1
|
Wong HJ, Toh KZX, Teo YH, Teo YN, Chan MY, Yeo LLL, Eng PC, Tan BYQ, Zhou X, Yang Q, Dalakoti M, Sia CH. Effects of glucagon-like peptide-1 receptor agonists on blood pressure in overweight or obese patients: a meta-analysis of randomized controlled trials. J Hypertens 2025; 43:290-300. [PMID: 39445607 DOI: 10.1097/hjh.0000000000003903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Glucagon-like peptide-1 receptor agonists are novel medications with proven efficacy in treating type 2 diabetes mellitus, and are increasingly being used for weight loss. They may potentially have benefit in treating metabolic disorders; however, evidence is sparse with regards to treating high blood pressure (BP). We performed a systematic review, meta-analysis and meta-regression investigating the efficacy of GLP-1 RAs in lowering BP in obese or overweight patients. METHODS Three electronic databases (PubMed, EMBASE, and CENTRAL) were systematically searched for randomized controlled trials (RCTs) published from inception to 13 February 2024. Pair-wise meta-analysis and random effects meta-regression models were utilized. Fixed effects meta-analysis was used to unify treatment effects across different GLP-1 RA doses. RESULTS We included a total of 30 RCTs with a combined population of 37 072 patients. GLP-1 RAs demonstrated a mean systolic BP (SBP) reduction of -3.37 mmHg [95% confidence interval (CI) -3.95 to -2.80] and a mean diastolic BP (DBP) reduction of -1.05 mmHg (95% CI -1.46 to -0.65) compared with placebo. This effect was consistent across subgroups for diabetic status, formulation of GLP-1 RA, follow-up duration and route of administration for both SBP and DBP, with the exception of subgroups investigating exenatide. Meta-regression suggested no significant correlation between BP reduction and baseline characteristics such as age, percentage of male patients, HbA1c, weight, BMI, and percentage of patients with hypertension. CONCLUSION Our meta-analysis suggests significant BP reduction benefits from GLP-1 RA use in obese or overweight patients, consistent across diabetic status, duration of treatment, and across route of administration.
Collapse
Affiliation(s)
- Hon Jen Wong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore
| | | | - Yao Hao Teo
- Department of Cardiology, National University Heart Centre Singapore
| | - Yao Neng Teo
- Department of Cardiology, National University Heart Centre Singapore
| | - Mark Y Chan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore
- Department of Cardiology, National University Heart Centre Singapore
| | - Leonard L L Yeo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore
- Division of Neurology
| | - Pei Chia Eng
- Division of Endocrinology, Department of Medicine, National University Hospital, Singapore
| | - Benjamin Y Q Tan
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore
- Division of Neurology
| | - Xin Zhou
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Qing Yang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mayank Dalakoti
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore
- Department of Cardiology, National University Heart Centre Singapore
| | - Ching-Hui Sia
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore
- Department of Cardiology, National University Heart Centre Singapore
| |
Collapse
|
2
|
Chen X, Yao H, Lai J, Chen Y, Li X, Li S, Li L, He F. Endothelial versus Metabolic Insulin Resistance, A Descriptive Review. Curr Diabetes Rev 2025; 21:94-105. [PMID: 39676508 DOI: 10.2174/0115733998288601240327065724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 12/17/2024]
Abstract
Cardiovascular complications are a primary focus in the clinical management of type 2 diabetes, as they are the leading causes of disability and mortality in individuals with diabetes. Insulin resistance and endothelial dysfunction commonly coexist in diabetic patients. An increasing body of research indicates a reciprocal and interconnected association between endothelial function and insulin resistance. Insulin resistance can manifest in two distinct forms: endothelial and metabolic, with the former predominantly affecting vascular endothelial cells and the latter primarily impacting peripheral cells. The understanding of endothelial insulin resistance is crucial in comprehending the pathophysiology of cardiovascular complications in type 2 diabetes. Hence, the objective of this study is to examine the correlations, interplays, and molecular pathways linking endothelial insulin resistance and metabolic insulin resistance, with the aim of offering novel insights and scholarly resources for the prevention and management of diabetic vascular complications.
Collapse
Affiliation(s)
- Xiaohui Chen
- Department of Quality Control, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Huajie Yao
- Department of Quality Control, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
- Department of Pharmacy, Wuhan Polytechnic University, College of Life Science and Technology, Wuhan, China
| | - Jiaqi Lai
- Department of Quality Control, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yanmei Chen
- Department of Quality Control, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Xiaodong Li
- Department of Quality Control, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Shanshan Li
- Department of Quality Control, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Ling Li
- Department of Pharmacy, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Fazhong He
- Department of Quality Control, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| |
Collapse
|
3
|
Agrawal V, Amasa S, Karabacak M, Margetis K. Perioperative Glucagon-Like Peptide-1 Agonist Use and Rates of Pseudarthrosis After Single-Level Lumbar Fusion: A Large Retrospective Cohort Study. Neurosurgery 2024:00006123-990000000-01452. [PMID: 39589142 DOI: 10.1227/neu.0000000000003291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/11/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND AND OBJECTIVE Pseudarthrosis is a common surgical complication after arthrodesis and is associated with poor clinical outcomes. The association between glucagon-like peptide-1 (GLP-1) agonist use and pseudarthrosis is yet to be explored. This study aims to examine the association of GLP-1 agonists with rates of pseudarthrosis in patients undergoing single-level lumbar fusion. METHODS This national multicenter cohort study used data spanning from June 19, 2010, to June 19, 2024, from the global health network TriNetX. One-to-one propensity score matching for age, sex, race, comorbidities, body mass index, and A1c was conducted to balance cohorts. The rates of pseudarthrosis were then assessed within the 6-month, 1-year, and 2-year postsurgical follow-up periods. RESULTS A total of 37 147 patients who underwent single-level lumbar fusion (mean [SD] age, 59.3 [13.5] years; 47.7% men and 52.3% women) were enrolled in the study. Among these, 712 individuals (1.9%) were identified as GLP-1 agonist users. After propensity score matching, there were 709 patients in each cohort. Patients who took a GLP-1 agonist had lower odds of developing pseudarthrosis 6 months [odds ratio (OR): 0.70, 95% CI: 0.51-0.96], 1 year [OR: 0.68, 95% CI: 0.50-0.91], and 2 years (OR: 0.68, 95% CI: 0.50-0.91) after a posterior lumbar interbody fusion/transforaminal lumbar interbody fusion procedure. CONCLUSION In this cohort study, patients who were prescribed GLP-1 agonists in the perioperative period had reduced rates of pseudarthrosis compared with patients without GLP-1 agonist prescriptions. These findings suggest a potential therapeutic benefit of GLP-1 agonists in enhancing spinal fusion outcomes and warrant further prospective studies to confirm these results and explore the underlying mechanisms.
Collapse
Affiliation(s)
- Vedant Agrawal
- University of Texas Medical Branch John Sealy School of Medicine, Galveston, Texas, USA
| | - Saketh Amasa
- University of Texas Medical Branch John Sealy School of Medicine, Galveston, Texas, USA
| | - Mert Karabacak
- Department of Neurosurgery, Mount Sinai Health System, New York, New York, USA
| | | |
Collapse
|
4
|
Li Z, Yu Y, Li J, Jiang X, Chen J, Ye N, Wu B, Sun Y, Sun G. GLP-1: A Prospective Guardian for Comprehensive Myocardial Perfusion. Diabetes Metab Res Rev 2024; 40:e70004. [PMID: 39520208 DOI: 10.1002/dmrr.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To investigate the role of glucagon-like peptide 1 (GLP-1) in myocardial perfusion, focusing on its effects on coronary microcirculation and cardiovascular outcomes. METHODS Review of foundational research and large-scale clinical trials, including Cardiovascular Outcome Trials (CVOTs), examining the cardiovascular effects of GLP-1. Systematic analysis of trial data to assess the impact of GLP-1 therapy on myocardial infarction, composite cardiovascular events, and stroke incidence. RESULTS GLP-1 therapy was found to significantly reduce myocardial infarction and composite cardiovascular events. Additionally, GLP-1 receptor agonists were observed to reduce stroke incidence, suggesting systemic effects on panvascular diseases. While direct protective effects on coronary microvasculature have been less studied, growing evidence supports GLP-1's role in comprehensive myocardial perfusion. CONCLUSION GLP-1 is a promising therapeutic agent for improving myocardial perfusion and reducing cardiovascular events. Its protection is likely associated with comprehensive improvements in myocardial perfusion, including effects on coronary microcirculation. Further research is needed to fully elucidate its mechanisms of action and potential clinical applications.
Collapse
Affiliation(s)
- Zhi Li
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Yao Yu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Jie Li
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Xiaoqiong Jiang
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Jie Chen
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Ning Ye
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Boquan Wu
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Yingxian Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| | - Guozhe Sun
- Department of Cardiology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Gooding KM, Stevens S, Lokhnygina Y, Giczewska A, Shore AC, Holman RR. Are the cardiovascular properties of GLP-1 receptor agonists differentially modulated by sulfonylureas? Insights from post-hoc analysis of EXSCEL. Diabetes Res Clin Pract 2024; 212:111685. [PMID: 38670496 DOI: 10.1016/j.diabres.2024.111685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
AIMS To examine whether the cardiovascular effects of glucagon-like peptide-1 (GLP-1) receptor agonists are attenuated by concurrent sulfonylurea (SU) therapy in a post-hoc analysis of the Exenatide Study of Cardiovascular Event Lowering (EXSCEL). METHODS We investigated whether SUs, as a class or by specific type, modulated the effects of once-weekly exenatide (EQW) on EXSCEL cardiovascular outcomes in intent-to-treat analyses of all trial participants, categorized as SU users or nonusers. Marginal structural models were used to evaluate whether there were differential EQW effects by SU category on major adverse cardiovascular events (MACE), depending on duration of SU use (6, 12, and 18 months). EQW-by-SU type interaction p-values and hazard ratios (95 % CIs) for EQW versus placebo for each baseline SU type (glibenclamide, gliclazide, glimepiride, other SUs) were calculated. RESULTS Neither SU use nor baseline SU type modified the effect of EQW on time to MACE (pinteraction = 0.88 and 0.78, respectively), nor did individual SU types, including glibenclamide (a systemically wide-acting SU). CONCLUSIONS SUs did not modulate the effect of EQW on cardiovascular outcomes, suggesting that SU treatment choices need not be altered to optimize the cardiovascular effects of GLP-1 receptor agonists in people with type 2 diabetes.
Collapse
Affiliation(s)
- Kim M Gooding
- Vascular Research Centre, University of Exeter Medical School, Barrack Road, Exeter, UK; NIHR Exeter Clinical Research Facility, Royal Devon University Healthcare NHS Foundation Trust, Barrack Road, Exeter, UK.
| | - Susanna Stevens
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Yuliya Lokhnygina
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Anna Giczewska
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Angela C Shore
- Vascular Research Centre, University of Exeter Medical School, Barrack Road, Exeter, UK; NIHR Exeter Clinical Research Facility, Royal Devon University Healthcare NHS Foundation Trust, Barrack Road, Exeter, UK
| | - Rury R Holman
- Diabetes Trials Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Nesti L, Trico D. Cardioprotective effects of glucagon-like peptide 1 receptor agonists in heart failure: Myth or truth? World J Diabetes 2024; 15:818-822. [PMID: 38766425 PMCID: PMC11099368 DOI: 10.4239/wjd.v15.i5.818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/15/2024] [Accepted: 03/18/2024] [Indexed: 05/10/2024] Open
Abstract
Therapy with glucagon-like peptide 1 (GLP1) receptor agonists has raised great interest for its beneficial cardiovascular effects in preventing atherosclerosis and heart failure-related outcomes. However, while evidence about atherosclerosis consistently suggests a cardioprotective potential with class effect, controversies remain on its impact on heart failure. GLP1 receptor agonists appear to prevent hospitalization for new-onset heart failure and reduce symptoms in heart failure with preserved ejection fraction (as demonstrated by the recent STEP-HFpEF Trial). Still, GLP1 agonism has resulted in neutral or even harmful effects in patients with established heart failure with reduced ejection fraction (the LIVE trial). GLP1 receptor agonists benefit the cardiovascular system indirectly through their marked metabolic effects (improved weight management, glycemic control, blood pressure, systemic and tissue inflammation), while direct effects on the heart have been questioned. Nonetheless, weight loss alone achieved through GLP1 receptor agonists has failed in improving left ventricular functions. Tirzepatide is a dual agonist of GLP1 and glucose-dependent insulinotropic polypeptide, representing an innovative treatment option in diabetes with a major impact on weight loss and promising cardiovascular benefits. Whether this class of therapies is going to change the history of heart failure is an ongoing debate.
Collapse
Affiliation(s)
- Lorenzo Nesti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
- Laboratory of Metabolism, Nutrition, and Atherosclerosis, University of Pisa, Pisa 56126, Italy
| | - Domenico Trico
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa 56126, Italy
- Laboratory of Metabolism, Nutrition, and Atherosclerosis, University of Pisa, Pisa 56126, Italy
| |
Collapse
|
7
|
Sardar MB, Nadeem ZA, Babar M. Tirzepatide: A novel cardiovascular protective agent in type 2 diabetes mellitus and obesity. Curr Probl Cardiol 2024; 49:102489. [PMID: 38417475 DOI: 10.1016/j.cpcardiol.2024.102489] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Cardiovascular disease (CVD) remains a major global health concern, and obesity and diabetes mellitus have been found to be important risk factors. Tirzepatide a dual glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP1) receptor agonist has been shown to have cardioprotective effects. Noteworthy benefits of Tirzepatide include decreased cardiovascular risk factors in people with Type 2 diabetes mellitus (T2DM). In the SURPASS-4 trial, tirzepatide significant decreased blood pressure, body weight, and HbA1c. Furthermore, the SURMOUNT-1 trial demonstrated the effectiveness of tirzepatide in reducing cardiometabolic risk factors in people with obesity without T2DM. Together, the dual receptor agonism improves lipid profiles, increases insulin secretion, reduces inflammation, and promotes endothelial integrity. Tirzepatide shows promise as a comprehensive therapeutic option for managing cardiovascular risk factors in patients with T2DM and obesity. While further studies are needed to assess the long-term cardiovascular benefits, current evidence supports tirzepatide's potential impact on cardiovascular health beyond its antidiabetic properties.
Collapse
Affiliation(s)
- Muhammad Bilal Sardar
- Department of Cardiology, Allama Iqbal Medical College, Allama Shabbir Ahmed Usmani Road, Lahore 54700, Pakistan.
| | - Zain Ali Nadeem
- Department of Medicine, Allama Iqbal Medical College, Lahore, Pakistan
| | - Muhammad Babar
- Department of Internal Medicine, Social Security Hospital, Faisalabad, Pakistan
| |
Collapse
|
8
|
Ussher JR, Drucker DJ. Glucagon-like peptide 1 receptor agonists: cardiovascular benefits and mechanisms of action. Nat Rev Cardiol 2023; 20:463-474. [PMID: 36977782 DOI: 10.1038/s41569-023-00849-3] [Citation(s) in RCA: 169] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/30/2023]
Abstract
Type 2 diabetes mellitus (T2DM) and obesity are metabolic disorders characterized by excess cardiovascular risk. Glucagon-like peptide 1 (GLP1) receptor (GLP1R) agonists reduce body weight, glycaemia, blood pressure, postprandial lipaemia and inflammation - actions that could contribute to the reduction of cardiovascular events. Cardiovascular outcome trials (CVOTs) have demonstrated that GLP1R agonists reduce the rates of major adverse cardiovascular events in patients with T2DM. Separate phase III CVOTs of GLP1R agonists are currently being conducted in people living with heart failure with preserved ejection fraction and in those with obesity. Mechanistically, GLP1R is expressed at low levels in the heart and vasculature, raising the possibility that GLP1 might have both direct and indirect actions on the cardiovascular system. In this Review, we summarize the data from CVOTs of GLP1R agonists in patients with T2DM and describe the actions of GLP1R agonists on the heart and blood vessels. We also assess the potential mechanisms that contribute to the reduction in major adverse cardiovascular events in individuals treated with GLP1R agonists and highlight the emerging cardiovascular biology of novel GLP1-based multi-agonists currently in development. Understanding how GLP1R signalling protects the heart and blood vessels will optimize the therapeutic use and development of next-generation GLP1-based therapies with improved cardiovascular safety.
Collapse
Affiliation(s)
- John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
9
|
Ribeiro-Silva JC, Tavares CAM, Girardi ACC. The blood pressure lowering effects of glucagon-like peptide-1 receptor agonists: A mini-review of the potential mechanisms. Curr Opin Pharmacol 2023; 69:102355. [PMID: 36857807 DOI: 10.1016/j.coph.2023.102355] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/10/2023] [Accepted: 01/27/2023] [Indexed: 03/03/2023]
Abstract
The incretin hormone glucagon-like peptide 1 (GLP-1) is a key component of the signaling mechanisms promoting glucose homeostasis. Clinical and experimental studies demonstrated that GLP-1 receptor agonists, including GLP-1 itself, have favorable effects on blood pressure and reduce the risk of major cardiovascular events, independently of their effect on glycemic control. GLP-1 receptors are present in the hypothalamus and brainstem, the carotid body, the vasculature, and the kidneys. These organs are involved in blood pressure regulation, have their function altered in hypertension, and are positively benefited by the treatment with GLP-1 receptor agonists. Here, we discuss the potential mechanisms whereby activation of GLP-1R signaling exerts blood pressure-lowering effects beyond glycemic control.
Collapse
Affiliation(s)
- Joao Carlos Ribeiro-Silva
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Caio A M Tavares
- Unidade de Cardiogeriatria, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Academic Research Organization (ARO), Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
| | - Adriana C C Girardi
- Laboratório de Genética e Cardiologia Molecular, Instituto do Coração (InCor), Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
10
|
Soleymani M, Masoudkabir F, Shabani M, Vasheghani-Farahani A, Behnoush AH, Khalaji A. Updates on Pharmacologic Management of Microvascular Angina. Cardiovasc Ther 2022; 2022:6080258. [PMID: 36382021 PMCID: PMC9626221 DOI: 10.1155/2022/6080258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/29/2022] [Accepted: 10/17/2022] [Indexed: 01/14/2024] Open
Abstract
Microvascular angina (MVA), historically called cardiac syndrome X, refers to angina with nonobstructive coronary artery disease. This female-predominant cardiovascular disorder adds considerable health-related costs due to repeated diagnostic angiography and frequent hospital admissions. Despite the high prevalence of this diagnosis in patients undergoing coronary angiography, it is still a therapeutic challenge for cardiologists. Unlike obstructive coronary artery disease, with multiple evidence-based therapies and management guidelines, little is known regarding the management of MVA. During the last decade, many therapeutic interventions have been suggested for the treatment of MVA. However, there is a lack of summarization tab and update of current knowledge about pharmacologic management of MVA, mostly due to unclear pathophysiology. In this article, we have reviewed the underlying mechanisms of MVA and the outcomes of various medications in patients with this disease. Contrary to vasospastic angina in which normal angiogram is observed as well, nitrates are not effective in the treatment of MVA. Beta-blockers and calcium channel blockers have the strongest evidence of improving the symptoms. Moreover, the use of angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, statins, estrogen, and novel antianginal drugs has had promising outcomes. Investigations are still ongoing for vitamin D, omega-3, incretins, and n-acetyl cysteine, which have resulted in beneficial initial outcomes. We believe that the employment of the available results and results of the future large-scale trials into cardiac care guidelines would help reduce the global cost of cardiac care tremendously.
Collapse
Affiliation(s)
- Mosayeb Soleymani
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Masoudkabir
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Cardiac Electrophysiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsima Shabani
- Division of Cardiology, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ali Vasheghani-Farahani
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Cardiac Electrophysiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Behnoush
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Khalaji
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Cardiac Primary Prevention Research Center, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Martens P, Mathieu C, Vanassche T. The use of glucagon-like-peptide-1 receptor agonist in the cardiology practice. Acta Cardiol 2022:1-13. [PMID: 35575294 DOI: 10.1080/00015385.2022.2076307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The presence of type 2 diabetes confronts the patient with an elevated risk to develop atherosclerotic cardiovascular disease (ASCVD), heart failure (HF), or chronic kidney disease (CKD). Glucose control in itself does not prevent these complications in their entirety. More recently several agents within the class of Sodium-Glucose cotransporter 2 inhibitors (SGLT2-I) and Glucagon-like-peptide-1 receptor agonists (GLP-1RA) have emerged as preferred agents to tackle the residual risk of ASCVD, HF, and CKD in patients with type 2 diabetes. Despite compelling trial data and professional society endorsement, the uptake of these agents in clinical practice is low. Especially GLP-1RA is only used in 8% of eligible candidates with type 2 diabetes and <5% of these prescriptions are attributed to cardiologists. This low uptake amongst cardiologists is related to the unfamiliarity with this class, its initiation, and titration, hesitation regarding simultaneous adjustment of other glucose-lowering agents, the unaccustomedness to prescribing injectable agents, and differential medical priorities. This review aims to offer cardiologists a practical tool for the optimal use of a GLP-1RA in their suitable patients and is focussed on the Belgian field of practice.
Collapse
Affiliation(s)
- Pieter Martens
- Department of Cardiology, Ziekenhuis Oost-Limburg, Genk, Belgium
- Department of Cardiology, Universitair Ziekenhuis Leuven, Leuven, Belgium
| | - Chantal Mathieu
- Department of Endocrinology, Universitair Ziekenhuis Leuven, Leuven, Belgium
| | - Thomas Vanassche
- Department of Cardiology, Universitair Ziekenhuis Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Saraiva JFK, Franco D. Oral GLP-1 analogue: perspectives and impact on atherosclerosis in type 2 diabetic patients. Cardiovasc Diabetol 2021; 20:235. [PMID: 34911560 PMCID: PMC8675489 DOI: 10.1186/s12933-021-01417-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/07/2021] [Indexed: 01/02/2023] Open
Abstract
Cardiovascular events related to atherosclerosis are responsible for high morbidity and mortality among patients with type 2 diabetes. Improvement in care, especially in early stages, is crucial. Oral semaglutide, a glucagon-like peptide 1 analogue, controls blood glucose and results in significant body weight loss in patients with type 2 diabetes. Beyond these well-known effects, an interesting aspect of this drug is its antiatherogenic activity, which should be further explored in clinical practice. This paper reviews the evidence related to oral semaglutide decreasing cardiovascular risk in patients with type 2 diabetes, focusing on the drug's antiatherosclerotic properties. The glucagon-like peptide 1 analogue restores endothelial dysfunction, induces vasodilatation, and reduces plasma lipids. Oral semaglutide showed cardiovascular safety profile, with significant reduced risk of death from cardiovascular events. Based on current data, clinicians should consider oral semaglutide for type 2 diabetes management.
Collapse
Affiliation(s)
- José Francisco Kerr Saraiva
- Faculdade de Medicina do Centro de Ciências da Vida - Pontifícia, Universidade Católica de Campinas, Av John Boyd Dunlop, s/n - Jd. Ipaussurama, Campinas, SP, CEP: 13060-904, Brazil
| | - Denise Franco
- CPCLIN/DASA Centro de Pesquisas Clínicas, Av Angelica, 2162 - Consolação, São Paulo, SP, CEP: 01228-200, Brazil.
| |
Collapse
|
13
|
Reijrink M, De Boer SA, Van Roon AM, Slart RHJA, Fernandez BO, Feelisch M, Heerspink HJL, Van Goor H, Hillebrands JL, Mulder DJ. Plasma Nitrate Levels Are Related to Metabolic Syndrome and Are Not Altered by Treatment with DPP-4 Inhibitor Linagliptin: A Randomised, Placebo-Controlled Trial in Patients with Early Type 2 Diabetes Mellitus. Antioxidants (Basel) 2021; 10:antiox10101548. [PMID: 34679685 PMCID: PMC8533083 DOI: 10.3390/antiox10101548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/25/2023] Open
Abstract
The depletion of nitrate and nitrite, stable nitric oxide (NO) end-products, promotes adipose tissue dysfunction and insulin resistance (IR). Dipeptidyl peptidase-4 (DPP-4) inhibitors have the potentially beneficial side effect of increasing NO availability. In this study, nitrate and nitrite levels and the effects of DPP-4 inhibitor linagliptin were investigated in relation to metabolic syndrome (MetS) markers. Treatment-naive patients with early type 2 diabetes mellitus (T2DM) (n = 40, median age 63 IQR (55–67) years, 63% male, mean HbA1c 45 ± 4.4 mmol/mol) were randomized (1:1) to linagliptin (5 mg/day) or placebo. MetS-related markers (body mass index (BMI), triglycerides, HOMA-IR, gamma-glutamyltransferase (GGT), C-reactive protein (CRP), and adiponectin), plasma levels of nitrate, nitrite, total free thiols (TFT) and vegetable intake were estimated at baseline and after 4 and 26 weeks of treatment. Plasma nitrate, but not nitrite, correlated positively with vegetable intake (r = 0.38, p = 0.018) and was inversely associated with HOMA-IR (r = −0.44, p = 0.006), BMI (r = −0.35, p = 0.028), GGT (r = −0.37, p = 0.019) and CRP (r = −0.34, p = 0.034). The relationship between nitrate and HOMA-IR remained significant after adjusting for BMI, CRP, vegetable intake and GGT. With stable vegetable intake, nitrate and nitrite, TFT, adipokines and CRP did not change after 26 weeks of linagliptin treatment. While plasma nitrate is inversely associated with MetS, linagliptin treatment does not significantly influence nitrate and nitrite concentrations, oxidative stress, adipose tissue function and systemic inflammation.
Collapse
Affiliation(s)
- Melanie Reijrink
- Medical Center Groningen, Department of Internal Medicine, Division of Vascular Medicine, University of Groningen, 9713 Groningen, The Netherlands; (M.R.); (S.A.D.B.); (A.M.V.R.)
| | - Stefanie A. De Boer
- Medical Center Groningen, Department of Internal Medicine, Division of Vascular Medicine, University of Groningen, 9713 Groningen, The Netherlands; (M.R.); (S.A.D.B.); (A.M.V.R.)
| | - Anniek M. Van Roon
- Medical Center Groningen, Department of Internal Medicine, Division of Vascular Medicine, University of Groningen, 9713 Groningen, The Netherlands; (M.R.); (S.A.D.B.); (A.M.V.R.)
| | - Riemer H. J. A. Slart
- Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, 9713 Groningen, The Netherlands;
- Department of Biomedical Photoacustic Imaging (BMPI), University of Twente, 7522 Enschede, The Netherlands
| | - Bernadette O. Fernandez
- Faculty of Medicine, Clinical and Experimental Sciences, University of Southampton, SO17 1BJ Southamptonc, UK; (B.O.F.); (M.F.)
| | - Martin Feelisch
- Faculty of Medicine, Clinical and Experimental Sciences, University of Southampton, SO17 1BJ Southamptonc, UK; (B.O.F.); (M.F.)
| | - Hiddo J. L. Heerspink
- Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, University of Groningen, 9713 Groningen, The Netherlands;
| | - Harry Van Goor
- Medical Center Groningen, Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, 9713 Groningen, The Netherlands; (H.V.G.); (J.-L.H.)
| | - Jan-Luuk Hillebrands
- Medical Center Groningen, Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, 9713 Groningen, The Netherlands; (H.V.G.); (J.-L.H.)
| | - Douwe J. Mulder
- Medical Center Groningen, Department of Internal Medicine, Division of Vascular Medicine, University of Groningen, 9713 Groningen, The Netherlands; (M.R.); (S.A.D.B.); (A.M.V.R.)
- Correspondence:
| |
Collapse
|
14
|
Nauck MA, Quast DR, Wefers J, Pfeiffer AFH. The evolving story of incretins (GIP and GLP-1) in metabolic and cardiovascular disease: A pathophysiological update. Diabetes Obes Metab 2021; 23 Suppl 3:5-29. [PMID: 34310013 DOI: 10.1111/dom.14496] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 11/27/2022]
Abstract
The incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) have their main physiological role in augmenting insulin secretion after their nutrient-induced secretion from the gut. A functioning entero-insular (gut-endocrine pancreas) axis is essential for the maintenance of a normal glucose tolerance. This is exemplified by the incretin effect (greater insulin secretory response to oral as compared to "isoglycaemic" intravenous glucose administration due to the secretion and action of incretin hormones). GIP and GLP-1 have additive effects on insulin secretion. Local production of GIP and/or GLP-1 in islet α-cells (instead of enteroendocrine K and L cells) has been observed, and its significance is still unclear. GLP-1 suppresses, and GIP increases glucagon secretion, both in a glucose-dependent manner. GIP plays a greater physiological role as an incretin. In type 2-diabetic patients, the incretin effect is reduced despite more or less normal secretion of GIP and GLP-1. While insulinotropic effects of GLP-1 are only slightly impaired in type 2 diabetes, GIP has lost much of its acute insulinotropic activity in type 2 diabetes, for largely unknown reasons. Besides their role in glucose homoeostasis, the incretin hormones GIP and GLP-1 have additional biological functions: GLP-1 at pharmacological concentrations reduces appetite, food intake, and-in the long run-body weight, and a similar role is evolving for GIP, at least in animal studies. Human studies, however, do not confirm these findings. GIP, but not GLP-1 increases triglyceride storage in white adipose tissue not only through stimulating insulin secretion, but also by interacting with regional blood vessels and GIP receptors. GIP, and to a lesser degree GLP-1, play a role in bone remodelling. GLP-1, but not GIP slows gastric emptying, which reduces post-meal glycaemic increments. For both GIP and GLP-1, beneficial effects on cardiovascular complications and neurodegenerative central nervous system (CNS) disorders have been observed, pointing to therapeutic potential over and above improving diabetes complications. The recent finding that GIP/GLP-1 receptor co-agonists like tirzepatide have superior efficacy compared to selective GLP-1 receptor agonists with respect to glycaemic control as well as body weight has renewed interest in GIP, which previously was thought to be without any therapeutic potential. One focus of this research is into the long-term interaction of GIP and GLP-1 receptor signalling. A GLP-1 receptor antagonist (exendin [9-39]) and, more recently, a GIP receptor agonist (GIP [3-30] NH2 ) and, hopefully, longer-acting GIP receptor agonists for human use will be helpful tools to shed light on the open questions. A detailed knowledge of incretin physiology and pathophysiology will be a prerequisite for designing more effective incretin-based diabetes drugs.
Collapse
Affiliation(s)
- Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Daniel R Quast
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Jakob Wefers
- Diabetes Division, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Andreas F H Pfeiffer
- Charité - Universitätsmedizin Berlin, Klinik für Endokrinologie, Stoffwechsel- und Ernährungsmedizin, Berlin, Germany
| |
Collapse
|
15
|
Yaribeygi H, Farrokhi FR, Abdalla MA, Sathyapalan T, Banach M, Jamialahmadi T, Sahebkar A. The Effects of Glucagon-Like Peptide-1 Receptor Agonists and Dipeptydilpeptidase-4 Inhibitors on Blood Pressure and Cardiovascular Complications in Diabetes. J Diabetes Res 2021; 2021:6518221. [PMID: 34258291 PMCID: PMC8263148 DOI: 10.1155/2021/6518221] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Glucagon-like peptide-1 receptor (GLP-1R) agonists are a class of newly introduced antidiabetic medications that potentially lower blood glucose by several molecular pathways. DPP-4 inhibitors are the other type of novel antidiabetic medications which act by preventing GLP-1 inactivation and thereby increasing the activity levels of GLP-1, leading to more glucose-induced insulin release from islet β-cells and suppression of glucagon release. Most patients with diabetes have concurrent hypertension and cardiovascular disorder. If antihyperglycemic agents can attenuate the risk of hypertension and cardiovascular disease, they will amplify their overall beneficial effects. There is conflicting evidence on the cardiovascular benefits of GLP-1R induction in laboratory studies and clinical trials. In this study, we have reviewed the main molecular mechanisms by which GLP-1R induction may modulate the cardiovascular function and the results of cardiovascular outcome clinical trials.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Farin Rashid Farrokhi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, UK
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, Lodz, Poland
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
16
|
Blood Pressure-Lowering Effect of Newer Antihyperglycemic Agents (SGLT-2 Inhibitors, GLP-1 Receptor Agonists, and DPP-4 Inhibitors). Am J Cardiovasc Drugs 2021; 21:123-137. [PMID: 32780214 DOI: 10.1007/s40256-020-00423-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The prevalence of arterial hypertension is high in patients with diabetes mellitus (DM). When DM and hypertension coexist, they constitute a dual cardiovascular threat and should be adequately controlled. Novel antihyperglycemic agents, including sodium-glucose co-transporter 2 (SGLT-2) inhibitors, glucagon-like peptide-1 receptor agonists (GLP-1 RAs), and dipeptidyl peptidase-4 (DPP-4) inhibitors, have recently been used in the treatment of DM. Beyond their glucose-lowering effects, these drugs have shown beneficial pleiotropic cardiovascular effects, including lowering of arterial blood pressure (BP), as acknowledged in the 2019 European Society of Cardiology/European Association for the Study of Diabetes guidelines on diabetes, prediabetes, and cardiovascular diseases. The purpose of this review was to summarize the available information on the BP-reducing effects of these new glucose-lowering drug classes and provide a brief report on underlying pathophysiological mechanisms. We also compare the three drug classes (SGLT-2 inhibitors, GLP-1 RAs, and DPP-4 inhibitors) in terms of their BP-lowering effect and show that the greater BP reduction seems to be achieved with SGLT-2 inhibitors, whereas DPP-4 inhibitors have probably the mildest antihypertensive effect.
Collapse
|
17
|
Taguchi K, Kaneko N, Okudaira K, Matsumoto T, Kobayashi T. GLP-1 modulates insulin-induced relaxation response through β-arrestin2 regulation in diabetic mice aortas. Acta Physiol (Oxf) 2021; 231:e13573. [PMID: 33098611 DOI: 10.1111/apha.13573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022]
Abstract
AIMS Diabetes impairs insulin-induced endothelium-dependent relaxation by reducing nitric oxide (NO) production. GLP-1, an incretin hormone, has been shown to prevent the development of endothelial dysfunction. In this study, we hypothesized that GLP-1 would improve the impaired insulin-induced relaxation response in diabetic mice. We also examined the underlying mechanisms. METHODS Using aortic rings from ob/ob mice, an animal model of obesity and type 2 diabetes, and from lean mice, vascular relaxation responses and protein expressions were evaluated using insulin, GLP-1, and pathway-specific inhibitors to elucidate the mechanisms of response. In parallel experiments, β-arrestin2 siRNA-transfected aortas were treated with GLP-1 to evaluate its effects on aortic response pathways. RESULTS When compared to that of untreated ob/ob aortas, GLP-1 increased insulin-induced vasorelaxation and NO production. AMPK inhibition did not alter this vasorelaxation in both GLP-1-treated lean and ob/ob aortas, while Akt inhibition reduced vasorelaxation in both groups, and co-treatment with GLP-1 and insulin caused Akt/eNOS activation. Additionally, GLP-1 decreased GRK2 activity and enhanced β-arrestin2 translocation from the cytosol to membrane in ob/ob aortas. β-Arrestin2 siRNA decreased insulin-induced relaxation both in lean aortas and GLP-1-treated ob/ob aortas. CONCLUSIONS We demonstrated that insulin-induced relaxation is dependent on β-arrestin2 translocation and Akt activation via GLP-1-stimulated GRK2 inactivation in ob/ob aortas. We showed a novel cross-talk between GLP-1-responsive β-arrestin2 and insulin signalling in diabetic aortas.
Collapse
Affiliation(s)
- Kumiko Taguchi
- Department of Physiology and Morphology Institute of Medicinal Chemistry Hoshi University Tokyo Japan
| | - Nozomu Kaneko
- Department of Physiology and Morphology Institute of Medicinal Chemistry Hoshi University Tokyo Japan
| | - Kanami Okudaira
- Department of Physiology and Morphology Institute of Medicinal Chemistry Hoshi University Tokyo Japan
| | - Takayuki Matsumoto
- Department of Physiology and Morphology Institute of Medicinal Chemistry Hoshi University Tokyo Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology Institute of Medicinal Chemistry Hoshi University Tokyo Japan
| |
Collapse
|
18
|
Zhao D, Liu H, Dong P. Liraglutide reduces systolic blood pressure in patients with type 2 diabetes mellitus: A meta-analysis of randomized trials. Clin Exp Hypertens 2020; 42:393-400. [PMID: 31610701 DOI: 10.1080/10641963.2019.1676771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The antidiabetic effect of liraglutide in patients with type 2 diabetes mellitus has been explored in several trials. We performed this meta-analysis determining the effects of liraglutide on blood pressure in these patients. Three electronic databases (Pubmed, Web of Science, and Cochrane Central) were searched for all published articles evaluating the effects of liraglutide on blood pressure in subjects with type 2 diabetes mellitus. Total 968 patients were included in 10 randomized, double-blind, placebo-controlled trials with a follow-up of 16 ± 9 weeks. Liraglutide 1.8 mg/day reduced systolic blood pressure (weighted mean differences -5.39 (95% confidence interval, -7.26, -3.51) mm Hg, p < .001) and body weight (weighted mean differences -2.07 (95% confidence interval, -2.62, -1.51) kg, p < .001) in patients with type 2 diabetes mellitus. There was no significant difference for changes of diastolic blood pressure between liraglutide 1.8 mg/day and placebo in these patients (weighted mean differences -0.53 (95% confidence interval, -1.96, 0.89) mm Hg, p > .05). The increases of heart rate were greater than placebo in patients treated with liraglutide 1.8 mg/day (weighted mean differences 6.03 (95% confidence interval, 4.78, 7.29) kg, p < .001). There was no significant correlation between reduction of systolic blood pressure and weight loss in patients treated with liraglutide 1.8 mg/day (p = .24). In conclusion, liraglutide reduces systolic blood pressure and body weight in patients with type 2 diabetes mellitus. These data suggest the beneficial effects of liraglutide on cardiovascular protection and may improve prognosis in these patients.
Collapse
Affiliation(s)
- Di Zhao
- Division of Hypertension, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Hui Liu
- Division of Endocrinology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Pingshuan Dong
- Division of Cardiology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
19
|
Love KM, Liu J, Regensteiner JG, Reusch JE, Liu Z. GLP-1 and insulin regulation of skeletal and cardiac muscle microvascular perfusion in type 2 diabetes. J Diabetes 2020; 12:488-498. [PMID: 32274893 PMCID: PMC8393916 DOI: 10.1111/1753-0407.13045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 12/25/2022] Open
Abstract
Muscle microvasculature critically regulates skeletal and cardiac muscle health and function. It provides endothelial surface area for substrate exchange between the plasma compartment and the muscle interstitium. Insulin fine-tunes muscle microvascular perfusion to regulate its own action in muscle and oxygen and nutrient supplies to muscle. Specifically, insulin increases muscle microvascular perfusion, which results in increased delivery of insulin to the capillaries that bathe the muscle cells and then facilitate its own transendothelial transport to reach the muscle interstitium. In type 2 diabetes, muscle microvascular responses to insulin are blunted and there is capillary rarefaction. Both loss of capillary density and decreased insulin-mediated capillary recruitment contribute to a decreased endothelial surface area available for substrate exchange. Vasculature expresses abundant glucagon-like peptide 1 (GLP-1) receptors. GLP-1, in addition to its well-characterized glycemic actions, improves endothelial function, increases muscle microvascular perfusion, and stimulates angiogenesis. Importantly, these actions are preserved in the insulin resistant states. Thus, treatment of insulin resistant patients with GLP-1 receptor agonists may improve skeletal and cardiac muscle microvascular perfusion and increase muscle capillarization, leading to improved delivery of oxygen, nutrients, and hormones such as insulin to the myocytes. These actions of GLP-1 impact skeletal and cardiac muscle function and systems biology such as functional exercise capacity. Preclinical studies and clinical trials involving the use of GLP-1 receptor agonists have shown salutary cardiovascular effects and improved cardiovascular outcomes in type 2 diabetes mellitus. Future studies should further examine the different roles of GLP-1 in cardiac as well as skeletal muscle function.
Collapse
Affiliation(s)
- Kaitlin M. Love
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Jia Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Judith G. Regensteiner
- Center for Women’s Health Research, University of Colorado School of Medicine, Aurora, Colorado
- Department of Medicine, University of Colorado, Aurora, Colorado
| | - Jane E.B. Reusch
- Center for Women’s Health Research, University of Colorado School of Medicine, Aurora, Colorado
- Department of Medicine, University of Colorado, Aurora, Colorado
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
20
|
Hu M, Cai X, Yang W, Zhang S, Nie L, Ji L. Effect of Hemoglobin A1c Reduction or Weight Reduction on Blood Pressure in Glucagon-Like Peptide-1 Receptor Agonist and Sodium-Glucose Cotransporter-2 Inhibitor Treatment in Type 2 Diabetes Mellitus: A Meta-Analysis. J Am Heart Assoc 2020; 9:e015323. [PMID: 32223390 PMCID: PMC7428598 DOI: 10.1161/jaha.119.015323] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background Glucagon-like peptide-1 receptor agonists (GLP-1RAs) and sodium-glucose cotransporter-2 inhibitors (SGLT2is) have shown their beneficial effects on cardiovascular outcomes and multiple cardiovascular risk factors, including hypertension. However, the mechanism of blood pressure (BP)-lowering effects of these agents has not been elucidated. This study aims to evaluate the effect of hemoglobin A1c reduction or body weight reduction with GLP-1RA treatment and SGLT2i treatment on BP changes in patients with type 2 diabetes mellitus. Methods and Results Studies were identified by a search of MEDLINE, EMBASE, and the Cochrane Central Register until June 2019. Meta-regression analysis was performed to evaluate the association between hemoglobin A1c reduction or body weight reduction and changes of BP. A total of 184 trials were included. Both GLP-1RA and SGLT2i led to significant reductions in systolic BP (weighted mean difference, -2.856 and -4.331 mm Hg, respectively; P<0.001 for both) and diastolic BP (weighted mean difference, -0.898 and -2.279 mm Hg, respectively; P<0.001 for both). For both drug classes, hemoglobin A1c reduction was not independently associated with systolic BP reduction or diastolic BP reduction. In GLP-1RA treatment, weight reduction was positively associated with systolic BP reduction and diastolic BP reduction (β=0.821 and β=0.287, respectively; P<0.001 for both). In SGLT2i treatment, weight loss was significantly associated with systolic BP reduction (β=0.820; P=0.001) but was not associated with diastolic BP reduction. Conclusions Treatment with GLP-1RA and SGLT2i led to significant reductions in BP in patients with type 2 diabetes mellitus. Weight reduction was significantly and independently associated with BP reductions in GLP-1RA treatment and SGLT2i treatment.
Collapse
Affiliation(s)
- Mengdie Hu
- Department of Endocrinology and Metabolism Peking University People's Hospital Beijing China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism Peking University People's Hospital Beijing China
| | - Wenjia Yang
- Department of Endocrinology and Metabolism Peking University People's Hospital Beijing China
| | - Simin Zhang
- Department of Endocrinology and Metabolism Peking University People's Hospital Beijing China
| | - Lin Nie
- Department of Endocrinology and Metabolism Beijing Airport Hospital Beijing China
| | - Linong Ji
- Department of Endocrinology and Metabolism Peking University People's Hospital Beijing China
| |
Collapse
|
21
|
Gomide Braga T, das Graças Coelho de Souza M, Maranhão PA, Menezes M, Dellatorre-Teixeira L, Bouskela E, Le Roux CW, Kraemer-Aguiar LG. Evaluation of Heart Rate Variability and Endothelial Function 3 Months After Bariatric Surgery. Obes Surg 2020; 30:2450-2453. [DOI: 10.1007/s11695-020-04397-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
22
|
Efficacy of Isomaltulose Compared to Sucrose in Modulating Endothelial Function in Overweight Adults. Nutrients 2020; 12:nu12010141. [PMID: 31947853 PMCID: PMC7019610 DOI: 10.3390/nu12010141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/10/2019] [Accepted: 12/31/2019] [Indexed: 12/11/2022] Open
Abstract
Hyperglycemia is linked to impaired arterial endothelial function (EF), an early sign of cardiovascular disease. We compared the efficacy of low-glycemic index isomaltulose (Palatinose™) with that of sucrose in modulating EF, as assessed by flow-mediated dilation (FMD). In this double-blinded cross-over study, 80 overweight mildly hypertensive subjects were randomized to receive 50 g of either isomaltulose or sucrose. On two non-consecutive days, brachial artery ultrasound FMD scans were obtained prior to and hourly (T0-T3) after carbohydrate load. Blood was drawn immediately after scanning. Glucose and insulin levels were analyzed. Overall, the FMD decrease was attenuated by isomaltulose compared to sucrose (ΔFMD = -0.003% and -0.151%; p > 0.05 for the interaction treatment x period). At T2, FMD was significantly higher after isomaltulose administration compared to that after sucrose administration (FMD = 5.9 ± 2.9% and 5.4 ± 2.6%, p = 0.047). Pearson correlations between FMD and blood glucose showed a trend for a negative association at T0 and T2 independently of the carbohydrate (r-range = -0.20 to -0.23, p < 0.1). Sub-analysis suggested a lower FMD in insulin-resistant (IR) compared to insulin-sensitive subjects. Isomaltulose attenuated the postprandial decline of FMD, particularly in IR persons. These data support the potential of isomaltulose to preserve the endothelial function postprandially and consequently play a favorable role in cardiovascular health.
Collapse
|
23
|
Hassanabad MF, Fatehi M. Androgen Therapy in Male Patients Suffering from Type 2 Diabetes: A Review of Benefits and Risks. Curr Diabetes Rev 2020; 16:189-199. [PMID: 30073928 DOI: 10.2174/1573399814666180731125724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/23/2018] [Accepted: 07/29/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND The current estimated numbers of patients with Type 2 Diabetes (T2D) is believed to be close to 10% of the whole populations of many geographical regions, causing serious concerns over the resulting elevated morbidity and mortality as well as the impact on health care systems around the world. In addition to negatively affecting the quality of life, diabetes is associated with cardiovascular and cerebrovascular complications, indicating that appropriate drug therapy should not only deal with metabolic dysfunction but also protect the vascular system, kidney function and skeletal muscle mass from the effects of the epigenetic changes induced by hyperglycaemia. OBJECTIVE To provide an insight into the management of hypogonadism associated with T2D, this review focuses on clinical observations related to androgen therapy in qualified diabetic patients, and discusses the lines of evidence for its benefits and risks. The potential interactions of testosterone with medicines used by patients with T2D will also be discussed. CONCLUSION From recent clinical findings, it became evident that a considerable percentage of patients suffering from T2D manifested low serum testosterone and experienced diminished sexual activity, as well as reduced skeletal muscle mass and lower bone density. Although there are some controversies, Testosterone Replacement Therapy (TRT) for this particular population of patients appears to be beneficial overall only if it is implemented carefully and monitored regularly.
Collapse
Affiliation(s)
- Mortaza F Hassanabad
- Alberta Institute of Diabetes and Department of Pharmacology, Faculty of Sciences, University of Alberta, Edmonton, Canada
| | - Mohammad Fatehi
- Alberta Institute of Diabetes and Department of Pharmacology, Faculty of Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
24
|
Clarke SJ, Giblett JP, Yang LL, Hubsch A, Zhao T, Aetesam-Ur-Rahman M, West NEJ, O'Sullivan M, Figg N, Bennett M, Wewer Albrechtsen NJ, Deacon CF, Cheriyan J, Hoole SP. GLP-1 Is a Coronary Artery Vasodilator in Humans. J Am Heart Assoc 2019; 7:e010321. [PMID: 30571482 PMCID: PMC6404441 DOI: 10.1161/jaha.118.010321] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The mechanism underlying the beneficial cardiovascular effects of the incretin GLP‐1 (glucagon‐like peptide 1) and its analogues in humans is elusive. We hypothesized that activating receptors located on vascular smooth muscle cells to induce either peripheral or coronary vasodilatation mediates the cardiovascular effect of GLP‐1. Methods and Results Ten stable patients with angina awaiting left anterior descending artery stenting underwent forearm blood flow measurement using forearm plethysmography and post–percutaneous coronary intervention coronary blood flow measurement using a pressure‐flow wire before and after peripheral GLP‐1 administration. Coronary sinus and artery bloods were sampled for GLP‐1 levels. A further 11 control patients received saline rather than GLP‐1 in the coronary blood flow protocol. GLP‐1 receptor (GLP‐1R) expression was assessed by immunohistochemistry using a specific GLP‐1R monoclonal antibody in human tissue to inform the physiological studies. There was no effect of GLP‐1 on absolute forearm blood flow or forearm blood flow ratio after GLP‐1, systemic hemodynamics were not affected, and no binding of GLP‐1R monoclonal antibody was detected in vascular tissue. GLP‐1 reduced resting coronary transit time (mean [SD], 0.87 [0.39] versus 0.63 [0.27] seconds; P=0.02) and basal microcirculatory resistance (mean [SD], 76.3 [37.9] versus 55.4 [30.4] mm Hg/s; P=0.02), whereas in controls, there was an increase in transit time (mean [SD], 0.48 [0.24] versus 0.83 [0.41] seconds; P<0.001) and basal microcirculatory resistance (mean [SD], 45.9 [34.7] versus 66.7 [37.2] mm Hg/s; P=0.02). GLP‐1R monoclonal antibody binding was confirmed in ventricular tissue but not in vascular tissue, and transmyocardial GLP‐1 extraction was observed. Conclusions GLP‐1 causes coronary microvascular dilation and increased flow but does not influence peripheral tone. GLP‐1R immunohistochemistry suggests that GLP‐1 coronary vasodilatation is indirectly mediated by ventricular‐coronary cross talk.
Collapse
Affiliation(s)
- Sophie J Clarke
- 1 Division of Cardiovascular Medicine University of Cambridge United Kingdom
| | - Joel P Giblett
- 3 Department of Interventional Cardiology Royal Papworth Hospital NHS Foundation Trust Cambridge United Kingdom
| | - Lucy L Yang
- 2 Division of Experimental Medicine and Immunotherapeutics University of Cambridge United Kingdom
| | - Annette Hubsch
- 2 Division of Experimental Medicine and Immunotherapeutics University of Cambridge United Kingdom
| | - Tian Zhao
- 3 Department of Interventional Cardiology Royal Papworth Hospital NHS Foundation Trust Cambridge United Kingdom
| | - Muhammad Aetesam-Ur-Rahman
- 3 Department of Interventional Cardiology Royal Papworth Hospital NHS Foundation Trust Cambridge United Kingdom
| | - Nick E J West
- 3 Department of Interventional Cardiology Royal Papworth Hospital NHS Foundation Trust Cambridge United Kingdom
| | - Michael O'Sullivan
- 3 Department of Interventional Cardiology Royal Papworth Hospital NHS Foundation Trust Cambridge United Kingdom
| | - Nichola Figg
- 1 Division of Cardiovascular Medicine University of Cambridge United Kingdom
| | - Martin Bennett
- 1 Division of Cardiovascular Medicine University of Cambridge United Kingdom
| | - Nicolai J Wewer Albrechtsen
- 4 Department of Biomedical Sciences NNF Centre for Basic Metabolic Research University of Copenhagen Denmark.,5 Department of Clinical Biochemistry, Rigshospitalet University of Copenhagen Denmark
| | - Carolyn F Deacon
- 4 Department of Biomedical Sciences NNF Centre for Basic Metabolic Research University of Copenhagen Denmark
| | - Joseph Cheriyan
- 2 Division of Experimental Medicine and Immunotherapeutics University of Cambridge United Kingdom
| | - Stephen P Hoole
- 3 Department of Interventional Cardiology Royal Papworth Hospital NHS Foundation Trust Cambridge United Kingdom
| |
Collapse
|
25
|
Incretin Hormones: The Link between Glycemic Index and Cardiometabolic Diseases. Nutrients 2019; 11:nu11081878. [PMID: 31412576 PMCID: PMC6724226 DOI: 10.3390/nu11081878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 01/01/2023] Open
Abstract
This review aimed to describe the potential mechanisms by which incretin hormones could mediate the relationship between glycemic index and cardiometabolic diseases. A body of evidence from many studies suggests that low glycemic index (GI) diets reduces the risk for type 2 diabetes and coronary heart disease. In fact, despite the extensive literature on this topic, the mechanisms underlying unfavorable effects of high GI foods on health remain not well defined. The postprandial and hormonal milieu could play a key role in the relationship between GI and cardiovascular risk. Incretin hormones, glucagon-like peptide1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), are important regulators of postprandial homeostasis by amplifying insulin secretory responses. Response of GIP and GLP-1 to GI have been studied more in depth, also by several studies on isomaltulose, which have been taken as an ideal model to investigate the kinetics of incretin secretion in response to foods’ GI. In addition, extrapancreatic effects of these incretin hormones were also recently observed. Emerging from this have been exciting effects on several targets, such as body weight regulation, lipid metabolism, white adipose tissue, cardiovascular system, kidney, and liver, which may importantly affect the health status.
Collapse
|
26
|
Effect of liraglutide on body weight and microvascular function in non-diabetic overweight women with coronary microvascular dysfunction. Int J Cardiol 2019; 283:28-34. [PMID: 30773266 DOI: 10.1016/j.ijcard.2018.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/27/2018] [Accepted: 12/03/2018] [Indexed: 01/31/2023]
Abstract
BACKGROUND Coronary microvascular dysfunction (CMD) is associated with adverse cardiovascular outcomes and CMD is a hallmark of type 2 diabetes. Liraglutide improves cardiovascular prognosis through partly unknown mechanisms. We hypothesized that treatment with liraglutide improves CMD and symptoms through weight loss, in non-diabetic overweight patients with angina and no obstructive coronary artery disease (CAD). METHODS We included 33 non-diabetic overweight women (BMI > 25) with CMD (Coronary flow velocity reserve (CFVR) ≤2.5), angina symptoms and no obstructive CAD, in an open-label proof-of-concept study. The protocol included a control period of 5 weeks followed by an intervention period with liraglutide aiming at 3 mg daily for 12 weeks. Participants were investigated before and after the control period and again 1-2 weeks after last liraglutide dose. Primary outcomes were change in CFVR and change in angina symptoms measured by the Seattle Angina Questionnaire (SAQ) in the intervention period compared with the control period. (clinicaltrials.gov, NCT02602600, and ethically approved). RESULTS Twenty-nine participants completed the study. Liraglutide treatment led to a significant weight loss (mean 6.03 kg (95%CI: 5.22;6.84)) and decrease in systolic blood pressure (mean 10.95 mm Hg (95%CI: 4.60;17.30)). Baseline median CFVR was 2.30 (IQR 1.91;2.51) and remained unchanged after liraglutide treatment (mean change 0.07 (95%CI: -0.07;0.21)). There were no effects on symptoms measured by SAQ or parameters of left ventricular systolic as well as diastolic function. CONCLUSIONS Treatment with liraglutide led to significant weight loss and lowering of blood pressure with no concomitant symptoms alleviation during treatment and no improvement in coronary microvascular function.
Collapse
|
27
|
Zhang J, Chen Q, Zhong J, Liu C, Zheng B, Gong Q. DPP-4 Inhibitors as Potential Candidates for Antihypertensive Therapy: Improving Vascular Inflammation and Assisting the Action of Traditional Antihypertensive Drugs. Front Immunol 2019; 10:1050. [PMID: 31134095 PMCID: PMC6526751 DOI: 10.3389/fimmu.2019.01050] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Dipeptidyl peptidase-4 (DPP-4) is an important protease that is widely expressed on the surface of human cells and plays a key role in immune-regulation, inflammation, oxidative stress, cell adhesion, and apoptosis by targeting different substrates. DPP-4 inhibitors (DPP-4i) are commonly used as hypoglycemic agents. However, in addition to their hypoglycemic effect, DPP-4i have also shown potent activities in the cardiovascular system, particularly in the regulation of blood pressure (BP). Previous studies have shown that the regulatory actions of DPP-4i in controlling BP are complex and that the mechanisms involved include the functional activities of the nerves, kidneys, hormones, blood vessels, and insulin. Recent work has also shown that inflammation is closely associated with the elevation of BP, and that the inhibition of DPP-4 can reduce BP by regulating the function of the immune system, by reducing inflammatory reactions and by improving oxidative stress. In this review, we describe the potential anti-hypertensive effects of DPP-4i and discuss potential new anti-hypertensive therapies. Our analysis indicated that DPP-4i treatment has a mild anti-hypertensive effect as a monotherapy and causes a significant reduction in BP when used in combined treatments. However, the combination of DPP-4i with high-dose angiotensin converting enzyme inhibitors (ACEI) can lead to increased BP. We suggest that DPP-4i improves vascular endothelial function in hypertensive patients by suppressing inflammatory responses and by alleviating oxidative stress. In addition, DPP-4i can also regulate BP by activating the sympathetic nervous system, interfering with the renin angiotensin aldosterone system (RAAS), regulating Na/H2O metabolism, and attenuating insulin resistance (IR).
Collapse
Affiliation(s)
- Jianqiang Zhang
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Qiuyue Chen
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China
| | - Jixin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - Chaohong Liu
- Department of Microbiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Bing Zheng
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| | - Quan Gong
- Department of Immunology, School of Medicine, Yangtze University, Jingzhou, China.,Clinical Molecular Immunology Center, School of Medicine, Yangtze University, Jingzhou, China
| |
Collapse
|
28
|
Yue W, Li Y, Ou D, Yang Q. The GLP-1 receptor agonist liraglutide protects against oxidized LDL-induced endothelial inflammation and dysfunction via KLF2. IUBMB Life 2019; 71:1347-1354. [PMID: 30969479 DOI: 10.1002/iub.2046] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 02/05/2023]
Abstract
Cardiovascular complications are the major causes of the mortality and morbidities in diabetic patients. The diabetic patients have an increased risk of developing atherosclerosis, which could lead to heart attack and stroke. Glucagon-like peptide 1 (GLP-1) receptor agonists are a class of potent anti-glycemic agents to treat diabetes. Recently, several GLP-1 receptor agonists have been found to have cardiovascular benefit independent of their glucose lowing ability. Liraglutide is one of clinically approved effective GLP-1 receptor agonists. In this study, we explored the molecular mechanism of Liraglutide against oxidized low-density lipoprotein (ox-LDL) in cultured endothelial cells. Our data show that Liraglutide treatment ameliorates ox-LDL caused reduction of the transcriptional factor KLF2. In the same experiment, Liraglutide also rescues ox-LDL induced reduction of mitogen-activated protein kinase (MAPK) kinase extracellular signal regulated kinase 5 (ERK5) phosphorylation, and blockage of ERK5 activity by its inhibitor XMD8-92 abolishes the protection of Liraglutide on KLF2 expression. These facts suggest that the action of Liraglutide on endothelial KLF2 is dependent on ERK5. Liraglutide also recovers ox-LDL caused reduction of endothelial tight junctions protein Occludin and ameliorates ox-LDL induced endothelial monolayer permeability increase. On the other hand, Liraglutide inhibits ox-LDL induced expression of vascular adhesion molecules (E-selectin and vascular cell adhesion molecule 1), and prevents ox-LDL induced attachment of monocytes adhesion to endothelial cells. Moreover, Liraglutide mitigates ox-LDL triggered reduction of endothelial nitric oxide synthase (eNOS) expression and NO release. Collectively, our study provides multiple facets of the mechanisms that Liraglutide is a protective agent in endothelial cells and has the potential implication in therapeutic usage of vascular complication in diabetes patients. © 2019 IUBMB Life, 71(9):1347-1354, 2019.
Collapse
Affiliation(s)
- Wen Yue
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Yi Li
- Department of Cardiology, Jiajiang Rehabilitation Hospital, Leshan, Sichuan, People's Republic of China
| | - Dengke Ou
- Department of Cardiology, Chengdu Fifth People's Hospital, Chengdu, Sichuan, People's Republic of China
| | - Qing Yang
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
29
|
Bistola V, Lambadiari V, Dimitriadis G, Ioannidis I, Makrilakis K, Tentolouris N, Tsapas A, Parissis J. Possible mechanisms of direct cardiovascular impact of GLP-1 agonists and DPP4 inhibitors. Heart Fail Rev 2019; 23:377-388. [PMID: 29383638 DOI: 10.1007/s10741-018-9674-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetes mellitus is a leading cause of cardiovascular morbidity and mortality worldwide. Traditional antidiabetic therapies targeting hyperglycemia reduce diabetic microvascular complications but have minor effects on macrovascular complications, including cardiovascular disease. Instead, cardiovascular complications are improved by antidiabetic medications (metformin) and other therapies (statins, antihypertensive medications) ameliorating insulin resistance and other associated metabolic abnormalities. Novel classes of antidiabetic drugs have proven efficacious in improving glycemia, while at the same time exert beneficial effects on pathophysiologic mechanisms of diabetes-related cardiovascular disease. In the present review, we will present current evidence of the cardiovascular effects of two new classes of antidiabetic medications, glucagon-like peptide 1 (GLP-1) agonists and dipeptidyl peptidase-4 (DPP4) inhibitors, focusing from mechanistic preclinical and clinical investigation to late-phase clinical testing.
Collapse
Affiliation(s)
- Vasiliki Bistola
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Rimini 1 Chaidari, 12461, Athens, Greece.
| | - Vaia Lambadiari
- 2nd Department of Internal medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - George Dimitriadis
- 2nd Department of Internal medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Ioannis Ioannidis
- Diabetes and Obesity Center, Konstantopouleio Hospital, Athens, Greece
| | - Konstantinos Makrilakis
- First Department of Propaedeutic Internal Medicine, Diabetes Center, National and Kapodistrian University of Athens Medical School, Laiko General Hospital, Athens, Greece
| | - Nikolaos Tentolouris
- First Department of Propaedeutic Internal Medicine, Diabetes Center, National and Kapodistrian University of Athens Medical School, Laiko General Hospital, Athens, Greece
| | - Apostolos Tsapas
- Clinical Research and Evidence-Based Medicine Unit, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - John Parissis
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Rimini 1 Chaidari, 12461, Athens, Greece
| |
Collapse
|
30
|
Nilsson M, Bové KB, Suhrs E, Hermann T, Madsbad S, Holst JJ, Prescott E, Zander M. The effect of DPP-4-protected GLP-1 (7-36) on coronary microvascular function in obese adults. IJC HEART & VASCULATURE 2019; 22:139-144. [PMID: 30740510 PMCID: PMC6356020 DOI: 10.1016/j.ijcha.2019.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 12/25/2022]
Abstract
Objective Glucagon-like-peptide-1 (GLP-1) receptor analogues have been shown to reduce cardiovascular events in patients with type 2 diabetes. However, the mechanism behind is still unknown. The aim of the study was to investigate the effect of intact GLP-1 (7-36) on coronary microcirculation in overweight adults. Design and methods A double-blinded randomized cross-over study was performed, with 12 overweight participants. Effects of intact GLP-1 (7-36) infusion were compared with a saline infusion on separate days. A DPP-4 inhibitor was administered to block degradation of intact GLP-1 (7-36) to the GLP-1 metabolite (9-36). Coronary microcirculation was assessed by Doppler coronary flow velocity reserve (CFVR) before and after 2 h of infusion. Peripheral endothelial function was assessed by flow mediated dilation (FMD) before and after one hour of infusion. Results CFVR was 3.77 ± 1.25 during GLP-1 infusion and 3.85 ± 1.32 during saline infusion, endothelial function was 16.3 ± 15.5 % during GLP-1 infusion and 7.85 ± 7.76 % during saline infusion. When adjusting for baseline values no significant differences in CFVR (ΔCFVR 0.38 ± 0.92 vs. ΔCFVR 0.71 ± 1.03, p = 0.43) and no difference in peripheral endothelial function (ΔFMD 7.34 ± 11.5 % vs. ΔFMD -1.25 ± 9.23%, p = 0.14) was found. Conclusions We found no effect of intact GLP-1 (7-36), protected from DPP4 mediated degradation on coronary microcirculation in overweight adults.
Collapse
Key Words
- CFVR, coronary flow velocity reserve
- CMD, coronary microvascular dysfunction
- Coronary flow velocity reserve
- Coronary microcirculation
- DPP-4, dipeptidyl peptidase-4
- Endothelial function
- FMD, flow mediated dilation
- GLP-1, flow mediated dilation
- GLP-1, glucagon-like peptide-1
- Glucagon-like peptide-1 (7–36)
- LAD, left anterior descending artery
- MACE, major adverse cardiac event
- NMD, nitroglycerine-mediated dilation
- QC, quality control
- RPP, rate pressure product
- TTDE, trans-thoracic Doppler echocardiography
Collapse
Affiliation(s)
- Malin Nilsson
- Department of Endocrinology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Kira Bang Bové
- Department of Cardiology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Elena Suhrs
- Department of Cardiology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Thomas Hermann
- Department of Cardiology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre University Hospital, Copenhagen, Denmark
| | - Jens Juul Holst
- NNF Center for Basic Metabolic Research, Department of Biomedical Sciences, University of Copenhagen, Denmark
| | - Eva Prescott
- Department of Cardiology, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Mette Zander
- Department of Endocrinology, Bispebjerg University Hospital, Copenhagen, Denmark
| |
Collapse
|
31
|
Zhao X, Huang K, Zheng M, Duan J. Effect of liraglutide on blood pressure: a meta-analysis of liraglutide randomized controlled trials. BMC Endocr Disord 2019; 19:4. [PMID: 30616638 PMCID: PMC6323665 DOI: 10.1186/s12902-018-0332-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/27/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Several clinical trials have studied the effects of glucagon-like peptide-1 receptor agonists (GLP-1RAs) on glycometabolism and cardiovascular risk factors since they were identified. Because of their cardiovascular benefits and efficacy in lowering glucose, GLP-1RAs are becoming increasingly important in clinical therapy for patients with or without pathoglycaemia. The aim of this study was to assess the effect of the GLP-1RA liraglutide on blood pressure based on randomised controlled trials (RCTs). METHODS We searched PubMed for RCTs published from 2009 to 2018 comparing the effect of liraglutide on blood pressure with that of placebo in individuals with or without pathoglycaemia. RCTs in humans that included data describing blood pressure changes from baseline to the end of the trial were selected for inclusion in the meta-analysis. RESULTS A total of 18 RCTs that enrolled 7616 individuals in the liraglutide group and 6046 individuals in the control group were included in this meta-analysis. Compared with placebo, liraglutide reduced systolic blood pressure (SBP) by 3.18 mmHg (95% CI -4.32, - 2.05), P < 0.00001, but had no significant effect on diastolic blood pressure (DBP). Subgroup analysis showed that the degree of reduction in SBP was associated with the dose of liraglutide but that significance disappeared when the intervention lasted over 1 year. Liraglutide 3.0 mg/d significantly reduced DBP by 1.46 mmHg (95% CI -2.61, 0.32), P = 0.01, but liraglutide 1.8 mg/d slightly increased DBP by 0.47 mmHg (95% CI 0.11, 0.83), P = 0.01, compared with placebo. CONCLUSIONS This meta-analysis demonstrated that liraglutide significantly reduced SBP in individuals with or without pathoglycaemia compared with placebo, but the difference was no longer significant when the intervention lasted over 1 year. Moreover, the effect of liraglutide on blood pressure is associated with the dose. This finding may provide additional evidence for cardiovascular protection.
Collapse
Affiliation(s)
- Xu Zhao
- Civil Aviation General Hospital, Peking University, Beijing, China
| | - Kun Huang
- Civil Aviation General Hospital, Peking University, Beijing, China
| | - Meijie Zheng
- Civil Aviation General Hospital, Peking University, Beijing, China
| | - Junting Duan
- Civil Aviation General Hospital, Peking University, Beijing, China
- Endocrinology Department, Civil Aviation General Hospital, Chaoyang Road, Beijing, China
| |
Collapse
|
32
|
Dandona P, Ghanim H, Chaudhuri A. Liraglutide and systolic blood pressure. J Clin Hypertens (Greenwich) 2018; 21:116-117. [PMID: 30515941 DOI: 10.1111/jch.13443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Paresh Dandona
- Diabetes-Endocrinology Center of Western NY, Williamsville, NY.,State University of New York at Buffalo, Williamsville, NY
| | - Husam Ghanim
- Diabetes-Endocrinology Center of Western NY, Williamsville, NY.,State University of New York at Buffalo, Williamsville, NY
| | - Ajay Chaudhuri
- Diabetes-Endocrinology Center of Western NY, Williamsville, NY.,State University of New York at Buffalo, Williamsville, NY
| |
Collapse
|
33
|
Hamasaki H, Hamasaki Y. Efficacy of anagliptin as compared to linagliptin on metabolic parameters over 2 years of drug consumption: A retrospective cohort study. World J Diabetes 2018; 9:165-171. [PMID: 30364744 PMCID: PMC6198284 DOI: 10.4239/wjd.v9.i10.165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/12/2018] [Accepted: 08/26/2018] [Indexed: 02/05/2023] Open
Abstract
AIM To evaluate the comparative effectiveness of anagliptin and linagliptin on the clinical parameters in patients with type 2 diabetes mellitus (T2DM).
METHODS
A 2-year retrospective cohort study was conducted in patients with T2DM who received anagliptin and linagliptin. We enrolled 234 patients (anagliptin group, 117 patients; linagliptin group, 117 patients).
RESULTS The glycemic control considerably improved 3, 6, 12, and 24 mo after the administration of both dipeptidyl peptidase-4 (DPP-4) inhibitors. Following the administration of anagliptin, the diastolic blood pressure and serum total cholesterol levels decreased. However, serum high-density lipoprotein cholesterol levels increased and urinary albumin-creatinine ratio decreased following linagliptin administration. Furthermore, the liver function improved after the administration of linagliptin.
CONCLUSION These findings suggest that that the efficacy of DPP-4 inhibitors on the blood pressure, lipid profile, and liver function differs between anagliptin and linagliptin.
Collapse
Affiliation(s)
- Hidetaka Hamasaki
- Endocrinology and Metabolism, Internal Medicine, Hamasaki Clinic, Kagoshima 890-0046, Japan
| | | |
Collapse
|
34
|
After the LEADER trial and SUSTAIN-6, how do we explain the cardiovascular benefits of some GLP-1 receptor agonists? DIABETES & METABOLISM 2018; 43 Suppl 1:2S3-2S12. [PMID: 28431669 DOI: 10.1016/s1262-3636(17)30067-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent cardiovascular outcome trials - the LEADER with liragutide and SUSTAIN-6 with semaglutide - have shown significant reductions of major cardiovascular (CV) events with these glucagon-like peptide (GLP)-1 receptor agonists. Progressive separation of the treatment and placebo curves, starting clearly between 12 and 18 months of the trial period, and significant reductions in the risk of myocardial infarction and stroke, indicate that the beneficial CV effects observed with GLP-1 receptor agonists could be due to an antiatherogenic effect. So far, the reasons for such an effect of GLP-1 receptor agonists have not been entirely clear, although several hypotheses may be proposed. As the reductions in glycated haemoglobin and systolic blood pressure (SBP) in these trials were modest, and both trials lasted only a short period of time, reductions in hyperglycaemia and SBP are unlikely to be involved in the beneficial CV effects of GLP-1 receptor agonists. On the other hand, their effect on lipids and, in particular, the dramatic decrease in postprandial hypertriglyceridaemia may explain their beneficial CV actions. Reduction of body weight, including a significant decrease in visceral fat in patients using GLP-1 receptor agonists, may also have beneficial CV effects by reducing chronic proatherogenic inflammation. In addition, there are in-vitro data showing a direct anti-inflammatory effect with these agents that could also be involved in their beneficial CV effects. Moreover, studies in humans have shown significant beneficial effects on ischaemic myocardium after a very short treatment period, suggesting a direct effect of GLP-1 receptor agonists on myocardium, although the precise mechanism remains unclear. Finally, as a reduction in insulin resistance has been associated with a decrease in CV risk, it cannot be ruled out that the lowering of insulin resistance induced by GLP-1 receptor agonists might also be involved in their beneficial CV actions.
Collapse
|
35
|
Asmar A, Asmar M, Simonsen L, Madsbad S, Holst JJ, Hartmann B, Sorensen CM, Bülow J. Glucagon-like peptide-1 elicits vasodilation in adipose tissue and skeletal muscle in healthy men. Physiol Rep 2018; 5:5/3/e13073. [PMID: 28174344 PMCID: PMC5309569 DOI: 10.14814/phy2.13073] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/03/2016] [Accepted: 11/13/2016] [Indexed: 12/24/2022] Open
Abstract
In healthy subjects, we recently demonstrated that during acute administration of GLP-1, cardiac output increased significantly, whereas renal blood flow remained constant. We therefore hypothesize that GLP-1 induces vasodilation in other organs, for example, adipose tissue, skeletal muscle, and/or splanchnic tissues. Nine healthy men were examined twice in random order during a 2-hour infusion of either GLP-1 (1.5 pmol kg-1 min-1) or saline. Cardiac output was continuously estimated noninvasively concomitantly with measurement of intra-arterial blood pressure. Subcutaneous, abdominal adipose tissue blood flow (ATBF) was measured by the 133Xenon clearance technique. Leg and splanchnic blood flow were measured by Fick's Principle, using indocyanine green as indicator. In the GLP-1 study, cardiac output increased significantly together with a significant increase in arterial pulse pressure and heart rate compared with the saline study. Subcutaneous, abdominal ATBF and leg blood flow increased significantly during the GLP-1 infusion compared with saline, whereas splanchnic blood flow response did not differ between the studies. We conclude that in healthy subjects, GLP-1 increases cardiac output acutely due to a GLP-1-induced vasodilation in adipose tissue and skeletal muscle together with an increase in cardiac work.
Collapse
Affiliation(s)
- Ali Asmar
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Meena Asmar
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Lene Simonsen
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre University Hospital, Copenhagen, Denmark
| | - Jens J Holst
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- NNF Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte M Sorensen
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bülow
- Department of Clinical Physiology and Nuclear Medicine, Bispebjerg University Hospital, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
The crosstalk of gut microbiota and chronic kidney disease: role of inflammation, proteinuria, hypertension, and diabetes mellitus. Int Urol Nephrol 2018; 50:1453-1466. [PMID: 29728993 DOI: 10.1007/s11255-018-1873-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/13/2018] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD) has been shown to result in profound changes in the composition and functions of the gut microbial flora which by disrupting intestinal epithelial barrier and generating toxic by-products contributes to systemic inflammation and the associated complications. On the other hand, emerging evidence points to the role of the gut microbiota in the development and progression of CKD by provoking inflammation, proteinuria, hypertension, and diabetes. These observations demonstrate the causal interconnection between the gut microbial dysbiosis and CKD. The gut microbiota closely interacts with the inflammatory, renal, cardiovascular, and endocrine systems via metabolic, humoral, and neural signaling pathways, events which can lead to chronic systemic inflammation, proteinuria, hypertension, diabetes, and kidney disease. Given the established role of the gut microbiota in the development and progression of CKD and its complications, favorable modification of the composition and function of the gut microbiome represents an appealing therapeutic target for prevention and treatment of CKD. This review provides an overview of the role of the gut microbial dysbiosis in the pathogenesis of the common causes of CKD including hypertension, diabetes, and proteinuria as well as progression of CKD.
Collapse
|
37
|
Abstract
Diabetes is a major risk factor for the development of heart failure. One of the hallmarks of diabetes is insulin resistance associated with hyperinsulinemia. The literature shows that insulin and adrenergic signaling is intimately linked to each other; however, whether and how insulin may modulate cardiac adrenergic signaling and cardiac function remains unknown. Notably, recent studies have revealed that insulin receptor and β2 adrenergic receptor (β2AR) forms a membrane complex in animal hearts, bringing together the direct contact between 2 receptor signaling systems, and forming an integrated and dynamic network. Moreover, insulin can drive cardiac adrenergic desensitization via protein kinase A and G protein-receptor kinases phosphorylation of the β2AR, which compromises adrenergic regulation of cardiac contractile function. In this review, we will explore the current state of knowledge linking insulin and G protein-coupled receptor signaling, especially β-adrenergic receptor signaling in the heart, with emphasis on molecular insights regarding its role in diabetic cardiomyopathy.
Collapse
|
38
|
Abstract
The frequency of prediabetes is increasing as the prevalence of obesity rises worldwide. In prediabetes, hyperglycemia, insulin resistance, and inflammation and metabolic derangements associated with concomitant obesity cause endothelial vasodilator and fibrinolytic dysfunction, leading to increased risk of cardiovascular and renal disease. Importantly, the microvasculature affects insulin sensitivity by affecting the delivery of insulin and glucose to skeletal muscle; thus, endothelial dysfunction and extracellular matrix remodeling promote the progression from prediabetes to diabetes mellitus. Weight loss is the mainstay of treatment in prediabetes, but therapies that improved endothelial function and vasodilation may not only prevent cardiovascular disease but also slow progression to diabetes mellitus.
Collapse
Affiliation(s)
- David H Wasserman
- From the Departments of Molecular Physiology and Biophysics (D.H.W.) and Medicine (T.J.W., N.J.B.), Vanderbilt University Medical Center, Nashville, TN
| | - Thomas J Wang
- From the Departments of Molecular Physiology and Biophysics (D.H.W.) and Medicine (T.J.W., N.J.B.), Vanderbilt University Medical Center, Nashville, TN
| | - Nancy J Brown
- From the Departments of Molecular Physiology and Biophysics (D.H.W.) and Medicine (T.J.W., N.J.B.), Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
39
|
Tan AW, Subaran SC, Sauder MA, Chai W, Jahn LA, Fowler DE, Patrie JT, Aylor KW, Basu A, Liu Z. GLP-1 and Insulin Recruit Muscle Microvasculature and Dilate Conduit Artery Individually But Not Additively in Healthy Humans. J Endocr Soc 2018; 2:190-206. [PMID: 29568814 PMCID: PMC5841186 DOI: 10.1210/js.2017-00446] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/17/2018] [Indexed: 01/04/2023] Open
Abstract
CONTEXT Glucagon-like peptide-1 (GLP-1) and insulin increase muscle microvascular perfusion, thereby increasing tissue endothelial surface area and nutrient delivery. OBJECTIVE To examine whether GLP-1 and insulin act additively on skeletal and cardiac microvasculature and conduit artery. DESIGN Healthy adults underwent three study protocols in random order. SETTING Clinical Research Unit at the University of Virginia. METHODS Overnight-fasted participants received an intravenous infusion of GLP-1 (1.2 pmol/kg/min) or normal saline for 150 minutes with or without a 2-hour euglycemic insulin clamp (1 mU/kg/min) superimposed from 30 minutes onward. Skeletal and cardiac muscle microvascular blood volume (MBV), flow velocity, and flow; brachial artery diameter, flow velocity, and blood flow; and pulse wave velocity (PWV) were measured. RESULTS GLP-1 significantly increased skeletal and cardiac muscle MBV and microvascular blood flow (MBF) after 30 minutes; these remained elevated at 150 minutes. Insulin also increased skeletal and cardiac muscle MBV and MBF. Addition of insulin to GLP-1 did not further increase skeletal and cardiac muscle MBV and MBF. GLP-1 and insulin increased brachial artery diameter and blood flow, but this effect was not additive. Neither GLP-1, insulin, nor GLP-1 and insulin altered PWV. Combined GLP-1 and insulin infusion did not result in higher whole-body glucose disposal. CONCLUSION GLP-1 and insulin at physiological concentrations acutely increase skeletal and cardiac muscle microvascular perfusion and dilate conduit artery in healthy adults; these effects are not additive. Thus, GLP-1 and insulin may regulate skeletal and cardiac muscle endothelial surface area and nutrient delivery under physiological conditions.
Collapse
Affiliation(s)
- Alvin W.K. Tan
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore 308433
| | - Sharmila C. Subaran
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Matthew A. Sauder
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Weidong Chai
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Linda A. Jahn
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Dale E. Fowler
- Division of Cardiovascular Medicine, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| | - James T. Patrie
- Department of Public Health Sciences, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Kevin W. Aylor
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Ananda Basu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia 22908
| |
Collapse
|
40
|
Nauck MA, Meier JJ, Cavender MA, Abd El Aziz M, Drucker DJ. Cardiovascular Actions and Clinical Outcomes With Glucagon-Like Peptide-1 Receptor Agonists and Dipeptidyl Peptidase-4 Inhibitors. Circulation 2017; 136:849-870. [PMID: 28847797 DOI: 10.1161/circulationaha.117.028136] [Citation(s) in RCA: 391] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Potentiation of glucagon-like peptide-1 (GLP-1) action through selective GLP-1 receptor (GLP-1R) agonism or by prevention of enzymatic degradation by inhibition of dipeptidyl peptidase-4 (DPP-4) promotes glycemic reduction for the treatment of type 2 diabetes mellitus by glucose-dependent control of insulin and glucagon secretion. GLP-1R agonists also decelerate gastric emptying, reduce body weight by reduction of food intake and lower circulating lipoproteins, inflammation, and systolic blood pressure. Preclinical studies demonstrate that both GLP-1R agonists and DPP-4 inhibitors exhibit cardioprotective actions in animal models of myocardial ischemia and ventricular dysfunction through incompletely characterized mechanisms. The results of cardiovascular outcome trials in human subjects with type 2 diabetes mellitus and increased cardiovascular risk have demonstrated a cardiovascular benefit (significant reduction in time to first major adverse cardiovascular event) with the GLP-1R agonists liraglutide (LEADER trial [Liraglutide Effect and Action in Diabetes: Evaluation of Cardiovascular Ourcome Results], -13%) and semaglutide (SUSTAIN-6 trial [Trial to Evaluate Cardiovascular and Other Long-term Outcomes with Semaglutide], -24%). In contrast, cardiovascular outcome trials examining the safety of the shorter-acting GLP-1R agonist lixisenatide (ELIXA trial [Evaluation of Lixisenatide in Acute Coronary Syndrom]) and the DPP-4 inhibitors saxagliptin (SAVOR-TIMI 53 trial [Saxagliptin Assessment of Vascular Outcomes Recorded in Patients With Diabetes Mellitus-Thrombolysis in Myocardial Infarction 53]), alogliptin (EXAMINE trial [Examination of Cardiovascular Outcomes With Alogliptin Versus Standard of Care in Patients With Type 2 Diabetes Mellitus and Acute Coronary Syndrome]), and sitagliptin (TECOS [Trial Evaluating Cardiovascular Outcomes With Sitagliptin]) found that these agents neither increased nor decreased cardiovascular events. Here we review the cardiovascular actions of GLP-1R agonists and DPP-4 inhibitors, with a focus on the translation of mechanisms derived from preclinical studies to complementary findings in clinical studies. We highlight areas of uncertainty requiring more careful scrutiny in ongoing basic science and clinical studies. As newer more potent GLP-1R agonists and coagonists are being developed for the treatment of type 2 diabetes mellitus, obesity, and nonalcoholic steatohepatitis, the delineation of the potential mechanisms that underlie the cardiovascular benefit and safety of these agents have immediate relevance for the prevention and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Michael A Nauck
- From Diabetes Center Bochum-Hattingen, St Josef-Hospital, Ruhr-University Bochum, Germany (M.A.N., J.J.M., M.A.E.A.); Department of Medicine, University of North Carolina, Chapel Hill (M.A.C.); and Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Ontario, Canada (D.J.D.).
| | - Juris J Meier
- From Diabetes Center Bochum-Hattingen, St Josef-Hospital, Ruhr-University Bochum, Germany (M.A.N., J.J.M., M.A.E.A.); Department of Medicine, University of North Carolina, Chapel Hill (M.A.C.); and Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Ontario, Canada (D.J.D.)
| | - Matthew A Cavender
- From Diabetes Center Bochum-Hattingen, St Josef-Hospital, Ruhr-University Bochum, Germany (M.A.N., J.J.M., M.A.E.A.); Department of Medicine, University of North Carolina, Chapel Hill (M.A.C.); and Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Ontario, Canada (D.J.D.)
| | - Mirna Abd El Aziz
- From Diabetes Center Bochum-Hattingen, St Josef-Hospital, Ruhr-University Bochum, Germany (M.A.N., J.J.M., M.A.E.A.); Department of Medicine, University of North Carolina, Chapel Hill (M.A.C.); and Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Ontario, Canada (D.J.D.)
| | - Daniel J Drucker
- From Diabetes Center Bochum-Hattingen, St Josef-Hospital, Ruhr-University Bochum, Germany (M.A.N., J.J.M., M.A.E.A.); Department of Medicine, University of North Carolina, Chapel Hill (M.A.C.); and Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt Sinai Hospital, University of Toronto, Ontario, Canada (D.J.D.)
| |
Collapse
|
41
|
Arturi F, Succurro E, Miceli S, Cloro C, Ruffo M, Maio R, Perticone M, Sesti G, Perticone F. Liraglutide improves cardiac function in patients with type 2 diabetes and chronic heart failure. Endocrine 2017; 57:464-473. [PMID: 27830456 DOI: 10.1007/s12020-016-1166-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 11/01/2016] [Indexed: 01/21/2023]
Abstract
PURPOSE To compare the effect of liraglutide, sitagliptin and insulin glargine added to standard therapy on left ventricular function in post-ischemic type-2 diabetes mellitus patients. METHODS We evaluated 32 type-2 diabetes mellitus Caucasians with history of post-ischemic chronic heart failure NYHA class II/III and/or left ventricular ejection fraction ≤45 %. Participants underwent laboratory determinations, electrocardiogram, echocardiogram, Minnesota Living with Heart Failure questionnaire and 6 min walking test at baseline and following 52 weeks treatment. Patients were treated with standard therapy for chronic heart failure and were randomized to receive liraglutide, sitagliptin and glargine in addition to metformin and/or sulfonylurea. RESULTS Liraglutide treatment induced an improvement in left ventricular ejection fraction from 41.5 ± 2.2 to 46.3 ± 3 %; P = 0.001). On the contrary, treatment with sitagliptin and glargine induced no changes in left ventricular ejection fraction (41.8 ± 2.6 vs. 42.5 ± 2.5 % and 42 ± 1.5 vs. 42 ± 1.6 %, respectively; P = NS). Indexed end-systolic LV volume was reduced only in liraglutide-treated patients (51 ± 9 vs. 43 ± 8 ml/m2; P < 0.05). Liraglutide treatment induced also a significant increase in the anterograde stroke volume (39 ± 9 vs. 49 ± 11 ml; P < 0.05), whereas no differences were observed in the other two groups. Cardiac output and cardiac index showed a significant increase only in liraglutide-treated patients (4.4 ± 0.5 vs. 5.0 ± 0.6 L/min; P < 0.05 and 1.23 ± 0.26 vs. 1.62 ± 0.29 L/m2; P = 0.005, respectively). Liraglutide treatment was also associated with an improvement of functional capacity and an improvement of quality of life. CONCLUSIONS These data provide evidence that treatment with liraglutide is associated with improvement of cardiac function and functional capacity in failing post-ischemic type-2 diabetes mellitus patients.
Collapse
Affiliation(s)
- F Arturi
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Policlinico "Mater Domini", Campus Universitario, Viale Europa, 88100,, Catanzaro, Italy
| | - E Succurro
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Policlinico "Mater Domini", Campus Universitario, Viale Europa, 88100,, Catanzaro, Italy
| | - S Miceli
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Policlinico "Mater Domini", Campus Universitario, Viale Europa, 88100,, Catanzaro, Italy
| | - C Cloro
- Unit of Cardiology "S.S. Annunziata" Hospital of Cosenza, Cosenza, Italy
| | - M Ruffo
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Policlinico "Mater Domini", Campus Universitario, Viale Europa, 88100,, Catanzaro, Italy
| | - R Maio
- Azienda Ospedaliera Mater Domini, Catanzaro, Italy
| | - M Perticone
- Department of Clinical and Experimental Medicine, University "Magna Graecia" of Catanzaro, Catanzaro, Italy
| | - G Sesti
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Policlinico "Mater Domini", Campus Universitario, Viale Europa, 88100,, Catanzaro, Italy
| | - F Perticone
- Department of Medical and Surgical Sciences, University "Magna Graecia" of Catanzaro, Policlinico "Mater Domini", Campus Universitario, Viale Europa, 88100,, Catanzaro, Italy.
| |
Collapse
|
42
|
Krisai P, Aeschbacher S, Ruperti Repilado FJ, Schoen T, Reusser A, Meier M, Todd J, Estis J, Risch M, Risch L, Conen D. Healthy lifestyle and glucagon-like peptide-1 in young and healthy adults: A population-based study. Prev Med 2017; 101:72-76. [PMID: 28579495 DOI: 10.1016/j.ypmed.2017.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/25/2017] [Accepted: 05/27/2017] [Indexed: 10/19/2022]
Abstract
A healthy lifestyle is associated with a lower risk of cardiovascular events and mortality, but underlying mechanisms are not fully understood. The aim of our study was to investigate the relationships between a healthy lifestyle and glucagon-like peptide-1 (GLP-1), an incretin hormone with both glycemic and cardiovascular properties. Healthy participants aged 25-41years without cardiovascular disease, diabetes or a body mass index (BMI) >35kg/m2 were enrolled in a population-based study. The following metrics were used to build a lifestyle score ranging from 0 to 7 (a higher score indicating a healthier lifestyle): blood pressure (BP) (<120/80mmHg), plasma levels of glycated hemoglobin (<5.7%), total cholesterol levels (<200mg/dl), BMI (<25kg/m2), not smoking cigarettes, moderate (≥150min/week) or vigorous (≥75min/week) physical activity and a healthy diet. Among 2133 participants median age was 36.7years and 53.3% were female. GLP-1 levels decreased significantly from 39.5 to 30.9ng/l (p<0.0001) across increasing lifestyle score categories. This linear relationship persisted in multivariable adjusted linear regression models (B for GLP-1 per 1-unit increase of the lifestyle score -0.06; 95% confidence intervals -0.07, -0.04; p<0.0001). Individual health metrics that were significantly associated with GLP-1 were a normal BMI (-0.07; -0.12, -0.03; p=0.001), low total cholesterol levels (-0.07; -0.12, -0.03; p=0.001), normal BP (-0.05; -0.10, -0.00; p=0.047) and not smoking (-0.06; -0.10, -0.01; p=0.01). A healthy lifestyle is strongly associated with lower GLP-1 levels in young and healthy adults.
Collapse
Affiliation(s)
- Philipp Krisai
- Department of Internal Medicine, University Hospital Basel, Basel, Switzerland; Cardiovascular Research Institute Basel, University Hospital Basel, Basel, Switzerland
| | - Stefanie Aeschbacher
- Cardiovascular Research Institute Basel, University Hospital Basel, Basel, Switzerland
| | - Francisco Javier Ruperti Repilado
- Department of Internal Medicine, University Hospital Basel, Basel, Switzerland; Cardiovascular Research Institute Basel, University Hospital Basel, Basel, Switzerland
| | - Tobias Schoen
- Cardiovascular Research Institute Basel, University Hospital Basel, Basel, Switzerland; Cardiology Division, University Hospital Basel, Basel, Switzerland
| | - Andreas Reusser
- Cardiovascular Research Institute Basel, University Hospital Basel, Basel, Switzerland
| | - Manuel Meier
- Cardiovascular Research Institute Basel, University Hospital Basel, Basel, Switzerland
| | - John Todd
- Singulex, Inc., Alameda, CA 94502, USA
| | | | - Martin Risch
- Labormedizinisches Zentrum Dr. Risch, Schaan, Liechtenstein; Division of Laboratory Medicine, Kantonspital Graubünden, Chur, Switzerland
| | - Lorenz Risch
- Labormedizinisches Zentrum Dr. Risch, Schaan, Liechtenstein; Division of Clinical Biochemistry, Medical University Innsbruck, Innsbruck, Austria; UFL Private University, Triesen, Liechtenstein
| | - David Conen
- Cardiovascular Research Institute Basel, University Hospital Basel, Basel, Switzerland; Cardiology Division, University Hospital Basel, Basel, Switzerland; Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Canada.
| |
Collapse
|
43
|
Wang N, Zhang JP, Xing XY, Yang ZJ, Zhang B, Wang X, Yang WY. Associations between changes in glucagon-like peptide-1 and bodyweight reduction in patients receiving acarbose or metformin treatment. J Diabetes 2017; 9:728-737. [PMID: 27717194 DOI: 10.1111/1753-0407.12486] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/09/2016] [Accepted: 09/18/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The present post hoc analysis investigated whether changes in endogenous glucagon-like peptide-1 (∆GLP-1) levels are associated with weight loss in newly diagnosed diabetes patients. METHODS In all, 784 subjects from the Metformin and AcaRbose in Chinese as initial Hypoglycemic treatment (MARCH) study were stratified according to ∆GLP-1. Changes in clinical and physiological parameters were evaluated across ∆GLP-1 subgroups (low, medium, and high) to assess correlations between ∆GLP-1 and weight loss in acarbose- versus metformin-treated groups. RESULTS After 24 weeks treatment, greater ∆GLP-1 was associated with significantly greater weight loss (-2 vs -1 kg in the medium/high vs low ∆GLP-1 groups, respectively) and reduction in body mass index (BMI; -0.88, -0.83, and -0.69 kg/m2 in the high, medium, and low ∆GLP-1 groups, respectively). In the acarbose-treated group, there was a significant association between ∆GLP-1 and BMI reductions, and greater ∆GLP-1 across the high, medium, and low ∆GLP-1 groups was correlated with greater weight loss (-2.8, -2.1, and -1.9 kg, respectively) and reductions in fasting plasma glucose (-1.57, -1.28, and -1.02 mmol/L, respectively) at Week 24. No significant differences were found across ∆GLP-1 subgroups in metformin-treated patients (P > 0.05). Multivariate linear regression analysis revealed that gender, baseline BMI, and ∆GLP-1 at Week 24 were associated with weight loss. Baseline BMI and ∆GLP-1 in the acarbose-treated group and baseline BMI in the metformin-treated group predicted weight loss at Week 24. CONCLUSION Changes in GLP-1 levels are associated with weight loss in newly diagnosed Chinese diabetes patients receiving acarbose.
Collapse
Affiliation(s)
- Na Wang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jin-Ping Zhang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Xiao-Yan Xing
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Zhao-Jun Yang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Bo Zhang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Xin Wang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
| | - Wen-Ying Yang
- Department of Endocrinology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
44
|
Wang H, Zhou Y, Guo Z, Dong Y, Xu J, Huang H, Liu H, Wang W. Sitagliptin Attenuates Endothelial Dysfunction of Zucker Diabetic Fatty Rats: Implication of the Antiperoxynitrite and Autophagy. J Cardiovasc Pharmacol Ther 2017; 23:66-78. [PMID: 28618859 DOI: 10.1177/1074248417715001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although the contributions of sitagliptin to endothelial function in diabetes mellitus were previously reported, the potential mechanisms still remain undefined. Our research was intended to explore the underlying mechanisms of protective effects of sitagliptin treatment on endothelial dysfunction in Zucker diabetic fatty (ZDF) rats. Male lean nondiabetic Zucker rats were used as control and male obese ZDF rats were randomly divided into ZDF and ZDF + sitagliptin groups. The significant decrease in endothelium-dependent relaxation induced by acetylcholine was observed in mesenteric arteries and thoracic aorta rings of ZDF rats. The administration of sitagliptin restored the vascular function effectively. The morphology study showed severe endothelial injuries in thoracic aortas of ZDF rats, and sitagliptin treatment attenuated these changes. The increased malondialdehyde levels and decreased superoxide dismutase activities in serum of ZDF rats were reversed by sitagliptin treatment. Sitagliptin also increased the expression of endothelial nitric oxide synthase and microtubule-associated protein 1 light chain 3 (LC3) and decreased the expression of inducible nitric oxide synthase, 3-nitrotyrosine, and p62 in ZDF rats. After giving Fe (III) tetrakis (1-methyl-4-pyridyl) porphyrin pentachloride porphyrin pentachloride (FeTMPyP, a peroxynitrite [ONOO-] scavenger) or sitagliptin to high-glucose (30 mmol/L, 48 hours) cultured human umbilical vein endothelial cells (HUVECs), the increased levels of Beclin-1 and lysosome-associated membrane protein type 2 were detected. Both FeTMPyP and sitagliptin also significantly increased the number of mRFP-GFP-LC3 dots per cell, suggesting that autophagic flux was increased in HUVECs. Our study indicated that sitagliptin treatment can improve the endothelium-dependent relaxation and attenuate the endothelial impairment of ZDF rats. The protective effects of sitagliptin are possibly related to antiperoxynitrite and promoting autophagy.
Collapse
Affiliation(s)
- Huanyuan Wang
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2 Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing, China
| | - Yi Zhou
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2 Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing, China
| | - Zhiying Guo
- 2 Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing, China.,3 Department of Pathophysiology, School of Basic Medical Sciences, Jining Medical University, Jining, China
| | - Yu Dong
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2 Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing, China
| | - Jiahui Xu
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2 Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing, China
| | - Haixia Huang
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2 Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing, China
| | - Huirong Liu
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2 Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing, China
| | - Wen Wang
- 1 Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,2 Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Beijing, China
| |
Collapse
|
45
|
Chaudhuri A, Ghanim H, Makdissi A, Green K, Abuaysheh S, Batra M, D Kuhadiya N, Dandona P. Exenatide induces an increase in vasodilatory and a decrease in vasoconstrictive mediators. Diabetes Obes Metab 2017; 19:729-733. [PMID: 27891769 DOI: 10.1111/dom.12835] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 01/21/2023]
Abstract
In view of the known vasodilatory effects of glucagon-like peptide-1 and exenatide, we investigated the effects of exenatide on vasoactive factors. We analysed blood samples and mononuclear cells (MNCs) from a previous study, collected after a single dose and 12 weeks of exenatide or placebo treatment in a series of 24 patients with type 2 diabetes mellitus. After exenatide treatment, plasma concentrations of atrial natriuretic peptide, cyclic guanyl monophosphate (cGMP) and cyclic adenyl monophosphate increased significantly at 12 weeks. Plasma cGMP and adenylate cyclase expression in MNCs increased significantly after a single dose. Angiotensinogen concentration fell significantly 2 hours after a single dose and at 12 weeks, while renin and angiotensin II levels fell significantly only after a single dose and not after 12 weeks of treatment. Exenatide also suppressed the plasma concentration of transforming growth factor-β and the expression of P311 in MNCs at 12 weeks. Thus, exenatide induces an increase in a series of vasodilators, while suppressing the renin-angiotensin system. These changes may contribute to the overall vasodilatory effect of exenatide.
Collapse
Affiliation(s)
- Ajay Chaudhuri
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Buffalo, New York
| | - Husam Ghanim
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Buffalo, New York
| | - Antoine Makdissi
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Buffalo, New York
| | - Kelly Green
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Buffalo, New York
| | - Sanaa Abuaysheh
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Buffalo, New York
| | - Manav Batra
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Buffalo, New York
| | - Nitesh D Kuhadiya
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Buffalo, New York
| | - Paresh Dandona
- Division of Endocrinology, Diabetes and Metabolism, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
46
|
Fu Q, Hu Y, Wang Q, Liu Y, Li N, Xu B, Kim S, Chiamvimonvat N, Xiang YK. High-fat diet induces protein kinase A and G-protein receptor kinase phosphorylation of β 2 -adrenergic receptor and impairs cardiac adrenergic reserve in animal hearts. J Physiol 2017; 595:1973-1986. [PMID: 27983752 PMCID: PMC5350441 DOI: 10.1113/jp273314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/23/2016] [Indexed: 11/08/2022] Open
Abstract
Key points Patients with diabetes show a blunted cardiac inotropic response to β‐adrenergic stimulation despite normal cardiac contractile reserve. Acute insulin stimulation impairs β‐adrenergically induced contractile function in isolated cardiomyocytes and Langendorff‐perfused hearts. In this study, we aimed to examine the potential effects of hyperinsulinaemia associated with high‐fat diet (HFD) feeding on the cardiac β2‐adrenergic receptor signalling and the impacts on cardiac contractile function. We showed that 8 weeks of HFD feeding leads to reductions in cardiac functional reserve in response to β‐adrenergic stimulation without significant alteration of cardiac structure and function, which is associated with significant changes in β2‐adrenergic receptor phosphorylation at protein kinase A and G‐protein receptor kinase sites in the myocardium. The results suggest that clinical intervention might be applied to subjects in early diabetes without cardiac symptoms to prevent further cardiac complications.
Abstract Patients with diabetes display reduced exercise capability and impaired cardiac contractile reserve in response to adrenergic stimulation. We have recently uncovered an insulin receptor and adrenergic receptor signal network in the heart. The aim of this study was to understand the impacts of high‐fat diet (HFD) on the insulin–adrenergic receptor signal network in hearts. After 8 weeks of HFD feeding, mice exhibited diabetes, with elevated insulin and glucose concentrations associated with body weight gain. Mice fed an HFD had normal cardiac structure and function. However, the HFD‐fed mice displayed a significant elevation of phosphorylation of the β2‐adrenergic receptor (β2AR) at both the protein kinase A site serine 261/262 and the G‐protein‐coupled receptor kinase site serine 355/356 and impaired adrenergic reserve when compared with mice fed on normal chow. Isolated myocytes from HFD‐fed mice also displayed a reduced contractile response to adrenergic stimulation when compared with those of control mice fed normal chow. Genetic deletion of the β2AR led to a normalized adrenergic response and preserved cardiac contractile reserve in HFD‐fed mice. Together, these data indicate that HFD promotes phosphorylation of the β2AR, contributing to impairment of cardiac contractile reserve before cardiac structural and functional remodelling, suggesting that early intervention in the insulin–adrenergic signalling network might be effective in prevention of cardiac complications in diabetes. Patients with diabetes show a blunted cardiac inotropic response to β‐adrenergic stimulation despite normal cardiac contractile reserve. Acute insulin stimulation impairs β‐adrenergically induced contractile function in isolated cardiomyocytes and Langendorff‐perfused hearts. In this study, we aimed to examine the potential effects of hyperinsulinaemia associated with high‐fat diet (HFD) feeding on the cardiac β2‐adrenergic receptor signalling and the impacts on cardiac contractile function. We showed that 8 weeks of HFD feeding leads to reductions in cardiac functional reserve in response to β‐adrenergic stimulation without significant alteration of cardiac structure and function, which is associated with significant changes in β2‐adrenergic receptor phosphorylation at protein kinase A and G‐protein receptor kinase sites in the myocardium. The results suggest that clinical intervention might be applied to subjects in early diabetes without cardiac symptoms to prevent further cardiac complications.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Yuting Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Qingtong Wang
- Department of Pharmacology, University of California, Davis, CA, USA.,Institute of Clinical Pharmacology, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Collaborative Innovation Centre of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Yongming Liu
- Department of Pharmacology, University of California, Davis, CA, USA.,Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ning Li
- Division of Cardiovascular Medicine, Department of Medicine, University of California, Davis, CA, USA
| | - Bing Xu
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Sungjin Kim
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Medicine, University of California, Davis, CA, USA.,VA Northern California Healthcare System, Mather, CA, USA
| | - Yang K Xiang
- Department of Pharmacology, University of California, Davis, CA, USA.,Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,VA Northern California Healthcare System, Mather, CA, USA
| |
Collapse
|
47
|
Widlansky ME, Puppala VK, Suboc TM, Malik M, Branum A, Signorelli K, Wang J, Ying R, Tanner MJ, Tyagi S. Impact of DPP-4 inhibition on acute and chronic endothelial function in humans with type 2 diabetes on background metformin therapy. Vasc Med 2017; 22:189-196. [PMID: 28145158 DOI: 10.1177/1358863x16681486] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell culture and animal work indicate that dipeptidyl peptidase-4 (DPP-4) inhibition may exert cardiovascular benefits through favorable effects on the vascular endothelium. Prior human studies evaluating DPP-4 inhibition have shown conflicting results that may in part be related to heterogeneity of background anti-diabetes therapies. No study has evaluated the acute response of the vasculature to DPP-4 inhibition in humans. We recruited 38 patients with type 2 diabetes on stable background metformin therapy for a randomized, double-blind, placebo-controlled crossover trial of DPP-4 inhibition with sitagliptin (100 mg/day). Each treatment period was 8 weeks long separated by 4 weeks of washout. Endothelial function and plasma markers of endothelial activation (intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1)) were measured prior to and 2 hours following acute dosing of sitagliptin or placebo, as well as following 8 weeks of intervention with each pill. Thirty subjects completed the study and were included in analyses. Neither acute nor chronic sitagliptin therapy resulted in significant changes in vascular endothelial function. While post-acute sitagliptin ICAM-1 levels were lower than that post-chronic sitagliptin, the ICAM-1 concentration was not significantly different than pre-acute sitagliptin levels or levels measured in relationship to placebo. There were no significant changes in plasma VCAM-1 levels at any time point. Acute and chronic sitagliptin therapies have neutral effects on the vascular endothelium in the setting of metformin background therapy. In conclusion, our findings suggest DPP-4 inhibition has a neutral effect on cardiovascular risk in patients without a history of heart failure or renal insufficiency. TRIAL REGISTRATION NCT01859793.
Collapse
Affiliation(s)
- Michael E Widlansky
- 1 Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Venkata K Puppala
- 1 Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Tisha M Suboc
- 1 Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mobin Malik
- 1 Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amberly Branum
- 1 Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kara Signorelli
- 2 Medical College of Wisconsin School of Medicine, Milwaukee, WI, USA
| | - Jingli Wang
- 1 Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rong Ying
- 1 Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael J Tanner
- 1 Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sudhi Tyagi
- 1 Division of Cardiovascular Medicine, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
48
|
Li J, Zheng J, Wang S, Lau HK, Fathi A, Wang Q. Cardiovascular Benefits of Native GLP-1 and its Metabolites: An Indicator for GLP-1-Therapy Strategies. Front Physiol 2017; 8:15. [PMID: 28194113 PMCID: PMC5276855 DOI: 10.3389/fphys.2017.00015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 01/09/2017] [Indexed: 12/23/2022] Open
Abstract
Cardiovascular disease is a common co-morbidity and leading cause of death in patients with type 2 diabetes mellitus (T2DM). Glucagon-like peptide 1 (GLP-1) is a peptide hormone produced by intestinal L cells in response to feeding. Native GLP-1 (7-36) amide is rapidly degraded by diaminopeptidyl peptidase-4 (DPP4) to GLP-1 (9-36) amide, making 9-36a the major circulating form. While it is 7-36a, and not its metabolites, which exerts trophic effects on islet β-cells, recent studies suggest that both 7-36a and its metabolites have direct cardiovascular effects, including preserving cardiomyocyte viability, ameliorating cardiac function, and vasodilation. In particular, the difference in cardiovascular effects between 7-36a and 9-36a is attracting attention. Growing evidence has strengthened the presumption that their cardiovascular effects are overlapping, but distinct and complementary to each other; 7-36a exerts cardiovascular effects in a GLP-1 receptor (GLP-1R) dependent pathway, whereas 9-36a does so in a GLP-1R independent pathway. GLP-1 therapies have been developed using two main strategies: DPP4-resistant GLP-1 analogs/GLP-1R agonists and DPP4 inhibitors, which both aim to prolong the life-time of circulating 7-36a. One prominent concern that should be addressed is that the cardiovascular benefits of 9-36a are lacking in these strategies. This review attempts to differentiate the cardiovascular effects between 7-36a and 9-36a in order to provide new insights into GLP-1 physiology, and facilitate our efforts to develop a superior GLP-1-therapy strategy for T2DM and cardiovascular diseases.
Collapse
Affiliation(s)
- Junfeng Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Fudan UniversityShanghai, China; Department of Endocrinology, Renmin Hospital of Wuhan UniversityWuhan, China
| | - Juan Zheng
- Division of Endocrinology and Metabolism, the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's HospitalToronto, ON, Canada; Department of Physiology, Faculty of Medicine, University of TorontoToronto, ON, Canada
| | - Susanne Wang
- Division of Endocrinology and Metabolism, the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's HospitalToronto, ON, Canada; Department of Physiology, Faculty of Medicine, University of TorontoToronto, ON, Canada
| | - Harry K Lau
- Division of Endocrinology and Metabolism, the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's HospitalToronto, ON, Canada; Department of Physiology, Faculty of Medicine, University of TorontoToronto, ON, Canada
| | - Ali Fathi
- Division of Endocrinology and Metabolism, the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital Toronto, ON, Canada
| | - Qinghua Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Shanghai Medical College, Fudan UniversityShanghai, China; Division of Endocrinology and Metabolism, the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's HospitalToronto, ON, Canada; Department of Physiology, Faculty of Medicine, University of TorontoToronto, ON, Canada
| |
Collapse
|
49
|
Mechanisms of Cardiovascular Injury in Type 2 Diabetes and Potential Effects of Dipeptidyl Peptidase-4 Inhibition. J Cardiovasc Nurs 2017; 31:274-83. [PMID: 25829138 DOI: 10.1097/jcn.0000000000000245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Cardiovascular (CV) disease is the major cause of mortality and morbidity in patients with type 2 diabetes mellitus (T2DM). The pathogenesis of CV disease in T2DM is complex and multifactorial and involves direct and indirect injury to the vasculature and heart. The impact of intensive glucose-lowering therapy with antihyperglycemic agents on CV outcomes is not clear, and questions remain as to which glucose-lowering agents may be beneficial to CV health in patients with T2DM. PURPOSE This review discusses findings regarding the known mechanisms of CV injury in T2DM and current knowledge regarding the potential cardioprotective effects of dipeptidyl peptidase-4 (DPP-4) inhibitors. CONCLUSIONS Dipeptidyl peptidase-4 inhibitors are relatively new antihyperglycemic agents. Their main mechanism of action is to inhibit the degradation of the incretin hormones glucagon-like peptide-1 and glucose-dependent insulinotropic peptide by DPP-4. By increasing levels of glucagon-like peptide-1, glucose-dependent insulin secretion is enhanced, glucagon secretion is suppressed, and the rate of gastric emptying is decreased. Dipeptidyl peptidase-4 also degrades other substances that are important in the regulation of CV function and inflammation. Animal studies, small observational studies in humans, and analyses of clinical trial data suggest that DPP-4 inhibitors may have beneficial CV effects. Recent prospectively designed CV outcomes trials with saxagliptin and alogliptin in patients with T2DM and high CV risk presented evidence that these DPP-4 inhibitors neither increased nor decreased adverse CV outcomes in this select patient population. CLINICAL IMPLICATIONS Dipeptidyl peptidase-4 inhibitors are promising therapies for the treatment of T2DM. Able to improve glycemic control without the risk of weight gain or hypoglycemia, they provide a safe alternative to sulfonylureas and are an effective adjunct to metformin. To date, this class of drugs seems to be at least neutral in terms of CV effects. Time will tell if these findings translate into a benefit for our patients.
Collapse
|
50
|
Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf) 2017; 219:22-96. [PMID: 26706498 DOI: 10.1111/apha.12646] [Citation(s) in RCA: 602] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/27/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023]
Abstract
The endothelium can evoke relaxations of the underlying vascular smooth muscle, by releasing vasodilator substances. The best-characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO) which activates soluble guanylyl cyclase in the vascular smooth muscle cells, with the production of cyclic guanosine monophosphate (cGMP) initiating relaxation. The endothelial cells also evoke hyperpolarization of the cell membrane of vascular smooth muscle (endothelium-dependent hyperpolarizations, EDH-mediated responses). As regards the latter, hydrogen peroxide (H2 O2 ) now appears to play a dominant role. Endothelium-dependent relaxations involve both pertussis toxin-sensitive Gi (e.g. responses to α2 -adrenergic agonists, serotonin, and thrombin) and pertussis toxin-insensitive Gq (e.g. adenosine diphosphate and bradykinin) coupling proteins. New stimulators (e.g. insulin, adiponectin) of the release of EDRFs have emerged. In recent years, evidence has also accumulated, confirming that the release of NO by the endothelial cell can chronically be upregulated (e.g. by oestrogens, exercise and dietary factors) and downregulated (e.g. oxidative stress, smoking, pollution and oxidized low-density lipoproteins) and that it is reduced with ageing and in the course of vascular disease (e.g. diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis toxin-sensitive pathway for NO release which favours vasospasm, thrombosis, penetration of macrophages, cellular growth and the inflammatory reaction leading to atherosclerosis. In addition to the release of NO (and EDH, in particular those due to H2 O2 ), endothelial cells also can evoke contraction of the underlying vascular smooth muscle cells by releasing endothelium-derived contracting factors. Recent evidence confirms that most endothelium-dependent acute increases in contractile force are due to the formation of vasoconstrictor prostanoids (endoperoxides and prostacyclin) which activate TP receptors of the vascular smooth muscle cells and that prostacyclin plays a key role in such responses. Endothelium-dependent contractions are exacerbated when the production of nitric oxide is impaired (e.g. by oxidative stress, ageing, spontaneous hypertension and diabetes). They contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive and diabetic patients. In addition, recent data confirm that the release of endothelin-1 can contribute to endothelial dysfunction and that the peptide appears to be an important contributor to vascular dysfunction. Finally, it has become clear that nitric oxide itself, under certain conditions (e.g. hypoxia), can cause biased activation of soluble guanylyl cyclase leading to the production of cyclic inosine monophosphate (cIMP) rather than cGMP and hence causes contraction rather than relaxation of the underlying vascular smooth muscle.
Collapse
Affiliation(s)
- P. M. Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| | - H. Shimokawa
- Department of Cardiovascular Medicine; Tohoku University; Sendai Japan
| | - M. Feletou
- Department of Cardiovascular Research; Institut de Recherches Servier; Suresnes France
| | - E. H. C. Tang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| |
Collapse
|