of Cultured Cells for Mimicking In Vivo Exercise: A Systematic Review, Meta-Analysis, and Meta-Regression. Int J Mol Sci 2022; 23:ijms232113446. [PMID: 36362233 PMCID: PMC9657802 DOI: 10.3390/ijms232113446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
While exercise benefits a wide spectrum of diseases and affects most tissues and organs, many aspects of its underlying mechanistic effects remain unsolved. In vitro exercise, mimicking neuronal signals leading to muscle contraction in vitro, can be a valuable tool to address this issue. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for this systematic review and meta-analysis, we searched EMBASE and PubMed (from database inception to 4 February 2022) for relevant studies assessing in vitro exercise using electrical pulse stimulation to mimic exercise. Meta-analyses of mean differences and meta-regression analyses were conducted. Of 985 reports identified, 41 were eligible for analysis. We observed variability among existing protocols of in vitro exercise and heterogeneity among protocols of the same type of exercise. Our analyses showed that AMPK, Akt, IL-6, and PGC1a levels and glucose uptake increased in stimulated compared to non-stimulated cells, following the patterns of in vivo exercise, and that these effects correlated with the duration of stimulation. We conclude that in vitro exercise follows motifs of exercise in humans, allowing biological parameters, such as the aforementioned, to be valuable tools in defining the types of in vitro exercise. It might be useful in transferring obtained knowledge to human research.
Collapse
|
7
|
Effects of Different Types of Chronic Training on Bioenergetic Profile and Reactive Oxygen Species Production in LHCN-M2 Human Myoblast Cells. Int J Mol Sci 2022; 23:ijms23147491. [PMID: 35886840 PMCID: PMC9320149 DOI: 10.3390/ijms23147491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Human skeletal muscle contains three different types of fibers, each with a different metabolism. Exercise differently contributes to differentiation and metabolism in human myoblast cells. The aims of the present study were to investigate the effects of different types of chronic training on the human LHCN-M2 myoblast cell bioenergetic profile during differentiation in real time and on the ROS overproduction consequent to H2O2 injury. We demonstrated that exercise differently affects the myoblast bioenergetics: aerobic exercise induced the most efficient glycolytic and oxidative capacity and proton leak reduction compared to untrained or anaerobic trained sera-treated cells. Similarly, ROS overproduction after H2O2 stress was lower in cells treated with differently trained sera compared to untrained sera, indicating a cytoprotective effect of training on the reduction of oxidative stress, and thus the promotion of longevity. In conclusion, for the first time, this study has provided knowledge regarding the modifications induced by different types of chronic training on human myoblast cell bioenergetics during the differentiation process in real time, and on ROS overproduction due to stress, with positive implications in terms of longevity.
Collapse
|
8
|
Bensaid S, Fabre C, Pawlak-Chaouch M, Cieniewski-Bernard C. Oxygen supplementation to limit hypoxia-induced muscle atrophy in C2C12 myotubes: comparison with amino acid supplement and electrical stimulation. Cell Tissue Res 2022; 387:287-301. [PMID: 35001209 DOI: 10.1007/s00441-021-03492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/21/2021] [Indexed: 11/28/2022]
Abstract
In skeletal muscle, chronic oxygen depletion induces a disturbance leading to muscle atrophy. Mechanical stress (physical exercise) and nutritional supplement therapy are commonly used against loss of muscle mass and undernutrition in hypoxia, while oxygenation therapy is preferentially used to counteract muscle fatigue and exercise intolerance. However, the impact of oxygenation on skeletal muscle cells remains poorly understood, in particular on signalling pathways regulating protein balance. Thus, we investigated the effects of each separated treatment (mechanical stress, nutritional supplementation and oxygenation therapy) on intracellular pathways involved in protein synthesis and degradation that are imbalanced in skeletal muscle cells atrophy resulting from hypoxia. Myotubes under hypoxia were treated by electrical stimulation, amino acids supplement or oxygenation period. Signalling pathways involved in protein synthesis (PI3K-Akt-mTOR) and degradation (FoxO1 and FoxO3a) were investigated, so as autophagy, ubiquitin-proteasome system and myotube morphology. Electrical stimulation and oxygenation treatment resulted in higher myotube diameter, myogenic fusion index and myotubes density until 48 h post-treatment compared to untreated hypoxic myotubes. Both treatments also induced inhibition of FoxO3a and decreased activity of ubiquitin-proteasome system; however, their impact on protein synthesis pathway was specific for each one. Indeed, electrical stimulation impacted upstream proteins to mTOR (i.e., Akt) while oxygenation treatment activated downstream targets of mTOR (i.e., 4E-BP1 and P70S6K). In contrast, amino acid supplementation had very few effects on myotube morphology nor on protein homeostasis. This study demonstrated that electrical stimulation or oxygenation period are two effective treatments to fight against hypoxia-induced muscle atrophy, acting through different molecular adaptations.
Collapse
Affiliation(s)
- Samir Bensaid
- Univ. Lille, Univ. Artois, Univ. Littoral Côte D'Opale, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France.,CHU Lille, Université de Lille, F-59000, Lille, France
| | - Claudine Fabre
- Univ. Lille, Univ. Artois, Univ. Littoral Côte D'Opale, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France
| | - Mehdi Pawlak-Chaouch
- Univ. Lille, Univ. Artois, Univ. Littoral Côte D'Opale, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France
| | - Caroline Cieniewski-Bernard
- Univ. Lille, Univ. Artois, Univ. Littoral Côte D'Opale, URePSSS - Unité de Recherche Pluridisciplinaire Sport Santé Société, F-59000, Lille, France.
| |
Collapse
|
9
|
Pharmacological Inhibition of CCR2 Signaling Exacerbates Exercise-Induced Inflammation Independently of Neutrophil Infiltration and Oxidative Stress. IMMUNO 2021. [DOI: 10.3390/immuno2010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Although exercise-induced humoral factors known as exerkines benefit systemic health, the role of most exerkines has not been investigated. Monocyte chemoattractant protein-1 (MCP-1) is a representative chemokine whose circulating concentrations increase after exercise, and it is one of the exerkines. MCP-1 is a ligand for CC chemokine receptor 2 (CCR2), which is expressed on monocytes, macrophages, and muscle cells. However, there is no information on the role of CCR2 signaling in exercise. Therefore, to investigate the research question, we administrated CCR2 antagonist or PBS to mice to inhibit CCR2 signaling before and after exercise. Our results showed that CCR2 signaling inhibition promoted exercise-induced macrophage infiltration and inflammation 24 h after exercise in muscle. CCR2 signaling inhibition also exacerbated exercise-induced inflammation immediately after exercise in muscle. However, neutrophil infiltration and oxidative stress had no contribution to exercise-induced inflammation by CCR2 signaling inhibition. CCR2 signaling inhibition also exacerbated exercise-induced inflammation immediately after exercise in kidney, liver, and adipose tissues. To summarize, pharmacological inhibition of CCR2 signaling exacerbated exercise-induced inflammation independently of neutrophil infiltration and oxidative stress.
Collapse
|
10
|
Fix DK, Mahmassani ZS, Petrocelli JJ, de Hart NMMP, Ferrara PJ, Painter JS, Nistor G, Lane TE, Keirstead HS, Drummond MJ. Reversal of deficits in aged skeletal muscle during disuse and recovery in response to treatment with a secrotome product derived from partially differentiated human pluripotent stem cells. GeroScience 2021; 43:2635-2652. [PMID: 34427856 PMCID: PMC8602548 DOI: 10.1007/s11357-021-00423-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022] Open
Abstract
Aged individuals are at risk to experience slow and incomplete muscle recovery following periods of disuse atrophy. While several therapies have been employed to mitigate muscle mass loss during disuse and improve recovery, few have proven effective at both. Therefore, the purpose of this study was to examine the effectiveness of a uniquely developed secretome product (STEM) on aged skeletal muscle mass and function during disuse and recovery. Aged (22 months) male C57BL/6 were divided into PBS or STEM treatment (n = 30). Mice within each treatment were assigned to either ambulatory control (CON; 14 days of normal cage ambulation), 14 days of hindlimb unloading (HU), or 14 days of hindlimb unloading followed by 7 days of recovery (recovery). Mice were given an intramuscular delivery into the hindlimb muscle of either PBS or STEM every other day for the duration of their respective treatment group. We found that STEM-treated mice compared to PBS had greater soleus muscle mass, fiber cross-sectional area (CSA), and grip strength during CON and recovery experimental conditions and less muscle atrophy and weakness during HU. Muscle CD68 +, CD11b + and CD163 + macrophages were more abundant in STEM-treated CON mice compared to PBS, while only CD68 + and CD11b + macrophages were more abundant during HU and recovery conditions with STEM treatment. Moreover, STEM-treated mice had lower collagen IV and higher Pax7 + cell content compared to PBS across all experimental conditions. As a follow-up to examine the cell autonomous role of STEM on muscle, C2C12 myotubes were given STEM or horse serum media to examine myotube fusion/size and effects on muscle transcriptional networks. STEM-treated C2C12 myotubes were larger and had a higher fusion index and were related to elevated expression of transcripts associated with extracellular matrix remodeling. Our results demonstrate that STEM is a unique cocktail that possesses potent immunomodulatory and cytoskeletal remodeling properties that may have translational potential to improve skeletal muscle across a variety of conditions that adversely effect aging muscle.
Collapse
Affiliation(s)
- Dennis K Fix
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, UT, 84108, Salt Lake City, USA
| | - Ziad S Mahmassani
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, UT, 84108, Salt Lake City, USA
| | - Jonathan J Petrocelli
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, UT, 84108, Salt Lake City, USA
| | - Naomi M M P de Hart
- Department of Nutrition and Integrative Physiology, University of Utah, UT, Salt Lake City, USA
| | - Patrick J Ferrara
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, UT, 84108, Salt Lake City, USA
| | | | | | - Thomas E Lane
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | | | - Micah J Drummond
- Department of Physical Therapy and Athletic Training, University of Utah, 520 Wakara Way, UT, 84108, Salt Lake City, USA
- Department of Nutrition and Integrative Physiology, University of Utah, UT, Salt Lake City, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
11
|
Tam TH, Chan KL, Boroumand P, Liu Z, Brozinick JT, Bui HH, Roth K, Wakefield CB, Penuela S, Bilan PJ, Klip A. Nucleotides released from palmitate-activated murine macrophages attract neutrophils. J Biol Chem 2020; 295:4902-4911. [PMID: 32132172 DOI: 10.1074/jbc.ra119.010868] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/27/2020] [Indexed: 01/11/2023] Open
Abstract
Obesity and elevation of circulating free fatty acids are associated with an accumulation and proinflammatory polarization of macrophages within metabolically active tissues, such as adipose tissue, muscle, liver, and pancreas. Beyond macrophages, neutrophils also accumulate in adipose and muscle tissues during high-fat diets and contribute to a state of local inflammation and insulin resistance. However, the mechanisms by which neutrophils are recruited to these tissues are largely unknown. Here we used a cell culture system as proof of concept to show that, upon exposure to a saturated fatty acid, palmitate, macrophages release nucleotides that attract neutrophils. Moreover, we found that palmitate up-regulates pannexin-1 channels in macrophages that mediate the attraction of neutrophils, shown previously to allow transfer of nucleotides across membranes. These findings suggest that proinflammatory macrophages release nucleotides through pannexin-1, a process that may facilitate neutrophil recruitment into metabolic tissues during obesity.
Collapse
Affiliation(s)
- Theresa H Tam
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Kenny L Chan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Parastoo Boroumand
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Zhi Liu
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | | | | | - Kenneth Roth
- Eli Lilly and Company, Indianapolis, Indiana 46285
| | - C Brent Wakefield
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Silvia Penuela
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada.,Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada .,Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
12
|
Abdelmoez AM, Sardón Puig L, Smith JAB, Gabriel BM, Savikj M, Dollet L, Chibalin AV, Krook A, Zierath JR, Pillon NJ. Comparative profiling of skeletal muscle models reveals heterogeneity of transcriptome and metabolism. Am J Physiol Cell Physiol 2019; 318:C615-C626. [PMID: 31825657 PMCID: PMC7099524 DOI: 10.1152/ajpcell.00540.2019] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rat L6, mouse C2C12, and primary human skeletal muscle cells (HSMCs) are commonly used to study biological processes in skeletal muscle, and experimental data on these models are abundant. However, consistently matched experimental data are scarce, and comparisons between the different cell types and adult tissue are problematic. We hypothesized that metabolic differences between these cellular models may be reflected at the mRNA level. Publicly available data sets were used to profile mRNA levels in myotubes and skeletal muscle tissues. L6, C2C12, and HSMC myotubes were assessed for proliferation, glucose uptake, glycogen synthesis, mitochondrial activity, and substrate oxidation, as well as the response to in vitro contraction. Transcriptomic profiling revealed that mRNA of genes coding for actin and myosin was enriched in C2C12, whereas L6 myotubes had the highest levels of genes encoding glucose transporters and the five complexes of the mitochondrial electron transport chain. Consistently, insulin-stimulated glucose uptake and oxidative capacity were greatest in L6 myotubes. Insulin-induced glycogen synthesis was highest in HSMCs, but C2C12 myotubes had higher baseline glucose oxidation. All models responded to electrical pulse stimulation-induced glucose uptake and gene expression but in a slightly different manner. Our analysis reveals a great degree of heterogeneity in the transcriptomic and metabolic profiles of L6, C2C12, or primary human myotubes. Based on these distinct signatures, we provide recommendations for the appropriate use of these models depending on scientific hypotheses and biological relevance.
Collapse
Affiliation(s)
- Ahmed M Abdelmoez
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Laura Sardón Puig
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Jonathon A B Smith
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Brendan M Gabriel
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Mladen Savikj
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lucile Dollet
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Alexander V Chibalin
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Juleen R Zierath
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Dai L, Liu Y, Yin Y, Li J, Dong Z, Chen N, Cheng L, Wang H, Fang C, Lin Y, Shi G, Zhang H, Fan P, Su X, Zhang S, Yang Y, Yang L, Huang W, Zhou Z, Yu D, Deng H. SARI suppresses colitis-associated cancer development by maintaining MCP-1-mediated tumour-associated macrophage recruitment. J Cell Mol Med 2019; 24:189-201. [PMID: 31578820 PMCID: PMC6933368 DOI: 10.1111/jcmm.14699] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/28/2019] [Accepted: 09/06/2019] [Indexed: 02/05/2023] Open
Abstract
SARI (suppressor of AP‐1, regulated by IFN) impaired tumour growth by promoting apoptosis and inhibiting cell proliferation and tumour angiogenesis in various cancers. However, the role of SARI in regulating tumour‐associated inflammation microenvironment is still elusive. In our study, the colitis‐dependent and ‐independent primary model were established in SARI deficiency mice and immuno‐reconstructive mice to investigate the functional role of SARI in regulating tumour‐associated inflammation microenvironment and primary colon cancer formation. The results have shown that SARI deficiency promotes colitis‐associated cancer (CAC) development only in the presence of colon inflammation. SARI inhibited tumour‐associated macrophages (TAM) infiltration in colon tissues, and SARI deficiency in bone marrow cells has no observed role in the promotion of intestinal tumorigenesis. Mechanism investigations indicated that SARI down‐regulates p‐STAT1 and STAT1 expression in colon cancer cells, following inhibition of MCP‐1/CCR2 axis activation during CAC development. Inverse correlations between SARI expression and macrophage infiltration, MCP‐1 expression and p‐STAT1 expression were also demonstrated in colon malignant tissues. Collectively, our results prove the inhibition role of SARI in colon cancer formation through regulating TAM infiltration.
Collapse
Affiliation(s)
- Lei Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yi Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yuan Yin
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Junshu Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhexu Dong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lin Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huiling Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Chao Fang
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Yi Lin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Gang Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Hantao Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ping Fan
- Department of Clinical Research Management, West China-Liverpool Biomedical Research Center, West China Hospital, West China Biobanks, Sichuan University, Chengdu, China
| | - Xiaolan Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Shuang Zhang
- Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lie Yang
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Wei Huang
- Department of Clinical Research Management, West China-Liverpool Biomedical Research Center, West China Hospital, West China Biobanks, Sichuan University, Chengdu, China
| | - Zongguang Zhou
- Department of Gastrointestinal Surgery, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Dechao Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Hongxin Deng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
14
|
Bryson TD, Ross J, Peterson E, Harding P. Prostaglandin E 2 and an EP4 receptor agonist inhibit LPS-Induced monocyte chemotactic protein 5 production and secretion in mouse cardiac fibroblasts via Akt and NF-κB signaling. Prostaglandins Other Lipid Mediat 2019; 144:106349. [PMID: 31229524 DOI: 10.1016/j.prostaglandins.2019.106349] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Prostaglandin E2 (PGE2) signals through 4 separate G-protein coupled receptor sub-types to elicit a variety of physiologic and pathophysiological effects. We have previously reported that mice lacking the EP4 receptor in the cardiomyocytes develop heart failure with a phenotype of dilated cardiomyopathy. Also, these mice have increased levels of chemokines, like MCP-5, in their left ventricles. We have recently reported that overexpression of the EP4 receptor could improve cardiac function in the myocardial infarction model. Furthermore, we showed that overexpression of EP4 had an anti-inflammatory effect in the whole left ventricle. It has also been shown that PGE2 can antagonize lipopolysaccharide-induced secretion of chemokines/cytokines in various cell types. We therefore hypothesized that PGE2 inhibits lipopolysaccharide (LPS)-induced MCP-5 secretion in adult mouse cardiac fibroblasts via its EP4 receptor. METHODS AND RESULTS Our hypothesis was tested using isolated mouse adult ventricular fibroblasts (AVF) treated with LPS. Pre-treatment of the cells with PGE2 and the EP4 agonist CAY10598 resulted in reductions of the pro-inflammatory response induced by LPS. Specifically, we observed reductions in MCP-5 secretion. Western blot analysis showed reductions in phosphorylated Akt and IκBα indicating reduced NF-κB activation. The anti-inflammatory effects of PGE2 and EP4 agonist signaling appeared to be independent of cAMP, p-44/42, or p38 pathways. CONCLUSION Exogenous treatment of PGE2 and the EP4 receptor agonist blocked the pro-inflammatory actions of LPS. Mechanistically, this was mediated via reduced Akt phosphorylation and inhibition of NF-κB.
Collapse
Affiliation(s)
- Timothy D Bryson
- Hypertension & Vascular Research Division, Dept. Internal Medicine, USA; Dept. of Physiology, Wayne State University School of Medicine, USA
| | - Jacob Ross
- Hypertension & Vascular Research Division, Dept. Internal Medicine, USA
| | - Edward Peterson
- Dept. of Public Health Sciences Henry Ford Hospital, Detroit, Michigan, USA
| | - Pamela Harding
- Hypertension & Vascular Research Division, Dept. Internal Medicine, USA; Dept. of Physiology, Wayne State University School of Medicine, USA.
| |
Collapse
|
15
|
Xiao Y, Zhu H, Li L, Gao S, Liu D, Dai B, Li Q, Duan H, Yang H, Li Q, Zhang H, Luo H, Zuo X. Global analysis of protein expression in muscle tissues of dermatomyositis/polymyosisits patients demonstrated an association between dysferlin and human leucocyte antigen A. Rheumatology (Oxford) 2019; 58:kez085. [PMID: 30907425 DOI: 10.1093/rheumatology/kez085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/04/2019] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES DM and PM are characterized by myofibre damage with inflammatory cell infiltration due to the strong expressions of MHC class I HLA-A and monocyte chemoattractant protein-1 (MCP-1). Dysferlin (DYSF) is a transmembrane glycoprotein that anchors in the sarcolemma of myofibres. DYSF mutation is closely associated with inherited myopathies. This study aimed to determine the role of DYSF in the development of DM/PM. METHODS Mass spectrometry was performed in muscle tissues from DM/PM patients and controls. The DYSF levels in muscle tissue, peripheral blood cells and serum were detected by Western blotting, IF, flow cytometry or ELISA. Double IF and co-immunoprecipitation were used to investigate the relationship between DYSF and HLA-A. RESULTS Mass spectrometry and bioinformatics analysis findings suggested the dysregulated proteins in DM/PM patients participated in common biological processes and pathways, such as the generation of precursor metabolites and energy. DYSF was upregulated in the muscle tissue and serum of DM/PM patients. DYSF was mainly expressed in myofibres and co-localized with HLA-A and MCP-1. DYSF and HLA-A expressions were elevated in myocytes and endothelial cells after being stimulated by patient serum and IFN-β. However, no direct interactions were found between DYSF and HLA-A by co-immunoprecipitation. CONCLUSION Our study revealed the dysregulated proteins involved in common and specific biological processes in DM/PM patient samples. DYSF is upregulated and exhibits a potential role along with that of HLA-A and MCP-1 in inflammatory cell infiltration and muscle damage during the development of DM/PM.
Collapse
Affiliation(s)
- Yizhi Xiao
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Rheumatology and Immunology, Central South University, Changsha, China
| | - Honglin Zhu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Rheumatology and Immunology, Central South University, Changsha, China
| | - Liya Li
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Rheumatology and Immunology, Central South University, Changsha, China
| | - Siming Gao
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Rheumatology and Immunology, Central South University, Changsha, China
| | - Di Liu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Rheumatology and Immunology, Central South University, Changsha, China
| | - Bingying Dai
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Rheumatology and Immunology, Central South University, Changsha, China
| | - Qiuxiang Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Huiqian Duan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Yang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Quanzhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huali Zhang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Hui Luo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Rheumatology and Immunology, Central South University, Changsha, China
| | - Xiaoxia Zuo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Rheumatology and Immunology, Central South University, Changsha, China
| |
Collapse
|
16
|
In vitro experimental models for examining the skeletal muscle cell biology of exercise: the possibilities, challenges and future developments. Pflugers Arch 2018; 471:413-429. [PMID: 30291430 DOI: 10.1007/s00424-018-2210-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 12/11/2022]
Abstract
Exercise provides a cornerstone in the prevention and treatment of several chronic diseases. The use of in vivo exercise models alone cannot fully establish the skeletal muscle-specific mechanisms involved in such health-promoting effects. As such, models that replicate exercise-like effects in vitro provide useful tools to allow investigations that are not otherwise possible in vivo. In this review, we provide an overview of experimental models currently used to induce exercise-like effects in skeletal muscle in vitro. In particular, the appropriateness of electrical pulse stimulation and several pharmacological compounds to resemble exercise, as well as important technical considerations, are addressed. Each model covered herein provides a useful tool to investigate different aspects of exercise with a level of abstraction not possible in vivo. That said, none of these models are perfect under all circumstances, and the choice of model (and terminology) used should be informed by the specific research question whilst accounting for the several inherent limitations of each model. Further work is required to develop and optimise the current experimental models used, such as combination with complementary techniques during treatment, and thereby improve their overall utility and impact within muscle biology research.
Collapse
|
17
|
Guigni BA, Callahan DM, Tourville TW, Miller MS, Fiske B, Voigt T, Korwin-Mihavics B, Anathy V, Dittus K, Toth MJ. Skeletal muscle atrophy and dysfunction in breast cancer patients: role for chemotherapy-derived oxidant stress. Am J Physiol Cell Physiol 2018; 315:C744-C756. [PMID: 30207784 DOI: 10.1152/ajpcell.00002.2018] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
How breast cancer and its treatments affect skeletal muscle is not well defined. To address this question, we assessed skeletal muscle structure and protein expression in 13 women who were diagnosed with breast cancer and receiving adjuvant chemotherapy following tumor resection and 12 nondiseased controls. Breast cancer patients showed reduced single-muscle fiber cross-sectional area and fractional content of subsarcolemmal and intermyofibrillar mitochondria. Drugs commonly used in breast cancer patients (doxorubicin and paclitaxel) caused reductions in myosin expression, mitochondrial loss, and increased reactive oxygen species (ROS) production in C2C12 murine myotube cell cultures, supporting a role for chemotherapeutics in the atrophic and mitochondrial phenotypes. Additionally, concurrent treatment of myotubes with the mitochondrial-targeted antioxidant MitoQ prevented chemotherapy-induced myosin depletion, mitochondrial loss, and ROS production. In patients, reduced mitochondrial content and size and increased expression and oxidation of peroxiredoxin 3, a mitochondrial peroxidase, were associated with reduced muscle fiber cross-sectional area. Our results suggest that chemotherapeutics may adversely affect skeletal muscle in patients and that these effects may be driven through effects of these drugs on mitochondrial content and/or ROS production.
Collapse
Affiliation(s)
- Blas A Guigni
- Department of Medicine, College of Medicine, University of Vermont , Burlington, Vermont.,Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont , Burlington, Vermont
| | - Damien M Callahan
- Department of Medicine, College of Medicine, University of Vermont , Burlington, Vermont
| | - Timothy W Tourville
- Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont , Burlington, Vermont.,Department of Rehabilitation and Movement Science, College of Nursing and Health Sciences, University of Vermont , Burlington, Vermont
| | - Mark S Miller
- Department of Kinesiology, University of Massachusetts Amherst , Amherst, Massachusetts
| | - Brad Fiske
- Department of Medicine, College of Medicine, University of Vermont , Burlington, Vermont
| | - Thomas Voigt
- Department of Medicine, College of Medicine, University of Vermont , Burlington, Vermont
| | - Bethany Korwin-Mihavics
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont , Burlington, Vermont
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Vermont , Burlington, Vermont
| | - Kim Dittus
- Department of Medicine, College of Medicine, University of Vermont , Burlington, Vermont
| | - Michael J Toth
- Department of Medicine, College of Medicine, University of Vermont , Burlington, Vermont.,Department of Molecular Physiology and Biophysics, College of Medicine, University of Vermont , Burlington, Vermont.,Department of Orthopedics and Rehabilitation, College of Medicine, University of Vermont , Burlington, Vermont
| |
Collapse
|
18
|
Woo JH, Yang YI, Ahn JH, Choi YS, Choi JH. Interleukin 6 secretion from alternatively activated macrophages promotes the migration of endometriotic epithelial cells. Biol Reprod 2018; 97:660-670. [PMID: 29036448 DOI: 10.1093/biolre/iox118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/26/2017] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence has suggested an interaction between endometriotic cells and macrophages in the endometriotic microenvironment and the potential role of this interaction in the pathogenesis of endometriosis. However, how endometriotic cells communicate with macrophages to influence their function is poorly understood. In the present study, we found that the mRNA expression and production of CC chemokine ligand 2 (CCL2) were much higher in human endometriotic epithelial cells (11Z and 12Z) than those in human endometrial epithelial cells (HES). The inhibition of CCL2 action using neutralizing antibodies substantially suppressed macrophage migration induced by endometriotic epithelial cells. The endometriosis-associated macrophages (EAMs), which are the macrophages that are stimulated by the conditioned medium (CM) of human endometriotic cells, highly expressed the M2 phenotype markers (MRC1 and TREM2). In addition, the CM of EAMs significantly increased cell migration in 12Z cells, but no significant change was observed in cell growth. RT-PCR and antibody array analyses revealed that EAMs highly express and produce interleukin (IL) 6 compared to macrophages stimulated by the CM of HES cells. Moreover, the EAM-CM-induced migration and MMP2/9 expression in endometriotic cells were significantly attenuated by IL6 signaling inhibition. These results suggest a reciprocal activation of macrophages and endometriotic cells via the soluble factors CCL2 and IL6, which may contribute to the development of endometriosis.
Collapse
Affiliation(s)
- Jeong-Hwa Woo
- College of Pharmacy, Kyung Hee University, Dongdaemoon-gu, Seoul, South Korea
| | - Yeong-In Yang
- Department of Life and Nanopharamceutical Sciences, Kyung Hee University, Dongdaemoon-gu, Seoul, South Korea
| | - Ji-Hye Ahn
- Department of Life and Nanopharamceutical Sciences, Kyung Hee University, Dongdaemoon-gu, Seoul, South Korea
| | - Youn Seok Choi
- Department of Obstetrics and Gynecology, School of Medicine, Catholic University of Daegu, Daegu, South Korea
| | - Jung-Hye Choi
- College of Pharmacy, Kyung Hee University, Dongdaemoon-gu, Seoul, South Korea.,Department of Life and Nanopharamceutical Sciences, Kyung Hee University, Dongdaemoon-gu, Seoul, South Korea
| |
Collapse
|
19
|
Masuda S, Tanaka M, Inoue T, Ohue-Kitano R, Yamakage H, Muranaka K, Kusakabe T, Shimatsu A, Hasegawa K, Satoh-Asahara N. Chemokine (C-X-C motif) ligand 1 is a myokine induced by palmitate and is required for myogenesis in mouse satellite cells. Acta Physiol (Oxf) 2018; 222. [PMID: 28960786 DOI: 10.1111/apha.12975] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 09/21/2017] [Accepted: 09/24/2017] [Indexed: 01/20/2023]
Abstract
AIM The functional significance of the myokines, cytokines and peptides produced and released by muscle cells has not been fully elucidated. The purpose of this study was to identify a myokine with increased secretion levels in muscle cells due to saturated fatty acids and to examine the role of the identified myokine in the regulation of myogenesis. METHODS Human primary myotubes and mouse C2C12 myotubes were used to identify the myokine; its secretion was stimulated by palmitate loading. The role of the identified myokine in the regulation of the activation, proliferation, differentiation and self-renewal was examined in mouse satellite cells (skeletal muscle stem cells). RESULTS Palmitate loading promoted the secretion of chemokine (C-X-C motif) ligand 1 (CXCL1) in human primary myotubes, and it also increased CXCL1 gene expression level in C2C12 myotubes in a dose- and time-dependent manner. Palmitate loading increased the production of reactive oxygen species along with the activation of nuclear factor-kappa B (NF-κB) signalling. Pharmacological inhibition of NF-κB signalling attenuated the increase in CXCL1 gene expression induced by palmitate and hydrogen peroxide. Palmitate loading significantly increased CXC receptor 2 gene expression in undifferentiated cells. CXCL1 knockdown attenuated proliferation and myotube formation by satellite cells, with reduced self-renewal. CXCL1 knockdown also significantly decreased the Notch intracellular domain protein level. CONCLUSION These results suggest that secretion of the myokine CXCL1 is stimulated by saturated fatty acids and that CXCL1 promotes myogenesis from satellite cells to maintain skeletal muscle homeostasis.
Collapse
Affiliation(s)
- S. Masuda
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - M. Tanaka
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - T. Inoue
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - R. Ohue-Kitano
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - H. Yamakage
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - K. Muranaka
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - T. Kusakabe
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - A. Shimatsu
- Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - K. Hasegawa
- Department of Translational Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| | - N. Satoh-Asahara
- Department of Endocrinology, Metabolism, and Hypertension Research; Clinical Research Institute; National Hospital Organization Kyoto Medical Center; Kyoto Japan
| |
Collapse
|
20
|
Nagamine K, Sato H, Kai H, Kaji H, Kanzaki M, Nishizawa M. Contractile Skeletal Muscle Cells Cultured with a Conducting Soft Wire for Effective, Selective Stimulation. Sci Rep 2018; 8:2253. [PMID: 29396483 PMCID: PMC5797109 DOI: 10.1038/s41598-018-20729-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/23/2018] [Indexed: 01/04/2023] Open
Abstract
Contractile skeletal muscle cells were cultured so as to wrap around an electrode wire to enable their selective stimulation even when they were co-cultured with other electrically-excitable cells. Since the electrode wire was composed of the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and polyurethane (PU), which is soft and highly capacitive (~10 mF cm-2), non-faradaic electrical stimulation with charge/discharge currents could be applied to the surrounding cells without causing significant damage even for longer periods (more than a week). The advantage of this new culture system was demonstrated in the study of chemotactic interaction of monocytes and skeletal muscle cells via myokines.
Collapse
Affiliation(s)
- Kuniaki Nagamine
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Hirotaka Sato
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Hiroyuki Kai
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Hirokazu Kaji
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Makoto Kanzaki
- Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 6-6-04 Aoba-ku, Sendai, 980-8579, Japan
| | - Matsuhiko Nishizawa
- Department of Finemechanics, Graduate School of Engineering, Tohoku University, 6-6-01 Aramaki, Aoba-ku, Sendai, 980-8579, Japan.
| |
Collapse
|
21
|
Elucidating the Role of CD84 and AHR in Modulation of LPS-Induced Cytokines Production by Cruciferous Vegetable-Derived Compounds Indole-3-Carbinol and 3,3'-Diindolylmethane. Int J Mol Sci 2018; 19:ijms19020339. [PMID: 29364159 PMCID: PMC5855561 DOI: 10.3390/ijms19020339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 12/24/2022] Open
Abstract
Modulation of the immune system by cancer protective food bioactives has preventive and therapeutic importance in prostate cancer, but the mechanisms remain largely unclear. The current study tests the hypothesis that the diet-derived cancer protective compounds, indole-3-carbinol (I3C) and 3,3′-diindolylmethane (DIM), affect the tumor microenvironment by regulation of inflammatory responses in monocytes and macrophages. We also ask whether I3C and DIM act through the aryl hydrocarbon (AHR)-dependent pathway or the signaling lymphocyte activation molecule (SLAM) family protein CD84-mediated pathway. The effect of I3C and DIM was examined using the human THP-1 monocytic cell in its un-differentiated (monocyte) and differentiated (macrophage) state. We observed that I3C and DIM inhibited lipopolysaccharide (LPS) induction of IL-1β mRNA and protein in the monocyte form but not the macrophage form of THP-1. Interestingly, CD84 mRNA but not protein was inhibited by I3C and DIM. AHR siRNA knockdown experiments confirmed that the inhibitory effects of I3C and DIM on IL-1β as well as CD84 mRNA are regulated through AHR-mediated pathways. Additionally, the AHR ligand appeared to differentially regulate other LPS-induced cytokines expression. Hence, cross-talk between AHR and inflammation-mediated pathways, but not CD84-mediated pathways, in monocytes but not macrophages may contribute to the modulation of tumor environments by I3C and DIM in prostate cancer.
Collapse
|
22
|
Nieuwoudt S, Mulya A, Fealy CE, Martelli E, Dasarathy S, Naga Prasad SV, Kirwan JP. In vitro contraction protects against palmitate-induced insulin resistance in C2C12 myotubes. Am J Physiol Cell Physiol 2017; 313:C575-C583. [PMID: 28835436 DOI: 10.1152/ajpcell.00123.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022]
Abstract
We are interested in understanding mechanisms that govern the protective role of exercise against lipid-induced insulin resistance, a key driver of type 2 diabetes. In this context, cell culture models provide a level of abstraction that aid in our understanding of cellular physiology. Here we describe the development of an in vitro myotube contraction system that provides this protective effect, and which we have harnessed to investigate lipid-induced insulin resistance. C2C12 myocytes were differentiated into contractile myotubes. A custom manufactured platinum electrode system and pulse stimulator, with polarity switching, provided an electrical pulse stimulus (EPS) (1 Hz, 6-ms pulse width, 1.5 V/mm, 16 h). Contractility was assessed by optical flow flied spot noise mapping and inhibited by application of ammonium acetate. Following EPS, myotubes were challenged with 0.5 mM palmitate for 4 h. Cells were then treated with or without insulin for glucose uptake (30 min), secondary insulin signaling activation (10 min), and phosphoinositide 3-kinase-α (PI3Kα) activity (5 min). Prolonged EPS increased non-insulin-stimulated glucose uptake (83%, P = 0.002), Akt (Thr308) phosphorylation (P = 0.005), and insulin receptor substrate-1 (IRS-1)-associated PI3Kα activity (P = 0.048). Palmitate reduced insulin-specific action on glucose uptake (-49%, P < 0.001) and inhibited insulin-stimulated Akt phosphorylation (P = 0.049) and whole cell PI3Kα activity (P = 0.009). The inhibitory effects of palmitate were completely absent with EPS pretreatment at the levels of glucose uptake, insulin responsiveness, Akt phosphorylation, and whole cell PI3Kα activity. This model suggests that muscle contraction alone is a sufficient stimulus to protect against lipid-induced insulin resistance as evidenced by changes in the proximal canonical insulin-signaling pathway.
Collapse
Affiliation(s)
- Stephan Nieuwoudt
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio.,Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; and
| | - Anny Mulya
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; and
| | - Ciarán E Fealy
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; and
| | - Elizabeth Martelli
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Srinivasan Dasarathy
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; and
| | | | - John P Kirwan
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio; .,Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; and
| |
Collapse
|
23
|
Nikolić N, Görgens SW, Thoresen GH, Aas V, Eckel J, Eckardt K. Electrical pulse stimulation of cultured skeletal muscle cells as a model for in vitro exercise - possibilities and limitations. Acta Physiol (Oxf) 2017; 220:310-331. [PMID: 27863008 DOI: 10.1111/apha.12830] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/28/2016] [Accepted: 11/06/2016] [Indexed: 12/19/2022]
Abstract
The beneficial health-related effects of exercise are well recognized, and numerous studies have investigated underlying mechanism using various in vivo and in vitro models. Although electrical pulse stimulation (EPS) for the induction of muscle contraction has been used for quite some time, its application on cultured skeletal muscle cells of animal or human origin as a model of in vitro exercise is a more recent development. In this review, we compare in vivo exercise and in vitro EPS with regard to effects on signalling, expression level and metabolism. We provide a comprehensive overview of different EPS protocols and their applications, discuss technical aspects of this model including critical controls and the importance of a proper maintenance procedure and finally discuss the limitations of the EPS model.
Collapse
Affiliation(s)
- N. Nikolić
- Department of Pharmaceutical Biosciences; School of Pharmacy; University of Oslo; Oslo Norway
| | - S. W. Görgens
- Paul-Langerhans-Group for Integrative Physiology; German Diabetes Center; Düsseldorf Germany
| | - G. H. Thoresen
- Department of Pharmaceutical Biosciences; School of Pharmacy; University of Oslo; Oslo Norway
- Department of Pharmacology; Institute of Clinical Medicine; Faculty of Medicine; University of Oslo; Oslo Norway
| | - V. Aas
- Department of Life Sciences and Health; Oslo and Akershus University College of Applied Sciences; Oslo Norway
| | - J. Eckel
- Paul-Langerhans-Group for Integrative Physiology; German Diabetes Center; Düsseldorf Germany
- German Center for Diabetes Research (DZD e.V.); Düsseldorf Germany
| | - K. Eckardt
- Department of Nutrition; Institute for Basic Medical Sciences; Faculty of Medicine; University of Oslo; Oslo Norway
| |
Collapse
|
24
|
Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res Rev 2017; 35:200-221. [PMID: 27702700 DOI: 10.1016/j.arr.2016.09.008] [Citation(s) in RCA: 476] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/23/2016] [Accepted: 09/26/2016] [Indexed: 02/08/2023]
Abstract
Sarcopenia, an age-associated decline in skeletal muscle mass coupled with functional deterioration, may be exacerbated by obesity leading to higher disability, frailty, morbidity and mortality rates. In the combination of sarcopenia and obesity, the state called sarcopenic obesity (SOB), some key age- and obesity-mediated factors and pathways may aggravate sarcopenia. This review will analyze the mechanisms underlying the pathogenesis of SOB. In obese adipose tissue (AT), adipocytes undergo hypertrophy, hyperplasia and activation resulted in accumulation of pro-inflammatory macrophages and other immune cells as well as dysregulated production of various adipokines that together with senescent cells and the immune cell-released cytokines and chemokines create a local pro-inflammatory status. In addition, obese AT is characterized by excessive production and disturbed capacity to store lipids, which accumulate ectopically in skeletal muscle. These intramuscular lipids and their derivatives induce mitochondrial dysfunction characterized by impaired β-oxidation capacity and increased reactive oxygen species formation providing lipotoxic environment and insulin resistance as well as enhanced secretion of some pro-inflammatory myokines capable of inducing muscle dysfunction by auto/paracrine manner. In turn, by endocrine manner, these myokines may exacerbate AT inflammation and also support chronic low grade systemic inflammation (inflammaging), overall establishing a detrimental vicious circle maintaining AT and skeletal muscle inflammation, thus triggering and supporting SOB development. Under these circumstances, we believe that AT inflammation dominates over skeletal muscle inflammation. Thus, in essence, it redirects the vector of processes from "sarcopenia→obesity" to "obesity→sarcopenia". We therefore propose that this condition be defined as "obese sarcopenia", to reflect the direction of the pathological pathway.
Collapse
|
25
|
Baek JH, Many GM, Evesson FJ, Kelley VR. Dysferlinopathy Promotes an Intramuscle Expansion of Macrophages with a Cyto-Destructive Phenotype. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1245-1257. [PMID: 28412297 DOI: 10.1016/j.ajpath.2017.02.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 02/14/2017] [Indexed: 01/05/2023]
Abstract
Dysferlinopathies are a group of muscular dystrophies resulting from a genetic deficiency in Dysf. Macrophages, highly plastic cells that mediate tissue repair and destruction, are prominent within dystrophic skeletal muscles of dysferlinopathy patients. We hypothesized that Dysf-deficient muscle promotes recruitment, proliferation, and skewing of macrophages toward a cyto-destructive phenotype in dysferlinopathy. To track macrophage dynamics in dysferlinopathy, we adoptively transferred enhanced green fluorescent protein-labeled monocytes into Dysf-deficient BLA/J mice with age-related (2 to 10 months) muscle disease and Dysf-intact (C57BL/6 [B6]) mice. We detected an age- and disease-related increase in monocyte recruitment into Dysf-deficient muscles. Moreover, macrophages recruited into muscle proliferated locally and were skewed toward a cyto-destructive phenotype. By comparing Dysf-deficient and -intact monocytes, our data showed that Dysf in muscle, but not in macrophages, mediate intramuscle macrophage recruitment and proliferation. To further elucidate macrophage mechanisms related to dysferlinopathy, we investigated in vitro macrophage-myogenic cell interactions and found that Dysf-deficient muscle i) promotes macrophage proliferation, ii) skews macrophages toward a cyto-destructive phenotype, and iii) is more vulnerable to macrophage-mediated apoptosis. Taken together, our data suggest that the loss of Dysf expression in muscle, not macrophages, promotes the intramuscle expansion of cyto-destructive macrophages likely to contribute to dysferlinopathy. Identifying pathways within the Dysf-deficient muscle milieu that regulate cyto-destructive macrophages will potentially uncover therapeutic strategies for dysferlinopathies.
Collapse
Affiliation(s)
- Jea-Hyun Baek
- Laboratory of Molecular Autoimmune Disease, Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Gina M Many
- Laboratory of Molecular Autoimmune Disease, Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Frances J Evesson
- Department of Cell Biology, Harvard Medical School and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Vicki R Kelley
- Laboratory of Molecular Autoimmune Disease, Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
26
|
Gjevestad GO, Hamarsland H, Raastad T, Ottestad I, Christensen JJ, Eckardt K, Drevon CA, Biong AS, Ulven SM, Holven KB. Gene expression is differentially regulated in skeletal muscle and circulating immune cells in response to an acute bout of high-load strength exercise. GENES AND NUTRITION 2017; 12:8. [PMID: 28270867 PMCID: PMC5335818 DOI: 10.1186/s12263-017-0556-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/30/2017] [Indexed: 01/10/2023]
Abstract
Background High-intensity exercise induces many metabolic responses. In is unknown whether the response in the peripheral blood mononuclear cells (PBMCs) reflects the response in skeletal muscle and whether mRNA expression after exercise can be modulated by nutritional intake. The aims were to (i) investigate the effect of dairy proteins on acute responses to exercise in skeletal muscle and PBMCs measuring gene expression and (ii) compare this response in young and older subjects. Methods We performed two separate studies in young (20–40 years) and older subjects (≥70 years). Subjects were randomly allocated to a milk group or a whey group. Supplements were provided immediately after a standardized exercise session. We measured mRNA expression of selected genes after a standardized breakfast and 60/120 min after finishing the exercise, using RT-qPCR. Results We observed no significant differences in mRNA expression between the milk and the whey group; thus, we merged both groups for further analysis. The mRNA expression of IL6, TNF, and CCL2 in skeletal muscle increased significantly after exercise compared with smaller or no increase, in mRNA expression in PBMCs in all participants. The mRNA expression of IL1RN, IL8, and IL10 increased significantly in skeletal muscle and PBMCs. Some mRNA transcripts were differently regulated in older compared to younger participants in PBMCs. Conclusions An acute bout of heavy-load strength exercise, followed by protein supplementation, caused overlapping, but also unique, responses in skeletal muscle and PBMCs, suggesting tissue-specific functions in response to exercise. However, no different effects of the different protein supplements were observed. Altered mRNA expressions in PBMCs of older participants may affect regenerative mechanisms. Electronic supplementary material The online version of this article (doi:10.1186/s12263-017-0556-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gyrd O Gjevestad
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, 0317 Norway.,Centre for Research and Development, TINE SA, P.O. Box 7, Kalbakken, 0902 Oslo Norway
| | - Håvard Hamarsland
- Department of Physical Performance, Norwegian School of Sport Sciences, P.B. 4104 USA, 0806 Oslo, Norway
| | - Truls Raastad
- Department of Physical Performance, Norwegian School of Sport Sciences, P.B. 4104 USA, 0806 Oslo, Norway
| | - Inger Ottestad
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, 0317 Norway
| | - Jacob J Christensen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, 0317 Norway.,The Lipid Clinic, Oslo University Hospital Rikshospitalet, P.O. Box 4950, Nydalen, 0424 Oslo Norway
| | - Kristin Eckardt
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, 0317 Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, 0317 Norway
| | - Anne S Biong
- Centre for Research and Development, TINE SA, P.O. Box 7, Kalbakken, 0902 Oslo Norway
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, 0317 Norway
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046, Blindern, 0317 Norway.,National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, P.O. Box 4950, Nydalen, 0424 Oslo Norway
| |
Collapse
|
27
|
Pillon NJ, Krook A. Innate immune receptors in skeletal muscle metabolism. Exp Cell Res 2017; 360:47-54. [PMID: 28232117 DOI: 10.1016/j.yexcr.2017.02.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/20/2017] [Indexed: 12/14/2022]
Abstract
Recent decades have seen increasing evidence for a role for both innate and adaptive immunity in response to changes in and in the modulation of metabolic status. This new field of immunometabolism builds on evidence for activation of immune-derived signals in metabolically relevant tissues such as adipose tissue, liver, hypothalamus and skeletal muscle. Skeletal muscle is the primary site of dietary glucose disposal and therefore a key player in the development of diabetes, but studies on the role of inflammation in modulating skeletal muscle metabolism and its possible impact on whole body insulin sensitivity are scarce. This review describes the baseline mRNA expression of innate immune receptors (Toll- and NOD-like receptors) in human skeletal muscle and summarizes studies on putative role of these receptors in skeletal muscle in the context of diabetes, obesity and whole body metabolism.
Collapse
Affiliation(s)
- Nicolas J Pillon
- Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden.
| | - Anna Krook
- Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
28
|
Wang J, Ma A, Zhao M, Zhu H. AMPK activation reduces the number of atheromata macrophages in ApoE deficient mice. Atherosclerosis 2017; 258:97-107. [PMID: 28235712 DOI: 10.1016/j.atherosclerosis.2017.01.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/14/2017] [Accepted: 01/31/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS CC chemokine receptor 2 (Ccr2) governs migration of inflammatory Ly6Chi monocytes from the bone marrow (BM) to the circulating blood, which is a key step for macrophage accumulation during progression of atherosclerosis. Hyperlipidemia is often accompanied by low AMP-activated kinase (AMPK) activity and increased expression of Ccr2. The aim of this study was to examine whether there is a link between AMPK and chemokine networks. METHODS ApoE-/- mice were fed a western diet and treated daily with AMPK activators (AICAR, A769662, or Metformin) or vehicle for 10 weeks. The effect of AMPK activators on pro-inflammatory myeloid cell numbers within the BM, blood, spleen, and aorta of ApoE-/- mice was then examined. RESULTS We found that AMPK activation significantly reduced the number of Ly6Chi monocytes in the blood and atherosclerotic plaques. This reduction was caused by down-regulation of Ccr2 protein expression, which inhibited Ccr2-mediated migration of Ly6Chi monocytes from the BM to the circulation. There was no effect on proliferation or apoptosis of BM-derived Ly6Chi monocytes. AMPK activation caused Ly6Chi monocytes to accumulate in the BM, with a concomitant reduction in numbers in the blood and spleen. CONCLUSIONS AMPK activation reduces the formation of atheromata-inducing macrophages in ApoE-/--deficient mice by inhibiting expression of Ccr2, thereby preventing the Ccr2-mediated migration of Ly6Chi monocytes from the BM. Therefore, AMPK may be a promising target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, China; Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, 030006, China
| | - Ang Ma
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, China
| | - Ming Zhao
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, USA.
| | - Haibo Zhu
- State Key Laboratory for Bioactive Substances and Functions of Natural Medicines, Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, China.
| |
Collapse
|
29
|
Zanotto-Filho A, Gonçalves RM, Klafke K, de Souza PO, Dillenburg FC, Carro L, Gelain DP, Moreira JCF. Inflammatory landscape of human brain tumors reveals an NFκB dependent cytokine pathway associated with mesenchymal glioblastoma. Cancer Lett 2016; 390:176-187. [PMID: 28007636 DOI: 10.1016/j.canlet.2016.12.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 12/14/2022]
Abstract
The tumor microenvironment is being increasingly recognized as a key factor in cancer aggressiveness. In this study, we characterized the inflammatory gene signatures altered in glioma cell lines and tumor specimens of differing histological and molecular subtypes. The results showed that glioblastoma multiforme (GBM) shows upregulation of a subset of inflammatory genes when compared to astrocytomas and oligodendrogliomas. With molecular subtypes of GBM, the expression of inflammatory genes is heterogeneous, being enriched in mesenchymal and downregulated in Proneural/GCIMP. Other inflammation-associated processes such as tumor-associated macrophage (TAM) signatures are upregulated in mesenchymal, and a subset of 33 mesenchymal-enriched inflammatory and TAM markers showed correlation with poor survival. We found that various GBM tumor-upregulated genes such as IL6, IL8 and CCL2 are also actively expressed in glioma cell lines, playing differential and cooperative roles in promoting proliferation, invasion, angiogenesis and macrophage polarization in vitro. These genes can be stimulated by pathways typically altered in GBM, including the EGFR, PDGFR, MEK1/2-ERK1/2, PI3K/Akt and NFκB cascades. Taken together, the results presented herein depict some inflammatory pathways altered in gliomas and highlight potentially relevant targets to therapy improvement.
Collapse
Affiliation(s)
- Alfeu Zanotto-Filho
- Departamento de Farmacologia, Centro de Ciências Biológicas (CCB), Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil; Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Rosângela Mayer Gonçalves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Karina Klafke
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Priscila Oliveira de Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fabiane Cristine Dillenburg
- Instituto de Informática, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Luigi Carro
- Instituto de Informática, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Daniel Pens Gelain
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - José Cláudio Fonseca Moreira
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| |
Collapse
|
30
|
Miyatake S, Shimizu-Motohashi Y, Takeda S, Aoki Y. Anti-inflammatory drugs for Duchenne muscular dystrophy: focus on skeletal muscle-releasing factors. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:2745-58. [PMID: 27621596 PMCID: PMC5012616 DOI: 10.2147/dddt.s110163] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Duchenne muscular dystrophy (DMD), an incurable and a progressive muscle wasting disease, is caused by the absence of dystrophin protein, leading to recurrent muscle fiber damage during contraction. The inflammatory response to fiber damage is a compelling candidate mechanism for disease exacerbation. The only established pharmacological treatment for DMD is corticosteroids to suppress muscle inflammation, however this treatment is limited by its insufficient therapeutic efficacy and considerable side effects. Recent reports show the therapeutic potential of inhibiting or enhancing pro- or anti-inflammatory factors released from DMD skeletal muscles, resulting in significant recovery from muscle atrophy and dysfunction. We discuss and review the recent findings of DMD inflammation and opportunities for drug development targeting specific releasing factors from skeletal muscles. It has been speculated that nonsteroidal anti-inflammatory drugs targeting specific inflammatory factors are more effective and have less side effects for DMD compared with steroidal drugs. For example, calcium channels, reactive oxygen species, and nuclear factor-κB signaling factors are the most promising targets as master regulators of inflammatory response in DMD skeletal muscles. If they are combined with an oligonucleotide-based exon skipping therapy to restore dystrophin expression, the anti-inflammatory drug therapies may address the present therapeutic limitation of low efficiency for DMD.
Collapse
Affiliation(s)
- Shouta Miyatake
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yuko Shimizu-Motohashi
- Department of Child Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| |
Collapse
|
31
|
Sylow L, Nielsen IL, Kleinert M, Møller LLV, Ploug T, Schjerling P, Bilan PJ, Klip A, Jensen TE, Richter EA. Rac1 governs exercise-stimulated glucose uptake in skeletal muscle through regulation of GLUT4 translocation in mice. J Physiol 2016; 594:4997-5008. [PMID: 27061726 DOI: 10.1113/jp272039] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/30/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINT Exercise increases skeletal muscle energy turnover and one of the important substrates for the working muscle is glucose taken up from the blood. The GTPase Rac1 can be activated by muscle contraction and has been found to be necessary for insulin-stimulated glucose uptake, although its role in exercise-stimulated glucose uptake is unknown. We show that Rac1 regulates the translocation of the glucose transporter GLUT4 to the plasma membrane in skeletal muscle during exercise. We find that Rac1 knockout mice display significantly reduced glucose uptake in skeletal muscle during exercise. ABSTRACT Exercise increases skeletal muscle energy turnover and one of the important substrates for the working muscle is glucose taken up from the blood. Despite extensive efforts, the signalling mechanisms vital for glucose uptake during exercise are not yet fully understood, although the GTPase Rac1 is a candidate molecule. The present study investigated the role of Rac1 in muscle glucose uptake and substrate utilization during treadmill exercise in mice in vivo. Exercise-induced uptake of radiolabelled 2-deoxyglucose at 65% of maximum running capacity was blocked in soleus muscle and decreased by 80% and 60% in gastrocnemius and tibialis anterior muscles, respectively, in muscle-specific inducible Rac1 knockout (mKO) mice compared to wild-type littermates. By developing an assay to quantify endogenous GLUT4 translocation, we observed that GLUT4 content at the sarcolemma in response to exercise was reduced in Rac1 mKO muscle. Our findings implicate Rac1 as a regulatory element critical for controlling glucose uptake during exercise via regulation of GLUT4 translocation.
Collapse
Affiliation(s)
- Lykke Sylow
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - Ida L Nielsen
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - Maximilian Kleinert
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - Lisbeth L V Møller
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - Thorkil Ploug
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Peter Schjerling
- Institute of Sports Medicine, Department of Orthopedic Surgery, Bispebjerg Hospital and Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Thomas E Jensen
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Denmark
| | - Erik A Richter
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Denmark
| |
Collapse
|