1
|
Ninham BW, Bunkin N, Battye M. The endothelial surface layer-glycocalyx - Universal nano-infrastructure is fundamental to physiology, cell traffic and a complementary neural network. Adv Colloid Interface Sci 2025; 338:103401. [PMID: 39862802 DOI: 10.1016/j.cis.2025.103401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 01/13/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
The glycocalyx and its associated endothelial surface layer which lines all cell membranes and most tissues, dwarfs the phospholipid membrane of cells in extent. Its major components are sulphated polymers like heparan and chondroitin sulphates and hyaluronic acid. These form a fuzzy layer of unknown structure and function. It has become increasingly clear that the ESL-GC complex must play many roles. We postulate it has a self-organised infrastructure that directs cell traffic, acts in defence against pathogens and other cells, and in diseases like diabetes, and heart disease, besides being a playground for a host of biochemical activity. Based on an analogous sulphated polymeric system Nafion, the fuel cell polymer, we suggest a model for the structure of the ESL-GC complex and how it functions. Taken together with parallel developments in physical chemistry, in nanobubbles, their stability in physiological media, and reactivity, we believe the model may throw light on a variety of phenomena, diabetes and some other diseases.
Collapse
Affiliation(s)
- Barry W Ninham
- Materials Physics (formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT 2600, Australia.
| | - Nikolai Bunkin
- Department of Fundamental Sciences, Bauman Moscow State Technical University, 2nd Baumanskaya Str. 5, 105005 Moscow, Russia
| | | |
Collapse
|
2
|
Reid LA, Rees JL, Kimber M, James M, Purdy GM, Smorschok M, Maier LE, Boulé NG, Day TA, Davenport MH, Steinback CD. Blood Glucose During High Altitude Trekking in Young Healthy Adults. High Alt Med Biol 2025; 26:30-36. [PMID: 39082190 DOI: 10.1089/ham.2024.0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Reid, Ly-Anh, Jordan L. Rees, Miranda Kimber, Marina James, Graeme M. Purdy, Megan Smorschok, Lauren E. Maier, Normand G. Boulé, Trevor A. Day, Margie H. Davenport, and Craig D. Steinback. Blood glucose during high altitude trekking in young healthy adults. High Alt Med Biol. 26:30-36, 2025. Introduction: High altitude trekking is becoming more popular and accessible to an increased number of people. Simultaneously, there is a worldwide rise in the prevalence of metabolic diseases. The purpose of this study was to examine the impact of a gradual trekking ascent to high altitude on continuous glucose monitoring outcomes including fasting, mean 24-hour, postprandial, and post-75 g modified oral glucose tolerance test. This study also investigated the relationship between physical activity intensity, high altitude, and glucose concentrations. Methods: Individuals (n = 9) from Alberta, Canada participated in a 2-week trek in the Khumbu Valley in Nepal, ascending by foot from 2,860 m to 5,300 m (∼65 km) over 10 days. A standardized 75 g oral glucose load was given to participants at four different altitudes (1,130 m, 3,440 m, 3,820 m, 5,160 m). Physical activity (Actigraph accelerometry) and interstitial glucose (iPro2, Medtronic) were measured continuously during the trek. Results: Fasting and mean 24-hour glucose concentrations were not different between altitudes. However, 2-hour post dinner glucose and 2-hour post lunch glucose, AUC concentrations were different between altitudes. The relationship between physical activity intensity and glucose was not influenced by increasing altitudes. Conclusion: Our findings suggest that glucose regulation is largely preserved at high altitude; however, inconsistency in our postprandial glucose concentrations at altitude warrants further investigation.
Collapse
Affiliation(s)
- Ly-Anh Reid
- Faculty of Kinesiology, Sport, and Recreation, Physical Activity and Diabetes Laboratory, University of Alberta, Edmonton, Canada
- Program for Pregnancy and Postpartum Health, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Jordan L Rees
- Faculty of Kinesiology, Sport, and Recreation, Physical Activity and Diabetes Laboratory, University of Alberta, Edmonton, Canada
| | - Miranda Kimber
- Faculty of Kinesiology, Sport, and Recreation, Physical Activity and Diabetes Laboratory, University of Alberta, Edmonton, Canada
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Marina James
- Faculty of Kinesiology, Sport, and Recreation, Physical Activity and Diabetes Laboratory, University of Alberta, Edmonton, Canada
| | - Graeme M Purdy
- Faculty of Kinesiology, Sport, and Recreation, Physical Activity and Diabetes Laboratory, University of Alberta, Edmonton, Canada
| | - Megan Smorschok
- Faculty of Kinesiology, Sport, and Recreation, Physical Activity and Diabetes Laboratory, University of Alberta, Edmonton, Canada
| | - Lauren E Maier
- Program for Pregnancy and Postpartum Health, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Normand G Boulé
- Faculty of Kinesiology, Sport, and Recreation, Physical Activity and Diabetes Laboratory, University of Alberta, Edmonton, Canada
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Canada
| | - Margie H Davenport
- Faculty of Kinesiology, Sport, and Recreation, Physical Activity and Diabetes Laboratory, University of Alberta, Edmonton, Canada
- Program for Pregnancy and Postpartum Health, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| | - Craig D Steinback
- Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Canada
| |
Collapse
|
3
|
Meng Y, Hu Y, Xue Y, Zhen Z. Metabolomic Profiling of the Striatum in Shank3 Knockout ASD Rats: Effects of Early Swimming Regulation. Metabolites 2025; 15:134. [PMID: 39997759 PMCID: PMC11857520 DOI: 10.3390/metabo15020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/27/2025] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Objectives: This study aimed to investigate the regulatory impact of early swimming intervention on striatal metabolism in Shank3 gene knockout ASD model rats. Methods:Shank3 gene knockout exon 11-21 male 8-day-old SD rats were used as experimental subjects and randomly divided into the following three groups: a Shank3 knockout control group (KC), a wild-type control group (WC) from the same litter, and a Shank3 knockout swimming group (KS). The rats in the exercise group received early swimming intervention for 8 weeks starting at 8 days old. LC-MS metabolism was employed to detect the changes in metabolites in the striatum. Results: There were 17 differential metabolites (14 down-regulated) between the KC and WC groups, 19 differential metabolites (18 up-regulated) between the KS and KC groups, and 22 differential metabolites (18 up-regulated) between the KS and WC groups. Conclusions: The metabolism of striatum in Shank3 knockout ASD model rats is disrupted, involving metabolites related to synaptic morphology, and the Glu and GABAergic synapses are abnormal. Early swimming intervention regulated the striatal metabolome group of the ASD model rats, with differential metabolites primarily related to nerve development, synaptic membrane structure, and synaptic signal transduction.
Collapse
Affiliation(s)
- Yunchen Meng
- Department of Physical Education and Research, China University of Mining and Technology—Beijing, Beijing 100083, China;
| | - Yiling Hu
- Department of Physical Education and Research, China University of Mining and Technology—Beijing, Beijing 100083, China;
| | - Yaqi Xue
- College of P.E and Sports, Beijing Normal University, Beijing 100875, China;
| | - Zhiping Zhen
- College of P.E and Sports, Beijing Normal University, Beijing 100875, China;
| |
Collapse
|
4
|
Galsgaard KD, Elmelund E, Hunt JE, Smits MM, Grevengoed TJ, Christoffersen C, Færgeman NJ, Havelund J, Wewer Albrechtsen NJ, Holst JJ. Female glucagon receptor knockout mice are prone to steatosis but resistant to weight gain when fed a MASH-promoting GAN diet and a high-fat diet. Physiol Rep 2025; 13:e70235. [PMID: 39985139 PMCID: PMC11845321 DOI: 10.14814/phy2.70235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/21/2025] [Accepted: 01/25/2025] [Indexed: 02/24/2025] Open
Abstract
Glucagon is secreted from the pancreatic alpha cells and regulates not only hepatic glucose production, but also hepatic lipid and amino acid metabolism. Thus, glucagon provides a switch from hepatic glucose and lipid storage towards lipid and amino acid breakdown fueling glucose production during fasting. However, the effects of genetic deletion of the glucagon receptor on lipid metabolism are unclear. We therefore assessed parameters of lipid metabolism in fasted and non-fasted male and female mice with permanent whole-body deletion of the glucagon receptor (Gcgr-/- mice). To investigate whether Gcgr-/- mice tolerated a diet promoting metabolic dysfunction-associated steatohepatitis (MASH) and steatosis, we fed female Gcgr-/- mice the Gubra Amylin Nonalcoholic steatohepatitis (GAN) diet and high-fat diet (HFD), respectively. We found that non-fasted Gcgr-/- mice fed standard chow showed hypercholesterolemia and increased liver fat (borderline significant in non-fasted male Gcgr-/- mice, but significant in the remaining groups). In the fasted state these changes were insignificant due to fasting-induced steatosis. When challenged with a GAN diet and HFD, female Gcgr-/- mice were prone to steatosis and dyslipidemia but resistant to weight gain. Taken together, our data highlight glucagon as an important physiological regulator of not just glucose, but also hepatic lipid metabolism.
Collapse
Affiliation(s)
- Katrine D. Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Emilie Elmelund
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jenna E. Hunt
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Mark M. Smits
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Internal MedicineRadboud University Medical CenterNijmegenThe Netherlands
| | - Trisha J. Grevengoed
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Christina Christoffersen
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical BiochemistryRigshospitalet, University of CopenhagenCopenhagenDenmark
| | - Nils J. Færgeman
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Jesper Havelund
- Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Nicolai J. Wewer Albrechtsen
- Department of Clinical BiochemistryCopenhagen University Hospital – BispebjergCopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jens J. Holst
- Department of Biomedical Sciences, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
5
|
Forouzanmehr B, Hemmati MA, Atkin SL, Jamialahmadi T, Yaribeygi H, Sahebkar A. GLP-1 mimetics and diabetic ketoacidosis: possible interactions and clinical consequences. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:351-362. [PMID: 39172148 DOI: 10.1007/s00210-024-03384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Diabetic ketoacidosis is a serious diabetes-related consequence that occurs in type 1 diabetes and less commonly in type 2 diabetes and is a major cause of death. It results from the metabolic consequences due to a lack of insulin secretion or impaired insulin activity in diabetes leading to dysregulated pathophysiologic pathways resulting in excessive ketone body formation. While ketone bodies are physiologic molecules, their high levels reduce the physiological pH of the blood and induce ketoacidosis, leading to increasing metabolic dysfunction. Glucagon-like peptide-1 (GLP-1) mimetics are a class of recently developed diabetes therapy that do not lead to hypoglycemic, but some reports have suggested a relationship between GLP-1 mimetics and ketogenesis. To clarify the possible interactions between GLP-1 mimetics and ketogenesis in diabetes, this review was undertaken to collate and interpret the literature.
Collapse
Affiliation(s)
- Behina Forouzanmehr
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Stephen L Atkin
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Xiang KF, Wan JJ, Wang PY, Liu X. Role of glycogen in cardiac metabolic stress. Metabolism 2025; 162:156059. [PMID: 39500406 DOI: 10.1016/j.metabol.2024.156059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/22/2024] [Accepted: 10/30/2024] [Indexed: 11/11/2024]
Abstract
Metabolic stress in the myocardium arises from a diverse array of acute and chronic pathophysiological contexts. Glycogen mishandling is a key feature of metabolic stress, while maladaptation in energy-stress situations confers functional deficits. Cardiac glycogen serves as a pivotal reserve for myocardial energy, which is classically described as an energy source and contributes to glucose homeostasis during hypoxia or ischemia. Despite extensive research activity, how glycogen metabolism affects cardiovascular disease remains unclear. In this review, we focus on its regulation across myocardial energy metabolism in response to stress, and its role in metabolism, immunity, and autophagy. We further summarize the cardiovascular-related drugs regulating glycogen metabolism. In this way, we provide current knowledge for the understanding of glycogen metabolism in the myocardium.
Collapse
Affiliation(s)
- Ke-Fa Xiang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China; Department of Cardiology, The 72nd Group Army Hospital, Huzhou University, Huzhou, Zhejiang 313000, China
| | - Jing-Jing Wan
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Peng-Yuan Wang
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Xia Liu
- Department of Clinical Pharmacy, School of Pharmacy, Second Military Medical University, Shanghai, China.
| |
Collapse
|
7
|
Mohammed SM, Bone RN, Aquino JDC, Mirmira RG, Evans-Molina C, Ismail HM. Changes in immunofluorescence staining during islet regeneration in a cystic fibrosis-related diabetes (CFRD) ferret model. Islets 2024; 16:2436696. [PMID: 39641365 PMCID: PMC11633224 DOI: 10.1080/19382014.2024.2436696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/05/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Knockout (KO) ferrets with the cystic fibrosis transmembrane conductance regulator (CFTR) exhibit distinct phases of dysglycemia and pancreatic remodeling prior to cystic fibrosis-related diabetes (CFRD) development. Following normoglycemia during the first month of life (Phase l), hyperglycemia occurs during the subsequent 2 months (Phase Il) with decreased islet mass, followed by a period of near normoglycemia (Phase Ill) in which the islets regenerate. We aimed to characterize islet hormone expression patterns across these Phases. METHODS Immunofluorescence staining per islet area was performed to characterize islet hormone expression patterns in age matched CFTR KO and wild type (WT) ferrets, focusing on the first three phases. RESULTS In Phase I, insulin staining intensity was higher in CF (p < 0.01) than WT but decreased in Phase III (p < 0.0001). Glucagon was lower in CF during Phases I and increased in Phase III, while proinsulin decreased (p < 0.0001) Phases II and III. CF sections showed lower proinsulin-to-insulin ratio in Phase I (p < 0.01) and in Phase III (p < 0.05) compared to WT. Conversely, glucagon-to-insulin ratio was lower in CF in Phase I (p < 0.0001) but increased in Phase III (p < 0.0001). Mender's coefficient overlap showed higher overlap of insulin over proinsulin in CF sections in Phase II (p < 0.001) and Phase III (p < 0.0001) compared to WT. Mender's coefficient rate was higher in CF sections during Phase II (p < 0.001). CONCLUSION CF ferret islets revealed significant immunofluorescent staining changes compared to WT during various phases of disease, providing insights into CRFD pathophysiology.
Collapse
Affiliation(s)
- Sawash M. Mohammed
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Robert N. Bone
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jacqueline Del Carmen Aquino
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Raghavendra G. Mirmira
- Kovler Diabetes Center and the Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heba M. Ismail
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
8
|
Li A, Li J, Wang Y, Liu Z, Liu L, Liu L, Xue S, Zhu L, Mao Y. The metabolomics provides insights into the Pacific abalone ( Haliotis discus hannai) response to low temperature stress. Heliyon 2024; 10:e40921. [PMID: 39719996 PMCID: PMC11666945 DOI: 10.1016/j.heliyon.2024.e40921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/08/2024] [Accepted: 12/03/2024] [Indexed: 12/26/2024] Open
Abstract
The low temperatures in winter, particularly the cold spells in recent years, have posed significant threats to China's abalone aquaculture industry. The low temperature tolerance of cultured abalone has drawn plenty of attention, but the metabolic response of abalone to low-temperature stress remains unclear. In this study, we investigated the metabolomic analysis of Pacific abalone (Haliotis discus hannai) during low-temperature stress. Pacific abalone used two strains of cultured abalone, namely the bottom-sowing cultured strain (DB) and the longline cultured strain (FS), which had different histories of low-temperature acclimation. The results revealed that eight of the top 10 shared differential expression metabolites of the two strains were carbohydrates. According to the results of the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway analysis, low-temperature stress primarily affected several metabolic pathways. These pathways include ABC transporters, carbohydrate digestion and absorption, starch and sucrose metabolism, lysine degradation, TCA cycle, the phosphotransferase system, the glucagon signaling pathway and pyruvate metabolism. The results suggest that Pacific abalone primarily regulates the expression of carbohydrates to enhance energy supply and anti-freezing protection. These findings are crucial for understanding the mechanism of low-temperature tolerance in Pacific abalone, and can help optimize culture strategies for high-quality abalone aquaculture development.
Collapse
Affiliation(s)
- Ang Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Jiaqi Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Yingpu Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Zirong Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Lulei Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Longzhen Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Suyan Xue
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Ling Zhu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Yuze Mao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| |
Collapse
|
9
|
Amjad L, Aamir R, Shahana FNU, Khan AW, Talha M. Dasiglucagon: a New Hope for Managing Post-prandial Hypoglycemia After Gastric Bypass Surgery? Obes Surg 2024; 34:4588-4589. [PMID: 39482446 DOI: 10.1007/s11695-024-07574-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/03/2024]
Affiliation(s)
- Laiba Amjad
- Shaikh Khalifa Bin Zayed Al-Nahyan Medical and Dental College, Lahore, Pakistan
| | - Rabiya Aamir
- Shaikh Khalifa Bin Zayed Al-Nahyan Medical and Dental College, Lahore, Pakistan
| | - F N U Shahana
- Shaikh Khalifa Bin Zayed Al-Nahyan Medical and Dental College, Lahore, Pakistan
| | - Ali Waris Khan
- Shaikh Khalifa Bin Zayed Al-Nahyan Medical and Dental College, Lahore, Pakistan
| | - Muhammad Talha
- Shaikh Khalifa Bin Zayed Al-Nahyan Medical and Dental College, Lahore, Pakistan.
| |
Collapse
|
10
|
Kim IS, Park SY, Park MJ, Kim KJ, Kim JY. Effect of Barley on Postprandial Blood Glucose Response and Appetite in Healthy Individuals: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2024; 16:3899. [PMID: 39599684 PMCID: PMC11597105 DOI: 10.3390/nu16223899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Barley dietary fiber (BDF), particularly β-glucan, has shown potential in modulating postprandial glycemic responses and improving metabolic health. This study aimed to assess the effects of Saechalssalbori (Hordeum vulgare L.), a glutinous barley variety rich in β-glucan, on postprandial blood glucose, insulin, glucagon, triglycerides, and appetite-related hormones in healthy adults. Methods: In this randomized, double-blind, placebo-controlled, crossover trial, healthy adults (n = 67) with fasting blood glucose levels below 126 mg/dL were assigned to consume either BDF or placebo (rice flour). Fasting and postprandial blood samples were collected at 30, 60, 120, and 180 min after consumption. Blood glucose, insulin, glucagon, triglycerides, and appetite-related hormones (ghrelin, PYY) were measured, and appetite was assessed using the visual analog scale (VAS). The study was approved by the Institutional Review Board (CHAMC 2022-08-040-007) and registered (KCT0009166). Results: BDF consumption significantly delayed the postprandial increase in blood glucose compared with placebo, reduced insulin secretion, and slightly increased glucagon and triglycerides. BDF also lowered hunger and increased satiety, with associated increases in ghrelin and PYY levels. Conclusions: BDF consumption, particularly from β-glucan-rich barley, may improve postprandial glycemic control and suppress appetite, making it a promising dietary intervention for managing metabolic conditions such as diabetes. Further studies are needed to explore its long-term impact on glycemic variability.
Collapse
Affiliation(s)
- In-Sook Kim
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Soo-yeon Park
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Min Ju Park
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Kyeong Jin Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Ji Yeon Kim
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| |
Collapse
|
11
|
Maiti S, Rangarajan A, Kareenhalli V. Experimentally-driven mathematical model to understand the effects of matrix deprivation in breast cancer metastasis. NPJ Syst Biol Appl 2024; 10:132. [PMID: 39532909 PMCID: PMC11557960 DOI: 10.1038/s41540-024-00443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
Normal epithelial cells receive proper signals for growth and survival from attachment to the underlying extracellular matrix (ECM). They perceive detachment from the ECM as a stress and die - a phenomenon termed as 'anoikis'. However, metastatic cancer cells acquire anoikis-resistance and circulate through the blood and lymphatics to seed metastasis. Under normal (adherent) growth conditions, the serine-threonine protein kinase Akt stimulates protein synthesis and cell growth, maintaining an anabolic state in the cancer cell. In contrast, previously we showed that the stress due to matrix deprivation is sensed by yet another serine-threonine kinase, AMP-activated protein kinase (AMPK), that inhibits anabolic pathways while promoting catabolic processes. We illustrated a switch from Akthigh/AMPKlow in adherent condition to AMPKhigh/Aktlow in matrix-detached condition, with consequent metabolic switching from an anabolic to a catabolic state, which aids cancer cell stress-survival. In this study, we utilized these experimental data and developed a deterministic ordinary differential equation (ODE)-based mechanistic mathematical model to mimic attachment-detachment signaling network. To do so, we used the framework of insulin-glucagon signaling with consequent metabolic shifts to capture the pathophysiology of matrix-deprived state in breast cancer cells. Using the developed metastatic breast cancer signaling (MBCS) model, we identified perturbation of several signaling proteins such as IRS, PI3K, PKC, GLUT1, IP3, DAG, PKA, cAMP, and PDE3 upon matrix deprivation. Further, in silico molecular perturbations revealed that several feedback/crosstalks like DAG to PKC, PKC to IRS, S6K1 to IRS, cAMP to PKA, and AMPK to Akt are essential for the metabolic switching in matrix-deprived cancer cells. AMPK knockdown simulations identified a crucial role for AMPK in maintaining these adaptive changes. Thus, this mathematical framework provides insights on attachment-detachment signaling with metabolic adaptations that promote cancer metastasis.
Collapse
Affiliation(s)
- Sayoni Maiti
- Interdisciplinary Programme in Mathematical Sciences, IISc Mathematics Initiative, Indian Institute of Science, Bengaluru, India
| | - Annapoorni Rangarajan
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, India.
| | - Venkatesh Kareenhalli
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
12
|
Smith C, Lin X, Parker L, Yeap BB, Hayes A, Levinger I. The role of bone in energy metabolism: A focus on osteocalcin. Bone 2024; 188:117238. [PMID: 39153587 DOI: 10.1016/j.bone.2024.117238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Understanding the mechanisms involved in whole body glucose regulation is key for the discovery of new treatments for type 2 diabetes (T2D). Historically, glucose regulation was largely focused on responses to insulin and glucagon. Impacts of incretin-based therapies, and importance of muscle mass, are also highly relevant. Recently, bone was recognized as an endocrine organ, with several bone proteins, known as osteokines, implicated in glucose metabolism through their effects on the liver, skeletal muscle, and adipose tissue. Research efforts mostly focused on osteocalcin (OC) as a leading example. This review will provide an overview on this role of bone by discussing bone turnover markers (BTMs), the receptor activator of nuclear factor kB ligand (RANKL), osteoprotegerin (OPG), sclerostin (SCL) and lipocalin 2 (LCN2), with a focus on OC. Since 2007, some, but not all, research using mostly OC genetically modified animal models suggested undercarboxylated (uc) OC acts as a hormone involved in energy metabolism. Most data generated from in vivo, ex vivo and in vitro models, indicate that exogenous ucOC administration improves whole-body and skeletal muscle glucose metabolism. Although data in humans are generally supportive, findings are often discordant likely due to methodological differences and observational nature of that research. Overall, evidence supports the concept that bone-derived factors are involved in energy metabolism, some having beneficial effects (ucOC, OPG) others negative (RANKL, SCL), with the role of some (LCN2, other BTMs) remaining unclear. Whether the effect of osteokines on glucose regulation is clinically significant and of therapeutic value for people with insulin resistance and T2D remains to be confirmed.
Collapse
Affiliation(s)
- Cassandra Smith
- Nutrition & Health Innovation Research Institute, School of Health and Medical Sciences, Edith Cowan University, Perth, Western Australia, Australia; Medical School, The University of Western Australia, Perth, Western Australia, Australia; Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia
| | - Xuzhu Lin
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Lewan Parker
- Institute for Physical Activity and Nutrition (IPAN), Deakin University, Geelong, VIC, Australia
| | - Bu B Yeap
- Medical School, The University of Western Australia, Perth, Western Australia, Australia; Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, Australia
| | - Alan Hayes
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia; Department of Medicine - Western Health, The University of Melbourne, Footscray, VIC, Australia
| | - Itamar Levinger
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, Australia; Australian Institute for Musculoskeletal Science (AIMSS), Victoria University and Western Health, St Albans, VIC, Australia; Department of Medicine - Western Health, The University of Melbourne, Footscray, VIC, Australia.
| |
Collapse
|
13
|
Al Musaimi O. FDA's stamp of approval: Unveiling peptide breakthroughs in cardiovascular diseases, ACE, HIV, CNS, and beyond. J Pept Sci 2024; 30:e3627. [PMID: 38885943 DOI: 10.1002/psc.3627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
Peptides exhibit significant specificity and effective interaction with therapeutic targets, positioning themselves as key players in the global pharmaceutical market. They offer potential treatments for a wide range of diseases, including those that pose significant challenges. Notably, the peptide trofinetide (Daybue) marked a groundbreaking achievement by providing the first-ever cure for Rett syndrome, and several peptides have secured FDA approval as first-in-class medications. Furthermore, peptides are expanding their presence in areas traditionally dominated by either small or large molecules. A noteworthy example is the FDA approval of motixafortide (Aphexda) as the first peptide-based chemokine antagonist. Here, the focus will be on the analysis of FDA-approved peptides, particularly those targeting cardiovascular diseases, human immunodeficiency, central nervous system diseases, and various other intriguing classes addressing conditions such as osteoporosis, thrombocytopenia, Cushing's disease, and hypoglycemia, among others. The review will explore the chemical structures of the peptides, their indications and modes of action, the developmental trajectory, and potential adverse effects.
Collapse
Affiliation(s)
- Othman Al Musaimi
- School of Pharmacy, Newcastle upon Tyne, UK
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
14
|
Lopes T, Hope DC, Ramos-Pittol JM, Curtis A, Shrewsbury JV, Davies I, Zhou Z, Sardini A, Minnion JS, Dormann D, Bewick GA, Murphy KG, Carling D, Bloom SR, Tan TM, Owen BM. Dietary protein defends lean mass and maintains the metabolic benefits of glucagon receptor agonism in mice. Mol Metab 2024; 89:102024. [PMID: 39236784 PMCID: PMC11424806 DOI: 10.1016/j.molmet.2024.102024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/12/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024] Open
Abstract
OBJECTIVE Glucagon has long been proposed as a component of multi-agonist obesity therapeutics due to its ability to induce energy expenditure and cause weight loss. However, chronic glucagon-receptor agonism has been associated with a reduction in circulating amino acids and loss of lean mass. Importantly, it is currently not known whether the metabolic benefits of glucagon can be maintained under contexts that allow the defence of lean mass. METHODS We investigate the metabolic effects of the long-acting glucagon receptor agonist, G108, when administered to obese mice at low-doses, and with dietary protein supplementation. RESULTS Dietary protein supplementation can only fully defend lean mass at a low dose of G108 that is sub-anorectic and does not reduce fat mass. However, in this context, G108 is still highly effective at improving glucose tolerance and reducing liver fat in obese mice. Mechanistically, liver RNA-Seq analysis reveals that dietary protein supplementation defends anabolic processes in low-dose G108-treated mice, and its effects on treatment-relevant glucose and lipid pathways are preserved. CONCLUSION Glucagon-mediated energy expenditure and weight loss may be mechanistically coupled to hypoaminocidemia and lean mass loss. However, our data suggest that glucagon can treat MAFLD at doses which allow full defence of lean mass given sufficient dietary protein intake. Therefore, proportionate glucagon therapy may be safe and effective in targeting hepatocytes and improving in glycaemia and liver fat.
Collapse
Affiliation(s)
- Tatiana Lopes
- Section of Investigative Medicine, Imperial College London, United Kingdom
| | - David Cd Hope
- Section of Investigative Medicine, Imperial College London, United Kingdom
| | | | - Anna Curtis
- Section of Investigative Medicine, Imperial College London, United Kingdom
| | - Jed V Shrewsbury
- Section of Investigative Medicine, Imperial College London, United Kingdom
| | - Iona Davies
- Section of Investigative Medicine, Imperial College London, United Kingdom
| | - Zijing Zhou
- Section of Investigative Medicine, Imperial College London, United Kingdom
| | - Alessandro Sardini
- MRC Laboratory of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - James S Minnion
- Section of Investigative Medicine, Imperial College London, United Kingdom
| | - Dirk Dormann
- MRC Laboratory of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Gavin A Bewick
- Diabetes and Obesity Theme, School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Medicine, Kings College London and Diabetes Endocrinology and Obesity Clinical Academic Partnership Kings Health Partners, UK
| | - Kevin G Murphy
- Section of Investigative Medicine, Imperial College London, United Kingdom
| | - David Carling
- MRC Laboratory of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Stephen R Bloom
- Section of Investigative Medicine, Imperial College London, United Kingdom
| | - Tricia Mm Tan
- Section of Investigative Medicine, Imperial College London, United Kingdom.
| | - Bryn M Owen
- Section of Investigative Medicine, Imperial College London, United Kingdom.
| |
Collapse
|
15
|
Krishnan G, Bagath M, Devaraj C, Soren NM. The signalling association of glucagon-like peptide-1 and its receptors in the gastrointestinal tract and GPR40 and insulin receptor in the pancreas of sheep. Gen Comp Endocrinol 2024; 358:114602. [PMID: 39226991 DOI: 10.1016/j.ygcen.2024.114602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
The present study was aimed at gaining insight into the signalling relationship between glucagon-like peptide-1 (GLP-1) and its receptor (GLP-1R) in the regulation of glucose metabolism. Further, to assess the role of G-protein-coupled receptor 40 (GPR40) and insulin receptor (INSR) in the pancreas of sheep that were supplemented with calcium salts of long-chain fatty acids (CSFAs). An experiment was carried out over a period of 60 days with eighteen sheep, and they were fed with a standard basal diet. The sheep were divided into three groups: CSFA0 (without CSFAs), while CSFA3 and CSFA5 were supplemented with 3 % and 5 % of CSFAs, respectively. Plasma concentrations of GLP-1, insulin, glucagon, and glucose were assessed every two weeks. At the end of the experiment, sheep were slaughtered, and samples of gastrointestinal tract (GIT) epithelial tissues and pancreas were collected to assess the relative expression of mRNA of GPR40, GLP-1R, and INSR. Postprandial GLP-1 and insulin were increased by 3.7-4.1 and 1.45-1.5 times, respectively, in the CSFAs-supplemented groups compared to CSFA0. Post-feeding, glucagon and glucose levels decreased in CSFA3 and CSFA5 compared to CSFA0. The results indicated that the supplementation of LCFAs increased the expression of GLP-1R in the GIT and pancreas, as well as the mRNA of GPR40 and INSR in the pancreas. Chemosensing of LCFAs by GPR40 in the pancreas triggers signalling transduction, and enhanced GLP-1 and GLP-1R resulted in moderately increased insulin secretion and reduced glucagon levels. These combined effects, along with the glucose-lowering effect of GLP-1, effectively lowered glucose levels in normoglycemic sheep.
Collapse
Affiliation(s)
- G Krishnan
- Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India.
| | - M Bagath
- Animal Nutrition Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India
| | - C Devaraj
- Bioenergetics and Environmental Sciences Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India
| | - N M Soren
- Animal Nutrition Division, ICAR-National Institute of Animal Nutrition and Physiology, Bangalore 560030, India
| |
Collapse
|
16
|
Jiménez-Sánchez C, Oberhauser L, Maechler P. Role of fatty acids in the pathogenesis of ß-cell failure and Type-2 diabetes. Atherosclerosis 2024; 398:118623. [PMID: 39389828 DOI: 10.1016/j.atherosclerosis.2024.118623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Pancreatic ß-cells are glucose sensors in charge of regulated insulin delivery to the organism, achieving glucose homeostasis and overall energy storage. The latter function promotes obesity when nutrient intake chronically exceeds daily expenditure. In case of ß-cell failure, such weight gain may pave the way for the development of Type-2 diabetes. However, the causal link between excessive body fat mass and potential degradation of ß-cells remains largely unknown and debated. Over the last decades, intensive research has been conducted on the role of lipids in the pathogenesis of ß-cells, also referred to as lipotoxicity. Among various lipid species, the usual suspects are essentially the non-esterified fatty acids (NEFA), in particular the saturated ones such as palmitate. This review describes the fundamentals and the latest advances of research on the role of fatty acids in ß-cells. This includes intracellular pathways and receptor-mediated signaling, both participating in regulated glucose-stimulated insulin secretion as well as being implicated in ß-cell dysfunction. The discussion extends to the contribution of high glucose exposure, or glucotoxicity, to ß-cell defects. Combining glucotoxicity and lipotoxicity results in the synergistic and more deleterious glucolipotoxicity effect. In recent years, alternative roles for intracellular lipids have been uncovered, pointing to a protective function in case of nutrient overload. This requires dynamic storage of NEFA as neutral lipid droplets within the ß-cell, along with active glycerolipid/NEFA cycle allowing subsequent recruitment of lipid species supporting glucose-stimulated insulin secretion. Overall, the latest studies have revealed the two faces of the same coin.
Collapse
Affiliation(s)
- Cecilia Jiménez-Sánchez
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Lucie Oberhauser
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism & Faculty Diabetes Center, University of Geneva Medical Center, Geneva, Switzerland.
| |
Collapse
|
17
|
Kim J, Choi C. Orphan GPCRs in Neurodegenerative Disorders: Integrating Structural Biology and Drug Discovery Approaches. Curr Issues Mol Biol 2024; 46:11646-11664. [PMID: 39451571 PMCID: PMC11505999 DOI: 10.3390/cimb46100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Neurodegenerative disorders, particularly Alzheimer's and Parkinson's diseases, continue to challenge modern medicine despite therapeutic advances. Orphan G-protein-coupled receptors (GPCRs) have emerged as promising targets in the central nervous system, offering new avenues for drug development. This review focuses on the structural biology of orphan GPCRs implicated in these disorders, providing a comprehensive analysis of their molecular architecture and functional mechanisms. We examine recent breakthroughs in structural determination techniques, such as cryo-electron microscopy and X-ray crystallography, which have elucidated the intricate conformations of these receptors. The review highlights how structural insights inform our understanding of orphan GPCR activation, ligand binding and signaling pathways. By integrating structural data with molecular pharmacology, we explore the potential of structure-guided approaches in developing targeted therapeutics toward orphan GPCRs. This structural-biology-centered perspective aims to deepen our comprehension of orphan GPCRs and guide future drug discovery efforts in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jinuk Kim
- Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea;
| | | |
Collapse
|
18
|
Zhang T, Wang N, Liao Z, Chen J, Meng H, Lin H, Xu T, Chen L, Zhu LQ, Liu H. A differentiation protocol for generating pancreatic delta cells from human pluripotent stem cells. Front Cell Dev Biol 2024; 12:1490040. [PMID: 39493348 PMCID: PMC11527672 DOI: 10.3389/fcell.2024.1490040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/07/2024] [Indexed: 11/05/2024] Open
Abstract
In this protocol, we detail a seven-stage differentiation methodology for generating pancreatic delta cells (SC-delta cells) from human pluripotent stem cells (hPSCs). In the first step, definitive endoderm is generated by activin A and CHIR99021, followed by induction of primitive gut tube and posterior foregut by treatment with FGF7, SANT1, LDN193189, PdBU, and retinoic acid (RA). The subsequent endocrine generation and directed SC-delta cell induction is achieved by a combined treatment of the FGF7 with FGF2 during stage 4 and 5, together with RA, XXI, ALK5 inhibitor II, SANT1, Betacellulin and LDN193189. The planar cultivation is converted to a suspended system after stage 5, allowing cells to aggregate into delta cell-containing spheroids. The differentiation takes approximately 4-5 weeks for delta cell generation and an additional 1-2 weeks for cell expansion and evaluation. We believe that this amenable and simplified protocol can provide a stable source of SC-delta cells from efficient differentiation, facilitating further investigation of the physiological role of delta cells as well as refinement of islet cell therapeutic strategies.
Collapse
Affiliation(s)
- Tongran Zhang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Testing and Diagnosis Technology Research, Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Nannan Wang
- Department of Testing and Diagnosis Technology Research, Guangzhou National Laboratory, Guangzhou, Guangdong, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiying Liao
- Department of Testing and Diagnosis Technology Research, Guangzhou National Laboratory, Guangzhou, Guangdong, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jingyi Chen
- Department of Testing and Diagnosis Technology Research, Guangzhou National Laboratory, Guangzhou, Guangdong, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, China
| | - Hao Meng
- Department of Testing and Diagnosis Technology Research, Guangzhou National Laboratory, Guangzhou, Guangdong, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haopeng Lin
- Department of Testing and Diagnosis Technology Research, Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Tao Xu
- Department of Testing and Diagnosis Technology Research, Guangzhou National Laboratory, Guangzhou, Guangdong, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lihua Chen
- Department of Testing and Diagnosis Technology Research, Guangzhou National Laboratory, Guangzhou, Guangdong, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huisheng Liu
- Department of Testing and Diagnosis Technology Research, Guangzhou National Laboratory, Guangzhou, Guangdong, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Wu K, Chen J, Lin J, Zhu E, Xu X, Yan X, Ju L, Huang M, Zhang Y. The role of ferroptosis in DM-induced liver injury. Biometals 2024; 37:1191-1200. [PMID: 38874821 DOI: 10.1007/s10534-024-00600-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/25/2024] [Indexed: 06/15/2024]
Abstract
The liver damage caused by Diabetes Mellitus (DM) has attracted increasing attention in recent years. Liver injury in DM can be caused by ferroptosis, a form of cell death caused by iron overload. However, the role of iron transporters in this context is still not clear. Herein, we attempted to shed light on the pathophysiological mechanism of ferroptosis. DM was induced in 8-week-old male rats by streptozotocin (STZ) before assessment of the degree of liver injury. Together with histopathological changes, variations in glutathione peroxidase 4 (GPX4), glutathione (GSH), superoxide dismutase (SOD), transferrin receptor 1 (TFR1), ferritin heavy chain (FTH), ferritin light chain (FTL), ferroportin and Prussian blue staining, were monitored in rat livers before and after treatment with Fer-1. In the liver of STZ-treated rats, GSH and SOD levels decreased, whereas those of malondialdehyde (MDA) increased. Expression of TFR1, FTH and FTL increased whereas that of glutathione peroxidase 4 (GPX4) and ferroportin did not change significantly. Prussian blue staining showed that iron levels increased. Histopathology showed liver fibrosis and decreased glycogen content. Fer-1 treatment reduced iron and MDA levels but GSH and SOD levels were unchanged. Expression of FTH and FTL was reduced whereas that of ferroportin showed a mild decrease. Fer-1 treatment alleviated liver fibrosis, increased glycogen content and mildly improved liver function. Our study demonstrates that ferroptosis is involved in DM-induced liver injury. Regulating the levels of iron transporters may become a new therapeutic strategy in ferroptosis-induced liver injury.
Collapse
Affiliation(s)
- Keping Wu
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Jiasi Chen
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiawen Lin
- Department of Nephrology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Enyi Zhu
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Xiaochang Xu
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Xiuhong Yan
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Lang Ju
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China
| | - Mingcheng Huang
- Department of Nephrology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
| | - Yimin Zhang
- Department of Nephrology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Ministry of Education, Guangzhou, China.
| |
Collapse
|
20
|
Pan Y, Hatano A, Ohno S, Morita K, Kokaji T, Bai Y, Sugimoto H, Egami R, Terakawa A, Li D, Uematsu S, Maehara H, Fujita S, Inoue H, Inaba Y, Nagano AJ, Hirayama A, Soga T, Kuroda S. Time and dose selective glucose metabolism for glucose homeostasis and energy conversion in the liver. NPJ Syst Biol Appl 2024; 10:107. [PMID: 39349490 PMCID: PMC11443093 DOI: 10.1038/s41540-024-00437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 09/10/2024] [Indexed: 10/02/2024] Open
Abstract
Hepatic glucose metabolism serves dual purposes: maintaining glucose homeostasis and converting glucose into energy sources; however, the underlying mechanisms are unclear. We quantitatively measured liver metabolites, gene expression, and phosphorylated insulin signaling molecules in mice orally administered varying doses of glucose, and constructed a transomic network. Rapid phosphorylation of insulin signaling molecules in response to glucose intake was observed, in contrast to the more gradual changes in gene expression. Glycolytic and gluconeogenic metabolites and expression of genes involved in glucose metabolism including glucose-6-phosphate, G6pc, and Pck1, demonstrated high glucose dose sensitivity. Whereas, glucokinase expression and glycogen accumulation showed low glucose dose sensitivity. During the early phase after glucose intake, metabolic flux was geared towards glucose homeostasis regardless of the glucose dose but shifted towards energy conversion during the late phase at higher glucose doses. Our research provides a comprehensive view of time- and dose-dependent selective glucose metabolism.
Collapse
Affiliation(s)
- Yifei Pan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Atsushi Hatano
- Department of Omics and Systems Biology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi Ohno
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of AI Systems Medicine, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Keigo Morita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Toshiya Kokaji
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Data Science Center, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yunfan Bai
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hikaru Sugimoto
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Riku Egami
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Akira Terakawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Dongzi Li
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Saori Uematsu
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Hideki Maehara
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Suguru Fujita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Inoue
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Yuka Inaba
- Metabolism and Nutrition Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Tomoyoshi Soga
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, 108-8345, Tokyo, Japan
| | - Shinya Kuroda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
21
|
Onuma S, Kawai M. Circadian Regulatory Networks of Glucose Homeostasis and Its Disruption as a Potential Cause of Undernutrition. Endocrinology 2024; 165:bqae126. [PMID: 39276035 DOI: 10.1210/endocr/bqae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/09/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024]
Abstract
The circadian clock system, an evolutionarily conserved mechanism, orchestrates diurnal rhythms in biological activities such as behavior and metabolism, aligning them with the earth's 24-hour light/dark cycle. This synchronization enables organisms to anticipate and adapt to predictable environmental changes, including nutrient availability. However, modern lifestyles characterized by irregular eating and sleeping habits disrupt this synchrony, leading to metabolic disorders such as obesity and metabolic syndrome, evidenced by higher obesity rates among shift workers. Conversely, circadian disturbances are also associated with reduced nutrient absorption and an increased risk of malnutrition in populations such as the critically ill or the elderly. The precise mechanisms of these disturbances in leading to either overnutrition or undernutrition is complex and not yet fully understood. Glucose, a crucial energy source, is closely linked to obesity when consumed excessively and to weight loss when intake is reduced, which suggests that circadian regulation of glucose metabolism is a key factor connecting circadian disturbances with nutritional outcomes. In this review, we describe how the biological clock in various tissues regulates glucose metabolism, with a primary focus on studies utilizing animal models. Additionally, we highlight current clinical evidence supporting the association between circadian disturbance and glucose metabolism, arguing that such disruption could predominantly contribute to undernutrition due to impaired efficient utilization of nutrients.
Collapse
Affiliation(s)
- Shinsuke Onuma
- Department of Bone and Mineral Research, Research Institute, Osaka Women's and Children's Hospital, 594-1101, Osaka, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Masanobu Kawai
- Department of Molecular Genetics and Endocrinology, Research Institute, Osaka Women's and Children's Hospital, 594-1101, Osaka, Japan
- Department of Gastroenterology, Nutrition and Endocrinology, Osaka Women's and Children's Hospital, 594-1101, Osaka, Japan
| |
Collapse
|
22
|
Gong X, Zhao Q, Zhang H, Liu R, Wu J, Zhang N, Zou Y, Zhao W, Huo R, Cui R. The Effects of Mesenchymal Stem Cells-Derived Exosomes on Metabolic Reprogramming in Scar Formation and Wound Healing. Int J Nanomedicine 2024; 19:9871-9887. [PMID: 39345908 PMCID: PMC11438468 DOI: 10.2147/ijn.s480901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Pathological scarring results from aberrant cutaneous wound healing due to the overactivation of biological behaviors of human skin fibroblasts, characterized by local inordinate inflammation, excessive extracellular matrix and collagen deposition. Yet, its underlying pathogenesis opinions vary, which could be caused by increased local mechanical tension, enhanced and continuous inflammation, gene mutation, as well as cellular metabolic disorder, etc. Metabolic reprogramming is the process by which the metabolic pattern of cells undergoes a systematic adjustment and transformation to adapt to the changes of the external environment and meet the needs of their growth and differentiation. Therefore, the abnormality of metabolic reprogramming in cells within wounds and scars attaches great importance to scar formation. Mesenchymal stem cells-derived exosomes (MSC-Exo) are the extracellular vesicles that play an important role in tissue repair, cancer treatment as well as immune and metabolic regulation. However, there is not a systematic work to detail the relevant studies. Herein, we gave a comprehensive summary of the existing research on three main metabolisms, including glycometabolism, lipid metabolism and amino acid metabolism, and MSC-Exo regulating metabolic reprogramming in wound healing and scar formation for further research reference.
Collapse
Affiliation(s)
- Xiangan Gong
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Qian Zhao
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Huimin Zhang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Rui Liu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Jie Wu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Nanxin Zhang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, People’s Republic of China
| | - Yuanxian Zou
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Wen Zhao
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Ran Huo
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Rongtao Cui
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
- School of Clinical Medicine, Shandong Second Medical University, Weifang, People’s Republic of China
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| |
Collapse
|
23
|
Chang L, Liu Y, Gu Y, Yan S, Ding L, Liu M, He Q. Inadequate Glucagon Suppression During OGTT in Prediabetes: A Systematic Review and Meta-analysis. J Clin Endocrinol Metab 2024; 109:2673-2680. [PMID: 38963886 DOI: 10.1210/clinem/dgae460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
CONTEXT Glucagon plays a role in the development of type 2 diabetes, yet its role in prediabetes (preDM) remains uncertain. OBJECTIVE To evaluate glucagon levels in the fasting state and its response to glucose inhibition in preDM through meta-analysis. METHODS A systematic search across Pubmed, Embase, Web of Science, and Cochrane Library identified studies assessing glucagon levels during 75 g oral glucose tolerance test (OGTT) in both preDM and normal glucose tolerance (NGT) cohorts. Data on glucagon, glucose, and insulin were pooled using a random-effect model. RESULTS Although glucagon levels decreased in both preDM and NGT groups upon glucose challenge, glucagon levels at 0 hours, 0.5 hours, 1 hour, and 1.5 hours in preDM were significantly higher compared to NGT, despite higher glucose levels at all time points and higher insulin levels at 0 hours, 1 hour, 1.5 hours, and 2 hours during OGTT. Subgroup analysis revealed that in studies using the radioimmunoassay method, glucagon levels in preDM were higher at 0.5 hours and 1 hour than NGT, while in studies using the ELISA method, glucagon levels were similar to those of the NGT group despite higher glucose in preDM compared to NGT. Fasting glucagon level was inadequately suppressed in both impaired glucose tolerance (IGT) and impaired fasting glucose (IFG). Responsiveness to glucose inhibition was preserved in IFG, while glucagon level in IGT group at 0.5 hours after glucose intake was not suppressed and was higher than NGT. CONCLUSION Glucagon was not adequately suppressed during OGTT in preDM. Glucagon dysregulation is a contributing mechanism underlying both IFG and IGT.
Collapse
Affiliation(s)
- Lina Chang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ying Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yian Gu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Siyu Yan
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Li Ding
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qing He
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
24
|
Kim KJ, Kim JY. Polyphenols in foods: a potential strategy for preventing and managing the postprandial hyperglycemic response. Food Sci Biotechnol 2024; 33:2699-2713. [PMID: 39184987 PMCID: PMC11339232 DOI: 10.1007/s10068-024-01607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 08/27/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a significant health risk worldwide, and effective management strategies are needed. Polyphenols exhibit diverse biological functions, are abundant in various plants, and influence carbohydrate digestion and absorption. This review provides a comprehensive overview of clinical evidence regarding the relationship between dietary polyphenols and the postprandial hyperglycemic response. Human intervention studies have demonstrated the benefits of polyphenol-rich foods in improving glucose and insulin metabolism, underscoring their role in preventing T2DM. These findings highlight the potential of polyphenol-rich foods for managing hyperglycemia and mitigating T2DM risk and provide insight into effective dietary strategies for glycemic control and overall health.
Collapse
Affiliation(s)
- Kyeong Jin Kim
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, 232, Gongneung-ro, Nowon-gu, Seoul, 01811 Republic of Korea
| |
Collapse
|
25
|
Visa M, Berggren PO. Sex-dependent intra-islet structural rearrangements affecting alpha-to-beta cell interactions lead to adaptive enhancements of Ca 2+ dynamics in prediabetic beta cells. Diabetologia 2024; 67:1663-1682. [PMID: 38814444 PMCID: PMC11343800 DOI: 10.1007/s00125-024-06173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/09/2024] [Indexed: 05/31/2024]
Abstract
AIMS/HYPOTHESIS Prediabetic pancreatic beta cells can adapt their function to maintain normoglycaemia for a limited period of time, after which diabetes mellitus will manifest upon beta cell exhaustion. Understanding sex-specific beta cell compensatory mechanisms and their failure in prediabetes (impaired glucose tolerance) is crucial for early disease diagnosis and individualised treatment. Our aims were as follows: (1) to determine the key time points of the progression from beta cells' functional adaptations to their failure in vivo; and (2) to mechanistically explain in vivo sex-specific beta cell compensatory mechanisms and their failure in prediabetes. METHODS Islets from male and female transgenic Ins1CreERT2-GCaMP3 mice were transplanted into the anterior chamber of the eye of 10- to 12-week-old sex-matched C57BL/6J mice. Recipient mice were fed either a control diet (CD) or western diet (WD) for a maximum of 4 months. Metabolic variables were evaluated monthly. Beta cell cytoplasmic free calcium concentration ([Ca2+]i) dynamics were monitored in vivo longitudinally by image fluorescence of the GCaMP3 reporter islets. Global islet beta cell [Ca2+]i dynamics in line with single beta cell [Ca2+]i analysis were used for beta cell coordination studies. The glucagon receptor antagonist L-168,049 (4 mmol/l) was applied topically to the transplanted eyes to evaluate in vivo the effect of glucagon on beta cell [Ca2+]idynamics. Human islets from non-diabetic women and men were cultured for 24 h in either a control medium or high-fat/high-glucose medium in the presence or absence of the glucagon receptor antagonist L-168,049. [Ca2+]i dynamics of human islets were evaluated in vitro after 1 h exposure to Fura-10. RESULTS Mice fed a WD for 1 month displayed increased beta cell [Ca2+]i dynamics linked to enhanced insulin secretion as a functional compensatory mechanism in prediabetes. Recruitment of inactive beta cells in WD-fed mice explained the improved beta cell function adaptation observed in vivo; this occurred in a sex-specific manner. Mechanistically, this was attributable to an intra-islet structural rearrangement involving alpha cells. These sex-dependent cytoarchitecture reorganisations, observed in both mice and humans, induced enhanced paracrine input from adjacent alpha cells, adjusting the glucose setpoint and amplifying the insulin secretion pathway. When WD feeding was prolonged, female mice maintained the adaptive mechanism due to their intrinsically high proportion of alpha cells. In males, [Ca2+]i dynamics progressively declined subsequent to glucose stimulation while insulin secretion continue to increase, suggesting uncoordinated beta cell function as an early sign of diabetes. CONCLUSIONS/INTERPRETATION We identified increased coordination of [Ca2+]i dynamics as a beta cell functional adaptation mechanisms in prediabetes. Importantly, we uncovered the mechanisms by which sex-dependent beta cell [Ca2+]i dynamics coordination is orchestrated by an intra-islet structure reorganisation increasing the paracrine input from alpha cells on beta cell function. Moreover, we identified reduced [Ca2+]i dynamics coordination in response to glucose as an early sign of diabetes preceding beta cell secretory dysfunction, with males being more vulnerable. Alterations in coordination capacity of [Ca2+]i dynamics may thus serve as an early marker for beta cell failure in prediabetes.
Collapse
Affiliation(s)
- Montse Visa
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden.
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Stockholm, Sweden.
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
- Tecnológico de Monterrey, Real San Agustín, Mexico.
- West China Hospital, Sichuan University, Chengdu, China.
- School of Biomedical Sciences, Ulster University, Coleraine, UK.
| |
Collapse
|
26
|
Chen J, Zhao W, Cao L, Martins RST, Canário AVM. Somatostatin signalling coordinates energy metabolism allocation to reproduction in zebrafish. BMC Biol 2024; 22:163. [PMID: 39075492 PMCID: PMC11288053 DOI: 10.1186/s12915-024-01961-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/23/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Energy allocation between growth and reproduction determines puberty onset and fertility. In mammals, peripheral hormones such as leptin, insulin and ghrelin signal metabolic information to the higher centres controlling gonadotrophin-releasing hormone neurone activity. However, these observations could not be confirmed in lower vertebrates, suggesting that other factors may mediate the energetic trade-off between growth and reproduction. A bioinformatic and experimental study suggested co-regulation of the circadian clock, reproductive axis and growth-regulating genes in zebrafish. While loss-of-function of most of the identified co-regulated genes had no effect or only had mild effects on reproduction, no such information existed about the co-regulated somatostatin, well-known for its actions on growth and metabolism. RESULTS We show that somatostatin signalling is pivotal in regulating fecundity and metabolism. Knock-out of zebrafish somatostatin 1.1 (sst1.1) and somatostatin 1.2 (sst1.2) caused a 20-30% increase in embryonic primordial germ cells, and sst1.2-/- adults laid 40% more eggs than their wild-type siblings. The sst1.1-/- and sst1.2-/- mutants had divergent metabolic phenotypes: the former had 25% more pancreatic α-cells, were hyperglycaemic and glucose intolerant, and had increased adipocyte mass; the latter had 25% more pancreatic β-cells, improved glucose clearance and reduced adipocyte mass. CONCLUSIONS We conclude that somatostatin signalling regulates energy metabolism and fecundity through anti-proliferative and modulatory actions on primordial germ cells, pancreatic insulin and glucagon cells and the hypothalamus. The ancient origin of the somatostatin system suggests it could act as a switch linking metabolism and reproduction across vertebrates. The results raise the possibility of applications in human and animal fertility.
Collapse
Affiliation(s)
- Jie Chen
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
- CCMAR/CIMAR Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Wenting Zhao
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Lei Cao
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Rute S T Martins
- CCMAR/CIMAR Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - Adelino V M Canário
- International Research Center for Marine Biosciences, Ministry of Science and Technology and National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
- CCMAR/CIMAR Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal.
| |
Collapse
|
27
|
Chen L, Wang N, Zhang T, Zhang F, Zhang W, Meng H, Chen J, Liao Z, Xu X, Ma Z, Xu T, Liu H. Directed differentiation of pancreatic δ cells from human pluripotent stem cells. Nat Commun 2024; 15:6344. [PMID: 39068220 PMCID: PMC11283558 DOI: 10.1038/s41467-024-50611-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Dysfunction of pancreatic δ cells contributes to the etiology of diabetes. Despite their important role, human δ cells are scarce, limiting physiological studies and drug discovery targeting δ cells. To date, no directed δ-cell differentiation method has been established. Here, we demonstrate that fibroblast growth factor (FGF) 7 promotes pancreatic endoderm/progenitor differentiation, whereas FGF2 biases cells towards the pancreatic δ-cell lineage via FGF receptor 1. We develop a differentiation method to generate δ cells from human stem cells by combining FGF2 with FGF7, which synergistically directs pancreatic lineage differentiation and modulates the expression of transcription factors and SST activators during endoderm/endocrine precursor induction. These δ cells display mature RNA profiles and fine secretory granules, secrete somatostatin in response to various stimuli, and suppress insulin secretion from in vitro co-cultured β cells and mouse β cells upon transplantation. The generation of human pancreatic δ cells from stem cells in vitro would provide an unprecedented cell source for drug discovery and cell transplantation studies in diabetes.
Collapse
Affiliation(s)
- Lihua Chen
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Nannan Wang
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tongran Zhang
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Feng Zhang
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Wei Zhang
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Hao Meng
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Jingyi Chen
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, China
| | - Zhiying Liao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Xiaopeng Xu
- Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Zhuo Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tao Xu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou, Guangdong, China.
| | - Huisheng Liu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou, Guangdong, China.
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, China.
| |
Collapse
|
28
|
Pixner T, Chaikouskaya T, Lauth W, Zimmermann G, Mörwald K, Lischka J, Furthner D, Awender E, Geiersberger S, Maruszczak K, Forslund A, Anderwald CH, Cadamuro J, Weghuber D, Bergsten P. Rise in fasting and dynamic glucagon levels in children and adolescents with obesity is moderate in subjects with impaired fasting glucose but accentuated in subjects with impaired glucose tolerance or type 2 diabetes. Front Endocrinol (Lausanne) 2024; 15:1368570. [PMID: 39027470 PMCID: PMC11254805 DOI: 10.3389/fendo.2024.1368570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Background Fasting levels of glucagon are known to be elevated in youth and adults with type 2 diabetes mellitus (T2D). Children and adolescents with obesity were previously reported to show increasing fasting and post-glucose-challenge hyperglucagonemia across the spectrum of glucose tolerance, while no data are available in those with impaired fasting glucose (IFG). Materials and methods Individuals from the Beta-JUDO study population (Uppsala and Salzburg 2010-2016) (n=101, age 13.3 ± 2.8, m/f =50/51) were included (90 with overweight or obesity, 11 with normal weight). Standardized OGTT were performed and plasma glucose, glucagon and insulin concentrations assessed at baseline, 5, 10, 15, 30, 60, 90 and 120 minutes. Patients were grouped according to their glycemic state in six groups with normal glucose metabolism (NGM) and normal weight (NG-NW), NGM with obesity or overweight (NG-O), impaired glucose tolerance (IGT), impaired fasting glucose (IFG), IGT+IFG and T2D, and in two groups with NGM and impaired glucose metabolism (IGM), for statistical analysis. Results and conclusion Glucagon concentrations were elevated in young normoglycemic individuals with overweight or obesity (NG-O) compared to normoglycemic individuals with normal weight. Glucagon levels, fasting and dynamic, increased with progressing glycemic deterioration, except in IFG, where levels were comparable to those in NG-O. All glycemic groups showed an overall suppression of glucagon during OGTT. An initial increase of glucagon could be observed in T2D. In T2D, glucagon showed a strong direct linear correlation with plasma glucose levels during OGTT. Glucagon in adolescents, as in adults, may play a role in the disease progression of T2D.
Collapse
Affiliation(s)
- Thomas Pixner
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Tatsiana Chaikouskaya
- Institut national supérieur des sciences agronomiques de l'alimentation et de l'environnement, Dijon, France
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Wanda Lauth
- Biostatistics and Big Medical Data, Lab for Intelligent Data Analytics (IDA) Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Georg Zimmermann
- Biostatistics and Big Medical Data, Lab for Intelligent Data Analytics (IDA) Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Katharina Mörwald
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Julia Lischka
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Dieter Furthner
- Department of Pediatric and Adolescent Medicine, Salzkammergutklinikum Voecklabruck, Voecklabruck, Austria
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
| | - Elisabeth Awender
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Sabine Geiersberger
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Clinical Research Center Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Katharina Maruszczak
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Anders Forslund
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Christian-Heinz Anderwald
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
- Direction, Arnoldstein Healthcare Centre, Arnoldstein, Austria
| | - Janne Cadamuro
- Department of Laboratory Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Weghuber
- Obesity Research Unit, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
29
|
Joshua Ashaolu T, Joshua Olatunji O, Can Karaca A, Lee CC, Mahdi Jafari S. Anti-obesity and anti-diabetic bioactive peptides: A comprehensive review of their sources, properties, and techno-functional challenges. Food Res Int 2024; 187:114427. [PMID: 38763677 DOI: 10.1016/j.foodres.2024.114427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
The scourge of obesity arising from obesogens and poor dieting still ravages our planet as half of the global population may be overweight and obese by 2035. This metabolic disorder is intertwined with type 2 diabetes (T2D), both of which warrant alternative therapeutic options other than clinically approved drugs like orlistat with their tendency of abuse and side effects. In this review, we comprehensively describe the global obesity problem and its connection to T2D. Obesity, overconsumption of fats, the mechanism of fat digestion, obesogenic gut microbiota, inhibition of fat digestion, and natural anti-obesity compounds are discussed. Similar discussions are made for diabetes with regard to glucose regulation, the diabetic gut microbiota, and insulinotropic compounds. The sources and production of anti-obesity bioactive peptides (AOBPs) and anti-diabetic bioactive peptides (ADBPs) are also described while explaining their structure-function relationships, gastrointestinal behaviors, and action mechanisms. Finally, the techno-functional applications of AOBPs and ADBPs are highlighted.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Medicine, Duy Tan University, Da Nang 550000, Vietnam.
| | | | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey.
| | - Chi-Ching Lee
- Istanbul Sabahattin Zaim University, Faculty of Engineering and Natural Sciences, Department of Food Engineering, Istanbul, Turkey.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
30
|
Aldehoff AS, Karkossa I, Goerdeler C, Krieg L, Schor J, Engelmann B, Wabitsch M, Landgraf K, Hackermüller J, Körner A, Rolle-Kampczyk U, Schubert K, von Bergen M. Unveiling the dynamics of acetylation and phosphorylation in SGBS and 3T3-L1 adipogenesis. iScience 2024; 27:109711. [PMID: 38840842 PMCID: PMC11152682 DOI: 10.1016/j.isci.2024.109711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/11/2023] [Accepted: 04/06/2024] [Indexed: 06/07/2024] Open
Abstract
Obesity, characterized by enlarged and dysfunctional adipose tissue, is among today's most pressing global public health challenges with continuously increasing prevalence. Despite the importance of post-translational protein modifications (PTMs) in cellular signaling, knowledge of their impact on adipogenesis remains limited. Here, we studied the temporal dynamics of transcriptome, proteome, central carbon metabolites, and the acetyl- and phosphoproteome during adipogenesis using LC-MS/MS combined with PTM enrichment strategies on human (SGBS) and mouse (3T3-L1) adipocyte models. Both cell lines exhibited unique PTM profiles during adipogenesis, with acetylated proteins being enriched for central energy metabolism, while phosphorylated proteins related to insulin signaling and organization of cellular structures. As candidates with strong correlation to the adipogenesis timeline we identified CD44 and the acetylation sites FASN_K673 and IDH_K272. While results generally aligned between SGBS and 3T3-L1 cells, details appeared cell line specific. Our datasets on SGBS and 3T3-L1 adipogenesis dynamics are accessible for further mining.
Collapse
Affiliation(s)
- Alix Sarah Aldehoff
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Isabel Karkossa
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Cornelius Goerdeler
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Laura Krieg
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Jana Schor
- Department of Computational Biology and Chemistry, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Beatrice Engelmann
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Martin Wabitsch
- Division of Pediatric Endocrinology and Diabetes, University Hospital for Children and Adolescents Ulm, Ulm, Germany
| | - Kathrin Landgraf
- University Hospital for Children and Adolescents, Center for Pediatric Research, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Jörg Hackermüller
- Department of Computational Biology and Chemistry, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
- Department of Computer Science, University of Leipzig, Leipzig, Germany
| | - Antje Körner
- University Hospital for Children and Adolescents, Center for Pediatric Research, Medical Faculty, University of Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic Obesity and Vascular Research (HI-MAG) of the Helmholtz-Centre Munich at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- LIFE–Leipzig Research Center for Civilization Diseases, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Kristin Schubert
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Toxicology, Helmholtz-Centre for Environmental Research GmbH (UFZ), Leipzig, Germany
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
31
|
Cao Y, Wang X. Correlation between islet α cell function and peripheral neuropathy in patients with type 2 diabetes mellitus. Clinics (Sao Paulo) 2024; 79:100392. [PMID: 38908048 PMCID: PMC11253275 DOI: 10.1016/j.clinsp.2024.100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 04/30/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND This study explored the correlation between pancreatic islet α cell function, as reflected by the plasma glucagon levels, and Diabetic Peripheral Neuropathy (DPN) in patients with Type 2 Diabetes Mellitus (T2DM). METHODS A total of 358 patients with T2DM were retrospectively enrolled in this study and divided into the Non-DPN (NDPN) group (n = 220) and the DPN group (n = 138). All patients underwent an oral glucose tolerance test to detect levels of blood glucose, insulin and glucagon, and the Area Under the Curve (AUC) for Glucagon (AUCglu) was used to estimate the overall glucagon level. The Peripheral Nerve Conduction Velocity (PNCV), Amplitude (PNCA) and Latency (PNCL) were obtained with electromyography, and their Z scores were calculated. RESULTS There were significant differences regarding the age, disease duration, serum levels of alanine aminotransferase, aspartate aminotransferase, urea nitrogen, high-density lipoprotein, and 2h-C peptide between these two groups (p < 0.05). The NDPN group had higher glucagon levels at 30, 60 and 120 min and AUCglu (p < 0.05). The Z-scores of PNCV and PNCA showed an increasing trend (p < 0.05), while the Z-score of PNCL showed a decreasing trend (p < 0.05). The glucagon levels were positively correlated with PNCV and PNCA, but negatively correlated with PNCL, with Gluca30min having the strongest correlation (p < 0.05). Gluca30min was independently related to PNCV, PNCL, PNCA and DPN, respectively (p < 0.05). The function of pancreatic α islet cells, as reflected by the plasma glucagon level, is closely related to the occurrence of DPN in T2DM patients. CONCLUSION Gluca30min may be a potentially valuable independent predictor for the occurrence of DPN.
Collapse
Affiliation(s)
- Yurou Cao
- Department of Endocrinology, Jiangsu Rudong County People's Hospital, Jiangsu Province, PR China
| | - Xueqin Wang
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University, and First People's Hospital of Nantong, Jiangsu Province, PR China.
| |
Collapse
|
32
|
Karimi R, Yanovich A, Elbarbry F, Cleven A. Adaptive Effects of Endocrine Hormones on Metabolism of Macronutrients during Fasting and Starvation: A Scoping Review. Metabolites 2024; 14:336. [PMID: 38921471 PMCID: PMC11205672 DOI: 10.3390/metabo14060336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Food deprivation can occur for different reasons. Fasting (<24 h duration) occurs to meet religious or well-being goals. Starvation (>1-day duration) occurs when there is intentional (hunger strike or treatment of a medical condition) or unintentional (anorexia nervosa, drought, epidemic famine, war, or natural disaster) food deprivation. A scoping review was undertaken using the PubMed database to explore 1805 abstracts and review 88 eligible full-text articles to explore the adaptive relationships that emerge between cortisol, insulin, glucagon, and thyroid hormones on the metabolic pathways of macronutrients in humans during fasting and starvation. The collected data indicate that fasting and starvation prime the human body to increase cortisol levels and decrease the insulin/glucagon ratio and triiodothyronine (T3) levels. During fasting, increased levels of cortisol and a decreased insulin/glucagon ratio enhance glycogenolysis and reduce the peripheral uptake of glucose and glycogenesis, whereas decreased T3 levels potentially reduce glycogenolysis. During starvation, increased levels of cortisol and a decreased insulin/glucagon ratio enhance lipolysis, proteolysis, fatty acid and amino acid oxidation, ketogenesis, and ureagenesis, and decreased T3 levels reduce thermogenesis. We present a potential crosstalk between T3 and the above hormones, including between T3 and leptin, to extend their adaptive roles in the metabolism of endogenous macronutrients during food deprivation.
Collapse
Affiliation(s)
- Reza Karimi
- Pacific University School of Pharmacy, 222 SE 8th Avenue, HPC-Ste 451, Hillsboro, OR 97123, USA; (A.Y.); (F.E.); (A.C.)
| | | | | | | |
Collapse
|
33
|
Reed J, Bain SC, Kanamarlapudi V. The Regulation of Metabolic Homeostasis by Incretins and the Metabolic Hormones Produced by Pancreatic Islets. Diabetes Metab Syndr Obes 2024; 17:2419-2456. [PMID: 38894706 PMCID: PMC11184168 DOI: 10.2147/dmso.s415934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/07/2024] [Indexed: 06/21/2024] Open
Abstract
In healthy humans, the complex biochemical interplay between organs maintains metabolic homeostasis and pathological alterations in this process result in impaired metabolic homeostasis, causing metabolic diseases such as diabetes and obesity, which are major global healthcare burdens. The great advancements made during the last century in understanding both metabolic disease phenotypes and the regulation of metabolic homeostasis in healthy individuals have yielded new therapeutic options for diseases like type 2 diabetes (T2D). However, it is unlikely that highly desirable more efficacious treatments will be developed for metabolic disorders until the complex systemic regulation of metabolic homeostasis becomes more intricately understood. Hormones produced by pancreatic islet beta-cells (insulin) and alpha-cells (glucagon) are pivotal for maintaining metabolic homeostasis; the activity of insulin and glucagon are reciprocally correlated to achieve strict control of glucose levels (normoglycaemia). Metabolic hormones produced by other pancreatic islet cells and incretins produced by the gut are also crucial for maintaining metabolic homeostasis. Recent studies highlighted the incomplete understanding of metabolic hormonal synergism and, therefore, further elucidation of this will likely lead to more efficacious treatments for diseases such as T2D. The objective of this review is to summarise the systemic actions of the incretins and the metabolic hormones produced by the pancreatic islets and their interactions with their respective receptors.
Collapse
Affiliation(s)
- Joshua Reed
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | - Stephen C Bain
- Institute of Life Science, Medical School, Swansea University, Swansea, SA2 8PP, UK
| | | |
Collapse
|
34
|
Boamah GA, Huang Z, Ke C, You W, Ayisi CL, Amenyogbe E, Droepenu E. Preliminary analysis of pathways and their implications during salinity stress in abalone. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101224. [PMID: 38430709 DOI: 10.1016/j.cbd.2024.101224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Transcriptome sequencing has offered immense opportunities to study non-model organisms. Abalone is an important marine mollusk that encounters harsh environmental conditions in its natural habitat and under aquaculture conditions; hence, research that increases molecular information to understand abalone physiology and stress response is noteworthy. Accordingly, the study used transcriptome sequencing of the gill tissues of abalone exposed to low salinity stress. The aim is to explore some enriched pathways during salinity stress and the crosstalk and functions of the genes involved in the candidate biological processes for future further analysis of their expression patterns. The data suggest that abalone genes such as YAP/TAZ, Myc, Nkd, and Axin (involved in the Hippo signaling pathway) and PI3K/Akt, SHC, and RTK (involved in the Ras signaling pathways) might mediate growth and development. Thus, deregulation of the Hippo and Ras pathways by salinity stress could be a possible mechanism by which unfavorable salinities influence growth in abalone. Furthermore, PEPCK, GYS, and PLC genes (mediating the Glucagon signaling pathway) might be necessary for glucose homeostasis, reproduction, and abalone meat sensory qualities; hence, a need to investigate how they might be influenced by environmental stress. Genes such as MYD88, IRAK1/4, JNK, AP-1, and TRAF6 (mediating the MAPK signaling pathway) could be useful in understanding abalone's innate immune response to environmental stresses. Finally, the aminoacyl-tRNA biosynthesis pathway hints at the mechanism by which new raw materials for protein biosynthesis are mobilized for physiological processes and how abalone might respond to this process during salinity stress. Low salinity clearly regulated genes in these pathways in a time-dependent manner, as hinted by the heat maps. In the future, qRT-PCR verification and in-depth study of the various genes and proteins discussed would provide enormous molecular information resources for the abalone biology.
Collapse
Affiliation(s)
- Grace Afumwaa Boamah
- Department of Water Resources and Aquaculture Management, University of Environment and Sustainable Development, PMB, Somanya, Ghana.
| | - Zekun Huang
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, PR China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China
| | - Christian Larbi Ayisi
- Department of Water Resources and Aquaculture Management, University of Environment and Sustainable Development, PMB, Somanya, Ghana
| | - Eric Amenyogbe
- Department of Water Resources and Aquaculture Management, University of Environment and Sustainable Development, PMB, Somanya, Ghana
| | - Eric Droepenu
- Department of Water Resources and Aquaculture Management, University of Environment and Sustainable Development, PMB, Somanya, Ghana
| |
Collapse
|
35
|
Kabaliei A, Palchyk V, Izmailova O, Shynkevych V, Shlykova O, Kaidashev I. Long-Term Administration of Omeprazole-Induced Hypergastrinemia and Changed Glucose Homeostasis and Expression of Metabolism-Related Genes. BIOMED RESEARCH INTERNATIONAL 2024; 2024:7747599. [PMID: 38884019 PMCID: PMC11178409 DOI: 10.1155/2024/7747599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 06/18/2024]
Abstract
Introduction PPIs, or proton pump inhibitors, are the most widely prescribed drugs. There is a debate regarding the relationship between long-term PPI use and the risk of type 2 diabetes mellitus (T2DM). A potential connection between T2DM and PPIs could be an elevated gastrin concentration. This study is aimed at investigating the long-term effects of PPI omeprazole (OZ) on glucose homeostasis and pancreatic gene expression profile in mice. Methods Healthy adult male BALB/c mice were randomly divided into three equal groups (n = 10 in each one): (1) experimental mice that received OZ 20 mg/kg; (2) control mice that received 30 μl saline per os; (3) intact mice without any interventions. Mice were treated for 30 weeks. Glucose homeostasis was investigated by fasting blood glucose level, oral glucose tolerance test (GTT), insulin tolerance test (ITT), and basal insulin resistance (HOMA-IR). Serum gastrin and insulin concentration were determined by ELISA. Expressions of Sirt1, Pparg, Nfκb1 (p105), Nfe2l2, Cxcl5, Smad3, H2a.z, and H3f3b were measured by RT-PCR. Result The ROC analysis revealed an increase in fasting blood glucose levels in OZ-treated mice in comparison with control and intact groups during the 30-week experiment. A slight but statistically significant increase in glucose tolerance and insulin sensitivity was observed in OZ-treated mice within 30 weeks of the experiment. The mice treated with OZ exhibited significant increases in serum insulin and gastrin levels, accompanied by a rise in the HOMA-IR level. These animals had a statistically significant increase in Sirt1, Pparg, and Cxcl5 mRNA expression. There were no differences in β-cell numbers between groups. Conclusion Long-term OZ treatment induced hypergastrin- and hyperinsulinemia and increased expression of Sirt1, Pparg, and Cxcl5 in mouse pancreatic tissues accompanied by specific changes in glucose metabolism. The mechanism of omeprazole-induced Cxcl5 mRNA expression and its association with pancreatic cancer risk should be investigated.
Collapse
|
36
|
Xie Y, Shao X, Zhang P, Zhang H, Yu J, Yao X, Fu Y, Wei J, Wu C. High Starch Induces Hematological Variations, Metabolic Changes, Oxidative Stress, Inflammatory Responses, and Histopathological Lesions in Largemouth Bass ( Micropterus salmoides). Metabolites 2024; 14:236. [PMID: 38668364 PMCID: PMC11051861 DOI: 10.3390/metabo14040236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
This study evaluated effects of high starch (20%) on hematological variations, glucose and lipid metabolism, antioxidant ability, inflammatory responses, and histopathological lesions in largemouth bass. Results showed hepatic crude lipid and triacylglycerol (TAG) contents were notably increased in fish fed high starch. High starch could increase counts of neutrophils, lymphocytes, monocytes, eosinophils, and basophils and serum contents of TAG, TBA, BUN, and LEP (p < 0.05). There were increasing trends in levels of GLUT2, glycolysis, gluconeogenesis, and LDH in fish fed high starch through the AKT/PI3K signal pathway. Meanwhile, high starch not only triggered TAG and cholesterol synthesis, but mediated cholesterol accumulation by reducing ABCG5, ABCG8, and NPC1L1. Significant increases in lipid droplets and vacuolization were also shown in hepatocytes of D3-D7 groups fed high starch. In addition, high starch could decrease levels of mitochondrial Trx2, TrxR2, and Prx3, while increasing ROS contents. Moreover, high starch could notably increase amounts of inflammatory factors (IL-1β, TNF-α, etc.) by activating NLRP3 inflammasome key molecules (GSDME, caspase 1, etc.). In conclusion, high starch could not only induce metabolic disorders via gluconeogenesis and accumulation of glycogen, TAG, and cholesterol, but could disturb redox homeostasis and cause inflammatory responses by activating the NLRP3 inflammasome in largemouth bass.
Collapse
Affiliation(s)
| | - Xianping Shao
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Department of Fisheries, School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, China; (Y.X.); (P.Z.); (H.Z.); (J.Y.); (X.Y.); (Y.F.); (J.W.)
| | | | | | | | | | | | | | - Chenglong Wu
- National-Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition (Zhejiang), Department of Fisheries, School of Life Science, Huzhou University, 759 East 2nd Road, Huzhou 313000, China; (Y.X.); (P.Z.); (H.Z.); (J.Y.); (X.Y.); (Y.F.); (J.W.)
| |
Collapse
|
37
|
Chang L, Ma X, Yuan M, Ding L, Gu Y, Liu L, Li Y, Shu H, Liu M, He Q. Lowest Glucagon/Highest C-Peptide in Oral Glucose Tolerance Test: Clinical Utility in Monitoring Glucose Control in Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2024; 17:1769-1780. [PMID: 38645659 PMCID: PMC11032662 DOI: 10.2147/dmso.s459392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024] Open
Abstract
Purpose Understanding factors that influence blood glucose levels in patients with type 2 diabetes mellitus (T2DM) is crucial for managing hyperglycemia. Currently, there is no standardized interpretation method for glucagon levels in oral glucose tolerance test (OGTT). This study aims to assess the relationship between the lowest glucagon/highest C-peptide ratio (Lglc/Hcp) in OGTT and glucose control levels in T2DM. Patients and Methods Clinical data from 120 patients with T2DM were examined to compare the correlations of Lglc/Hcp and other pancreatic islet function-associated indices with fasting blood glucose (G0), glucose at 120 minutes in OGTT (G120), hemoglobin A1c (HbA1c), and the area under the glucose curve in OGTT (AUCglu). Additionally, the study investigated difference in Lglc/Hcp between patient groups based on the highest blood glucose levels (Hglu) in OGTT (Hglu ≥ 16.7 mmol/L vs Hglu < 16.7 mmol/L). Results The generalized linear model suggested that Lglc/Hcp significantly correlated with G0 (B = 0.85, P < 0.001), G120(B = 1.46, P < 0.001), HbA1c (B = 0.67, P < 0.001), and AUCglu (B = 3.46, P < 0.001). This correlation surpassed C-peptide and glucagon-related parameters, even after adjusting for confounding factors. Furthermore, Lglc/Hcp was notably higher in patients with Hglu ≥ 16.7 mmol/L compared to those with Hglu < 16.7 mmol/L (Z = -3.71, p < 0.001). Conclusion Lglc/Hcp in OGTT closely relates to blood glucose control in patients with T2DM, potentially reflecting the overall pancreatic islet function in regulating glucose levels. Moreover, inhibiting glucagon secretion may be a crucial consideration for patients requiring insulin treatment.
Collapse
Affiliation(s)
- Lina Chang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Xiaohui Ma
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Menghua Yuan
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Li Ding
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Yian Gu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Lili Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Yan Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Hua Shu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Qing He
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| |
Collapse
|
38
|
Bani-Ahmad MA, Abu Tayyem NE. The Modulation of Euglycemic Endocrine and Exocrine Pancreatic Secretions in Iron Deficiency. Med Princ Pract 2024; 33:260-268. [PMID: 38479367 PMCID: PMC11175607 DOI: 10.1159/000538335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/10/2024] [Indexed: 06/15/2024] Open
Abstract
OBJECTIVES The contribution of pancreatic secretions in iron metabolism has been elucidated, but the clinical outcomes of iron deficiency on pancreatic function are debatable. This study aimed to investigate the modulation of euglycemic endocrine and exocrine pancreatic excretions in response to variations in iron availability. SUBJECTS AND METHODS Serum levels of insulin, glucagon, insulin-to-glucagon ratio (IGR), and amylase were determined in 170 adult subjects with variable levels of serum iron. RESULTS Control (n = 46) and iron-deficient (n = 124) subjects had significant differences (p < 0.001) in their average levels of insulin (68.7 ± 0.5 vs. 100.0 ± 2.0 pmol/dL), glucagon (17.9 ± 0.6 vs. 10.8 ± 0.8 pmol/dL), IGR (4.0 ± 0.1 vs. 19.5 ± 2.1), and amylase (29.7 ± 0.9 vs. 17.5 ± 0.2). The upregulation of serum insulin levels increases proportionally and gradually to the extent of iron deficiency as compared to an abrupt downregulation of serum levels of glucagon and amylase. A significant association was observed between serum iron and IGR (r = -0.645, p < 0.001) and amylase levels (r = 0.653, p < 0.001). The receiver operating characteristic curve analysis defines an excellent predictivity of the reduced serum iron level to discriminate subjects with upregulated IGR and amylase levels with area under curves of 0.938 and 0.905, respectively. CONCLUSION Iron deficiency is associated with an adaptive modulation of euglycemic endocrine and exocrine secretions that is consistent with a status of insulin resistance.
Collapse
Affiliation(s)
- Mohammad A Bani-Ahmad
- Department of Medical Laboratory Science, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Noor E Abu Tayyem
- Department of Medical Laboratory Science, Faculty of Applied Medical Sciences, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
39
|
le Roux CW, Steen O, Lucas KJ, Startseva E, Unseld A, Hennige AM. Glucagon and GLP-1 receptor dual agonist survodutide for obesity: a randomised, double-blind, placebo-controlled, dose-finding phase 2 trial. Lancet Diabetes Endocrinol 2024; 12:162-173. [PMID: 38330987 DOI: 10.1016/s2213-8587(23)00356-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/16/2023] [Accepted: 11/16/2023] [Indexed: 02/10/2024]
Abstract
BACKGROUND Obesity is a widespread and chronic condition that requires long-term management; research into additional targets to improve treatment outcomes remains a priority. This study aimed to investigate the safety, tolerability, and efficacy of glucagon receptor-GLP-1 receptor dual agonist survodutide (BI 456906) in obesity management. METHODS In this randomised, double-blind, placebo-controlled, dose-finding phase 2 trial conducted in 43 centres in 12 countries, we enrolled participants (aged 18-75 years, BMI ≥27 kg/m2, without diabetes) and randomly assigned them by interactive response technology (1:1:1:1:1; stratified by sex) to subcutaneous survodutide (0·6, 2·4, 3·6, or 4·8 mg) or placebo once-weekly for 46 weeks (20 weeks dose escalation; 26 weeks dose maintenance). The primary endpoint was the percentage change in bodyweight from baseline to week 46. Primary analysis included the modified intention-to-treat population (defined as all randomly assigned patients who received at least one dose of trial medication and who had analysable data for at least one efficacy endpoint) and was based on the dose assigned at randomisation (planned treatment), including all data censored for COVID-19-related discontinuations; the sensitivity analysis was based on the actual dose received during maintenance phase (actual treatment) and included on-treatment data. Safety analysis included all participants who received at least one dose of study drug. The trial is registered with ClinicalTrials.gov (NCT04667377) and EudraCT (2020-002479-37). FINDINGS Between March 30, 2021, and Nov 11, 2021, we enrolled 387 participants; 386 (100%) participants were treated (0·6 mg, n=77; 2·4 mg, n=78; 3·6 mg, n=77; 4·8 mg, n=77; placebo n=77) and 233 (60·4%) of 386 completed the 46-week treatment period (187 [61%] of 309 receiving survodutide; 46 [60%] of 77 receiving placebo). When analysed according to planned treatment, mean (95% CI) changes in bodyweight from baseline to week 46 were -6·2% (-8·3 to -4·1; 0·6 mg); -12·5% (-14·5 to -10·5; 2·4 mg); -13·2% (-15·3 to -11·2; 3·6 mg); -14·9% (-16·9 to -13·0; 4·8 mg); -2·8% (-4·9 to -0·7; placebo). Adverse events occurred in 281 (91%) of 309 survodutide recipients and 58 (75%) of 77 placebo recipients; these were primarily gastrointestinal in 232 (75%) of 309 survodutide recipients and 32 (42%) of 77 placebo recipients. INTERPRETATION All tested survodutide doses were tolerated, and dose-dependently reduced bodyweight. FUNDING Boehringer Ingelheim.
Collapse
Affiliation(s)
- Carel W le Roux
- Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
| | - Oren Steen
- LMC Diabetes and Endocrinology, Toronto, ON, Canada
| | - Kathryn J Lucas
- Diabetes and Endocrinology Consultants, Morehead City, NC, USA
| | | | - Anna Unseld
- Boehringer Ingelheim Pharma GmbH, Biberach an der Riß, Germany
| | - Anita M Hennige
- Boehringer Ingelheim International GmbH, Biberach an der Riß, Germany.
| |
Collapse
|
40
|
Al Musaimi O. Exploring FDA-Approved Frontiers: Insights into Natural and Engineered Peptide Analogues in the GLP-1, GIP, GHRH, CCK, ACTH, and α-MSH Realms. Biomolecules 2024; 14:264. [PMID: 38540684 PMCID: PMC10968328 DOI: 10.3390/biom14030264] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 12/21/2024] Open
Abstract
Peptides continue to gain significance in the pharmaceutical arena. Since the unveiling of insulin in 1921, the Food and Drug Administration (FDA) has authorised around 100 peptides for various applications. Peptides, although initially derived from endogenous sources, have evolved beyond their natural origins, exhibiting favourable therapeutic effectiveness. Medicinal chemistry has played a pivotal role in synthesising valuable natural peptide analogues, providing synthetic alternatives with therapeutic potential. Furthermore, key chemical modifications have enhanced the stability of peptides and strengthened their interactions with therapeutic targets. For instance, selective modifications have extended their half-life and lessened the frequency of their administration while maintaining the desired therapeutic action. In this review, I analyse the FDA approval of natural peptides, as well as engineered peptides for diabetes treatment, growth-hormone-releasing hormone (GHRH), cholecystokinin (CCK), adrenocorticotropic hormone (ACTH), and α-melanocyte stimulating hormone (α-MSH) peptide analogues. Attention will be paid to the structure, mode of action, developmental journey, FDA authorisation, and the adverse effects of these peptides.
Collapse
Affiliation(s)
- Othman Al Musaimi
- School of Pharmacy, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
41
|
Prajapati A, Rana D, Rangra S, Jindal AB, Benival D. Current Status of Therapeutic Peptides for the Management of Diabetes Mellitus. Int J Pept Res Ther 2024; 30:13. [DOI: 10.1007/s10989-024-10590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2024] [Indexed: 01/04/2025]
|
42
|
Maguolo A, Mazzuca G, Smart CE, Maffeis C. Postprandial glucose metabolism in children and adolescents with type 1 diabetes mellitus: potential targets for improvement. Eur J Clin Nutr 2024; 78:79-86. [PMID: 37875611 DOI: 10.1038/s41430-023-01359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023]
Abstract
The main goal of therapeutic management of type 1 Diabetes Mellitus (T1DM) is to maintain optimal glycemic control to prevent acute and long-term diabetes complications and to enable a good quality of life. Postprandial glycemia makes a substantial contribution to overall glycemic control and variability in diabetes and, despite technological advancements in insulin treatments, optimal postprandial glycemia is difficult to achieve. Several factors influence postprandial blood glucose levels in children and adolescents with T1DM, including nutritional habits and adjustment of insulin doses according to meal composition. Additionally, hormone secretion, enteroendocrine axis dysfunction, altered gastrointestinal digestion and absorption, and physical activity play important roles. Meal-time routines, intake of appropriate ratios of macronutrients, and correct adjustment of the insulin dose for the meal composition have positive impacts on postprandial glycemic variability and long-term cardiometabolic health of the individual with T1DM. Further knowledge in the field is necessary for management of all these factors to be part of routine pediatric diabetes education and clinical practice. Thus, the aim of this report is to review the main factors that influence postprandial blood glucose levels and metabolism, focusing on macronutrients and other nutritional and lifestyle factors, to suggest potential targets for improving postprandial glycemia in the management of children and adolescents with T1DM.
Collapse
Affiliation(s)
- Alice Maguolo
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy.
| | - Giorgia Mazzuca
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| | - Carmel E Smart
- School of Health Sciences, University of Newcastle, Callaghan, NSW, Australia
- Department of Paediatric Diabetes and Endocrinology, John Hunter Children's Hospital, Newcastle, NSW, Australia
| | - Claudio Maffeis
- Section of Pediatric Diabetes and Metabolism, Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Verona, Italy
| |
Collapse
|
43
|
Mongkolsucharitkul P, Pinsawas B, Surawit A, Pongkunakorn T, Manosan T, Ophakas S, Suta S, Pumeiam S, Mayurasakorn K. Diabetes-Specific Complete Smoothie Formulas Improve Postprandial Glycemic Response in Obese Type 2 Diabetic Individuals: A Randomized Crossover Trial. Nutrients 2024; 16:395. [PMID: 38337679 PMCID: PMC10857113 DOI: 10.3390/nu16030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
This study aimed to compare newly developed diabetes-specific complete smoothie formulas with a standard diabetes-specific nutritional formula (DSNF) regarding their effects on glucose homeostasis, insulin levels, and lipid metabolism in obese type 2 diabetes (T2DM) patients. We conducted a randomized, double-blind, crossover study with 41 obese T2DM participants to compare two developed diabetes-specific complete smoothie formulas, a soy-based regular smoothie (SM) and a smoothie with modified carbohydrate content (SMMC), with the standard DSNF, Glucerna. Glycemic and insulin responses were assessed after the participants randomly consumed 300 kilocalories of each formulation on three separate days with a 7-day gap between. Postprandial effects on glycemic control, insulin levels, and lipid metabolism were measured. SMMC resulted in a significantly lower glucose area under the curve (AUC0-240) compared to Glucerna and SM (p < 0.05 for both). Insulin AUC0-240 after SMMC was significantly lower than that after SM and Glucerna (p < 0.05). During the diets, the suppression of NEFA was more augmented on SM, resulting in a less total AUC0-240 of NEFA compared to the SMMC diet (p < 0.05). C-peptide AUC0-240 after SMMC was significantly lower than that after Glucerna (p < 0.001). Conversely, glucagon AUC0-240 after SMMC was significantly higher than that after SM and Glucerna (p < 0.05). These results highlight SMMC as the better insulin-sensitive formula, potentially achieved through increased insulin secretion or a direct reduction in glucose absorption. The unique composition of carbohydrates, amino acids, and fats from natural ingredients in the smoothies may contribute to these positive effects, making them promising functional foods for managing diabetes and obesity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Korapat Mayurasakorn
- Siriraj Population Health and Nutrition Research Group, Department of Research Group and Research Network, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (P.M.); (B.P.); (A.S.); (T.P.); (T.M.); (S.O.); (S.S.); (S.P.)
| |
Collapse
|
44
|
Kristensen KB, Ranjan AG, McCarthy OM, Holst JJ, Bracken RM, Nørgaard K, Schmidt S. Effects of a Low-Carbohydrate-High-Protein Pre-Exercise Meal in Type 1 Diabetes-a Randomized Crossover Trial. J Clin Endocrinol Metab 2023; 109:208-216. [PMID: 37463489 DOI: 10.1210/clinem/dgad427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/20/2023]
Abstract
CONTEXT Current guidelines for exercise-related glucose management focus on reducing bolus and/or basal insulin doses and considering carbohydrate intake. Yet far less attention has been paid to the potential role of other macronutrients alongside carbohydrates on glucose dynamics around exercise. OBJECTIVE To investigate the effects of a low-carbohydrate-high-protein (LCHP) compared with a high-carbohydrate-low-protein (HCLP) pre-exercise meal on the metabolic, hormonal, and physiological responses to exercise in adults with insulin pump-treated type 1 diabetes. METHODS Fourteen adults (11 women, 3 men) with insulin pump-treated type 1 diabetes (median [range] HbA1c of 50 [43-59] mmol/mol (6.7% [6.1%-7.5%]), age of 49 [25-65] years, and body mass index of 24.0 [19.3-27.1] kg/m2) completed an unblinded, 2-arm, randomized, crossover study. Participants ingested isocaloric meals that were either LCHP (carbohydrate 21%, protein 52%, fat 27%) or HCLP (carbohydrate 52%, protein 21%, fat 27%) 90 minutes prior to undertaking 45 minutes of cycling at moderate intensity. Meal insulin bolus was dosed according to meal carbohydrate content but reduced by 25%. Basal insulin rates were reduced by 35% from meal ingestion to end of exercise. RESULTS Around exercise the coefficient of variability was lower during LCHP (LCHP: 14.5 ± 5.3 vs HCLP: 24.9 ± 7.7%, P = .001). Over exercise, LCHP was associated with a lesser drop (LCHP: Δ-1.49 ± 1.89 vs HCLP: Δ-3.78 ± 1.95 mmol/L, P = .001). Mean insulin concentration was 30% lower during exercise for LCHP compared with HCLP (LCHP: 25.5 ± 11.0 vs HCLP: 36.5 ± 15.9 mU/L, P < .001). CONCLUSION Ingesting a LCHP pre-exercise meal lowered plasma glucose variability around exercise and diminished the drop in plasma glucose over exercise.
Collapse
Affiliation(s)
- Kasper B Kristensen
- Copenhagen University Hospital-Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Ajenthen G Ranjan
- Copenhagen University Hospital-Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Danish Diabetes Academy, 5000 Odense C, Denmark
| | - Olivia M McCarthy
- Copenhagen University Hospital-Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Applied Sport, Technology, Exercise and Medicine Research Centre, Swansea University, SA1 8EN Swansea, UK
| | - Jens J Holst
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Richard M Bracken
- Applied Sport, Technology, Exercise and Medicine Research Centre, Swansea University, SA1 8EN Swansea, UK
| | - Kirsten Nørgaard
- Copenhagen University Hospital-Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Signe Schmidt
- Copenhagen University Hospital-Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| |
Collapse
|
45
|
Wang P, Wei R, Cui X, Jiang Z, Yang J, Zu L, Hong T. Fatty acid β-oxidation and mitochondrial fusion are involved in cardiac microvascular endothelial cell protection induced by glucagon receptor antagonism in diabetic mice. J Diabetes 2023; 15:1081-1094. [PMID: 37596940 PMCID: PMC10755618 DOI: 10.1111/1753-0407.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/15/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023] Open
Abstract
INTRODUCTION The role of cardiac microvascular endothelial cells (CMECs) in diabetic cardiomyopathy is not fully understood. We aimed to investigate whether a glucagon receptor (GCGR) monoclonal antibody (mAb) ameliorated diabetic cardiomyopathy and clarify whether and how CMECs participated in the process. RESEARCH DESIGN AND METHODS The db/db mice were treated with GCGR mAb or immunoglobulin G (as control) for 4 weeks. Echocardiography was performed to evaluate cardiac function. Immunofluorescent staining was used to determine microvascular density. The proteomic signature in isolated primary CMECs was analyzed by using tandem mass tag-based quantitative proteomic analysis. Some target proteins were verified by using western blot. RESULTS Compared with db/m mice, cardiac microvascular density and left ventricular diastolic function were significantly reduced in db/db mice, and this reduction was attenuated by GCGR mAb treatment. A total of 199 differentially expressed proteins were upregulated in db/db mice versus db/m mice and downregulated in GCGR mAb-treated db/db mice versus db/db mice. The enrichment analysis demonstrated that fatty acid β-oxidation and mitochondrial fusion were the key pathways. The changes of the related proteins carnitine palmitoyltransferase 1B, optic atrophy type 1, and mitofusin-1 were further verified by using western blot. The levels of these three proteins were upregulated in db/db mice, whereas this upregulation was attenuated by GCGR mAb treatment. CONCLUSION GCGR antagonism has a protective effect on CMECs and cardiac diastolic function in diabetic mice, and this beneficial effect may be mediated via inhibiting fatty acid β-oxidation and mitochondrial fusion in CMECs.
Collapse
Affiliation(s)
- Peng Wang
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of EducationBeijing Key Laboratory of Cardiovascular Receptors ResearchBeijingChina
| | - Rui Wei
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| | - Xiaona Cui
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| | - Zongzhe Jiang
- Department of Endocrinology and MetabolismThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Jin Yang
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| | - Lingyun Zu
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of EducationBeijing Key Laboratory of Cardiovascular Receptors ResearchBeijingChina
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| |
Collapse
|
46
|
Friedrichsen MH, Endahl L, Kreiner FF, Goldwater R, Kankam M, Toubro S, Nygård SB. Results from three phase 1 trials of NNC9204-1177, a glucagon/GLP-1 receptor co-agonist: Effects on weight loss and safety in adults with overweight or obesity. Mol Metab 2023; 78:101801. [PMID: 37690519 PMCID: PMC10568562 DOI: 10.1016/j.molmet.2023.101801] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/14/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023] Open
Abstract
OBJECTIVE Glucagon/glucagon-like peptide-1 (GLP-1) receptor co-agonists may provide greater weight loss than agonists targeting the GLP-1 receptor alone. We report results from three phase 1 trials investigating the safety, tolerability, pharmacokinetics and pharmacodynamics of the glucagon/GLP-1 receptor co-agonist NNC9204-1177 (NN1177) for once-weekly subcutaneous use in adults with overweight or obesity. METHODS Our focus was a 12-week, multiple ascending dose (MAD), placebo-controlled, double-blind trial in which adults (N = 99) received NN1177 (on an escalating dose regimen of 200, 600, 1300, 1900, 2800, 4200 and 6000 μg) or placebo. Two other trials also contributed to the findings reported in this article: a first human dose (FHD)/single ascending dose (SAD), placebo-controlled, double-blind trial in which adults (N = 49) received NN1177 (treatment doses of 10, 40, 120, 350, 700 and 1100 μg) or placebo, and a drug-drug interaction, open-label, single-sequence trial in which adults (N = 45) received a 4200-μg dose of NN1177, following administration of a Cooperstown 5 + 1 index cocktail. Safety, tolerability, pharmacokinetic and pharmacodynamic endpoints were assessed. RESULTS For the FHD/SAD and MAD trials, baseline characteristics were generally balanced across treatment cohorts. The geometric mean half-life of NN1177 at steady state was estimated at between 77 and 111 h, and clinically relevant weight loss was achieved (up to 12.6% at week 12; 4200 μg in the MAD trial). Although NN1177 appeared tolerable across trials, several unexpected treatment-related safety signals were observed; increased heart rate, decreased reticulocyte count, increased markers of inflammation (fibrinogen and C-reactive protein), increased aspartate and alanine aminotransferase, impaired glucose tolerance and reduced blood levels of some amino acids. CONCLUSION Although treatment with NN1177 was associated with dose-dependent and clinically relevant weight loss, the observed safety signals precluded further clinical development.
Collapse
Affiliation(s)
| | | | | | | | - Martin Kankam
- Altasciences Clinical Kansas, Overland Park, KS, USA
| | | | | |
Collapse
|
47
|
Ferreira B, Heredia A, Serpa J. An integrative view on glucagon function and putative role in the progression of pancreatic neuroendocrine tumours (pNETs) and hepatocellular carcinomas (HCC). Mol Cell Endocrinol 2023; 578:112063. [PMID: 37678603 DOI: 10.1016/j.mce.2023.112063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/16/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
Cancer metabolism research area evolved greatly, however, is still unknown the impact of systemic metabolism control and diet on cancer. It makes sense that systemic regulators of metabolism can act directly on cancer cells and activate signalling, prompting metabolic remodelling needed to sustain cancer cell survival, tumour growth and disease progression. In the present review, we describe the main glucagon functions in the control of glycaemia and of metabolic pathways overall. Furthermore, an integrative view on how glucagon and related signalling pathways can contribute for pancreatic neuroendocrine tumours (pNETs) and hepatocellular carcinomas (HCC) progression, since pancreas and liver are the major organs exposed to higher levels of glucagon, pancreas as a producer and liver as a scavenger. The main objective is to bring to discussion some glucagon-dependent mechanisms by presenting an integrative view on microenvironmental and systemic aspects in pNETs and HCC biology.
Collapse
Affiliation(s)
- Bárbara Ferreira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal
| | - Adrián Heredia
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal; Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz MB, 1649-028, Lisboa, Portugal
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade NOVA de Lisboa, Campo Dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal; Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023, Lisboa, Portugal.
| |
Collapse
|
48
|
Basit F, Abbas S, Zhu M, Tanwir K, El-Keblawy A, Sheteiwy MS, Raza A, Hu J, Hu W, Guan Y. Ascorbic acid and selenium nanoparticles synergistically interplay in chromium stress mitigation in rice seedlings by regulating oxidative stress indicators and antioxidant defense mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120044-120062. [PMID: 37936030 DOI: 10.1007/s11356-023-30625-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/19/2023] [Indexed: 11/09/2023]
Abstract
Ascorbic acid (AsA) and selenium nanoparticles (SeNPs) were versatile plant growth regulators, playing multiple roles in promoting plant growth under heavy metal stresses. This study aimed to evaluate the beneficial role of individual and combined effects of AsA and SeNPs on morpho-physio-biochemical traits of rice with or without chromium (Cr) amendment. The results indicated that Cr negatively affected plant biomass, gas exchange parameters, total soluble sugar, proline, relative water contents, and antioxidant-related gene expression via increasing reactive oxygen species (MDA, H2O2, O2•-) formation, resulting in plant growth reduction. The application of AsA and SeNPs, individually or in combination, decreased the uptake and translocation of Cr in rice seedlings, increased seedlings with tolerance to Cr toxicity, and significantly improved the rice seedling growth. Most notably, AsA + SeNP treatment strengthened the antioxidative defense system through ROS quenching and Cr detoxification. The results collectively suggested that the application of AsA and SeNPs alone or in combination had the potential to alleviate Cr toxicity in rice and possibly other crop species.
Collapse
Affiliation(s)
- Farwa Basit
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Saghir Abbas
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Mengjin Zhu
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Kashif Tanwir
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Ali El-Keblawy
- Department of Applied Biology, Faculty of Science, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Mohamed Salah Sheteiwy
- Department of Applied Biology, Faculty of Science, University of Sharjah, 27272, Sharjah, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| | - Ali Raza
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jin Hu
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Weimin Hu
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yajing Guan
- Hainan Research Institute, Zhejiang University, Sanya, 572025, China.
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
49
|
Robbins J, Halegoua-DeMarzio D, Basu Mallick A, Vijayvergia N, Ganetzky R, Lavu H, Giri VN, Miller J, Maley W, Shah AP, DiMeglio M, Ambelil M, Yu R, Sato T, Lefler DS. Liver Transplantation in a Woman with Mahvash Disease. N Engl J Med 2023; 389:1972-1978. [PMID: 37991855 DOI: 10.1056/nejmoa2303226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Mahvash disease is an exceedingly rare genetic disorder of glucagon signaling characterized by hyperglucagonemia, hyperaminoacidemia, and pancreatic α-cell hyperplasia. Although there is no known definitive treatment, octreotide has been used to decrease systemic glucagon levels. We describe a woman who presented to our medical center after three episodes of small-volume hematemesis. She was found to have hyperglucagonemia and pancreatic hypertrophy with genetically confirmed Mahvash disease and also had evidence of portal hypertension (recurrent portosystemic encephalopathy and variceal hemorrhage) in the absence of cirrhosis. These findings established a diagnosis of portosinusoidal vascular disease, a presinusoidal type of portal hypertension previously known as noncirrhotic portal hypertension. Liver transplantation was followed by normalization of serum glucagon and ammonia levels, reversal of pancreatic hypertrophy, and resolution of recurrent encephalopathy and bleeding varices.
Collapse
Affiliation(s)
- Justin Robbins
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| | - Dina Halegoua-DeMarzio
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| | - Atrayee Basu Mallick
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| | - Namrata Vijayvergia
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| | - Rebecca Ganetzky
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| | - Harish Lavu
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| | - Veda N Giri
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| | - Jeffrey Miller
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| | - Warren Maley
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| | - Ashesh P Shah
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| | - Matthew DiMeglio
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| | - Manju Ambelil
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| | - Run Yu
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| | - Takami Sato
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| | - Daniel S Lefler
- From the Department of Internal Medicine (J.R., M.D.), the Division of Gastroenterology and Hepatology (D.H.-D., T.S.), the Department of Medical Oncology, Sidney Kimmel Cancer Center (A.B.M., D.S.L.), the Department of Surgery (H.L., W.M., A.P.S.), the Division of Endocrinology, Diabetes, and Metabolic Diseases (J.M.), and the Department of Pathology and Genomics (M.A.), Thomas Jefferson University, the Department of Medical Oncology, Fox Chase Cancer Center (N.V.), and the Division of Human Genetics, Children's Hospital of Philadelphia (R.G.) - all in Philadelphia; the Division of Clinical Cancer Genetics, Section of Medical Oncology, Department of Medicine, Yale School of Medicine and Yale Cancer Center, New Haven, CT (V.N.G.); and the Division of Endocrinology, Diabetes, and Metabolism, David Geffen School of Medicine at UCLA, Los Angeles (R.Y.)
| |
Collapse
|
50
|
Xiang J, Pompetti AJ, Faranda AP, Wang Y, Novo SG, Li DWC, Duncan MK. ATF4 May Be Essential for Adaption of the Ocular Lens to Its Avascular Environment. Cells 2023; 12:2636. [PMID: 37998373 PMCID: PMC10670291 DOI: 10.3390/cells12222636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
The late embryonic mouse lens requires the transcription factor ATF4 for its survival although the underlying mechanisms were unknown. Here, RNAseq analysis revealed that E16.5 Atf4 null mouse lenses downregulate the mRNA levels of lens epithelial markers as well as known markers of late lens fiber cell differentiation. However, a comparison of this list of differentially expressed genes (DEGs) with other known transcriptional regulators of lens development indicated that ATF4 expression is not directly controlled by the previously described lens gene regulatory network. Pathway analysis revealed that the Atf4 DEG list was enriched in numerous genes involved in nutrient transport, amino acid biosynthesis, and tRNA charging. These changes in gene expression likely result in the observed reductions in lens free amino acid and glutathione levels, which would result in the observed low levels of extractable lens protein, finally leading to perinatal lens disintegration. These data demonstrate that ATF4, via its function in the integrated stress response, is likely to play a crucial role in mediating the adaption of the lens to the avascularity needed to maintain lens transparency.
Collapse
Affiliation(s)
- Jiawen Xiang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510230, China
| | - Anthony J. Pompetti
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Adam P. Faranda
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Yan Wang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Samuel G. Novo
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510230, China
| | - Melinda K. Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|