1
|
Navarro CDC, Francisco A, Costa EFD, Dalla Costa AP, Sartori MR, Bizerra PFV, Salgado AR, Figueira TR, Vercesi AE, Castilho RF. Aging-dependent mitochondrial bioenergetic impairment in the skeletal muscle of NNT-deficient mice. Exp Gerontol 2024; 193:112465. [PMID: 38795789 DOI: 10.1016/j.exger.2024.112465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Overall health relies on features of skeletal muscle that generally decline with age, partly due to mechanisms associated with mitochondrial redox imbalance and bioenergetic dysfunction. Previously, aged mice genetically devoid of the mitochondrial NAD(P)+ transhydrogenase (NNT, encoded by the nicotinamide nucleotide transhydrogenase gene), an enzyme involved in mitochondrial NADPH supply, were shown to exhibit deficits in locomotor behavior. Here, by using young, middle-aged, and older NNT-deficient (Nnt-/-) mice and age-matched controls (Nnt+/+), we aimed to investigate how muscle bioenergetic function and motor performance are affected by NNT expression and aging. Mice were subjected to the wire-hang test to assess locomotor performance, while mitochondrial bioenergetics was evaluated in fiber bundles from the soleus, vastus lateralis and plantaris muscles. An age-related decrease in the average wire-hang score was observed in middle-aged and older Nnt-/- mice compared to age-matched controls. Although respiratory rates in the soleus, vastus lateralis and plantaris muscles did not significantly differ between the genotypes in young mice, the rates of oxygen consumption did decrease in the soleus and vastus lateralis muscles of middle-aged and older Nnt-/- mice. Notably, the soleus, which exhibited the highest NNT expression level, was the muscle most affected by aging, and NNT loss. Additionally, histology of the soleus fibers revealed increased numbers of centralized nuclei in older Nnt-/- mice, indicating abnormal morphology. In summary, our findings suggest that NNT expression deficiency causes locomotor impairments and muscle dysfunction during aging in mice.
Collapse
Affiliation(s)
- Claudia D C Navarro
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil
| | - Annelise Francisco
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil; Department of Experimental Medical Science, Faculty of Medicine, Lund University, 221 84 Lund, Sweden
| | - Ericka F D Costa
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil
| | - Ana P Dalla Costa
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil
| | - Marina R Sartori
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil
| | - Paulo F V Bizerra
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil
| | - Andréia R Salgado
- Multidisciplinary Center for Biological Investigation on Laboratory Animals Science, University of Campinas, Campinas, SP, Brazil
| | - Tiago R Figueira
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, 14040 900 Ribeirão Preto, SP, Brazil
| | - Anibal E Vercesi
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil
| | - Roger F Castilho
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), 13083 887 Campinas, SP, Brazil.
| |
Collapse
|
2
|
Eurén T, Gower B, Steneberg P, Wilson A, Edlund H, Chorell E. Myofiber-specific lipidomics unveil differential contributions to insulin sensitivity in individuals of African and European ancestry. Heliyon 2024; 10:e32456. [PMID: 38994058 PMCID: PMC11237840 DOI: 10.1016/j.heliyon.2024.e32456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 07/13/2024] Open
Abstract
Aims Individuals of African ancestry (AA) present with lower insulin sensitivity compared to their European counterparts (EA). Studies show ethnic differences in skeletal muscle fiber type (lower type I fibers in AA), muscle fat oxidation capacity (lower in AA), whilst no differences in total skeletal muscle lipids. However, skeletal muscle lipid subtypes have not been examined in this context. We hypothesize that lower insulin sensitivity in AA is due to a greater proportion of type II (non-oxidative) muscle fibers, and that this would result in an ancestry-specific association between muscle lipid subtypes and peripheral insulin sensitivity. To test this hypothesis, we examined the association between insulin sensitivity and muscle lipids in AA and EA adults, and in an animal model of insulin resistance with muscle-specific fiber types. Methods In this cross-sectional study, muscle biopsies were obtained from individuals with a BMI ranging from normal to overweight with AA (N = 24) and EA (N = 19). Ancestry was assigned via genetic admixture analysis; peripheral insulin sensitivity via hyperinsulinaemic-euglycemic clamp; and myofiber content via myosin heavy chain immunohistochemistry. Further, muscle types with high (soleus) and low (vastus lateralis) type I fiber content were obtained from high-fat diet-induced insulin resistant F1 mice and littermate controls. Insulin sensitivity in mice was assessed via intraperitoneal glucose tolerance test. Mass spectrometry (MS)-based lipidomics was used to measure skeletal muscle lipid. Results Compared to EA, AA had lower peripheral insulin sensitivity and lower oxidative type 1 myofiber content, with no differences in total skeletal muscle lipid content. Muscles with lower type I fiber content (AA and vastus from mice) showed lower levels of lipids associated with fat oxidation capacity, i.e., cardiolipins, triacylglycerols with low saturation degree and phospholipids, compared to muscles with a higher type 1 fiber content (EA and soleus from mice). Further, we found that muscle diacylglycerol content was inversely associated with insulin sensitivity in EA, who have more type I fiber, whereas no association was found in AA. Similarly, we found that insulin sensitivity in mice was associated with diacylglycerol content in the soleus (high in type I fiber), not in vastus (low in type I fiber).Conclusions; Our data suggest that the lipid contribution to altered insulin sensitivity differs by ethnicity due to myofiber composition, and that this needs to be considered to increase our understanding of underlying mechanisms of altered insulin sensitivity in different ethnic populations.
Collapse
Affiliation(s)
- Tova Eurén
- Public Health and Clinical Medicine, Umeå University, Sweden
| | - Barbara Gower
- Department of Nutrition Sciences, The University of Alabama at Birmingham, USA
| | - Pär Steneberg
- Department of Medical and Translational Biology, Umeå University, Sweden
| | - Andréa Wilson
- Public Health and Clinical Medicine, Umeå University, Sweden
| | - Helena Edlund
- Department of Medical and Translational Biology, Umeå University, Sweden
| | - Elin Chorell
- Public Health and Clinical Medicine, Umeå University, Sweden
| |
Collapse
|
3
|
Wang Y, Zhu Y, Cui H, Deng H, Zuo Z, Fang J, Guo H. Effects of CuSO 4 on hepatic mitochondrial function, biogenesis and dynamics in mice. ENVIRONMENTAL TOXICOLOGY 2024; 39:2208-2217. [PMID: 38124272 DOI: 10.1002/tox.24085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Copper is an essential trace element for animal. Excessive intake of copper will cause a large accumulation of copper in the body, especially in the liver, and induce hepatotoxicity, however, there are few studies on the effects of copper on hepatic mitochondrial biogenesis and mitochondrial dynamics. In this study, mice were treated with different doses of CuSO4 (0, 10, 20, and 40 mg/kg) for 21 and 42 days by gavage. The results verified that CuSO4 decreased the content of mitochondrial respiratory chain complexes I-IV in mouse liver. CuSO4 treatment resulted the decrease in the protein and mRNA expression levels of PGC-1α, TFAM, and NRF1, which were the mitochondrial biogenesis regulator proteins. Meanwhile, the proteins involved in mitochondrial fusion were reduced by CuSO4 , such as Mfn1 and Mfn2, however, mitochondrial fission proteins Drip1 and Fis1 were significantly increased. Abovementioned results show that CuSO4 could induce mitochondria damage in the liver of mice, and mitochondrial biogenesis and mitochondrial dynamics are involved in the molecular mechanism of CuSO4 -induced hepatotoxicity.
Collapse
Affiliation(s)
- Yihan Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Chengdu, China
| |
Collapse
|
4
|
Vidal Moreno de Vega C, de Meeûs d’Argenteuil C, Boshuizen B, De Mare L, Gansemans Y, Van Nieuwerburgh F, Deforce D, Goethals K, De Spiegelaere W, Leybaert L, Verdegaal ELJ, Delesalle C. Baselining physiological parameters in three muscles across three equine breeds. What can we learn from the horse? Front Physiol 2024; 15:1291151. [PMID: 38384798 PMCID: PMC10879303 DOI: 10.3389/fphys.2024.1291151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Mapping-out baseline physiological muscle parameters with their metabolic blueprint across multiple archetype equine breeds, will contribute to better understanding their functionality, even across species. Aims: 1) to map out and compare the baseline fiber type composition, fiber type and mean fiber cross-sectional area (fCSA, mfCSA) and metabolic blueprint of three muscles in 3 different breeds 2) to study possible associations between differences in histomorphological parameters and baseline metabolism. Methods: Muscle biopsies [m. pectoralis (PM), m. vastus lateralis (VL) and m. semitendinosus (ST)] were harvested of 7 untrained Friesians, 12 Standardbred and 4 Warmblood mares. Untargeted metabolomics was performed on the VL and PM of Friesian and Warmblood horses and the VL of Standardbreds using UHPLC/MS/MS and GC/MS. Breed effect on fiber type percentage and fCSA and mfCSA was tested with Kruskal-Wallis. Breeds were compared with Wilcoxon rank-sum test, with Bonferroni correction. Spearman correlation explored the association between the metabolic blueprint and morphometric parameters. Results: The ST was least and the VL most discriminative across breeds. In Standardbreds, a significantly higher proportion of type IIA fibers was represented in PM and VL. Friesians showed a significantly higher representation of type IIX fibers in the PM. No significant differences in fCSA were present across breeds. A significantly larger mfCSA was seen in the VL of Standardbreds. Lipid and nucleotide super pathways were significantly more upregulated in Friesians, with increased activity of short and medium-chain acylcarnitines together with increased abundance of long chain and polyunsaturated fatty acids. Standardbreds showed highly active xenobiotic pathways and high activity of long and very long chain acylcarnitines. Amino acid metabolism was similar across breeds, with branched and aromatic amino acid sub-pathways being highly active in Friesians. Carbohydrate, amino acid and nucleotide super pathways and carnitine metabolism showed higher activity in Warmbloods compared to Standardbreds. Conclusion: Results show important metabolic differences between equine breeds for lipid, amino acid, nucleotide and carbohydrate metabolism and in that order. Mapping the metabolic profile together with morphometric parameters provides trainers, owners and researchers with crucial information to develop future strategies with respect to customized training and dietary regimens to reach full potential in optimal welfare.
Collapse
Affiliation(s)
- Carmen Vidal Moreno de Vega
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Constance de Meeûs d’Argenteuil
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Berit Boshuizen
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Wolvega Equine Hospital, Oldeholtpade, Netherlands
| | - Lorie De Mare
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Yannick Gansemans
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Klara Goethals
- Biometrics Research Center, Ghent University, Ghent, Belgium
| | - Ward De Spiegelaere
- Department of Morphology, Imaging, Orthopedics, Rehabilitation and Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Luc Leybaert
- Department of Basic and Applied Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Elisabeth-Lidwien J.M.M. Verdegaal
- Thermoregulation Research Group, School of Animal and Veterinary Sciences, Roseworthy Campus, University of Adelaide, Roseworthy, SA, Australia
| | - Cathérine Delesalle
- Department of Translational Physiology, Infectiology and Public Health, Research Group of Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
5
|
Ait Tayeb AEK, Colle R, Chappell K, El-Asmar K, Acquaviva-Bourdain C, David DJ, Trabado S, Chanson P, Feve B, Becquemont L, Verstuyft C, Corruble E. Metabolomic profiles of 38 acylcarnitines in major depressive episodes before and after treatment. Psychol Med 2024; 54:289-298. [PMID: 37226550 DOI: 10.1017/s003329172300140x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
BACKGROUND Major depression is associated with changes in plasma L-carnitine and acetyl-L-carnitine. But its association with acylcarnitines remains unclear. The aim of this study was to assess metabolomic profiles of 38 acylcarnitines in patients with major depression before and after treatment compared to healthy controls (HCs). METHODS Metabolomic profiles of 38 plasma short-, medium-, and long-chain acylcarnitines were performed by liquid chromatography-mass spectrometry in 893 HCs from the VARIETE cohort and 460 depressed patients from the METADAP cohort before and after 6 months of antidepressant treatment. RESULTS As compared to HCs, depressed patients had lower levels of medium- and long-chain acylcarnitines. After 6 months of treatment, increased levels of medium- and long-chain acyl-carnitines were observed that no longer differed from those of controls. Accordingly, several medium- and long-chain acylcarnitines were negatively correlated with depression severity. CONCLUSIONS These medium- and long-chain acylcarnitine dysregulations argue for mitochondrial dysfunction through fatty acid β-oxidation impairment during major depression.
Collapse
Affiliation(s)
- Abd El Kader Ait Tayeb
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Romain Colle
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Kenneth Chappell
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Khalil El-Asmar
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Department of Epidemiology and Population Health, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Cécile Acquaviva-Bourdain
- Service de Biochimie et Biologie Moléculaire; Unité Médicale Pathologies Héréditaires du Métabolisme et du Globule Rouge; Centre de Biologie et Pathologie Est; CHU de Lyon; F-69500 Bron, France
| | - Denis J David
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Séverine Trabado
- INSERM UMR-S U1185, Physiologie et Physiopathologie Endocriniennes, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Philippe Chanson
- INSERM UMR-S U1185, Physiologie et Physiopathologie Endocriniennes, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Bruno Feve
- Sorbonne Université-INSERM, Centre de Recherche Saint-Antoine, Institut Hospitalo-Universitaire ICAN, Service d'Endocrinologie, CRMR PRISIS, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, Paris, F-75012, France
| | - Laurent Becquemont
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Centre de recherche clinique, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, F-94275, France
| | - Céline Verstuyft
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, F-94275, France
| | - Emmanuelle Corruble
- CESP, MOODS Team, INSERM UMR 1018, Faculté de Médecine, Univ Paris-Saclay, Le Kremlin Bicêtre, Paris, F-94275, France
- Service Hospitalo-Universitaire de Psychiatrie de Bicêtre, Hôpitaux Universitaires Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Hôpital de Bicêtre, Le Kremlin Bicêtre, Paris, F-94275, France
| |
Collapse
|
6
|
Luo D, Zhao Y, Fang Z, Zhao Y, Han Y, Piao J, Rong X, Guo J. Tianhuang formula regulates adipocyte mitochondrial function by AMPK/MICU1 pathway in HFD/STZ-induced T2DM mice. BMC Complement Med Ther 2023; 23:202. [PMID: 37337224 DOI: 10.1186/s12906-023-04009-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 05/24/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Tianhuang formula (THF) is a Chinese medicine prescription that is patented and clinically approved, and has been shown to improve energy metabolism, but the underlying mechanism remains poorly understood. The purpose of this study is to clarify the potential mechanisms of THF in the treatment of type 2 diabetes mellitus (T2DM). METHODS A murine model of T2DM was induced by high-fat diet (HFD) feeding combined with low-dose streptozocin (STZ) injections, and the diabetic mice were treated with THF by gavaging for consecutive 10 weeks. Fasting blood glucose (FBG), serum insulin, blood lipid, mitochondrial Ca2+ (mCa2+) levels and mitochondrial membrane potential (MMP), as well as ATP production were analyzed. The target genes and proteins expression of visceral adipose tissue (Vat) was tested by RT-PCR and western blot, respectively. The underlying mechanism of the regulating energy metabolism effect of THF was further explored in the insulin resistance model of 3T3-L1 adipocytes cultured with dexamethasone (DXM). RESULTS THF restored impaired glucose tolerance and insulin resistance in diabetic mice. Serum levels of lipids were significantly decreased, as well as fasting blood glucose and insulin in THF-treated mice. THF regulated mCa2+ uptake, increased MMP and ATP content in VAT. THF increased the mRNA and protein expression of AMPK, phosphorylated AMPK (p-AMPK), MICU1, sirtuin1 (SIRT1) and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). THF could increase the mCa2+ level of 3T3-L1 adipocytes and regulate mitochondrial function. The protein expression of AMPK, p-AMPK, mCa2+ uniporter (MCU) and MICU1 decreased upon adding AMPK inhibitor compound C to 3T3-L1 adipocytes and the protein expression of MCU and MICU1 decreased upon adding the MCU inhibitor ruthenium red. CONCLUSIONS These results demonstrated that THF ameliorated glucose and lipid metabolism disorders in T2DM mice through the improvement of AMPK/MICU1 pathway-dependent mitochondrial function in adipose tissue.
Collapse
Affiliation(s)
- Duosheng Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center; Guangdong TCM Key Laboratory for Metabolic Diseases, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Yaru Zhao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center; Guangdong TCM Key Laboratory for Metabolic Diseases, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Zhaoyan Fang
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center; Guangdong TCM Key Laboratory for Metabolic Diseases, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Yating Zhao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center; Guangdong TCM Key Laboratory for Metabolic Diseases, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Yi Han
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center; Guangdong TCM Key Laboratory for Metabolic Diseases, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Jingyu Piao
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center; Guangdong TCM Key Laboratory for Metabolic Diseases, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Xianglu Rong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center; Guangdong TCM Key Laboratory for Metabolic Diseases, 280 Wai Huan Dong Road, Guangzhou, 510006, China
| | - Jiao Guo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine; Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China; Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center; Guangdong TCM Key Laboratory for Metabolic Diseases, 280 Wai Huan Dong Road, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Xu J, Cai M, Wang Z, Chen Q, Han X, Tian J, Jin S, Yan Z, Li Y, Lu B, Lu H. Phenylacetylglutamine as a novel biomarker of type 2 diabetes with distal symmetric polyneuropathy by metabolomics. J Endocrinol Invest 2023; 46:869-882. [PMID: 36282471 PMCID: PMC10105673 DOI: 10.1007/s40618-022-01929-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Type 2 diabetes mellitus (T2DM) with distal symmetric polyneuropathy (DSPN) is a disease involving the nervous system caused by metabolic disorder, while the metabolic spectrum and key metabolites remain poorly defined. METHODS Plasma samples of 30 healthy controls, 30 T2DM patients, and 60 DSPN patients were subjected to nontargeted metabolomics. Potential biomarkers of DSPN were screened based on univariate and multivariate statistical analyses, ROC curve analysis, and logistic regression. Finally, another 22 patients with T2DM who developed DSPN after follow-up were selected for validation of the new biomarker based on target metabolomics. RESULTS Compared with the control group and the T2DM group, 6 metabolites showed differences in the DSPN group (P < 0.05; FDR < 0.1; VIP > 1) and a rising step trend was observed. Among them, phenylacetylglutamine (PAG) and sorbitol displayed an excellent discriminatory ability and associated with disease severity. The verification results demonstrated that when T2DM progressed to DSPN, the phenylacetylglutamine content increased significantly (P = 0.004). CONCLUSION The discovered and verified endogenous metabolite PAG may be a novel potential biomarker of DSPN and involved in the disease pathogenesis.
Collapse
Affiliation(s)
- J. Xu
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - M. Cai
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Z. Wang
- Department of Emergency, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Q. Chen
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - X. Han
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - J. Tian
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - S. Jin
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Z. Yan
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Y. Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - B. Lu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - H. Lu
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| |
Collapse
|
8
|
Skeletal muscle insulin resistance and adipose tissue hypertrophy persist beyond the reshaping of gut microbiota in young rats fed a fructose-rich diet. J Nutr Biochem 2023; 113:109247. [PMID: 36496062 DOI: 10.1016/j.jnutbio.2022.109247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/17/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
To investigate whether short term fructose-rich diet induces changes in the gut microbiota as well as in skeletal muscle and adipose tissue physiology and verify whether they persist even after fructose withdrawal, young rats of 30 d of age were fed for 3 weeks a fructose-rich or control diet. At the end of the 3-weeks period, half of the rats from each group were maintained for further 3 weeks on a control diet. Metagenomic analysis of gut microbiota and short chain fatty acids levels (faeces and plasma) were investigated. Insulin response was evaluated at the whole-body level and both in skeletal muscle and epididymal adipose tissue, together with skeletal muscle mitochondrial function, oxidative stress, and lipid composition. In parallel, morphology and physiological status of epididymal adipose tissue was also evaluated. Reshaping of gut microbiota and increased content of short chain fatty acids was elicited by the fructose diet and abolished by switching back to control diet. On the other hand, most metabolic changes elicited by fructose-rich diet in skeletal muscle and epididymal adipose tissue persisted after switching to control diet. Increased dietary fructose intake even on a short-time basis elicits persistent changes in the physiology of metabolically relevant tissues, such as adipose tissue and skeletal muscle, through mechanisms that go well beyond the reshaping of gut microbiota. This picture delineates a harmful situation, in particular for the young populations, posed at risk of metabolic modifications that may persist in their adulthood.
Collapse
|
9
|
Characterizing the Mechanisms of Metalaxyl, Bronopol and Copper Sulfate against Saprolegnia parasitica Using Modern Transcriptomics. Genes (Basel) 2022; 13:genes13091524. [PMID: 36140692 PMCID: PMC9498376 DOI: 10.3390/genes13091524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
Saprolegniasis, which is caused by Saprolegnia parasitica, leads to considerable economic losses. Recently, we showed that metalaxyl, bronopol and copper sulfate are good antimicrobial agents for aquaculture. In the current study, the efficacies of metalaxyl, bronopol and copper sulfate are evaluated by in vitro antimicrobial experiments, and the mechanism of action of these three antimicrobials on S. parasitica is explored using transcriptome technology. Finally, the potential target genes of antimicrobials on S. parasitica are identified by protein–protein interaction network analysis. Copper sulfate had the best inhibitory effect on S. parasitica, followed by bronopol. A total of 1771, 723 and 2118 DEGs upregulated and 1416, 319 and 2161 DEGs downregulated S. parasitica after three drug treatments (metalaxyl, bronopol and copper sulfate), separately. Additionally, KEGG pathway analysis also determined that there were 17, 19 and 13 significantly enriched metabolic pathways. PPI network analysis screened out three important proteins, and their corresponding genes were SPRG_08456, SPRG_03679 and SPRG_10775. Our results indicate that three antimicrobials inhibit S. parasitica growth by affecting multiple biological functions, including protein synthesis, oxidative stress, lipid metabolism and energy metabolism. Additionally, the screened key genes can be used as potential target genes of chemical antimicrobial drugs for S. parasitica.
Collapse
|
10
|
Hody S, Warren BE, Votion DM, Rogister B, Lemieux H. Eccentric Exercise Causes Specific Adjustment in Pyruvate Oxidation by Mitochondria. Med Sci Sports Exerc 2022; 54:1300-1308. [PMID: 35320143 DOI: 10.1249/mss.0000000000002920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The impact of eccentric exercise on mitochondrial function has only been poorly investigated and remains unclear. This study aimed to identify the changes in skeletal muscle mitochondrial respiration, specifically triggered by a single bout of eccentric treadmill exercise. METHODS Male adult mice were randomly divided into eccentric (ECC; downhill running), concentric (CON; uphill running), and unexercised control groups ( n = 5/group). Running groups performed 18 bouts of 5 min at 20 cm·s -1 on an inclined treadmill (±15° to 20°). Mice were sacrificed 48 h after exercise for blood and quadriceps muscles collection. Deep proximal (red) and superficial distal (white) muscle portions were used for high-resolution respirometric measurements. RESULTS Plasma creatine kinase activity was significantly higher in the ECC compared with CON group, reflecting exercise-induced muscle damage ( P < 0.01). The ECC exercise induced a significant decrease in oxidative phosphorylation capacity in both quadriceps femoris parts ( P = 0.032 in proximal portion, P = 0.010 in distal portion) in comparison with the CON group. This observation was only made for the nicotinamide adenine dinucleotide (NADH) pathway using pyruvate + malate as substrates. When expressed as a flux control ratio, indicating a change related to mitochondrial quality rather than quantity, this change seemed more prominent in distal compared with proximal portion of quadriceps muscle. No significant difference between groups was found for the NADH pathway with glutamate or glutamate + malate as substrates, for the succinate pathway or for fatty acid oxidation. CONCLUSIONS Our data suggest that ECC exercise specifically affects pyruvate mitochondrial transport and/or oxidation 48 h after exercise, and this alteration mainly concerns the distal white muscle portion. This study provides new perspectives to improve our understanding of the mitochondrial adaptation associated with ECC exercise.
Collapse
Affiliation(s)
- Stéphanie Hody
- Department of Motricity Sciences, University of Liège, Liège, BELGIUM
| | - Blair E Warren
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, CANADA
| | - Dominique-Marie Votion
- Equine Pole, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, Liège, BELGIUM
| | | | | |
Collapse
|
11
|
Woyames J, Souza AFP, Miranda RA, Oliveira LS, Caetano B, Andrade CBV, Fortunato RS, Atella GC, Trevenzoli IH, Souza LL, Pazos-Moura CC. Maternal high-fat diet aggravates fructose-induced mitochondrial damage in skeletal muscles and causes differentiated adaptive responses on lipid metabolism in adult male offspring. J Nutr Biochem 2022; 104:108976. [PMID: 35245653 DOI: 10.1016/j.jnutbio.2022.108976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 11/18/2021] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
Abstract
Maternal high-fat diet (HFD) is associated with metabolic disturbances in the offspring. Fructose is a highly consumed lipogenic sugar; however, it is unknown whether skeletal muscle of maternal HFD offspring respond differentially to a fructose overload. Female Wistar rats received standard diet (STD: 9% fat) or isocaloric high-fat diet (HFD: 29% fat) during 8 weeks before mating until weaning. After weaning, male offspring received STD and, from 120 to 150 days-old, they drank water or 15% fructose in water (STD-F and HFD-F). At 150th day, we collected the oxidative soleus and glycolytic extensor digitorum longus (EDL) muscles. Fructose-treated groups exhibited hypertriglyceridemia, regardless of maternal diet. Soleus of maternal HFD offspring showed increased triglycerides and monounsaturated fatty acid content, independent of fructose, with increased fatty acid transporters and lipogenesis markers. The EDL exhibited unaltered triglycerides content, with an apparent equilibrium between lipogenesis and lipid oxidation markers in HFD, and higher lipid uptake (fatty acid-binding protein 4) accompanied by enhanced monounsaturated fatty acid in fructose-treated groups. Mitochondrial complexes proteins and Tfam mRNA were increased in the soleus of HFD, while uncoupling protein 3 was decreased markedly in HFD-F. In EDL, maternal HFD increased ATP synthase, while fructose decreased Tfam predominantly in STD offspring. Maternal HFD and fructose induced mitochondria ultrastructural damage, intensified in HFD-F in both muscles. Thus, alterations in molecular markers of lipid metabolism and mitochondrial function in response to fructose are modified by an isocaloric and moderate maternal HFD and are fiber-type specific, representing adaptation/maladaptation mechanisms associated with higher skeletal muscle fructose-induced mitochondria injury in adult offspring.
Collapse
Affiliation(s)
- Juliana Woyames
- Laboratory of Molecular Endocrinology, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | | | - Rosiane Aparecida Miranda
- Laboratory of Molecular Endocrinology, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | - Lorraine Soares Oliveira
- Laboratory of Molecular Endocrinology, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | - Bruna Caetano
- Laboratory of Molecular Endocrinology, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | | | - Rodrigo Soares Fortunato
- Laboratory of Molecular Radiobiology, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | - Georgia Correa Atella
- Laboratory of Lipid and Lipoproteins Biochemistry, Leopoldo de Meis Medical Biochemistry Institute, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | - Isis Hara Trevenzoli
- Laboratory of Molecular Endocrinology, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | - Luana Lopes Souza
- Laboratory of Molecular Endocrinology, Federal University of Rio de Janeiro, CCS, Rio de Janeiro, Brazil
| | | |
Collapse
|
12
|
Lemieux H, Blier PU. Exploring Thermal Sensitivities and Adaptations of Oxidative Phosphorylation Pathways. Metabolites 2022; 12:metabo12040360. [PMID: 35448547 PMCID: PMC9025460 DOI: 10.3390/metabo12040360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
Temperature shifts are a major challenge to animals; they drive adaptations in organisms and species, and affect all physiological functions in ectothermic organisms. Understanding the origin and mechanisms of these adaptations is critical for determining whether ectothermic organisms will be able to survive when faced with global climate change. Mitochondrial oxidative phosphorylation is thought to be an important metabolic player in this regard, since the capacity of the mitochondria to produce energy greatly varies according to temperature. However, organism survival and fitness depend not only on how much energy is produced, but, more precisely, on how oxidative phosphorylation is affected and which step of the process dictates thermal sensitivity. These questions need to be addressed from a new perspective involving a complex view of mitochondrial oxidative phosphorylation and its related pathways. In this review, we examine the effect of temperature on the commonly measured pathways, but mainly focus on the potential impact of lesser-studied pathways and related steps, including the electron-transferring flavoprotein pathway, glycerophosphate dehydrogenase, dihydroorotate dehydrogenase, choline dehydrogenase, proline dehydrogenase, and sulfide:quinone oxidoreductase. Our objective is to reveal new avenues of research that can address the impact of temperature on oxidative phosphorylation in all its complexity to better portray the limitations and the potential adaptations of aerobic metabolism.
Collapse
Affiliation(s)
- Hélène Lemieux
- Faculty Saint-Jean, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6C 4G9, Canada
- Correspondence: (H.L.); (P.U.B.)
| | - Pierre U. Blier
- Department Biologie, Université du Québec à Rimouski, Rimouski, QC G5L 3A1, Canada
- Correspondence: (H.L.); (P.U.B.)
| |
Collapse
|
13
|
Wei L, Zuo Z, Yang Z, Yin H, Yang Y, Fang J, Cui H, Du Z, Ouyang P, Chen X, Chen J, Geng Y, Zhu Y, Chen Z, Huang C, Wang F, Guo H. Mitochondria damage and ferroptosis involved in Ni-induced hepatotoxicity in mice. Toxicology 2021; 466:153068. [PMID: 34921910 DOI: 10.1016/j.tox.2021.153068] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/13/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
Abstract
Nickel (Ni) is an environmental toxicant that can cause toxic damage to humans and animals. Although the hepatotoxicity of Ni has been confirmed, its precise mechanism is still unclear. In this study, the results showed that nickel chloride (NiCl2)-treatment could induce mice hepatotoxicity including hepatic histopathological alterations and up-regulation of serum AST and ALT. According to the results, NiCl2 increased malondialdehyde (MDA) production while reducing total antioxidant capacity (T-AOC) activity and glutathione (GSH) content. Additionally, NiCl2 induced mitochondrial damage which was featured by increase in mitochondrial ROS (mt-ROS) and mitochondrial membrane potential (MMP) depolarization. The mitochondrial respiratory chain complexes I-IV and ATP content were decreased in the liver of NiCl2-treated mice. Meanwhile, NiCl2 caused hepatic ferroptosis accompanied by increased iron content in the liver and up-regulation of cyclooxygenase 2 (COX-2) protein and mRNA expression levels, down-regulation of glutathione eroxidase 4 (GPX4), ferritin heavy chain 1 (FTH1) and nuclear receptor coactivator 4 (NCOA4) protein and mRNA expression levels. Altogether, the above mentioned results indicate that NiCl2 treatment may induce hepatic damage through mitochondrial damage and ferroptosis.
Collapse
Affiliation(s)
- Ling Wei
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Zhuangzhi Yang
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan, 611130, China
| | - Heng Yin
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yue Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agriculture University, Wenjiang, Chengdu, 611130, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Xia Chen
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan, 611130, China
| | - Jian Chen
- Chengdu Academy of Agriculture and Forestry Sciences, Chengdu, Sichuan, 611130, China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Yanqiu Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Zhengli Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China
| | - Fengyuan Wang
- College of Animal Science and Veterinary Medicine, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| |
Collapse
|
14
|
Mehta R, Sonavane M, Migaud ME, Gassman NR. Exogenous exposure to dihydroxyacetone mimics high fructose induced oxidative stress and mitochondrial dysfunction. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:185-202. [PMID: 33496975 PMCID: PMC7954877 DOI: 10.1002/em.22425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 05/09/2023]
Abstract
Dihydroxyacetone (DHA) is a three-carbon sugar that is the active ingredient in sunless tanning products and a by-product of electronic cigarette (e-cigarette) combustion. Increased use of sunless tanning products and e-cigarettes has elevated exposures to DHA through inhalation and absorption. Studies have confirmed that DHA is rapidly absorbed into cells and can enter into metabolic pathways following phosphorylation to dihydroxyacetone phosphate (DHAP), a product of fructose metabolism. Recent reports have suggested metabolic imbalance and cellular stress results from DHA exposures. However, the impact of elevated exposure to DHA on human health is currently under-investigated. We propose that exogenous exposures to DHA increase DHAP levels in cells and mimic fructose exposures to produce oxidative stress, mitochondrial dysfunction, and gene and protein expression changes. Here, we review cell line and animal model exposures to fructose to highlight similarities in the effects produced by exogenous exposures to DHA. Given the long-term health consequences of fructose exposure, this review emphasizes the pressing need to further examine DHA exposures from sunless tanning products and e-cigarettes.
Collapse
Affiliation(s)
- Raj Mehta
- Department of Physiology and Cell Biology, University of South Alabama, College of Medicine, Mobile, AL USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL USA
| | - Manoj Sonavane
- Department of Physiology and Cell Biology, University of South Alabama, College of Medicine, Mobile, AL USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL USA
| | - Marie E. Migaud
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL USA
- Department of Pharmacology, University of South Alabama, College of Medicine, Mobile, AL USA
| | - Natalie R. Gassman
- Department of Physiology and Cell Biology, University of South Alabama, College of Medicine, Mobile, AL USA
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL USA
| |
Collapse
|
15
|
Holody C, Anfray A, Mast H, Lessard M, Han WH, Carpenter R, Bourque S, Sauvé Y, Lemieux H. Differences in relative capacities of oxidative phosphorylation pathways may explain sex- and tissue-specific susceptibility to vision defects due to mitochondrial dysfunction. Mitochondrion 2020; 56:102-110. [PMID: 33271347 DOI: 10.1016/j.mito.2020.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/09/2020] [Accepted: 11/18/2020] [Indexed: 01/03/2023]
Abstract
Mitochondrial dysfunction is a major cause and/or contributor to the development and progression of vision defects in many ophthalmologic and mitochondrial diseases. Despite their mechanistic commonality, these diseases exhibit an impressive variety in sex- and tissue-specific penetrance, incidence, and severity. Currently, there is no functional explanation for these differences. We measured the function, relative capacities, and patterns of control of various oxidative phosphorylation pathways in the retina, the eyecup, the extraocular muscles, the optic nerve, and the sciatic nerve of adult male and female rats. We show that the control of mitochondrial respiratory pathways in the visual system is sex- and tissue-specific and that this may be an important factor in determining susceptibility to mitochondrial dysfunction between these groups. The optic nerve showed a low relative capacity of the NADH pathway, depending on complex I, compared to other tissues relying mainly on mitochondria for energy production. Furthermore, NADH pathway capacity is higher in females compared to males, and this sexual dimorphism occurs only in the optic nerve. Our results propose an explanation for Leber's hereditary optic neuropathy, a mitochondrial disease more prevalent in males where the principal tissue affected is the optic nerve. To our knowledge, this is the first study to identify and provide functional explanations for differences in the occurrence and severity of visual defects between tissues and between sexes. Our results highlight the importance of considering sex- and tissue-specific mitochondrial function in elucidating pathophysiological mechanisms of visual defects.
Collapse
Affiliation(s)
- Claudia Holody
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada; Dept. of Pediatrics, University of Alberta, Edmonton, Alberta, Canada; Women and Children Research Health Institute, University of Alberta, Edmonton, Alberta, Canada; Dept. of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Anaïs Anfray
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Heather Mast
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Martin Lessard
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Woo Hyun Han
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Rowan Carpenter
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Stephane Bourque
- Dept. of Pediatrics, University of Alberta, Edmonton, Alberta, Canada; Women and Children Research Health Institute, University of Alberta, Edmonton, Alberta, Canada; Dept. of Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Yves Sauvé
- Dept. of Ophthalmology and Visual Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada; Women and Children Research Health Institute, University of Alberta, Edmonton, Alberta, Canada; Dept. of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
16
|
Benninghoff T, Espelage L, Eickelschulte S, Zeinert I, Sinowenka I, Müller F, Schöndeling C, Batchelor H, Cames S, Zhou Z, Kotzka J, Chadt A, Al-Hasani H. The RabGAPs TBC1D1 and TBC1D4 Control Uptake of Long-Chain Fatty Acids Into Skeletal Muscle via Fatty Acid Transporter SLC27A4/FATP4. Diabetes 2020; 69:2281-2293. [PMID: 32868338 DOI: 10.2337/db20-0180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022]
Abstract
The two closely related RabGTPase-activating proteins (RabGAPs) TBC1D1 and TBC1D4 play a crucial role in the regulation of GLUT4 translocation in response to insulin and contraction in skeletal muscle. In mice, deficiency in one or both RabGAPs leads to reduced insulin- and contraction-stimulated glucose uptake and to elevated fatty acid (FA) uptake and oxidation in both glycolytic and oxidative muscle fibers without altering mitochondrial copy number and the abundance of proteins for oxidative phosphorylation. Here we present evidence for a novel mechanism of skeletal muscle lipid utilization involving the two RabGAPs and the FA transporter SLC27A4/FATP4. Both RabGAPs control the uptake of saturated and unsaturated long-chain FAs (LCFAs) into skeletal muscle and knockdown (Kd) of a subset of RabGAP substrates, Rab8, Rab10, or Rab14, decreased LCFA uptake into these cells. In skeletal muscle from Tbc1d1 and Tbc1d4 knockout animals, SLC27A4/FATP4 abundance was increased and depletion of SLC27A4/FATP4 but not FAT/CD36 completely abrogated the enhanced FA oxidation in RabGAP-deficient skeletal muscle and cultivated C2C12 myotubes. Collectively, our data demonstrate that RabGAP-mediated control of skeletal muscle lipid metabolism converges with glucose metabolism at the level of downstream RabGTPases and involves regulated transport of LCFAs via SLC27A4/FATP4.
Collapse
Affiliation(s)
- Tim Benninghoff
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Lena Espelage
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Samaneh Eickelschulte
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Isabel Zeinert
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Isabelle Sinowenka
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Frank Müller
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Christina Schöndeling
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Hannah Batchelor
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Sandra Cames
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Zhou Zhou
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
| | - Jörg Kotzka
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Alexandra Chadt
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Duesseldorf, Medical Faculty, Duesseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| |
Collapse
|
17
|
Lucchinetti E, Lou PH, Hersberger M, Clanachan AS, Zaugg M. Diabetic Rat Hearts Show More Favorable Metabolic Adaptation to Omegaven Containing High Amounts of n3 Fatty Acids Than Intralipid Containing n6 Fatty Acids. Anesth Analg 2020; 131:943-954. [PMID: 32398434 DOI: 10.1213/ane.0000000000004838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND While Omegaven, an omega-3 (n3) fatty acid-based lipid emulsion, fosters insulin signaling in healthy hearts, it is unknown whether beneficial metabolic effects occur in insulin-resistant diabetic hearts. METHODS Diabetic hearts from fructose-fed Sprague-Dawley rats were perfused in the working mode for 90 minutes in the presence of 11 mM glucose and 1.2 mM palmitate bound to albumin, the first 30 minutes without insulin followed by 60 minutes with insulin (50 mU/L). Hearts were randomly allocated to Intralipid (25 and 100 µM), Omegaven (25 and 100 µM), or no emulsion (insulin alone) for 60 minutes. Glycolysis, glycogen synthesis, and glucose oxidation were measured with the radioactive tracers [5-H]glucose and [U-C]glucose. Central carbon metabolites, acyl-coenzyme A species (acyl-CoAs), ketoacids, purines, phosphocreatine, acylcarnitines, and acyl composition of phospholipids were measured with mass spectrometry. RESULTS Diabetic hearts showed no response to insulin with regard to glycolytic flux, consistent with insulin resistance. Addition of either lipid emulsion did not alter this response but unexpectedly increased glucose oxidation (ratio of treatment/baseline, ie, fold change): no insulin 1.3 (0.3) [mean (standard deviation)], insulin alone 1.4 (0.4), insulin + 25 µM Intralipid 1.8 (0.5), insulin + 100 µM Intralipid 2.2 (0.4), P < .001; no insulin 1.3 (0.3), insulin alone 1.4 (0.4), insulin + 25 µM Omegaven 2.3 (0.5) insulin + 100 µM Omegaven 1.9 (0.4), P < .001. Intralipid treatment led to accumulation of acylcarnitines as a result of the released linoleic acid (C18:2-n6) and enhanced its integration into phospholipids, consistent with incomplete or impaired β-oxidation necessitating a compensatory increase in glucose oxidation. Accumulation of acylcarnitines was also associated with a higher nicotinamide adenine dinucleotide reduced/oxidized (NADH/NAD) ratio, which inhibited pyruvate dehydrogenase (PDH), and resulted in excess lactate production. In contrast, Omegaven-treated hearts showed no acylcarnitine accumulation, low malonyl-CoA concentrations consistent with activated β-oxidation, and elevated PDH activity and glucose oxidation, together indicative of a higher metabolic rate possibly by substrate cycling. CONCLUSIONS Omegaven is the preferred lipid emulsion for insulin-resistant diabetic hearts.
Collapse
Affiliation(s)
| | - Phing-How Lou
- Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital, Zurich, Switzerland
| | | | - Michael Zaugg
- Anesthesiology & Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
18
|
Li Y, Pan H, Zhang X, Wang H, Liu S, Zhang H, Qian H, Wang L, Ying H. Geniposide Improves Glucose Homeostasis via Regulating FoxO1/PDK4 in Skeletal Muscle. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4483-4492. [PMID: 30929433 DOI: 10.1021/acs.jafc.9b00402] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
It is well-known that imbalance state of glucose metabolism triggers many metabolic diseases and glucose uptake in skeletal muscle accounts for 90% of body weight. Geniposide is one of the major natural bioactive constituents of gardenia fruit, and the regulation of geniposide on glucose metabolism in skeletal muscle has not yet been investigated. Here, on the basis of microarray analysis, we discovered that geinposide decreased pyruvate dehydrogenase kinase 4 (PDK4) expression in skeletal muscle of mice and subsequently found that geniposide inhibited the expressions of forkhead box O1 (FoxO1), PDK4, and phosphorylated pyruvate dehydrogenase in vitro and in vivo. Moreover, geniposide promoted a switch of slow-to-fast myofiber type and glucose utilization, suggesting that geniposide improved glucose homeostasis. In addition, mechanistic studies revealed that geniposide played above roles by regulating FoxO1/PDK4, which controlled fuel selection via pyruvate dehydrogenase. Meanwhile, effects of geniposide mentioned above could be reversed by FoxO1 overexpression. Together, these results establish that geniposide confers controls on fuel usage and glucose homeostasis through FoxO1/PDK4 in skeletal muscle.
Collapse
Affiliation(s)
- Yan Li
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences , Chinese Academy of Sciences , 320 Yueyang Road , Shanghai 200031 , People's Republic of China
| | | | - Xuetong Zhang
- Affiliated Hospital of Jiangnan University (Wuxi No. 4 People's Hospital) , Jiangnan University , Wuxi , Jiangsu 214062 , People's Republic of China
| | - Hui Wang
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences , Chinese Academy of Sciences , 320 Yueyang Road , Shanghai 200031 , People's Republic of China
| | - Shengnan Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences , Chinese Academy of Sciences , 320 Yueyang Road , Shanghai 200031 , People's Republic of China
| | | | | | | | - Hao Ying
- Chinese Academy of Sciences (CAS) Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences , Chinese Academy of Sciences , 320 Yueyang Road , Shanghai 200031 , People's Republic of China
| |
Collapse
|
19
|
Brunetta HS, de Paula GC, de Oliveira J, Martins EL, Dos Santos GJ, Galina A, Rafacho A, de Bem AF, Nunes EA. Decrement in resting and insulin-stimulated soleus muscle mitochondrial respiration is an early event in diet-induced obesity in mice. Exp Physiol 2019; 104:306-321. [PMID: 30578638 DOI: 10.1113/ep087317] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/19/2018] [Indexed: 01/08/2023]
Abstract
NEW FINDINGS What is the central question of this study? What are the temporal responses of mitochondrial respiration and mitochondrial responsivity to insulin in soleus muscle fibres from mice during the development of obesity and insulin resistance? What is the main finding and its importance? Short- and long-term feeding with a high-fat diet markedly reduced soleus mitochondrial respiration and mitochondrial responsivity to insulin before any change in glycogen synthesis. Muscle glycogen synthesis and whole-body insulin resistance were present after 14 and 28 days, respectively. Our findings highlight the plasticity of mitochondria during the development of obesity and insulin resistance. ABSTRACT Recently, significant attention has been given to the role of muscle mitochondrial function in the development of insulin resistance associated with obesity. Our aim was to investigate temporal alterations in mitochondrial respiration, H2 O2 emission and mitochondrial responsivity to insulin in permeabilized skeletal muscle fibres during the development of obesity in mice. Male Swiss mice (5-6 weeks old) were fed with a high-fat diet (60% calories from fat) or standard diet for 7, 14 or 28 days to induce obesity and insulin resistance. Diet-induced obese (DIO) mice presented with reduced glucose tolerance and hyperinsulinaemia after 7 days of high-fat diet. After 14 days, the expected increase in muscle glycogen content after systemic injection of glucose and insulin was not observed in DIO mice. At 28 days, blood glucose decay after insulin injection was significantly impaired. Complex I (pyruvate + malate) and II (succinate)-linked respiration and oxidative phosphorylation (ADP) were decreased after 7 days of high-fat diet and remained low in DIO mice after 14 and 28 days of treatment. Moreover, mitochondria from DIO mice were incapable of increasing respiratory coupling and ADP responsivity after insulin stimulation in all observed periods. Markers of mitochondrial content were reduced only after 28 days of treatment. The mitochondrial H2 O2 emission profile varied during the time course of DIO, with a reduction of H2 O2 emission in the early stages of DIO and an increased emission after 28 days of treatment. Our data demonstrate that DIO promotes transitory alterations in mitochondrial physiology during the early and late stages of insulin resistance related to obesity.
Collapse
Affiliation(s)
- Henver Simionato Brunetta
- Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina, Florianopólis, Santa Catrina, Brazil
| | - Gabriela Cristina de Paula
- Graduate Program in Biochemistry, Federal University of Santa Catarina, Florianopólis, Santa Catrina, Brazil
| | - Jade de Oliveira
- Graduate Program in Health Sciences, University of Extremo Sul Catarinense, Criciúma, Santa Catarina, Brazil
| | - Eduarda Lopes Martins
- Graduate Program in Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Jorge Dos Santos
- Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina, Florianopólis, Santa Catrina, Brazil
| | - Antonio Galina
- Graduate Program in Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex Rafacho
- Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina, Florianopólis, Santa Catrina, Brazil
| | - Andreza Fabro de Bem
- Graduate Program in Biochemistry, Federal University of Santa Catarina, Florianopólis, Santa Catrina, Brazil.,Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Distrito Federal, Brazil
| | - Everson Araújo Nunes
- Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina, Florianopólis, Santa Catrina, Brazil
| |
Collapse
|
20
|
Mai BH, Yan LJ. The negative and detrimental effects of high fructose on the liver, with special reference to metabolic disorders. Diabetes Metab Syndr Obes 2019; 12:821-826. [PMID: 31213868 PMCID: PMC6549781 DOI: 10.2147/dmso.s198968] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/25/2019] [Indexed: 12/17/2022] Open
Abstract
The increased consumption of fructose in the average diet through sweeteners such as high-fructose corn syrup (HFCS) and sucrose has resulted in negative outcomes in society through producing a considerable economic and medical burden on our healthcare system. Ingestion of fructose chronically has contributed to multiple health consequences, such as insulin resistance, obesity, liver disorders, and diabetes. Fructose metabolism starts with fructose phosphorylation by fructose kinase in the liver, and this process is not feedback regulated. Therefore, ingestion of high fructose can deplete ATP, increase uric acid production, and increase nucleotide turnover. This review focuses the discussion on the hepatic manifestations of high fructose-implicated liver metabolic disorders such as insulin resistance, obesity due to enhanced lipogenesis, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), and type 2 diabetes. The detrimental effects of high fructose on the liver, contributed potentially by microbiome and leptin, were also discussed. The authors believe that, together with diet management, further studies focusing on disrupting or blocking fructose metabolism in the liver may help with designing novel strategies for prevention and treatment of fructose-induced chronic liver metabolic diseases.
Collapse
Affiliation(s)
- Brandon H Mai
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX76107, USA
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX76107, USA
- Correspondence: Liang-Jun YanDepartment of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX76107, USATel +1 817 735 2386Fax +1 817 735 2603Email
| |
Collapse
|
21
|
Rasool S, Geetha T, Broderick TL, Babu JR. High Fat With High Sucrose Diet Leads to Obesity and Induces Myodegeneration. Front Physiol 2018; 9:1054. [PMID: 30258366 PMCID: PMC6143817 DOI: 10.3389/fphys.2018.01054] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 07/16/2018] [Indexed: 12/21/2022] Open
Abstract
Skeletal muscle utilizes both free fatty acids (FFAs) and glucose that circulate in the blood stream. When blood glucose levels acutely increase, insulin stimulates muscle glucose uptake, oxidation, and glycogen synthesis. Under these conditions, skeletal muscle preferentially oxidizes glucose while the oxidation of fatty acids (FAs) oxidation is reciprocally decreased. In metabolic disorders associated with insulin resistance, such as diabetes and obesity, both glucose uptake, and utilization muscle are significantly reduced causing FA oxidation to provide the majority of ATP for metabolic processes and contraction. Although the causes of this metabolic inflexibility or disrupted "glucose-fatty acid cycle" are largely unknown, a diet high in fat and sugar (HFS) may be a contributing factor. This metabolic inflexibility observed in models of obesity or with HFS feeding is detrimental because high rates of FA oxidation in skeletal muscle can lead to the buildup of toxic metabolites of fat metabolism and the accumulation of pro-inflammatory cytokines, which further exacerbate the insulin resistance. Further, HFS leads to skeletal muscle atrophy with a decrease in myofibrillar proteins and phenotypically characterized by loss of muscle mass and strength. Overactivation of ubiquitin proteasome pathway, oxidative stress, myonuclear apoptosis, and mitochondrial dysfunction are some of the mechanisms involved in muscle atrophy induced by obesity or in mice fed with HFS. In this review, we will discuss how HFS diet negatively impacts the various physiological and metabolic mechanisms in skeletal muscle.
Collapse
Affiliation(s)
- Suhail Rasool
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, United States
| | - Thangiah Geetha
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, United States
| | - Tom L Broderick
- Laboratory of Diabetes and Exercise Metabolism, Department of Physiology, Midwestern University, Glendale, AZ, United States
| | - Jeganathan R Babu
- Department of Nutrition, Dietetics, and Hospitality Management, Auburn University, Auburn, AL, United States
| |
Collapse
|
22
|
Lou PH, Lucchinetti E, Scott KY, Huang Y, Gandhi M, Hersberger M, Clanachan AS, Lemieux H, Zaugg M. Alterations in fatty acid metabolism and sirtuin signaling characterize early type-2 diabetic hearts of fructose-fed rats. Physiol Rep 2018; 5:5/16/e13388. [PMID: 28830979 PMCID: PMC5582268 DOI: 10.14814/phy2.13388] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/24/2017] [Indexed: 01/25/2023] Open
Abstract
Despite the fact that skeletal muscle insulin resistance is the hallmark of type‐2 diabetes mellitus (T2DM), inflexibility in substrate energy metabolism has been observed in other tissues such as liver, adipose tissue, and heart. In the heart, structural and functional changes ultimately lead to diabetic cardiomyopathy. However, little is known about the early biochemical changes that cause cardiac metabolic dysregulation and dysfunction. We used a dietary model of fructose‐induced T2DM (10% fructose in drinking water for 6 weeks) to study cardiac fatty acid metabolism in early T2DM and related signaling events in order to better understand mechanisms of disease. In early type‐2 diabetic hearts, flux through the fatty acid oxidation pathway was increased as a result of increased cellular uptake (CD36), mitochondrial uptake (CPT1B), as well as increased β‐hydroxyacyl‐CoA dehydrogenase and medium‐chain acyl‐CoA dehydrogenase activities, despite reduced mitochondrial mass. Long‐chain acyl‐CoA dehydrogenase activity was slightly decreased, resulting in the accumulation of long‐chain acylcarnitine species. Cardiac function and overall mitochondrial respiration were unaffected. However, evidence of oxidative stress and subtle changes in cardiolipin content and composition were found in early type‐2 diabetic mitochondria. Finally, we observed decreased activity of SIRT1, a pivotal regulator of fatty acid metabolism, despite increased protein levels. This indicates that the heart is no longer capable of further increasing its capacity for fatty acid oxidation. Along with increased oxidative stress, this may represent one of the earliest signs of dysfunction that will ultimately lead to inflammation and remodeling in the diabetic heart.
Collapse
Affiliation(s)
- Phing-How Lou
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Eliana Lucchinetti
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Katrina Y Scott
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Yiming Huang
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Manoj Gandhi
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | - Martin Hersberger
- Division of Clinical Chemistry and Biochemistry, University Children's Hospital Zürich, Zurich, Switzerland
| | | | - Hélène Lemieux
- Faculty Saint-Jean, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Zaugg
- Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada .,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
23
|
Collins KH, Hart DA, Smith IC, Issler AM, Reimer RA, Seerattan RA, Rios JL, Herzog W. Acute and chronic changes in rat soleus muscle after high-fat high-sucrose diet. Physiol Rep 2018; 5:e13270. [PMID: 28533262 PMCID: PMC5449557 DOI: 10.14814/phy2.13270] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022] Open
Abstract
The effects of obesity on different musculoskeletal tissues are not well understood. The glycolytic quadriceps muscles are compromised with obesity, but due to its high oxidative capacity, the soleus muscle may be protected against obesity‐induced muscle damage. To determine the time–course relationship between a high‐fat/high‐sucrose (HFS) metabolic challenge and soleus muscle integrity, defined as intramuscular fat invasion, fibrosis and molecular alterations over six time points. Male Sprague‐Dawley rats were fed a HFS diet (n = 64) and killed at serial short‐term (3 days, 1 week, 2 weeks, 4 weeks) and long‐term (12 weeks, 28 weeks) time points. Chow‐fed controls (n = 21) were killed at 4, 12, and 28 weeks. At sacrifice, animals were weighed, body composition was calculated (DXA), and soleus muscles were harvested and flash‐frozen. Cytokine and adipokine mRNA levels for soleus muscles were assessed, using RT‐qPCR. Histological assessment of muscle fibrosis and intramuscular fat was conducted, CD68+ cell number was determined using immunohistochemistry, and fiber typing was assessed using myosin heavy chain protein analysis. HFS animals demonstrated significant increases in body fat by 1 week, and this increase in body fat was sustained through 28 weeks on the HFS diet. Short‐term time‐point soleus muscles demonstrated up‐regulated mRNA levels for inflammation, atrophy, and oxidative stress molecules. However, intramuscular fat, fibrosis, and CD68+ cell number were similar to their respective control group at all time points evaluated. Therefore, the oxidative capacity of the soleus may be protective against diet‐induced alterations to muscle integrity. Increasing oxidative capacity of muscles using aerobic exercise may be a beneficial strategy for mitigating obesity‐induced muscle damage, and its consequences.
Collapse
Affiliation(s)
- Kelsey H Collins
- Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| | - David A Hart
- Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,The Centre for Hip Health & Mobility, Department of Family Practice, University of British Columbia, Vancouver, British Columbia, Canada.,Alberta Health Services Bone & Joint Health Strategic Clinical Network, Calgary, Alberta, Canada
| | - Ian C Smith
- Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada
| | - Anthony M Issler
- Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada.,Department of Mechanical Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Raylene A Reimer
- Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada.,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Ruth A Seerattan
- Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada
| | - Jaqueline L Rios
- Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada.,CAPES Foundation, Brasilia, Brazil
| | - Walter Herzog
- Human Performance Laboratory, University of Calgary, Calgary, Alberta, Canada.,McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
24
|
Wu J, Luo X, Thangthaeng N, Sumien N, Chen Z, Rutledge MA, Jing S, Forster MJ, Yan LJ. Pancreatic mitochondrial complex I exhibits aberrant hyperactivity in diabetes. Biochem Biophys Rep 2017; 11:119-129. [PMID: 28868496 PMCID: PMC5580358 DOI: 10.1016/j.bbrep.2017.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/13/2017] [Accepted: 07/18/2017] [Indexed: 12/28/2022] Open
Abstract
It is well established that NADH/NAD+ redox balance is heavily perturbed in diabetes, and the NADH/NAD+ redox imbalance is a major source of oxidative stress in diabetic tissues. In mitochondria, complex I is the only site for NADH oxidation and NAD+ regeneration and is also a major site for production of mitochondrial reactive oxygen species (ROS). Yet how complex I responds to the NADH/NAD+ redox imbalance and any potential consequences of such response in diabetic pancreas have not been investigated. We report here that pancreatic mitochondrial complex I showed aberrant hyperactivity in either type 1 or type 2 diabetes. Further studies focusing on streptozotocin (STZ)-induced diabetes indicate that complex I hyperactivity could be attenuated by metformin. Moreover, complex I hyperactivity was accompanied by increased activities of complexes II to IV, but not complex V, suggesting that overflow of NADH via complex I in diabetes could be diverted to ROS production. Indeed in diabetic pancreas, ROS production and oxidative stress increased and mitochondrial ATP production decreased, which can be attributed to impaired pancreatic mitochondrial membrane potential that is responsible for increased cell death. Additionally, cellular defense systems such as glucose 6-phosphate dehydrogenase, sirtuin 3, and NQO1 were found to be compromised in diabetic pancreas. Our findings point to the direction that complex I aberrant hyperactivity in pancreas could be a major source of oxidative stress and β cell failure in diabetes. Therefore, inhibiting pancreatic complex I hyperactivity and attenuating its ROS production by various means in diabetes might serve as a promising approach for anti-diabetic therapies.
Collapse
Affiliation(s)
- Jinzi Wu
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Xiaoting Luo
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
- Department of Biochemistry and Molecular Biology, Gannan Medical University, Ganzhou, Jiangxi Province 341000, China
| | - Nopporn Thangthaeng
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Nathalie Sumien
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Zhenglan Chen
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Margaret A. Rutledge
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Siqun Jing
- College of Life Sciences and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Michael J. Forster
- Center for Neuroscience Discovery, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| | - Liang-Jun Yan
- Department of Pharmaceutical Sciences, UNT System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX 76107, United States
| |
Collapse
|
25
|
Chagnot C, Venien A, Renier S, Caccia N, Talon R, Astruc T, Desvaux M. Colonisation of Meat by Escherichia coli O157:H7: Investigating Bacterial Tropism with Respect to the Different Types of Skeletal Muscles, Subtypes of Myofibres, and Postmortem Time. Front Microbiol 2017; 8:1366. [PMID: 28790986 PMCID: PMC5524725 DOI: 10.3389/fmicb.2017.01366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/05/2017] [Indexed: 12/22/2022] Open
Abstract
Escherichia coli O157:H7 is an enterohaemorrhagic E. coli (EHEC) responsible for serious diseases, especially pediatric, and of great concern for the meat industry. Meat contamination by EHEC occurs at slaughtering, especially at dehiding stage, where bacteria can be transferred from hides to carcasses. The skeletal muscle tissues comprise four major types of myofibres, which differ in their contraction velocity and metabolism. Myofibres are surrounded by the extracellular matrix (ECM). Adhesion of E. coli O157:H7 to meat was investigated considering well-defined types of skeletal muscle and their constituent myofibres as well as postmortem changes in muscle, using fluorescence microscopy and immunohistochemical analyses. By analysing the adhesion of E. coli O157:H7 to model oxidative (soleus) and glycolytic [extensor digitorum longus (EDL)] skeletal muscles, it first appeared that differential adhesion occurred at the surface of these extreme skeletal muscle types. At a cellular level, bacterial adhesion appeared to occur essentially at the ECM. Considering the different constituent myofibres of types I, IIA, IIX and IIB, no significant differences were observed for adhering bacteria. However, bacterial adhesion to the ECM was significantly influenced by postmortem structural modifications of muscle tissues. By providing information on spatial localisation of E. coli O157:H7 on meat, this investigation clearly demonstrated their ability to adhere to skeletal muscle, especially at the ECM, which consequently resulted in their heterogeneous distribution in meat. As discussed, these new findings should help in reassessing and mitigating the risk of contamination of meat, the food chain and ultimately human infection by EHEC.
Collapse
Affiliation(s)
- Caroline Chagnot
- UMR454 MEDiS, INRA, Université Clermont AuvergneClermont-Ferrand, France
- INRA, UR370 Qualité des Produits AnimauxSaint-Genès Champanelle, France
| | - Annie Venien
- INRA, UR370 Qualité des Produits AnimauxSaint-Genès Champanelle, France
| | - Sandra Renier
- UMR454 MEDiS, INRA, Université Clermont AuvergneClermont-Ferrand, France
| | - Nelly Caccia
- UMR454 MEDiS, INRA, Université Clermont AuvergneClermont-Ferrand, France
| | - Régine Talon
- UMR454 MEDiS, INRA, Université Clermont AuvergneClermont-Ferrand, France
| | - Thierry Astruc
- INRA, UR370 Qualité des Produits AnimauxSaint-Genès Champanelle, France
| | - Mickaël Desvaux
- UMR454 MEDiS, INRA, Université Clermont AuvergneClermont-Ferrand, France
| |
Collapse
|
26
|
Remodeling pathway control of mitochondrial respiratory capacity by temperature in mouse heart: electron flow through the Q-junction in permeabilized fibers. Sci Rep 2017; 7:2840. [PMID: 28588260 PMCID: PMC5460290 DOI: 10.1038/s41598-017-02789-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/18/2017] [Indexed: 12/16/2022] Open
Abstract
Fuel substrate supply and oxidative phosphorylation are key determinants of muscle performance. Numerous studies of mammalian mitochondria are carried out (i) with substrate supply that limits electron flow, and (ii) far below physiological temperature. To analyze potentially implicated biases, we studied mitochondrial respiratory control in permeabilized mouse myocardial fibers using high-resolution respirometry. The capacity of oxidative phosphorylation at 37 °C was nearly two-fold higher when fueled by physiological substrate combinations reconstituting tricarboxylic acid cycle function, compared with electron flow measured separately through NADH to Complex I or succinate to Complex II. The relative contribution of the NADH pathway to physiological respiratory capacity increased with a decrease in temperature from 37 to 25 °C. The apparent excess capacity of cytochrome c oxidase above physiological pathway capacity increased sharply under hypothermia due to limitation by NADH-linked dehydrogenases. This mechanism of mitochondrial respiratory control in the hypothermic mammalian heart is comparable to the pattern in ectotherm species, pointing towards NADH-linked mt-matrix dehydrogenases and the phosphorylation system rather than electron transfer complexes as the primary drivers of thermal sensitivity at low temperature. Delineating the link between stress and remodeling of oxidative phosphorylation is important for understanding metabolic perturbations in disease evolution and cardiac protection.
Collapse
|
27
|
Callahan ZJ, Oxendine MJ, Schaeffer PJ. Intramuscular triglyceride content precedes impaired glucose metabolism without evidence for mitochondrial dysfunction during early development of a diabetic phenotype. Appl Physiol Nutr Metab 2017; 42:963-972. [PMID: 28538106 DOI: 10.1139/apnm-2016-0685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The incidence of type 2 diabetes is highly correlated with obesity; however, there is a lack of research elucidating the temporal progression. Transgenic FVB/N UCP-dta mice, which develop a diabetic phenotype, and their nontransgenic littermates were fed either a high-fat or normal-chow diet and were studied at 6, 9, 12, 15, 18, 21, and 24 weeks of age to test the hypothesis that increased lipid accumulation in skeletal muscle causes mitochondrial dysfunction, leading to the development of insulin resistance. Body composition, intramuscular triglyceride (IMTG) content, glucose metabolism, and mitochondrial function were measured to determine if IMTG drove mitochondrial dysfunction, leading to the development of type 2 diabetes. High-fat-fed transgenic mice had a significantly greater body mass, lipid mass, and IMTG content beginning early in the experiment. Glucose tolerance tests revealed that high-fat-fed transgenic mice developed a significantly insulin resistant response compared with the other 3 groups toward the end of the time course while plasma insulin was elevated very early in the time course. There was no significant difference in several measures of metabolic function throughout the time course. Long-term high-fat feeding in transgenic mice produced increases in IMTG, adiposity, body mass, and plasma insulin accompanied by decreases in glucose metabolism, but did not reveal any deficits in mitochondrial function or regulation during the early stage of the development of type 2 diabetes. It does not appear that lipotoxicity is driving defects in mitochondrial function prior to the onset of insulin resistance.
Collapse
Affiliation(s)
- Zachary J Callahan
- Department of Biology, Miami University, Oxford, OH 45056, USA.,Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Michael J Oxendine
- Department of Biology, Miami University, Oxford, OH 45056, USA.,Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Paul J Schaeffer
- Department of Biology, Miami University, Oxford, OH 45056, USA.,Department of Biology, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
28
|
Motta VF, Bargut TL, Aguila MB, Mandarim-de-Lacerda CA. Treating fructose-induced metabolic changes in mice with high-intensity interval training: insights in the liver, white adipose tissue, and skeletal muscle. J Appl Physiol (1985) 2017; 123:699-709. [PMID: 28495843 DOI: 10.1152/japplphysiol.00154.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 01/06/2023] Open
Abstract
Fructose-rich caloric sweeteners induce adverse changes in the metabolism of humans. The study evaluated the effects of high-intensity interval training (HIIT) on a fructose feeding model, focusing on the liver, white adipose tissue (WAT), skeletal muscle, and their interplay. Male C57BL/6 mice were fed for 18 wk one of the following diets: control (C; 5% of total energy from fructose) or fructose (F; 55% of total energy from fructose). In the 10th week, for an additional 8-wk period, the groups were divided into nontrained (NT) or HIIT groups, totaling four groups: C-NT, C-HIIT, F-NT, and F-HIIT. At the end of the experiment, fructose consumption in the F-NT group led to a high systolic blood pressure, high plasma triglycerides, insulin resistance with glucose intolerance, and lower insulin sensitivity. We also observed liver steatosis, adipocyte hypertrophy, and diminished gene expressions of peroxisome proliferator-activated receptor-γ coactivator 1-α and fibronectin type III domain containing 5 (FNDC5; irisin) in this F-NT group. These results were accompanied by decreased gene expressions of nuclear respiratory factor 1 and mitochondrial transcription factor A (markers of mitochondrial biogenesis), and peroxisome proliferator-activated receptor-α and carnitine palmitoyltransferase 1 (markers of β-oxidation). HIIT improved all of these data in the C-HIIT and F-HIIT groups. In conclusion, in mice fed a fructose diet, HIIT improved body mass, blood pressure, glucose metabolism, and plasma triglycerides. Liver, WAT, and skeletal muscle were positively modulated by HIIT, indicating HIIT as a coadjutant treatment for diseases affecting these tissues.NEW & NOTEWORTHY We investigated the effects of high-intensity interval training (HIIT) in mice fed a fructose-rich diet and the resulting severe negative effect on the liver, white adipose tissue (WAT), and skeletal muscle, which reduced the expression of fibronectin type III domain containing 5 (FNDC5, irisin) and PGC1α and, consequently, affected markers of mitochondrial biogenesis and β-oxidation. Because HIIT may block these adverse effects in all of these three tissues, it might be suggested that it functions as a coadjutant treatment in combatting the alterations caused by high-fructose intake.
Collapse
Affiliation(s)
- Victor F Motta
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thereza L Bargut
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcia B Aguila
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A Mandarim-de-Lacerda
- Laboratory of Morphometry, Metabolism, and Cardiovascular Diseases, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Neuregulin 1 improves complex 2-mediated mitochondrial respiration in skeletal muscle of healthy and diabetic mice. Sci Rep 2017; 7:1742. [PMID: 28496106 PMCID: PMC5431817 DOI: 10.1038/s41598-017-02029-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/04/2017] [Indexed: 12/12/2022] Open
Abstract
It has been reported that neuregulin1 (NRG1) improves glucose tolerance in healthy and diabetic rodents. In vitro studies also suggest that NRG1 regulates myocyte oxidative capacity. To confirm this observation in vivo, we evaluated the effect on mitochondrial function of an 8-week treatment with NRG1 in db/db diabetic mice and C57BL/6JRJ healthy controls. NRG1 treatment improved complex 2-mediated mitochondrial respiration in the gastrocnemius of both control and diabetic mice and increased mitochondrial complex 2 subunit content by 2-fold. This effect was not associated with an increase in mitochondrial biogenesis markers. Enhanced ERBB4 phosphorylation could mediate NRG1 effects on mitochondrial function through signalling pathways, independently of ERK1/2, AKT or AMPK.
Collapse
|
30
|
Maarman GJ, Mendham AE, Lamont K, George C. Review of a causal role of fructose-containing sugars in myocardial susceptibility to ischemia/reperfusion injury. Nutr Res 2017. [PMID: 28633867 DOI: 10.1016/j.nutres.2017.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In 2012, the World Health Organization Global Status Report on noncommunicable diseases showed that 7.4 million deaths were due to ischemic heart disease. Consequently, cardiovascular disease is a significant health burden, especially when partnered with comorbidities such as obesity, metabolic syndrome, and type 2 diabetes mellitus. Of note, these diseases can all be induced or exacerbated by diet. Carbohydrates, in particular, fructose and glucose, generally form the largest part of the human diet. Accumulating evidence from animal studies suggests that if large amounts of fructose are consumed either in isolation or in combination with glucose (fructose-containing sugars), myocardial susceptibility to ischemia/reperfusion (I/R) injury increases. However, the underlying mechanisms that predisposes the myocardium to I/R injury in the fructose model are not elucidated, and no single mechanistic pathway has been described. Based on all available data on this topic, this review describes previously investigated mechanisms and highlights 3 main mechanistic pathways whereby fructose has shown to increase myocardial susceptibility to I/R injury. These pathways include (1) increased reactive oxygen species, resulting in reduced nitric oxide synthase and coronary flow; (2) elevated plasma fatty acids and insulin, leading to increased cardiac triglyceride content and lipotoxicity; and (3) disrupted myocardial calcium handling/homeostasis. Moreover, we highlight various factors that should be taken into account when the fructose animal model is used, such as rat strain, treatment periods, and doses. We argue that failure to do so would result in erratic inferences drawn from the existing body of evidence on fructose animal models.
Collapse
Affiliation(s)
- Gerald J Maarman
- Division of Exercise Science and Sports Medicine (ESSM), Department of Human Biology, University of Cape Town, PO Box 115, 7725, Cape Town, South Africa.
| | - Amy E Mendham
- Division of Exercise Science and Sports Medicine (ESSM), Department of Human Biology, University of Cape Town, PO Box 115, 7725, Cape Town, South Africa.
| | - Kim Lamont
- Soweto Cardiovascular Research Unit, University of the Witwatersrand, 3Q05, 7 York Rd, Parktown, 2193, Johannesburg, South Africa.
| | - Cindy George
- Non-Communicable Diseases Research Unit, South African Medical Research Council, PO Box 19070, Tygerberg, Cape Town, South Africa.
| |
Collapse
|
31
|
A High-Fat High-Sucrose Diet Rapidly Alters Muscle Integrity, Inflammation and Gut Microbiota in Male Rats. Sci Rep 2016; 6:37278. [PMID: 27853291 PMCID: PMC5112513 DOI: 10.1038/srep37278] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/27/2016] [Indexed: 01/06/2023] Open
Abstract
The chronic low-level inflammation associated with obesity is known to deleteriously affect muscle composition. However, the manner in which obesity leads to muscle loss has not been explored in detail or in an integrated manner following a short-term metabolic challenge. In this paper, we evaluated the relationships between compromised muscle integrity, diet, systemic inflammatory mediators, adipose tissue, and gut microbiota in male Sprague-Dawley rats. We show that intramuscular fat, fibrosis, and the number of pro-inflammatory cells increased by 3-days and was sustained across 28-days of high-fat high-sugar feeding compared to control-diet animals. To understand systemic contributors to muscle damage, dynamic changes in gut microbiota and serum inflammatory markers were evaluated. Data from this study links metabolic challenge to persistent compromise in muscle integrity after just 3-days, a finding associated with altered gut microbiota and systemic inflammatory changes. These data contribute to our understanding of early consequences of metabolic challenge on multiple host systems, which are important to understand as obesity treatment options are developed. Therefore, intervention within this early period of metabolic challenge may be critical to mitigate these sustained alterations in muscle integrity.
Collapse
|
32
|
Madlala HP, Maarman GJ, Ojuka E. Uric acid and transforming growth factor in fructose-induced production of reactive oxygen species in skeletal muscle. Nutr Rev 2016; 74:259-66. [PMID: 26946251 PMCID: PMC4892313 DOI: 10.1093/nutrit/nuv111] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The consumption of fructose, a major constituent of the modern diet, has raised increasing concern about the effects of fructose on health. Research suggests that excessive intake of fructose (>50 g/d) causes hyperuricemia, insulin resistance, mitochondrial dysfunction, de novo lipogenesis by the liver, and increased production of reactive oxygen species (ROS) in muscle. In a number of tissues, uric acid has been shown to stimulate the production of ROS via activation of transforming growth factor β1 and NADPH (nicotinamide adenine dinucleotide phosphate) oxidase 4. The role of uric acid in fructose-induced production of ROS in skeletal muscle, however, has not been investigated. This review examines the evidence for fructose-induced production of ROS in skeletal muscle, highlights proposed mechanisms, and identifies gaps in current knowledge.
Collapse
Affiliation(s)
- Hlengiwe P Madlala
- H.P. Madlala, G.J. Maarman, and E. Ojuka are with the Exercise Science and Sports Medicine Unit, Department of Human Biology, University of Cape Town, Cape Town, Western Cape, South Africa.
| | - Gerald J Maarman
- H.P. Madlala, G.J. Maarman, and E. Ojuka are with the Exercise Science and Sports Medicine Unit, Department of Human Biology, University of Cape Town, Cape Town, Western Cape, South Africa
| | - Edward Ojuka
- H.P. Madlala, G.J. Maarman, and E. Ojuka are with the Exercise Science and Sports Medicine Unit, Department of Human Biology, University of Cape Town, Cape Town, Western Cape, South Africa
| |
Collapse
|
33
|
Palanker Musselman L, Fink JL, Baranski TJ. CoA protects against the deleterious effects of caloric overload in Drosophila. J Lipid Res 2016; 57:380-7. [PMID: 26805007 DOI: 10.1194/jlr.m062976] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Indexed: 01/30/2023] Open
Abstract
We developed a Drosophila model of T2D in which high sugar (HS) feeding leads to insulin resistance. In this model, adipose TG storage is protective against fatty acid toxicity and diabetes. Initial biochemical and gene expression studies suggested that deficiency in CoA might underlie reduced TG synthesis in animals during chronic HS feeding. Focusing on the Drosophila fat body (FB), which is specialized for TG storage and lipolysis, we undertook a series of experiments to test the hypothesis that CoA could protect against the deleterious effects of caloric overload. Quantitative metabolomics revealed a reduction in substrate availability for CoA synthesis in the face of an HS diet. Further reducing CoA synthetic capacity by expressing FB-specific RNAi targeting pantothenate kinase (PK orfumble) or phosphopantothenoylcysteine synthase (PPCS) exacerbated HS-diet-induced accumulation of FFAs. Dietary supplementation with pantothenic acid (vitamin B5, a precursor of CoA) was able to ameliorate HS-diet-induced FFA accumulation and hyperglycemia while increasing TG synthesis. Taken together, our data support a model where free CoA is required to support fatty acid esterification and to protect against the toxicity of HS diets.
Collapse
Affiliation(s)
- Laura Palanker Musselman
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Jill L Fink
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Thomas J Baranski
- Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
34
|
Wang D, Yan J, Chen J, Wu W, Zhu X, Wang Y. Naringin Improves Neuronal Insulin Signaling, Brain Mitochondrial Function, and Cognitive Function in High-Fat Diet-Induced Obese Mice. Cell Mol Neurobiol 2015; 35:1061-71. [PMID: 25939427 DOI: 10.1007/s10571-015-0201-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/24/2015] [Indexed: 12/20/2022]
Abstract
The epidemic and experimental studies have confirmed that the obesity induced by high-fat diet not only caused neuronal insulin resistance, but also induced brain mitochondrial dysfunction as well as learning impairment in mice. Naringin has been reported to posses biological functions which are beneficial to human cognitions, but its protective effects on HFD-induced cognitive deficits and underlying mechanisms have not been well characterized. In the present study Male C57BL/6 J mice were fed either a control or high-fat diet for 20 weeks and then randomized into four groups treated with their respective diets including control diet, control diet + naringin, high-fat diet (HFD), and high-fat diet + naringin (HFDN). The behavioral performance was assessed by using novel object recognition test and Morris water maze test. Hippocampal mitochondrial parameters were analyzed. Then the protein levels of insulin signaling pathway and the AMP-activated protein kinase (AMPK) in the hippocampus were detected by Western blot method. Our results showed that oral administration of naringin significantly improved the learning and memory abilities as evidenced by increasing recognition index by 52.5% in the novel object recognition test and inducing a 1.05-fold increase in the crossing-target number in the probe test, and ameliorated mitochondrial dysfunction in mice caused by HFD consumption. Moreover, naringin significantly enhanced insulin signaling pathway as indicated by a 34.5% increase in the expression levels of IRS-1, a 47.8% decrease in the p-IRS-1, a 1.43-fold increase in the p-Akt, and a 1.89-fold increase in the p-GSK-3β in the hippocampus of the HFDN mice versus HFD mice. Furthermore, the AMPK activity significantly increased in the naringin-treated (100 mg kg(-1) d(-1)) group. These findings suggest that an enhancement in insulin signaling and a decrease in mitochondrial dysfunction through the activation of AMPK may be one of the mechanisms that naringin improves cognitive functions in HFD-induced obese mice.
Collapse
Affiliation(s)
- Dongmei Wang
- Department of Pathogen Biology, Medical College, Henan University of Science and Technology, No.6, Anhui Road, Jianxi District, Luoyang, 471003, China.
| | - Junqiang Yan
- Department of Neurology, The First Affiliated Hospital of Henan University of Science and Technology, Jinghua Road 24, Luoyang, 471003, China
| | - Jing Chen
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Jingba Road 2, Zhengzhou, 450014, China
| | - Wenlan Wu
- Department of Pathogen Biology, Medical College, Henan University of Science and Technology, No.6, Anhui Road, Jianxi District, Luoyang, 471003, China
| | - Xiaoying Zhu
- Department of Pathogen Biology, Medical College, Henan University of Science and Technology, No.6, Anhui Road, Jianxi District, Luoyang, 471003, China
| | - Yong Wang
- Department of Pathogen Biology, Medical College, Henan University of Science and Technology, No.6, Anhui Road, Jianxi District, Luoyang, 471003, China
| |
Collapse
|
35
|
Gervais A, Battista MC, Carranza-Mamane B, Lavoie HB, Baillargeon JP. Follicular fluid concentrations of lipids and their metabolites are associated with intraovarian gonadotropin-stimulated androgen production in women undergoing in vitro fertilization. J Clin Endocrinol Metab 2015; 100:1845-54. [PMID: 25695883 DOI: 10.1210/jc.2014-3649] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CONTEXT Although growing evidence points toward a role of lipotoxicity in the development of hyperandrogenesis, the main feature of polycystic ovary syndrome, few studies directly assessed this association in vivo in humans, and none targeted the ovarian milieu. OBJECTIVE The main objective of this study was to correlate follicular fluid (FF) T levels with lipids, lipid metabolites, and inflammation markers. DESIGN This was a cross-sectional study. SETTING Recruitment was performed in two fertility clinics at one private and one academic center. PARTICIPANTS Eighty women requiring in vitro fertilization were recruited during one of their scheduled visit at the fertility clinic. All women aged between 18 and 40 years with a body mass index between 18 and 40 kg/m(2) were invited to participate. INTERVENTION(S) There were no interventions. MAIN OUTCOME MEASURE(S) At the time of oocyte aspiration, FF was collected and analyzed for total T, lipids [nonesterified fatty acids (NEFAs) plus triglycerides], NEFA metabolites (acylcarnitines; markers of ineffective NEFAs β-oxidation), and inflammatory marker composition. The hypothesis being tested was formulated before the data collection. RESULTS FF T levels were significantly correlated with FF levels of lipids (r = 0.381, P = .001; independently of IL-6), acylcarnitines (r ≥ 0.255, all P = .008; not independently of lipids), and IL-6 (r = 0.300, P = .009, independently of lipids). Additionally, FF lipid levels were significantly and strongly correlated with acylcarnitines (r ≥ 0.594; all P < .001). CONCLUSIONS These results suggest that ovarian androgen production is related to intraovarian exposure to lipids, independently of inflammation and mainly through ineffective NEFA β-oxidation (as shown by higher acylcarnitine levels). Inflammation is also associated with intraovarian androgenesis, independently of lipids.
Collapse
Affiliation(s)
- A Gervais
- Division of Endocrinology (A.G., M.-C.B., J.-P.B.), Department of Medicine, and Department of Obstetrics and Gynecology (B.C.-M.), Université de Sherbrooke, and Centre de Recherche Clinique Étienne-LeBel (B.C.-M., J.-P.B.), Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4; and PROCREA Cliniques (B.C.-M.), Mt Royal, Québec, Canada H3P 2W3
| | | | | | | | | |
Collapse
|
36
|
Lou PH, Lucchinetti E, Zhang L, Affolter A, Gandhi M, Zhakupova A, Hersberger M, Hornemann T, Clanachan AS, Zaugg M. Propofol (Diprivan®) and Intralipid® exacerbate insulin resistance in type-2 diabetic hearts by impairing GLUT4 trafficking. Anesth Analg 2015; 120:329-40. [PMID: 25437926 DOI: 10.1213/ane.0000000000000558] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND The IV anesthetic, propofol, when administered as fat emulsion-based formulation (Diprivan) promotes insulin resistance, but the direct effects of propofol and its solvent, Intralipid, on cardiac insulin resistance are unknown. METHODS Hearts of healthy and type-2 diabetic rats (generated by fructose feeding) were aerobically perfused for 60 minutes with 10 μM propofol in the formulation of Diprivan or an equivalent concentration of its solvent Intralipid (25 μM) ± insulin (100 mU•L). Glucose uptake, glycolysis, and glycogen metabolism were measured using [H]glucose. Activation of Akt, GSK3β, AMPK, ERK1/2, p38MAPK, S6K1, JNK, protein kinase Cθ (PKCθ), and protein kinase CCβII (PKCβII) was determined using immunoblotting. GLUT4 trafficking and phosphorylations of insulin receptor substrate-1 (IRS-1) at Ser307(h312), Ser1100(h1101), and Tyr608(hTyr612) were measured. Mass spectrometry was used to determine acylcarnitines, phospholipids, and sphingolipids. RESULTS Diprivan and Intralipid reduced insulin-induced glucose uptake and redirected glucose to glycogen stores in diabetic hearts. Reduced glucose uptake was accompanied by lower GLUT4 trafficking to the sarcolemma. Diprivan and Intralipid inactivated GSK3β but activated AMPK and ERK1/2 in diabetic hearts. Only Diprivan increased phosphorylation of Akt(Ser473/Thr308) and translocated PKCθ and PKCβII to the sarcolemma in healthy hearts, whereas it activated S6K1 and p38MAPK and translocated PKCβII in diabetic hearts. Furthermore, only Diprivan phosphorylated IRS-1 at Ser1100(h1101) in healthy and diabetic hearts. JNK expression, phosphorylation of Ser307(h312) of IRS-1, and PKCθ expression and translocation were increased, whereas GLUT4 expression was reduced in insulin-treated diabetic hearts. Phosphatidylglycerol, phosphatidylethanolamine, and C18-sphingolipids accumulated in Diprivan-perfused and Intralipid-perfused diabetic hearts. CONCLUSIONS Propofol and Intralipid promote insulin resistance predominantly in type-2 diabetic hearts.
Collapse
Affiliation(s)
- Phing-How Lou
- From the *Department of Anesthesiology and Pain Medicine and Department of Pharmacology, University of Alberta, Edmonton, Canada; †Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Canada; ‡Department of Clinical Chemistry, University Children's Hospital Zurich, Zurich, Switzerland; §Department of Pharmacology, University of Alberta, Edmonton, Canada; and ‖Department of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Garvey SM, Russ DW, Skelding MB, Dugle JE, Edens NK. Molecular and metabolomic effects of voluntary running wheel activity on skeletal muscle in late middle-aged rats. Physiol Rep 2015; 3:3/2/e12319. [PMID: 25716928 PMCID: PMC4393218 DOI: 10.14814/phy2.12319] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We examined the molecular and metabolomic effects of voluntary running wheel activity in late middle-aged male Sprague Dawley rats (16–17 months). Rats were assigned either continuous voluntary running wheel access for 8 weeks (RW+) or cage-matched without running wheel access (RW−). The 9 RW+ rats averaged 83 m/day (range: 8–163 m), yet exhibited both 84% reduced individual body weight gain (4.3 g vs. 26.3 g, P = 0.02) and 6.5% reduced individual average daily food intake (20.6 g vs. 22.0 g, P = 0.09) over the 8 weeks. Hindlimb muscles were harvested following an overnight fast. Muscle weights and myofiber cross-sectional area showed no difference between groups. Western blots of gastrocnemius muscle lysates with a panel of antibodies suggest that running wheel activity improved oxidative metabolism (53% increase in PGC1α, P = 0.03), increased autophagy (36% increase in LC3B-II/-I ratio, P = 0.03), and modulated growth signaling (26% increase in myostatin, P = 0.04). RW+ muscle also showed 43% increased glycogen phosphorylase expression (P = 0.04) and 45% increased glycogen content (P = 0.04). Metabolomic profiling of plantaris and soleus muscles indicated that even low-volume voluntary running wheel activity is associated with decreases in many long-chain fatty acids (e.g., palmitoleate, myristoleate, and eicosatrienoate) relative to RW− rats. Relative increases in acylcarnitines and acyl glycerophospholipids were also observed in RW+ plantaris. These data establish that even modest amounts of physical activity during late middle-age promote extensive metabolic remodeling of skeletal muscle.
Collapse
Affiliation(s)
| | - David W Russ
- Division of Physical Therapy, Ohio University, Athens, Ohio, USA Ohio Musculoskeletal & Neurological Institute (OMNI), Heritage College of Osteopathic Medicine, Athens, Ohio, USA
| | | | | | | |
Collapse
|
38
|
Hong JH, Ku BJ, Shong M. Response: GDF15 Is a Novel Biomarker for Impaired Fasting Glucose (Diabetes Metab J 2014;38:472-9). Diabetes Metab J 2015; 39:84-6. [PMID: 25729718 PMCID: PMC4342542 DOI: 10.4093/dmj.2015.39.1.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Jun Hwa Hong
- Department of Internal Medicine, Kyungpook National University Hospital, Kyungpook National University School of Medicine, Daegu, Korea
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Korea
| | - Bon Jeong Ku
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University Hospital, Chungnam National University School of Medicine, Daejeon, Korea
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|